2012-01-01
Phys. Rev. Lett. 82, 2147 (1999). [89] Y. Zhang, Y. Tan, H. L. Stormer and P. Kim, Nature 438, 10 (2005). [90] J. W. McClure, Phys. Rev. 108, 612 (1957...Phys. 2, 595 (2006). [97] H. L. Stormer , J. P. Eisenstein, A. C. Gossard, W. Wiegmann, and K. Baldwin, Phys. Rev. Lett. 56, 85 (1985). [98] B. A...Sadowski, J. M. Schneider, and M. Potemski, J. Phys.: Cond. Matter 20, 454223 (2008). [108] W. Pan, J. S. Xia, H. L. Stormer , D. C. Tsui, C. L
NASA Astrophysics Data System (ADS)
Benedek, Giorgio; Vattuone, Luca
2008-06-01
The 12th International Conference on Vibrations at Surfaces (VAS 12) took place from 20 26 July 2007 as an event of the International School of Solid State Physics at the Ettore Majorana Foundation and Centre for Scientific Culture, Erice (Italy). The format and special environment of the conference have contributed to its transition from a traditional, medium-size conference into a more effective workshop, with a series of lectures reporting the most recent developments in the field, two poster sessions presenting recent results and even works in progress being discussed. The papers collected in this issue cover the highlights of the conference very thoroughly. Quite a few novel aspects concerning vibrations at surfaces are represented here, for example: new aspects in surface phonon spectroscopy, such as the very recent progress in inelastic x-ray scattering, the first observation of the boson peak in disordered surfaces, progress in the theory of atom scattering inelastic resonances, the action spectroscopy, the study of polycrystalline surfaces with electron energy-loss spectroscopy etc; parallel developments in experimental vibrational studies of adsorbed phases, either inorganic or organic, with those in ab initio theoretical simulations; the theory of enhanced electron--phonon interaction in low dimensions (2D and 1D); the extension from the traditional realm of surface vibrations and spectroscopy to other aspects of surface dynamics, like friction and various nonlinear effects, and to relevant dynamical phenomena occurring at interfaces. Other novelties presented at the conference, but already published in recent issues of the Journal of Physics: Condensed Matter, are also worth mentioning: the spin-echo spectroscopy with 3He allowing for slow-dynamics spectroscopy at very high, unprecedented resolutions (2007 J. Phys.: Cond. Matter 19 300301 and 305010; the first demonstration of dissociative surface trapping of molecules (2007 J. Phys.: Cond. Matter 19 305003; the discovery of optical surface phonons in metals, solving a quarter of a century old controversy about surface acoustic resonances (2007 J. Phys.: Cond. Matter 19 305011). Future development of the VAS conference series could involve extending it to new areas directly involving surface vibrations which have traditionally been covered by other scientific communities. These are nonlinear optics (second-harmonic generation, femtosecond pump and probe experiments), surface acoustic waves (SAW) in THz domains with extension to dispersion effects and optical phonons, THz SAW applications to sensors and other devices, etc. The mature field of surface vibrations has many new branches into a wide range of applicative, mostly nanotechnological areas. The present VAS edition was intended to renew the conference and stimulate its evolution into new challenging directions. We believe that this special issue of the Journal of Physics: Condensed Matter will meet with the same large consensus gained at the 12th International Conference on Vibrations at Surfaces, and will foster new progress in the fields of surface dynamical phenomena and their applications. The next International Conference on Vibrations at Surfaces (VAS 13) will take place in the fall of 2009 in Orlando, Florida, and will be chaired by Professor Talat S Rahman, University of Central Florida. We gratefully acknowledge the Ettore Majorana Foundation and Centre for Scientific Culture, Erice (Italy) and its staff for excellent hospitality and support, and SPECS and Varian for financial aid.
Pseudogap in normal underdoped phase of Bi2212: LDA + DMFT + ãk
NASA Astrophysics Data System (ADS)
Nekrasov, I. A.; Kuchinskii, E. Z.; Pchelkina, Z. V.; Sadovskii, M. V.
2007-09-01
Pseudogap phenomena are observed for normal underdoped phase of different high- Tc cuprates. Among others Bi 2Sr 2CaCu 2O 8- δ (Bi2212) compound is one of the most studied experimentally [A. Damascelli, Z. Hussain, Z.-X. Shen, Rev. Mod. Phys. 75 (2003) 473; J.C. Campuzano, M.R. Norman, M. Randeria, in: K.H. Bennemann, J.B. Ketterson (Eds.), Physics of Superconductors, vol. 2, Springer, Berlin, 2004, p. 167; J. Fink et al., cond-mat/0512307; X.J. Zhou et al., cond-mat/0604284]. To describe pseudogap regime in Bi2212, we employ novel generalized DMFT + Σk approach [E.Z. Kuchinskii, I.A. Nekrasov, M.V. Sadovskii, JETP Lett. 82 (2005) 198; M.V. Sadovskii et al., Phys. Rev. B 72 (2005) 155105, and these proceedings, doi:10.1016/j.physc.2007.03.367]. This approach gives possibility to preserve conventional dynamical mean-field theory (DMFT) equations [A. Georges et al., Rev. Mod. Phys. 68 (1996) 13] and include an additional (momentum dependent) self-energy Σk. In the present case, Σk describes non-local dynamical correlations induced by short-ranged collective Heisenberg-like antiferromagnetic spin fluctuations [M.V. Sadovskii, Physics-Uspekhi 44 (2001) 515, cond-mat/0408489]. The effective single impurity problem in the DMFT + Σk is solved by numerical renormalization group (NRG) [R. Bulla, A.C. Hewson, Th. Pruschke, J. Phys. Cond. Mat. 10 (1998) 8365; R. Bulla, Phys. Rev. Lett. 83 (1999) 136]. To take into account material specific properties of two neighboring CuO 2 layers of Bi2212 we employ local density approximation (LDA) to calculate necessary model parameters, e.g. the values of intra- and interlayer hopping integrals between Cu-sites. Onsite Coulomb interaction U for x2- y2 orbital was calculated in constrained LDA method [O. Gunnarsson et al., Phys. Rev. B 39 (1989) 1708]. The value of pseudogap potential Δ was obtained within DMFT(NRG) [E.Z. Kuchinskii, I.A. Nekrasov, M.V. Sadovskii, JETP Lett. 82 (2005) 198; M.V. Sadovskii et al., Phys. Rev. B 72 (2005) 155105, and these proceedings, doi:10.1016/j.physc.2007.03.367]. Here, we report theoretical LDA + DMFT + Σk quasiparticle bands dispersion, Fermi surface (FS) and angular resolved photoemission (ARPES) spectra accounting for pseudogap and bilayer splitting effects for normal underdoped Bi2212 ( δ = 0.15). We show that LDA-calculated value of bilayer splitting (BS) is too small to describe experimentally observed peak-dip-hump structure. Fermi surface in presence of the pseudogap fluctuations is almost insensitive to the BS value. Results obtained are in good agreement with recent ARPES experiments.
Inversion of Ionospheric Backscatter Radar Data in Order to Map and Model the Ionosphere
2006-08-17
M., Wild, J . A., Lester, M., Yeoman, T . K., Milan, S. E., Ye, H., Devlin, J . C., Frey, H. U., and Kikuchi, T ., Interhemispheric asymmetries in the...Devlin, J . and Salim, T ., Evaluation of Digital Generation and Phasing Techniques for Transmitter Signals of the TIGER N.Z. Radar. WARS02 (Workshop on...17. Conde, M. and Dyson, P. L., Thermospheric Vertical Winds Above Mawson , Antarctica, J . Atmos. Terr. Phys., Vol. 57, 589-596, 1995. 18. Conde, M
Bipolar Spintronics: From magnetic diodes to magnetic bipolar transistors
NASA Astrophysics Data System (ADS)
Zutic, Igor
2004-03-01
We develop a theory of bipolar (electrons and holes) spin-polarized transport [1,2] in semiconductors and discuss its implications for spintronic devices [3]. In our proposal for magnetic bipolar transistors [4,5] we show how bipolar spintronics can lead to spin and magnetic field controlled active devices, not limited by the magnetoresistive effects used in all-metallic structures [3]. We focus on magnetic p-n diodes [1,2] with spatially dependent spin splitting (Zeeman or exchange) of carrier bands. An exchange splitting can be provided by ferromagnetic semiconductors [6], while a large Zeeman splitting can be realized in the presence of magnetic field in magnetically doped or narrow band gap semiconductors [3]. Our theory of magnetic diodes [1,2] can be directly applied to magnetic bipolar transistors--the three-terminal devices which consist of two magnetic p-n diodes connected in series [4,5]. Predictions of exponentially large magnetoresistance [1] and a strong coupling between the spin and charge transport leading to the spin-voltaic effect [1,7] for magnetic diodes are also relevant for magnetic bipolar transistors. In particular, in n-p-n transistors, we show the importance of considering the nonequilibrium spin leading to the spin-voltaic effect. In addition to the applied magnetic filed, the injected nonequilibrium spin can be used to dynamically control the current amplification (gain). Recent experimental progress [8,9] supports the viability of our theoretical proposals. [1] I. Zutic, J. Fabian, S. Das Sarma, Phys. Rev. Lett. 88, 066603 (2002). [2] J. Fabian, I. Zutic, S. Das Sarma, Phys. Rev. B 66, 165301 (2002). [3] I. Zutic, J. Fabian, S. Das Sarma, Rev. Mod. Phys., in press. [4] J. Fabian, I. Zutic, S. Das Sarma, cond-mat/0211639; cond-mat/0307014, Appl. Phys. Lett., in press. [5] J. Fabian and I. Zutic, cond-mat/0311456. [6] H. Ohno, Science 281, 951 (1998). [7] I. Zutic, J. Fabian, S. Das Sarma, Appl. Phys. Lett. 82, 221 (2003). [8] N. Samarth, S. H. Chun, K. C. Ku, S. J. Potashnik, P. Schiffer, Solid State Commun. 127, 173 (2003). [9] F. Tsui, L. Ma, L. He, Appl. Phys. 83, 954 (2003).
Vanishing Hall conductance in the phase-glass Bose metal at zero temperature
NASA Astrophysics Data System (ADS)
May-Mann, Julian; Phillips, Philip W.
2018-01-01
Motivated in part by numerical simulations [H. G. Katzgraber and A. P. Young, Phys. Rev. B 66, 224507 (2002), 10.1103/PhysRevB.66.224507; J. M. Kosterlitz and N. Akino, Phys. Rev. Lett. 81, 4672 (1998), 10.1103/PhysRevLett.81.4672; Phys. Rev. Lett. 81, 4672 (1998), 10.1103/PhysRevLett.81.4672] that reveal that the energy to create a defect in a gauge or phase glass scales as Lθ with θ <0 for two dimensions, thereby implying a vanishing stiffness, we reexamine the relevance of these kinds of models to the Bose metal in light of the new experiments [N. P. Breznay and Kapitulnik (unpublished); Y. Wang, I. Tamir, D. Shahar, and N. P. Armitage, arXiv:1708.01908 [cond-mat.supr-con
Negative Differential Resistance in Insulating Systems: From Molecules to Polymers
NASA Astrophysics Data System (ADS)
Pati, Swapan
2007-03-01
We have developed a microscopic theory to explain the negative differential resistance behavior in molecular bridges. This feature has been observed in many molecules with different on/off ratios, sharpness of the current peak and the critical bias. Our theory, based on simple dimer model (both Peierls and donor/acceptor) together with bias driven conformational/ electronic change, covers almost all the experimental characteristics for a large number of real molecular systems and encompasses all the theory that has been known till date. Similar argument is also extended to Mott insulator, where we find a large number of insulator/quasi-metal transitions in finite size chains and a thermodynamic insulator/metal transition in polymers due to the application of static electric field between two ends of the chain. The interplay between charge inhomogenities and electric field induced polarization will be discussed in a number of cases. We will also show that none of these transitions follow Landau-Zener mechanism. I shall also discuss our theoretical proposal for the experimental strategies to stabilize highly unstable and reactive metal clusters like Al4Li4 and their analogs. Reference: 1. S. Lakshmi and Swapan K. Pati, Phys. Rev. B 72, 193410 (2005). 2. S. Lakshmi, Ayan Datta and Swapan K. Pati, Phys. Rev. B 72, 045131 (2005). 3. S. Lakshmi and Swapan K. Pati, Spl on Nanosc and Tech, Pramana, 65, 593. (2005). 4. S. Sengupta, S. Lakshmi and Swapan K Pati, J. Phys. Cond. Mat. 18, 9189 (2006). 5. Swapan K. Pati and S. Ramasesha, J. Phys. Condens. Matter 16, 989 (2004). 6. S.Lakshmi and Swapan K. Pati, J. Chem. Phys. 121, 11998 (2004). 7. S. Dutta, S. Lakshmi and Swapan K Pati, Submitted (2006). 8. A. Datta and Swapan K. Pati, J. Am. Chem. Soc. 127, 3496 (2005). 9. Sairam S. M., A. Datta and Swapan K. Pati, J. Phys. Chem. B 110, 20098 (2006). 10. A. Datta, Sairam S. M. and Swapan K. Pati, Acc. Chem. Res. (to appear)
Scalable Spin-Qubit Circuits with Quantum Dots
2006-12-31
Kondo entanglement” Phys. Rev. B 75, 035332 (2007). 14. W. A. Coish, Vitaly N . Golovach, J. Carlos Egues, Daniel Loss, “Measurement, control, and...Spin-orbit interaction in symmetric wells and cycloidal orbits without magnetic fields”, cond-mat/0607218. 16. Mircea Trif, Vitaly N . Golovach, Daniel...195-199 (2006); Supplementary Information. 22. Vitaly N . Golovach, Massoud Borhani, Daniel Loss, “Electric Dipole Induced Spin Resonance in Quantum
Ferromagnets without inversion symmetry - room for superconductivity?
NASA Astrophysics Data System (ADS)
Nevidomskyy, Andriy; Linder, Jacob; Sudbø, Asle
2009-03-01
Motivated by the recent discoveries of ferromagnetic and non-centrosymmetric superconductors, we present a mean-field theory [1] for a superconductor that both lacks inversion symmetry and displays ferromagnetism, a scenario which is believed to be realized in UIr under applied pressure [2]. We study the interplay between the order parameters to clarify how superconductivity is affected by the presence of ferromagnetism and spin-orbit coupling. We find that the spin-orbit coupling seems to enhance both ferromagnetism and superconductivity in both singlet and triplet channels. We discuss our results in the context of the heavy fermion superconductor UIr and analyze possible symmetries of the order parameter. [3pt] [1] J. Linder, A. H. Nevidomskyy, and A. Sudbø, Phys. Rev. B 78, 172502 (2008). [0pt] [2] T. Akazawa et al., J. Phys. Cond. Mat. 16, L29 (2004); J. Phys. Soc. Jpn. 73, 3129 (2004).
Classical simulation of infinite-size quantum lattice systems in two spatial dimensions.
Jordan, J; Orús, R; Vidal, G; Verstraete, F; Cirac, J I
2008-12-19
We present an algorithm to simulate two-dimensional quantum lattice systems in the thermodynamic limit. Our approach builds on the projected entangled-pair state algorithm for finite lattice systems [F. Verstraete and J. I. Cirac, arxiv:cond-mat/0407066] and the infinite time-evolving block decimation algorithm for infinite one-dimensional lattice systems [G. Vidal, Phys. Rev. Lett. 98, 070201 (2007)10.1103/PhysRevLett.98.070201]. The present algorithm allows for the computation of the ground state and the simulation of time evolution in infinite two-dimensional systems that are invariant under translations. We demonstrate its performance by obtaining the ground state of the quantum Ising model and analyzing its second order quantum phase transition.
NASA Astrophysics Data System (ADS)
Keen, David A.; Pusztai, László
2007-08-01
This Special Issue contains a collection of papers reflecting the content of the third workshop on reverse Monte Carlo (RMC) methods, held in a hotel on hills overlooking Budapest at the end of September 2006. Over forty participants gathered to hear talks and discuss a broad range of science based on the RMC technique in very convivial surroundings. Reverse Monte Carlo modelling is a method for producing three-dimensional disordered structural models in quantitative agreement with experimental data. The method was developed in the late 1980s and has since achieved wide acceptance within the scientific community [1]. It is particularly suitable for studies of the structures of liquid and amorphous materials, although it may also be applied effectively to the structural analysis of disordered crystalline systems. Since the previous RMC workshop in 2003 [2] there have been several developments in the technique, particularly as applied to crystals, and in the range of its application, most noticeable being the routine modelling of multiple data sets for a given problem; the latter growing through the increasing quality and availability of x-ray total scattering data from synchrotron x-ray sources. The RMC workshop was particularly beneficial, providing a forum for those workers in the field to take stock of past achievements and to look forward to future developments. It is our hope that the collection of papers within this Special Issue will also communicate this to the wider scientific community, providing a balance between papers that have more of an introductory review flavour and those that concentrate on current state of the art research opportunities using the RMC method. Furthermore, by including a small number of papers from colleagues working on similar disordered problems with complementary analysis techniques, we hope that the RMC method may be placed in a broader scientific context. The papers within this special issue have been arranged into four groups: those concerning liquids (1-8), amorphous (9-13) and crystalline materials (14-17) and those of a more general nature (18-23). Within these groupings, there are descriptions of RMCProfile (18) and RMCt (23), programs which use RMC methods to analyse total scattering from crystalline materials and to model inelastic neutron scattering data, respectively. There is also work using the related EPSR (6) and PDFfit (19) techniques, developments of the RMC method for analysis of single crystal electron diffraction (16) or polarised neutron diffraction (7), and examples of simultaneous RMC modelling of neutron and x-ray total scattering and XAS data (13, 10) . We are very grateful to IoP Publishing for their willingness to publish the proceedings of this meeting in a Special Issue of Journal of Physics: Condensed Matter. References [1] McGreevy R L 2001 J. Phys.: Cond. Matter 13 R877 [2] RMC-2 Workshop Proceedings 2005 J. Phys.: Cond. Matter 17 S1-S174
Comment on "Many-body localization in Ising models with random long-range interactions"
NASA Astrophysics Data System (ADS)
Maksymov, Andrii O.; Rahman, Noah; Kapit, Eliot; Burin, Alexander L.
2017-11-01
This Comment is dedicated to the investigation of many-body localization in a quantum Ising model with long-range power-law interactions r-α, relevant for a variety of systems ranging from electrons in Anderson insulators to spin excitations in chains of cold atoms. It has earlier been argued [arXiv:cond-mat/0611387 (2005); Phys. Rev. B 91, 094202 (2015), 10.1103/PhysRevB.91.094202] that this model obeys the dimensional constraint suggesting the delocalization of all finite-temperature states in the thermodynamic limit for α ≤2 d in a d -dimensional system. This expectation conflicts with the recent numerical studies of the specific interacting spin model of Li et al. [Phys. Rev. A 94, 063625 (2016), 10.1103/PhysRevA.94.063625]. To resolve this controversy we reexamine the model of Li et al. [Phys. Rev. A 94, 063625 (2016), 10.1103/PhysRevA.94.063625] and demonstrate that the infinite-temperature states there obey the dimensional constraint. The earlier developed scaling theory for the critical system size required for delocalization is extended to small exponents 0 ≤α ≤d . The disagreements between the two works are explained by the nonstandard selection of investigated states in the ordered phase in the work of Li et al. [Phys. Rev. A 94, 063625 (2016)
PERSONAL EXPOSURE TO PARTICLES IN BANSKA BYSTRICA, SLOVAKIA
Epidemiological studies have associated adverse health impacts with ambient concentrations of particulate matter (PM), though these studies have been limited in their characterization of personal exposure to PM. An exposure study of healthy nonsmoking adults and children was cond...
Asymptotics of QCD traveling waves with fluctuations and running coupling effects
NASA Astrophysics Data System (ADS)
Beuf, Guillaume
2008-09-01
Extending the Balitsky-Kovchegov (BK) equation independently to running coupling or to fluctuation effects due to pomeron loops is known to lead in both cases to qualitative changes of the traveling-wave asymptotic solutions. In this paper we study the extension of the forward BK equation, including both running coupling and fluctuations effects, extending the method developed for the fixed coupling case [E. Brunet, B. Derrida, A.H. Mueller, S. Munier, Phys. Rev. E 73 (2006) 056126, cond-mat/0512021]. We derive the exact asymptotic behavior in rapidity of the probabilistic distribution of the saturation scale.
2012-10-31
Prod uc F22 cond 1 Contract cond 2 Function cond 3 CONOPS For C2 systems, how often does Strategic Vision change? Records show that...System De cond 3 CapDef JTRS cond 1 InterOpera cond 2 Prod uctio F22 cond 1 Contract cond 2 Functional cond 3 CONOPS The Materiel
Noisy covariance matrices and portfolio optimization II
NASA Astrophysics Data System (ADS)
Pafka, Szilárd; Kondor, Imre
2003-03-01
Recent studies inspired by results from random matrix theory (Galluccio et al.: Physica A 259 (1998) 449; Laloux et al.: Phys. Rev. Lett. 83 (1999) 1467; Risk 12 (3) (1999) 69; Plerou et al.: Phys. Rev. Lett. 83 (1999) 1471) found that covariance matrices determined from empirical financial time series appear to contain such a high amount of noise that their structure can essentially be regarded as random. This seems, however, to be in contradiction with the fundamental role played by covariance matrices in finance, which constitute the pillars of modern investment theory and have also gained industry-wide applications in risk management. Our paper is an attempt to resolve this embarrassing paradox. The key observation is that the effect of noise strongly depends on the ratio r= n/ T, where n is the size of the portfolio and T the length of the available time series. On the basis of numerical experiments and analytic results for some toy portfolio models we show that for relatively large values of r (e.g. 0.6) noise does, indeed, have the pronounced effect suggested by Galluccio et al. (1998), Laloux et al. (1999) and Plerou et al. (1999) and illustrated later by Laloux et al. (Int. J. Theor. Appl. Finance 3 (2000) 391), Plerou et al. (Phys. Rev. E, e-print cond-mat/0108023) and Rosenow et al. (Europhys. Lett., e-print cond-mat/0111537) in a portfolio optimization context, while for smaller r (around 0.2 or below), the error due to noise drops to acceptable levels. Since the length of available time series is for obvious reasons limited in any practical application, any bound imposed on the noise-induced error translates into a bound on the size of the portfolio. In a related set of experiments we find that the effect of noise depends also on whether the problem arises in asset allocation or in a risk measurement context: if covariance matrices are used simply for measuring the risk of portfolios with a fixed composition rather than as inputs to optimization, the effect of noise on the measured risk may become very small.
NASA Astrophysics Data System (ADS)
Boyack, Rufus; Guo, Hao; Levin, K.
2015-03-01
Recent experiments on both unitary Fermi gases and high temperature superconductors (arxiv:1410.4835 [cond-mat.quant-gas], arxiv:1409.5820 [cond-mat.str-el].) have led to renewed interest in near perfect fluidity in condensed matter systems. This is quantified by studying the ratio of shear viscosity to entropy density. In this talk we present calculations of this ratio in homogeneous bosonic and fermionic superfluids, with the latter ranging from BCS to BEC. While the shear viscosity exhibits a power law (for bosons) or exponential suppression (for fermions), a similar dependence is found for the respective entropy densities. As a result, strict BCS and (true) bosonic superfluids have an analogous viscosity to entropy density ratio, behaving linearly with temperature times the (T-dependent) dissipation rate; this is characteristic of imperfect fluidity in weakly coupled fluids. This is contrasted with the behavior of fermions at unitarity which we argue is a consequence of additional terms in the entropy density thereby leading to more perfect fluidity. (arXiv:1407.7572v1 [cond-mat.quant-gas])
Applications and limitations to use of rice hull biochar in container substrates
USDA-ARS?s Scientific Manuscript database
Biochar is the charred organic matter that remains after pyrolysis of biomass or manure. Biochars from different feedstock yield different properties as a result of their differing particle sizes at the time of pyrolysis, inherent ash content of the feedstock, pyrolysis conditions, and storage cond...
NASA Astrophysics Data System (ADS)
Granroth, G. E.; Aczel, A. A.; Fernandez-Baca, J. A.; Nagler, S. E.
2013-03-01
Many experimental features in magnetic superconductors are also present when these complex materials are in the normal state. Therefore studies of simpler itinerant magnets may help provide understanding of these phenomena. We chose to study Gd as it is has an ~ 0 . 6μB itinerant moment in addition to a ~ 7 . 0μB localized moment. The SEQUOIA spectrometer, at the Spallation Neutron Source at Oak Ridge National Laboratory, was used in fine resolution mode with Ei=50 meV neutrons, to measure the magnetic excitations in a 12 gm 160Gd single crystal. The crystal was mounted with the h 0 l plane horizontal and rotated around the vertical axis to map out the excitations. The measured magnetic structure factor for the acoustic modes in the hh 0 direction has an intensity step at h ~ 0 . 3 . Electronic band structure calculations (W. M. Temmerman and P. A. Sterne, J. Phys: Condes. Matter,2, 5529 (1990)) show this Q position to be near several band crossings of the Fermi surface. A detailed analysis, including instrumental resolution, is presented to clarify any relationship between the magnetic structure factor and the electronic band structure. This work was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy.
Statistical mechanics of money and income
NASA Astrophysics Data System (ADS)
Dragulescu, Adrian; Yakovenko, Victor
2001-03-01
Money: In a closed economic system, money is conserved. Thus, by analogy with energy, the equilibrium probability distribution of money will assume the exponential Boltzmann-Gibbs form characterized by an effective temperature. We demonstrate how the Boltzmann-Gibbs distribution emerges in computer simulations of economic models. We discuss thermal machines, the role of debt, and models with broken time-reversal symmetry for which the Boltzmann-Gibbs law does not hold. Reference: A. Dragulescu and V. M. Yakovenko, "Statistical mechanics of money", Eur. Phys. J. B 17, 723-729 (2000), [cond-mat/0001432]. Income: Using tax and census data, we demonstrate that the distribution of individual income in the United States is exponential. Our calculated Lorenz curve without fitting parameters and Gini coefficient 1/2 agree well with the data. We derive the distribution function of income for families with two earners and show that it also agrees well with the data. The family data for the period 1947-1994 fit the Lorenz curve and Gini coefficient 3/8=0.375 calculated for two-earners families. Reference: A. Dragulescu and V. M. Yakovenko, "Evidence for the exponential distribution of income in the USA", cond-mat/0008305.
Theory of Magnetic Bipolar Transistors
NASA Astrophysics Data System (ADS)
Zutic, Igor; Fabian, Jaroslav; Das Sarma, S.
2003-03-01
We introduce the concept of a magnetic bipolar transistor (MBT) (J. Fabian, I. Zutic, S. Das Sarma, cond-mat/0211639.), which can be realized using already available materials. The transistor has at least one magnetic region (emitter, base, or collector) characterized by spin-splitting of the carrier bands. In addition, nonequilibrium (source) spin in MBTs can be induced by external means (electrically or optically). The theory of ideal MBTs is developed and discussed in the forward active regime where the transistors can amplify signals. It is shown that source spin can be injected from the emitter to the collector. It is predicted that electrical current gain (amplification) can be controlled effectively by magnetic field and source spin. If a base is a ferromagnetic semiconductor we suggest several methods for using spin-polarized bipolar transport (I. Zutic, J. Fabian, S. Das Sarma, Phys. Rev. Lett. f 88, 066603 (2002); J. Fabian, I. Zutic, S. Das Sarma, Phys. Rev. B f 66, 165301 (2002).) to manipulate semiconductor ferromagnetism.
Nanoparticle Controlled Soft Complex Structures with Topological Defects
2013-10-01
Condensed matter analogues of cosmology 25, 404201-1-404201-10, (2013); 7) Appl. Opt. 52, E47-E52 (2013); 8) Appl. Phys. Lett. 103, 143116 (2013...analogy with cosmology and magnetism, J. Phys.: Condens. Matter, Special Issue on Condensed matter analogues of cosmology 25, 404201, (2013). [24] A
Final Report-Rail Sensor Testbed Program: Active Agents in Containers for Transport Chain Security
2011-03-21
information. These trust approaches have been applied to a variety of regimes, including virtual communities [14], email [15] and ecommerce [16...2004(http://www .arxiv.org/abs/cond-mat/0402143). 16. Melnik, M., Aim, J., Does a seller’s eCommerce reputation matter? evidence from eBay auctions
PREFACE: Introductory remarks Introductory remarks
NASA Astrophysics Data System (ADS)
Bowler, D. R.; Alfe, D.
2010-02-01
This special issue contains papers related to the 2009 Thomas Young Centre Workshop at University College London 'Accessing large length and time scales with accurate quantum methods', in celebration of Professor Michael Gillan's 65th birthday. Mike Gillan won the 2006 Institute of Physics Dirac Medal and Prize, the citation reading: 'For his contributions to the development of atomic-scale computer simulations, which have greatly extended their power and effectiveness over an immense range of applications'. This rightly highlights Mike's seminal work on materials modelling, but misses out some of the many other areas he has enriched. After taking his PhD at the Department of Theoretical Physics, Oxford University, Mike went as a post-doc to Minneapolis. He then joined the Statistical Physics Group in the Theoretical Physics Division, Harwell, where he stayed for over 20 years, with a brief interlude in Saclay. In the late 1980s, Mike made a transition to become Professor of Physics at the University of Keele, where he stayed for a decade until University College London was fortunate in being able to tempt him to join the Condensed Matter and Material Physics Group, where there was already a significant materials modelling initiative. Over the years, Mike has made many important contributions, some with impact on other areas of science, others with significance in technology areas such as nuclear safety. Thus, he developed a form of quantum transition-state theory, generalizing Eyring's well-known classical transition-state theory to the case of quantum particles, such as hydrogen, diffusing in condensed matter. He pioneered quantum methods for calculating defect energetics in solids, and then molecular processes on surfaces. He synthesised these approaches into very general ways to calculate thermodynamic free energies of condensed matter from first principles, drawing on his early experience of statistical physics. These methods led to rapid advances in the study of matter under extreme conditions, as in the Earth's core. A further powerful development has been his input to linear-scaling quantum techniques for the properties of very large complex systems. In recent years, his attention has shifted towards increasing accuracy, touching areas such as quantum Monte Carlo and hierarchical quantum chemical techniques. In this journal issue, we have papers which both reflect topics from the workshop and address a number of areas which are directly in Mike's interests or which have been influenced by his work or assistance. There are papers addressing accuracy in quantum simulations [1-5], methods for applying quantum techniques to large systems [6, 7] and applications of quantum simulations to important problems [8-10]. We also have a viewpoint on magnetism in oxides and carbon [11], prompted by Mike's innovative work on oxides. References [1] Nolan S J, Bygrave P J, Allan N L and Manby F R 2010 J. Phys.: Condens. Matter 22 074201 [2] Badinski A, Haynes P D, Trail J R and Needs R J 2010 J. Phys.: Condens. Matter 22 074202 [3] Klimeš J, Bowler D R and Michaelides A 2010 J. Phys.: Condens. Matter 22 074203 [4] Baroni S, Gebauer R, Malcιoğlu O B, Saad Y, Umari P and Xian J 2010 J. Phys.: Condens. Matter 22 074204 [5] Toton D, Lorenz C D, Rompotis N, Martsinovich N and Kantorovich L 2010 J. Phys.: Condens. Matter 22 074205 [6] Fujiwara T, Hoshi T, Yamamoto S, Sogabe T and Zhang S-L 2010 J. Phys.: Condens. Matter 22 074206 [7] Bowler D R and Miyazari T 2010 J. Phys.: Condens. Matter 22 074207 [8] Er S, van Setten M J, de Wijs G A and Brocks G 2010 J. Phys.: Condens. Matter 22 074208 [9] Pan D, Liu L-M, Tribello G A, Slater B, Michaelides A and Wang E 2010 J. Phys.: Condens. Matter 22 074209 [10] Choudhury R, Gattinoni C, Makov G and De Vita A 2010 J. Phys.: Condens. Matter 22 074210 [11] Stoneham M 2010 J. Phys.: Condens. Matter 22 074211
Single Spin Superconductivity: Bulk and Junction Effects
NASA Astrophysics Data System (ADS)
Rudd, Robert E.; Pickett, Warren E.
1998-03-01
The Josephson Effect provides a primary signature of single spin superconductivity (SSS), the as yet unobserved superconducting state which was proposed recently(W.E. Pickett, Phys. Rev. Lett. 77), 3185 (1996). as a low temperature phase of half-metallic antiferromagnets.(W.E. Pickett, ``Spin Density Functional Based Search for Half-Metallic Antiferromagnets,'' cond-mat/9709100 (1997).) These materials are insulating in the spin-down channel but are metallic in the spin-up channel. The SSS state is characterized by a unique form of p-wave pairing within a single spin channel.(R.E. Rudd and W.E. Pickett, ``Single Spin Superconductivity:Formulation and Ginzburg-Landau Theory,'' Phys. Rev. B. in press) We develop the theory of a rich variety of Josephson effects that arise due to the form of the SSS order parameter. Tunneling is allowed at a SSS-SSS^' junction depending on the relative orientation of each of their order parameters (SSS and HM AFM). No current flows between an SSS and an s-wave BCS system, which provides a powerful method to distinguish SSS from other superconducting states.
Photophysics of single-walled carbon nanotubes: similarity with π-conjugated polymer
NASA Astrophysics Data System (ADS)
Zhao, Hongbo
2006-03-01
Coulomb electron-electron (e-e) interactions among the π-electrons have a strong effect on the energy spectra of semiconducting single-walled carbon nanotubes (S-SWCNTs), because of their quasi-one-dimensionality. The primary photoexcitations in S-SWCNTs as a consequence of e-e interactions are excitons, as opposed to free electrons and holes. There already exists a vast literature on excitons in π-conjugated polymers, the other class of carbon-based quasi-one-dimensional semiconductors. In order to seek guidance from this knowledge base, we have performed theoretical calculations of the excited state electronic structures, linear absorptions and excited state absorptions for ten different S-SWCNTs with a wide range in diameters, within the same correlated π-electron model that has previously been applied to π-conjugated polymers. We found remarkable similarities in the excitonic energy spectra and nonlinear optical properties of S-SWCNTs on the one hand, and π-conjugated polymers on the other. The ``essential states'' model of third-order optical nonlinearity, previously developed for π-conjugated polymers, applies also to S-SWCNTs (with minor modifications for chiral S-SWCNTs which lack center of inversion). Our theory is able to explain semiquantitatively the results of nonlinear spectroscopic measurements on both S-SWCNTs and π-conjugated polymers. For wide S-SWCNTs with diameters ranging from 0.8--1.0 nm, we calculate exciton binding energies of 0.3--0.4 eV, in strong agreement with the values predicted from the experiments. We also remark on the occurrence of dark excitons below the optical excitons in the S-SWCNTs, and the consequence thereof on the photoluminescence of these materials. H. Zhao, et al., cond-mat/0506097; J. W. Kennedy, et al., cond-mat/0505071. S. N. Dixit, D. Guo, and S. Mazumdar, Phys. Rev. B 43, R6781 (1991) H. Zhao and S. Mazumdar, Phys. Rev. Lett. 93, 157402 (2004).
Spin Superfluidity and Magnone BEC in He-3
NASA Astrophysics Data System (ADS)
Bunkov, Yury
2011-03-01
The spin superfluidity -- superfluidity in the magnetic subsystem of a condensed matter -- is manifested as the spontaneous phase-coherent precession of spins first discovered in 1984 in 3 He-B. This superfluid current of spins -- spin supercurrent -- is one more representative of superfluid currents known or discussed in other systems, such as the superfluid current of mass and atoms in superfluid 4 He; superfluid current of electric charge in superconductors; superfluid current of hypercharge in Standard Model of particle physics; superfluid baryonic current and current of chiral charge in quark matter; etc. Spin superfluidity can be described in terms of the Bose condensation of spin waves -- magnons. We discuss different states of magnon superfluidity with different types of spin-orbit coupling: in bulk 3 He-B; magnetically traped `` Q -balls'' at very low temperatures; in 3 He-A and 3 He-B immerged in deformed aerogel; etc. Some effects in normal 3 He can also be treated as a magnetic BEC of fermi liquid. A very similar phenomena can be observed also in a magnetic systems with dinamical frequensy shift, like MnC03 . We will discuss the main experimental signatures of magnons superfluidity: (i) spin supercurrent, which transports the magnetization on a macroscopic distance more than 1 cm long; (ii) spin current Josephson effect which shows interference between two condensates; (iii) spin current vortex -- a topological defect which is an analog of a quantized vortex in superfluids, of an Abrikosov vortex in superconductors, and cosmic strings in relativistic theories; (iv) Goldstone modes related to the broken U (1) symmetry -- phonons in the spin-superfluid magnon gas; etc. For recent review see Yu. M. Bunkov and G. E. Volovik J. Phys. Cond. Matter. 22, 164210 (2010) This work is partly supported by the Ministry of Education and Science of the Russian Federation (contract N 02.740.11.5217).
EDITORIAL: Colloidal dispersions in external fields Colloidal dispersions in external fields
NASA Astrophysics Data System (ADS)
Löwen, Hartmut
2012-11-01
Colloidal dispersions have long been proven as pivotal model systems for equilibrium phase transition such as crystallization, melting and liquid-gas phase transition. The last decades have revealed that this is also true for nonequilibrium phenomena. In fact, the fascinating possibility to track the individual trajectories of colloidal particles has greatly advanced our understanding of collective behaviour in classical many-body systems and has helped to reveal the underlying physical principles of glass transition, crystal nucleation, and interfacial dynamics (to name just a few typical nonequilibrium effects). External fields can be used to bring colloids out of equilibrium in a controlled way. Different kinds of external fields can be applied to colloidal dispersions, namely shear flow, electric, magnetic and laser-optical fields, and confinement. Typical research areas can be sketched with the by now traditional complexity diagram (figure 1). The complexity of the colloidal system itself as embodied in statistical degrees of freedom is shown on the x-axis while the complexity of the problem posed, namely bulk, an inhomogeneity in equilibrium, steady state nonequilibrium and full time-dependent nonequilibrium are shown on the y-axis. The different external fields which can be imposed are indicated by the different hatched areas. figure1 Figure 1. Diagram of complexity for colloidal dispersions in external fields: while the x-axis shows the complexity of the system, the y-axis shows the complexity of the problem. Regions which can be accessed by different kinds of external fields are indicated. The arrows indicate recent research directions. Active particles are also indicated with a special complexity of internal degrees of freedom [1]. This collection of papers reflects the scientific programme of the International Conference on Colloidal Dispersions in External Fields III (CODEF III) which took place in Bonn-Bad Godesberg from 20-23 March 2012. This was the third conference in a series that began in 2004 [2] and was continued in 2008 [3]. The CODEF meeting series is held in conjunction with the German Dutch Transregional Collaborative Research Centre SFB TR6 with the title Physics of Colloidal Dispersions in External Fields. Papers from scientists working within this network as well as those from further invited contributors are summarized in this issue. They are organized according to the type of field applied, namely: shear flow electric field laser-optical and magnetic field confinement other fields and active particles To summarize the highlights of this special issue as regards shear fields, the response of depletion-induced colloidal clusters to shear is explored in [4]. Soft particles deform under shear and their structural and dynamical behaviour is studied both by experiment [5] and theory [6]. Transient dynamics after switching on shear is described by a joint venture of theory, simulation and experiment in [7]. Colloids provide the fascinating possibility to drag single particles through the suspension, which gives access to microrheology (as opposed to macrorheology, where macroscopic boundaries are moved). Several theoretical aspects of microrheology are discussed in this issue [8-10]. Moreover, a microscopic theory for shear viscosity is presented [11]. Various aspects of colloids in electric fields are also included in this issue. Electrokinetic phenomena for charged suspensions couple flow and electric phenomena in an intricate way and are intensely discussed both by experiment and simulation in contributions [12-14]. Dielectric phenomena are also influenced by electric fields [15]. Electric fields can induce effective dipolar forces between colloids leading to string formation [16]. Finally, binary mixtures in an electric driving field exhibit laning [17]. Simulation [18] and theoretical [19] studies of this nonequilibrium phenomenon are also discussed in this issue. Laser-optical fields can be used to tailor a random substrate potential for colloids [20] or to bind colloids optically [21]. External magnetic fields are typically used to create dipolar repulsions of colloids pending at an air-water interface. This provides an avenue to two-dimensional systems, where the freezing transition [22] and various transport phenomena through channels are the focus of recent research [23, 24]. Confinement typically leads to interfaces. The classical problem of the Tolman length for a fluid-fluid interface is reviewed in detail in [25]. In fact, colloid-polymer mixtures constitute ideal model systems for liquid-gas interfaces in various geometries [26] and are also suitable for measuring the Tolman length experimentally. Crystalline phases in confinement [27] and crystal-fluid interfaces [28] are even more complex due to the inhomogeneity of the solid phase. Also in the confined fluid phase, there are still open issues in slit-pore geometry. These include how to scale the interparticle distance [29] and how to measure hydrodynamic interactions between colloidal particles [30]. Other external fields which can be applied to colloids are gravity [31] and temperature [32]. An important field of recently emerging research is active colloidal particles (so-called microswimmers) which possess fascinating nonequilibrium properties; for recent reviews see [33-35]. Two examples are also included in this issue: an active deformable particle [36] moving in gravity and the collective turbulent swarming behaviour of dense self-propelled colloidal rod suspensions [37]. References [1]Löwen H 2001 J. Phys. Condens. Matter 13 R415 [2]Löwen H and Likos C N (ed) 2004 J. Phys. Condens. Matter 16 (special issue) [3]Löwen H 1976 J. Phys. Condens. Matter 20 404201 [4]Guu D, Dhont J K G, Vliegenthart G A and Lettinga M P 2012 J. Phys. Condens. Matter 24 464101 [5]Gupta S, Kundu S, Stellbrink J, Willner L, Allgaier J and Richter D 2012 J. Phys. Condens. Matter 24 464102 [6]Singh S P, Fedosov D A, Chatterji A, Winkler R G, Gompper G 2012 J. Phys. Condens. Matter 24 464103 [7]Laurati M et al 2012 J. Phys. Condens. Matter 24 464104 [8]Harrer C J, Winter D, Horbach J, Fuchs M and Voigtmann T 2012 J. Phys. Condens. Matter 24 464105 [9]De Puit R J and Squires T M 2012 J. Phys. Condens. Matter 24 464106 [10]De Puit R J and Squires T M 2012 J. Phys. Condens. Matter 24 464107 [11]Contreras-Aburto C and Nägele G 2012 J. Phys. Condens. Matter 24 464108 [12]Palberg T, Köller T, Sieber B, Schweinfurth H, Reiber H and Nägele G 2012 J. Phys. Condens. Matter 24 464109 [13]Papadopoulos P, Deng X and Vollmer D 2012 J. Phys. Condens. Matter 24 464110 [14]Schmitz R and Dünweg B 2012 J. Phys. Condens. Matter 24 464111 [15]Zhou J and Schmid F 2012 J. Phys. Condens. Matter 24 464112 [16]Smallenburg F, Vutukuri H R, Imhof A, van Blaaderen A and Dijkstra M 2012 J. Phys. Condens. Matter 24 464113 [17]Vissers T, Wysocki A, Rex M, Löwen H, Royall C P, Imhof A and van Blaaderen A 2011 Soft Matter 7 2352 [18]Glanz T and Löwen H 2012 J. Phys. Condens. Matter 24 464114 [19]Kohl M, Ivlev A, Brand P, Morfill G E and Löwen H 2012 J. Phys. Condens. Matter 24 464115 [20]Hanes R D L and Egelhaaf S U 2012 J. Phys. Condens. Matter 24 464116 [21]Mazilu M, Rudhall A, Wright E M and Dholakia K 2012 J. Phys. Condens. Matter 24 464117 [22]Dillmann P, Maret G and Keim P 2012 J. Phys. Condens. Matter 24 464118 [23]Wilms D et al 2012 J. Phys. Condens. Matter 24 464119 [24]Kreuter C, Siems U, Henseler P, Nielaba P, Leiderer P and Erbe A 2012 J. Phys. Condens. Matter 24 464120 [25]Malijevsky A and Jackson G 2012 J. Phys. Condens. Matter 24 464121 [26]Statt A, Winkler A, Virnau P and Binder K 2012 J. Phys. Condens. Matter 24 464122 [27]Oğuz E C, Löwen H, Reinmüller A, Schöpe H J, Palberg T and Messina R 2012 J. Phys. Condens. Matter 24 464123 [28]Oettel M 2012 J. Phys. Condens. Matter 24 464124 [29]Zeng Y and van Klitzing R 2012 J. Phys. Condens. Matter 24 464125 [30]Bonilla-Capilla B, Ramirez-Saito A, Ojeda-Lopez M A and Arauz-Lara J L 2012 J. Phys. Condens. Matter 24 464126 [31]Leferink op Reinink A B G M, van den Pol E, Byelov D V, Petukhov A V and Vroege G J 2012 J. Phys. Condens. Matter 24 464127 [32]Taylor S L, Evans R and Royall C P 2012 J. Phys. Condens. Matter 24 464128 [33]Toner J, Tu Y H and Ramaswamy S 2012 J. Phys. Condens. Matter 24 464110 [34]Schmitz R and Dünweg B 2005 J. Phys. Condens. Matter 318 170 [35]Cates M E 2012 Rep. Prog. Phys. 75 042601 [36]Tarama M and Ohta T 2012 J. Phys. Condens. Matter 24 464129 [37]Wensink H H and Löwen H 2012 J. Phys. Condens. Matter 24 464130 Colloidal dispersions in external fields contents Colloidal dispersions in external fieldsHartmut Löwen Depletion induced clustering in mixtures of colloidal spheres and fd-virusD Guu, J K G Dhont, G A Vliegenthart and M P Lettinga Advanced rheological characterization of soft colloidal model systemsS Gupta, S K Kundu, J Stellbrink, L Willner, J Allgaier and D Richter Conformational and dynamical properties of ultra-soft colloids in semi-dilute solutions under shear flowSunil P Singh, Dmitry A Fedosov, Apratim Chatterji, Roland G Winkler and Gerhard Gompper Transient dynamics in dense colloidal suspensions under shear: shear rate dependenceM Laurati, K J Mutch, N Koumakis, J Zausch, C P Amann, A B Schofield, G Petekidis, J F Brady, J Horbach, M Fuchs and S U Egelhaaf Force-induced diffusion in microrheologyCh J Harrer, D Winter, J Horbach, M Fuchs and Th Voigtmann Micro-macro-discrepancies in nonlinear microrheology: I. Quantifying mechanisms in a suspension of Brownian ellipsoidsRyan J DePuit and Todd M Squires Micro-macro discrepancies in nonlinear microrheology: II. Effect of probe shapeRyan J DePuit and Todd M Squires Viscosity of electrolyte solutions: a mode-coupling theoryClaudio Contreras-Aburto and Gerhard Nägele Electro-kinetics of charged-sphere suspensions explored by integral low-angle super-heterodyne laser Doppler velocimetryThomas Palberg, Tetyana Köller, Bastian Sieber, Holger Schweinfurth, Holger Reiber and Gerhard Nägele Electrokinetics on superhydrophobic surfacesPeriklis Papadopoulos, Xu Deng, Doris Vollmer and Hans-Jürgen Butt Numerical electrokineticsR Schmitz and B Dünweg Dielectric response of nanoscopic spherical colloids in alternating electric fields: a dissipative particle dynamics simulationJiajia Zhou and Friederike Schmid Self-assembly of colloidal particles into strings in a homogeneous external electric or magnetic fieldFrank Smallenburg, Hanumantha Rao Vutukuri, Arnout Imhof, Alfons van Blaaderen and Marjolein Dijkstra The nature of the laning transition in two dimensionsT Glanz and H Löwen Microscopic theory for anisotropic pair correlations in driven binary mixturesMatthias Kohl, Alexei V Ivlev, Philip Brandt, Gregor E Morfill and Hartmut Löwen Dynamics of individual colloidal particles in one-dimensional random potentials: a simulation studyRichard D L Hanes and Stefan U Egelhaaf An interacting dipole model to explore broadband transverse optical bindingMichael Mazilu, Andrew Rudhall, Ewan M Wright and Kishan Dholakia Comparison of 2D melting criteria in a colloidal systemPatrick Dillmann, Georg Maret and Peter Keim Effects of confinement and external fields on structure and transport in colloidal dispersions in reduced dimensionalityD Wilms, S Deutschländer, U Siems, K Franzrahe, P Henseler, P Keim, N Schwierz, P Virnau, K Binder, G Maret and P Nielaba Stochastic transport of particles across single barriersChristian Kreuter, Ullrich Siems, Peter Henseler, Peter Nielaba, Paul Leiderer and Artur Erbe A perspective on the interfacial properties of nanoscopic liquid dropsAlexandr Malijevský and George Jackson Controlling the wetting properties of the Asakura-Oosawa model and applications to spherical confinementA Statt, A Winkler, P Virnau and K Binder Crystalline multilayers of charged colloids in soft confinement: experiment versus theoryE C Oğuz, A Reinmüller, H J Schöpe, T Palberg, R Messina and H Löwen Mode expansion for the density profiles of crystal-fluid interfaces: hard spheres as a test caseM Oettel Scaling of layer spacing of charged particles under slit-pore confinement: an effect of concentration or of effective particle diameter?Yan Zeng and Regine von Klitzing Hydrodynamic interactions between colloidal particles in a planar poreB Bonilla-Capilla, A Ramírez-Saito, M A Ojeda-López and J L Arauz-Lara Ageing in a system of polydisperse goethite boardlike particles showing rich phase behaviourA B G M Leferink op Reinink, E van den Pol, D V Byelov, A V Petukhov and G J Vroege Temperature as an external field for colloid-polymer mixtures: 'quenching' by heating and 'melting' by coolingShelley L Taylor, Robert Evans and C Patrick Royall Spinning motion of a deformable self-propelled particle in two dimensionsMitsusuke Tarama and Takao Ohta Emergent states in dense systems of active rods: from swarming to turbulenceH H Wensink and H Löwen
N-body simulations for f(R) gravity using a self-adaptive particle-mesh code
NASA Astrophysics Data System (ADS)
Zhao, Gong-Bo; Li, Baojiu; Koyama, Kazuya
2011-02-01
We perform high-resolution N-body simulations for f(R) gravity based on a self-adaptive particle-mesh code MLAPM. The chameleon mechanism that recovers general relativity on small scales is fully taken into account by self-consistently solving the nonlinear equation for the scalar field. We independently confirm the previous simulation results, including the matter power spectrum, halo mass function, and density profiles, obtained by Oyaizu [Phys. Rev. DPRVDAQ1550-7998 78, 123524 (2008)10.1103/PhysRevD.78.123524] and Schmidt [Phys. Rev. DPRVDAQ1550-7998 79, 083518 (2009)10.1103/PhysRevD.79.083518], and extend the resolution up to k˜20h/Mpc for the measurement of the matter power spectrum. Based on our simulation results, we discuss how the chameleon mechanism affects the clustering of dark matter and halos on full nonlinear scales.
Production and Detection of Spin-Entangled Electrons in Mesoscopic Conductors
NASA Astrophysics Data System (ADS)
Burkard, Guido
2006-03-01
Electron spins are an extremely versatile form of quantum bits. When localized in quantum dots, they can form a register for quantum computation. Moreover, being attached to a charge in a mesoscopic conductor allows the electron spin to play the role of a mobile carrier of quantum information similarly to photons in optical quantum communication. Since entanglement is a basic resource in quantum communication, the production and detection of spin-entangled Einstein-Podolsky-Rosen (EPR) pairs of electrons are of great interest. Besides the practical importance, it is of fundamental interest to test quantum non-locality for electrons. I review the theoretical schemes for the entanglement production in superconductor-normal junctions [1] and other systems. The electron spin entanglement can be detected and quantified from measurements of the fluctuations (shot noise) of the charge current after the electrons have passed through an electronic beam splitter [2,3]. This two-particle interference effect is related to the Hanbury-Brown and Twiss experiment and leads to a doubling of the shot noise SI=<δI δI>φ=0 for spin-entangled states, allowing their differentiation from unentangled pairs. I report on the role of spin-orbit coupling (Rashba and Dresselhaus) in a complete characterization of the spin entanglement [4]. Finally, I address the effects of a discrete level spectrum in the mesoscopic leads and of backscattering and decoherence.[1] P. Recher, E. V. Sukhorukov, D. Loss, Phys. Rev. B 63, 165314 (2001)[2] G. Burkard, D. Loss, E. V. Sukhorukov, Phys. Rev. B 61, R16303 (2000)[3] G. Burkard and D. Loss, Phys. Rev. Lett.91, 087903 (2003)[4] J. C. Egues, G. Burkard, D. Saraga, J. Schliemann, D. Loss, cond-mat/0509038, to appear in Phys.Rev.B (2005).
Ab initio Study of Transition metal binding to the Prion Protein
NASA Astrophysics Data System (ADS)
Cox, Daniel L.; Singh, Rajiv R. P.; Pan, Jianping
2004-03-01
Fundamental understanding of the prion protein (PrP) is of critical public health importance in view of mad cow and chronic wasting diseases. In recent years, it has been shown that the normal form (PrP^c) binds copper^1), and the structure of the copper binding domain has been elaborated. Hypotheses about toxicity associated with binding of other metals (notably manganese) have been put forward, Accordingly, using the ab initio SIESTA density functional theory code^2), we calculated the binding energy E_B(M) of M-(PrP) complexes relative to initially uncomplexed M ions, with M=Cu,Ni,Zn,Mn and (PrP)^* the minimal binding domain. The binding energy trend is E_B(Ni)>E_B(Cu)>E_B(Zn)>E_B(Mn), consistent with recent experiments apart from the surprising stability of Ni. We will also present preliminary results for binding of initially complexed M ions. *-Supported by U.S. DOE, Office of Basic Energy Sciences, Division of Materials Research 1) G.S. Jackson et al., Proc. Nat. Acad. Sci. (USA) 98, 8531 (2001). 2) P. Ordejón, et al., Phys. Rev. B53, R10441 (1996); J.M. Soler et al., J. Phys. Cond. Matt. 14, 2745 (2002).
Resonant Two-Magnon Raman Scattering in Cuprate Antiferromagnetic Insulators and Superconductors.
NASA Astrophysics Data System (ADS)
Blumberg, G.; Abbamonte, P.; Klein, M. V.
1996-03-01
We present results of low-temperature two-magnon resonance Raman excitation profile measurements for single layer Sr_2CuO_2Cl2 and bilayer YBa_2Cu_3O6 + δ antiferromagnets over the excitation region from 1.65 to 3.05 eV. These data reveal composite structure of the B_1g two-magnon line shape peaked at ~ 2.7J and ~ 4J and strong nonmonotonic dependence of the scattering intensity on excitation energy. Resonant magnetic scattering contributes also to A_1g and B_2g channels. We analyze these data using the triple resonance theory of Chubukov and Frenkel(A. Chubukov and D. Frenkel, Phys. Rev. Lett.74), 3057 (1995). and deduce information about magnetic interaction (J and J_⊥) and band parameters (NN hopping t and charge transfer gap 2Δ) in these antiferromagnets.(G. Blumberg et. al.), Preprint cond-mat/9511080. The ~ 3J spin superexchange excitation persists upon hole doping and is present in superconductors, proving the universality of the short wavelength magnetic excitations in the cuprate superconducting metals and the parent antiferromagnetic insulators.(G. Blumberg et. al.), Phys. Rev. B 49, 13 295 (1994).
Understanding Superfluid ^3He by Determining β-Coefficients of Ginzburg-Landau Theory
NASA Astrophysics Data System (ADS)
Choi, H.; Davis, J. P.; Pollanen, J.; Halperin, W. P.
2007-03-01
The Ginzburg-Landau (GL) theory is a phenomenological theory that is used to characterize thermodynamic properties of a system near a phase transition. The free energy is expressed as an expansion of the order parameter and for superfluid ^3He there is one second order term and five fourth order terms. Since the GL theory is a phenomenological theory, one can determine the coefficients to these terms empirically; however, existing experiments are unable to determine all five fourth order coefficients, the β's. To date, only four different combinations of β's are known [1]. In the case of supeprfluid ^3He, using quasiclassical theory, the coefficients have been calculated [2]. We used the calculation as a guide to construct a model to define all five β's independently. The model provides us with the full understanding of the GL theory for ^3He, which is useful in understanding various superfluid phases of both bulk ^3He and disordered ^3He in aerogel. [1] H. Choi et al., J. Low Temp. Phys., submitted; http://arxiv.org/abs/cond-mat/0606786. [2] J.A. Sauls and J.W. Serene, Phys. Rev. B 24, 183 (1981).
PREFACE: Time-resolved scanning tunnelling microscopy Time-resolved scanning tunnelling microscopy
NASA Astrophysics Data System (ADS)
Zandvliet, Harold J. W.; Lin, Nian
2010-07-01
Scanning tunnelling microscopy has revolutionized our ability to image, manipulate, and investigate solid surfaces on the length scale of individual atoms and molecules. The strength of this technique lies in its imaging capabilities, since for many scientists 'seeing is believing'. However, scanning tunnelling microscopy also suffers from a severe limitation, namely its poor time resolution. Recording a scanning tunnelling microscopy image typically requires a few tens of seconds for a conventional scanning tunnelling microscope to a fraction of a second for a specially designed fast scanning tunnelling microscope. Designing and building such a fast scanning tunnelling microscope is a formidable task in itself and therefore, only a limited number of these microscopes have been built [1]. There is, however, another alternative route to significantly enhance the time resolution of a scanning tunnelling microscope. In this alternative method, the tunnelling current is measured as a function of time with the feedback loop switched off. The time resolution is determined by the bandwidth of the IV converter rather than the cut-off frequency of the feedback electronics. Such an approach requires a stable microscope and goes, of course, at the expense of spatial information. In this issue, we have collected a set of papers that gives an impression of the current status of this rapidly emerging field [2]. One of the very first attempts to extract information from tunnel current fluctuations was reported by Tringides' group in the mid-1990s [3]. They showed that the collective diffusion coefficient can be extracted from the autocorrelation of the time-dependent tunnelling current fluctuations produced by atom motion in and out of the tunnelling junction. In general, current-time traces provide direct information on switching/conformation rates and distributions of residence times. In the case where these processes are thermally induced it is rather straightforward to map out the potential landscape of the system (often a molecule or an atom) under study [4, 5]. However, the dynamical processes might also be induced by the tunnelling process itself [6, 7]. In the field of molecular science, excited single molecule experiments have been especially performed [8]. As a nice example, we refer to the work of Sykes' group [9] on thioether molecular rotors. In addition, several groups explore the possibility of combining time-resolved scanning tunnelling microscopy with optical techniques [10, 11]. Although the majority of studies that have been performed so far focus on rather simple systems under nearly ideal and well-defined conditions, we anticipate that time-resolved scanning tunnelling microscopy can also be applied in other research areas, such as biology and soft condensed matter, where the experimental conditions are often less ideal. We hope that readers will enjoy this collection of papers and that it will trigger them to further explore the possibilities of this simple, but powerful technique. References [1] Besenbacher F, Laegsgaard E and Stengaard I 2005 Mater. Today 8 26 [2] van Houselt A and Zandvliet H J W 2010 Rev. Mod. Phys. 82 1593 [3] Tringides M C and Hupalo M 2010 J. Phys.: Condens. Matter 22 264002 [4] Ronci F, Colonna S, Cricenti A and Le Lay G 2010 J. Phys.: Condens. Matter 22 264003 [5] van Houselt A, Poelsema B and Zandvliet H J W 2010 J. Phys.: Condens. Matter 22 264004 [6] Sprodowski C, Mehlhorn M and Morgenstern K 2010 J. Phys.: Condens. Matter 22 264005 [7] Saedi A, Poelsema B and Zandvliet H J W 2010 J. Phys.: Condens. Matter 22 264007 [8] Sloan P A 2010 J. Phys.: Condens. Matter 22 264001 [9] Jewell A D, Tierney H L, Baber A E, Iski E V, Laha M M and Sykes E C H 2010 J. Phys.: Condens. Matter 22 264006 [10] Riedel D 2010 J. Phys.: Condens. Matter 22 264009 [11] Terada Y, Yoshida S, Takeuchi O and Shigekawa H 2010 J. Phys.: Condens. Matter 22 264008
2013-01-01
Narten, J. Chem. Phys., 1975, 63, 3624–3631. 10 A. Botti, F. Bruni, S. Imberti, M. A. Ricci and A. K. Soper , J. Chem. Phys., 2004, 121, 7840–7848. 11 D...10478. 48 I. Harsányi and L. Pusztai, J. Phys.: Condens. Matter, 2005, 17, S59–S65. 49 A. Botti, F. Bruni, M. A. Ricci and A. K. Soper , J. Chem. Phys
Nonequilibrium dynamical mean-field theory
NASA Astrophysics Data System (ADS)
Freericks, James
2007-03-01
Dynamical mean-field theory (DMFT) is establishing itself as one of the most powerful approaches to the quantum many-body problem in strongly correlated electron materials. Recently, the formalism has been generalized to study nonequilibrium problems [1,2], such as the evolution of Bloch oscillations in a material that changes from a diffusive metal to a Mott insulator [2,3]. Using a real-time formalism on the Kadanoff-Baym-Keldysh contour, the DMFT algorithm can be generalized to the case of systems that are not time-translation invariant. The computational algorithm has a parallel implementation with essentially a linear scale up when running on thousands of processors. Results on the decay of Bloch oscillations, their change of character within the Mott insulator, and movies on how electrons redistribute themselves due to their response to an external electrical field will be presented. In addition to solid-state applications, this work also applies to the behavior of mixtures of light and heavy cold atoms in optical lattices. [1] V. M. Turkowski and J. K. Freericks, Spectral moment sum rules for strongly correlated electrons in time-dependent electric fields, Phys. Rev. B 075108 (2006); Erratum, Phys. Rev. B 73, 209902(E) (2006). [2] J. K. Freericks, V. M. Turkowski , and V. Zlati'c, Nonlinear response of strongly correlated materials to large electric fields, in Proceedings of the HPCMP Users Group Conference 2006, Denver, CO, June 26--29, 2006 edited by D. E. Post (IEEE Computer Society, Los Alamitos, CA, 2006), to appear. [3] J. K. Freericks, V. M. Turkowski, and V. Zlati'c, Nonequilibrium dynamical mean-field theory, submitted to Phys. Rev. Lett. cond-mat//0607053.
Quantum oscillations in vortex-liquids
NASA Astrophysics Data System (ADS)
Banerjee, Sumilan; Zhang, Shizhong; Randeria, Mohit
2012-02-01
Motivated by observations of quantum oscillations in underdoped cuprates [1], we examine the electronic density of states (DOS) in a vortex-liquid state, where long-range phase coherence is destroyed by an external magnetic field H but the local pairing amplitude survives. We note that this regime is distinct from that studied in most of the recent theories, which have focused on either a Fermi liquid with a competing order parameter or on a d-wave vortex lattice. The cuprate experiments are very likely in a resistive vortex-liquid state. We generalize the s-wave analysis of Maki and Stephen [2] to d-wave pairing and examine various regimes of the chemical potential, gap and field. We find that the (1/H) oscillations of the DOS at the chemical potential in a d-wave vortex-liquid are much more robust, i.e., have a reduced damping, compared to the s-wave case. We critically investigate the conventional wisdom relating the observed frequency to the area of an underlying Fermi surface. We also show that the oscillations in the DOS cross over to a √H behavior in the low field limit, in agreement with the recent specific heat measurements. [1] L. Taillefer, J. Phys. Cond. Mat. 21, 164212 (2009). [2] M. J. Stephen, Phys. Rev. B 45, 5481 (1992).
Matter-Wave Optics of Diatomic Molecules
2012-10-23
81.013802 10/11/2012 32.00 Swati Singh , Pierre Meystre. Atomic probe Wigner tomography of a nanomechanical system, Physical Review A, (04 2010): 41804...PhysRevA.78.041801 10/11/2012 3.00 S. Singh , M. Bhattacharya, O. Dutta, P. Meystre. Coupling Nanomechanical Cantilevers to Dipolar Molecules...degenerate matter waves, Physical Review A, (02 2009): 0. doi: 10.1103/PhysRevA.79.023622 10/11/2012 10.00 M. Bhattacharya, S. Singh , P. -L. Giscard
LHCb Conditions database operation assistance systems
NASA Astrophysics Data System (ADS)
Clemencic, M.; Shapoval, I.; Cattaneo, M.; Degaudenzi, H.; Santinelli, R.
2012-12-01
The Conditions Database (CondDB) of the LHCb experiment provides versioned, time dependent geometry and conditions data for all LHCb data processing applications (simulation, high level trigger (HLT), reconstruction, analysis) in a heterogeneous computing environment ranging from user laptops to the HLT farm and the Grid. These different use cases impose front-end support for multiple database technologies (Oracle and SQLite are used). Sophisticated distribution tools are required to ensure timely and robust delivery of updates to all environments. The content of the database has to be managed to ensure that updates are internally consistent and externally compatible with multiple versions of the physics application software. In this paper we describe three systems that we have developed to address these issues. The first system is a CondDB state tracking extension to the Oracle 3D Streams replication technology, to trap cases when the CondDB replication was corrupted. Second, an automated distribution system for the SQLite-based CondDB, providing also smart backup and checkout mechanisms for the CondDB managers and LHCb users respectively. And, finally, a system to verify and monitor the internal (CondDB self-consistency) and external (LHCb physics software vs. CondDB) compatibility. The former two systems are used in production in the LHCb experiment and have achieved the desired goal of higher flexibility and robustness for the management and operation of the CondDB. The latter one has been fully designed and is passing currently to the implementation stage.
Direct Observation of Zitterbewegung in a Bose Einstein Condensate
2013-07-03
Cremer S 1970 Physica 50 224–40 [3] Schliemann J, Loss D and Westervelt R M 2005 Phys. Rev. Lett. 94 206801 [4] Zawadzki W and Rusin T M 2011 J. Phys...Condens. Matter 23 143201 [5] Katsnelson M I, Novoselov K S and Geim A K 2006 Nature Phys. 2 620–5 [6] Ruostekoski J, Dunne G V and Javanainen J 2002
The defective nature of ice Ic and its implications for atmospheric science
NASA Astrophysics Data System (ADS)
Kuhs, W. F.; Hansen, T. C.
2009-04-01
The possible atmospheric implication of ice Ic (cubic ice) has already been suggested some time ago in the context of snow crystal formation [1]. New findings from air-borne measurements in cirrus clouds and contrails have put ice Ic into the focus of interest to understand the so-called "supersaturation puzzle" [2,3,4,5]. Our recent microstructural work on ice Ic [6,7] appears to be highly relevant in this context. We have found that ice Ic is characterized by a complex stacking fault pattern, which changes as a function of temperature as well as time. Indeed, from our own [8] and other group's work [9] one knows that (in contrast to earlier believe) ice Ic can form up to temperatures at least as high as 240K - thus in the relevant range for cirrus clouds. We have good preliminary evidence that the "cubicity" (which can be related to stacking fault probabilities) as well as the particle size of ice Ic are the relevant parameters for this correlation. The "cubicity" of stacking faulty ice Ic (established by diffraction) correlates nicely with the increased supersaturation at decreasing temperatures observed in cirrus clouds and contrails, a fact, which may be considered as further evidence for the presence of ice Ic. Moreover, the stacking faults lead to kinks in the outer shapes of the minute ice Ic crystals as seen by cryo scanning electron microscopy (cryo-SEM); these defective sites are likely to play some role in heterogeneous reactions in the atmosphere. The cryo-SEM work suggests that stacking-faulty ice Ic has many more active centres for such reactions than the usually considered thermodynamically stable form, ice Ih. [1] T Kobayashi & T Kuroda (1987) Snow Crystals. In: Morphology of Crystals (ed. I Sunagawa), Terra Scientific Publishing, Tokyo, pp.649-743. [2] DM Murphy (2003) Dehydration in cold clouds is enhanced by a transition from from cubic to hexagonal ice. Geophys.Res.Lett.,30, 2230, doi:10.1029/2003GL018566. [3] RS Gao & 19 other authors (2004) Evidence that nitric acid increases relative humidity in low-temperature cirrus clouds. Science 303, 516-520. [4] T Peter, C Marcolli, P Spaichinger, T Corti, MC Baker & T Koop (2006) When dry air is too humid. Science 314, 1399-1402. [5] JE Shilling, MA Tolbert, OB Toon, EJ Jensen, BJ Murray & AK Bertram (2006) Measurements of the vapor pressure of cubic ice and their implications for atmospheric ice clouds. Geophys.Res.Lett. 33, 026671. [6] TC Hansen, MM Koza & WF Kuhs (2008) Formation and annealing of cubic ice: I Modelling of stacking faults. J.Phys.Cond.Matt. 20, 285104. [7] TC Hansen, MM Koza, P Lindner & WF Kuhs (2008) Formation and annealing of cubic ice: II. Kinetic study. J.Phys.Cond.Matt. 20, 285105. [8] WF Kuhs, G Genov, DK Staykova & AN Salamatin (2004) Ice perfection and the onset of anomalous preservation of gas hydrates. Phys.Chem.Chem.Phys. 6, 4917-4920. [9] BJ Murray, DA Knopf & AK Bertram (2005) The formation of cubic ice under conditions relevant to Earth's atmosphere. Nature 434, 292-205.
NASA Astrophysics Data System (ADS)
Petelenz, P.; Schreiber, M.
2006-10-01
This conference report is meant to offer an authoritative view on a recently held scientific meeting rather than a comprehensive list of the conference presentations. We tried to describe what we feel were the most interesting contributions.The full Proceedings of the 7th International Conference on Excitonic Processes in Condensed Matter (EXCON'06) shall be published in phys. stat. sol. (b) and phys. stat. sol. (c) in November 2006.
Transport in thin polarized Fermi-liquid films
NASA Astrophysics Data System (ADS)
Li, David Z.; Anderson, R. H.; Miller, M. D.
2015-10-01
We calculate expressions for the state-dependent quasiparticle lifetime τσ, the thermal conductivity κ , the shear viscosity η , and discuss the spin diffusion coefficient D for Fermi-liquid films in two dimensions. The expressions are valid for low temperatures and arbitrary polarization. In two dimensions, as in three dimensions, the integrals over the transition rates factor into energy and angular parts. However, the angular integrations contain a weak divergence. This problem is addressed using the method of K. Miyake and W. J. Mullin [Phys. Rev. Lett. 50, 197 (1983), 10.1103/PhysRevLett.50.197; J. Low Temp. Phys. 56, 499 (1984), 10.1007/BF00681808]. The low-temperature expressions for the transport coefficients are essentially exact. We find that κ-1˜T lnT , and η-1˜T2 for arbitrary polarizations 0 ≤P ≤1 . These results are in agreement with earlier zero-polarization results of H. H. Fu and C. Ebner [Phys. Rev. A 10, 338 (1974)., 10.1103/PhysRevA.10.338], but differ from the temperature dependence of the shear viscosity found by D. S. Novikov (arXiv:cond-mat/0603184). They also differ from the discontinuous change of temperature dependence in D from zero to nonzero polarization that was discovered by Miyake and Mullin. We note that in two dimensions the shear viscosity requires a unique analysis. We obtain predictions for the density, temperature, and polarization dependence of κ ,η , and D for second-layer
NASA Astrophysics Data System (ADS)
Bratkovsky, A. M.; Alexandrov, A. S.
2002-03-01
The semiclassical Lifshitz-Kosevich-type description is given for the angular dependence of quantum oscillations with combination frequencies in a multiband quasi-two-dimensional Fermi liquid with a constant number of electrons. The analytical expressions are found for the Dingle, thermal, spin, and amplitude (Yamaji) reduction factors of the novel combination harmonics, where the latter two strongly oscillate with the direction of the field [1]. At the magic angles those factors reduce to the purely two-dimensional expressions given earlier. The combination harmonics are suppressed in the presence of the nonquantized background states, and they decay exponentially faster with temperature and/or disorder compared to the standard harmonics, providing an additional tool for electronic structure determination. The theory is applied to Sr2RuO4. [1] A.M. Bratkovsky and A.S. Alexandrov, Phys. Rev. B 65, xxxx (2002); cond-mat/0104520.
1989-07-01
distance in a planar arrangement of ArH3 , with the argon directly above the apical hydrogen. Matcha and 3, Milleur’ confined their calculations for...Phys. .11, 27 (1976). 7. W. J. Stevens, H-. Basch, and M. Krauss, J. Chem. Phys. il 6026 (1984). 8. R. L. Matcha , and Mac B. Milleur, J. Chem. Phys. f2
NASA Astrophysics Data System (ADS)
Ferry, David; Dowben, Peter; Inglesfield, John
2009-11-01
This year marks the 20th anniversary of the launch of Journal of Physics: Condensed Matter in 1989. The journal was formed from the merger of Journal of Physics C: Solid State Physics and Journal of Physics F: Metal Physics which had separated in 1971. In the 20 years since its launch, Journal of Physics: Condensed Matter has more than doubled in size, while raising standards. Indeed, Journal of Physics: Condensed Matter has become one of the leading scientific journals for our field. This could not have occurred without great leadership at the top. No one has been more responsible for this growth in both size and quality than our Senior Publisher, Richard Palmer. Richard first started work at IOP in March 1971 as an Editorial Assistant with J. Phys. B After a few months, he transferred to J. Phys.C The following year, the Assistant Editor of J. Phys. C, Malcolm Haines, left suddenly in order to work on his family vineyard in France, and Richard stepped into the breach. In those days, external editors had a much more hands-on role in IOP Publishing and he had to travel to Harwell to be interviewed by Alan Lidiard, the Honorary Editor of J. Phys. C, before being given the job of Assistant Editor permanently. Since J. Phys. C and J. Phys. F re-merged to form Journal of Physics: Condensed Matter, Richard gradually shed his other journal responsibilities, except for Reports on Progress in Physics, to build up Journal of Physics: Condensed Matter. He has worked closely with four Editors-in-Chief of J. Phys. C and five of Journal of Physics: Condensed Matter. When Richard announced his retirement this past winter, we met it with a great deal of both happiness and sadness. Of course, we are happy that he is going to be allowed to enjoy his retirement, but we remain very sad to lose such a valuable member of our team, especially the one who had provided the heart and soul of the journal over its 20 years. We will be able to rely upon the team which Richard ably trained as we go into the future. The Executive Board decided to do this special issue, both to commemorate the 20th year of Journal of Physics: Condensed Matter and to honour Richard for his long years of service to IOP Publishing and Journal of Physics: Condensed Matter. This issue is dedicated to Richard for his many years of work and friendship with the journal board that has seen a great many changes over the years. This issue covers a very wide range of topics, since we approached all current and past members of the various boards of Journal of Physics: Condensed Matter in seeking papers for this special issue. The response has been very positive and this will be one of our larger special issues. The desire to honour Richard is widespread among these various boards, so that we have been almost overwhelmed with submissions, although many who wished to contribute could not because of other obligations. We hope that you, the readership, will enjoy these articles.
SpeCond: a method to detect condition-specific gene expression
2011-01-01
Transcriptomic studies routinely measure expression levels across numerous conditions. These datasets allow identification of genes that are specifically expressed in a small number of conditions. However, there are currently no statistically robust methods for identifying such genes. Here we present SpeCond, a method to detect condition-specific genes that outperforms alternative approaches. We apply the method to a dataset of 32 human tissues to determine 2,673 specifically expressed genes. An implementation of SpeCond is freely available as a Bioconductor package at http://www.bioconductor.org/packages/release/bioc/html/SpeCond.html. PMID:22008066
NREM2 and Sleep Spindles Are Instrumental to the Consolidation of Motor Sequence Memories
Laventure, Samuel; Fogel, Stuart; Lungu, Ovidiu; Albouy, Geneviève; Sévigny-Dupont, Pénélope; Vien, Catherine; Sayour, Chadi; Carrier, Julie; Benali, Habib; Doyon, Julien
2016-01-01
Although numerous studies have convincingly demonstrated that sleep plays a critical role in motor sequence learning (MSL) consolidation, the specific contribution of the different sleep stages in this type of memory consolidation is still contentious. To probe the role of stage 2 non-REM sleep (NREM2) in this process, we used a conditioning protocol in three different groups of participants who either received an odor during initial training on a motor sequence learning task and were re-exposed to this odor during different sleep stages of the post-training night (i.e., NREM2 sleep [Cond-NREM2], REM sleep [Cond-REM], or were not conditioned during learning but exposed to the odor during NREM2 [NoCond]). Results show that the Cond-NREM2 group had significantly higher gains in performance at retest than both the Cond-REM and NoCond groups. Also, only the Cond-NREM2 group yielded significant changes in sleep spindle characteristics during cueing. Finally, we found that a change in frequency of sleep spindles during cued-memory reactivation mediated the relationship between the experimental groups and gains in performance the next day. These findings strongly suggest that cued-memory reactivation during NREM2 sleep triggers an increase in sleep spindle activity that is then related to the consolidation of motor sequence memories. PMID:27032084
Quantum Phases of Matter in Optical Lattices
2015-06-30
doi: 10.1103/PhysRevA.89.013625 Hyungwon Kim, David A. Huse. Ballistic Spreading of Entanglement in a Diffusive Nonintegrable System, Physical...Review B, (07 2013): 0. doi: 10.1103/PhysRevB.88.014206 Lin Dong, Lei Jiang, Han Pu. Fulde–Ferrell pairing instability in spin–orbit coupled Fermi...PhysRevA.87.051603 Kuei Sun, C. J. Bolech. Pair tunneling, phase separation, and dimensional crossover in imbalanced fermionic superfluids in a coupled
1983-07-15
9. T. Holstein, Phys. Rev. 88, 1427 (1952); Phys. Rev. 96, 535 (1954). 10. A.B. Pippard, Proc. Roy. Soc. A191 , 370 (1947). 11. H.E. Bennett, J.M...process in a dust-free environment. Any dust, particulate matter, residual stains , or water marks will replicate .ust as well as the surface
Effect of change in ambient temperature on core temperature during the daytime.
Kakitsuba, Naoshi; White, Matthew D
2014-07-01
In this study, the hypothesis is tested that continuous increases in ambient temperature (Ta) during daytime would give elevated core and skin temperatures, and consequently better thermal sensation and comfort. Rectal temperature (Tre), skin temperatures and regional dry heat losses at 7 sites were continuously measured for 10 Japanese male subjects in three thermal conditions: cond. 1, stepwise increases in Ta from 26 °C at 9 h00 to 30 °C at 18 h00; cond. 2, steady Ta at 28 °C from 9 h00 to 18 h00 and cond. 3, stepwise decreases in Ta from 30 °C at 9 h00 to 26 °C at 18 h00. Oxygen consumption was measured and thermal sensation and comfort votes were monitored at 15 min intervals. Body weight loss was measured at 1 h intervals. While Tre increased continuously in the morning period in any condition, it increased to a significantly greater (p<0.05) 36.9±0.3 °C at 18 h00 in cond. 1 relative to 36.7±0.28 °C in Cond. 2 and 36.5±0.37 °C in cond. 3. Better thermal comfort was observed in the afternoon and the evening in Cond.1 as compared with the other 2 conditions. Thus, a progressive and appropriate increase in Ta may induce optimal cycle in core temperature during daytime, particularly for a resting person.
NASA Astrophysics Data System (ADS)
Singleton, John; Ferry, David K.
2009-08-01
As is now well known, graphene was made in 2004 by the 'simple' expedient of cleaving a single atomic layer from a sample of graphite using a piece of sticky tape [1, 2]. This discovery stimulated a whirlwind of activity; at last, predictions about the unique behaviour of band electrons in a two-dimensional honeycomb lattice made as early as the 1940s could be verified experimentally [1, 2]. Perhaps the most influential result has been the confirmation that the charge carriers in graphene behave in many ways as 'Dirac fermions', mimicing the dynamics of hyper-relativistic electrons, but with 1/300th of the velocity. Another important pairing of prediction and result has been the observation of carrier mobilities that have an unusual (in)dependence on impurity concentration, suggesting applications in high-speed ballistic transistors and even the eventual part replacement of silicon by graphene as the devices on chips become ever smaller [1, 2]. As a result of the considerable and rapid activity in this field, reviews of the properties of graphene have appeared; a good introduction to the early work at a level appropriate to students is given in [1], whilst [2] covers more recent progress at a more advanced level. However, the field is progressing so rapidly that even good reviews become dated by the time they appear in print, and new work and studies are appearing daily. In this issue, we have tried to pull together a group of papers which examine some of these new areas of work in graphene; these range from low-temperature physics to high electric field transport at room temperature [3]. Given the postulated future use of graphene in ultra-small devices, it is no surprise that quantum dots and wires feature heavily in the articles by Peres et al [4], Huang et al [5] and Sun and Xie [6]. Moreover, applications will inevitably involve graphene in contact with other materials and chemical systems, resulting in modifications to its electronic properties. For example, recent studies have shown that a high K dielectric solvent screens the impurities for room temperature transport in graphene, giving what is probably the intrinsic, phonon limited mobility at room temperature; this discovery and an analysis of the data form part of the article by Shishir and Ferry [7]. Continuing in the same vein, elsewhere Boukhvalov and Katsnelson [8] discuss chemical functionalization of graphene and Mucha-Kruczyński et al [9] covers the influence of the substrate. Finally, graphene has been referred to (somewhat optimistically!) as the 'mother of all carbon-based systems' [1]; graphite is a stack of graphene layers, whilst buckyballs and carbon nanotubes are wrapped-up and rolled-up graphene, respectively. Consequently, and following the discovery of graphene, there has been something of an experimental push to show that related physics may occur in graphite [10] and in organic conductors and other materials where the layers are very weakly coupled [11]; such phenomena had been expected by theoreticians for some years [11]. With this in mind, the article by Yaguchi and Singleton [12] reviews some of the field-induced states in graphite, in the hope that further cross-fertilization between graphene and its bulk relatives [10, 11] can occur. We hope that readers will enjoy these additions to the body of work that represents our understanding of graphene. References [1] Castro Neto A H et al 2006 Phys. World (November) p33 [2] Castro Neto A H et al 2009 Rev. Mod. Phys. 81 109 [3] Shishir R S and Ferry D K 2009 J. Phys.: Condens. Matter 21 344201 [4] Peres N M R et al 2009 J. Phys.: Condens. Matter 21 344202 [5] Huang L et al 2009 J. Phys.: Condens. Matter 21 344203 [6] Sun Q-f and Xie X C 2009 J. Phys.: Condens. Matter 21 344204 [7] Shishir R S and Ferry D K 2009 J. Phys.: Condens. Matter 21 232204 [8] Boukhvalov D W and Katsnelson M I 2009 J. Phys.: Condens. Matter 21 344205 [9] Mucha-Kruczyński M et al 2009 J. Phys.: Condens. Matter 21 344206 [10] Luk'yanchuk I 2009 Physica B 404 404 Kopelevich Y et al 2009 arXiv:0903.2369 [11] Tajima N et al 2009 Phys. Rev. Lett. 102 176403 [12] Yaguchi H and Singleton J 2009 J. Phys.: Condens. Matter 21 344207
NASA Astrophysics Data System (ADS)
Sippel, Christian; Koza, Michael M.; Hansen, Thomas C.; Kuhs, Werner F.
2010-05-01
The possible atmospheric implication of ice Ic (cubic ice) has already been suggested some time ago in the context of snow crystal formation [1]. New findings from air-borne measurements in cirrus clouds and contrails have put ice Ic into the focus of interest to understand the so-called "supersaturation puzzle" [2,3,4]. Our recent microstructural work on ice Ic [5,6] appears to be highly relevant in this context. We have found that ice Ic is characterized by a complex stacking fault pattern, which changes as a function of temperature as well as time. Indeed, from our own [7] and other group's work [8] one knows that (in contrast to earlier believe) ice Ic can form up to temperatures at least as high as 240K - thus in the relevant range for cirrus clouds. We have good preliminary evidence that the "cubicity" (which can be related to stacking fault probabilities) as well as the particle size of ice Ic are the relevant parameters for this correlation. The "cubicity" of stacking faulty ice Ic (established by diffraction) correlates nicely with the increased supersaturation at decreasing temperatures observed in cirrus clouds and contrails, a fact, which may be considered as further evidence for the presence of ice Ic. Recently, we have studied the time-dependency of the changes in both "cubicity" and particle size at various temperatures of relevance for cirrus clouds and contrails by in-situ neutron powder diffraction. The timescales over which changes occur (several to many hours) are similar to the life-time of cirrus clouds and contrails and suggest that the supersaturation situation may change within this time span in the natural environment too. Some accompanying results obtained by cryo-SEM (scanning electron microscopy) work will also be presented and suggest that stacking-faulty ice Ic has kinky surfaces providing many more active centres for heterogeneous reactions on the surface than in the usually assumed stable hexagonal form of ice Ih with its rather flat low-indexed crystal faces. [1] T Kobayashi & T Kuroda (1987) Snow Crystals. In: Morphology of Crystals (ed. I Sunagawa), Terra Scientific Publishing, Tokyo, pp.649-743. [2] RS Gao & 19 other authors (2004) Evidence that nitric acid increases relative humidity in low-temperature cirrus clouds. Science 303, 516-520. [3] T Peter, C Marcolli, P Spichtinger, T Corti, MC Baker & T Koop (2006) When dry air is too humid. Science 314, 1399-1402. [4] JE Shilling, MA Tolbert, OB Toon, EJ Jensen, BJ Murray & AK Bertram (2006) Measurements of the vapor pressure of cubic ice and their implications for atmospheric ice clouds. Geophys.Res.Lett. 33, 026671. [5] TC Hansen, MM Koza & WF Kuhs (2008) Formation and annealing of cubic ice: I Modelling of stacking faults. J.Phys.Cond.Matt. 20, 285104. [6] TC Hansen, MM Koza, P Lindner & WF Kuhs (2008) Formation and annealing of cubic ice: II. Kinetic study. J.Phys.Cond.Matt. 20, 285105. [7] WF Kuhs, G Genov, DK Staykova & AN Salamatin, T Hansen (2004) Ice perfection and the onset of anomalous preservation of gas hydrates. Phys.Chem.Chem.Phys. 6, 4917-4920. [8] BJ Murray, DA Knopf & AK Bertram (2005) The formation of cubic ice under conditions relevant to Earth's atmosphere. Nature 434, 292-205.
The chiral quark condensate and pion decay constant in nuclear matter at next-to-leading order
NASA Astrophysics Data System (ADS)
Lacour, A.; Oller, J. A.; Meißner, U.-G.
2010-12-01
Making use of the recently developed chiral power counting for the physics of nuclear matter (Oller et al 2010 J. Phys. G: Nucl. Part. Phys. 37 015106, Lacour et al Ann. Phys. at press), we evaluate the in-medium chiral quark condensate up to next-to-leading order for both symmetric nuclear matter and neutron matter. Our calculation includes the full in-medium iteration of the leading order local and one-pion exchange nucleon-nucleon interactions. Interestingly, we find a cancellation between the contributions stemming from the quark mass dependence of the nucleon mass appearing in the in-medium nucleon-nucleon interactions. Only the contributions originating from the explicit quark mass dependence of the pion mass survive. This cancellation is the reason of previous observations concerning the dominant role of the long-range pion contributions and the suppression of short-range nucleon-nucleon interactions. We find that the linear density contribution to the in-medium chiral quark condensate is only slightly modified for pure neutron matter by the nucleon-nucleon interactions. For symmetric nuclear matter, the in-medium corrections are larger, although smaller compared to other approaches due to the full iteration of the lowest order nucleon-nucleon tree-level amplitudes. Our calculation satisfies the Hellmann-Feynman theorem to the order worked out. Also we address the problem of calculating the leading in-medium corrections to the pion decay constant. We find that there are no extra in-medium corrections that violate the Gell-Mann-Oakes-Renner relation up to next-to-leading order.
Temperature Dependence of Raman Scattering in ZnO
2007-04-06
Hasuike, H. Fukumura, H. Harima, K. Kisoda, H. Matsui, H. Saeki, and H. Tabata, J. Phys.: Condens. Matter 16, S5807 2004. 4 W. Limmer , W. Ritter, R...M. Dutta, M. A. Stroscio, C. Balkas, H. Shin, and R. F. Davis, Phys. Rev. B 59, 12977 1999. 10 A. Link, K. Bitzer, W. Limmer , R.Sauer, C. Kirchner
NASA Astrophysics Data System (ADS)
Vernek, Edson; Ruiz-Tijerina, David; da Silva, Luis D.; Egues, José Carlos
2015-09-01
Quantum dot attached to topological wires has become an interesting setup to study Majorana bound state in condensed matter[1]. One of the major advantage of using a quantum dot for this purpose is that it provides a suitable manner to study the interplay between Majorana bound states and the Kondo effect. Recently we have shown that a non-interacting quantum dot side-connected to a 1D topological superconductor and to metallic normal leads can sustain a Majorana mode even when the dot is empty. This is due to the Majorana bound state of the wire leaking into the quantum dot. Now we investigate the system for the case in which the quantum dot is interacting[3]. We explore the signatures of a Majorana zero-mode leaking into the quantum dot, using a recursive Green's function approach. We then study the Kondo regime using numerical renormalization group calculations. In this regime, we show that a "0.5" contribution to the conductance appears in system due to the presence of the Majorana mode, and that it persists for a wide range of the dot parameters. In the particle-hole symmetric point, in which the Kondo effect is more robust, the total conductance reaches 3e^2/2h, clearly indicating the coexistence of a Majorana mode and the Kondo resonance in the dot. However, the Kondo effect is suppressed by a gate voltage that detunes the dot from its particle-hole symmetric point as well as by a Zeeman field. The Majorana mode, on the other hand, is almost insensitive to both of them. We show that the zero-bias conductance as a function of the magnetic field follows a well-known universal curve. This can be observed experimentally, and we propose that this universality followed by a persistent conductance of 0.5,e^2/h are evidence for the presence of Majorana-Kondo physics. This work is supported by the Brazilians agencies FAPESP, CNPq and FAPEMIG. [1] A. Y. Kitaev, Ann.Phys. {bf 303}, 2 (2003). [2] E. Vernek, P.H. Penteado, A. C. Seridonio, J. C. Egues, Phys. Rev. B {bf 89}, 165314 (2014). [3] David A. Ruiz-Tijerina, E. Vernek, Luis G. G. V. Dias da Silva, J. C. Egues, arXiv:1412.1851 [cond-mat.mes-hall].
NASA Astrophysics Data System (ADS)
Ritz, Steven M.
2012-01-01
The Physics of the Cosmos (PCOS) Program Analysis Group (PhysPAG) provides an important interface between the scientific community and NASA in matters related to PCOS objectives. An Executive Committee facilitates the work of several subgroups, including a Technology Science Analysis Group and an Inflation Probe Science Analysis Group. Work is also starting in areas of X-ray, gamma-ray, and gravitational wave astrophysics. The PAG reports to the Astrophysics Subcommittee of the NASA Advisory Council. A summary of PhysPAG activities will be given, along with time for questions and discussion.
NASA Astrophysics Data System (ADS)
Haataja, Mikko; Gránásy, László; Löwen, Hartmut
2010-08-01
Herein we provide a brief summary of the background, events and results/outcome of the CECAM workshop 'Classical density functional theory methods in soft and hard matter held in Lausanne between October 21 and October 23 2009, which brought together two largely separately working communities, both of whom employ classical density functional techniques: the soft-matter community and the theoretical materials science community with interests in phase transformations and evolving microstructures in engineering materials. After outlining the motivation for the workshop, we first provide a brief overview of the articles submitted by the invited speakers for this special issue of Journal of Physics: Condensed Matter, followed by a collection of outstanding problems identified and discussed during the workshop. 1. Introduction Classical density functional theory (DFT) is a theoretical framework, which has been extensively employed in the past to study inhomogeneous complex fluids (CF) [1-4] and freezing transitions for simple fluids, amongst other things. Furthermore, classical DFT has been extended to include dynamics of the density field, thereby opening a new avenue to study phase transformation kinetics in colloidal systems via dynamical DFT (DDFT) [5]. While DDFT is highly accurate, the computations are numerically rather demanding, and cannot easily access the mesoscopic temporal and spatial scales where diffusional instabilities lead to complex solidification morphologies. Adaptation of more efficient numerical methods would extend the domain of DDFT towards this regime of particular interest to materials scientists. In recent years, DFT has re-emerged in the form of the so-called 'phase-field crystal' (PFC) method for solid-state systems [6, 7], and it has been successfully employed to study a broad variety of interesting materials phenomena in both atomic and colloidal systems, including elastic and plastic deformations, grain growth, thin film growth, solid-liquid interface properties, glassy dynamics, nucleation and growth, and diffusive phase transformations at the nano- and mesoscales [8-16]. The appealing feature of DDFT (as applied to solid-state systems) is that it automatically incorporates diffusive dynamics with atomic scale spatial resolution, and it naturally incorporates multiple components, elastic strains, dislocations, free surfaces, and multiple crystalline orientations; all of these features are critical in modeling the behavior of solid-state systems. Similarities between the problems of interest to the two communities and the complementary nature of the methods they apply suggest that a direct interaction between them should be highly beneficial for both parties. Here we summarize some of the discussions during a three-day CECAM workshop in Lausanne (21-23 October 2009) which was organized in order to bring together researchers from the complex fluids and materials science communities and to foster the exchange of ideas between these two communities. During the course of the workshop, several open problems relevant to both fields (DFT and PFC) were identified, including developing better microscopically-informed density functionals, incorporating stochastic fluctuations, and accounting for hydrodynamic interactions. The goal of this special issue is to highlight recent progress in DFT and PFC approaches, and discuss key outstanding problems for future work. The rest of this introductory paper is organized as follows. In section 2, we give a brief overview of the current research topics addressed in this special issue. Then, in section 3, we present a collection of outstanding problems, which have been identified as important for further developments of the two fields and intensely debated at the CECAM workshop. Finally, we close the paper with a few concluding remarks. 2. Research topics addressed in this special issue This special issue consists of research papers that cover a broad range of interesting subjects, about a half of which are related to the theoretical materials science community and the other half came from the soft-matter community. We begin by discussing papers related to PFC. Diverse subjects related to the phase-field crystal model include exciting topics such as predicting/controlling the equilibrium phase behavior [19, 18, 17] and kinetics of epitaxial island formation on nano-membranes [20]. Moreover, phase-field crystal modeling has proved to be very successful in simulating homogeneous and heterogeneous crystal nucleation and growth, and several aspects of these phenomena are discussed in this issue [18, 21]. Finally, it is shown how to incorporate additional orientational degrees of freedom within the PFC approach to model liquid crystals [22]. On the DFT side, the other papers in this special issue deal with problems associated with advanced DFT techniques and applications. The existence of a structural instability in sub-critical crystalline fluctuations in a supercooled liquid within a square-gradient theory is discussed in [23]. Fundamental measure theory for hard-body systems is improved by discussing a correction term in detail, as discussed in [24]. A mean-field-like density functional for charges is applied to the effective interaction between charged colloids obtained within a cell model [25]. The remaining articles provide fundamental insight into how to supplement DDFT-type methods with hydrodynamics [26, 27], highlight the role of the projection operator technique in deriving dynamical density functional theories [28], and demonstrate how perturbation methods can be employed to compute the properties of solid-liquid interfaces [29]. This particular collection of papers demonstrates rather convincingly the significant potential that classical density functional techniques possess in modeling complex systems built of either soft or hard matter (or combinations thereof). While the PFC approach offers a simple and appealing means to simulate evolving microstructures in spatially extended system with atomic scale spatial resolution over diffusive time scales, DFT provides both its theoretical underpinning and (hopefully) the means to construct microscopically more quantitative density functionals for use in engineering materials. Outstanding issues within the PFC and DFT approaches, discussed next, will provide further opportunities for interactions between the PFC and DFT communities. 3. Important open issues and exciting avenues for further research In the following we summarize some of the exciting topics for future research, which were discussed during the CECAM workshop. They concern both fundamental problems and applications, all within the framework of DFT and PFC. Addressing these issues will provide a framework for future work in these two overlapping fields. (a) How to construct a reliable density functional (DF) for soft repulsions? Most of the recent developments in classical density functional theory were focussed on hard-sphere-like interactions in the framework of fundamental-measure-theory (FMT) [30-33]. While this approach can be extended to additive and nonadditive mixtures [34, 35] and to non-spherical hard objects [36, 37], it is much more difficult to include soft-core interactions, such as inverse-power-law pair-potentials. There have been attempts to include those, mainly using the Ramakrishnan-Yussouff [38] or the weighted-density [39-41] approximation, or other modifications (see e.g., [42, 43]), but the accuracy of these functionals are inferior to that of FMT for hard spheres. Clearly the FMT of Rosenfeld needs an extension for the hard-core Coulomb system. A complementary approach is to start from a density functional for hard orientable objects [36] and to integrate out the orientational degrees of freedom. This would lead to a softened effective repulsion between spherical objects. We mention finally that in the extreme limit of ultrasoft pair potentials, which are penetrable, the mean-field approximation provides a reliable functional [44]. (b) How to construct a reliable DF beyond perturbation theory? This is the key to developing accurate, predictive functionals for use in materials science problems. Typically an attractive tail in the interparticle interaction is treated within thermodynamic hard-sphere perturbation theory [45, 46], in most cases at the mean-field level. As this perturbative approach is only justified for weak attraction strengths, there is a great need to go beyond this perturbation theory. A general non-perturbative route, which could be helpful here, is to consider a functional for a mixture and reducing it to an effective one-component system. Following this idea, for example effective depletion attractions can be modeled for a one-component system by starting from the binary Asakura-Oosawa functional [34, 35]. This idea still needs to be exploited in a more general sense, i.e. for more general cross-interactions in the mixture. It could also be combined with the idea of using non-spherical hard objects and integrating out the orientational degrees of freedom. (c) How to apply the fundamental measure theory to the full phase diagram of lyotropic liquid crystals? There are already density-functional investigations of liquid-crystal phases of hard spherocylinders [47, 48], but the novel fundamental-measure-theory which was recently proposed for non-spherical objects[36] has never been applied to this problem. In fact, this new functional now needs numerical evaluation for liquid-crystal phases different from isotropic and nematic ones, such as smectic, columnar, plastic crystalline and full orientational ordered crystalline phases [49, 50]. This is mainly a pure numerical resolution problem since the density fields are sharply peaked in the solid phases and need enough grid points, which is at the moment a rather formidable challenge in three spatial dimensions. However, if only orientational degrees of freedoms are considered, the computational effort is greatly reduced; see, e.g., [36, 51, 52]. (d) The role of fluctuations in DDFT and PFC. There is a continuing debate about the role of noise in the dynamical density functional theory (see e.g. [53]) and correspondingly also in the phase-field crystal models. Derivations of DDFT from the Smoluchowski level [54] and also within the projection operator technique [5] quite naturally lead to a deterministic equation without any noise. Clearly this is an approximation, which becomes problematic in the vicinity of a critical point or in the case of nucleation problems, where the system has to leave a metastable minimum of the free energy; in the former case, fluctuations are required in order to capture the correct critical behavior (i.e., critical exponents), while in the latter case, fluctuations are needed to establish an escape route of the system from a metastable phase. Other approaches add noise on a more phenomenological level. However, the actual strength of the noise, though fundamentally correlated with the thermal energy, is not known exactly and is treated in most applications as a phenomenological fit parameter; see, e.g., [55, 56]. This problem is a very fundamental one, and, of course, shared by the DDFT and PFC approaches. In more general terms, the addition of noise to the equation of motion in continuum models is not without conceptual difficulties (see [57]), even if noise is properly discretized in the course of the numerical integration. With the noise added, the equilibrium physical properties of the system change. Furthermore, transformation kinetics generally depend on the spatial and temporal steps, and in the limit of infinitely small steps an ultraviolet 'catastrophe' (divergence of the free energy) may occur. Evidently, an 'ultraviolet cut-off', i.e. filtering out the highest frequencies, is required to regularize the unphysical singularity. In the PFC case, a straightforward choice for the cut-off length is the interparticle distance, which is expected to remove the unphysical, small wavelength fluctuations [58, 16, 59, 18]. Perhaps a more elegant way to handle this problem is via renormalizing the model parameters so that with noise one recovers the 'bare' physical properties (see the application of this approach for the Swift-Hohenberg model in [60]). However, further systematic investigations are needed in order to settle this issue. (e) The need to clarify the role of the adiabatic approximation. While DDFT can be derived from more microscopic equations, such as the Smoluchowski equation [54] or the Langevin equations [61] for the individual particles, a major approximation is invoked in the derivation, namely the so-called 'adiabatic approximation'. This approximation assumes that all other observables relax much faster than the one-particle density field [5]. Therefore, the nonequilibrium correlations are replaced by equilibrium ones corresponding to an inhomogeneous reference one-particle density [54]. This enables one to formulate the theory in terms of the time-dependent one-particle density field alone. What is still needed here is a more general theory which provides the next-leading order beyond the adiabatic approximation. This improved theory would not only provide more fundamental insight into the DDFT itself; it would also pave the way to many applications where the simpleDDFT fails. (f) How to apply and exploit DDFT for active matter? The collective behavior of self-propelled particles with internal driving motors is a topic of active research [62, 62]. Given that the particle dynamics can be described in terms of driven Brownian motion, a dynamical density functional theory can be derived in a straightforward manner. In a first application, DDFT was employed to describe aggregation phenomena near system boundaries for driven rod-like colloidal particles [64]. The potential of DDFT for 'active' particles should be exploited more in the future, as it provides a microscopic approach to investigate nonequilibrium effects, such as swarming and jamming. (g) How to construct a PFC model for inhomogeneous liquid crystals? The traditional PFC model [6, 7] describes a two-dimensional one-component solid phase by a single inhomogeneous sinusoidal density field. The PFC approach has been generalized to mixtures by including more than a single density field [11] and to anisotropic particles with a fixed orientation [65]. However, it has never been applied to liquid crystals which are made by particles with intrinsic orientational degrees of freedom. Based on discussion during the CECAM workshop, a link towards the PFC model has been elaborated and the corresponding PFC model for liquid crystals was derived, see article [22] in this special issue. The extended PFC model contains both the translational density and the local orientational degree of ordering as well as a local director field. The model exhibits stable isotropic, nematic, smectic A, columnar, plastic crystalline and orientationally ordered crystalline phases and bears therefore much richer phases than the original PFC. A large-scale numerical exploration of this PFC model still needs to be performed. The derivation exploits the connection between DDFT and PFC, which was highlighted in [66] for spherical particles, and is based on recent generalizations of DDFT to rod-like Brownian particles [67, 64]. (h) How to incorporate hydrodynamic interactions between particles in dense driven systems of colloids? In dense colloidal dispersions, hydrodynamic interactions between the particles play a major role in their collective behavior. While these interactions affect neither structural correlations nor the equilibrium phase behavior, they have a profound effect on the dynamics both in equilibrium and non-equilibrium [68]. Recently, DDFT was extended to include hydrodynamic interactions on the pairwise level of the mobility tensors [69]. This kind of DDFT needs more applications as well as a fundamental development towards higher-order mobility tensors beyond the pairwise level or to a description, which includes lubrication forces between colloidal particles at small interparticle separations. (i) How to systematically construct effective, low-frequency representations from DFT/DDFT? Given an accurate and predictive density functional, which incorporates interaction potentials between the constituent species in a multi-component system, building an effective description would be highly desirable as it would provide an alternative to purely atomistic approaches (e.g., molecular dynamics simulations) and enable the simulation of quantitative, microscopically-informed, continuum systems across diffusive time scales. The first challenge, of course, is the development of such functionals, as already discussed in item (b) above. Once this challenge has been overcome, the next step would be to project out the dynamics of the relevant degrees of freedom from the full DDFT description. Physically, one would expect that the shape of a single peak in the density would relax much faster than, say, the distance between peak centers. Therefore, it should be possible to `slave' the high-frequency modes associated with the peak shapes to the more slowly evolving modes with low spatial frequencies. (j) How to build numerically efficient, quantitative PFC models for a broad spectrum of metallic materials? Viewed as an extension of the traditional phase-field method (see, e.g., [70-74]. for comprehensive reviews), PFC incorporates microscopic physics (crystal symmetry, grain orientation, topological defects) in a phenomenological manner. A practical issue in numerically integrating the dynamic PFC equation is that the grid spacing is constrained to be a fraction of the lattice spacing (typically Δ x ~ a/8), making large-scale simulations challenging in three spatial dimensions. It is thus highly desirable to develop a methodology that would allow one to tune important materials parameters such as crystal symmetry, lattice spacing, elastic constants, surface energies and stresses, dislocation core energy, and dislocation mobility, without sacrificing numerical efficiency. The issue of constructing PFC free energies, which give rise to a given crystal symmetry, has been addressed very recently; see, e.g., [17-19]. Going beyond the question of crystal symmetry, an appealing possibility is to further develop the so-called amplitude equation approach [75-77]., in which the density field is essentially expressed in terms of slowly-varying envelope functions (i.e., amplitudes), modulated by the fundamental spatial periodicity of the density. In fact, it has been demonstrated recently that such an approach provides a truly multi-scale approach to studying phase transformations in solid-liquid systems [78]. The goal is to construct amplitude equations, which accurately incorporate, e.g., surface tension anisotropies for simulations of solid-solid, solid-liquid, and solid-vapor systems. Alternatively, one can work directly with the PFC density field and introduce additional model parameters which can be fitted so that a required set of physical properties is recovered, such as the properties of the solid-liquid interface in pure iron [79]. (k) How to simulate electronic materials with PFC? Ferroelectrics comprise an interesting class of materials, which undergo a structural phase transformation (typically cubic-to-tetragonal) below a Curie temperature and acquire a non-zero electric polarization. It has been suggested that the manipulation of these polarization domains by means of an external field can be exploited in novel non-volatile memory devices [80, 81]. The PFC approach would present an appealing means to study ferroelectrics exhibiting one or more (ferroic) order parameters, provided that the crystal lattice can be coupled to the local order parameter(s) in a physically-based manner. 4. Concluding remarks The workshop 'Classical density functional theory methods in soft and hard matter' has established the first contact between the soft-matter community working with advanced classical density functional techniques and a theoretical materials science community working with engineering materials and armed with a simple but numerically very efficient dynamical density functional technique, the phase-field crystal method. A large number of common problems have been identified, which represent challenges for both communities during the coming years. This has been borne out by the lively discussions and some of the provocative talks. The organizers think that the workshop proved to be a truly successful event, matching to the high standards of the CECAM workshops, and hope that the workshop will indeed catalyze a long-term interaction between the two communities. As a final note, we would like to emphasize that progress in the areas highlighted in this special issue will positively impact both fields, and we expect that these issues will provide the natural link for collaborations and intellectual exchanges between these traditionally separate-yet-allied fields. In particular, such activities would lead to significant improvements in the applicability and versatility of classical DFT methods in both soft and hard matter systems, for the common benefit of physicists, chemists, and materials scientists. References [1] Evans R 1979 Adv. Phys. 28 143 [2] Oxtoby D W 1991 Liquids, Freezing and the Glass Transition (Session LI (1989) of Les Houches Summer Schools of Theoretical Physics) (Amsterdam: North Holland) p 147 [3] Singh Y 1991 Phys. Rep. 207 351 [4] Löwen H 1994 Phys. Rep. 237 249 [5] Español P and Löwen H 2009 J. Chem. Phys. 131 244101 [6] Elder K R, Katakowski M, Haataja M and Grant M 2002 Phys. Rev. Lett. 88 245701 [7] Elder K R and Grant M 2004 Phys. Rev. E 70 051605 [8] Berry J, Grant M and Elder K R 2006 Phys. Rev. E 73 031609 [9] Stefanovic P, Haataja M and Provatas N 2006 Phys. Rev. Lett. 96 225504 [10] Wu K-A and Karma A 2007 Phys. Rev. B 76 184107 [11] Elder K R, Provatas N, Berry J, Stefanovic P and Grant M 2007 Phys. Rev. B 75 064107 [12] Berry J, Elder K R and Grant M 2008 Phys. Rev. E 77 061506 [13] Huang Z-F and Elder K R 2008 Phys. Rev. Lett. 101 158701 [14] Wu K-A and Voorhees P W 2009 Phys. Rev. B 80 125408 [15] Stefanovic P, Haataja M and Provatas N 2009 Phys. Rev. E 80 046107 [16] Tegze G, Gránásy L, Tóth G I, Podmaniczky F, Jaatinen A, Ala-Nissial T and Pusztai T 2009 Phys. Rev. Lett. 103 035702 [17] Jaatinen A and Ala-Nissila T 2010 Extended phase diagram of the three-dimensional phase field crystal model J. Phys.: Condens. Matter 22 205402 [18] Tóth G I, Tegze G, Pusztai T, Tóth G and Gránásy L 2010 Polymorphism, crystal nucleation and growth in the phase-field crystal model in 2D and 3D J. Phys.: Condens. Matter 22 364101 [19] Wu K-A, Plapp M and Voorhees P 2010 Controlling crystal symmetries in phase-field crystal models J. Phys.: Condens. Matter 22 364102 [20] Elder K R and Huang Z-F 2010 A phase field crystal study of epitaxial island formation on nanomembranes J. Phys.: Condens. Matter 22 364103 [21] Backofen R and Voigt A 2010 A phase-field-crystal approach to critical nuclei J. Phys.: Condens. Matter 22 364104 [22] Löwen H 2010 A phase-field-crystal model for liquid crystals J. Phys.: Condens. Matter 22 364105 [23] Harrowell P 2010 On the existence of a structural instability in sub-critical crystalline fluctuations in a supercooled liquid J. Phys.: Condens. Matter 22 364106 [24] Hansen-Goos H and Mecke K 2010 Tensorial density functional theory for non-spherical hard-body fluids J. Phys.: Condens. Matter 22 364107 [25] Denton A R 2010 Poisson-Boltzmann theory of charged colloids: limits of the cell model for salty suspensions J. Phys.: Condens. Matter 22 364108 [26] Rauscher M 2010 DDFT for Brownian particles and hydrodynamics J. Phys.: Condens. Matter 22 364109 [27] Marini Bettolo Marconi U and Melchionna S 2010 Dynamic density functional theory versus kinetic theory of simple fluids J. Phys.: Condens. Matter 22 364110 [28] Majaniemi S, Provatas N and Nonomura M 2010 Effective model hierarchies for dynamic and static classical density functional theories J. Phys.: Condens. Matter 22 364111 [29] Warshavsky V B and Song X 2010 Perturbation theory for solid-liquid interfacial free energies J. Phys.: Condens. Matter 22 364112 [30] Rosenfeld Y, Schmidt M, Löwen H and Tarazona P 1997 Phys. Rev. E 55 4245 [31] Roth R, Evans R, Lang A and Kahl G 2002 J. Phys: Condens. Matter 14 12063 [32] Tarazona P, Cuesta J A and Martinez-Raton Y 2008 Density Functional Theories of Hard Particle Systems (Springer Lecture Notes in Physics vol 753) (Berlin: Springer) p 247 [33] Roth R 2010 J. Phys: Condens. Matter 22 063102 [34] Schmidt M, Löwen H, Brader J M and Evans R 2000 Phys. Rev. Lett. 85 1934 [35] Schmidt M, Löwen H, Brader J M and Evans R 2002 J. Phys.: Condens. Matter 14 9353 [36] Hansen-Goos H and Mecke K 2009 Phys. Rev. Lett. 102 018302 [37] Esztermann A, Reich H and Schmidt M 2006 Phys. Rev. E 73 011409 [38] Ramakrishnan T V and Yussouff M 1979 Phys. Rev. B 19 2775 [39] Denton A R and Ashcroft N W 1989 Phys. Rev. A 39 4701 [40] Hasegawa M 1994 J. Phys. Soc. Japan 63 2215 [41] Kol A and Laird B B 1997 Mol. Phys. 90 951 [42] van Teeffelen S, Löwen H and Likos C N 2008 J. Phys.: Condens. Matter 20 404217 [43] van Teeffelen S, Hoffmann N, Likos C N and Löwen H 2006 Europhys. Lett. 75 583 [44] Likos C N, Hoffmann N, Löwen H and Louis A A 2002 J. Phys.: Condens. Matter 14 7681 [45] Curtin W A and Ashcroft N W 1986 Phys. Rev. Lett. 56 2775 [46] Likos C N, Németh Z T and Löwen H 1994 J. Phys.: Condens. Matter 6 10965 [47] Poniewierski A and Holyst R 1988 Phys. Rev. Lett. 61 2461 [48] Graf H and Löwen H 1999 J. Phys.: Condens. Matter 11 1435 [49] Bolhuis P and Frenkel D 1997 J. Chem. Phys. 106 666 [50] Frenkel D, Mulder B M and McTague J P 1984 Phys. Rev. Lett. 52 287 [51] Härtel A and Löwen H 2010 J. Phys.: Condens. Matter 22 104112 [52] Härtel A, Blaak R and Löwen H 2010 Towing, breathing, splitting, and overtaking in driven colloidal liquid crystals Phys. Rev. E 81 051703 [53] Archer A J and Rauscher M 2004 J. Phys. A: Math. Gen. 37 9325 [54] Archer A J and Evans R 2004 J. Chem. Phys. 121 4246 [55] Ramos J A P, Granato E, Achim C V, Ying S C, Elder K R and Ala-Nissila T 2008 Phys. Rev. E 78 031109 [56] Hubert J, Cheng M and Emmerich H 2009 J. Phys.: Condens. Matter 21 464108 [57] Plapp M 2010 Philos. Mag. submitted [58] Pusztai T, Tegze G, Tóth G I, Környei L, Bansel G, Fan Z and Gránásy L 2008 J. Phys.: Condens. Matter 20 404205 [59] Tegze G, Bansel G, Tóth G I, Pusztai T, Fan Z and Gránásy L 2009 J. Comput. Phys. 228 1612 [60] Gross N A, Ignatiev M and Chakraborty B 2000 Phys. Rev. E 62 6116 [61] Marconi V M B and Tarazona P 2000 J. Phys.: Condens. Matter 12 A413 [62] Toner J, Tu Y and Ramaswamy S 2005 Ann. Phys. 318 170 [63] Lauga E and Powers T R 2009 Rep. Prog. Phys. 72 096601 [64] Wensink H H and Löwen H 2008 Phys. Rev. E 78 031409 [65] Prieler R, Hubert J, Li D, Verleye B, Haberkern R and Emmerich H 2009 J. Phys.: Condens. Matter 21 464110 [66] van Teeffelen S, Backofen R, Voigt A and Löwen H 2009 Phys. Rev. E 79 051404 [67] Rex M, Wensink H H and Löwen H 2007 Phys. Rev. E 76 021403 [68] Dhont J K G 1996 An Introduction to Dynamics of Colloids (Amsterdam: Elsevier) [69] Rex M and Löwen H 2008 Phys. Rev. Lett. 101 148302 [70] Elder K R, Grant M, Provatas N and Kosterlitz J M 2001 Phys. Rev. E 64 021604 [71] Chen L Q 2002 Annu. Rev. Mat. Res. 32 113 [72] Boettinger W J, Warren J A, Beckermann C and Karma A 2002 Annu. Rev. Mat. Res. 32 163 [73] Gránásy L, Pusztai T and Warren J A 2004 J. Phys.: Condens. Matter 16 R1205 [74] Singer-Loginova I and Singer H M 2008 Rep. Prog. Phys. 71 106501 [75] Goldenfeld N, Athreya B P and Dantzig J A 2005 Phys. Rev. E 72 020601 [76] Yeon D-H, Huang Z-F, Elder K R and Thornton K 2010 Phil. Mag. 90 237 [77] Elder K R, Huang Z-F and Provatas N 2010 Phys. Rev. E 81 011602 [78] Athreya B P, Goldenfeld N, Dantzig J A, Greenwood M and Provatas N 2007 Phys. Rev. E 76 056706 [79] Jaatinen A, Achim C V, Elder K R and Ala-Nissila T 2009 Phys. Rev. E 80 031602 [80] Chu M-W et al 2004 Nat. Mater. 3 87 [81] Rudiger A and Waser J 2008 J. Alloy Compounds 449 2
Multiple Phase Transitions in the model multiferroic BiFeO3
NASA Astrophysics Data System (ADS)
Kreisel, Jens
2012-02-01
Bismuth ferrite BiFeO3 (BFO) is commonly considered a model system for multiferroics, and is perhaps the only material that is both magnetic and a ferroelectric with a strong electric polarization at 300K [1]. Despite numerous investigations, the crystal structures of BFO as a function of temperature and pressure are still not established and lead to ongoing controversial reports in the literature [1,3]. Besides being a model multiferroic, BFO is also one of the very few materials that present both octahedra tilts and strong cation displacements at room temperature. Here we report the high-pressure phase transitions in BFO by both synchrotron x-ray diffraction and Raman spectroscopy, namely a surprising richness of six phase transitions in the 0--60 GPa range [2-3]. At low pressures, 4 transitions are evidenced at 4, 6, 7 and 11 GPa. In this range, the crystals display in that range unusual large unit cells and complex domain structures, which suggests a competition between complex tilt systems and possibly off-center cation displacements. The non polar Pnma phase remains stable over a large pressure range between 11 and 38 GPa. The two high pressure phase transitions at 38 and 48 GPa are marked by the occurrence of larger unit cells and an increase of the distortion away from the cubic parent perovskite cell. The previously reported insulator-to-metal transition appears to be symmetry breaking. Finally, we will present a new schematic P-T phase diagram for BFO and discuss the recently reported phase transition in highly strained BFO films [4,5] in the light of our high-pressure findings. [4pt] [1] G. Catalan, J. F. Scott, Advanced Materials 21, 1 (2009).[0pt] [2] R. Haumont et al., Phys. Rev. B 79, 184110 (2009).[0pt] [3] M. Guennou et al., Phys. Rev. B 2011, accepted http://arxiv.org/abs/1108.0704.2011[0pt] [4] J. Kreisel et al. J. Phys.: Cond. Matt. 23, 342202 (2011).[0pt] [5] W. Siemons et al. Appl. Phys. Express 4 (2011).
NASA Astrophysics Data System (ADS)
Edwards, Rachel S.; Hill, Stephen; North, J. Micah; Dalal, Naresh; Jones, Shaela; Maccagnano, Sara
2003-03-01
We present high frequency high field electron paramagnetic resonance (EPR) measurements on the single molecule magnet Mn_12-Ac. Using a split coil magnet and highly sensitive resonant cavity techniques we are able to perform an angle dependent study of the single crystal EPR with the field applied in the hard plane, and hence unambiguously determine the transverse Hamiltonian parameters to fourth order. A variation in the line-shape of the resonances with angle supports the recent proposal of a ligand disorder in this material causing local quadratic anisotropy, and is used to determine the magnitude of the second order transverse term. This could have important implications for describing magnetic quantum tunneling in Mn_12-Ac. S. Hill, J.A.A.J. Perenboom, N.S. Dalal, T. Hathaway, T. Stalcup and J.S. Brooks, Phys. Rev. Lett. 80, 2453 (1998). A. Cornia, R. Sessoli, L. Sorace, D. Gatteschi, A.L. Barra and C. Daiguebonne, cond-mat/0112112.
How Fast Can Networks Synchronize? A Random Matrix Theory Approach
NASA Astrophysics Data System (ADS)
Timme, Marc; Wolf, Fred; Geisel, Theo
2004-03-01
Pulse-coupled oscillators constitute a paradigmatic class of dynamical systems interacting on networks because they model a variety of biological systems including flashing fireflies and chirping crickets as well as pacemaker cells of the heart and neural networks. Synchronization is one of the most simple and most prevailing kinds of collective dynamics on such networks. Here we study collective synchronization [1] of pulse-coupled oscillators interacting on asymmetric random networks. Using random matrix theory we analytically determine the speed of synchronization in such networks in dependence on the dynamical and network parameters [2]. The speed of synchronization increases with increasing coupling strengths. Surprisingly, however, it stays finite even for infinitely strong interactions. The results indicate that the speed of synchronization is limited by the connectivity of the network. We discuss the relevance of our findings to general equilibration processes on complex networks. [5mm] [1] M. Timme, F. Wolf, T. Geisel, Phys. Rev. Lett. 89:258701 (2002). [2] M. Timme, F. Wolf, T. Geisel, cond-mat/0306512 (2003).
NASA Astrophysics Data System (ADS)
Ritz, Steven M.
2013-01-01
The Physics of the Cosmos (PCOS) Program Analysis Group (PhysPAG) provides an important interface between the scientific community and NASA in matters related to PCOS objectives, and also provides opportunities for community discussions. An Executive Committee facilitates the work of several subgroups, including an Inflation Probe Science Analysis Group (IPSAG), an X-ray group (XRSAG) , a gamma-ray,group (GRSAG), a gravitational wave group (GWSAG), and a cosmic-ray group (CRSAG). In addition to identifying opportunities and issues, these groups also help articulate technology needs. Membership in all the SAGs is completely open, with information and newsletter signups available on the PhysPAG pages at the PCOS program website. The PhysPAG reports to the Astrophysics Subcommittee of the NASA Advisory Council. A summary of PhysPAG activities will be given, along with time for questions and discussion.
Directed and Elliptic Flow of Charged Hadrons in 62.4 GeV Au+Au Collisions
NASA Astrophysics Data System (ADS)
Oldenburg, Markus
2004-10-01
The measurement of the azimuthal momentum distribution of particles produced in heavy-ion collisions reveals insight into the early stage of the system's evolution [1]. It is quantified by the Fourier coefficients vn of the distribution of particle momentum azimuth angle [2]. Theoretical models predict the first Fourier coefficient v1 ("directed flow") to be sensitive to a possible phase transition of normal nuclear matter to a quark-gluon plasma [3]. The second Fourier component v2 ("elliptic flow") is believed to be a signal of early thermalization of the created system of hot and dense nuclear matter [4]. We present results of directed and elliptic flow at √s_NN = 62.4 GeV, as measured by the STAR experiment at RHIC. Comparisons to model predictions and different analysis techniques will be made. [1] P.F. Kolb, J. Sollfrank, and U. Heinz, Phys. Rev. C 62, 054909 (2000). [2] S.A. Voloshin and Y. Zhang, Z. Phys. C 70, 665 (1996). [3] L.P. Csernai and D. Röhrich, Phys. Lett. B 458, 454 (1999). [4] D. Teaney, J. Lauret and E. Shuryak, Phys. Rev. Lett. 86, 4783 (2001).
N-body simulations for f(R) gravity using a self-adaptive particle-mesh code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao Gongbo; Koyama, Kazuya; Li Baojiu
2011-02-15
We perform high-resolution N-body simulations for f(R) gravity based on a self-adaptive particle-mesh code MLAPM. The chameleon mechanism that recovers general relativity on small scales is fully taken into account by self-consistently solving the nonlinear equation for the scalar field. We independently confirm the previous simulation results, including the matter power spectrum, halo mass function, and density profiles, obtained by Oyaizu et al.[Phys. Rev. D 78, 123524 (2008)] and Schmidt et al.[Phys. Rev. D 79, 083518 (2009)], and extend the resolution up to k{approx}20 h/Mpc for the measurement of the matter power spectrum. Based on our simulation results, we discussmore » how the chameleon mechanism affects the clustering of dark matter and halos on full nonlinear scales.« less
Localized Excited Charge Carriers Generate Ultrafast Inhomogeneous Strain in the Multiferroic BiFeO3
2014-03-03
Crane, Y.-H. Chu, M. B. Holcomb, M. Gajek , M. Huijben, C.-H. Yang, N. Balke, and R. Ramesh, J. Phys. Condens. Matter 20, 434220 (2008). [4] N. A. Hill...L. W. Martin, Y. H. Chu, M. Gajek , R. Ramesh, R. C. Rai, X. Xu, and J. L. Musfeldt, Appl. Phys. Lett. 92, 091905 (2008). [27] F. Zamponi, Z. Ansari, C
Series of (2+1)-dimensional stable self-dual interacting conformal field theories
NASA Astrophysics Data System (ADS)
Cheng, Meng; Xu, Cenke
2016-12-01
Using the duality between seemingly different (2+1)-dimensional [(2 +1 )d ] conformal field theories (CFT) proposed recently [D. T. Son, Phys. Rev. X 5, 031027 (2015), 10.1103/PhysRevX.5.031027; M. A. Metlitski and A. Vishwanath, Phys. Rev. B 93, 245151 (2016), 10.1103/PhysRevB.93.245151; C. Wang and T. Senthil, Phys. Rev. X 6, 011034 (2015), 10.1103/PhysRevX.6.011034; C. Wang and T. Senthil, Phys. Rev. X 5, 041031 (2015), 10.1103/PhysRevX.5.041031; C. Wang and T. Senthil, Phys. Rev. B 93, 085110 (2016), 10.1103/PhysRevB.93.085110; C. Xu and Y.-Z. You, Phys. Rev. B 92, 220416 (2015), 10.1103/PhysRevB.92.220416; D. F. Mross et al., Phys. Rev. Lett. 117, 016802 (2016), 10.1103/PhysRevLett.117.016802; A. Karch and D. Tong, arXiv:1606.01893; N. Seiberg et al., arXiv:1606.01989; P.-S. Hsin and N. Seiberg, arXiv:1607.07457], we study a series of (2 +1 )d stable self-dual interacting CFTs. These CFTs can be realized (for instance) on the boundary of the 3 d bosonic topological insulator protected by U(1) and time-reversal symmetry (T ), and they remain stable as long as these symmetries are preserved. When realized as a boundary system, these CFTs can be driven into anomalous fractional quantum Hall states once T is broken. We demonstrate that the newly proposed dualities allow us to study these CFTs quantitatively through a controlled calculation, without relying on a large flavor number of matter fields. We also propose a numerical test for our results, which would provide strong evidence for the originally proposed duality between Dirac fermion and QED.
NASA Astrophysics Data System (ADS)
Rahman, Talat S.
2009-02-01
It would be fair to say that in the past few decades, theory and computer modeling have played a major role in elucidating the microscopic factors that dictate the properties of functional novel materials. Together with advances in experimental techniques, theoretical methods are becoming increasingly capable of predicting properties of materials at different length scales, thereby bringing in sight the long-sought goal of designing material properties according to need. Advances in computer technology and their availability at a reasonable cost around the world have made tit all the more urgent to disseminate what is now known about these modern computational techniques. In this special issue on computational methodologies for materials by design we have tried to solicit articles from authors whose works collectively represent the microcosm of developments in the area. This turned out to be a difficult task for a variety of reasons, not the least of which is space limitation in this special issue. Nevertheless, we gathered twenty articles that represent some of the important directions in which theory and modeling are proceeding in the general effort to capture the ability to produce materials by design. The majority of papers presented here focus on technique developments that are expected to uncover further the fundamental processes responsible for material properties, and for their growth modes and morphological evolutions. As for material properties, some of the articles here address the challenges that continue to emerge from attempts at accurate descriptions of magnetic properties, of electronically excited states, and of sparse matter, all of which demand new looks at density functional theory (DFT). I should hasten to add that much of the success in accurate computational modeling of materials emanates from the remarkable predictive power of DFT, without which we would not be able to place the subject on firm theoretical grounds. As we know and will also see from the collection of works here, DFT also provides a platform for testing, improving, and evaluating the feasibility of more approximate methods whose need has become even more urgent. This is understandable since functional materials, given their limited translational symmetry, necessitate the usage of unit cells with a large number of atoms (sometimes in hundreds). Even if DFT codes were efficient enough to handle several hundred atoms in the calculational super-cell, the extraction of equilibrium geometry for such systems requires injection of more efficient methodology, as geometry is the input and not the output of a DFT calculation. Equally important is the need to calculate the temperature dependencies of material properties and for simulations to be carried out at length scales suitable for incorporating kinetic effects from competing processes and cooperative effects from constituting entities. It is true that codes based on DFT are becoming increasingly efficient and that methods such as ab initio molecular dynamics simulations are available for simulations of systems at temperatures above 0 K. However, such approaches still have a way to go before they can be readily applied to materials with complex geometries and composition, and for time and length scales that are relevant to realistic environments in the laboratory. Several articles here represent some of the recent advances towards 'multi-scale' modeling of materials. Among the articles that focus exclusively on DFT, the contribution by Weinert et al [1] summarizes some of the advances made to better describe magnetic properties and entropic effects. The article by Kyrychenko and Ullrich [2] discusses recent developments in time dependent DFT to describe transport properties and absorption spectra of solids. Their model allows for a comprehensive treatment of electron--electron interaction, screening and correlation effects which are necessary for proper description of properties of the excited state. The contribution by Langreth and co-workers [3] summarizes their recent efforts at incorporating non-local van der Waals forces into DFT so as to make it suitable for accurate description of the physical and chemical properties of the ground state of sparse/soft matter. Their applications to molecules, layered systems, and hybrid structures are promising and mark the beginning of work in another important set of materials for which insights could be obtained from DFT. The paper here by Tang et al [4] focuses on the usage of grid-based methods for calculations of local charge densities. The virtue of the method is that charge densities are not confined to a lattice. Finally, as applications of DFT, the article by Groß [5] is representative of the usage of DFT in tailoring the electronic structures of surface alloys and other nanostructures, while the contribution by Bohnen et al [6] is a further example of the applicability of density functional perturbation theory in accurate descriptions of the lattice dynamics of functional nanomaterials such as carbon nanotubes. For the modeling of amorphous materials, Biswas and co-workers [7] present a review of methods such as the reverse Monte Carlo (RMC) and 'experimentally constrained molecular relaxation' models which impose constraints to ensure that the final model meets a priori requirements on structure, topology, chemical ordering, etc. In a similar vein, the papers by Rossi and Ferrando [8] and Rogan et al [9] , summarize advances in the determination of the equilibrium structure of nanoparticles and nanoalloys through global optimization strategies such as genetic and Basin-hopping approaches, diversity-driven unbiased searches and the conformational space annealing method. Structure determination itself relies on the knowledge of the system energy landscape, the saddle points and the transition states. In this issue the work of Pedersen et al [10] is an example of how a saddle point search method can be used to study dislocation mobility in a covalent material, which can be a very challenging task for a complex material. Trushin et al [11] present a related procedure for understanding atomistic mechanisms and energetics of strain relaxation in heteroepitaxial systems and transitions from the coherent epitaxial (defect free) state to the state containing an isolated defect (localized or extended). To facilitate the simulation of rare events, Fichthorn et al [12] elaborate on the adoption of the bond-boost method for accelerated molecular dynamics (MD) simulation and its application to kinetic phenomena relevant to thin-film growth. They also present the state-bridging bond-boost method to address the dynamics of systems residing in a group of states connected by small energy barriers and separated from the rest of phase space by large barriers. In the genre of accelerated schemes which also seek to address the issue of completeness in the determination of reaction rates we include here the 'off-lattice' self-learning kinetic Monto Carlo method presented by Kara and co-workers [13] and its application to atomic cluster diffusion on fcc(111) surfaces. Further ramifications of the self-learning kinetic Monte Carlo method are presented in the paper by Nandipati et al [14] , who apply the recently developed optimistic synchronous relaxation (OSR) algorithm as well as the semi-rigorous synchronous sublattice (SL) algorithm for parallel computation of the coarsening of islands on fcc(111) surfaces. The above and related methods also lend themselves to the examination of morphological evolution of functional materials. The contribution by Hamouda et al [15] summarizes the effect of impurities on epitaxial growth and on shape evolution of systems. Similarly, using an atomistic lattice-gas model Li et al [16] describes the key features of the complex mounded morphologies which develop during deposition of Ag films on Ag(111) surfaces. Also, using a combination of a Monte Carlo method and continuum elasticity theory, Uhlík et al [17] present an efficient computational method for finding the equilibrium concentration profiles which minimize the free energy of intermixed heteroepitaxial islands of assigned shape and composition. The contribution by Leuenberger and Sham [18] establishes how the process of Umklapp-assisted recombination can be used to optically detect the spin state of the nucleus of a phosphorus donor. They present two methods to improve the optical detection of the spin state of a single nucleus in Si:P. The work of Ni et al [19] is an example of the application of the molecular dynamics technique to determine the thermal conductances across covalently bonded interfaces between oriented single crystal diamond and completely aligned polyethylene chains. Finally, the paper by Yildirim et al [20] illustrates the application of standard lattice dynamics and molecular statics methods to identify the novel characteristics of nanoalloys, as a function of composition and geometry. References [1] Weinert M, Schneider G, Podloucky R and Redinger J 2009 FLAPW: applications and implementations J. Phys.: Condens. Matter 21 084201 [2] Kyrychenko F V and Ullrich C A 2009 Transport and optical conductivity in dilute magnetic semiconductors J. Phys.: Condens. Matter 21 084202 [3] Langreth D C, Lundqvist B I, Chakarova-Käck S, Cooper V R, Dion M, Hyldgaard P, Kelkkanen A, Kleis J, Kong L, Li S, Moses P G, Murray E, Puzder A, Rydberg H, Schröder E and Thonhauser T 2009 A density functional for sparse matter J. Phys.: Condens. Matter 21 084203 [4] Tang W, Sanville E and Henkelman G 2009 A grid-based Bader analysis algorithm without lattice bias J. Phys.: Condens. Matter 21 084204 [5] Groß A 2009 Tailoring the reactivity of bimetallic overlayer and surface alloy systems J. Phys.: Condens. Matter 21 084205 [6] Bohnen K-P, Heid R and Chan C T 2009 Lattice instability and superconductivity in electron doped (3, 3) carbon nanotubes J. Phys.: Condens. Matter 21 084206 [7] Biswas P, Tafen D N, Inam F, Cai B and Drabold D A 2009 Materials modeling by design: applications to amorphous solids J. Phys.: Condens. Matter 21 084207 [8] Rossi G and Ferrando R 2009 Searching for low-energy structures of nanoparticles: a comparison of different methods and algorithms J. Phys.: Condens. Matter 21 084208 [9] Rogan J, Ramírez M, Muñoz V, Alejandro Valdivia J, García G, Ramírez R and Kiwi M 2009 Diversity driven unbiased search of minimum energy cluster configurations J. Phys.: Condens. Matter 21 084209 [10] Pedersen A, Pizzagalli L and Jónsson H 2009 Finding mechanism of transitions in complex systems: formation and migration of dislocation kinks in a silicon crystal J. Phys.: Condens. Matter 21 084210 [11] Trushin O, Jalkanen J, Granato E, Ying S C and Ala-Nissila T 2009 Atomistic studies of strain relaxation in heteroepitaxial systems J. Phys.: Condens. Matter 21 084211 [12] Fichthorn K A, Miron R A, Wang Y and Tiwary Y 2009 Accelerated molecular dynamics of thin-film growth with the bond-boost method J. Phys.: Condens. Matter 21 084212 [13] Kara A, Trushin O, Yildirim H and Rahman T S 2009 Off-lattice self-learning kinetic Monte Carlo: application to 2D cluster diffusion on the fcc(111) surface J. Phys.: Condens. Matter 21 084213 [14] Nandipati G, Shim Y, Amar J G, Karim A, Kara A, Rahman T S and Trushin O 2009 Parallel kinetic Monte Carlo simulations of Ag(111) island coarsening using a large database J. Phys.: Condens. Matter 21 084214 [15] Hamouda A, Stasevich T J, Pimpinelli A and Einstein T L 2009 Effects of impurities on surface morphology: some examples J. Phys.: Condens. Matter 21 084215 [16] Li M, Han Y, Thiel P A and Evans J W 2009 Formation of complex wedding-cake morphologies during homoepitaxial film growth of Ag on Ag(111): atomistic, step-dynamics, and continuum modeling J. Phys.: Condens. Matter 21 084216 [17] Uhlík F, Gatti R and Montalenti F 2009 A fast computational method for determining equilibrium concentration profiles in intermixed nanoislands J. Phys.: Condens. Matter 21 084217 [18] Leuenberger M and Sham L J 2009 Theory of Umklapp-assisted recombination of bound excitons in Si:P J. Phys.: Condens. Matter 21 084218 [19] Ni B, Watanabe T and Phillpot S P 2009 Thermal transport in polyethylene and at polyethylene-diamond interfaces investigated using molecular dynamics simulation J. Phys.: Condens. Matter 21 084219 [20] Yildirim H, Kara A and Rahman T S 2009 Structural, vibrational and thermodynamic properties of AgnCu34-n nanoparticles J. Phys.: Condens. Matter 21 084220
PREFACE: Science's gem: diamond science 2009 Science's gem: diamond science 2009
NASA Astrophysics Data System (ADS)
Mainwood, Alison; Newton, Mark E.; Stoneham, Marshall
2009-09-01
Natural diamond has been valued for its appearance and mechanical properties for at least two thousand years. As a gem stone diamond is unsurpassed. However, scientific work, especially in the last 20 years, has demonstrated that diamond has numerous surprising properties and many unique ones. Some of the extreme properties have been known for many years, but the true scale of diamond's other highly desirable features is still only coming to light as control in the synthesis of diamond, and hence material perfection, improves. The ultimate prize for man-made diamond is surely not in the synthesis of gem stones, but in delivering technological solutions enabled by diamond to the challenges facing our society today. If the special properties are to be exploited to their full potential, at least four crucial factors must be considered. First, there must be sufficient scientific understanding of diamond to make applications effective, efficient and economical. Secondly, the means of fabrication and control of properties have to be achieved so that diamond's role can be optimised. Thirdly, it is not enough that its properties are superior to existing materials: they must be so much better that it is worth initiating new technologies to exploit them. Finally, any substantial applications will have to address the society's major needs worldwide. The clear technology drivers for the 21st century come from the biomedical technologies, the demand for energy subject to global constraints, and the information technologies, where perhaps diamond will provide the major enabling technology [1]. The papers in this volume concern the solid state physics of diamond, and primarily concern the first two factors: understanding, and control of properties. They address many of the outstanding basic problems, such as the identification of existing defects, which affect the material's properties, both desirable and less so. Regarding future substantial applications, one paper discusses diamond's exceptional properties for quantum information processing [2], a topic on which there have been many recent papers, and where a diamond colour centre single photon source is already commercially available. Biomedical applications of diamond are recognised, partly tribological and partly electrochemical, but lie outside the present group of papers. Processing and controlling diamond surfaces and interfaces with other materials in their environment are critical steps en route to exploitation. Boron-doped diamond has already found application in electro-analysis and in the bulk oxidation of dissolved species in solution [3]. Energy-related applications—ranging from high-power electronics [3] to a potential first wall of fusion reactors [4]—are further exciting potential applications. Even small and ugly diamonds have value. Their mechanical properties [5] dominate, with significant niche applications such as thermal sinks. The major applications for diamond to date exploit only a fraction of diamond's special properties: visual for status diamonds, and mechanical for working diamonds. Diamond physics reaches well beyond the usual laboratory, to the geological diamond formation processes in the Earth's mantle. Characterization of natural gem diamonds [6, 7] is one part of the detective story that allows us to understand the conditions under which they formed. It was only half a century ago that the scientific and technological challenges of diamond synthesis were met systematically. Today, most of the recent research on diamond has concentrated on synthetics, whether created using high pressure, high temperature (HPHT) techniques or chemical vapour deposition (CVD). The HPHT synthesis of diamond has advanced dramatically [8, 9] to the extent that dislocation birefringence [10] can be largely eliminated. In silicon technology, the elimination of dislocations was a major step in microelectronics. Now, even diamond can be synthesised containing virtually no dislocations. The understanding of the critical processes that are involved in CVD diamond growth are becoming clearer. Two papers in this issue model it on a microscopic scale [11, 12], and a further two explore the practical techniques [13, 14] in order to lead to improvement in deposition techniques. Diamond is emerging as an engineering material [3] with its cost no longer regarded as prohibitive even for some large-scale uses, such as the fusion reactor first wall. It is striking how few useful dopants can be put into diamond in a controlled way. The studies reported here, whether theory or experiment, concentrate on phosphorus [14] as the donor, and demonstrate that boron (although deep in semiconductor terms,) can act as the acceptor [3] in practical devices. Other impurities, with deeper levels, such as nitrogen [15], with the muon as an honorary hydrogen [16], are studied in depth. Here, many of the characterization techniques developed over several decades have been brought to bear, to attempt to quantify impurities and defects and ultimately assist in improving the crystal quality [17, 18, 15]. However, further, more novel techniques such as reflection anisotropy spectroscopy [19] and luminescence lifetime mapping [20] have been introduced to diamond in this issue, and one can see how such techniques might play a crucial role in areas such as systems for quantum information processing. The presence and migration of radiation damage defects [21, 22], vacancies and interstitials, and vacancy clusters can dramatically influence the exploitable properties of diamond [23, 24]. It is now apparent that charge traps not only impact on electrical properties, but also on the colour of diamond and that thermo-chromic and photo-chromic effects are more common than previously thought [25, 23]. Combinations, like the negatively charged nitrogen-vacancy centre, have proved impressive in quantum information studies [26]. But diamond has yet to benefit from the sort of dopant engineering that has helped silicon to become ubiquitous. It is becoming clear that because of the deep ionisation energies of the dopants that can be incorporated into diamond, conventional semiconductor physics can only be applied at high temperatures; rather different technologies have to be exploited to ensure that diamond's potential for devices is fulfilled. There are technical improvements which need to be made: the elimination of defects that trap carriers, cause de-coherence, affect the colour or strength, or have other serious effects in the relevant application, and the development of robust ohmic contacts [27]. The material developments of the last 50 years include silicon becoming the semiconductor of choice, many new and better-developed polymers, the transformation of communications by silica-based optical fibres, and the emergence of synthetic diamond. Could diamond's special virtues yield major new opportunities? Its optical properties are exceptional, usually in desirable ways (high refractive indices can create indirect problems). The mechanical properties are truly outstanding, again usually in desirable ways (adhesion can be challenging). The thermal properties are similarly exceptional, with a thermal conductivity that exceeds copper. Diamond withstands aggressive environments, including extremes of pH. Its carrier mobility can be phenomenal, and electron emission can be excellent. Moreover, diamond can be compatible with silicon electronics, even if the involvement of a second material is inconvenient. Here the problems start. Even limited developments could be significant. For instance, the ability to control the populations of the various N, B, P and vacancy centres would open up potentially unique optoelectronic and spintronic opportunities. Control of diamond's properties is difficult, but this is where basic research can help (using all the techniques explored in this issue, and more). It is barely practical to create n-type diamond, but unipolar devices, exploiting excellent quality boron doped p-type material, can be designed [3]. Electrical contacts can be tricky to fabricate, but progress is being made here [3, 27]. Diamond is perceived as unacceptably expensive, but for a high-quality device for an exceptional environment, this is not a problem. Carbon-based electronic materials are strikingly diverse. They include diamond, graphite, nanotubes and buckyball structures, amorphous carbons, and nanodiamond. Add hydrogen and one has a range of diamond-like carbons and the wealth of organics. Such carbon-based materials include small molecules and polymers: impressive insulators, semiconducting and conducting polymers, switchable forms, superconducting and magnetic forms, and some with the highest electrical conductivities of any material. Diamond-like carbons can have controllable mechanical properties from the viscoelastic to the highly rigid. Photochemistry brings opportunities for novel processing methods. Even water-based processing may sometimes be possible (alas, not for diamond), and additional tools like self-organisation of organic molecules on surfaces have been demonstrated. The best carbons have impressive, sometimes supreme, performances, including the mobility and optical properties of diamond, spin-conserving transport in carbon nanotubes, and electron emission. For almost all measures of performance, there is some carbon-based material that performs better than silicon. Might hybrid carbon-based materials be more successful even than silicon [28]? Should we think less about 'diamond' and more about the integration of diamond as one component of carbon electronics? Device fabrication needs lithography optics and resists, and processing at the anticipated smaller scales may well exploit new electronic excitation methods. Alternative dielectrics and interconnect materials introduce new compatibility issues, and there are further varied constraints from displays, spintronic components, electron emitters or transparent conductors. Could the many carbon-based materials with interesting functional properties lead to a new class of alternative systems? This collection of papers was brought together to celebrate 60 years of conferences sponsored by the De Beers Group of companies on the science and technology of diamond. The transformation of diamond science and technology over those 60 years can be seen in varied ways. First, there has been a series of books stimulated by the conferences [29-31] complementing numerous other more recent texts on diamond (e.g. [32]). These show a striking evolution from the early pioneering studies of tribology, radiation damage, and thermal and optical properties to a wider range of electronic properties, spectroscopies, and characterization from the macroscopic to nanoscopic scales, as well as the now almost universal dialogue between experiment and theory. Secondly, new experimental and theoretical techniques have emerged, many of which are featured in the papers in this issue. Thirdly, there is a range of new technologies only made possible because of the catalytic role of the conferences. These include the spectroscopies that distinguish natural from synthetic or treated diamonds in a way that earns customer confidence. There are also new customer products, like speaker domes, where success has depended on the understanding of mechanical properties at a level not commonly available. Potentially big applications, like the fusion reactor's first wall, will follow on from early radiation damage studies. Fourthly, the young scientists who have been supported over the years have now made their way in many fields, not just diamond research, but certainly including technologies that use diamond. The sponsorship of science in this field has benefited both those supported and those who provide that support. Finally, we see serious thoughts about what might be the big new technologies of the 21st century, since these will need a fundamental understanding of materials properties and their control. There has been exceptional progress in this area, in specimen sizes, quality, and performance. These massive improvements in materials availability create opportunities for the major technological applications in the energy, environment, health and information technologies that will surely drive the big industrial expansions over the next decades. References [1] Stoneham A M 2007 Thinking about diamond (ed P Bergonzo, R Gat, R B Jackman and C E Nebel) MRS Proc. 956 1-10 [2] Stoneham A M 2008 Future Perspectives for Diamond for Physics and Applications of CVD Diamond ed S Koizumi, M Nesladek and C E Nebel (New York: Wiley-VCH) [3] Balmer R S et al 2009 J. Phys.: Condens. Matter 21 364221 [4] Stoneham A M, Matthews J R and Ford I J 2004 J. Phys.: Condens. Matter 16 S2597 [5] Liang Q, Yan C, Meng Y, Lai J, Krasnicki S, Mao H and Hemley R J 2009 J. Phys.: Condens. Matter 21 364215 [6] Stachel T and Harris J W 2009 J. Phys.: Condens. Matter 21 364206 [7] McNeill J, Pearson D G, Klein-BenDavid O, Nowell G M, Ottley C J and Chinn I 2009 J. Phys.: Condens. Matter 21 364207 [8] Martineau P M, Gaukroger M P, Guy K B, Lawson S C, Twitchen D J, Friel I, Hansen J O, Summerton G C, Addison T P G and Burns R 2009 J. Phys.: Condens. Matter 21 364205 [9] Burns R C et al 2009 J. Phys.: Condens. Matter 21 364224 [10] Pinto H and Jones R 2009 J. Phys.: Condens. Matter 21 364220 [11] May P W, Allan N L, Ashfold M N R, Richley J C and Mankelevich Yu A 2009 J. Phys.: Condens. Matter 21 364203 [12] Butler J E, Mankelevich Yu A, Cheesman A, Ma J and Ashfold N R 2009 J. Phys.: Condens. Matter 21 364201 [13] Silva F, Hassouni K, Bonnin X and Gicquel A 2009 J. Phys.: Condens. Matter 21 364202 [14] Haenen K, Lazea A, Barjon J, D'Haen J, Habka N, Teraji T, Koizumi S and Mortet V 2009 J. Phys.: Condens. Matter 21 364204 [15] Felton S, Cann B L, Edmonds A M, Liggins S, Cruddace R J, Newton M E, Fisher D and Baker J M 2009 J. Phys.: Condens. Matter 21 364212 [16] Etmimi K M, Goss J P, Briddon P R and Gseia E M 2009 J. Phys.: Condens. Matter 21 364211 [17] Moore M 2009 J. Phys.: Condens. Matter 21 364217 [18] Maki J M, Tuomisto F, Kelly C J, Fisher D and Martineau P M 2009 J. Phys.: Condens. Matter 21 364216 [19] Schwitters M, Martin D S, Unsworth P, Farrell T, Butler J E and Weightman P 2009 J. Phys.: Condens. Matter 21 364218 [20] Liaugaudas G, Collins A T, Suhling K, Davies G and Heintzmann R 2009 J. Phys.: Condens. Matter 21 364210 [21] Collins A T and Kiflawi I 2009 J. Phys.: Condens. Matter 21 364209 [22] Steeds J W, Sullivan W, Wotherspoon A and Hayes J M 2009 J. Phys.: Condens. Matter 21 364219 [23] Fisher D, Sibley S J and Kelly C J 2009 J. Phys.: Condens. Matter 21 364213 [24] Bangert U, Barnes R, Gass M H, Bleloch A L, and Godfrey I S 2009 J. Phys.: Condens. Matter 21 364208 [25] Khan R U A, Martineau P M, Cann B L, Newton M E and Twitchen D J 2009 J. Phys.: Condens. Matter 21 364214 [26] Stoneham A M, Harker A H and Morley G W 2009 J. Phys.: Condens. Matter 21 364222 [27] Evans D A, Roberts O R, Williams G T, Vearey-Roberts A R, Bain F, Evans S, Langstaff D and Twitchen D J 2009 J. Phys.: Condens. Matter 21 364223 [28] Stoneham A M 2004 Nat. Mater. 3 3 [29] Berman R (ed) 1965 Physical Properties of Diamond (Oxford: Clarendon) [30] Field J E (ed) 1979 The Properties of Diamond (London: Academic) [31] Field J E (ed) 1992 The Properties of Natural and Synthetic Diamond (London: Academic) [32] Sussmann R S (ed) 2009 CVD Diamond for Electronic Devices and Sensors (Wiley Series in Materials for Electronic and Optoelectronic Applications) (New York: Wiley)
WIMP-less dark matter and meson decays with missing energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKeen, David
2009-06-01
WIMP-less dark matter [J. L. Feng and J. Kumar, Phys. Rev. Lett. 101, 231301 (2008).] offers an attractive framework in which dark matter can be very light. We investigate the implications of such scenarios on invisible decays of bottomonium states for dark matter with a mass less than around 5 GeV. We relate these decays to measurements of nucleon-dark matter elastic scattering. We also investigate the effect that a coupling to s quarks has on flavor changing b{yields}s processes involving missing energy.
Constraints on the composite photon theory
NASA Astrophysics Data System (ADS)
Low, Lerh Feng
2016-10-01
In a 2015 paper [W. A. Perkins, Mod. Phys. Lett. A 30, 1550157 (2015)], Perkins argued that based on the composite photon theory (CPT), antiphotons should not interact with ordinary matter. This implies that antiphotons are undetectable by detectors made of ordinary matter, and hence that antimatter galaxies are a possible candidate for dark matter. The purpose of this short letter is to argue that this conclusion is highly unlikely, because of cosmological constraints on the density of radiation, the distribution of dark matter and C-symmetry.
PREFACE: Cell-substrate interactions Cell-substrate interactions
NASA Astrophysics Data System (ADS)
Gardel, Margaret; Schwarz, Ulrich
2010-05-01
One of the most striking achievements of evolution is the ability to build cellular systems that are both robust and dynamic. Taken by themselves, both properties are obvious requirements: robustness reflects the fact that cells are there to survive, and dynamics is required to adapt to changing environments. However, it is by no means trivial to understand how these two requirements can be implemented simultaneously in a physical system. The long and difficult quest to build adaptive materials is testimony to the inherent difficulty of this goal. Here materials science can learn a lot from nature, because cellular systems show that robustness and dynamics can be achieved in a synergetic fashion. For example, the capabilities of tissues to repair and regenerate are still unsurpassed in the world of synthetic materials. One of the most important aspects of the way biological cells adapt to their environment is their adhesive interaction with the substrate. Numerous aspects of the physiology of metazoan cells, including survival, proliferation, differentiation and migration, require the formation of adhesions to the cell substrate, typically an extracellular matrix protein. Adhesions guide these diverse processes both by mediating force transmission from the cell to the substrate and by controlling biochemical signaling pathways. While the study of cell-substrate adhesions is a mature field in cell biology, a quantitative biophysical understanding of how the interactions of the individual molecular components give rise to the rich dynamics and mechanical behaviors observed for cell-substrate adhesions has started to emerge only over the last decade or so. The recent growth of research activities on cell-substrate interactions was strongly driven by the introduction of new physical techniques for surface engineering into traditional cell biological work with cell culture. For example, microcontact printing of adhesive patterns was used to show that cell fate depends not on the amount of ligand for adhesion receptors, but on its spatial distribution [1]. New protocols for the preparation of soft elastic substrates were essential to show that adhesion structures and cytoskeleton of adherent cells strongly adapt to substrate stiffness [2], with dramatic effects for cellular decision making. For example, it has been shown recently that differentiation of mesenchymal stem cells is strongly influenced by substrate stiffness [3]. Thus, physical factors appear to be equally important as biochemical ones in determining the cellular response to its substrate [4]. The introduction of novel physical techniques not only opened up completely new perspectives regarding biological function, it also introduced a new quantitative element into this field. For example, the availability of soft elastic substrates with controlled stiffness allows us to reconstruct cellular traction forces and to correlate them with other cellular features. This development enables modeling approaches to work in close contact with experimental data, thus opening up the perspective that the field of cell-substrate interactions will become a quantitative and predictive science in the future. Because physical research into cell-substrate interactions has become one of the fastest growing research areas in cellular biophysics and materials science, we believe that it is very timely that this special issue gathers some of the on-going research effort in this field. In contrast to the non-living world, cellular systems usually interact with their environment through specific adhesion, mainly based on adhesion receptors from the integrin family. During recent years, force spectroscopy has emerged as one of the main methods to study the physics of specific adhesion. In this special issue, single cell force spectroscopy is used by Boettiger and Wehrle-Haller to characterize the strength of cell-matrix adhesion and how it is modulated by the glycocalyx [5], while Chirasatitsin and Engler use force spectroscopy mapping to characterize the spatial distribution of adhesive sites on the substrate [6]. Scrimgeour et al describe a new method to adhesively pattern self-assembled monolayers for cell adhesion by a simple photobleaching setup [7] and Stricker et al demonstrate how elastic substrates can be combined with microcontact printing to improve the reconstruction of traction forces [8]. The work by Metzner et al shows that meaningful results on the cell-substrate interactions can be extracted also from experiments in which cells interact with biofunctionalized beads [9]. If cells start to adhere to a substrate, the main rate-limiting step is establishment of close contact between the plasma membrane and the substrate. This process can be followed with high spatial and temporal resolution with reflection interference microscopy, as demonstrated by Ryzhkov et al for mouse embryonic fibroblasts [10] and by Cretel et al for T lymphocytes [11]. Once mature adhesion has been achieved, the integrin-based focal adhesions providing anchorage to the substrate are strongly connected to the actin cytoskeleton, the main determinant of cell shape and structure. Heil and Spatz use microfabricated pillars to perturb the mechanical balance and quantitatively characterize the fast response of the focal adhesions [12]. A similar approach is used by Kirchenbüchler et al, who use deformation of an elastic substrate to demonstrate that the weak link in the mechanical system of substrate, adhesions and actin cytoskeleton is most likely located at the adhesion-cytoskeleton interface [13]. Rather than using external perturbations, Zemel et al quantify and model how cells spontaneously polarize their cytoskeleton in response to the physical properties of the substrate [14]. Quantitative analysis of cellular data has become standard in the field of cell-substrate interactions. Moreover, theoretical models for cell-substrate interactions help us to identify and understand the mechanisms underlying the observed phenomena in these complex systems. Recently, a large effort has been invested into understanding how force transmitted by the actin cytoskeleton changes the state of focal adhesions. In the contribution by Biton and Safran, this issue is addressed for the case that force arises from shear flow over an adhering cell [15]. Another important source for force on focal adhesions is actin retrograde flow, which has been demonstrated before to show variable coupling to the underlying layer of adhesion receptors. Two contributions discuss how stochastic bond dynamics at the cell-substrate interface is modulated by physical factors. The model by Sabass and Schwarz suggests that dissipation in the actin cytoskeleton stabilizes bond dynamics [16] and the model by Li et al suggests that catch bonding and multiple layers are important elements of the way focal adhesions function [17]. If interacting with an elastic environment, the combined system of focal adhesions and actin cytoskeleton can be used by cells to sense its rigidity and to make decisions on its response. Moshayedi et al show that great care has to be taken when preparing soft elastic substrates for cell culture studies and then use their protocols to quantitatively evaluate the mechanosensitive response of astrocytes from the brain [18]. The cellular system used by Lee et al is pericytes from the microvasculature, for which the authors show that they exert sufficient forces to stimulate vascular endothelial cells [19]. Buxboim et al use the technology of soft elastic substrates to measure how far mesenchymal stem cells can mechanically sense into their substrate [20]. The mechanical activity of cells observed in two-dimensional cell culture has significant consequences for both physiological and disease-related situations, including cell migration, tissue maintenance and tumor growth. Jannat et al show that chemotaxis of neutrophils, that is the first line of the immune system, is strongly modulated by mechanosensing on substrates of varying stiffness [21]. Mogilner and Rubinstein present a theoretical systems analysis for the shape of rapidly migrating keratocytes [22]. Saez et al show, with microfabricated pillar assays, how force is distributed within a layer of epithelial cells [23]. For three-dimensional tissue models, new techniques have to be developed to characterize the complex mechanics of hydrogels. Levental et al [24] and Kotlarchyk et al [25] approach this challenge with mechanical and optical methods, respectively. Narayanan et al combine experiments and continuum models to explore how chemo-mechanical interactions influence tumor growth [26]. References [1] Chen C S, Mrksich M, Huang S, Whitesides G M and Ingber D E 1997 Geometric control of cell life and death Science 276 1425 [2] Pelham R J Jr and Wang Y-L 1997 Cell locomotion and focal adhesions are regulated by substrate flexibility Proc. Natl. Acad. Sci. USA 94 13661 [3] Engler A J, Sen S, Sweeney H L and Discher D E 2006 Matrix elasticity directs stem cell lineage specification Cell 126 677-89 [4] Geiger B, Spatz J P and Bershadsky A D 2009 Environmental sensing through focal adhesions Nat. Rev. Mol. Cell Biol. 10 21 [5] Boettiger D and Wehrle-Haller B 2010 Integrin and glycocalyx mediated contributions to cell adhesion identified by single cell force spectroscopy J. Phys.: Condens. Matter 22 194101 [6] Chirasatitsin S and Engler A J 2010 Detecting cell-adhesive sites in extracellular matrix using force spectroscopy mapping J. Phys.: Condens. Matter 22 194102 [7] Scrimgeour J, Kodali V K, Kovari D T and Curtis J E 2010 Photobleaching-activated micropatterning on self-assembled monolayers J. Phys.: Condens. Matter 22 194103 [8] Stricker J, Sabass B, Schwarz U S and Gardel M L 2010 Optimization of traction force microscopy for micron-sized focal adhesions J. Phys.: Condens. Matter 22 194104 [9] Metzner C, Raupach C, Mierke C T and Fabry B 2010 Fluctuations of cytoskeleton-bound microbeads—the effect of bead-receptor binding dynamics J. Phys.: Condens. Matter 22 194105 [10] Ryzhkov P, Prass M, Gummich M, Kühn J-S, Oettmeier C and Döbereiner H-G 2010 Adhesion patterns in early cell spreading J. Phys.: Condens. Matter 22 194106 [11] Cretel E, Touchard D, Benoliel A M, Bongrand P and Pierres A 2010 Early contacts between T lymphocytes and activating surfaces J. Phys.: Condens. Matter 22 194107 [12] Heil P and Spatz J P 2010 Lateral shear forces applied to cells with single elastic micropillars to influence focal adhesion dynamics J. Phys.: Condens. Matter 22 194108 [13] Kirchenbüchler D, Born S, Kirchgeßner N, Houben S, Hoffmann B and Merkel R 2010 Substrate, focal adhesions, and actin filaments: a mechanical unit with a weak spot for mechanosensitive proteins J. Phys.: Condens. Matter 22 194109 [14] Zemel A, Rehfeldt F, Brown A E X, Discher D E and Safran S A 2010 Cell shape, spreading symmetry, and the polarization of stress-fibers in cells J. Phys.: Condens. Matter 22 194110 [15] Biton Y Y and Safran S A 2010 Theory of the mechanical response of focal adhesions to shear flow J. Phys.: Condens. Matter 22 194111 [16] Sabass B and Schwarz U S 2010 Modeling cytoskeletal flow over adhesion sites: competition between stochastic bond dynamics and intracellular relaxation J. Phys.: Condens. Matter 22 194112 [17] Li Y, Bhimalapuram P and Dinner A R 2010 Model for how retrograde actin flow regulates adhesion traction stresses J. Phys.: Condens. Matter 22 194113 [18] Moshayedi P, da F Costa L, Christ A, Lacour S P, Fawcett J, Guck J and Franze K 2010 Mechanosensitivity of astrocytes on optimized polyacrylamide gels analyzed by quantitative morphometry J. Phys.: Condens. Matter 22 194114 [19] Lee S, Zeiger A, Maloney J M, Kotecki M, Van Vliet K J and Herman I M 2010 Pericyte contraction at the cell-material interface can modulate the microvascular niche J. Phys.: Condens. Matter 22 194115 [20] Buxboim A, Rajagopal K, Brown A E X and Discher D E 2010 How deeply cells feel: methods for thin gels J. Phys.: Condens. Matter 22 194116 [21] Jannat R A, Robbins G P, Ricart B G, Dembo M and Hammer D A 2010 Neutrophil adhesion and chemotaxis depend on substrate mechanics J. Phys.: Condens. Matter 22 194117 [22] Mogilner A and Rubinstein B 2010 Actin disassembly 'clock' and membrane tension determine cell shape and turning: a mathematical method J. Phys.: Condens. Matter 22 194118 [23] Saez A, Anon E, Ghibaudo M, du Roure O, Di Meglio J-M, Hersen P, Silberzan P, Buguin A, Ladoux B 2010 Traction forces exerted by epithelial cell sheets J. Phys.: Condens. Matter 22 194119 [24] Levental I, Levental K R, Klein E A, Assoian R, Miller R T, Wells R G and Janmey P A 2010 A simple indentation device for measuring micrometer-scale tissue stiffness J. Phys.: Condens. Matter 22 194120 [25] Kotlarchyk M A, Botvinick E L and Putnam A J 2010 Characterization of hydrogel microstructure using laser tweezers particle tracking and confocal reflection imaging J. Phys.: Condens. Matter 22 194121 [26] Narayanan H, Verner S N, Mills K L, Kemkemer R and Garikipati K 2010 In silico estimates of the free energy rates in growing tumor spheroids J. Phys.: Condens. Matter 22 194122
Revisiting the relaxation dynamics of isolated pyrrole
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montero, Raúl; Ovejas, Virginia; Fernández-Fernández, Marta
Herein, the interpretation of the femtosecond-scale temporal evolution of the pyrrole ion signal, after excitation in the 267–217 nm interval, recently published by our group [R. Montero, A. Peralta Conde, V. Ovejas, M. Fernández-Fernández, F. Castaño, J. R. Vázquez de Aldana, and A. Longarte, J. Chem. Phys.137, 064317 (2012)] is re-visited. The observation of a shift in the pyrrole{sup +} transient respect to zero delay reference, initially attributed to ultrafast dynamics on the πσ{sup *} type state (3s a{sub 1} ← π 1a{sub 2}), is demonstrated to be caused by the existence of pump + probe populated states, along themore » ionization process. The influence of these resonances in pump-prone ionization experiments, when multi-photon probes are used, and the significance of a proper zero-time reference, is discussed. The possibility of preparing the πσ{sup *} state by direct excitation is investigated by collecting 1 + 1 photoelectron spectra, at excitation wavelengths ranging from 255 to 219 nm. No conclusive evidences of ionization through this state are found.« less
NASA Astrophysics Data System (ADS)
Kaurov, Vitaliy; Kuklov, Anatoly
2006-03-01
We show that atomic Josephson vortices [1] in a quasi-1D atomic junction can be controllably manipulated by imposing a tunneling bias current created by a difference of chemical potentials on the atomic BEC waveguides forming the junction. This effect, which has its origin in the Berry phase structure of a vortex, turns out to be very robust in the whole range of the parameters where such vortices can exist [2]. Acceleration of the vortex up to a certain threshold speed, determined by the strength of the Josephson coupling, results in the phase slip causing switching of the vorticity. This effect is directly related to the interconversion [1], when slow variation of the coupling can cause transformation of the vortex into the dark soliton and vice verse. We also propose that a Josephson vortex can be created by the phase imprinting technique and can be identified by a specific tangential feature in the interference picture produced by expanding clouds released from the waveguides [2]. [1] V. M. Kaurov , A. B. Kuklov, Phys. Rev. A 71, 11601(R) (2005). [2] V. M. Kaurov , A. B. Kuklov cond-mat/0508342
Is scale-invariance in gauge-Yukawa systems compatible with the graviton?
NASA Astrophysics Data System (ADS)
Christiansen, Nicolai; Eichhorn, Astrid; Held, Aaron
2017-10-01
We explore whether perturbative interacting fixed points in matter systems can persist under the impact of quantum gravity. We first focus on semisimple gauge theories and show that the leading order gravity contribution evaluated within the functional Renormalization Group framework preserves the perturbative fixed-point structure in these models discovered in [J. K. Esbensen, T. A. Ryttov, and F. Sannino, Phys. Rev. D 93, 045009 (2016)., 10.1103/PhysRevD.93.045009]. We highlight that the quantum-gravity contribution alters the scaling dimension of the gauge coupling, such that the system exhibits an effective dimensional reduction. We secondly explore the effect of metric fluctuations on asymptotically safe gauge-Yukawa systems which feature an asymptotically safe fixed point [D. F. Litim and F. Sannino, J. High Energy Phys. 12 (2014) 178., 10.1007/JHEP12(2014)178]. The same effective dimensional reduction that takes effect in pure gauge theories also impacts gauge-Yukawa systems. There, it appears to lead to a split of the degenerate free fixed point into an interacting infrared attractive fixed point and a partially ultraviolet attractive free fixed point. The quantum-gravity induced infrared fixed point moves towards the asymptotically safe fixed point of the matter system, and annihilates it at a critical value of the gravity coupling. Even after that fixed-point annihilation, graviton effects leave behind new partially interacting fixed points for the matter sector.
1977-01-01
topography of the state of knowledge on the thermal expansion of nonmetallic solids. We believe there is also much food for reflec- West Lafayette...34 Lithium Silicates ......... 713 209 Magnesium Metasilicate MgSiO. .. ......... 715 210 Magnesium Orthosilicate Mg2 SiO . . . . . . . . . . . . 718 211...Antiferromagnetism of Praseodymium," Phys. Rev. Letters, 12(20), 553-5, 1964. 66. Goode, J.M., "Phase Transition Temperature of Polonium ,"J. Chem. Phys., 26(5), 1269
Equation of State of Structured Matter at Finite Temperature
NASA Astrophysics Data System (ADS)
Maruyama, T.; Yasutake, N.; Tatsumi, T.
We investigate the properties of nuclear matter at the first-order phase transitions such as liquid-gas phase transition and hadron-quark phase transition. As a general feature of the first-order phase transitions of matter consisting of many species of charged particles, there appears a mixed phases with geometrical structures called ``pasta'' due to the balance of the Coulomb repulsion and the surface tension between two phases [G.~D.~Ravenhall, C.~J.~Pethick and J.~R.~Wilson, Phys. Rev. Lett. 50 (1983), 2066. M.~Hashimoto, H.~Seki and M.~Yamada, Prog. Theor. Phys. 71 (1984), 320.] The equation of state (EOS) of mixed phase is different from the one obtained by a bulk application of the Gibbs conditions or by the Maxwell construction due to the effects of the non-uniform structure. We show that the charge screening and strong surface tension make the EOS close to that of the Maxwell construction. The thermal effects are elucidated as well as the above finite-size effects.
Less Decoherence and More Coherence in Quantum Gravity, Inflationary Cosmology and Elsewhere
NASA Astrophysics Data System (ADS)
Okon, Elias; Sudarsky, Daniel
2016-07-01
In Crull (Found Phys 45:1019-1045, 2015) it is argued that, in order to confront outstanding problems in cosmology and quantum gravity, interpretational aspects of quantum theory can by bypassed because decoherence is able to resolve them. As a result, Crull (Found Phys 45:1019-1045, 2015) concludes that our focus on conceptual and interpretational issues, while dealing with such matters in Okon and Sudarsky (Found Phys 44:114-143, 2014), is avoidable and even pernicious. Here we will defend our position by showing in detail why decoherence does not help in the resolution of foundational questions in quantum mechanics, such as the measurement problem or the emergence of classicality.
Estimation of shear viscosity based on transverse momentum correlations
NASA Astrophysics Data System (ADS)
STAR Collaboration; Sharma, Monika; STAR Collaboration
2009-11-01
Event anisotropy measurements at RHIC suggest the strongly interacting matter created in heavy ion collisions flows with very little shear viscosity. Precise determination of “shear viscosity-to-entropy” ratio is currently a subject of extensive study [S. Gavin and M. Abdel-Aziz, Phys. Rev. Lett. 97 (2006) 162302]. We present preliminary results of measurements of the evolution of transverse momentum correlation function with collision centrality of Au+Au interactions at s=200 GeV. We compare two differential correlation functions, namely inclusive [J. Adams et al. (STAR Collaboration), Phys. Rev. C 72 (2005) 044902] and a differential version of the correlation measure C˜ introduced by Gavin et al. [S. Gavin and M. Abdel-Aziz, Phys. Rev. Lett. 97 (2006) 162302; M. Sharma and C. A. Pruneau, Phys. Rev. C 79 (2009) 024905.]. These observables can be used for the experimental study of the shear viscosity per unit entropy.
NASA Astrophysics Data System (ADS)
Gerbier, Fabrice; Goldman, Nathan; Lewenstein, Maciej; Sengstock, Klaus
2013-07-01
Building a universal quantum computer is a central goal of emerging quantum technologies, which has the potential to revolutionize science and technology. Unfortunately, this future does not seem to be very close at hand. However, quantum computers built for a special purpose, i.e. quantum simulators , are currently developed in many leading laboratories. Many schemes for quantum simulation have been proposed and realized using, e.g., ultracold atoms in optical lattices, ultracold trapped ions, atoms in arrays of cavities, atoms/ions in arrays of traps, quantum dots, photonic networks, or superconducting circuits. The progress in experimental implementations is more than spectacular. Particularly interesting are those systems that simulate quantum matter evolving in the presence of gauge fields. In the quantum simulation framework, the generated (synthetic) gauge fields may be Abelian, in which case they are the direct analogues of the vector potentials commonly associated with magnetic fields. In condensed matter physics, strong magnetic fields lead to a plethora of fascinating phenomena, among which the most paradigmatic is perhaps the quantum Hall effect. The standard Hall effect consists in the appearance of a transverse current, when a longitudinal voltage difference is applied to a conducting sample. For quasi-two-dimensional semiconductors at low temperatures placed in very strong magnetic fields, the transverse conductivity, the ratio between the transverse current and the applied voltage, exhibits perfect and robust quantization, independent for instance of the material or of its geometry. Such an integer quantum Hall effect, is now understood as a deep consequence of underlying topological order. Although such a system is an insulator in the bulk, it supports topologically robust edge excitations which carry the Hall current. The robustness of these chiral excitations against backscattering explains the universality of the quantum Hall effect. Another interesting and related effect, which arises from the interplay between strong magnetic field and lattice potentials, is the famous Hofstadter butterfly: the energy spectrum of a single particle moving on a lattice and subjected to a strong magnetic field displays a beautiful fractal structure as a function of the magnetic flux penetrating each elementary plaquette of the lattice. When the effects of interparticle interactions become dominant, two-dimensional gases of electrons exhibit even more exotic behaviour leading to the fractional quantum Hall effect. In certain conditions such a strongly interacting electron gas may form a highly correlated state of matter, the prototypical example being the celebrated Laughlin quantum liquid. Even more fascinating is the behaviour of bulk excitations (quasi-hole and quasi-particles): they are neither fermionic nor bosonic, but rather behave as anyons with fractional statistics intermediate between the two. Moreover, for some specific filling factors (ratio between the electronic density and the flux density), these anyons are proven to have an internal structure (several components) and non-Abelian braiding properties. Many of the above statements concern theoretical predictions—they have never been observed in condensed matter systems. For instance, the fractional values of the Hall conductance is seen as a direct consequence of the fractional statistics, but to date direct observation of anyons has not been possible in two-dimensional semiconductors. Realizing these predictions in experiments with atoms, ions, photons etc, which potentially allow the experimentalist to perform measurements complementary to those made in condensed matter systems, is thus highly desirable! Non-Abelian gauge fields couple the motional states of the particles to their internal degrees of freedom (such as hyperfine states for atoms or ions, electronic spins for electrons, etc). In this sense external non-Abelian fields extend the concept of spin-orbit coupling (Rashba and Dresselhaus couplings), familiar from AMO and condensed matter physics. They lead to yet another variety of fascinating phenomena such as the quantum spin Hall effect, three-dimensional topological insulators, topological superconductors and superfluids of various kinds. One also expects here the appearance of excitations in a form of topological edge states that can support robust transport, or entangled Majorana fermions in the case of topological superconductors or superfluids. Again, while many kinds of topological insulators have been realized in condensed matter systems, a controlled way of creating them in AMO systems and studying quantum phase transitions between various kinds of them is obviously very appealing and challenging. The various systems listed so far correspond to static gauge fields, which are externally imposed by the experimentalists. Even more fascinating is the possibility of generating synthetically dynamical gauge fields, i.e. gauge fields that evolve in time according to an interacting gauge theory, e.g., a full lattice gauge theory (LGT). These dynamical gauge fields can also couple to matter fields, allowing the quantum simulation of such complex systems (notoriously hard to simulate using 'traditional' computers), which are particularly relevant for modern high-energy physics. So far, most of the theoretical proposals concern the simulation of Abelian gauge theories, however, several groups have recently proposed extensions to the non-Abelian scenarios. The scope of the present focused issue of Journal of Physics B is to cover all of these developments, with particular emphasis on the non-Abelian gauge fields. The 14 papers in this issue include contributions from the leading theory groups working in this field; we believe that this collection will provide the reference set for quantum simulations of gauge fields. Although the special issue contains exclusively theoretical proposals and studies, it should be stressed that the progress in experimental studies of artificial Abelian and non-Abelian gauge fields in recent years has been simply spectacular. Multiple leading groups are working on this subject and have already obtained a lot of seminal results. The papers in the special issue are ordered according to the date of acceptance. The issue opens with a review article by Zhou et al [1] on unconventional states of bosons with synthetic spin-orbit coupling. Next, the paper by Maldonado-Mundo et al [2] studies ultracold Fermi gases with artificial Rashba spin-orbit coupling in a 2D gas. Anderson and Charles [3], in contrast, discuss a three-dimensional spin-orbit coupling in a trap. Orth et al [4] investigate correlated topological phases and exotic magnetism with ultracold fermions, again in the presence of artificial gauge fields. The paper of Nascimbène [5] does not address the synthetic gauge fields directly, but describes an experimental proposal for realizing one-dimensional topological superfluids with ultracold atomic gases; obviously, this problem is well situated in the general and growing field of topological superfluids, in particular those realized in the presence of non-Abelian gauge fields/spin-orbit coupling. Graß et al [6] consider in their paper fractional quantum Hall states of a Bose gas with spin-orbit coupling induced by a laser. Particular attention is drawn here to the possibility of realizing states with non-Abelian anyonic excitations. Zheng et al [7] study properties of Bose gases with Raman-induced spin-orbit coupling. Kiffner et al [8] in their paper touch on another kind of system, namely ultracold Rydberg atoms. In particular they study the generation of Abelian and non-Abelian gauge fields in dipole-dipole interacting Rydberg atoms. The behaviour of fermions in synthetic non-Abelian gauge potentials is discussed by Shenoy and Vyasanakere [9]. The paper starts with the study of Rashbon condensates (i.e. Bose condensates in the presence of Rashba coupling) and also introduces novel kinds of exotic Hamiltonians. Goldman et al [10] propose a concrete setup for realizing arbitrary non-Abelian gauge potentials in optical square lattices; they discuss how such synthetic gauge fields can be exploited to generate Chern insulators. Zygelman [11], similarly as Kiffner et al [8], discusses in his paper non-Abelian gauge fields in Rydberg systems. Marchukov et al [12] return to the subject of spin-orbit coupling, and investigate spectral gaps of spin-orbit coupled particles in the realistic situations of deformed traps. The last two papers, in contrast, are devoted to different subjects. Edmonds et al [13] consider a 'dynamical' density-dependent gauge potential, and study the Josephson effect in a Bose-Einstein condensate subject to such a potential. Last, but not least, Mazzucchi et al [14] study the properties of semimetal-superfluid quantum phase transitions in 3D lattices with Dirac points. References [1] Zhou X, Li Y, Cai Z and Wu C 2013 J. Phys. B: At. Mol. Opt. Phys. 46 134001 [2] Maldonado-Mundo D, Öhberg P and Valiente M 2013 J. Phys. B: At. Mol. Opt. Phys. 46 134002 [3] Anderson B M and Clark C W 2013 J. Phys. B: At. Mol. Opt. Phys. 46 134003 [4] Orth P P, Cocks D, Rachel S, Buchhold M, Le Hur K and Hofstetter W 2013 J. Phys. B: At. Mol. Opt. Phys. 46 134004 [5] Nascimbène S 2013 J. Phys. B: At. Mol. Opt. Phys. 46 134005 [6] Graß T, Juliá-Díaz B, Burrello M and Lewenstein M 2013 J. Phys. B: At. Mol. Opt. Phys. 46 134006 [7] Zheng W, Yu Z-Q, Cui X and Zhai H 2013 J. Phys. B: At. Mol. Opt. Phys. 46 134007 [8] Kiffner M, Li W and Jaksch D 2013 J. Phys. B: At. Mol. Opt. Phys. 46 134008 [9] Shenoy V B and Vyasanakere J P 2013 J. Phys. B: At. Mol. Opt. Phys. 46 134009 [10] Goldman N, Gerbier F and Lewenstein M 2013 J. Phys. B: At. Mol. Opt. Phys. 46 134010 [11] Zygelman B 2013 J. Phys. B: At. Mol. Opt. Phys. 46 134011 [12] Marchukov O V, Volosniev A G, Fedorov D V, Jensen A S and Zinner N T 2013 J. Phys. B: At. Mol. Opt. Phys. 46 134012 [13] Edmonds M J, Valiente M and Öhberg P 2013 J. Phys. B: At. Mol. Opt. Phys. 46 134013 [14] Mazzucchi G, Lepori L and Trombettoni A 2013 J. Phys. B: At. Mol. Opt. Phys. 46 134014
Controlling Quantum-dot Light Absorption and Emission by a Surface-plasmon Field
2014-11-03
as well as photon conversion by a surface-plasmon- polariton near field is explored for a quantum dot located above a metal surface. In contrast to the...2009). 7. D. Dini, R. Köhler, A. Tredicucci, G. Biasiol, and L. Sorba, “Microcavity polariton splitting of intersubband transitions,” Phys. Rev. Lett...S. De Liberato, C. Ciuti, P. Klang, G. Strasser, and C. Sirtori, “Ultrastrong light-matter coupling regime with polariton dots,” Phys. Rev. Lett. 105
Teaching Authorial Style and Literary Technique: "Exemplo XI" of "El Conde Lucanor"
ERIC Educational Resources Information Center
Bryant, Stacy
2016-01-01
This current study proposes a comparative method of teaching authorial style, using four versions of "Exemplo XI," an often-anthologized tale about the "mago" of Toledo, Don Illán, from the "Conde Lucanor," a series of interlinked tales by the early fourteenth-century author Don Juan Manuel. Teaching a medieval text…
Cosmological evolution of a complex scalar field with repulsive or attractive self-interaction
NASA Astrophysics Data System (ADS)
Suárez, Abril; Chavanis, Pierre-Henri
2017-03-01
We study the cosmological evolution of a complex scalar field with a self-interaction potential V (|φ |2) , possibly describing self-gravitating Bose-Einstein condensates, using a fully general relativistic treatment. We generalize the hydrodynamic representation of the Klein-Gordon-Einstein equations in the weak field approximation developed in our previous paper [A. Suárez and P.-H. Chavanis, Phys. Rev. D 92, 023510 (2015), 10.1103/PhysRevD.92.023510]. We establish the general equations governing the evolution of a spatially homogeneous complex scalar field in an expanding background. We show how they can be simplified in the fast oscillation regime (equivalent to the Thomas-Fermi, or semiclassical, approximation) and derive the equation of state of the scalar field in parametric form for an arbitrary potential V (|φ |2) . We explicitly consider the case of a quartic potential with repulsive or attractive self-interaction. For repulsive self-interaction, the scalar field undergoes a stiff matter era followed by a pressureless dark matter era in the weakly self-interacting regime and a stiff matter era followed by a radiationlike era and a pressureless dark matter era in the strongly self-interacting regime. For attractive self-interaction, the scalar field undergoes an inflation era followed by a stiff matter era and a pressureless dark matter era in the weakly self-interacting regime and an inflation era followed by a cosmic stringlike era and a pressureless dark matter era in the strongly self-interacting regime (the inflation era is suggested, not demonstrated). We also find a peculiar branch on which the scalar field emerges suddenly at a nonzero scale factor with a finite energy density. At early times, it behaves as a gas of cosmic strings. At later times, it behaves as dark energy with an almost constant energy density giving rise to a de Sitter evolution. This is due to spintessence. We derive the effective cosmological constant produced by the scalar field. Throughout the paper, we analytically characterize the transition scales of the scalar field and establish the domain of validity of the fast oscillation regime. We analytically confirm and complement the important results of Li, Rindler-Daller, and Shapiro [Phys. Rev. D 89, 083536 (2014), 10.1103/PhysRevD.89.083536]. We determine the phase diagram of a scalar field with repulsive or attractive self-interaction. We show that the transition between the weakly self-interacting regime and the strongly self-interacting regime depends on how the scattering length of the bosons compares with their effective Schwarzschild radius. We also constrain the parameters of the scalar field from astrophysical and cosmological observations. Numerical applications are made for ultralight bosons without self-interaction (fuzzy dark matter), for bosons with repulsive self-interaction, and for bosons with attractive self-interaction (QCD axions and ultralight axions).
Würger, Alois
2016-01-14
In a recent paper, Sharifi-Mood et al. studied colloidal particles trapped at a liquid interface with opposite principal curvatures c1 = -c2. In the theory part, they claim that the trapping energy vanishes at second order in Δc = c1 - c2, which would invalidate our previous result [Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2006, 74, 041402]. Here we show that this claim arises from an improper treatment of the outer boundary condition on the deformation field. For both pinned and moving contact lines, we find that the outer boundary is irrelevant, which confirms our previous work. More generally, we show that the trapping energy is determined by the deformation close to the particle and does not depend on the far-field.
Quarter-flux Hofstadter lattice in a qubit-compatible microwave cavity array
NASA Astrophysics Data System (ADS)
Owens, Clai; LaChapelle, Aman; Saxberg, Brendan; Anderson, Brandon M.; Ma, Ruichao; Simon, Jonathan; Schuster, David I.
2018-01-01
Topological and strongly correlated materials are exciting frontiers in condensed-matter physics, married prominently in studies of the fractional quantum Hall effect [H. L. Stormer et al., Rev. Mod. Phys. 71, S298 (1999), 10.1103/RevModPhys.71.S298], There is an active effort to develop synthetic materials where the microscopic dynamics and ordering arising from the interplay of topology and interaction may be directly explored. In this work, we demonstrate an architecture for exploration of topological matter constructed from tunnel-coupled, time-reversal-broken microwave cavities that are both low loss and compatible with Josephson-junction-mediated interactions [A. Wallraff et al., Nature (London) 431, 162 (2004), 10.1038/nature02851]. Following our proposed protocol [B. M. Anderson et al., Phys. Rev. X 6, 041043 (2016), 10.1103/PhysRevX.6.041043], we implement a square lattice Hofstadter model at a quarter flux per plaquette (α =1 /4 ), with time-reversal symmetry broken through the chiral Wannier orbital of resonators coupled to yttrium-iron-garnet spheres. We demonstrate site-resolved spectroscopy of the lattice, time-resolved dynamics of its edge channels, and a direct measurement of the dispersion of the edge channels. Finally, we demonstrate the flexibility of the approach by erecting a tunnel barrier and investigating dynamics across it. With the introduction of Josephson junctions to mediate interactions between photons, this platform is poised to explore strongly correlated topological quantum science in a synthetic system.
Gravity-driven dense granular flows
NASA Astrophysics Data System (ADS)
Ertas, Deniz
2002-03-01
Despite their importance in many areas of science and technology, the emergent physics of hard granular systems remain largely obscure, especially when the packing density approaches that of a jammed system. In particular, I will focus on the rheology of gravity-driven dense granular flows on an incline with a ``rough" bottom in two and three dimensions. We have conducted large-scale molecular dynamics simulations of spheres that interact through linear damped spring or Hertzian force laws with a Coulomb failure criterion(D. Ertaş) et al., Europhys. Lett. 56, 214 (2001); L.E. Silbert et al., Phys. Rev. E 64, 051302 (2001).. This flow geometry produces a constant density profile, and reproduces key features of such flows that have been observed experimentally(O. Pouliquen, Phys. Fluids 11), 542 (1999), such as an angle of repose that depends on flow thickness, steady-state solutions at varying heights for a given inclination angle, and the scaling of the mean particle velocity with pile height (< v > ∝ H^3/2). These successes prompted us to carefully examine the rheology in the interior of the pile by measuring the full stress and strain tensors, which are generally unavailable through experiments. The type of force law has little impact on the behavior of the system. The bulk rheology can be approximately described in terms of extensions of Chapman-Enskog theory to dense packings(L. Bocquet et al.), cond-mat/0112072. However, close to the angle of repose, this description fails near the free surface, which exhibits a rheology dominated by normal stress differences that are small in the bulk. This change in rheology can be qualitatively understood in terms of stress-bearing force networks that are continuously formed by ``gravitational inelastic collapse" and destroyed by the imposed strain.
Role of motive forces for the spin torque transfer for nano-structures
NASA Astrophysics Data System (ADS)
Barnes, Stewart
2009-03-01
Despite an announced imminent commercial realization of spin transfer random access memory (SPRAM) the current theory evolved from that of Slonczewski [1,2] does not conserve energy. Barnes and Maekawa [3] have shown, in order correct this defect, forces which originate from the spin rather than the charge of an electron must be accounted for, this leading to the concept of spin-motive-forces (smf) which must appear in Faraday's law and which significantly modifies the theory for spin-valves and domain wall devices [4]. A multi-channel theory in which these smf's redirect the spin currents will be described. In nano-structures it is now well known that the Kondo effect is reflected by conductance peaks. In essence, the spin degrees of freedom are used to enhance conduction. In a system with nano-magnets and a Coulomb blockade [5] the similar spin channels can be the only means of effective conduction. This results in a smf which lasts for minutes and an enormous magneto-resistance [5]. This implies the possibility of ``single electron memory'' in which the magnetic state is switched by a single electron. [4pt] [1] J. C. Slonczewski, Current-Driven Excitation of Magnetic Multilayers J. Magn. Magn. Mater. 159, L1 (1996). [0pt] [2] Y. Tserkovnyak, A. Brataas, G. E. W. Bauer, and B. I. Halperin, Nonlocal magnetization dynamics in ferromagnetic heterostructures, Rev. Mod. Phys. 77, 1375 (2005). [0pt] [3] S. E. Barnes and S. Maekawa, Generalization of Faraday's Law to Include Nonconservative Spin Forces Phys. Rev. Lett. 98, 246601 (2007); S. E. Barnes and S. Maekawa, Currents induced by domain wall motion in thin ferromagnetic wires. arXiv:cond-mat/ 0410021v1 (2004). [0pt] [4] S. E., Barnes, Spin motive forces, measurement, and spin-valves. J. Magn. Magn. Mat. 310, 2035-2037 (2007); S. E. Barnes, J. Ieda. J and S. Maekawa, Magnetic memory and current amplification devices using moving domain walls. Appl. Phys. Lett. 89, 122507 (2006). [0pt] [5] Pham-Nam Hai, Byung-Ho Yu, Shinobu Ohya, Masaaki Tanaka, Stewart E. Barnes and Sadamichi Maekawa, Electromotive force and huge magnetoresistance in magnetic tunnel junctions. Submitted Nature, August, (2008).
Dynamics of interacting quintessence models: Observational constraints
NASA Astrophysics Data System (ADS)
Olivares, Germán; Atrio-Barandela, Fernando; Pavón, Diego
2008-03-01
Interacting quintessence models have been proposed to explain or, at least, alleviate the coincidence problem of late cosmic acceleration. In this paper we are concerned with two aspects of these kind of models: (i) the dynamical evolution of the model of Chimento et al. [L. P. Chimento, A. S. Jakubi, D. Pavón, and W. Zimdahl, Phys. Rev. D 67, 083513 (2003).PRVDAQ0556-282110.1103/PhysRevD.67.083513], i.e., whether its cosmological evolution gives rise to a right sequence of radiation, dark matter, and dark energy dominated eras, and (ii) whether the dark matter dark energy ratio asymptotically evolves towards a nonzero constant. After showing that the model correctly reproduces these eras, we correlate three data sets that constrain the interaction at three redshift epochs: z≤104, z=103, and z=1. We discuss the model selection and argue that even if the model under consideration fulfills both requirements, it is heavily constrained by observation. The prospects that the coincidence problem can be explained by the coupling of dark matter to dark energy are not clearly favored by the data.
Dissipative dark matter halos: The steady state solution. II.
NASA Astrophysics Data System (ADS)
Foot, R.
2018-05-01
Within the mirror dark matter model and dissipative dark matter models in general, halos around galaxies with active star formation (including spirals and gas-rich dwarfs) are dynamical: they expand and contract in response to heating and cooling processes. Ordinary type II supernovae (SNe) can provide the dominant heat source, which is possible if kinetic mixing interaction exists with strength ɛ ˜10-9- 10-10 . Dissipative dark matter halos can be modeled as a fluid governed by Euler's equations. Around sufficiently isolated and unperturbed galaxies the halo can relax to a steady state configuration, where heating and cooling rates locally balance and hydrostatic equilibrium prevails. These steady state conditions can be solved to derive the physical properties, including the halo density and temperature profiles, for model galaxies. Here, we consider idealized spherically symmetric galaxies within the mirror dark particle model, as in our earlier paper [Phys. Rev. D 97, 043012 (2018), 10.1103/PhysRevD.97.043012], but we assume that the local halo heating in the SN vicinity dominates over radiative sources. With this assumption, physically interesting steady state solutions arise which we compute for a representative range of model galaxies. The end result is a rather simple description of the dark matter halo around idealized spherically symmetric systems, characterized in principle by only one parameter, with physical properties that closely resemble the empirical properties of disk galaxies.
1972-01-01
Nauk SSSR, Neorg. Mater.. 3(11). 2098-2100, 1967). Tomiki. T.. "Optical Constants and Exciton States in KC1 Single Crystals . I. The Low Temperature...Properties," J. Phys. Soc. Japan. 22(2). 463-87. 1967. Tomiki, T.. "Optical Constants and Exciton States in KC1 Single Crystals . II. The Spectra of...158 50974 Miyata, T. and Tomiki, T., "The Urbach Tails and Reflection Spectra of NaCl Single Crystals ," J. Phys. Soc. Japan, 22(1), 209-18, 1967
Structure and Dynamics of Cu3Au(001) Studied by Elastic and Inelastic Helium Atom Scattering
1990-01-01
longitudinal] decouple from the shear horizontal (SH) modes. Selection rules dictate that our experiment was sensitive only to sagittal modes...Hoffmann, E. Preu3, R. Franchy , H. lbach, Y. Chen, M. L. Xu, and S Y. Tong, preprint. 4. A. i. Taub, and R. L. Fleisher, Science 243, 616 (1989).: B. H. Kear... Franchy , and H. Ibach, Z. Phys. B-Condensed Matter 65, 71 (1986). 19. E. D. Hallman, Can. J. Phys. 52, 2235 (1974). 20. E. C. Svensson, E. D. Hallman
A Neutron and X-ray Diffraction Study of Ca-Mg-Cu Metallic Glasses (Preprint)
2011-07-01
A.L. Patterson, Z Kristallogr 90(1935)517. 29. A.K. Soper , J. Phys.: Condens. Matter 19(2007)335206. 30. P.G. Mikolaj and C.J. Pings, Phys. Chem...Liq. 1(1968)93. 31. P.J. Black and J.A. Cundall, Acta Cryst. 19(1965)807. 32. A.C. Hannon, Nucl. Instrum. Meth. A 551(2005)88. 33. A.K. Soper ...Gudrun software: http://www.isis.stfc.ac.uk/instruments/sandals/data- analysis/gudrun8864.html. 34. A.C. Hannon, W.S. Howells and A.K. Soper , IOP Conf
Normal Modes of Magnetized Finite Two-Dimensional Yukawa Crystals
NASA Astrophysics Data System (ADS)
Marleau, Gabriel-Dominique; Kaehlert, Hanno; Bonitz, Michael
2009-11-01
The normal modes of a finite two-dimensional dusty plasma in an isotropic parabolic confinement, including the simultaneous effects of friction and an external magnetic field, are studied. The ground states are found from molecular dynamics simulations with simulated annealing, and the influence of screening, friction, and magnetic field on the mode frequencies is investigated in detail. The two-particle problem is solved analytically and the limiting cases of weak and strong magnetic fields are discussed.[4pt] [1] C. Henning, H. K"ahlert, P. Ludwig, A. Melzer, and M.Bonitz. J. Phys. A 42, 214023 (2009)[2] B. Farokhi, M. Shahmansouri, and P. K. Shukla. Phys.Plasmas 16, 063703 (2009)[3] L. Cândido, J.-P. Rino, N. Studart, and F. M. Peeters. J. Phys.: Condens. Matter 10, 11627--11644 (1998)
Origins and demonstrations of electrons with orbital angular momentum
Agrawal, Amit; Ercius, Peter A.; Grillo, Vincenzo; Herzing, Andrew A.; Harvey, Tyler R.; Linck, Martin; Pierce, Jordan S.
2017-01-01
The surprising message of Allen et al. (Allen et al. 1992 Phys. Rev. A 45, 8185 (doi:10.1103/PhysRevA.45.8185)) was that photons could possess orbital angular momentum in free space, which subsequently launched advancements in optical manipulation, microscopy, quantum optics, communications, many more fields. It has recently been shown that this result also applies to quantum mechanical wave functions describing massive particles (matter waves). This article discusses how electron wave functions can be imprinted with quantized phase vortices in analogous ways to twisted light, demonstrating that charged particles with non-zero rest mass can possess orbital angular momentum in free space. With Allen et al. as a bridge, connections are made between this recent work in electron vortex wave functions and much earlier works, extending a 175 year old tradition in matter wave vortices. This article is part of the themed issue ‘Optical orbital angular momentum’. PMID:28069765
NASA Astrophysics Data System (ADS)
Mo, Chongjie; Fu, Zhenguo; Kang, Wei; Zhang, Ping; He, X. T.
2018-05-01
Through the perturbation formula of time-dependent density functional theory broadly employed in the calculation of solids, we provide a first-principles calculation of x-ray Thomson scattering spectrum of isochorically heated aluminum foil, as considered in the experiments of Sperling et al. [Phys. Rev. Lett. 115, 115001 (2015), 10.1103/PhysRevLett.115.115001], where ions were constrained near their lattice positions. From the calculated spectra, we find that the electronic temperature cannot exceed 2 eV, much smaller than the previous estimation of 6 eV via the detailed balance relation. Our results may well be an indication of unique electronic properties of warm dense matter, which can be further illustrated by future experiments. The lower electronic temperature predicted partially relieves the concern on the heating of x-ray free electron laser to the sample when used in structure measurement.
Dark matter in the local group of galaxies
NASA Astrophysics Data System (ADS)
Morley, P. D.; Buettner, D. J.
We describe the neutrino flavor (e = electron, μ = muon, τ = tau) masses as mi=e,μ,τ = m + Δmi with |Δmi| m < 1 and probably |Δmi| m ≪ 1. The quantity m is the degenerate neutrino mass. Because neutrino flavor is not a quantum number, this degenerate mass appears in the neutrino equation-of-state [P. D. Morley and D. J. Buettner, Int. J. Mod. Phys. D (2014), doi:10.1142/s0218271815500042.]. We apply a Monte Carlo computational physics technique to the Local Group (LG) of galaxies to determine an approximate location for a Dark Matter embedding Condensed Neutrino Object (CNO) [P. D. Morley and D. J. Buettner, Int. J. Mod. Phys. D (2016), doi:10.1142/s0218271816500899.]. The calculation is based on the rotational properties of the only spiral galaxies within the LG: M31, M33 and the Milky Way. CNOs could be the Dark Matter everyone is looking for and we estimate the CNO embedding the LG to have a mass 5.17 × 1015 M⊙ and a radius 1.316 Mpc, with the estimated value of m ≃ 0.8 eV/c2. The up-coming KATRIN experiment [https://www.katrin.kit.edu.] will either be the definitive result or eliminate condensed neutrinos as a Dark Matter candidate.
NASA Astrophysics Data System (ADS)
Varma, Ram K.; Punithavelu, A. M.; Banerjee, S. B.
2002-02-01
We report here the observations that exhibit the existence of matter wave phenomena with wavelength in the macrodomain of a few centimeters, for electrons moving along a magnetic field from an electron gun to a collector plate situated behind a grounded grid. These are in accordance with the predictions of a quantumlike theory for charged particles in the classical macrodomain, given by one of the authors [R. K. Varma, Phys. Rev. A 31, 3951 (1985)] with a recent generalization [R. K. Varma, Phys. Rev. E 64, 036608 (2001)]. The beats correspond to two closely spaced ``frequencies'' in the system, with the beat frequency given, in accordance with the characteristics of a wave phenomena, by the difference between the two frequencies. The beats ride as a modulation over a discrete energy band structure obtained with only one frequency present. The frequency here corresponds to the distance between the electron gun and the detector plate as it characterizes the variation in the energy band structure as the electron energy is swept. The second ``frequency'' corresponds to the gun-grid distance. These observations of the beats of matter waves in this experiment, with characteristics in accordance with the wave algorithm, then establish unambiguously the existence of macroscopic matter waves for electrons propagating along a magnetic field.
Bounds on quantum collapse models from matter-wave interferometry: calculational details
NASA Astrophysics Data System (ADS)
Toroš, Marko; Bassi, Angelo
2018-03-01
We present a simple derivation of the interference pattern in matter-wave interferometry predicted by a class of quantum master equations. We apply the obtained formulae to the following collapse models: the Ghirardi-Rimini-Weber (GRW) model, the continuous spontaneous localization (CSL) model together with its dissipative (dCSL) and non-Markovian generalizations (cCSL), the quantum mechanics with universal position localization (QMUPL), and the Diósi-Penrose (DP) model. We discuss the separability of the dynamics of the collapse models along the three spatial directions, the validity of the paraxial approximation, and the amplification mechanism. We obtain analytical expressions both in the far field and near field limits. These results agree with those already derived in the Wigner function formalism. We compare the theoretical predictions with the experimental data from two recent matter-wave experiments: the 2012 far-field experiment of Juffmann T et al (2012 Nat. Nanotechnol. 7 297-300) and the 2013 Kapitza-Dirac-Talbot-Lau (KDTL) near-field experiment of Eibenberger et al (2013 Phys. Chem. Chem. Phys. 15 14696-700). We show the region of the parameter space for each collapse model that is excluded by these experiments. We show that matter-wave experiments provide model-insensitive bounds that are valid for a wide family of dissipative and non-Markovian generalizations.
Onsager's variational principle in soft matter.
Doi, Masao
2011-07-20
In the celebrated paper on the reciprocal relation for the kinetic coefficients in irreversible processes, Onsager (1931 Phys. Rev. 37 405) extended Rayleigh's principle of the least energy dissipation to general irreversible processes. In this paper, I shall show that this variational principle gives us a very convenient framework for deriving many established equations which describe the nonlinear and non-equilibrium phenomena in soft matter, such as phase separation kinetics in solutions, gel dynamics, molecular modeling for viscoelasticity nemato-hydrodynamics, etc. Onsager's variational principle can therefore be regarded as a solid general basis for soft matter physics.
Brady, Jacob P.; Farber, Patrick J.; Sekhar, Ashok; Lin, Yi-Hsuan; Huang, Rui; Bah, Alaji; Chan, Hue Sun; Forman-Kay, Julie D.; Kay, Lewis E.
2017-01-01
Membrane encapsulation is frequently used by the cell to sequester biomolecules and compartmentalize their function. Cells also concentrate molecules into phase-separated protein or protein/nucleic acid “membraneless organelles” that regulate a host of biochemical processes. Here, we use solution NMR spectroscopy to study phase-separated droplets formed from the intrinsically disordered N-terminal 236 residues of the germ-granule protein Ddx4. We show that the protein within the concentrated phase of phase-separated Ddx4, Ddx4cond, diffuses as a particle of 600-nm hydrodynamic radius dissolved in water. However, NMR spectra reveal sharp resonances with chemical shifts showing Ddx4cond to be intrinsically disordered. Spin relaxation measurements indicate that the backbone amides of Ddx4cond have significant mobility, explaining why high-resolution spectra are observed, but motion is reduced compared with an equivalently concentrated nonphase-separating control. Observation of a network of interchain interactions, as established by NOE spectroscopy, shows the importance of Phe and Arg interactions in driving the phase separation of Ddx4, while the salt dependence of both low- and high-concentration regions of phase diagrams establishes an important role for electrostatic interactions. The diffusion of a series of small probes and the compact but disordered 4E binding protein 2 (4E-BP2) protein in Ddx4cond are explained by an excluded volume effect, similar to that found for globular protein solvents. No changes in structural propensities of 4E-BP2 dissolved in Ddx4cond are observed, while changes to DNA and RNA molecules have been reported, highlighting the diverse roles that proteinaceous solvents play in dictating the properties of dissolved solutes. PMID:28894006
Heat stress redistributes blood flow in arteries of the brain during dynamic exercise.
Sato, Kohei; Oue, Anna; Yoneya, Marina; Sadamoto, Tomoko; Ogoh, Shigehiko
2016-04-01
We hypothesized that heat stress would decrease anterior and posterior cerebral blood flow (CBF) during exercise, and the reduction in anterior CBF would be partly associated with large increase in extracranial blood flow (BF). Nine subjects performed 40 min of semirecumbent cycling at 60% of the peak oxygen uptake in hot (35°C; Heat) and thermoneutral environments (25°C; Control). We evaluated BF and conductance (COND) in the external carotid artery (ECA), internal carotid artery (ICA), and vertebral artery (VA) using ultrasonography. During the Heat condition, ICA and VA BF were significantly increased 10 min after the start of exercise (P < 0.05) and thereafter gradually decreased. ICA COND was significantly decreased (P < 0.05), whereas VA COND remained unchanged throughout Heat. Compared with the Control, either BF or COND of ICA and VA at the end of Heat tended to be lower, but not significantly. In contrast, ECA BF and COND at the end of Heat were both higher than levels in the Control condition (P < 0.01). During Heat, a reduction in ICA BF appears to be associated with a decline in end-tidal CO2 tension (r = 0.84), whereas VA BF appears to be affected by a change in cardiac output (r = 0.87). In addition, a change in ECA BF during Heat was negatively correlated with a change in ICA BF (r = -0.75). Heat stress resulted in modification of the vascular response of head and brain arteries to exercise, which resulted in an alteration in the distribution of cardiac output. Moreover, a hyperthermia-induced increase in extracranial BF might compromise anterior CBF during exercise with heat stress. Copyright © 2016 the American Physiological Society.
Transport in 2D Systems in the So-Called Metallic Phase
NASA Astrophysics Data System (ADS)
Das Sarma, Sankar
2001-03-01
I will discuss electronic transport in 2D semiconductor systems at low temperatures and densities. In particular, I will consider effects of screening,electron-impurity and electron-phonon interactions, and an external parallel magnetic field on the 2D temperature and density dependent conductivity. I will show that a theory [1] recently developed by Euyheon Hwang and myself may qualitatively account for much of the observed temperature, density, and field dependence of the 2D "metallic" conductivity for electrons in Si MOSFETs and n-GaAs heterostructures, and for holes in Si-Ge heterostructures and p-GaAs systems. I will provide a critique, based on the available experimental data and exact numerical simulations [2] of the Anderson-Hubbard-Mott model, of whether the 2D M-I-T phenomenon is likely to be the high temperature behavior of a T=0 quantum phase transition or the low temperature manifestation of a high-temperature semiclassical transition. Work supported by the US-ONR and the US-ARO. [1] S.Das Sarma and E.H.Hwang,PRL83,164(1999);84,5596(2000); Phys. Rev. B61, R7838(2000). [2] R. Kotlyar and S. Das Sarma, cond-mat/0002304.
Narayanaswamy's 1971 aging theory and material time
NASA Astrophysics Data System (ADS)
Dyre, Jeppe C.
2015-09-01
The Bochkov-Kuzovlev nonlinear fluctuation-dissipation theorem is used to derive Narayanaswamy's phenomenological theory of physical aging, in which this highly nonlinear phenomenon is described by a linear material-time convolution integral. A characteristic property of the Narayanaswamy aging description is material-time translational invariance, which is here taken as the basic assumption of the derivation. It is shown that only one possible definition of the material time obeys this invariance, namely, the square of the distance travelled from a configuration of the system far back in time. The paper concludes with suggestions for computer simulations that test for consequences of material-time translational invariance. One of these is the "unique-triangles property" according to which any three points on the system's path form a triangle such that two side lengths determine the third; this is equivalent to the well-known triangular relation for time-autocorrelation functions of aging spin glasses [L. F. Cugliandolo and J. Kurchan, J. Phys. A: Math. Gen. 27, 5749 (1994)]. The unique-triangles property implies a simple geometric interpretation of out-of-equilibrium time-autocorrelation functions, which extends to aging a previously proposed framework for such functions in equilibrium [J. C. Dyre, e-print arXiv:cond-mat/9712222 (1997)].
Vortex based information storage in Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Dutton, Zachary; Ruostekoski, Janne
2004-05-01
Recent demonstrations of coherent optical storage in atomic clouds [1,2] have opened up new possibilities for both classical and quantum information storage. In parallel, there have been advances in the generation of Laguerre-Gaussian (LG) modes with angular momentum (optical vortices)[3] and applications of these modes to quantum information architectures based on a alphabets larger than the traditional two-state systems. Here we theoretically consider the storage of such LG modes in atomic Rb-87 Bose-Einstein condensates (BECs). An LG mode writes its vortex phase pattern into a two-component BEC vortex state. The angular momentum information can then be stored in the BEC and then efficiently read back onto the optical field by switching a control field on. We study the fidelity of the writing, storage, and read-out processes. We also consider applying this method to to the transfer of more complicated states, such as two-component vortex lattices, between two spatially distinct BECs. 1. C. Liu, Z. Dutton, C.H. Behroozi, and L.V. Hau, Nature 409, 490 (2001). 2. D.F. Phillips, A. Fleischhauer, A. Mair, R.L. Walsworth, and M.D. Lukin, Phys. Rev. Lett. 86, 783 (2001). 3. A. Vaziri, Gregor Weihs, and A. Zeilinger, cond-mat/0111033.
Anisotropic mechanical properties of zircon and the effect of radiation damage
NASA Astrophysics Data System (ADS)
Beirau, Tobias; Nix, William D.; Bismayer, Ulrich; Boatner, Lynn A.; Isaacson, Scott G.; Ewing, Rodney C.
2016-10-01
This study provides new insights into the relationship between radiation-dose-dependent structural damage due to natural U and Th impurities and the anisotropic mechanical properties (Poisson's ratio, elastic modulus and hardness) of zircon. Natural zircon samples from Sri Lanka (see Muarakami et al. in Am Mineral 76:1510-1532, 1991) and synthetic samples, covering a dose range of zero up to 6.8 × 1018 α-decays/g, have been studied by nanoindentation. Measurements along the [100] crystallographic direction and calculations, based on elastic stiffness constants determined by Özkan (J Appl Phys 47:4772-4779, 1976), revealed a general radiation-induced decrease in stiffness (~54 %) and hardness (~48 %) and an increase in the Poisson's ratio (~54 %) with increasing dose. Additional indentations on selected samples along the [001] allowed one to follow the amorphization process to the point that the mechanical properties are isotropic. This work shows that the radiation-dose-dependent changes of the mechanical properties of zircon can be directly correlated with the amorphous fraction as determined by previous investigations with local and global probes (Ríos et al. in J Phys Condens Matter 12:2401-2412, 2000a; Farnan and Salje in J Appl Phys 89:2084-2090, 2001; Zhang and Salje in J Phys Condens Matter 13:3057-3071, 2001). The excellent agreement, revealed by the different methods, indicates a large influence of structural and even local phenomena on the macroscopic mechanical properties. Therefore, this study indicates the importance of acquiring better knowledge about the mechanical long-term stability of radiation-damaged materials.
Non-Abelian fermionization and fractional quantum Hall transitions
NASA Astrophysics Data System (ADS)
Hui, Aaron; Mulligan, Michael; Kim, Eun-Ah
2018-02-01
There has been a recent surge of interest in dualities relating theories of Chern-Simons gauge fields coupled to either bosons or fermions within the condensed matter community, particularly in the context of topological insulators and the half-filled Landau level. Here, we study the application of one such duality to the long-standing problem of quantum Hall interplateaux transitions. The key motivating experimental observations are the anomalously large value of the correlation length exponent ν ≈2.3 and that ν is observed to be superuniversal, i.e., the same in the vicinity of distinct critical points [Sondhi et al., Rev. Mod. Phys. 69, 315 (1997), 10.1103/RevModPhys.69.315]. Duality motivates effective descriptions for a fractional quantum Hall plateau transition involving a Chern-Simons field with U (Nc) gauge group coupled to Nf=1 fermion. We study one class of theories in a controlled limit where Nf≫Nc and calculate ν to leading nontrivial order in the absence of disorder. Although these theories do not yield an anomalously large exponent ν within the large Nf≫Nc expansion, they do offer a new parameter space of theories that is apparently different from prior works involving Abelian Chern-Simons gauge fields [Wen and Wu, Phys. Rev. Lett. 70, 1501 (1993), 10.1103/PhysRevLett.70.1501; Chen et al., Phys. Rev. B 48, 13749 (1993), 10.1103/PhysRevB.48.13749].
Macroscopic theory of dark sector
NASA Astrophysics Data System (ADS)
Meierovich, Boris
A simple Lagrangian with squared covariant divergence of a vector field as a kinetic term turned out an adequate tool for macroscopic description of the dark sector. The zero-mass field acts as the dark energy. Its energy-momentum tensor is a simple additive to the cosmological constant [1]. Space-like and time-like massive vector fields describe two different forms of dark matter. The space-like massive vector field is attractive. It is responsible for the observed plateau in galaxy rotation curves [2]. The time-like massive field displays repulsive elasticity. In balance with dark energy and ordinary matter it provides a four parametric diversity of regular solutions of the Einstein equations describing different possible cosmological and oscillating non-singular scenarios of evolution of the universe [3]. In particular, the singular big bang turns into a regular inflation-like transition from contraction to expansion with the accelerate expansion at late times. The fine-tuned Friedman-Robertson-Walker singular solution corresponds to the particular limiting case at the boundary of existence of regular oscillating solutions in the absence of vector fields. The simplicity of the general covariant expression for the energy-momentum tensor allows to analyse the main properties of the dark sector analytically and avoid unnecessary model assumptions. It opens a possibility to trace how the additional attraction of the space-like dark matter, dominating in the galaxy scale, transforms into the elastic repulsion of the time-like dark matter, dominating in the scale of the Universe. 1. B. E. Meierovich. "Vector fields in multidimensional cosmology". Phys. Rev. D 84, 064037 (2011). 2. B. E. Meierovich. "Galaxy rotation curves driven by massive vector fields: Key to the theory of the dark sector". Phys. Rev. D 87, 103510, (2013). 3. B. E. Meierovich. "Towards the theory of the evolution of the Universe". Phys. Rev. D 85, 123544 (2012).
Disability Evaluation System Analysis and Research Annual Report 2015
2016-03-11
that of the military population as a whole; exceeding weight and body fat standards (i.e. overweight or obesity ) was the most common condition listed...prevalent conditions in the general military applicant population [8]. The most common conditions noted at the MEPS, were: overweight, obesity , and...ICD-9 Diagnosis Code n % of Cond 1 % of App 2 ICD-9 Diagnosis Code n % of Cond 1 % of App 2 Overweight, obesity and other
1998-01-01
than COND 2(6 +/- 2 W) and COND 3 (11 +/- 5 W, p 0.05). The thermal comfort and thermal sensation assessments reflected the physiological responses...was related to thermal comfort (R2 = 0.94. This research provided evidence that skin wettedness predicted thermal comfort effectively in all...environments tested. The subjective assessment of thermal comfort discriminated between all environments and the heat index derived from the USARIEM
Success in the TACP Training Program An Objective Method for Selecting Battlefield Airmen
2009-12-23
rationale and evaluation of the physical training doctrine. J Strength Cond Res. 2009 Jul;23(4):1353-62. Interventions used to improve retention...week training programs on military physical performance. J Strength Cond Res. 2008 Mar;22(2):524-34. Muza SR. Military applications of hypoxic...1 Success in the TACP Training Program An Objective Method for Selecting Battlefield Airmen FINAL REPORT December 23, 2009
Fifty years of Jaynes-Cummings physics
NASA Astrophysics Data System (ADS)
Greentree, Andrew D.; Koch, Jens; Larson, Jonas
2013-11-01
This special issue commemorates the 50th anniversary of the seminal paper published by E T Jaynes and F W Cummings [1], the fundamental model which they introduced and now carries their names, and celebrates the remarkable host of exciting research on Jaynes-Cummings physics throughout the last five decades. The Jaynes-Cummings model has been taking the prominent stance as the 'hydrogen atom of quantum optics' [2]. Generally speaking, it provides a fundamental quantum description of the simplest form of coherent radiation-matter interaction. The Jaynes-Cummings model describes the interaction between a single electromagnetic mode confined to a cavity, and a two-level atom. Energy is exchanged between the field and the atom, which leads directly to coherent population oscillations (Rabi oscillations) and superposition states (dressed states). Being exactly solvable, the Jaynes-Cummings model serves as a most useful toy model, and as such it is a textbook example of the physicists' popular strategy of simplifying a complex problem to its most elementary constituents. Thanks to the simplicity of the Jaynes-Cummings model, this caricature of coherent light-matter interactions has never lost its appeal. The Jaynes-Cummings model is essential when discussing experiments in quantum electrodynamics (indeed the experimental motivation of the Jaynes-Cummings model was evident already in the original paper, dealing as it does with the development of the maser), and it has formed the starting point for much fruitful research ranging from ultra-cold atoms to cavity quantum electrodynamics. In fact, Jaynes-Cummings physics is at the very heart of the beautiful experiments by S Haroche and D Wineland, which recently earned them the 2012 Nobel Prize in physics. Indeed, as with most significant models in physics, the model is invoked in settings that go far beyond its initial framework. For example, recent investigations involving multi-level atoms, multiple atoms [3, 4], multiple electromagnetic modes, arrays of coupled cavities [5-7], and optomechanical systems [8] have further enriched the physics of the Jaynes-Cummings model. From the early interests in masers and the consistent quantum description of radiation and atom-photon interaction, the Jaynes-Cummings model has evolved into a cornerstone of quantum state engineering [9]. The authors of this editorial had not been born when Jaynes and Cummings wrote their remarkable paper. It is, therefore, a special honour for us to be able to draw the reader's attention to the accompanying reminiscence contributed by Frederick Cummings where he gives us a glimpse of the early history of the Jaynes-Cummings model from his perspective [11]. By now, the original 1963 paper by Jaynes and Cummings has gathered numerous citations and, at the time of writing, the number of articles involving Jaynes-Cummings physics is approaching 15 000.1 This special issue does not attempt to review this impressive wealth of research. The interested reader, however, is urged to consult the definitive article by Shore and Knight [10] for a comprehensive review of the first 30 years of Jaynes-Cummings physics. The collection of 26 papers presented in this issue, showcases a snapshot of some of the most recent and continuing research devoted to Jaynes-Cummings physics. We begin our special issue with Professor Cumming's recollections [11]. We then have six papers on quantum information aspects of the Jaynes-Cummings model [12-17]. The next topic includes seven papers on the Dicke and generalized Jaynes-Cummings models [18-24], followed by six papers on circuit QED, which is one of the most important experimental frameworks for Jaynes-Cummings systems [25-30]. Finally, we have six papers on the extension to many cavities, the Jaynes-Cummings-Hubbard model [31-36]. The snapshot of research captured in this special issue illustrates the unifying language provided by the Jaynes-Cummings model, tying together research in a number of subfields in physics. Jaynes-Cummings physics started with the diagonalization of a 2 × 2 matrix, as Frederick Cummings points out. There is no doubt that this elegance of simplicity will continue to guide exciting new research in the decades to come. References [1] Jaynes E T and Cummings F W 1963 Comparison of quantum and semiclassical radiation theories with application to the beam maser Proc. IEEE 51 89 [2] Shore B W and Knight P L 2004 Physics and Probability: Essays in Honor of Edwin T Jaynes (Cambridge: Cambridge University Press) [3] Tavis M and Cummings F W 1968 Exact solution for an N -molecule-radiation-field Hamiltonian Phys. Rev. 170 379-84 [4] Tavis M and Cummings F W 1969 Approximate solutions for an N -molecule-radiation-field Hamiltonian Phys. Rev. 188 692-5 [5] Hartmann M J, Brandão F G S L and Plenio M B 2006 Strongly interacting polaritons in coupled arrays of cavities Nature Phys. 2 849-55 [6] Greentree A D, Tahan C, Cole J H and Hollenberg L C L 2006 Quantum phase transitions of light Nature Phys. 2 856-61 [7] Angelakis D G, Santos M F and Bose S 2007 Photon-blockade-induced Mott transitions and XY spin models in coupled cavity arrays Phys. Rev. A 76 031805(R) [8] Schwab K C and Roukes M L 2005 Putting mechanics into quantum mechanics Phys. Today 58 36-42 [9] Blatt R, Milburn G J and Lvovksy A 2013 The 20th anniversary of quantum state engineering J. Phys. B: At. Mol. Opt. Phys. 46 100201 [10] Shore B and Knight P L 1993 The Jaynes-Cummings model J. Mod. Opt. 40 1195-238 [11] Cummings F W 2013 J. Phys. B: At. Mol. Opt. Phys. 46 220202 [12] Arenz C 2013 J. Phys. B: At. Mol. Opt. Phys. 46 224001 [13] Quesada N 2013 J. Phys. B: At. Mol. Opt. Phys. 46 224002 [14] Everitt M 2013 J. Phys. B: At. Mol. Opt. Phys. 46 224003 [15] Kitajima S 2013 J. Phys. B: At. Mol. Opt. Phys. 46 224004 [16] Groves E 2013 J. Phys. B: At. Mol. Opt. Phys. 46 224005 [17] Bougouffa S 2013 J. Phys. B: At. Mol. Opt. Phys. 46 224006 [18] Braak D 2013 J. Phys. B: At. Mol. Opt. Phys. 46 224007 [19] Emary C 2013 J. Phys. B: At. Mol. Opt. Phys. 46 224008 [20] Miroshnychenko Y 2013 J. Phys. B: At. Mol. Opt. Phys. 46 224009 [21] Dombi A 2013 J. Phys. B: At. Mol. Opt. Phys. 46 224010 [22] Tavis M 2013 J. Phys. B: At. Mol. Opt. Phys. 46 224011 [23] Grimsmo A 2013 J. Phys. B: At. Mol. Opt. Phys. 46 224012 [24] Stenholm S I 2013 J. Phys. B: At. Mol. Opt. Phys. 46 224013 [25] Kockum A F 2013 J. Phys. B: At. Mol. Opt. Phys. 46 224014 [26] Larson J 2013 J. Phys. B: At. Mol. Opt. Phys. 46 224015 [27] Larson J 2013 J. Phys. B: At. Mol. Opt. Phys. 46 224016 [28] Agarwal S 2013 J. Phys. B: At. Mol. Opt. Phys. 46 224017 [29] Deng W-W 2013 J. Phys. B: At. Mol. Opt. Phys. 46 224018 [30] Leppaekangas J 2013 J. Phys. B: At. Mol. Opt. Phys. 46 224019 [31] Schmidt S 2013 J. Phys. B: At. Mol. Opt. Phys. 46 224020 [32] Schiro M 2013 J. Phys. B: At. Mol. Opt. Phys. 46 224021 [33] Susa C 2013 J. Phys. B: At. Mol. Opt. Phys. 46 224022 [34] del Valle E 2013 J. Phys. B: At. Mol. Opt. Phys. 46 224023 [35] Correa B V 2013 J. Phys. B: At. Mol. Opt. Phys. 46 224024 [36] Schetakis N 2013 J. Phys. B: At. Mol. Opt. Phys. 46 224025 1Number estimate based on a Google Scholar search.
A verification of the gyrokinetic microstability codes GEM, GYRO, and GS2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bravenec, R. V.; Chen, Y.; Wan, W.
2013-10-15
A previous publication [R. V. Bravenec et al., Phys. Plasmas 18, 122505 (2011)] presented favorable comparisons of linear frequencies and nonlinear fluxes from the Eulerian gyrokinetic codes gyro[J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] and gs2[W. Dorland et al., Phys. Rev. Lett. 85, 5579 (2000)]. The motivation was to verify the codes, i.e., demonstrate that they correctly solve the gyrokinetic-Maxwell equations. The premise was that it is highly unlikely for both codes to yield the same incorrect results. In this work, we add the Lagrangian particle-in-cell code gem[Y. Chen and S. Parker, J. Comput. Phys.more » 220, 839 (2007)] to the comparisons, not simply to add another code, but also to demonstrate that the codes' algorithms do not matter. We find good agreement of gem with gyro and gs2 for the plasma conditions considered earlier, thus establishing confidence that the codes are verified and that ongoing validation efforts for these plasma parameters are warranted.« less
1991-11-01
CSIC. Universidad Sevilla A. Conde (Chairman) C.F. Conde A. Criado J. Leal M. Miln H. Miranda SPONSORS MINISTERIO DE EDUCACION Y CIENCIA JUNTA DE...DMS experiments leads to physical understanding of the different aspects of the observed phenomena : more especially shape, amplitude and displacement... especially light transmittance were also established. The analysis of Raman spectra of the examined glasses has revealed the presence of metaphosphate
de Magalhães, Henrique Fernandes; Costa Neto, Eraldo Medeiros; Schiavetti, Alexandre
2012-07-02
This article records the traditional knowledge of crab gatherers in the city of Conde, in the North Coast Region of Bahia State, Northeastern Brazil. Data on biological and ecological aspects of economically important brachyuran crustaceans have been obtained from semi-structured interviews and in loco observations conducted from September 2007 to December 2009. A total of 57 fishermen of both genders, aged between 10 and 78 years have been interviewed (individually or collectively) in different contexts; interviewees were asked about aspects such as external morphology, life cycle, trophic ecology, and spatial and temporal distribution of the major economically important brachyuran crustaceans in the region. Seven fishing communities were visited: Siribinha, Sítio do Conde, Poças, Ilha das Ostras, Cobó, Buri and Sempre Viva. Data were analyzed by comparing the information provided by participants with those from the specialized academic literature. The results show that artisanal fishermen have a wide ranging and well-grounded knowledge on the ecological and biological aspects of crustaceans. Crab gatherers of Conde know about growth and reproductive behavior of the animals they interact with, especially with regard to the three major biological aspects: "molt", "walking dance" and "spawning". This knowledge constitutes an important source of information that should be considered in studies of management and sustainable use of fishery resources in the North Coast Region of Bahia State.
Vortex lattices in binary mixtures of repulsive superfluids
NASA Astrophysics Data System (ADS)
Mingarelli, Luca; Keaveny, Eric E.; Barnett, Ryan
2018-04-01
We present an extension of the framework introduced in previous work [L. Mingarelli, E. E. Keaveny, and R. Barnett, J. Phys.: Condens. Matter 28, 285201 (2016), 10.1088/0953-8984/28/28/285201] to treat multicomponent systems, showing that new degrees of freedom are necessary in order to obtain the desired boundary conditions. We then apply this extended framework to the coupled Gross-Pitaevskii equations to investigate the ground states of two-component systems with equal masses, thereby extending previous work in the lowest Landau limit [E. J. Mueller and T.-L. Ho, Phys. Rev. Lett. 88, 180403 (2002), 10.1103/PhysRevLett.88.180403] to arbitrary interactions within Gross-Pitaevskii theory. We show that away from the lowest Landau level limit, the predominant vortex lattice consists of two interlaced triangular lattices. Finally, we derive a linear relation which accurately describes the phase boundaries in the strong interacting regimes.
Estimation of viscosity based on transverse momentum correlations
NASA Astrophysics Data System (ADS)
Sharma, Monika
2010-02-01
The heavy ion program at RHIC created a paradigm shift in the exploration of strongly interacting hot and dense matter. An important milestone achieved is the discovery of the formation of strongly interacting matter which seemingly flows like a perfect liquid at temperatures on the scale of T ˜ 2 x10^12 K [1]. As a next step, we consider measurements of transport coefficients such as kinematic, shear or bulk viscosity? Many calculations based on event anisotropy measurements indicate that the shear viscosity to the entropy density ratio (η/s) of the fluid formed at RHIC is significantly below that of all known fluids including the superfluid ^4He [2]. Precise determination of η/s ratio is currently a subject of extensive study. We present an alternative technique for the determination of medium viscosity proposed by Gavin and Aziz [3]. Preliminary results of measurements of the evolution of the transverse momentum correlation function with collision centrality of Au + Au interactions at √sNN = 200 GeV will be shown. We present results on differential version of the correlation measure and describe its use for the experimental determination of η/s.[4pt] [1] J. Adams et al., [STAR Collaboration], Nucl. Phys. A 757 (2005) 102.[0pt] [2] R. A. Lacey et al., Phys. Rev. Lett. 98 (2007) 092301.[0pt] [3] S. Gavin and M. Abdel-Aziz, Phys. Rev. Lett. 97 (2006) 162302. )
NASA Astrophysics Data System (ADS)
Velten, Hermano; Fazolo, Raquel Emy; von Marttens, Rodrigo; Gomes, Syrios
2018-05-01
As recently pointed out in [Phys. Rev. D 96, 083502 (2017), 10.1103/PhysRevD.96.083502] the evolution of the linear matter perturbations in nonadiabatic dynamical dark energy models is almost indistinguishable (quasidegenerated) to the standard Λ CDM scenario. In this work we extend this analysis to CMB observables in particular the integrated Sachs-Wolfe effect and its cross-correlation with large scale structure. We find that this feature persists for such CMB related observable reinforcing that new probes and analysis are necessary to reveal the nonadiabatic features in the dark energy sector.
Antiproton-Hydrogen Atom Annihilation.
1986-05-01
Morgan, Jr., Concepts for the Design of an Antimatter Annihilation ’Rocket, Journal of the British Interplanetary Society 35, 405 (1982). 2. D.L. Morgan...Matter- Antimatter Annihilation, Phys. Rev. D 2, 1389 (1970). (Notes: results for p - H are equivalent to 5 -H; the bare + p annihilation cross section is
Probing DNA in nanopores via tunneling: from sequencing to ``quantum'' analogies
NASA Astrophysics Data System (ADS)
di Ventra, Massimiliano
2012-02-01
Fast and low-cost DNA sequencing methods would revolutionize medicine: a person could have his/her full genome sequenced so that drugs could be tailored to his/her specific illnesses; doctors could know in advance patients' likelihood to develop a given ailment; cures to major diseases could be found faster [1]. However, this goal of ``personalized medicine'' is hampered today by the high cost and slow speed of DNA sequencing methods. In this talk, I will discuss the sequencing protocol we suggest which requires the measurement of the distributions of transverse currents during the translocation of single-stranded DNA into nanopores [2-5]. I will support our conclusions with a combination of molecular dynamics simulations coupled to quantum mechanical calculations of electrical current in experimentally realizable systems [2-5]. I will also discuss recent experiments that support these theoretical predictions. In addition, I will show how this relatively unexplored area of research at the interface between solids, liquids, and biomolecules at the nanometer length scale is a fertile ground to study quantum phenomena that have a classical counterpart, such as ionic quasi-particles, ionic ``quantized'' conductance [6,7] and Coulomb blockade [8]. Work supported in part by NIH. [4pt] [1] M. Zwolak, M. Di Ventra, Physical Approaches to DNA Sequencing and Detection, Rev. Mod. Phys. 80, 141 (2008).[0pt] [2] M. Zwolak and M. Di Ventra, Electronic signature of DNA nucleotides via transverse transport, Nano Lett. 5, 421 (2005).[0pt] [3] J. Lagerqvist, M. Zwolak, and M. Di Ventra, Fast DNA sequencing via transverse electronic transport, Nano Lett. 6, 779 (2006).[0pt] [4] J. Lagerqvist, M. Zwolak, and M. Di Ventra, Influence of the environment and probes on rapid DNA sequencing via transverse electronic transport, Biophys. J. 93, 2384 (2007).[0pt] [5] M. Krems, M. Zwolak, Y.V. Pershin, and M. Di Ventra, Effect of noise on DNA sequencing via transverse electronic transport, Biophys. J. 97, 1990, (2009).[0pt] [6] M. Zwolak, J. Lagerqvist, and M. Di Ventra, Ionic conductance quantization in nanopores, Phys. Rev.Lett. 103, 128102 (2009).[0pt] [7] M. Zwolak, J. Wilson, and M. Di Ventra, Dehydration and ionic conductance quantization in nanopores, J. Phys. Cond. Matt. 22 454126 (2011). [0pt] [8] M. Krems and M. Di Ventra, Ionic Coulomb blockade in nanopores arXiv:1103.2749.
PREFACE: Wetting: introductory note
NASA Astrophysics Data System (ADS)
Herminghaus, S.
2005-03-01
The discovery of wetting as a topic of physical science dates back two hundred years, to one of the many achievements of the eminent British scholar Thomas Young. He suggested a simple equation relating the contact angle between a liquid surface and a solid substrate to the interfacial tensions involved [1], γlg cos θ = γsg - γsl (1) In modern terms, γ denotes the excess free energy per unit area of the interface indicated by its indices, with l, g and s corresponding to the liquid, gas and solid, respectively [2]. After that, wetting seems to have been largely ignored by physicists for a long time. The discovery by Gabriel Lippmann that θ may be tuned over a wide range by electrochemical means [3], and some important papers about modifications of equation~(1) due to substrate inhomogeneities [4,5] are among the rare exceptions. This changed completely during the seventies, when condensed matter physics had become enthusiastic about critical phenomena, and was vividly inspired by the development of the renormalization group by Kenneth Wilson [6]. This had solved the long standing problem of how to treat fluctuations, and to understand the universal values of bulk critical exponents. By inspection of the critical exponents of the quantities involved in equation~(1), John W Cahn discovered what he called critical point wetting: for any liquid, there should be a well-defined transition to complete wetting (i.e., θ = 0) as the critical point of the liquid is approached along the coexistence curve [7]. His paper inspired an enormous amount of further work, and may be legitimately viewed as the entrance of wetting into the realm of modern physics. Most of the publications directly following Cahn's work were theoretical papers which elaborated on wetting in relation to critical phenomena. A vast amount of interesting, and in part quite unexpected, ramifications were discovered, such as the breakdown of universality in thin film systems [8]. Simultaneously, a number of very specific and quantitative predictions were put forward which were aimed at direct experimental tests of the developed concepts [9]. Experimentally, wetting phenomena proved to be a rather difficult field of research. While contact angles seem quite easy to measure, deeper insight can only be gained by assessing the physical properties of minute amounts of material, as provided by the molecularly thin wetting layers. At the same time, the variations in the chemical potential relevant for studying wetting transitions are very small, such that system stability sometimes poses hard to solve practical problems. As a consequence, layering transitions in cryogenic systems were among the first to be thoroughly studied [10] experimentally, since they require comparably moderate stability. First-order wetting transitions were not observed experimentally before the early nineties, either in (cryogenic) quantum systems [11,12] or in binary liquid mixtures [13,14]. The first observation of critical wetting, a continuous wetting transition, in 1996 [15] was a major breakthrough [16]. In the meantime, a detailed seminal paper by Pierre Gilles de Gennes published in 1985 [17] had spurred a large number of new research projects which were directed to wetting phenomena other than those related to phase transitions. More attention was paid to non-equilibrium physics, as it is at work when oil spreads over a surface, or a liquid coating beads off (`dewets') from its support and forms a pattern of many individual droplets. This turned out to be an extremely fruitful field of research, and was more readily complemented by experimental efforts than was the case with wetting transitions. It was encouraging to find effects analogous to layering (as mentioned above) in more common systems such as oil films spreading on a solid support [18,19]. Long standing riddles such as the divergence of dissipation at a moving contact line were now addressed both theoretically and experimentally [20,21]. However, the requirements concerning resolution of the measurements, as well as the stability and cleanliness of the systems, were immense for the reasons mentioned above. The pronounced impact of impurities was already well-known from contact angle measurements, where one invariably observes quite significant hysteresis effects and history dependence of the measured angle due to minute substrate inhomogeneity. This is why pioneering work on characteristic patterns emerging upon dewetting of thin liquid films [22] opened a long lasting, and eventually very fruitful, controversy on the question whether the underlying mechanism was unstable surface waves [24] (which was unambiguously observed for the first time in 1996 [23]) or `just' nucleation from defects. By the mid-nineties, the physics of wetting had made its way into the canon of physical science topics in its full breadth. The number of fruitful aspects addressed by that time is far too widespread to be covered here with any ambition to completeness. The number of researchers turning to this field was continuously growing, and many problems had already been successfully resolved, and many questions answered. However, quite a number of fundamental problems remained, which obstinately resisted solution. Only a few shall be mentioned: There was no satisfactory explanation for triple point wetting [25], in particular for its ubiquity. The numerical values of contact line tensions in both theory and (very reproducible) experiments [26] were many orders of magnitude apart. In the particularly interesting field of structure formation, i.e., dewetting, there was no clear interpretation of many experimental results, and no possibility to distinguish with certainty between the different possible mechanisms. Furthermore, the impact of the rather strong non-linearities of the involved van der Waals forces was entirely unclear. In the more remote field of bionics, it was not clear how some plants manage to make liquids bead off so perfectly from their leaves. This list, which is of course far from complete, serves to illustrate the wide scope of open questions. At that time, research groups in Germany concerned with wetting phenomena gathered and finally applied for a priority programme on wetting and structure formation at interfaces, which obtained funding from the German Science Foundation [27]. This special issue is dedicated to the research carried out within this programme. It spans the period starting from spring 1998 until summer 2004, and is presented as a combination of review over that period and original presentation of the state-of-the-art at its end. Although only a very limited number of problems could be tackled within the programme, a few significant achievements could be attained. Some of these shall be highlighted: It could be shown that triple point wetting is a direct consequence of topographic substrate imperfection. By taking the bending energy of a solid slab on a rough substrate into account, accordance between theory [28] and experiment [29] was finally achieved. By applying scanning force microscopy to three phase contact lines, it could be shown that the `real' contact line tension is indeed much smaller than `observed' on macroscopic scale [39], and comes close to what is theoretically expected. In the field of structure formation by dewetting, unprecedented agreement between experiment [31], theory [32], and particularly careful simulations [33] was achieved. The underlying mechanisms could be clearly distinguished by means of Minkowski functionals. It could be shown both theoretically [34,35] and experimentally [36,37] that chemically patterned substrates give rise not only to a large variety of liquid morphologies, but that the latter can be manipulated and controlled in a precise manner. It was demonstrated that spherical (colloidal) beads may not only be used like surfactants as in Pickering emulsions, but that the resulting interface configurations may be applied to generate an amazing variety of well-controlled porous membranes, with a lot of potential applications [39]. This gives a flavour of the variety of topics addressed in the papers making up this issue. They are organized in five sections, each of which is opened with a short introduction explaining their mutual relation. For further access to the pertinent literature, the reader is referred to the references given in each article separately. References [1] Young T 1805 Philos. Trans. R. Soc. London 95 65 [2] Equation (1) is readily derived by demanding force balance at the contact line, where all three phases meet. [3] Lippmann G 1886 Anal. Chim. 48 776 [4] Cassie A B D and Baxter S 1944 Trans. Faraday Soc. 40 546 [5] Wenzel R N 1949 J. Phys. Chem. 53 1466 [6] Wilson K G 1971 Phys. Rev. B 4 3174 and 3184 [7] Cahn J W 1977 J. Chem. Phys. 66 3667 [8] See, for example Dietrich S and Schick M 1986 Phys. Rev. B 33 4952 [9] See, for example Cheng E et al 1991 Phys. Rev. Lett. 67 1007 [10] Dash J G and Ruvalds J (ed) 1980 Phase Transitions in Surface Films (NATO advanced study series vol B51) (New York: Plenum) [11] Nacher P J and Dupont-Roc J 1991 Phys. Rev. Lett. 67 2966 [12] Rutledge J E and Taborek P 1992 Phys. Rev. Lett. 69 937 [13] Bonn D, Kellay H and Wegdam G H 1992 Phys. Rev. Lett. 69 1975 [14] Bonn D, Kellay H and Wegdam G H 1993 J. Chem. Phys. 99 7115 [15] Ragil K et al 1996 Phys. Rev. Lett. 77 1532 [16] Findenegg G H and Herminghaus S 1997 Curr. Opin. Colloid Interface Sci. 2 301 [17] de Gennes P G 1985 Rev. Mod. Phys. 57 827 [18] Heslot F, Fraysse N and Cazabat A M 1989 Nature 338 1289 [19] Fraysse N et al 1993 J. Colloid Int. Sci. 158 27 [20] Huh C and Scriven L E 1971 J. Colloid Int. Sci. 35 85 [21] Brochard F et al 1994 Langmuir 10 1566 [22] Reiter G 1992 Phys. Rev. Lett. 68 75 [23] Bischof J et al 1996 Phys. Rev. Lett. 77 1536 [24] Ruckenstein E and Jain R K 1974 J. Chem. Soc. Faraday Trans. II 70 132 [25] Herminghaus S et al 1997 Annal. Phys. 6 425 [26] Li D and Neumann A W 1990 Colloids Surf. 43 195 [27] Deutsche Forschungsgemeinschaft, Schwerpunktprogramm 1052, `Benetzung und Strukturbildung an Grenzflächen' [28] Esztermann A and Löwen H 2005 J. Phys.: Condens. Matter 17 S429 [29] Sohaili M et al 2005 J. Phys.: Condens. Matter 17 S415 [30] Pompe T and Herminghaus S 2000 Phys. Rev. Lett. 85 1930 [31] Seemann R et al 2005 J. Phys.: Condens. Matter 17 S267 [32] Herminghaus S et al 1998 Science 282 916 [33] Becker J and Gr\\"un G 2005 J. Phys.: Condens. Matter 17 S291 [34] Lipowsky R \\etal 2005 J. Phys.: Condens. Matter 17 S537 [35] Dietrich S et al 2005 J. Phys.: Condens. Matter 17 S577 [36] Gau H et al 19999 Science 283 46 [37] Mugele F \\etal 2005 J. Phys.: Condens. Matter 17 S559 [38] Pfohl T et al 2003 Chem. Phys. Chem. 4 1291 [39 Xu H et al 2005 J. Phys.: Condens. Matter 17 S465
QCD pairing in primordial nuggets
NASA Astrophysics Data System (ADS)
Lugones, G.; Horvath, J. E.
2003-08-01
We analyze the problem of boiling and surface evaporation of quark nuggets in the cosmological quark-hadron transition. Recently, it has been shown that QCD pairing modifies the stability properties of strange quark matter. More specifically, strange quark matter in a color-flavor locked state was found to be absolutely stable for a much wider range of the parameters than ordinary unpaired strange quark matter (G. Lugones and J. E. Horvath, Phys. Rev. D, 66, 074017 (2002)). Assuming that primordial quark nuggets are actually formed we analyze the consequences of pairing on the rates of boiling and surface evaporation in order to determine whether they could have survived.
2012-01-01
Background This article records the traditional knowledge of crab gatherers in the city of Conde, in the North Coast Region of Bahia State, Northeastern Brazil. Methods Data on biological and ecological aspects of economically important brachyuran crustaceans have been obtained from semi-structured interviews and in loco observations conducted from September 2007 to December 2009. A total of 57 fishermen of both genders, aged between 10 and 78 years have been interviewed (individually or collectively) in different contexts; interviewees were asked about aspects such as external morphology, life cycle, trophic ecology, and spatial and temporal distribution of the major economically important brachyuran crustaceans in the region. Seven fishing communities were visited: Siribinha, Sítio do Conde, Poças, Ilha das Ostras, Cobó, Buri and Sempre Viva. Data were analyzed by comparing the information provided by participants with those from the specialized academic literature. Results The results show that artisanal fishermen have a wide ranging and well-grounded knowledge on the ecological and biological aspects of crustaceans. Crab gatherers of Conde know about growth and reproductive behavior of the animals they interact with, especially with regard to the three major biological aspects: “molt”, “walking dance” and “spawning”. Conclusion This knowledge constitutes an important source of information that should be considered in studies of management and sustainable use of fishery resources in the North Coast Region of Bahia State. PMID:22449069
Anzolin, Caroline Cristina; Silva, Diego Augusto Santos; Zanuto, Edner Fernando; Cayres, Suziane Ungari; Codogno, Jamile Sanches; Costa Junior, Paulo; Machado, Dalmo Roberto Lopes; Christofaro, Diego Giulliano Destro
To evaluate the sensitivity and specificity of different cutoff points of body mass index for predicting overweight/obesity according to body fat values estimated by DEXA among Brazilian adolescents. Cross-sectional study including 229 male adolescents aged 10-15 years, in which body adiposity and anthropometric measures were assessed. Nutritional status was classified by BMI according to cutoff points described in scientific literature. Moderate agreements were observed between body fat estimated by DEXA and cutoffs proposed by Cole et al. (K=0.61), Conde and Monteiro (K=0.65), Must et al. (K=0.61) and WHO (K=0.63). The BMI in continuous form showed good agreement with the Dexa (ICC=0.72). The highest sensitivity was observed for cutoff by Conde and Monteiro (0.74 [0.62, 0.84]) and the highest specificity by Cole et al. (0.98 [0.94, 0.99]). For the areas under the ROC curve of cutoff points analyzed, significant difference comparing the cutoff points by Cole et al. and Conde and Monteiro (0.0449 [0.00294, 0.0927]) was observed. The cutoff proposed by Conde and Monteiro was more sensitive in identifying overweight and obesity when compared to the reference method, and the cutoff proposed by Cole et al. presented the highest specificity for such outcomes. Copyright © 2016 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.
Uso Del Condón en Adolescentes Nahuas, un Modelo Explicativo.
Tirado, María de Los Ángeles Meneses; Benavides-Torres, Raquel A; Navarro, Sergio Meneses; de la Colina, Juan Antonio Doncel; Rodríguez, Dora Julia Onofre; Hernández, Francisco Javier Baéz
2018-03-01
En México, la población indígena supera los siete millones de habitantes, en Puebla el grupo más representativo es el Náhuatl. Sin embargo, las condiciones de vida, salud, educación y transporte son precarias para esta población. En los adolescentes, las responsabilidades como el matrimonio, la familia y los compromisos ante la comunidad, favorecen conductas de riesgo sexual que dificultan su desarrollo económico, social y reproductivo. El objetivo fue proponer un modelo explicativo del uso del condón en adolescentes nahuas. Método. Bajo el marco de la teoría social cognitiva, el concepto de valores culturales de Leininger y el proceso de la sustracción teórica, se desarrolló este artículo. Se muestran las relaciones del modelo con las proposiciones y los factores que influyen en el uso del condón para este grupo específico. Finalmente, el modelo explica las variables de interés, los niveles de abstracción y las relaciones entre sí en el contexto náhuatl. El siguiente paso será implementar los indicadores empíricos para conocer el grado de influencia de los factores personales y ambientales hacia el uso del condón en adolescentes nahuas. Resultados que aportarán información para el desarrollo del conocimiento en enfermería y la reducción de riesgo sexual de esta población.
A comparison of mental strategies during athletic skills performance.
Peluso, Eugenio A; Ross, Michael J; Gfeller, Jeffrey D; Lavoie, Donna J
2005-12-01
The current study examined the effects of performance enhancement techniques (PET's) on motor skill performance. Specifically, one hundred fifty college student volunteers (Men = 41; 27.3% and Women = 109; 72.6%) were randomly assigned to one of the nine conditions (Cond): Cond 1 and 2, simultaneous, externally verbalized self-talk or imagery (e.g., participants were instructed to say "aim, back, birdie "or engaged in imagery out loud while putting); Cond 3 and 4, delayed externally verbalized self-talk or imagery (e.g., participants were instructed to say "aim, back, birdie "or engaged in imagery out loud before putting); Cond 5 and 6, simultaneous, internally verbalized self-talk or imagery (e.g., participants were instructed to say "aim, back, birdie "or engaged in imagery silently to oneself while putting); Cond 7 and 8, delayed internally verbalized (e.g., participant were instructed to say "aim, back, birdie "or engaged in imagery silently to oneself before putting); and Cond 9, no instruction control group. All participants were asked to perform a golf-putting task. Results indicated that participants who implemented several (PET's) increased their putting accuracy across overall difference score evaluations F (8, 141) = 4.01, p < 0.05 when compared to a no instruction control condition. Follow-up analyses indicated that participants who reportedly engaged in ten hours or less of athletic activities per week preferred self-talk strategies F (2, 119) = 4.38, p < 0.05 whereas participants who endorsed ten hours or more of athletic activity per week preferred imagery strategies F (2, 25) = 5.27, p < 0.05. Key PointsMental imagery and self-talk strategies are implemented by athletes in order to regulate arousal, reduce maladaptive behaviors, reconstruct negative thoughts, and to increase one's concentration and focus.Results of the current study suggest that participants who engaged in several performance enhancement techniques exhibited enhanced performance on a golf putting task when compared to participants in a control condition.Participants who endorsed limited athletic familiarity and activity (e.g., ten hours or less) preferred self-talk practice whereas participants who endorsed higher ratings scores of athletic familiarity and activity (e.g., ten hours or more) preferred imagery strategies.The results of this study demonstrate the flexibility of Performance Enhancement Techniques (e.g., imagery v. self-talk, internal v. external, simultaneous v. delayed) and how they can be implemented to help an athlete reach his or her full potential.
Narayanaswamy’s 1971 aging theory and material time
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dyre, Jeppe C., E-mail: dyre@ruc.dk
2015-09-21
The Bochkov-Kuzovlev nonlinear fluctuation-dissipation theorem is used to derive Narayanaswamy’s phenomenological theory of physical aging, in which this highly nonlinear phenomenon is described by a linear material-time convolution integral. A characteristic property of the Narayanaswamy aging description is material-time translational invariance, which is here taken as the basic assumption of the derivation. It is shown that only one possible definition of the material time obeys this invariance, namely, the square of the distance travelled from a configuration of the system far back in time. The paper concludes with suggestions for computer simulations that test for consequences of material-time translational invariance.more » One of these is the “unique-triangles property” according to which any three points on the system’s path form a triangle such that two side lengths determine the third; this is equivalent to the well-known triangular relation for time-autocorrelation functions of aging spin glasses [L. F. Cugliandolo and J. Kurchan, J. Phys. A: Math. Gen. 27, 5749 (1994)]. The unique-triangles property implies a simple geometric interpretation of out-of-equilibrium time-autocorrelation functions, which extends to aging a previously proposed framework for such functions in equilibrium [J. C. Dyre, e-print arXiv:cond-mat/9712222 (1997)].« less
Single crystal EPR determination of the quantum energy level structure for Fe8 molecular clusters
NASA Astrophysics Data System (ADS)
Maccagnano, S.; Hill, S.; Negusse, E.; Lussier, A.; Mola, M. M.; Achey, R.; Dalal, N. S.
2001-05-01
Using a high sensitivity resonance cavity technique,^1 we are able to obtain high field/frequency (up to 9 tesla/210 GHz) EPR spectra for oriented single crystals of [Fe_8O_2(OH)_12(tacn)_6]Br_8.9H_2O (or Fe8 for short). Extrapolating the frequency dependence of transitions to zero-field (for any orientation of the field) allows us to directly, and accurately (to within 0.5 percent), determine the first five zero-field splittings, which are in reasonable agreement with recent inelastic neutron studies.^2 The dependence of these splittings on the applied field strength, and its orientation with respect to the crystal, enables us to identify (to within 1^o) the easy, intermediate and hard magnetic axes. Subsequent analysis of EPR spectra for field parallel to the easy axis yields a value of for gz which is appreciably different from the value assumed in a recent high field EPR study by Barra et al.^3 ^1 M.M. Mola, S. Hill, P. Goy, and M. Gross, Rev. Sci. Inst. 71, 186 (2000). ^2 R. Caciuffo, G. Amoretti, R. Sessoli, A. Caneschi, and D. Gatteschi, Phys. Rev. Lett. 81, 4744 (1998). ^3 A. L. Barra, D. Gatteschi, and R. Sessoli, cond?mat/0002386 (Feb, 2000).
Zero bias STS Kondo anomalies of Co impurities on Cu surfaces: do ab initio calculations work?
NASA Astrophysics Data System (ADS)
Baruselli, Pier Paolo; Smogunov, Alexander; Fabrizio, Michele; Requist, Ryan; Tosatti, Erio
2012-02-01
Transition metal atoms such as Co on Cu (111), (100), and (110) surfaces produce STS I-V spectra showing different zero bias Kondo anomalies [1] but these differences have been neither quantitatively predicted nor fully explained theoretically. We apply to this problem the DFT+NRG scheme of Lucignano et al [2], where one solves by NRG an Anderson model built from ab initio phase shifts provided by DFT. For Co/Cu(100) and Co/Cu(110) our calculations describe correctly the experimental trend of Kondo temperatures, and fairly the lineshapes too. By contrast, they fail to describe Co/Cu(111) where in particular the anti-lorentzian lineshape found in experiment remains unexplained. This failure underscores the role of surface states, probably relevant for Co/Cu(111) [3] but not correctly described by our thin slab calculations. Future efforts to quantitatively include Kondo screening by surface states are therefore called for. 1. N. Knorr et al PRL 88, 096804 (2002); M. Ternes et al 2009 J. Phys.: Cond. Matt. 21, 053001 (2009); A. Gumbsch et al PRB81, 165420 (2010). 2. P. Lucignano et al Nature Mat. 8, 563 (2009); P.P. Baruselli et al, Physica E, doi:10.1016/j.physe.2011.05.005. 3. C. Lin et al. PRB 71, 035417 (2005).
Updated constraints on self-interacting dark matter from Supernova 1987A
NASA Astrophysics Data System (ADS)
Mahoney, Cameron; Leibovich, Adam K.; Zentner, Andrew R.
2017-08-01
We revisit SN1987A constraints on light, hidden sector gauge bosons ("dark photons") that are coupled to the standard model through kinetic mixing with the photon. These constraints are realized because excessive bremsstrahlung radiation of the dark photon can lead to rapid cooling of the SN1987A progenitor core, in contradiction to the observed neutrinos from that event. The models we consider are of interest as phenomenological models of strongly self-interacting dark matter. We clarify several possible ambiguities in the literature and identify errors in prior analyses. We find constraints on the dark photon mixing parameter that are in rough agreement with the early estimates of Dent et al. [arXiv:1201.2683.], but only because significant errors in their analyses fortuitously canceled. Our constraints are in good agreement with subsequent analyses by Rrapaj & Reddy [Phys. Rev. C 94, 045805 (2016)., 10.1103/PhysRevC.94.045805] and Hardy & Lasenby [J. High Energy Phys. 02 (2017) 33., 10.1007/JHEP02(2017)033]. We estimate the dark photon bremsstrahlung rate using one-pion exchange (OPE), while Rrapaj & Reddy use a soft radiation approximation (SRA) to exploit measured nuclear scattering cross sections. We find that the differences between mixing parameter constraints obtained through the OPE approximation or the SRA approximation are roughly a factor of ˜2 - 3 . Hardy & Laseby [J. High Energy Phys. 02 (2017) 33., 10.1007/JHEP02(2017)033] include plasma effects in their calculations finding significantly weaker constraints on dark photon mixing for dark photon masses below ˜10 MeV . We do not consider plasma effects. Lastly, we point out that the properties of the SN1987A progenitor core remain somewhat uncertain and that this uncertainty alone causes uncertainty of at least a factor of ˜2 - 3 in the excluded values of the dark photon mixing parameter. Further refinement of these estimates is unwarranted until either the interior of the SN1987A progenitor is more well understood or additional, large, and heretofore neglected effects, such as the plasma interactions studied by Hardy & Lasenby [J. High Energy Phys. 02 (2017) 33. 10.1007/JHEP02(2017)033], are identified.
NASA Astrophysics Data System (ADS)
Shepherd, James J.; López Ríos, Pablo; Needs, Richard J.; Drummond, Neil D.; Mohr, Jennifer A.-F.; Booth, George H.; Grüneis, Andreas; Kresse, Georg; Alavi, Ali
2013-03-01
Full configuration interaction quantum Monte Carlo1 (FCIQMC) and its initiator adaptation2 allow for exact solutions to the Schrödinger equation to be obtained within a finite-basis wavefunction ansatz. In this talk, we explore an application of FCIQMC to the homogeneous electron gas (HEG). In particular we use these exact finite-basis energies to compare with approximate quantum chemical calculations from the VASP code3. After removing the basis set incompleteness error by extrapolation4,5, we compare our energies with state-of-the-art diffusion Monte Carlo calculations from the CASINO package6. Using a combined approach of the two quantum Monte Carlo methods, we present the highest-accuracy thermodynamic (infinite-particle) limit energies for the HEG achieved to date. 1 G. H. Booth, A. Thom, and A. Alavi, J. Chem. Phys. 131, 054106 (2009). 2 D. Cleland, G. H. Booth, and A. Alavi, J. Chem. Phys. 132, 041103 (2010). 3 www.vasp.at (2012). 4 J. J. Shepherd, A. Grüneis, G. H. Booth, G. Kresse, and A. Alavi, Phys. Rev. B. 86, 035111 (2012). 5 J. J. Shepherd, G. H. Booth, and A. Alavi, J. Chem. Phys. 136, 244101 (2012). 6 R. Needs, M. Towler, N. Drummond, and P. L. Ríos, J. Phys.: Condensed Matter 22, 023201 (2010).
Precision measurements with atom interferometry
NASA Astrophysics Data System (ADS)
Schubert, Christian; Abend, Sven; Schlippert, Dennis; Ertmer, Wolfgang; Rasel, Ernst M.
2017-04-01
Interferometry with matter waves enables precise measurements of rotations, accelerations, and differential accelerations [1-5]. This is exploited for determining fundamental constants [2], in fundamental science as e.g. testing the universality of free fall [3], and is applied for gravimetry [4], and gravity gradiometry [2,5]. At the Institut für Quantenoptik in Hannover, different approaches are pursued. A large scale device is designed and currently being set up to investigate the gain in precision for gravimetry, gradiometry, and fundamental tests on large baselines [6]. For field applications, a compact and transportable device is being developed. Its key feature is an atom chip source providing a collimated high flux of atoms which is expected to mitigate systematic uncertainties [7,8]. The atom chip technology and miniaturization benefits from microgravity experiments in the drop tower in Bremen and sounding rocket experiments [8,9] which act as pathfinders for space borne operation [10]. This contribution will report about our recent results. The presented work is supported by the CRC 1227 DQ-mat, the CRC 1128 geo-Q, the RTG 1729, the QUEST-LFS, and by the German Space Agency (DLR) with funds provided by the Federal Ministry of Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under Grant No. DLR 50WM1552-1557. [1] P. Berg et al., Phys. Rev. Lett., 114, 063002, 2015; I. Dutta et al., Phys. Rev. Lett., 116, 183003, 2016. [2] J. B. Fixler et al., Science 315, 74 (2007); G. Rosi et al., Nature 510, 518, 2014. [3] D. Schlippert et al., Phys. Rev. Lett., 112, 203002, 2014. [4] A. Peters et al., Nature 400, 849, 1999; A. Louchet-Chauvet et al., New J. Phys. 13, 065026, 2011; C. Freier et al., J. of Phys.: Conf. Series 723, 012050, 2016. [5] J. M. McGuirk et al., Phys. Rev. A 65, 033608, 2002; P. Asenbaum et al., arXiv:1610.03832. [6] J. Hartwig et al., New J. Phys. 17, 035011, 2015. [7] H. Ahlers et al., Phys. Rev. Lett. 116, 173601, 2016; S. Abend et al., Phys. Rev. Lett. 117, 203003, 2016. [8] J. Rudolph et al., New J. Phys. 17, 065001, 2015. [9] H. Müntinga et al., Phys. Rev. Lett., 110, 093602, 2013. [10] O. Carraz et al., Microgravity Sci. Technol. 26, 139, 2014; D. Aguilera et al., Class. Quantum Grav. 31, 115010, 2014.
Emperical Laws in Economics Uncovered Using Methods in Statistical Mechanics
NASA Astrophysics Data System (ADS)
Stanley, H. Eugene
2001-06-01
In recent years, statistical physicists and computational physicists have determined that physical systems which consist of a large number of interacting particles obey universal "scaling laws" that serve to demonstrate an intrinsic self-similarity operating in such systems. Further, the parameters appearing in these scaling laws appear to be largely independent of the microscopic details. Since economic systems also consist of a large number of interacting units, it is plausible that scaling theory can be usefully applied to economics. To test this possibility using realistic data sets, a number of scientists have begun analyzing economic data using methods of statistical physics [1]. We have found evidence for scaling (and data collapse), as well as universality, in various quantities, and these recent results will be reviewed in this talk--starting with the most recent study [2]. We also propose models that may lead to some insight into these phenomena. These results will be discussed, as well as the overall rationale for why one might expect scaling principles to hold for complex economic systems. This work on which this talk is based is supported by BP, and was carried out in collaboration with L. A. N. Amaral S. V. Buldyrev, D. Canning, P. Cizeau, X. Gabaix, P. Gopikrishnan, S. Havlin, Y. Lee, Y. Liu, R. N. Mantegna, K. Matia, M. Meyer, C.-K. Peng, V. Plerou, M. A. Salinger, and M. H. R. Stanley. [1.] See, e.g., R. N. Mantegna and H. E. Stanley, Introduction to Econophysics: Correlations & Complexity in Finance (Cambridge University Press, Cambridge, 1999). [2.] P. Gopikrishnan, B. Rosenow, V. Plerou, and H. E. Stanley, "Identifying Business Sectors from Stock Price Fluctuations," e-print cond-mat/0011145; V. Plerou, P. Gopikrishnan, L. A. N. Amaral, X. Gabaix, and H. E. Stanley, "Diffusion and Economic Fluctuations," Phys. Rev. E (Rapid Communications) 62, 3023-3026 (2000); P. Gopikrishnan, V. Plerou, X. Gabaix, and H. E. Stanley, "Statistical Properties of Share Volume Traded in Financial Markets," Phys. Rev. E (Rapid Communications) 62, 4493-4496 (2000).
Critical 2-D Percolation: Crossing Probabilities, Modular Forms and Factorization
NASA Astrophysics Data System (ADS)
Kleban, Peter
2007-03-01
We first consider crossing probabilities in critical 2-D percolation in rectangular geometries, derived via conformal field theory. These quantities are shown to exhibit interesting modular behavior [1], although the physical meaning of modular transformations in this context is not clear. We show that in many cases these functions are completely characterized by very simple transformation properties. In particular, Cardy's function for the percolation crossing probability (including the conformal dimension 1/3), follows from a simple modular argument. We next consider the probability of crossing between various points for percolation in the upper half-plane. For two points, with the point x an edge of the system, the probability is P(x,z)= k 1y^5/48 φ(x,z)^1/3 where φ is the potential at z of a 2-D dipole located at x, and k is a non-universal constant. For three points, one finds the exact and universal factorization [2,3] P(x1,x2,z)= C ; √P(x1,z)P(x2,z)P(x1,x2) with C= 8 √2; &5/2circ;3^3/4 ; γ(1/3)^9/2. These results are calculated by use of conformal field theory. Computer simulations verify them very precisely. Furthermore, simulations show that the same factorization holds asymptotically, with the same value of C, when one or both of the points xi are moved from the edge into the bulk.1.) Peter Kleban and Don Zagier, Crossing probabilities and modular forms, J. Stat. Phys. 113, 431-454 (2003) [arXiv: math-ph/0209023].2.) Peter Kleban, Jacob J. H. Simmons, and Robert M. Ziff, Anchored critical percolation clusters and 2-d electrostatics, Phys. Rev. Letters 97,115702 (2006) [arXiv: cond-mat/0605120].3.) Jacob J. H. Simmons and Peter Kleban, in preparation.
The mathematical theory of signal processing and compression-designs
NASA Astrophysics Data System (ADS)
Feria, Erlan H.
2006-05-01
The mathematical theory of signal processing, named processor coding, will be shown to inherently arise as the computational time dual of Shannon's mathematical theory of communication which is also known as source coding. Source coding is concerned with signal source memory space compression while processor coding deals with signal processor computational time compression. Their combination is named compression-designs and referred as Conde in short. A compelling and pedagogically appealing diagram will be discussed highlighting Conde's remarkable successful application to real-world knowledge-aided (KA) airborne moving target indicator (AMTI) radar.
NASA Astrophysics Data System (ADS)
Garstecki, Piotr; Cieplak, Marek
2009-05-01
Microbes are important: their lives are intimately (both symbiotically and hostilely) intertwined with the lives of humans. Microbes are the tiniest organisms that we know of; although they inhabit largely the same environment as humans, their world is strange to us. This is because we cannot see them with a bare eye and because the different length scales select different rules of physics to be important. As the microbes affect us, we devote significant activity to control them. This goal obviously challenges our comprehension of 'how the microbes work'. There are at least two strategies to accumulate this understanding. One is to simply 'look', classify their type and behavior and make reason out of these observations. This approach is fathered by Antonie van Leeuwenhoek, the inventor and constructor of the famous single lens microscope. A second strategy is to create models that are either analytically or experimentally tractable, and to take advantage of this tractability to analyze the models thoroughly and then relate the findings to the actual biological problem. This second strategy is naturally the domain of physics. Especially, when it comes down to one of the more mechanical aspects of microbial biology—motility. As pointed out in the seminal works of Taylor [1] and Purcell [2] the physics of swimming at the length scales of single micrometers is very different from our common macro-scale experience. The most important difference is reflected by the low value of the Reynolds number—the ratio yielding the relative importance of inertial and viscous forces. At the microscale, inertia is not important and macro-scale mechanisms of swimming simply do not work. This was clearly discussed by Purcell [2] and is encapsulated by the dogma known as Purcell's scallop theorem. It implies that because of the linearity of the equations of flow at low Reynolds numbers (that is within the Stokes approximation) that any periodic and reciprocal motion cannot lead to a net displacement nor a rectified speed. This rule forced various strategies of swimming that all break the reciprocity of motion of the organelles of the swimmers. The most common—and most commonly known—of these are rotating a helical flagella, as utilized by e.g. the bacterium E. coli [3], or performing asymmetric power and recovery strokes, as done by e.g. the green algae Chlamydomonas reinhardtii [4]. There are however other strategies, such as sending periodic waves over the celia that cover the whole surface of the cell. This mechanism is discussed on the grounds of a physical model by Downton and Stark in this issue [5]. Ekiel-Jeżewska and Wajnryb [6] discuss yet another physical model of a swimmer comprised of two arms that can spin along their axes. They show that this spinning can significantly affect sedimentation, a result that could lead to insights into the behavior of gravitactic micro-organisms. Although the scallop theorem holds, it allows for refinement. For example, in this issue, Gonzalez-Rodriguez and Lauga show several models of swimmers that can utilize the inertia of their bodies (as opposed to the inertia of the fluid in which they swim) by performing reciprocal strokes to move [7]. Golestanian and Ajdari discuss another strategy that can avoid a non-reciprocal force resulting in net motion [8]. At small scales, thermal fluctuations become important and Golestanian and Ajdari show a swimming ratchet: they demonstrate that an appropriate design of the geometry of the swimmer can yield a net speed as a result of thermal fluctuations. Wilson et al [9] utilize the concept of the Lyapunov exponent calculated for the trajectories of elements of fluid to show how micro-organisms manage fluctuations in flow, and how the exact mechanics of swimming creates flow barriers between the fluid that is expelled during the power stroke and the fluid that returns during the recovery stroke of an organism. Besides the insignificance of inertia, there is another striking feature of the microbial motility—at low values of the Reynolds number the hydrodynamic interactions are long range on the scale of the swimmer. This leads to conditions that are surprising for a macroswimmer—nobody swimming in a pool expects to be affected by the activity of another swimmer separated by a distance of, say, 30 lengths of a typical body (50 meters for humans). Yet at the microscale this is exactly what happens, and this feature leads to very interesting effects of interaction between swimmers, and between swimmers and solid walls. Felderhof [10] discusses the hydrodynamic interactions of a 'peristaltic sheet' with the proximate walls or with a second sheet, while Hernandez-Ortiz et al elaborate on the physical mechanisms behind one of the most fascinating behaviors of micro-organisms—collective swimming [11]. Recently, new stimuli in the research of motility of micro-organisms came from the experimental realizations of motile microstructures—artificial microswimmers. An important contribution here comes from Dreyfus et al who showed a micro-scale swimmer comprised of elastically linked colloidal particles [12]. In this issue, Alexander et al [13] discuss a similar model of Najafi and Golestanian [14] and analyze the interactions between such swimmers. Coq et al [15] investigate a different mechanism of swimming and report on the most important 'organelle' of structures that propel by rotating a helical element—they discuss the mechanics of a rotated elastic rod. Depending on the type of forcing, the rod, when subject to an increasing torque, either smoothly transforms into an increasingly deformed helical shape providing growing net flow in the direction of rotation, or shows a discontinuous transition of the shape with a sudden change in the efficiency of propulsion. Finally, Garstecki et al [16]demonstrate experimentally elastic artificial microswimmers powered by an external rotating magnetic field. They show that in order to design a helical swimmer one does not have to fabricate the complicated three-dimensional structure, but can use the deformation of an originally planar swimmer into a helical shape when it is subject to the opposing magnetic and viscous torques. Certainly, this issue is not intended to cover the vast subject of micro-scale motility to any significant length. However, we hope that this collection of articles will bring the fascinating field of low Reynolds number swimming closer to a wide community of physicists and that this issue will stimulate further discussion of the highly non-intuitional world of motility at the microscale. References [1] Taylor G I 1951 Proc. R. Soc.r A 209 447 [2] Purcell E M 1977 Am. J. Phys. 45 3 [3] Lighthill J 1976 SIAM Rev. 18 161 [4] Foster K W and Smyth R D 1980 Microbiol. Rev. 44 572 [5] Downton M T and Stark H 2009J. Phys.: Condens. Matter 21 204101 [6] Ekiel-Jeżewska M L and Wajnryb E 2009J. Phys.: Condens. Matter 21 204102 [7] Gonzalez-Rodriguez D and Lauga E 2009J. Phys.: Condens. Matter 21 204103 [8] Golestanian R and Ajdari A 2009J. Phys.: Condens. Matter 21 204104 [9] Wilson M M, Peng J, Dabiri J O and Eldredge J D 2009 J. Phys.: Condens. Matter 21 204105 [10] Felderhof B U 2009 J. Phys.: Condens. Matter 21 204106 [11] Hernandez-Ortiz J P, Underhill P T and Graham M D 2009 J. Phys.: Condens. Matter 21 204107 [12] Dreyfus R, Baudry J, Roper M L, Fermigier M, Stone H A and Bibette J 2005 Nature 437 862 [13] Alexander G P, Pooley C M and Yeomans J M 2009 J. Phys.: Condens. Matter 21 204108 [14] Najafi A and Golestanian R 2005 Phys. Rev. E 69 062901 [15] Coq N, du Roure O, Fermigier M and Bartolo D 2009 J. Phys.: Condens. Matter 21 204109 [16] Garstecki P, Tierno P, Weibel D B, Sagués F and Whitesides G M 2009 J. Phys.: Condens. Matter 21 204110
Thermal expansion of coexistence of ferromagnetism and superconductivity
NASA Astrophysics Data System (ADS)
Hatayama, Nobukuni; Konno, Rikio
2010-01-01
The temperature dependence of thermal expansion of coexistence of ferromag-netism and superconductivity below the superconducting transition temperature Tc↑ of a majority spin conduction band is investigated. Majority spin and minority spin superconducting gaps exist in the coexistent state. We assume that the Curie temperature is much larger than the superconducting transition temperatures. The free energy that Linder et al. [Phys. Rev. B76, 054511 (2007)] derived is used. The thermal expansion of coexistence of ferromagnetism and superconductivity is derived by the application of the method of Takahashi and Nakano [J. Phys.: Condens. Matter 18, 521 (2006)]. We find that we have the anomalies of the thermal expansion in the vicinity of the superconducting transition temperatures.
NASA Astrophysics Data System (ADS)
Skrabal, Stephen A.; Donat, John R.; Burdige, David J.
2000-06-01
The distributions and seasonal variability of total dissolved Cu (TDCu) and Cu-complexing ligands in sediment pore waters have been investigated at two contrasting sites in the Chesapeake Bay. Two ligand classes, which differ on the basis of the conditional stability constants ( K'cond) of their Cu complexes, were detected at all depths at both sites. At the sulfidic, muddy, mid-Bay Sta. M, concentrations and values of log K'cond ranged from 390-12,500 nM and ≥7.2->8.9, respectively, for the stronger ligand class ( L1 S) and 75-6,420 nM and 6.2-7.9 for the weaker ligand class ( L2 S). At the bioturbated, sandy Sta. S in the lower Bay, respective concentrations and values of log K'cond ranged from 135-807 nM and ≥7.6-≥10.2 for L1 S and 40-1,410 nM and 6.6-9.2 for L2 S. For comparison, one pore water profile from a slope station off of the Chesapeake Bay also showed the presence of two ligand classes, with respective concentrations and values of log K'cond of 140-270 nM and 8->11 for L1 S and 30-180 nM and 7-10 for L2 S. These ligands are in large excess relative to ambient TDCu concentrations (<0.1-24.3 nM), thereby maintaining very low inorganic Cu concentrations (typically <0.1 to <100 pM) and a high degree of organic complexation (87.2->99.9%) of Cu in Bay and slope sediment pore waters. Thus, virtually all TDCu fluxing from these sediments is complexed during sediment-water exchange. A relatively small fraction of the TDCu is exchanged as inorganic species, which are widely regarded as the most bioavailable form of Cu. Higher ligand concentrations at Sta. M suggest that sulfide or organic ligands containing reduced S contribute to the pool of complexing ligands; however, the exact nature and sources of the ligands in Bay pore waters are not known. The progressive increase in conditional stability constants of the CuL 2 S complexes from the mid-Bay to the slope sediments may reflect differences in biological or chemical processes at each site, as well as differences in the type of Cu-complexing organic matter. Total ligand concentrations ( L1 S + L2 S) are 15 to >100 times higher in the upper intervals of the pore waters relative to ligand concentrations in the bottom waters of the Chesapeake Bay (30-60 nM), consistent with previous observations of fluxes of these ligands from the sediments to overlying waters. These results suggest that sediments are potentially significant sources of Cu-complexing ligands to the overlying waters of the Chesapeake Bay, and perhaps, other shallow water estuarine and coastal environments. Copper-complexing ligands released from sediment pore waters may play an important role in influencing Cu speciation in overlying waters.
Gyroscopic effects in interference of matter waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tolstikhin, Oleg I.; Morishita, Toru; Watanabe, Shinichi
2005-11-15
A new gyroscopic interference effect stemming from the Galilean translational factor in the matter wave function is pointed out. In contrast to the well-known Sagnac effect that stems from the geometric phase and leads to a shift of interference fringes, this effect causes slanting of the fringes. We illustrate it by calculations for two split cigar-shaped Bose-Einstein condensates under the conditions of a recent experiment, see Y. Shin et al., Phys. Rev. Lett. 92, 050405 (2004). Importantly, the measurement of slanting obviates the need of a third reference cloud.
Study of methods to increase cluster/dislocation loop densities in electrodes
NASA Astrophysics Data System (ADS)
Yang, Xiaoling; Miley, George H.
2009-03-01
Recent research has developed a technique for imbedding ultra-high density deuterium ``clusters'' (50 to 100 atoms per cluster) in various metals such as Palladium (Pd), Beryllium (Be) and Lithium (Li). It was found the thermally dehydrogenated PdHx retained the clusters and exhibited up to 12 percent lower resistance compared to the virginal Pd samplesootnotetextA. G. Lipson, et al. Phys. Solid State. 39 (1997) 1891. SQUID measurements showed that in Pd these condensed matter clusters approach metallic conditions, exhibiting superconducting propertiesootnotetextA. Lipson, et al. Phys. Rev. B 72, 212507 (2005ootnotetextA. G. Lipson, et al. Phys. Lett. A 339, (2005) 414-423. If the fabrication methods under study are successful, a large packing fraction of nuclear reactive clusters can be developed in the electrodes by electrolyte or high pressure gas loading. This will provide a much higher low-energy-nuclear- reaction (LENR) rate than achieved with earlier electrodeootnotetextCastano, C.H., et al. Proc. ICCF-9, Beijing, China 19-24 May, 2002..
Fast neutron measurement at Soudan Mine using a large liquid scintillation detector
NASA Astrophysics Data System (ADS)
Zhang, Chao; Mei, Dongming
2014-03-01
Characterizing neutron background is extremely important to the success of rare-event physics searching for neutrinoless double-beta decay and dark matter searches. Measuring the energy spectrum of fast neutrons for an underground laboratory is difficult and it requires intensive R&D for a given technology. EJ-301 liquid scintillator(known also as NE-213) is implemented as the target for a 12 liter neutron detector fabricated at the University of South Dakota. The light output response to atmospheric neutrons from a few MeV up to ~ 70 MeV has been calibrated for this detector. The detector has been taking data at Soudan Mine for over two years. We report the measured muon-induced neutrons in this paper. This work is supported in part by NSF PHY-0758120, PHYS-0919278, PHYS-0758120, PHYS-1242640, DOE grant DE-FG02-10ER46709, the Office of Research at the University of South Dakota and a 2010 research center support by the State of South Dakota.
A Multi-Scale Modeling and Experimental Program for the Dynamic Mechanical Response of Tissue
2014-12-09
diseases ”. Speaker, Session Chair of Pathological Fibrils, American Crystallographic Association, Albuquerque NM, May 2014. Joseph Orgel (7...Nonlinear, Soft Matter Phys., vol. 73, no. 3, p. 031901, Mar. 2006. [4] S. Münster, L. M. Jawerth, B. a Leslie, J. I. Weitz, B. Fabry , and D. a Weitz
Dust around Mira variables: An analysis of IRAS LRS spectra
NASA Technical Reports Server (NTRS)
Slijkhuis, S.
1989-01-01
The spatial extent and spectral appearance of the thin dust shell around Mira variables is determined largely by the dust absorptivity, Q(sub abs)(lambda), and the dust condensation temperature T(sub cond). Both Q(sub abs)(lambda) and T(sub cond) are extracted from IRAS low-resolution spectra (LRS) spectra. In order to do this, the assumption that the ratio of total power in the 10 micron feature to that in the 20 micron feature should be equal to that measured in other amorphous silicates (e.g., synthesized amorphous Mg2SiO4). It was found that T(sub cond) decreases with decreasing strength of the 10 micron feature, from T(sub cond) = 1000 K to 500 K (estimated error 20 percent). A value for the near-infrared dust absorptivity could not be determined. Although this parameter strongly affects the condensation radius, it hardly affects the shape of the LRS spectrum (as long as the optically thin approximation is valid), because it scales the spatial distribution of the dust. Information on the magnitude of the near-infrared dust absorptivity may be deduced from the unique carbon star BM Gem. This star has a LRS spectrum with silicate features indication an inner dust shell temperature of at least 1000 K. However, on the basis of observations in the 1920s-30s one may infer an inner dust shell radius of at least 6x10(exp 12)m. To have this high temperature at such a large distance, the near-infrared absorptivity of the dust must be high.
High blood Pressure in children and its correlation with three definitions of obesity in childhood
de Moraes, Leonardo Iezzi; Nicola, Thaís Coutinho; de Jesus, Julyanna Silva Araújo; Alves, Eduardo Roberty Badiani; Giovaninni, Nayara Paula Bernurdes; Marcato, Daniele Gasparini; Sampaio, Jéssica Dutra; Fuly, Jeanne Teixeira Bessa; Costalonga, Everlayny Fiorot
2014-01-01
Background Several authors have correlated the increase of cardiovascular risk with the nutritional status, however there are different criteria for the classification of overweight and obesity in children. Objectives To evaluate the performance of three nutritional classification criteria in children, as definers of the presence of obesity and predictors of high blood pressure in schoolchildren. Methods Eight hundred and seventeen children ranging 6 to 13 years old, enrolled in public schools in the municipality of Vila Velha (ES) were submitted to anthropometric evaluation and blood pressure measurement. The classification of the nutritional status was established by two international criteria (CDC/NCHS 2000 and IOTF 2000) and one Brazilian criterion (Conde e Monteiro 2006). Results The prevalence of overweight was higher when the criterion of Conde e Monteiro (27%) was used, and inferior by the IOTF (15%) criteria. High blood pressure was observed in 7.3% of children. It was identified a strong association between the presence of overweight and the occurrence of high blood pressure, regardless of the test used (p < 0.001). The test showing the highest sensitivity in predicting elevated BP was the Conde e Monteiro (44%), while the highest specificity (94%) and greater overall accuracy (63%), was the CDC criterion. Conclusions The prevalence of overweight in Brazilian children is higher when using the classification criterion of Conde e Monteiro, and lower when the criterion used is IOTF. The Brazilian classification criterion proved to be the most sensitive predictor of high BP risk in this sample. PMID:24676372
Bianchi type-I universe in f(R, T) modified gravity with quark matter and Λ
NASA Astrophysics Data System (ADS)
Ćaǧlar, Halife; Aygün, Sezgin
2017-02-01
In this study, we investigate homogeneous and anisotropic Bianchi type I universe in the presence of quark matter source in f(R, T) gravity (Harko et al. in Phys. Rev. D 84:024020, 2011) with cosmological constant Λ (where R is the Ricci scalar and T is the trace of the energy momentum tensor). For this aim we have used the anisotropy feature of Bianchi type I universe and equation of states (EoS) of quark matter. We explore the exact solution f(R,T)=R+2f(T) model for Bianchi type I universe model. When t→∞, we get very small cosmological constant value, this result agrees with recent observations.
NASA Astrophysics Data System (ADS)
Oechslin, R.; Janka, H.-T.; Marek, A.
2007-05-01
An extended set of binary neutron star (NS) merger simulations is performed with an approximative treatment of general relativity to systematically investigate the influence of the nuclear equation of state (EoS), the NS masses, and the NS spin states prior to merging. The general relativistic hydrodynamics simulations are based on a conformally flat approximation to the Einstein equations and a Smoothed Particle Hydrodynamics code for the gas treatment. We employ the two non-zero temperature EoSs of Shen et al. (1998a, Nucl. Phys. A, 637, 435; 1998b, Prog. Theor. Phys., 100, 1013) and Lattimer & Swesty (1991, Nucl. Phys. A, 535, 331), which represent a "harder" and a "softer" behavior, respectively, with characteristic differences in the incompressibility at supernuclear densities and in the maximum mass of nonrotating, cold neutron stars. In addition, we use the cold EoS of Akmal et al. (1998, Phys. Rev. C, 58, 1804) with a simple ideal-gas-like extension according to Shibata & Taniguchi (2006, Phys. Rev. D, 73, 064027), in order to compare with their results, and an ideal-gas EoS with parameters fitted to the supernuclear part of the Shen-EoS. We estimate the mass sitting in a dilute "torus" around the future black hole (BH) by requiring the specific angular momentum of the torus matter to be larger than the angular momentum of the ISCO around a Kerr BH with the mass and spin parameter of the compact central remnant. The dynamics and outcome of the models is found to depend strongly on the EoS and on the binary parameters. Larger torus masses are found for asymmetric systems (up to 0.3 M_⊙ for a mass ratio of 0.55), for large initial NSs, and for a NS spin state which corresponds to a larger total angular momentum. We find that the postmerger remnant collapses either immediately or after a short time when employing the soft EoS of Lattimer& Swesty, whereas no sign of post-merging collapse is found within tens of dynamical timescales for all other EoSs used. The typical temperatures in the torus are found to be about 3{-}10 MeV depending on the strength of the shear motion at the collision interface between the NSs and thus depending on the initial NS spins. About 10-3{-}10-2 M_⊙ of NS matter become gravitationally unbound during or right after the merging process. This matter consists of a hot/high-entropy component from the collision interface and (only in case of asymmetric systems) of a cool/low-entropy component from the spiral arm tips. Appendices are only available in electronic form at http://www.aanda.org
Spontaneous Vortices in Imbalance Populated Fermion Gas, Finite Size System
NASA Astrophysics Data System (ADS)
Su, Jung-Jung; Shim, Yun-Pil; Duine, Rembert; MacDonald, Allan H.
2006-05-01
Atomic Fermion gases with mismatched densities have attracted much interest recently both experimentally and theoretically. These gases are related to superconductors in a magnetic field, to color superconductivity in high density QCD and to other systems. The main focus of recent research is on the possibility of unusual pairing states, the Larkin-Ovchinnikov-Fulde-Ferrel(LOFF)[1] phase, the Deformed Fermi surface(DFS)[2] and other states have been suggested in the past few years. We work specifically on two-dimensional systems with circular hard walls which contain atoms with two different hyperfine states and different populations. In addition to phase separation, a phenomenon that has already been observed[3], we consider the possibility of the spontaneous formation of vortices and giant vortices in some regions of parameter space. [1] Qinghong Cui, C.-R. Hu, J.Y.T. Wei, and Kun Yang, cond-mat/0510717 [2] Armen Sedrakian, Jordi Mur-Petit, Artur Polls, Herbert M"uther , cond-mat/0404577 [3] Guthrie B. Partridge, Wenhui Li, Ramsey I. Kamar, Yean-an Liao, Randall G. Hulet, cond-mat/0511752
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hiratsuka, Tatsumasa; Tanaka, Hideki, E-mail: tanaka@cheme.kyoto-u.ac.jp; Miyahara, Minoru T., E-mail: miyahara@cheme.kyoto-u.ac.jp
Capillary condensation in the regime of developing hysteresis occurs at a vapor pressure, P{sub cond}, that is less than that of the vapor-like spinodal. This is because the energy barrier for the vapor-liquid transition from a metastable state at P{sub cond} becomes equal to the energy fluctuation of the system; however, a detailed mechanism of the spontaneous transition has not been acquired even through extensive experimental and simulation studies. We therefore construct accurate atomistic silica mesopore models for MCM-41 and perform molecular simulations (gauge cell Monte Carlo and grand canonical Monte Carlo) for argon adsorption on the models at subcriticalmore » temperatures. A careful comparison between the simulation and experiment reveals that the energy barrier for the capillary condensation has a critical dimensionless value, W{sub c}{sup *} = 0.175, which corresponds to the thermal fluctuation of the system and depends neither on the mesopore size nor on the temperature. We show that the critical energy barrier W{sub c}{sup *} controls the capillary condensation pressure P{sub cond} and also determines a boundary between the reversible condensation/evaporation regime and the developing hysteresis regime.« less
NASA Astrophysics Data System (ADS)
Wang, S.; Zhang, L.; Guanter, L.; Huang, C.
2017-12-01
Photosynthesis and evapotranspiration (ET) are the two most important activities of vegetation and make a great contribution to carbon, water and energy exchanges. Remote sensing provides opportunities for monitoring these processes across time and space. This study focuses on tracking diurnal changes of photosynthesis and evapotranspiration over soybean using multiple measurement techniques. Diurnal changes of both remote sensing-based indicators, including active and passive chlorophyll fluorescence and biophysical-related parameters, including photosynthesis rate (photo) and leaf stomatal conductance (cond), were observed. Results showed that both leaf-level steady-state fluorescence (Fs) and canopy-level solar-induced chlorophyll fluorescence were linearly correlated to photosynthetically active radiation (PAR) during the daytime. A double-peak diurnal change curve was observed for leaf-level photo and cond but not for Fs or SIF. Photo and cond showed a strong nonlinear (second-order) correlation, indicating that photosynthesis, which might be remotely sensed by SIF, has the opportunity to track short-term changes of ET. Results presented in this report will be helpful for better understanding the relationship between remote-sensing-based indices and vegetation's biophysical processes.
1987-03-01
some general results and definitions from robust statistics (see Hampel et. al.. 1986). The influence function of an M-Lstimator is IC (y.x.0) = D_...estimator is (4,T T T (\\cond(YXGB) . Yx(x,O.B) ) . where X~xO.) =x T T8 xT-lx 1/2 = x x v(x . b/(x B x) ) - B. The influence function of this...the influence function for (3.7) and (3.8) is equal to -. Eo[\\Pcond(y.X.,B)] -1 cond(Yx. ,B). (4.3) On the other hand, the influence function for the
Reply to ``Comment on `Counterfactual entanglement and nonlocal correlations in separable states' ''
NASA Astrophysics Data System (ADS)
Cohen, Oliver
2001-01-01
Two objections have been raised to the arguments presented by Cohen [Phys. Rev. A 60, 80 (1999)]. It is pointed out that neither objection has anything to do with the main subject matter of that paper, and shown that both objections are based on misunderstandings of the examples to which they relate.
Phase structure of one-dimensional interacting Floquet systems. II. Symmetry-broken phases
NASA Astrophysics Data System (ADS)
von Keyserlingk, C. W.; Sondhi, S. L.
2016-06-01
Recent work suggests that a sharp definition of "phase of matter" can be given for periodically driven "Floquet" quantum systems exhibiting many-body localization. In this work, we propose a classification of the phases of interacting Floquet localized systems with (completely) spontaneously broken symmetries; we focus on the one-dimensional case, but our results appear to generalize to higher dimensions. We find that the different Floquet phases correspond to elements of Z (G ) , the center of the symmetry group in question. In a previous paper [C. W. von Keyserlingk and S. L. Sondhi, preceding paper, Phys. Rev. B 93, 245145 (2016)], 10.1103/PhysRevB.93.245145, we offered a companion classification of unbroken, i.e., paramagnetic phases.
Effects of wildfires on ash Carbon, Nitrogen and C/N ratio in Mediterranean forests
NASA Astrophysics Data System (ADS)
Pereira, P.; Ubeda, X.; Martin, D. A.
2009-04-01
Carbon (C) and Nitrogen(N) are key nutrients in ecosystems health and the more affected by fire temperatures, because of their low temperatures of volatilization. After a wildfire, due higher temperatures reached, a great amount of C and N can be evacuated from the ecosystems and the percentage of C and N not vaporized is concentrated in ashes. Hence, the study of ash C and N is of major importance because will be linked with the capacity of ecosystem recuperation. The aim of this work is study the C, and C/N of three wildfires occurred in Mediterranean forests dominated by Quercus suber and Pinus pinea in Portugal. In the first wildfire, named "Quinta do Conde", we collected 30 samples, in the second, "Quinta da Areia", 32 samples and the third, "Casal do Sapo" 40 samples To estimate the consequences of wildfires in the parameters in study, we collected several samples of unburned litter near burned areas, composed by the same vegetation. The results showed that wildfires induced in % of Total Carbon (%TC) ashes content a non significantly reduction in Quinta do Conde plot (at a p<0,05) and significantly in Quinta da Areia plot (p<0.001) and Casal do Sapo plot (p<0.001). In % of Total Nitrogen (%TN) ashes content we observed in Quinta do Conde plot a significant increase (p<0.001), a non significant decrease in Quinta da Areia plot (at a p<0,05) and a significant reduce in Casal do Sapo plot (p<0.01). The The C/N ratio suffer a significant (p<0.001) reduction in Quinta do Conde and Quinta da Areia plots and at a p<0.01 in Casal do Sapo plot. In all parameters in study, wilfires induced a greater spatial variability, by the analysis of the Coefficient of Variation. Our tests effectuated in laboratory with samples collected near wildfires occurrence and exposed to the temperature gradient (150°, 200°, 250°, 300°, 350°, 400°, 450°, 500°, 550°C) fit with the results obtained. With temperature gradient, we identified a decrease of %TC ash content of Quercus suber samples and a rise until the 300°C in Pinus pinaster samples decreasing thereafter especially after the 400°C. In %TN we identified a rise in both species reducing abruptly at 450°C. C/N ratio decrease importantly after the 150°C. Theses results showed us that wildfires can have different effects C and N litter resources, depending on the severity and temperature reached. Crossing the results obtained in laboratory simulations with the samples collected in wildfires we will have an idea about the severity and temperature occurred in each wildfire. Overall, the lower severity were observed in Quinta do Conde plot and the higher in Casal do Sapo plot, being Quinta da Areia in a middle position. The C and N levels after a wildfire will determine the capacity of landscape recuperation and according the data obtained this will be higher in Quinta do Conde plot and lesser in Casal do Sapo plot. These hypothesis will be confirmed by field observation. Keywords: Carbon, Nitrogen, C/N ratio, wildfires, ashes, Quinta do Conde, Quinta da Areia, Casal do Sapo, Quercus suber, Pinus pinaster, Laboratory simulations, Severity, Landscape recuperation.
Can particle-creation phenomena replace dark energy?
NASA Astrophysics Data System (ADS)
Debnath, Subhra; Sanyal, Abhik Kumar
2011-07-01
Particle creation at the expense of the gravitational field might be sufficient to explain the cosmic evolution history, without the need of dark energy at all. This phenomena has been investigated in a recent work by Lima et al (Class. Quantum Grav. 2008 25 205006) assuming particle creation at the cost of gravitational energy in the late Universe. However, the model does not satisfy the WMAP constraint on the matter-radiation equality (Steigman et al 2009 J. Cosmol. Astropart. Phys. JCAP06(2009)033). Here, we have suggested a model, in the same framework, which fits perfectly with SNIa data at low redshift as well as an early integrated Sachs-Wolfe effect on the matter-radiation equality determined by WMAP at high redshift. Such a model requires the presence of nearly 26% primeval matter in the form of baryons and cold dark matter.
PREFACE: Quantum information processing
NASA Astrophysics Data System (ADS)
Briggs, Andrew; Ferry, David; Stoneham, Marshall
2006-05-01
Microelectronics and the classical information technologies transformed the physics of semiconductors. Photonics has given optical materials a new direction. Quantum information technologies, we believe, will have immense impact on condensed matter physics. The novel systems of quantum information processing need to be designed and made. Their behaviours must be manipulated in ways that are intrinsically quantal and generally nanoscale. Both in this special issue and in previous issues (see e.g., Spiller T P and Munro W J 2006 J. Phys.: Condens. Matter 18 V1-10) we see the emergence of new ideas that link the fundamentals of science to the pragmatism of market-led industry. We hope these papers will be followed by many others on quantum information processing in the Journal of Physics: Condensed Matter.
NASA Astrophysics Data System (ADS)
Schubert, Christian; Abend, Sven; Gebbe, Martina; Gersemann, Matthias; Ahlers, Holger; Müntinga, Hauke; Matthias, Jonas; Sahelgozin, Maral; Herr, Waldemar; Lämmerzahl, Claus; Ertmer, Wolfgang; Rasel, Ernst
2016-04-01
Atom interferometry has developed into a tool for measuring rotations [1], accelerations [2], and testing fundamental physics [3]. Gravimeters based on laser cooled atoms demonstrated residual uncertainties of few microgal [2,4] and were simplified for field applications [5]. Atomic gravimeters rely on the interference of matter waves which are coherently manipulated by laser light fields. The latter can be interpreted as rulers to which the position of the atoms is compared. At three points in time separated by a free evolution, the light fields are pulsed onto the atoms. First, a coherent superposition of two momentum states is produced, then the momentum is inverted, and finally the two trajectories are recombined. Depending on the acceleration the atoms experienced, the number of atoms detected in the output ports will change. Consequently, the acceleration can be determined from the output signal. The laser cooled atoms with microkelvin temperatures used in state-of-the-art gravimeters impose limits on the accuracy [4]. Therefore, ultra-cold atoms generated by Bose-Einstein condensation and delta-kick collimation [6,7] are expected to be the key for further improvements. These sources suffered from a low flux implying an incompatible noise floor, but a competitive performance was demonstrated recently with atom chips [8]. In the compact and robust setup constructed for operation in the drop tower [6] we demonstrated all steps necessary for an atom chip gravimeter with Bose-Einstein condensates in a ground based operation. We will discuss the principle of operation, the current performance, and the perspectives to supersede the state of the art. The authors thank the QUANTUS cooperation for contributions to the drop tower project in the earlier stages. This work is supported by the German Space Agency (DLR) with funds provided by the Federal Ministry for Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under grant numbers DLR 50WM1552-1557 (QUANTUS-IV-Fallturm) and by the Deutsche Forschungsgemeinschaft in the framework of the SFB 1128 geo-Q. [1] P. Berg et al., Composite-Light-Pulse Technique for High-Precision Atom Interferometry, Phys. Rev. Lett., 114, 063002, 2015. [2] A. Peters et al., Measurement of gravitational acceleration by dropping atoms, Nature 400, 849, 1999. [3] D. Schlippert et al., Quantum Test of the Universality of Free Fall, Phys. Rev. Lett., 112, 203002, 2014. [4] A. Louchet-Chauvet et al., The influence of transverse motion within an atomic gravimeter, New J. Phys. 13, 065026, 2011. [5] Q. Bodart et al., A cold atom pyramidal gravimeter with a single laser beam, Appl. Phys. Lett. 96, 134101, 2010. [6] H. Müntinga et al., Interferometry with Bose-Einstein Condensates in Microgravity, Phys. Rev. Lett., 110, 093602, 2013. [7] T. Kovachy et al., Matter Wave Lensing to Picokelvin Temperatures, Phys. Rev. Lett. 114, 143004, 2015. [8] J. Rudolph et al., A high-flux BEC source for mobile atom interferometers, New J. Phys. 17, 065001, 2015.
User’s Manual for Strategic Satellite System Terminal Segment Life Cycle Cost Model. Volume 1
1981-03-01
the depot pipeline, given by: NFD(I) = EFAIL (I,NS)*TNB(NS) NS *1 [LRU(I) + RTS(NHI(1))]*NRTS(I)*DRCT(LO(NS)) + NRTS(NHI(i))*(l - COND(I))*DADI where... EFAIL (I,NS)*TNB(NS)* [(LRU(I) + RTS(NHI(I)))*NRTS(I) NS + NRTS(NHI(I))*(l-COND(I))] *DMH(I)*DMF where DMH(I) = averaRP marnours to perform depot...XJC - RSCA(I) + 12*PIUP* EFAIL (I,NS)*TNB(NS)* NS {(LRUCI)+RTS(NHI(I)))* (CR(I)*BIIH(I)*BMF*BLR + CN(I)*(DMH(I)*DMF*DLR + 2*CPPD(LOCNS))*WT(I)) + CC
A note on the theory of fast money flow dynamics
NASA Astrophysics Data System (ADS)
Sokolov, A.; Kieu, T.; Melatos, A.
2010-08-01
The gauge theory of arbitrage was introduced by Ilinski in [K. Ilinski, preprint arXiv:hep-th/9710148 (1997)] and applied to fast money flows in [A. Ilinskaia, K. Ilinski, preprint arXiv:cond-mat/9902044 (1999); K. Ilinski, Physics of finance: gauge modelling in non-equilibrium pricing (Wiley, 2001)]. The theory of fast money flow dynamics attempts to model the evolution of currency exchange rates and stock prices on short, e.g. intra-day, time scales. It has been used to explain some of the heuristic trading rules, known as technical analysis, that are used by professional traders in the equity and foreign exchange markets. A critique of some of the underlying assumptions of the gauge theory of arbitrage was presented by Sornette in [D. Sornette, Int. J. Mod. Phys. C 9, 505 (1998)]. In this paper, we present a critique of the theory of fast money flow dynamics, which was not examined by Sornette. We demonstrate that the choice of the input parameters used in [K. Ilinski, Physics of finance: gauge modelling in non-equilibrium pricing (Wiley, 2001)] results in sinusoidal oscillations of the exchange rate, in conflict with the results presented in [K. Ilinski, Physics of finance: gauge modelling in non-equilibrium pricing (Wiley, 2001)]. We also find that the dynamics predicted by the theory are generally unstable in most realistic situations, with the exchange rate tending to zero or infinity exponentially.
NASA Astrophysics Data System (ADS)
Felser, Claudia; Hillebrands, Burkard
2009-04-01
This is the third cluster issue of Journal Physics D: Applied Physics devoted to half-metallic Heusler compounds and devices utilizing this class of materials. Heusler compounds are named after Fritz Heusler, the owner of a German copper mine, the Isabellenhütte, who discovered this class of materials in 1903 [1]. He synthesized mixtures of Cu2Mn alloys with various main group metals Z = Al, Si, Sn, Sb, which became ferromagnetic despite all constituents being non-magnetic. The recent success story of Heusler compounds began in 1983 with the discovery of the half-metallic electronic structure in NiMnSb [2] and Co2MnZ [3], making these and similar materials, in particular PtMnSb, also useful for magneto-optical data storage media applications due to their high Kerr rotation. The real breakthrough, however, came in 2000 with the observation of a large magnetoresistance effect in Co2Cr0.6Fe0.4Al [4]. The Co2YZ (Y = Ti, Cr, Mn, Fe) compounds are a special class of materials, which follow the Slater-Pauling rule [5], and most of them are half-metallic bulk materials. The electronic structure of Heusler compounds is well understood [6] and Curie temperatures up to 1100 K have been observed [7]. In their contribution to this cluster issue, Thoene et al predict that still higher Curie temperatures can be achieved. A breakthrough from the viewpoint of materials design is the synthesis of nanoparticles of Heusler compounds as reported in the contribution by Basit et al. Nano-sized half- metallic ferromagnets will open new directions for spintronic applications. The challenge, however, is still to produce spintronic devices with well defined interfaces to take advantage of the half-metallicity of the electrodes. Several groups have succeeded in producing excellent tunnel junctions with high magnetoresistance effects at low temperatures and decent values at room temperature [8-11]. Spin-dependent tunnelling characteristics of fully epitaxial magnetic tunnel junctions with a Heusler alloy can be used to obtain information about the half-metallicity and the magnons as reported by Taira et al in this issue. An improvement of the tunnel magnetoresistance effect (TMR) at room temperature could be achieved by shifting the Fermi energy from the edges of the valence or the conduction band into the middle of the gap [12]. In the case of Co2FeSi0.5Al0.5 (CFAS), TMR values higher than 200% can be achieved [13]. The improvement of the interface seems to be important as has been shown by XMCD (x-ray magnetic circular dichroism) [14] and photoemission spectroscopy [15]. The interface magnetization is very often reduced [14]; however, the interface and the surface electron spin polarization can be improved by post annealing as reported by Wüstenberg et al in this issue. High energy photoemission spectroscopy is a new tool for investigating bulk properties of Heusler compounds [16]. In this issue we report on the investigation of a whole device structure by this technique due to the high escape depth inherent to this method in the contribution of Herbort et al. Dynamic correlations might be a reason for the formation of non-quasi-particles such as magnons in the gap [17], which destroy the half-metallicity and thus can be considered as another cause for the reduced TMR at room temperature. Thus correlations have to be taken into account. This is demonstrated for the Heusler compound Co2Mn1 - xFexSi as reported by Chadov et al in this issue. Magneto-optic methods are powerful instruments for investigating magnetic properties of Heusler compounds. The determination of the huge quadratic Kerr effect in the Co2FeSi Heusler compound is a good example [18]. In this issue Hamrle et al and Gaier et al report on the determination of the exchange constant by measuring the magnon dispersion properties using Brillouin light scattering spectroscopy. The magnon dispersion was calculated by Thoene et al. New developments in the field of spintronics go into the direction of the spin-Hall effect, spin-torque investigations and CPP GMR (current perpendicular plane giant magnetoresistance). Schneider et al have studied the Hall effect of laser ablated Co2(MnFe)Si thin films. Recently Inomata's group has reported on a high CPP GMR effect based on CFSA [19]. In this issue a theoretical study by Dai et al reports on the interfaces between CCFA and very thin chromium layers. Here the interface stays half-metallic which is a promising result regarding the realization of potential GMR devices. For spin-torque applications special requirements concerning the materials are necessary. Low damping constants, low magnetic moments and a perpendicular anisotropy are favourable properties. Ferrimagnetic Heusler compounds are candidates for low magnetic moments despite a high spin polarization and a high Curie temperature [20, 21]. Mn3Ga shows additionally a tetragonal distortion, which is favourable for perpendicular anisotropy [21]. The stability of Heusler compounds versus structural distortion is a well known phenomenon in shape memory alloys [22]. We hope this cluster of papers will inspire many researchers in the field of spintronics and motivate some of them to use these advanced materials for new devices. References [1] Heusler F 1903 Verh. Dtsch. Phys. Ges. 12 219 [2] de Groot R A, Müller F M, van Engen P G and Buschow K H J 1983 Phys. Rev. Lett. 50 2024 [3] Kübler J, Williams A R, Sommers C B 1983 Phys. Rev. B 28 1745 [4] Block T, Felser C and Jakob G 2003 J. Solid State Chem. 176 646 [5] Galanakis I, Mavropoulos Ph and Dederichs P H 2006 J. Phys. D: Appl. Phys. 39 765 [6] Kandpal H C, Fecher G H and Felser C 2007 J. Phys. D: Appl. Phys. 40 1507 [7] Wurmehl S, Fecher G H, Kandpal H C, Ksenofontov V, Felser C and Lin H J 2006 Appl. Phys. Lett. 86 032503 [8] Kämmerer S, Thomas A, Hütten A and Reiss G 2004 Appl. Phys. Lett. 85 79 [9] Yamato M, Marukame T, Ishikawa T, Matsuda K, Uemura T and Arita M 2006 J. Phys. D: Appl. Phys. 39 824 [10] Sakuraba Y, Hattori M, Oogane M, Ando Y, Kato H, Sakuma A, Miyazaki T and Kubota H 2006 Appl. Phys. Lett. 88 192508 [11] Inomata K, Okamura S, Miyazaki A, Kikuchi M, Tezuka N, Wojcik M and Jedryka E 2006 J. Phys. D: Appl. Phys. 39 816 [12] Fecher G H and Felser C 2007 J. Phys. D: Appl. Phys. 40 1582 [13] Tezuka N, Ikeda N, Miyazaki A, Sugimoto S, Kikuchi M and Inomata K 2006 Appl. Phys. Lett. 89 112514 [14] Kallmayer M, Schneider H, Jakob G, Elmers H J, Balke B and Cramm S 2007 J. Phys. D: Appl. Phys. 40 1552 [15] Cinchetti M, Wüstenberg J P, Sánchez Albaneda M, Steeb F, Conca A, Jourdan M and Aeschlimann M 2007 J. Phys. D: Appl. Phys. 40 1544 [16] Fecher G H, Balke B, Ouardi S, Felser C, Schonhense G, Ikenaga E, Kim J J, Ueda S and Kobayashi K 2007 J. Phys. D: Appl. Phys. 40 1576 [17] Chioncel L, Sakuraba Y, Arrigoni E, Katsnelson M I, Oogane M, Ando Y, Miyazaki T, Burzo E and Lichtenstein A I 2008 Phys. Rev. Lett. 100 086402 [18] Hamrle J, Blomeier S, Gaier O, Hillebrands B, Schneider H, Jakob G, Postava K and Felser C 2007 J. Phys. D: Appl. Phys. 40 1563 [19] Furubayashi T, Kodama K, Sukegawa H, Takahashi Y K, Inomata K and Hono K 2008 Appl. Phys. Lett. 93 122507 [20] Balke B, Fecher G H, Winterlik J and Felser C 2007 Appl. Phys. Lett. 90 152504 [21] Wurmehl S, Kandpal H C, Fecher G H and Felser C 2006 J. Phys.: Cond. Mat. 18 6171 [22] Entel P, Bucheinikov V D, Khovailo V V, Zayak A T, Adeagbo W A, Gruner M E, Herper H C and Wassermann E F 2006 J. Phys. D: Appl. Phys. 39 865
Classifying the Quantum Phases of Matter
2015-01-01
Kim related entanglement entropy to topological storage of quantum information [8]. Michalakis et al. showed that a particle-like excitation spectrum...Perturbative analysis of topological entanglement entropy from conditional independence, Phys. Rev. B 86, 254116 (2012), arXiv:1210.2360. [3] I. Kim...symmetries or long-range entanglement ), (2) elucidating the properties of three-dimensional quantum codes (in particular those which admit no string-like
Progress towards an ab initio real-time treatment of warm dense matter
NASA Astrophysics Data System (ADS)
Baczewski, Andrew; Cangi, Attila; Hansen, Stephanie; Jensen, Daniel
2017-10-01
Time-dependent density functional theory (TDDFT) provides an accurate description of equilibrium properties of warm dense matter, such as the dynamic structure factor (Baczewski et al., Phys. Rev. Lett., 116(11), 2016). While non-equilibrium properties, such as stopping power, have also been demonstrated to be within the grasp of TDDFT, the ultrafast isochoric heating of condensed matter into the warm dense state, enabled by recent advances in XFELs, remains beyond its capabilities. In this talk, we will describe the successes of and continuing challenges for TDDFT for warm dense matter, and present progress towards a more complete ab initio treatment of isochoric x-ray heating. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the DOE's National Nuclear Security Administration under contract DE-NA0003525.
Possible resonance effect of axionic dark matter in Josephson junctions.
Beck, Christian
2013-12-06
We provide theoretical arguments that dark-matter axions from the galactic halo that pass through Earth may generate a small observable signal in resonant S/N/S Josephson junctions. The corresponding interaction process is based on the uniqueness of the gauge-invariant axion Josephson phase angle modulo 2π and is predicted to produce a small Shapiro steplike feature without externally applied microwave radiation when the Josephson frequency resonates with the axion mass. A resonance signal of so far unknown origin observed by C. Hoffmann et al. [Phys. Rev. B 70, 180503(R) (2004)] is consistent with our theory and can be interpreted in terms of an axion mass m(a)c2=0.11 meV and a local galactic axionic dark-matter density of 0.05 GeV/cm3. We discuss future experimental checks to confirm the dark-matter nature of the observed signal.
NASA Astrophysics Data System (ADS)
Shulgina, N. B.; Ershov, S. N.; Vaagen, J. S.; Zhukov, M. V.
2018-06-01
An unusually large value of the 22C matter radius, extracted by Tanaka et al. [Phys. Rev. Lett. 104, 062701 (2010), 10.1103/PhysRevLett.104.062701] from measured reaction cross sections, attracted great attention of scientific community. Since that time, several experimental works related to the 22C nucleus have appeared in the literature. Some of the experimental data, measured with high accuracy, allow us to fix 22C structure more reliably. Two limiting models reproducing 22C nuclear structure within the three-body cluster approach, that allow us to describe all existing experimental data, are presented. The 22C ground state, continuum structure, and geometry are obtained. With fixed 22C wave function, the prediction for the soft dipole mode in 22C, which is studied in the process of Coulomb fragmentation, is performed.
Scalar-fluid interacting dark energy: Cosmological dynamics beyond the exponential potential
NASA Astrophysics Data System (ADS)
Dutta, Jibitesh; Khyllep, Wompherdeiki; Tamanini, Nicola
2017-01-01
We extend the dynamical systems analysis of scalar-fluid interacting dark energy models performed in C. G. Boehmer et al., Phys. Rev. D 91, 123002 (2015), 10.1103/PhysRevD.91.123002 by considering scalar field potentials beyond the exponential type. The properties and stability of critical points are examined using a combination of linear analysis, computational methods and advanced mathematical techniques, such as center manifold theory. We show that the interesting results obtained with an exponential potential can generally be recovered also for more complicated scalar field potentials. In particular, employing power law and hyperbolic potentials as examples, we find late time accelerated attractors, transitions from dark matter to dark energy domination with specific distinguishing features, and accelerated scaling solutions capable of solving the cosmic coincidence problem.
David Adler Lectureship Award in the Field of Materials Physics Talk: Surfaces of Quasicrystals
NASA Astrophysics Data System (ADS)
Thiel, Patricia
2010-03-01
Quasiperiodic order is recognized (in a utilitarian, rather than a mathematical sense) by the absence of periodicity, concurrent with a classically-forbidden rotational symmetry. It is quite beautiful, having captured the attention of scientists and artists alike. Following the discovery of quasiperiodic order in a real system,footnotetextD. Shechtman, I. Blech, D. Gratias, and J.W. Cahn, Phys. Rev. Lett. 53, 1951 (1984). many metallic alloys and intermetallics were found to exhibit this type of order on the atomic scale. More recently ``soft'' quasicrystals were discovered,footnotetextL. Bindi, P.J. Steinhardt, N. Yao, and P.J. Lu, Science 324, 1306 (2009). and nanocrystalline arrays were found to spontaneously adopt quasiperiodic order.footnotetextD.V. Talapin, E.V. Shevchenko, M.I. Bodnarchuk, X. Ye, J. Chen, and C.B. Murray, Nature 461 , 964 (2009). From a scientific perspective, quasicrystals are alluring because they allow us to test the relationship between atomic structure and physical properties. This talk deals with the ways in which our understanding of solid surfaces has been both enriched and challenged by these complex materials.footnotetextP. Thiel, Annu. Rev. Phys. Chem. (2008).^,footnotetextV. Fourn'ee, J. Ledieu, and P. Thiel, J. Phys: Condens. Matter. 20, 3310301 (2008). properties of the metallic quasicrystals originally generated interest because they were unusual.footnotetextJ.M. Dubois, Useful Quasicrystals(World Scientific, Singapore, 2005). For instance, among Al-rich alloys, the Al-based quasicrystalline phases exhibit puzzling resistance to surface oxidation. Also, Al-rich quasicrystals have surprisingly good and promising catalytic properties (e.g. for steam reforming of methanol).footnotetextA.P. Tsai and M. Yoshimura, Appl. Cat. A: General 214 , 237 (2001). Perhaps most famously, they exhibit low friction.^7 Comparisons with crystalline materials have established that these features are deeply related to the quasiperiodic atomic structure. talk focuses, first, on the ways that surfaces of quasicrystals are unusual templates for adsorption and solid film growth.footnotetextV. Fourn'ee and P.A. Thiel, J. Phys. D: Appl. Phys. 38, R83 (2005). They can enforce quasicrystalline structure in films,footnotetextK.J. Franke, H.R. Sharma, W. Theis, P. Gille, P. Ebert, and K.H. Rieder, Phys. Rev. Lett. 89, 156104 (2002). opening the door to exploration of the properties of materials in such an ``unnatural'' state. The electronic structure at quasicrystal surfaces can affect film morphology through a quantum size effect.footnotetextV. Fourn'ee, H.R. Sharma, M. Shimoda, A.P. Tsai, B. Unal, A.R. Ross, T.A. Lograsso, and P.A. Thiel, Phys. Rev. Lett. 95, 155504 (2005).^,footnotetextB. "Unal, V. Fourn'ee, P.A. Thiel, and J.W. Evans, Phys. Rev. Lett. 102, 196103 (2009). Quasicrystal surfaces have broad ensembles of adsorption sites,footnotetextB. "Unal, C.J. Jenks, and P.A. Thiel, J. Phys: Condens. Matter. 21, 055009 (2009). including trap sites that may lead to quasi-periodic arrays of islands.footnotetextT. Cai, J. Ledieu, R. McGrath, V. Fourn'ee, T.A. Lograsso, A.R. Ross, and P.A. Thiel, Surface Sci. 526, 115 (2003).^,footnotetextB. Unal, V. Fourn'ee, K.J. Schnitzenbaumer, C. Ghosh, C.J. Jenks, A.R. Ross, T.A. Lograsso, J.W. Evans, and P.A. Thiel, Phys. Rev. B 75, 064205 (2007). This talk also focuses on their low friction, when measured with techniques that probe macroscopic scales (conventional pin-on-disk tribometers) to nanoscopic scales (atomic force microscopy).footnotetext5. J.Y. Park, D.F. Ogletree, M. Salmeron, R.A. Ribeiro, P.C. Canfield, C.J. Jenks, and P.A. Thiel, Science , 1354 (2005).
NASA Astrophysics Data System (ADS)
Souliotis, G. A.; Shetty, D. V.; Galanopoulos, S.; Yennello, S. J.
2008-04-01
A systematic study of heavy residues formed in peripheral collisions below the Fermi energy has been undertaken at Texas A&M aiming at obtaining information on the mechanism of nucleon exchange and the course towards N/Z equilibration [1,2]. We expect to get insight on the dynamics and the nuclear equation of state by comparing our heavy residue data to detailed calculations using microscopic models of quantum molecular dynamics (QMD) type. We are performing calculations using two codes: the CoMD code of M. Papa, A. Bonasera [3] and the CHIMERA-QMD code of J. Lukasik [4]. Both codes implement an effective interaction with a nuclear-matter compressibility of K=200 (soft EOS) with several forms of the density dependence of the nucleon-nucleon symmetry potential. CoMD imposes a constraint in the phase space occupation for each nucleon restoring the Pauli principle at each time step of the collision. CHIMERA-QMD uses a Pauli potential term to mimic the Pauli principle. Results of the calculations and comparisons with our residue data will be presented. [1] G.A. Souliotis et al., Phys. Rev. Lett. 91, 022701 (2003). [2] G.A. Souliotis et al., Phys. Lett. B 588, 35 (2004). [3] M. Papa et al., Phys. Rev. C 64, 024612 (2001). [4] J. Lukasik, Z. Majka, Acta Phys. Pol. B 24, 1959 (1993).
Anisotropic, nonsingular early universe model leading to a realistic cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dechant, Pierre-Philippe; Lasenby, Anthony N.; Hobson, Michael P.
2009-02-15
We present a novel cosmological model in which scalar field matter in a biaxial Bianchi IX geometry leads to a nonsingular 'pancaking' solution: the hypersurface volume goes to zero instantaneously at the 'big bang', but all physical quantities, such as curvature invariants and the matter energy density remain finite, and continue smoothly through the big bang. We demonstrate that there exist geodesics extending through the big bang, but that there are also incomplete geodesics that spiral infinitely around a topologically closed spatial dimension at the big bang, rendering it, at worst, a quasiregular singularity. The model is thus reminiscent ofmore » the Taub-NUT vacuum solution in that it has biaxial Bianchi IX geometry and its evolution exhibits a dimensionality reduction at a quasiregular singularity; the two models are, however, rather different, as we will show in a future work. Here we concentrate on the cosmological implications of our model and show how the scalar field drives both isotropization and inflation, thus raising the question of whether structure on the largest scales was laid down at a time when the universe was still oblate (as also suggested by [T. S. Pereira, C. Pitrou, and J.-P. Uzan, J. Cosmol. Astropart. Phys. 9 (2007) 6.][C. Pitrou, T. S. Pereira, and J.-P. Uzan, J. Cosmol. Astropart. Phys. 4 (2008) 4.][A. Guemruekcueoglu, C. Contaldi, and M. Peloso, J. Cosmol. Astropart. Phys. 11 (2007) 005.]). We also discuss the stability of our model to small perturbations around biaxiality and draw an analogy with cosmological perturbations. We conclude by presenting a separate, bouncing solution, which generalizes the known bouncing solution in closed FRW universes.« less
Tahir, N A; Burkart, F; Shutov, A; Schmidt, R; Wollmann, D; Piriz, A R
2014-12-01
In a recent publication [Schmidt et al., Phys. Plasmas 21, 080701 (2014)], we reported results on beam-target interaction experiments that have been carried out at the CERN HiRadMat (High Radiation to Materials) facility using extended solid copper cylindrical targets that were irradiated with a 440-GeV proton beam delivered by the Super Proton Synchrotron (SPS). On the one hand, these experiments confirmed the existence of hydrodynamic tunneling of the protons that leads to substantial increase in the range of the protons and the corresponding hadron shower in the target, a phenomenon predicted by our previous theoretical investigations [Tahir et al., Phys. Rev. ST Accel. Beams 25, 051003 (2012)]. On the other hand, these experiments demonstrated that the beam heated part of the target is severely damaged and is converted into different phases of high energy density (HED) matter, as suggested by our previous theoretical studies [Tahir et al., Phys. Rev. E 79, 046410 (2009)]. The latter confirms that the HiRadMat facility can be used to study HED physics. In the present paper, we give details of the numerical simulations carried out to understand the experimental measurements. These include the evolution of the physical parameters, for example, density, temperature, pressure, and the internal energy in the target, during and after the irradiation. This information is important in order to determine the region of the HED phase diagram that can be accessed in such experiments. These simulations have been done using the energy deposition code fluka and a two-dimensional hydrodynamic code, big2, iteratively.
Swiss-Cheese Gravitino Dark Matter
NASA Astrophysics Data System (ADS)
Misra, Aalok
2014-06-01
We present a phenomenological model which we show can be obtained as a local realization of large volume D 3 / D 7 μ-Split SUSY on a nearly special Lagrangian three-cycle embedded in the big divisor of a Swiss-Cheese Calabi-Yau [Mansi Dhuria, Aalok Misra, arxiv:arXiv:1207.2774 [hep-ph], Nucl. Phys. B867 (2013) 636-748]. After identification of the first generation of SM leptons and quarks with fermionic super-partners of four Wilson line moduli, we discuss the identification of gravitino as a potential dark matter candidate. We also show that it is possible to obtain a 125 GeV light Higgs in our setup.
Light-matter interaction in doped microcavities
NASA Astrophysics Data System (ADS)
Averkiev, N. S.; Glazov, M. M.
2007-07-01
We discuss theoretically the light-matter coupling in a microcavity containing a quantum well with a two-dimensional electron gas. The high density limit where the bound exciton states are absent is considered. The matrix element of an interband optical absorption demonstrates the Mahan singularity [Phys. Rev. B153, 882 (1967); 163, 612 (1967)] due to strong Coulomb effect between the electrons and a photocreated hole. We extend the nonlocal dielectric response theory to calculate the quantum well reflection and transmission coefficients as well as the microcavity transmission spectra. The new eigenmodes of the system are discussed. Their implications for the steady state and time-resolved spectroscopy experiments are analyzed.
Matter-wave entanglement and teleportation by molecular dissociation and collisions.
Opatrný, T; Kurizki, G
2001-04-02
We propose dissociation of cold diatomic molecules as a source of atom pairs with highly correlated (entangled) positions and momenta, approximating the original quantum state introduced by Einstein, Podolsky, and Rosen (EPR) [Phys. Rev. 47, 777 (1935)]. Wave packet teleportation is shown to be achievable by its collision with one of the EPR correlated atoms and manipulation of the other atom in the pair.
Matter-Wave Entanglement and Teleportation by Molecular Dissociation and Collisions
NASA Astrophysics Data System (ADS)
Opatrný, T.; Kurizki, G.
2001-04-01
We propose dissociation of cold diatomic molecules as a source of atom pairs with highly correlated (entangled) positions and momenta, approximating the original quantum state introduced by Einstein, Podolsky, and Rosen (EPR) [Phys. Rev. 47, 777 (1935)]. Wave packet teleportation is shown to be achievable by its collision with one of the EPR correlated atoms and manipulation of the other atom in the pair.
Open-System Quantum Annealing in Mean-Field Models with Exponential Degeneracy
2016-08-25
life quantum computers are inevitably affected by intrinsic noise resulting in dissipative nonunitary dynamics realized by these devices. We consider an... quantum computer . DOI: 10.1103/PhysRevX.6.021028 Subject Areas: Condensed Matter Physics, Quantum Physics, Quantum Information I. INTRODUCTION Quantum ... computing hardware is affected by a substantial level of intrinsic noise and therefore naturally realizes dis- sipative quantum dynamics [1,2
NASA Astrophysics Data System (ADS)
Kohanoff, Jorge; Pinilla, Carlos; Youngs, Tristan G. A.; Artacho, Emilio; Soler, José M.
2011-10-01
The role of dispersion or van de Waals (VDW) interactions in imidazolium-based room-temperature ionic liquids is studied within the framework of density functional theory, using a recently developed non-empirical functional [M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004), 10.1103/PhysRevLett.92.246401], as efficiently implemented in the SIESTA code [G. Román-Pérez and J. M. Soler, Phys. Rev. Lett. 103, 096102 (2009), 10.1103/PhysRevLett.103.096102]. We present results for the equilibrium structure and lattice parameters of several crystalline phases, finding a general improvement with respect to both the local density (LDA) and the generalized gradient approximations (GGA). Similar to other systems characterized by VDW bonding, such as rare gas and benzene dimers as well as solid argon, equilibrium distances and volumes are consistently overestimated by ≈7%, compared to -11% within LDA and 11% within GGA. The intramolecular geometries are retained, while the intermolecular distances and orientations are significantly improved relative to LDA and GGA. The quality is superior to that achieved with tailor-made empirical VDW corrections ad hoc [M. G. Del Pópolo, C. Pinilla, and P. Ballone, J. Chem. Phys. 126, 144705 (2007), 10.1063/1.2715571]. We also analyse the performance of an optimized version of this non-empirical functional, where the screening properties of the exchange have been tuned to reproduce high-level quantum chemical calculations [J. Klimes, D. Bowler, and A. Michaelides, J. Phys.: Condens. Matter 22, 074203 (2010), 10.1088/0953-8984/22/7/074203]. The results for solids are even better with volumes and geometries reproduced within 2% of experimental data. We provide some insight into the issue of polymorphism of [bmim][Cl] crystals, and we present results for the geometry and energetics of [bmim][Tf] and [mmim][Cl] neutral and charged clusters, which validate the use of empirical force fields.
NASA Astrophysics Data System (ADS)
Glenn, A. M.; Nagle, J. L.; Molnar, Denes
2007-01-01
Coherent multiple scatterings of ccbar quark pairs in the environment of heavy ion collisions have been used in a previous work by Qiu et al. [J. Qiu, J.P. Vary, X. Zhang, Phys. Rev. Lett. 88 (2002) 232301; J. Qiu, J.P. Vary, X. Zhang, Nucl. Phys. A 698 (2002) 571, nucl-th/0106040] to study J / ψ suppression. That model suggests that heavy quark re-scatterings in a cold nuclear medium can completely explain the centrality dependence of the observed J / ψ suppression in Pb + Pb collisions at the SPS [M.C. Abreu, et al., NA50 Collaboration, Phys. Lett. B 521 (2001) 195]. Their calculations also revealed significant differences under the assumptions of a color singlet or color octet production mechanism. A more recent analytic calculation [H. Fujii, Phys. Rev. C 67 (2003) 031901], which includes incoherent final-state re-scatterings with explicit momentum transfer fluctuations in three dimensions, indicates much less suppression and little sensitivity to the production mechanism. In this Letter, we study simultaneously both the J / ψ suppression and pT modifications, at SPS and RHIC energies. We mainly focus on incoherent momentum transfer fluctuations in two dimensions, which is more appropriate for the heavy-ion collision kinematics. Our analytic and Monte Carlo calculations reinforce the analytic results in [H. Fujii, Phys. Rev. C 67 (2003) 031901]. Additionally, we find that the experimental J / ψ suppression and
NASA Astrophysics Data System (ADS)
2003-06-01
In December 2002 we announced some changes to Journal of Physics B: Atomic, Molecular and Optical Physics: an extended scope to highlight the wide range of articles published in the journal and a new definition of Letters to the Editor. As always, comments and suggestions are welcome and should be sent to jphysb@iop.org. Extended scope of J. Phys. B J. Phys. B covers all aspects of atomic, molecular and optical physics. We publish articles on the study of atoms, ions, molecules, condensates or clusters, from their structure and interactions with particles, photons, fields and surfaces to all aspects of spectroscopy. Quantum optics, non-linear optics, laser physics, astrophysics, plasma physics, chemical physics, optical cooling and trapping and other investigations where the objects of study are the elementary atomic, ionic or molecular properties of processes are also included. With the introduction of the BEC Matters! portal and IOP Select, J. Phys. B, one of the major contributors, offers authors of articles in this research area wider visibility and more flexible publication with the opportunity to display multimedia attachments or web links to key groups and results. The recent papers listed below reflect the wide scope of J. Phys. B: Calculation of cross sections for very low-energy hydrogen-antihydrogen scattering using the Kohn variational method E A G Armour and C W Chamberlain J. Phys. B: At. Mol. Opt. Phys. Vol 35, No 22 (28 November 2002) L489-L494 Imaging the electron transfer reaction of Ne2+ with Ar using position-sensitive coincidence spectroscopy Sarah M Harper, Wan-Ping Hu and Stephen D Price J. Phys. B: At. Mol. Opt. Phys. Vol 35, No 21 (14 November 2002) 4409-4423 Ultraviolet-infrared wavelength scalings for strong field induced L-shell emissions from Kr and Xe clusters Alex B Borisov, Xiangyang Song, Fabrizio Frigeni, Yang Dai, Yevgeniya Koshman, W Andreas Schroeder, Jack Davis, Keith Boyer and Charles K Rhodes J. Phys. B: At. Mol. Opt. Phys. Vol 35, No 21 (14 November 2002) L461-L467 A Bose-Einstein condensate in an optical lattice J Hecker Denschlag, J E Simsarian, H Häffner, C McKenzie, A Browaeys, D Cho, K Helmerson, S L Rolston and W D Phillips J. Phys. B: At. Mol. Opt. Phys. Vol 35, No 14 (28 July 2002) 3095-3110 Locality of a class of entangled states I R Senitzky J. Phys. B: At. Mol. Opt. Phys. Vol 35, No 14 (28 July 2002) 3029-3039 Solitons and vortices in ultracold fermionic gases Tomasz Karpiuk, Miroslaw Brewczyk and Kazimierz Rzazewski J. Phys. B: At. Mol. Opt. Phys. Vol 35, No 14 (28 July 2002) L315-L321 Stable islands in chaotic atom-optics billiards, caused by curved trajectories M F Andersen, A Kaplan, N Friedman and N Davidson J. Phys. B: At. Mol. Opt. Phys. Vol 35, No 9 (14 May 2002) 2183-2190 Emission probability and photon statistics of a coherently driven mazer Jin Xiong and Zhi-Ming Zhang J. Phys. B: At. Mol. Opt. Phys. Vol 35, No 9 (14 May 2002) 2159-2172 The Li+-H2 system in a rigid-rotor approximation: potential energy surface and transport coefficients I Røeggen, H R Skullerud, T H Løvaas and D K Dysthe J. Phys. B: At. Mol. Opt. Phys. Vol 35, No 7 (14 April 2002) 1707-1725 The stochastic Gross-Pitaevskii equation C W Gardiner, J R Anglin and T I A Fudge J. Phys. B: At. Mol. Opt. Phys. Vol 35, No 6 (28 March 2002) 1555-1582 Oxygen ion impurity in the TEXTOR tokamak boundary plasma observed and analysed by Zeeman spectroscopy J D Hey, C C Chu, S Brezinsek, Ph Mertens and B Unterberg J. Phys. B: At. Mol. Opt. Phys. Vol 35, No 6 (28 March 2002) 1525-1553 Electron-hexafluoropropene (C3F6) scattering at intermediate energies Czeslaw Szmytkowski, Pawel Mozejko and Stanislaw Kwitnewski J. Phys. B: At. Mol. Opt. Phys. Vol 35, No 5 (14 March 2002) 1267-1274 High-resolution investigations of C2 and CN optical emissions in laser-induced plasmas during graphite ablation S Acquaviva and M L De Giorgi J. Phys. B: At. Mol. Opt. Phys. Vol 35, No 4 (28 February 2002) 795-806 New definition of a Letter to the Editor A Letter to the Editor should present new results, likely to stimulate further research and be of interest to the wider atomic, molecular and optical physics community. Above all the results should be sufficiently new and important to merit rapid publication as a Letter, which implies accelerated refereeing procedures. This should be made clear either in the body of the Letter, if appropriate, or with a supporting cover letter from the author on submission to the journal. Letters will have an upper limit of eight journal pages and, as an additional quality check, two referees instead of one will be used to review them. The Board will be asked to make a final publication decision in the event of two conflicting reports. With these measures in place it is hoped that the important new results will receive the exposure they deserve as a Letter. If you have any questions or comments on this or anything relating to J. Phys. B please contact Nicola Gulley, Publisher, J. Phys. B (E-mail: jphysb@iop.org).
Third-order-harmonic generation in coherently spinning molecules
NASA Astrophysics Data System (ADS)
Prost, E.; Zhang, H.; Hertz, E.; Billard, F.; Lavorel, B.; Bejot, P.; Zyss, Joseph; Averbukh, Ilya Sh.; Faucher, O.
2017-10-01
The rotational Doppler effect occurs when circularly polarized light interacts with a rotating anisotropic material. It is manifested by the appearance of a spectral shift ensuing from the transfer of angular momentum and energy between radiation and matter. Recently, we reported terahertz-range rotational Doppler shifts produced in third-order nonlinear optical conversion [O. Faucher et al., Phys. Rev. A 94, 051402(R) (2016), 10.1103/PhysRevA.94.051402]. The experiment was performed in an ensemble of coherently spinning molecules prepared by a short laser pulse exhibiting a twisted linear polarization. The present work provides an extensive analysis of the rotational Doppler effect in third-order-harmonic generation from spinning linear molecules. The underlying physics is investigated both experimentally and theoretically. The implication of the rotational Doppler effect in higher-order processes like high-order-harmonic generation is discussed.
Immotile Active Matter: Activity from Death and Reproduction
NASA Astrophysics Data System (ADS)
Kalziqi, Arben; Yanni, David; Thomas, Jacob; Ng, Siu Lung; Vivek, Skanda; Hammer, Brian K.; Yunker, Peter J.
2018-01-01
Unlike equilibrium atomic solids, biofilms—soft solids composed of bacterial cells—do not experience significant thermal fluctuations at the constituent level. However, living cells stochastically reproduce and die, provoking a mechanical response. We investigate the mechanical consequences of cellular death and reproduction by measuring surface-height fluctuations of biofilms containing two mutually antagonistic strains of Vibrio cholerae that kill one another on contact via the type VI secretion system. While studies of active matter typically focus on activity via constituent mobility, here, activity is mediated by reproduction and death events in otherwise immobilized cells. Biofilm surface topography is measured in the nearly homeostatic limit via white light interferometry. Although biofilms are far from equilibrium systems, measured surface-height fluctuation spectra resemble the spectra of thermal permeable membranes but with an activity-mediated effective temperature, as predicted by Risler, Peilloux, and Prost [Phys. Rev. Lett. 115, 258104 (2015), 10.1103/PhysRevLett.115.258104]. By comparing the activity of killer strains of V. cholerae with that of genetically modified strains that cannot kill each other and validating with individual-based simulations, we demonstrate that extracted effective temperatures increase with the amount of death and reproduction and that death and reproduction can fluidize biofilms. Together, these observations demonstrate the unique physical consequences of activity mediated by death and reproduction events.
Immotile Active Matter: Activity from Death and Reproduction.
Kalziqi, Arben; Yanni, David; Thomas, Jacob; Ng, Siu Lung; Vivek, Skanda; Hammer, Brian K; Yunker, Peter J
2018-01-05
Unlike equilibrium atomic solids, biofilms-soft solids composed of bacterial cells-do not experience significant thermal fluctuations at the constituent level. However, living cells stochastically reproduce and die, provoking a mechanical response. We investigate the mechanical consequences of cellular death and reproduction by measuring surface-height fluctuations of biofilms containing two mutually antagonistic strains of Vibrio cholerae that kill one another on contact via the type VI secretion system. While studies of active matter typically focus on activity via constituent mobility, here, activity is mediated by reproduction and death events in otherwise immobilized cells. Biofilm surface topography is measured in the nearly homeostatic limit via white light interferometry. Although biofilms are far from equilibrium systems, measured surface-height fluctuation spectra resemble the spectra of thermal permeable membranes but with an activity-mediated effective temperature, as predicted by Risler, Peilloux, and Prost [Phys. Rev. Lett. 115, 258104 (2015)PRLTAO0031-900710.1103/PhysRevLett.115.258104]. By comparing the activity of killer strains of V. cholerae with that of genetically modified strains that cannot kill each other and validating with individual-based simulations, we demonstrate that extracted effective temperatures increase with the amount of death and reproduction and that death and reproduction can fluidize biofilms. Together, these observations demonstrate the unique physical consequences of activity mediated by death and reproduction events.
NASA Astrophysics Data System (ADS)
Majorana-Fermi-Segre, E.-L.; Antonoff-Overhauser-Salam, Marvin-Albert-Abdus; Siegel, Edward Carl-Ludwig
2013-03-01
Majorana-fermions, being their own antiparticles, following non-Abelian anyon/semion quantum-statistics: in Zhang et.al.-...-Detwiler et.al.-...``Worlds-in-Collision'': solid-state/condensed-matter - physics spin-orbit - coupled topological-excitations in superconductors and/or superfluids -to- particle-physics neutrinos: ``When `Worlds' Collide'', analysis via Siegel[Schrodinger Centenary Symp., Imperial College, London (1987); in The Copenhagen-Interpretation Fifty-Years After the Como-Lecture, Symp. Fdns. Mod.-Phys., Joensu(1987); Symp. on Fractals, MRS Fall-Mtg., Boston(1989)-5-papers!!!] ``complex quantum-statistics in fractal-dimensions'', which explains hidden-dark-matter(HDM) IN Siegel ``Sephirot'' scenario for The Creation, uses Takagi[Prog.Theo.Phys. Suppl.88,1(86)]-Ooguri[PR D33,357(85)] - Picard-Lefschetz-Arnol'd-Vassil'ev[``Principia Read After 300 Years'', Not.AMS(1989); quantum-theory caveats comment-letters(1990); Applied Picard-Lefschetz Theory, AMS(2006)] - theorem quantum-statistics, which via Euler- formula becomes which via de Moivre- -formula further becomes which on unit-circle is only real for only, i.e, for, versus complex with imaginary-damping denominator for, i.e, for, such that Fermi-Dirac quantum-statistics for
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tabares-Velasco, P. C.; Christensen, C.; Bianchi, M.
2012-08-01
Phase change materials (PCM) represent a potential technology to reduce peak loads and HVAC energy consumption in residential buildings. This paper summarizes NREL efforts to obtain accurate energy simulations when PCMs are modeled in residential buildings: the overall methodology to verify and validate Conduction Finite Difference (CondFD) and PCM algorithms in EnergyPlus is presented in this study. It also shows preliminary results of three residential building enclosure technologies containing PCM: PCM-enhanced insulation, PCM impregnated drywall and thin PCM layers. The results are compared based on predicted peak reduction and energy savings using two algorithms in EnergyPlus: the PCM and Conductionmore » Finite Difference (CondFD) algorithms.« less
NASA Astrophysics Data System (ADS)
Lin, Cheng-Hsiao; Tsai, Yan-Chr
2002-07-01
Within the Tersoff approximation, we obtain an analytic expression for the elastic self-energy of a truncated hut which is more general than that of a truncated pyramid [C. Duport, C. Priester, J. Villain, in: Morphological Organization in Epitaxial Growth and Removal, World Scientific Series on Directions in Condensed Matter Physics, 1997, p. 73]. A pyramidal cluster studied previously can be treated as a square-based hut within the present formalism. The previous results [C. Duport, C. Priester, J. Villain, in: Morphological Organization in Epitaxial Growth and Removal, World Scientific Series on Directions in Condensed Matter Physics, 1997, p. 73; C. Duport, Université de Grenoble, Juin 1996; Phys. Rep. 324 (2000) 271] were obtained on the assumptions of neglecting the adsorbate-substrate interfacial energy and the equilibrium cluster forming with a square base. They predicted that when the volume of a cluster is above some critical value, it preferably forms as a pyramid rather than a platelet in the absence of other strained clusters. Instead, in this paper, we take the interfacial energy into account, based on the work by Korutcheva et al. [I. Markov, Crystal Growth for Beginners, Fundamentals of Nucleation, Crystal Growth Epitaxy, World Scientific, Singapore, 1995; Phys. Rev. B 61 (2000) 16890]. Besides, we start with the consideration of a hut cluster probably forming with a rectangular base instead of a square one [C. Duport, C. Priester, J. Villain, in: Morphological Organization in Epitaxial Growth and Removal, World Scientific Series on Directions in Condensed Matter Physics, 1997, p. 73; C. Duport, Université de Grenoble, Juin 1996]. By employing the derived analytic expression of the surface and elastic energies, we find that the two- to three- dimensional (2D-3D) transition with the inclusion of the adsorbate-substrate interfacial energy is quantitatively modified. It should provide more accurate predicted values of the critical volume in 2D-3D transitions. Furthermore, in the absence of other clusters on a substrate, a pyramid forms above the critical volume and calculations also show that at equilibrium a single cluster forms with a square base for a given cluster volume, which justifies the previous assumption [C. Duport, C. Priester, J. Villain, in: Morphological Organization in Epitaxial Growth and Removal, World Scientific Series on Directions in Condensed Matter Physics, 1997, p. 73; C. Duport, Université de Grenoble, Juin 1996; Phys. Rep. 324 (2000) 271].
Quantum corrected Schwarzschild thin-shell wormhole
NASA Astrophysics Data System (ADS)
Jusufi, Kimet
2016-11-01
Recently, Ali and Khalil (Nucl Phys B, 909, 173-185, 2016), based on Bohmian quantum mechanics, derived a quantum corrected version of the Schwarzschild metric. In this paper, we construct a quantum corrected Schwarzschild thin-shell wormhole (QSTSW) and investigate the stability of this wormhole. First we compute the surface stress at the wormhole throat by applying the Darmois-Israel formalism to the modified Schwarzschild metric and show that exotic matter is required at the throat to keep the wormhole stable. We then study the stability analysis of the wormhole by considering phantom-energy for the exotic matter, generalized Chaplygin gas (GCG), and the linearized stability analysis. It is argued that quantum corrections can affect the stability domain of the wormhole.
Asymptotic safety of gravity-matter systems
NASA Astrophysics Data System (ADS)
Meibohm, J.; Pawlowski, J. M.; Reichert, M.
2016-04-01
We study the ultraviolet stability of gravity-matter systems for general numbers of minimally coupled scalars and fermions. This is done within the functional renormalization group setup put forward in [N. Christiansen, B. Knorr, J. Meibohm, J. M. Pawlowski, and M. Reichert, Phys. Rev. D 92, 121501 (2015).] for pure gravity. It includes full dynamical propagators and a genuine dynamical Newton's coupling, which is extracted from the graviton three-point function. We find ultraviolet stability of general gravity-fermion systems. Gravity-scalar systems are also found to be ultraviolet stable within validity bounds for the chosen generic class of regulators, based on the size of the anomalous dimension. Remarkably, the ultraviolet fixed points for the dynamical couplings are found to be significantly different from those of their associated background counterparts, once matter fields are included. In summary, the asymptotic safety scenario does not put constraints on the matter content of the theory within the validity bounds for the chosen generic class of regulators.
Aging, rejuvenation, and memory effects in short-range Ising spin glass: Cu_0.5Co_0.5Cl_2-FeCl3 GBIC
NASA Astrophysics Data System (ADS)
Suzuki, M.; Suzuki, I. S.
2004-03-01
Cu_0.5Co_0.5Cl_2-FeCl3 GBIC undergoes a spin glass (SG) transition at Tg (= 3.92 ± 0.11 K). The system shows a dynamic behavior that has some similarities and some significant differences compared to a 3D Ising SG.^1 Here we report on non-equilibrium aging dynamics which has been studied using zero-field cooled (ZFC) magnetization and low frequency AC magnetic susceptibility.^2 The time dependence of the relaxation rate S(t) = (1/H)dM_ZFC/dln t for the ZFC magnetization after the ZFC aging protocol, shows a peak at a characteristic time t_cr near a wait time t_w, corresponding to a crossover from quasi equilibrium dynamics to non-equilibrium. The time t_cr strongly depends on t_w, temperature, magnetic field, and the temperature shift. The rejuvenation effect is observed in both i^' and i^'' under the T-shift and H-shift procedures. The memory of the specific spin configurations imprinted during the ZFC aging protocol can be recalled when the system is re-heated at a constant heating rate. The aging, rejuvenation, and memory effects are discussed in terms of the scaling concepts derived from numerical studies on 3D Edwards-Anderson spin glass model. 1. I.S. Suzuki and M. Suzuki, Phys. Rev. B 68, 094424 (2003) 2. M. Suzuki and I.S. Suzuki, cond-mat/0308285
Prybylski, John P; Semelka, Richard C; Jay, Michael
2017-05-01
To reanalyze literature data of gadolinium (Gd)-based contrast agents (GBCAs) in plasma with a kinetic model of dissociation to provide a comprehensive assessment of equilibrium conditions for linear GBCAs. Data for the release of Gd from GBCAs in human serum was extracted from a previous report in the literature and fit to a kinetic dissociation/association model. The conditional stabilities (logK cond ) and percent intact over time were calculated using the model rate constants. The correlations between clinical outcomes and logK cond or other stability indices were determined. The release curves for Omniscan®, gadodiamide, OptiMARK®, gadoversetamide Magnevist® and Multihance® were extracted and all fit well to the kinetic model. The logK cond s calculated from the rate constants were on the order of ~4-6, and were not significantly altered by excess ligand or phosphate. The stability constant based on the amount intact by the initial elimination half-life of GBCAs in plasma provided good correlation with outcomes observed in patients. Estimation of the kinetic constants for GBCA dissociation/association revealed that their stability in physiological fluid is much lower than previous approaches would suggest, which correlates well with deposition and pharmacokinetic observations of GBCAs in human patients. Copyright © 2017 Elsevier Inc. All rights reserved.
Pérez-Jiménez, David; Santiago-Rivas, Marimer; Serrano-García, Irma
2012-01-01
La autoeficacia se le ha identificado como uno de los factores que puede facilitar o dificultar llevar a cabo sexo más seguro. Estudios revelan que las personas que están el relaciones estables usan métodos de protección menos frecuente que quienes tienen parejas casuales. Realizamos un estudio con 447 personas heterosexuales activas sexualmente. Les administramos un cuestionario dirigido a medir el comportamiento sexual, el uso del condón masculino y la práctica de la masturbación mutua, y la autoeficacia para llevar a cabo estas conductas. Los resultados reflejan que los hombres están más activos sexualmente y que el uso del condón y la práctica de la masturbación mutua como alternativa de sexo más seguro es muy baja. En los casos donde se usa el condón esta práctica es realizada en su mayoría por las personas que se encuentran en una relación de pareja casual. No obstante, los/las participantes tienen altos niveles de autoeficacia hacia ambas prácticas. Aunque la autoeficacia es uno de los factores que incide en decidir llevar a cabo sexo más seguro, ésta no es suficiente para que esta meta se logre. PMID:22837585
Estimating heat tolerance of plants by ion leakage: a new method based on gradual heating.
Ilík, Petr; Špundová, Martina; Šicner, Michal; Melkovičová, Helena; Kučerová, Zuzana; Krchňák, Pavel; Fürst, Tomáš; Večeřová, Kristýna; Panzarová, Klára; Benediktyová, Zuzana; Trtílek, Martin
2018-05-01
Heat tolerance of plants related to cell membrane thermostability is commonly estimated via the measurement of ion leakage from plant segments after defined heat treatment. To compare heat tolerance of various plants, it is crucial to select suitable heating conditions. This selection is time-consuming and optimizing the conditions for all investigated plants may even be impossible. Another problem of the method is its tendency to overestimate basal heat tolerance. Here we present an improved ion leakage method, which does not suffer from these drawbacks. It is based on gradual heating of plant segments in a water bath or algal suspensions from room temperature up to 70-75°C. The electrical conductivity of the bath/suspension, which is measured continuously during heating, abruptly increases at a certain temperature T COND (within 55-70°C). The T COND value can be taken as a measure of cell membrane thermostability, representing the heat tolerance of plants/organisms. Higher T COND corresponds to higher heat tolerance (basal or acquired) connected to higher thermostability of the cell membrane, as evidenced by the common ion leakage method. The new method also enables determination of the thermostability of photochemical reactions in photosynthetic samples via the simultaneous measurement of Chl fluorescence. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
Bermudez, Gonzalo M A; Pignata, María Luisa
2011-10-01
To evaluate the physiological response of Tillandsia capillaris Ruiz & Pav. f. capillaris, T. recurvata L., and T. tricholepis Baker to different air pollution sources, epiphyte samples were collected from a noncontaminated area in the province of Córdoba (Argentina) and transplanted to a control site as well as three areas categorized according to the presence of agricultural, urban, and industrial (metallurgical and metal-mechanical) emission sources. A foliar damage index (FDI) was calculated with the physiological parameters chlorophyll a, chlorophyll b, malondialdehyde (MDA), hydroperoxyconjugated dienes, sulfur (S) content, and dry weight-to-fresh weight ratio. In addition, electrical conductivity (E-cond), relative water content (RWC), dehydration kinetics (Kin-H(2)O), total phenols (T-phen), soluble proteins (S-prot), and activities of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase were determined. The parameters E-cond, FDI, SOD, RWC, and Kin-H(2)O can serve as suitable indicators of agricultural air pollution for T. tricholepis and T. capillaris, and CAT, Kin-H(2)O, and SOD can do the same for T. recurvata. In addition, MDA, T-phen, and S-prot proved to be appropriate indicators of urban pollution for T. recurvata. Moreover, FDI, E-cond, and SOD for T. recurvata and MDA for T. tricholepis, respectively, could be used to detect deleterious effects of industrial air pollution. © Springer Science+Business Media, LLC 2011
Chiral fermions in asymptotically safe quantum gravity
NASA Astrophysics Data System (ADS)
Meibohm, J.; Pawlowski, J. M.
2016-05-01
We study the consistency of dynamical fermionic matter with the asymptotic safety scenario of quantum gravity using the functional renormalisation group. Since this scenario suggests strongly coupled quantum gravity in the UV, one expects gravity-induced fermion self-interactions at energies of the Planck scale. These could lead to chiral symmetry breaking at very high energies and thus to large fermion masses in the IR. The present analysis which is based on the previous works (Christiansen et al., Phys Rev D 92:121501, 2015; Meibohm et al., Phys Rev D 93:084035, 2016), concludes that gravity-induced chiral symmetry breaking at the Planck scale is avoided for a general class of NJL-type models. We find strong evidence that this feature is independent of the number of fermion fields. This finding suggests that the phase diagram for these models is topologically stable under the influence of gravitational interactions.
Universal scaling laws of diffusion in two-dimensional granular liquids.
Wang, Chen-Hung; Yu, Szu-Hsuan; Chen, Peilong
2015-06-01
We find, in a two-dimensional air table granular system, that the reduced diffusion constant D* and excess entropy S(2) follow two distinct scaling laws: D*∼e(S(2)*) for dense liquids and D∼e(3S(2)*) for dilute ones. The scaling for dense liquids is very similar to that for three-dimensional liquids proposed previously [M. Dzugutov, Nature (London) 381, 137 (1996); A. Samanta et al., Phys. Rev. Lett. 92, 145901 (2004)]. In the dilute regime, a power law [Y. Rosenfeld, J. Phys.: Condens. Matter 11, 5415 (1999)] also fits our data reasonably well. In our system, particles experience low air drag dissipation and interact with each others through embedded magnets. These near-conservative many-body interactions are responsible for the measured Gaussian velocity distribution functions and the scaling laws. The dominance of cage relaxations in dense liquids leads to the different scaling laws for dense and dilute regimes.
Chiral fermions in asymptotically safe quantum gravity.
Meibohm, J; Pawlowski, J M
2016-01-01
We study the consistency of dynamical fermionic matter with the asymptotic safety scenario of quantum gravity using the functional renormalisation group. Since this scenario suggests strongly coupled quantum gravity in the UV, one expects gravity-induced fermion self-interactions at energies of the Planck scale. These could lead to chiral symmetry breaking at very high energies and thus to large fermion masses in the IR. The present analysis which is based on the previous works (Christiansen et al., Phys Rev D 92:121501, 2015; Meibohm et al., Phys Rev D 93:084035, 2016), concludes that gravity-induced chiral symmetry breaking at the Planck scale is avoided for a general class of NJL-type models. We find strong evidence that this feature is independent of the number of fermion fields. This finding suggests that the phase diagram for these models is topologically stable under the influence of gravitational interactions.
Propagation of Sound in Matter.
1982-03-01
Attenuation in Liquid Helium at 1 GHz; Technical Report No. 28, April 1969. 2. Kriss, Michael A., Size Effects in Liquid Helium II as Measured by Fourth...Helium, Technical Report No. 30, October 1969. 4. Scott, Stephen A., A Specific Heat and Fourth Sound Measurement of Size Effects in Liquid Helium...Rudnick, Superfluid Helmholtz Resonators, Phys. Rev. 174, No. 1, 326 (October 1968). 2. E. Guyon and I. Rudnick, Size Effects in Superfluid Helium II, Le
A note on trans-Planckian tail effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graef, L.L.; Instituto de Física, Universidade de São Paulo, Rua do Matão travessa R, São Paulo, SP, 05508-090; Brandenberger, R.
2015-09-09
We study the proposal by Mersini et al. http://dx.doi.org/10.1103/PhysRevD.64.043508 that the observed dark energy might be explained by the back-reaction of the set of tail modes in a theory with a dispersion relation in which the mode frequency decays exponentially in the trans-Planckian regime. The matter tail modes are frozen out, however they induce metric fluctuations. The energy-momentum tensor with which the tail modes effect the background geometry obtains contributions from both metric and matter fluctuations. We calculate the equation of state induced by the tail modes taking into account the gravitational contribution. We find that, in contrast to themore » case of frozen super-Hubble cosmological fluctuations, in this case the matter perturbations dominate, and they yield an equation of state which to leading order takes the form of a positive cosmological constant.« less
NASA Astrophysics Data System (ADS)
Zakharov, Alexander
It is well-known that one can evaluate black hole (BH) parameters (including spin) analyz-ing trajectories of stars around BH. A bulk distribution of matter (dark matter (DM)+stellar cluster) inside stellar orbits modifies trajectories of stars, namely, generally there is a apoas-tron shift in direction which opposite to GR one, even now one could put constraints on DM distribution and BH parameters and constraints will more stringent in the future. Therefore, an analyze of bright star trajectories provides a relativistic test in a weak gravitational field approximation, but in the future one can test a strong gravitational field near the BH at the Galactic Center with the same technique due to a rapid progress in observational facilities. References A. Zakharov et al., Phys. Rev. D76, 062001 (2007). A.F. Zakharov et al., Space Sci. Rev. 148, 301313(2009).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stöhr, J.; Scherz, A.
X-ray absorption by matter has long been described by the famous Beer-Lambert law. Here we show how this fundamental law needs to be modified for high-intensity coherent x-ray pulses, now available at x-ray free electron lasers, due to the onset of stimulated elastic forward scattering. We present an analytical expression for the modified polarization-dependent Beer-Lambert law for the case of resonant core-to-valence electronic transitions and incident transform limited x-ray pulses. Upon transmission through a solid, the absorption and dichroic contrasts are found to vanish with increasing x-ray intensity, with the stimulation threshold lowered by orders of magnitude through a super-radiativemore » coherent effect. Our results have broad implications for the study of matter with x-ray lasers.« less
NASA Astrophysics Data System (ADS)
Souliotis, G. A.; Shetty, D. V.; Galanopoulos, S.; Yennello, S. J.
2007-10-01
During the last several years we have undertaken a systematic study of heavy residues formed in quasi-elastic and deep- inelastic collisions near and below the Fermi energy [1,2]. Presently, we are exploring the possibility of extracting information on the dynamics by comparing our heavy residue data to calculations using microscopic models based on the quantum molecular dynamics approach (QMD). We have performed detailed calculations of QMD type using the recent version of the constrained molecular dynamics code CoMD of M. Papa [3]. CoMD is especially designed for reactions near the Fermi energy. It implements an effective interaction with a nuclear-matter compressibility of K=200 (soft EOS) with several forms of the density dependence of the nucleon-nucleon symmetry potential. CoMD imposes a constraint in the phase space occupation for each nucleon, thus restoring the Pauli principle at each time step of the collision. Results of the calculations and comparisons with our residue data will be presented and discussed in detail. [1] G.A. Souliotis et al., Phys. Rev. Lett. 91, 022701 (2003); Nucl. Instrum. Methods B 204 166 (2003). [2] G.A. Souliotis et al., Phys. Lett. B 588, 35 (2004). [3] M. Papa et al., Phys. Rev. C 64, 024612 (2001).
NASA Astrophysics Data System (ADS)
Souliotis, G. A.; Shetty, D. V.; Galanopoulos, S.; Yennello, S. J.
2008-10-01
A systematic study of quasi-elastic and deep-inelastic collisions at Fermi energies has been undertaken at Texas A&M aiming at obtaining information on the mechanism of nucleon exchange and the course towards N/Z equilibration [1,2]. We expect to get insight in the dynamics and the nuclear equation of state by comparing our experimental heavy residue data to detailed calculations using microscopic models of quantum molecular dynamics (QMD) type. At present, we have performed detailed calculations using the code CoMD (Constrained Molecular Dynamics) of A. Bonasera and M. Papa [3]. The code implements an effective interaction with a nuclear-matter compressibility of K=200 (soft EOS) with several forms of the density dependence of the nucleon-nucleon symmetry potential. CoMD imposes a constraint in the phase space occupation for each nucleon, effectively restoring the Pauli principle at each time step of the collision. Results of the calculations and comparisons with our data will be presented and implications concerning the isospin part of the nuclear equation of state will be discussed. [1] G.A. Souliotis et al., Phys. Rev. Lett. 91, 022701 (2003). [2] G.A. Souliotis et al., Phys. Lett. B 588, 35 (2004). [3] M. Papa et al., Phys. Rev. C 64, 024612 (2001).
First-principles Raman Spectra of Lead Titanate with Pressure
NASA Astrophysics Data System (ADS)
Schad, A.; Ganesh, P.; Cohen, R. E.; Ahart, M.
2010-03-01
PbTiO3 displays[1,2] a morphotropic phase boundary (MPB) under pressure at which electromechanical properties are maximal. Previously only complex solid-solutions were thought to exhibit such a boundary. To aid in the experimental study of the MPB region, we compute Raman scattering spectra of different phases of PbTiO3 with pressure using a DFT based first-principles approach and Density Functional Perturbation Theory (DFPT) [3]. The computed intensities and shifts with pressure agree very well with the experimental data measured on powder samples. Computations further allow comparison of Raman spectra and shifts in energetically competing phases raising the possibility of using calculations for experimental calibration of Raman spectra at any pressure. The results substantiate previous claims of a low-temperature monoclinic phase at the MPB at approximately 10 GPa in PbTiO3 as well as refute the possibility of an I4cm phase at higher pressures as suggested by other groups [4]. [1] Z. Wu and R. E. Cohen, Phys. Rev. Lett. 95, 037601 (2005), [2] M. Ahart et.al., Nature 451, 545 (2008), [3] P. Hermet et.al., J. Phys.:Condens. Matter 21, 215901 (2009) [4] P.E. Janolin et.al., Phys. Rev. Lett. 101, 237601 (2008).
How to resum perturbative series in 3d N =2 Chern-Simons matter theories
NASA Astrophysics Data System (ADS)
Honda, Masazumi
2016-07-01
Continuing the work of Honda [Phys. Rev. Lett. 116, 211601 (2016)], we study the perturbative series in general 3d N =2 supersymmetric Chern-Simons matter theory with U (1 )R symmetry, which is given by a power series expansion of inverse Chern-Simons levels. We find that the perturbative series is usually non-Borel summable along a positive real axis for various observables. Alternatively, we prove that the perturbative series is always Borel summable along a negative (positive) imaginary axis for positive (negative) Chern-Simons levels. It turns out that the Borel resummations along this direction are the same as the exact results and, therefore, are correct ways of resumming the perturbative series.
On The Constitutive Properties Of Strongly Magnetized Matter Observed In A Class Of Solar Ejecta
NASA Astrophysics Data System (ADS)
Berdichevsky, D. B.
2013-12-01
Several studies of the transient events known as magnetic clouds at 1 AU suggest that they possess the ';1/2' anomalous value for its adiabatic, polytropic index, i.e., γ= 1/2, which implies that the temperature of the plasma decreases with increased density[1-3]. Coronal mass ejections commonly observed by missions like The Solar Terrestrial Relations Observatory (STEREO) have been successfully modeled previously by Berdichevsky Stenborg and Vourlidas[4] as magnetic flux-ropes which propagate from the Sun with uniform velocity. Building on this existing analytical three-dimensional magnetohydrodynamic (MHD) model of a magnetic flux-rope, we present an interpretation of the anomalous and somewhat counterintuitive dynamic property mentioned above. Using plasma and magnetic field observations by the Wind spacecraft for the magnetic cloud of June 2, 1998, we argue that this anomalous polytropic index is indeed a consequence of thermodynamic processes in this strongly magnetized matter. We show that the derived models of Berdichevsky et al.[5, 6] easily accommodate a familiar thermodynamic explanation of this property. Such an explanation may shed light also on the evolution of other astrophysical observations such as remnants in nebulae of past super-novae, as well other transient interstellar events. This MHD solution may be a good way to go beyond gas-dynamics in the development of a coherent picture of shock and its driver, as they are becoming a current interpretation. 1Osherovich, V.A., 1997, Proc. 31st, ESLAB Symp. Correlated Phenomena at the Sun, in the Heliosphere and in Geospace. 2Sittler, E.C., and L.F., Burlaga, 1998, J. Geophys. Res., 103, 17447. 3Nieves-Chinchilla T., and A., Figueroa-Viñas, 2008, J. Geophys. Res., 113, DOI: 10.1029/2007JA012703 4Berdichevsky, Stenborg, and Vourlidas, 2011, ApJ, 741, 47. 5Berdichevsky, D.B., R.L., Lepping, C.J., Farrugia, 2003, Phys.Rev. E, 67, DOI: 10.1103/PhysRevE036405. 6Berdichevsky, D.B. , 2012, Sol. Phys., 284, 245.
NASA Astrophysics Data System (ADS)
Burkart, F.; Schmidt, R.; Raginel, V.; Wollmann, D.; Tahir, N. A.; Shutov, A.; Piriz, A. R.
2015-08-01
In a previous paper [Schmidt et al., Phys. Plasmas 21, 080701 (2014)], we presented the first results on beam-matter interaction experiments that were carried out at the High Radiation Materials test facility at CERN. In these experiments, extended cylindrical targets of solid copper were irradiated with beam of 440 GeV protons delivered by the Super Proton Synchrotron (SPS). The beam comprised of a large number of high intensity proton bunches, each bunch having a length of 0.5 ns with a 50 ns gap between two neighboring bunches, while the length of this entire bunch train was about 7 μs. These experiments established the existence of the hydrodynamic tunneling phenomenon the first time. Detailed numerical simulations of these experiments were also carried out which were reported in detail in another paper [Tahir et al., Phys. Rev. E 90, 063112 (2014)]. Excellent agreement was found between the experimental measurements and the simulation results that validate our previous simulations done using the Large Hadron Collider (LHC) beam of 7 TeV protons [Tahir et al., Phys. Rev. Spec. Top.--Accel. Beams 15, 051003 (2012)]. According to these simulations, the range of the full LHC proton beam and the hadronic shower can be increased by more than an order of magnitude due to the hydrodynamic tunneling, compared to that of a single proton. This effect is of considerable importance for the design of machine protection system for hadron accelerators such as SPS, LHC, and Future Circular Collider. Recently, using metal cutting technology, the targets used in these experiments have been dissected into finer pieces for visual and microscopic inspection in order to establish the precise penetration depth of the protons and the corresponding hadronic shower. This, we believe will be helpful in studying the very important phenomenon of hydrodynamic tunneling in a more quantitative manner. The details of this experimental work together with a comparison with the numerical simulations are presented in this paper.
2003-08-01
more recent review by Ramirez (1997). The discussion of half-metals will be limited to oxides including Fe3O4 (Penicaud et al. 1992) and CrO2 (Watts...Mater. 103, 212. Ramirez , A.P. 1997. J. of Phys. Condensed Matter 9, 8171. Santos, T.S. et al. 2001. Abstracts, Proceedings of 46th Annual Conf. on...Appendix B. Site Reports � Europe 65 Site: INESC Rua Alves Redol 9 1000 Lisboa, Portugal http://www.inesc-mn.pt (interview conducted at JEMS
NASA Astrophysics Data System (ADS)
Aurongzeb, Deeder
2010-11-01
Anomalous X-ray pulsars and soft gamma-ray repeaters reveal that existence of very strong magnetic field(> 10e15G) from neutron stars. It has been estimated that at the core the magnitude can be even higher at the center. Apart from dynamo mechanism it has been shown that color locked ferromagnetic phase [ Phys. Rev. D. 72,114003(2005)] can be a possible origin of magnetic field. In this study, we explore electric charge of strange quark matter and its effect on forming chirality in the quark-gluon plasma. We show that electromagnetic current induced by chiral magnetic effect [(Phys. Rev. D. 78.07033(2008)] can induce differential rotation in super fluid quark-gluon plasma giving additional boost to the magnetic field. The internal phase and current has no effect from external magnetic field originating from active galactic nuclei due to superconducting phase formation which screens the fields due to Meissner effect. We show that differential motion can create high radial electric field at the surface making all radiation highly polarized and directional including thermal radiation. As the electric field strength can be even stronger for a collapsing neutron star, the implication of this study to detect radiation from black holes will also be discussed. The work was partly completed at the University of Texas at austin
Moduli vacuum bubbles produced by evaporating black holes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, J. R.
2007-10-15
We consider a model with a toroidally compactified extra dimension giving rise to a temperature-dependent 4D effective potential with one-loop contributions due to the Casimir effect, along with a 5D cosmological constant. The forms of the effective potential at low and high temperatures indicate a possibility for the formation of a domain wall bubble, formed by the modulus scalar field, surrounding an evaporating black hole. This is viewed as an example of a recently proposed black hole vacuum bubble arising from matter-sourced moduli fields in the vicinity of an evaporating black hole [D. Green, E. Silverstein, and D. Starr, Phys.more » Rev. D 74, 024004 (2006)]. The black hole bubble can be highly opaque to lower-energy particles and photons, and thereby entrap them within. For high-temperature black holes, there may also be a symmetry-breaking black hole bubble of false vacuum of the type previously conjectured by Moss [I. G. Moss, Phys. Rev. D 32, 1333 (1985)], tending to reflect low-energy particles from its wall. A double bubble composed of these two different types of bubble may form around the black hole, altering the hole's emission spectrum that reaches outside observers. Smaller mass black holes that have already evaporated away could have left vacuum bubbles behind that contribute to the dark matter.« less
ARIADNE: a Tracking System for Relationships in LHCb Metadata
NASA Astrophysics Data System (ADS)
Shapoval, I.; Clemencic, M.; Cattaneo, M.
2014-06-01
The data processing model of the LHCb experiment implies handling of an evolving set of heterogeneous metadata entities and relationships between them. The entities range from software and databases states to architecture specificators and software/data deployment locations. For instance, there is an important relationship between the LHCb Conditions Database (CondDB), which provides versioned, time dependent geometry and conditions data, and the LHCb software, which is the data processing applications (used for simulation, high level triggering, reconstruction and analysis of physics data). The evolution of CondDB and of the LHCb applications is a weakly-homomorphic process. It means that relationships between a CondDB state and LHCb application state may not be preserved across different database and application generations. These issues may lead to various kinds of problems in the LHCb production, varying from unexpected application crashes to incorrect data processing results. In this paper we present Ariadne - a generic metadata relationships tracking system based on the novel NoSQL Neo4j graph database. Its aim is to track and analyze many thousands of evolving relationships for cases such as the one described above, and several others, which would otherwise remain unmanaged and potentially harmful. The highlights of the paper include the system's implementation and management details, infrastructure needed for running it, security issues, first experience of usage in the LHCb production and potential of the system to be applied to a wider set of LHCb tasks.
Dummy and injury criteria for aircraft crashworthiness.
DOT National Transportation Integrated Search
1996-04-01
Since 1988, newly type-certificated aircraft are required to comply with stringent crashworthiness requirements. Central to these more stringent requirements is a dynamic test that assesses the potential for injury for someone exposed to similar cond...
More on the scalar-tensor BF theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Harvendra
2009-09-15
This work is based on an earlier proposal [H. Singh, Phys. Lett. B 673, 68 (2009)] that the membrane BF theory consists of matter fields along with Chern-Simons fields as well as the auxiliary pairs of scalar and tensor fields. In particular, we discuss the supersymmetry aspects of such a membrane theory. It is concluded that the theory possesses maximal supersymmetry, and it is related to the L-BLG theory via a field map. We obtain fuzzy-sphere solution, and corresponding tensor field configuration is given.
Thermophysical Properties of Matter-The TPRC Data Series. Volume 10. Thermal Diffusivity
1974-01-01
Encyclopaedia Britannica, The 19. Mikryukov , V . E ., "Temperature Dependence of the Heat Encyclopaedia Britannica Co.. New York, 11th Edition, Conductivity and...translation: Phys. Metals and Metallog. USSR, 12 (4), 39-44, 1962. 54 27539 Mikryukov , V . E . and Karagezyan, A. G., "Thermal and Electrical Properties of...Chem. Res., 62 (1), 8-13, 1968. 248 38076, Kirichenko, P.1. and Mikryukov , V . E ., "Thermal and Electrical Properties of Some Alloys of the 36392
NASA Astrophysics Data System (ADS)
Errandonea, Daniel
2004-12-01
This reply aims to clarify some of the arguments presented in a previous publication (Errandonea et al 2003 J. Phys.: Condens. Matter 15 1277), which have been criticized in the preceding comment by Olijnyk. The article in question reported the existence of a new high-pressure and high-temperature dhcp phase in magnesium and presented strong evidence that invites one to re-study the up-to-now-established room temperature structural sequence of magnesium.
Applications and Implications of Fractional Dynamics for Dielectric Relaxation
NASA Astrophysics Data System (ADS)
Hilfer, R.
This article summarizes briefly the presentation given by the author at the NATO Advanced Research Workshop on "Broadband Dielectric Spectroscopy and its Advanced Technological Applications", held in Perpignan, France, in September 2011. The purpose of the invited presentation at the workshop was to review and summarize the basic theory of fractional dynamics (Hilfer, Phys Rev E 48:2466, 1993; Hilfer and Anton, Phys Rev E Rapid Commun 51:R848, 1995; Hilfer, Fractals 3(1):211, 1995; Hilfer, Chaos Solitons Fractals 5:1475, 1995; Hilfer, Fractals 3:549, 1995; Hilfer, Physica A 221:89, 1995; Hilfer, On fractional diffusion and its relation with continuous time random walks. In: Pekalski et al. (eds) Anomalous diffusion: from basis to applications. Springer, Berlin, p 77, 1999; Hilfer, Fractional evolution equations and irreversibility. In: Helbing et al. (eds) Traffic and granular flow'99. Springer, Berlin, p 215, 2000; Hilfer, Fractional time evolution. In: Hilfer (ed) Applications of fractional calculus in physics. World Scientific, Singapore, p 87, 2000; Hilfer, Remarks on fractional time. In: Castell and Ischebeck (eds) Time, quantum and information. Springer, Berlin, p 235, 2003; Hilfer, Physica A 329:35, 2003; Hilfer, Threefold introduction to fractional derivatives. In: Klages et al. (eds) Anomalous transport: foundations and applications. Wiley-VCH, Weinheim, pp 17-74, 2008; Hilfer, Foundations of fractional dynamics: a short account. In: Klafter et al. (eds) Fractional dynamics: recent advances. World Scientific, Singapore, p 207, 2011) and demonstrate its relevance and application to broadband dielectric spectroscopy (Hilfer, J Phys Condens Matter 14:2297, 2002; Hilfer, Chem Phys 284:399, 2002; Hilfer, Fractals 11:251, 2003; Hilfer et al., Fractional Calc Appl Anal 12:299, 2009). It was argued, that broadband dielectric spectroscopy might be useful to test effective field theories based on fractional dynamics.
Planck data versus large scale structure: Methods to quantify discordance
NASA Astrophysics Data System (ADS)
Charnock, Tom; Battye, Richard A.; Moss, Adam
2017-06-01
Discordance in the Λ cold dark matter cosmological model can be seen by comparing parameters constrained by cosmic microwave background (CMB) measurements to those inferred by probes of large scale structure. Recent improvements in observations, including final data releases from both Planck and SDSS-III BOSS, as well as improved astrophysical uncertainty analysis of CFHTLenS, allows for an update in the quantification of any tension between large and small scales. This paper is intended, primarily, as a discussion on the quantifications of discordance when comparing the parameter constraints of a model when given two different data sets. We consider Kullback-Leibler divergence, comparison of Bayesian evidences and other statistics which are sensitive to the mean, variance and shape of the distributions. However, as a byproduct, we present an update to the similar analysis in [R. A. Battye, T. Charnock, and A. Moss, Phys. Rev. D 91, 103508 (2015), 10.1103/PhysRevD.91.103508], where we find that, considering new data and treatment of priors, the constraints from the CMB and from a combination of large scale structure (LSS) probes are in greater agreement and any tension only persists to a minor degree. In particular, we find the parameter constraints from the combination of LSS probes which are most discrepant with the Planck 2015 +Pol +BAO parameter distributions can be quantified at a ˜2.55 σ tension using the method introduced in [R. A. Battye, T. Charnock, and A. Moss, Phys. Rev. D 91, 103508 (2015), 10.1103/PhysRevD.91.103508]. If instead we use the distributions constrained by the combination of LSS probes which are in greatest agreement with those from Planck 2015 +Pol +BAO this tension is only 0.76 σ .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonanno, Luca; Drago, Alessandro
2009-04-15
We study matter at high density and temperature using a chiral Lagrangian in which the breaking of scale invariance is regulated by the value of a scalar field, called dilaton [E. K. Heide, S. Rudaz, and P. J. Ellis, Nucl. Phys. A571, 713 (1994); G. W. Carter, P. J. Ellis, and S. Rudaz, Nucl. Phys. A603, 367 (1996); G. W. Carter, P. J. Ellis, and S. Rudaz, Nucl. Phys. A618, 317 (1997); G. W. Carter and P. J. Ellis, Nucl. Phys. A628, 325 (1998)]. We provide a phase diagram describing the restoration of chiral and scale symmetries. We show thatmore » chiral symmetry is restored at large temperatures, but at low temperatures it remains broken at all densities. We also show that scale invariance is more easily restored at low rather than large baryon densities. The masses of vector-mesons scale with the value of the dilaton and their values initially slightly decrease with the density but then they increase again for densities larger than {approx}3{rho}{sub 0}. The pion mass increases continuously with the density and at {rho}{sub 0} and T=0 its value is {approx}30 MeV larger than in the vacuum. We show that the model is compatible with the bounds stemming from astrophysics, as, e.g., the one associated with the maximum mass of a neutron star. The most striking feature of the model is a very significant softening at large densities, which manifests also as a strong reduction of the adiabatic index. Although the softening has probably no consequence for supernova explosion via the direct mechanism, it could modify the signal in gravitational waves associated with the merging of two neutron stars.« less
Conformal collineations and anisotropic fluids in general relativity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duggal, K.L.; Sharma, R.
1986-10-01
Recently, Herrera et al. (L. Herrera, J. Jimenez, L. Leal, J. Ponce de Leon, M. Esculpi, and V. Galino, J. Math. Phys. 25, 3274 (1984)) studied the consequences of the existence of a one-parameter group of conformal motions for anisotropic matter. They concluded that for special conformal motions, the stiff equation of state (p = ..mu..) is singled out in a unique way, provided the generating conformal vector field is orthogonal to the four-velocity. In this paper, the same problem is studied by using conformal collineations (which include conformal motions as subgroups). It is shown that, for a special conformalmore » collineation, the stiff equation of state is not singled out. Non-Einstein Ricci-recurrent spaces are considered as physical models for the fluid matter.« less
An AHP-based approach to prioritizing resources for highway routine maintenance.
DOT National Transportation Integrated Search
2013-09-01
The Texas Department of Transportation has been experiencing maintenance budget fluctuations recently. The : budget shortage has a negative impact on the agencys maintenance strategies and results in the undesirable : deterioration of highway cond...
Guidance for medical screening of commercial aerospace passengers : final report.
DOT National Transportation Integrated Search
2006-01-01
This document provides general guidance for operators of manned commercial aerospace flights (suborbital and orbital) in the medical assessment of prospective passengers. : This guidance is designed to identify those individuals who have medical cond...
A Comprehensive Survey of Emerging Technologies for the New York Metropolitan Area
DOT National Transportation Integrated Search
2008-11-01
The increasing challenges in managing and operating transportation systems have behooved transportation agencies to consider innovative alternative technology solutions to improve transportation system performance. The goal of this project is to cond...
Staggered Orbital Currents in the Half-Filled Two-Leg Ladder
NASA Astrophysics Data System (ADS)
Fjaerestad, J. O.; Marston, Brad; Sudbo, A.
2002-03-01
We present strong analytical and numerical evidence for the existence of a staggered flux (SF) phase in the half-filled two-leg ladder, with true long-range order in the counter-circulating currents. Using abelian bosonization with a careful treatment of the Klein factors, we show that a certain phase of the half-filled ladder, previously identified as having spin-Peierls order, instead exhibits staggered orbital currents with no dimerization.(J. O. Fjærestad and J. B. Marston, cond- mat/0107094.) This result, combined with a weak-coupling renormalization-group analysis, implies that the SF phase exists in a region of the phase diagram of the half-filled t-U-V-J ladder. Using the density-matrix renormalization-group (DMRG) approach generalized to complex-valued wavefunctions, we demonstrate that the SF phase exhibits robust currents at intermediate values of the interaction strengths.
Applying Quantum Monte Carlo to the Electronic Structure Problem
NASA Astrophysics Data System (ADS)
Powell, Andrew D.; Dawes, Richard
2016-06-01
Two distinct types of Quantum Monte Carlo (QMC) calculations are applied to electronic structure problems such as calculating potential energy curves and producing benchmark values for reaction barriers. First, Variational and Diffusion Monte Carlo (VMC and DMC) methods using a trial wavefunction subject to the fixed node approximation were tested using the CASINO code.[1] Next, Full Configuration Interaction Quantum Monte Carlo (FCIQMC), along with its initiator extension (i-FCIQMC) were tested using the NECI code.[2] FCIQMC seeks the FCI energy for a specific basis set. At a reduced cost, the efficient i-FCIQMC method can be applied to systems in which the standard FCIQMC approach proves to be too costly. Since all of these methods are statistical approaches, uncertainties (error-bars) are introduced for each calculated energy. This study tests the performance of the methods relative to traditional quantum chemistry for some benchmark systems. References: [1] R. J. Needs et al., J. Phys.: Condensed Matter 22, 023201 (2010). [2] G. H. Booth et al., J. Chem. Phys. 131, 054106 (2009).
Fluctuations and symmetries in two-dimensional active gels.
Sarkar, N; Basu, A
2011-04-01
Motivated by the unique physical properties of biological active matter, e.g., cytoskeletal dynamics in eukaryotic cells, we set up effective two-dimensional (2d) coarse-grained hydrodynamic equations for the dynamics of thin active gels with polar or nematic symmetries. We use the well-known three-dimensional (3d) descriptions (K. Kruse et al., Eur. Phys. J. E 16, 5 (2005); A. Basu et al., Eur. Phys. J. E 27, 149 (2008)) for thin active-gel samples confined between parallel plates with appropriate boundary conditions to derive the effective 2d constitutive relations between appropriate thermodynamic fluxes and generalised forces for small deviations from equilibrium. We consider three distinct cases, characterised by spatial symmetries and boundary conditions, and show how such considerations dictate the structure of the constitutive relations. We use these to study the linear instabilities, calculate the correlation functions and the diffusion constant of a small tagged particle, and elucidate their dependences on the activity or nonequilibrium drive.
Condensates in quantum chromodynamics and the cosmological constant
Brodsky, Stanley J.; Shrock, Robert
2011-01-01
Casher and Susskind [Casher A, Susskind L (1974) Phys Rev 9:436–460] have noted that in the light-front description, spontaneous chiral symmetry breaking is a property of hadronic wavefunctions and not of the vacuum. Here we show from several physical perspectives that, because of color confinement, quark and gluon condensates in quantum chromodynamics (QCD) are associated with the internal dynamics of hadrons. We discuss condensates using condensed matter analogues, the Anti de Sitter/conformal field theory correspondence, and the Bethe–Salpeter–Dyson–Schwinger approach for bound states. Our analysis is in agreement with the Casher and Susskind model and the explicit demonstration of “in-hadron” condensates by Roberts and coworkers [Maris P, Roberts CD, Tandy PC (1998) Phys Lett B 420:267–273], using the Bethe–Salpeter–Dyson–Schwinger formalism for QCD-bound states. These results imply that QCD condensates give zero contribution to the cosmological constant, because all of the gravitational effects of the in-hadron condensates are already included in the normal contribution from hadron masses.
Cuadrado, R; Cerdá, J I
2012-02-29
We present an efficient implementation of the spin-orbit coupling within the density functional theory based SIESTA code (2002 J. Phys.: Condens. Matter 14 2745) using the fully relativistic and totally separable pseudopotential formalism of Hemstreet et al (1993 Phys. Rev. B 47 4238). First, we obtain the spin-orbit splittings for several systems ranging from isolated atoms to bulk metals and semiconductors as well as the Au(111) surface state. Next, and after extensive tests on the accuracy of the formalism, we also demonstrate its capability to yield reliable values for the magnetic anisotropy energy in magnetic systems. In particular, we focus on the L1(0) binary alloys and on two large molecules: Mn(6)O(2)(H -sao)(6)(O(2)CH)(2)(CH(3)OH)(4) and Co(4)(hmp)(4)(CH(3)OH)(4)Cl(4). In all cases our calculated anisotropies are in good agreement with those obtained with full-potential methods, despite the latter being, in general, computationally more demanding.
NASA Astrophysics Data System (ADS)
Adib, Behrooz; Heidari, Alireza; Tayyari, Sayyed Faramarz
2009-05-01
This article has been retracted: please see Elsevier Policy on Article Withdrawal. This article has been retracted at the request of the Editor-in-Chief and Author. The authors have plagiarized part of a paper that had already appeared in Iran. J. Phys. Res., 2 (2000) 103-111 and Iran. J. Phys. Res., 4 (2003) 41-47. One of the conditions of submission of a paper for publication is that authors declare explicitly that their work is original and has not appeared in a publication elsewhere. Re-use of any data should be appropriately cited. As such this article represents a severe abuse of the scientific publishing system. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process.
Auxiliary-field quantum Monte Carlo simulations of neutron matter in chiral effective field theory.
Wlazłowski, G; Holt, J W; Moroz, S; Bulgac, A; Roche, K J
2014-10-31
We present variational Monte Carlo calculations of the neutron matter equation of state using chiral nuclear forces. The ground-state wave function of neutron matter, containing nonperturbative many-body correlations, is obtained from auxiliary-field quantum Monte Carlo simulations of up to about 340 neutrons interacting on a 10(3) discretized lattice. The evolution Hamiltonian is chosen to be attractive and spin independent in order to avoid the fermion sign problem and is constructed to best reproduce broad features of the chiral nuclear force. This is facilitated by choosing a lattice spacing of 1.5 fm, corresponding to a momentum-space cutoff of Λ=414 MeV/c, a resolution scale at which strongly repulsive features of nuclear two-body forces are suppressed. Differences between the evolution potential and the full chiral nuclear interaction (Entem and Machleidt Λ=414 MeV [L. Coraggio et al., Phys. Rev. C 87, 014322 (2013).
Evaluating Small Sphere Limit of the Wang-Yau Quasi-Local Energy
NASA Astrophysics Data System (ADS)
Chen, Po-Ning; Wang, Mu-Tao; Yau, Shing-Tung
2018-01-01
In this article, we study the small sphere limit of the Wang-Yau quasi-local energy defined in Wang and Yau (Phys Rev Lett 102(2):021101, 2009, Commun Math Phys 288(3):919-942, 2009). Given a point p in a spacetime N, we consider a canonical family of surfaces approaching p along its future null cone and evaluate the limit of the Wang-Yau quasi-local energy. The evaluation relies on solving an "optimal embedding equation" whose solutions represent critical points of the quasi-local energy. For a spacetime with matter fields, the scenario is similar to that of the large sphere limit found in Chen et al. (Commun Math Phys 308(3):845-863, 2011). Namely, there is a natural solution which is a local minimum, and the limit of its quasi-local energy recovers the stress-energy tensor at p. For a vacuum spacetime, the quasi-local energy vanishes to higher order and the solution of the optimal embedding equation is more complicated. Nevertheless, we are able to show that there exists a solution that is a local minimum and that the limit of its quasi-local energy is related to the Bel-Robinson tensor. Together with earlier work (Chen et al. 2011), this completes the consistency verification of the Wang-Yau quasi-local energy with all classical limits.
Fracton topological order from nearest-neighbor two-spin interactions and dualities
NASA Astrophysics Data System (ADS)
Slagle, Kevin; Kim, Yong Baek
2017-10-01
Fracton topological order describes a remarkable phase of matter, which can be characterized by fracton excitations with constrained dynamics and a ground-state degeneracy that increases exponentially with the length of the system on a three-dimensional torus. However, previous models exhibiting this order require many-spin interactions, which may be very difficult to realize in a real material or cold atom system. In this work, we present a more physically realistic model which has the so-called X-cube fracton topological order [Vijay, Haah, and Fu, Phys. Rev. B 94, 235157 (2016), 10.1103/PhysRevB.94.235157] but only requires nearest-neighbor two-spin interactions. The model lives on a three-dimensional honeycomb-based lattice with one to two spin-1/2 degrees of freedom on each site and a unit cell of six sites. The model is constructed from two orthogonal stacks of Z2 topologically ordered Kitaev honeycomb layers [Kitaev, Ann. Phys. 321, 2 (2006), 10.1016/j.aop.2005.10.005], which are coupled together by a two-spin interaction. It is also shown that a four-spin interaction can be included to instead stabilize 3+1D Z2 topological order. We also find dual descriptions of four quantum phase transitions in our model, all of which appear to be discontinuous first-order transitions.
Frontiers of muon spectroscopy—25 years of muon science at ISIS
NASA Astrophysics Data System (ADS)
Cottrell, Stephen
2013-12-01
The ISIS muon source developed with support from the European Community (EC) and groups at Grenoble, Parma, Uppsala and Munich in the late 1980s, with a single instrument providing many scientists with their first opportunity to explore the unique capabilities of muon spectroscopy. The timing was opportune, as the muon technique was making an important contribution to the study of the then recently discovered cuprate high T c superconductors. The ISIS user community developed rapidly over subsequent years, with the technique finding a broad range of applications in condensed matter physics, materials science and chemistry. The single instrument was hugely oversubscribed, and the importance of the technique was recognized in 1993 with a further grant from the EC to develop the triple beamline facility that is currently available at ISIS. During 2009 the suite of spectrometers available at the facility received a major upgrade, with the Science and Technology Facilities Council funding the development of a 5 T high field instrument that has enabled entirely new applications of muon spectroscopy to be explored. The facility continues to flourish, with a strong user community exploiting the technique to support research across an increasingly broad range of subject areas. Condensed matter science continues to be a major area of interest, with applications including semiconductors and dielectrics, superconductors, magnetism, interstitial diffusion and charge transport. Recently, however, molecular science and radical chemistry have become prominent in the ISIS programme, applications where the availability of high magnetic fields is frequently vital to the success of the experiments. For ISIS, 23 March 2012 marked a significant milestone, it being 25 years since muons were first produced at the facility for research in condensed matter and molecular science. To celebrate, the ISIS muon group organized a science symposium with the theme 'Frontiers of Muon Spectroscopy' at St Hugh's College, Oxford, UK during the autumn of 2012. While in part a retrospective, the focus of the meeting was on the state of the art, considering how muon techniques continue to contribute across many topical areas of research, with a forward look at new applications of the method. I should take this opportunity to thank the ISIS user community for their support for this meeting, and contributing to the diverse and interesting programme that was enjoyed by those attending. While a short account of the meeting and many of the presentations can be found on the group website at www.isis.stfc.ac.uk/groups/muons/meetings/, I am particularly grateful to Physica Scripta for giving the community the opportunity to publish a series of extended papers developing topics discussed during the meeting. Although many appear within this issue, the Swedish contribution will be published later, in 2014, as part of a series commemorating Swedish neutron and muon research at ISIS. I commend these papers to you; together they provide an excellent account of the technique and its unique role in many topical areas of research. The symposium also marked the recent retirement of Professor Steve Cox. Steve has been involved with the muon technique for over 30 years, contributing to the development of muon science at ISIS throughout the life of the facility. During this time his research interests have embraced most areas of muon spectroscopy with a particular focus on applications in chemical physics, aspects of semiconductor science and muonium chemistry. He developed a keen interest in using muons to investigate elemental materials, publishing a major report looking at muonium as a model for interstitial hydrogen in the semiconducting and semimetallic elements [1], with further work focused on establishing the nature of the elusive muonium centre in sulphur [2]. In parallel, Steve continued to lead work looking at hydrogen defect centres in narrow-gap oxide semiconductors as a model for understanding the role of hydrogen in these materials, work that led to two major publications [3, 4]. References [1] Cox S F J 2009 Rep. Prog. Phys. 72 116501 [2] Cox S F J et al 2011 J. Phys.: Condens. Matter 23 315801 [3] Cox S F J et al 2006 J. Phys.: Condens. Matter 18 1061 [4] Cox S F J et al 2006 J. Phys.: Condens. Matter 18 1079
Constructing a low-cost ground-vehicle driving simulator at an airport
DOT National Transportation Integrated Search
2007-09-01
Vehicle/pedestrian deviations (VPDs) occur due to many factors, such as the drivers knowledge : of airport layout, required communications, and other operational procedures. To address and : create awareness of these issues, research has been cond...
The use of small unmanned aircraft by the Washington State Department of Transportation
DOT National Transportation Integrated Search
2008-06-01
Small, unmanned aerial vehicles (UAVs) are increasingly affordable, easy to transport and launch, : and can be equipped with cameras that provide information usable for transportation agencies. The : Washington State Department of Transportation cond...
Alternative approaches to condition monitoring in freeway management systems.
DOT National Transportation Integrated Search
2002-01-01
In response to growing concerns over traffic congestion, traffic management systems have been built in large urban areas in an effort to improve the efficiency and safety of the transportation network. This research effort developed an automated cond...
Neutron Skins and Neutron Stars in the Multimessenger Era
NASA Astrophysics Data System (ADS)
Fattoyev, F. J.; Piekarewicz, J.; Horowitz, C. J.
2018-04-01
The historical first detection of a binary neutron star merger by the LIGO-Virgo Collaboration [B. P. Abbott et al., Phys. Rev. Lett. 119, 161101 (2017), 10.1103/PhysRevLett.119.161101] is providing fundamental new insights into the astrophysical site for the r process and on the nature of dense matter. A set of realistic models of the equation of state (EOS) that yield an accurate description of the properties of finite nuclei, support neutron stars of two solar masses, and provide a Lorentz covariant extrapolation to dense matter are used to confront its predictions against tidal polarizabilities extracted from the gravitational-wave data. Given the sensitivity of the gravitational-wave signal to the underlying EOS, limits on the tidal polarizability inferred from the observation translate into constraints on the neutron-star radius. Based on these constraints, models that predict a stiff symmetry energy, and thus large stellar radii, can be ruled out. Indeed, we deduce an upper limit on the radius of a 1.4 M⊙ neutron star of R⋆1.4<13.76 km . Given the sensitivity of the neutron-skin thickness of
NASA Astrophysics Data System (ADS)
Ellwood, B. B.; Arbizu, M.; Arsuaga, J.; Harrold, F.; Zilhao, J.; Adán, G. E.; Aramburu, A.; Fombella, M. A.; Bedia, I. M.; Alvarez-Laó, D.; García, M.
2005-05-01
The magnetic susceptibility (MS) method, when carefully applied, can be used to correlatie between sediment sequences and to characterize the paleoclimate at the time the sediments were deposited in protected archaeological sites, such as within caves or deep rock shelters. This method works because the MS of sediments outside caves, that are eventually deposited in caves, is controlled by pedogenesis that in turn is driven by climate. Here we summarize the method and discuss ways designed to identify anomalous samples that should not be used in relative dating or for correlations. We will then present our results from Cueva del Conde located in the Province of Asturias, northwestern Spain, and compare those results with results from other caves from Spain and Portugal. Cueva del Conde was first excavated in 1915, with additional excavations and studies performed in 1962, 1965, and 1999. The current excavations began in 2001. This body of work identified a transitional sequence from Middle Paleolithic (Mousterian) to early Upper Paleolithic (Aurignacian) artifacts, including perhaps the earliest art known from the Upper Paleolithic, thus establishing Cueva del Conde as an important Paleolithic cave site. We collected a continuous series of 44 samples, each covering about 0.027 m of section, from an exposed 1.2 m sequence within the cave. This section has been excavated and studied by archaeologists working at the site and three 14C dates from charcoal have been reported. The MS for samples collected for this study were measured using the susceptibility bridge at LSU. The MS shows a systematic cyclicity that when constrained by the 14C ages can be correlated to our MS standard curve for Europe (Ellwood et al., 2001; Harrold et al., 2004), and thus to other sites in the region. This cyclicity we interpret to result from climate fluctuations. By comparison to our MS standard curves, we are able to assign MS relative ages to Cueva del Conde that extends the sequence from about 31,500 BP to greater than 36,000 BP (uncalibrated 14C ages). Our results show that the transition from the Middle to the Upper Paleolithic at this locality in northwestern Spain occurred during a time when climate was relatively cold. The implications of this work for correlation to equivalent age sites in Spain and Portugal will be discussed.
High energy neutrinos from astrophysical accelerators of cosmic ray nuclei
NASA Astrophysics Data System (ADS)
Anchordoqui, Luis A.; Hooper, Dan; Sarkar, Subir; Taylor, Andrew M.
2008-02-01
Ongoing experimental efforts to detect cosmic sources of high energy neutrinos are guided by the expectation that astrophysical accelerators of cosmic ray protons would also generate neutrinos through interactions with ambient matter and/or photons. However, there will be a reduction in the predicted neutrino flux if cosmic ray sources accelerate not only protons but also significant numbers of heavier nuclei, as is indicated by recent air shower data. We consider plausible extragalactic sources such as active galactic nuclei, gamma ray bursts and starburst galaxies and demand consistency with the observed cosmic ray composition and energy spectrum at Earth after allowing for propagation through intergalactic radiation fields. This allows us to calculate the expected neutrino fluxes from the sources, normalized to the observed cosmic ray spectrum. We find that the likely signals are still within reach of next generation neutrino telescopes such as IceCube.PACS95.85.Ry98.70.Rz98.54.Cm98.54.EpReferencesFor a review, see:F.HalzenD.HooperRep. Prog. Phys.6520021025A.AchterbergIceCube CollaborationPhys. Rev. Lett.972006221101A.AchterbergIceCube CollaborationAstropart. Phys.262006282arXiv:astro-ph/0611063arXiv:astro-ph/0702265V.NiessANTARES CollaborationAIP Conf. Proc.8672006217I.KravchenkoPhys. Rev. D732006082002S.W.BarwickANITA CollaborationPhys. Rev. Lett.962006171101V.Van ElewyckPierre Auger CollaborationAIP Conf. Proc.8092006187For a survey of possible sources and event rates in km3 detectors see e.g.,W.BednarekG.F.BurgioT.MontaruliNew Astron. Rev.4920051M.D.KistlerJ.F.BeacomPhys. Rev. D742006063007A. Kappes, J. Hinton, C. Stegmann, F.A. Aharonian, arXiv:astro-ph/0607286.A.LevinsonE.WaxmanPhys. Rev. Lett.872001171101C.DistefanoD.GuettaE.WaxmanA.LevinsonAstrophys. J.5752002378F.A.AharonianL.A.AnchordoquiD.KhangulyanT.MontaruliJ. Phys. Conf. Ser.392006408J.Alvarez-MunizF.HalzenAstrophys. J.5762002L33F.VissaniAstropart. Phys.262006310F.W.SteckerC.DoneM.H.SalamonP.SommersPhys. Rev. Lett.6619912697(Erratum-ibid. 69 (1992) 2738)F.W.SteckerPhys. Rev. D722005107301A.AtoyanC.D.DermerPhys. Rev. Lett.872001221102L.A.AnchordoquiH.GoldbergF.HalzenT.J.WeilerPhys. Lett. B6002004202E.WaxmanJ.N.BahcallPhys. Rev. Lett.7819972292C.D.DermerA.AtoyanPhys. Rev. Lett.912003071102D.GuettaD.HooperJ.Alvarez-MunizF.HalzenE.ReuveniAstropart. Phys.202004429J.Alvarez-MunizF.HalzenD.W.HooperPhys. Rev. D622000093015A.LoebE.WaxmanJCAP06052006003S. Inoue, G. Sigl, F. Miniati, E. Armengaud, arXiv:astro-ph/0701167.E.WaxmanJ.N.BahcallPhys. Rev. D591999023002Phys. Rev. D642001023002K.MannheimR.J.ProtheroeJ.P.RachenPhys. Rev. D632001023003arXiv:astro-ph/9908031M.AhlersL.A.AnchordoquiH.GoldbergF.HalzenA.RingwaldT.J.WeilerPhys. Rev. D722005023001E.WaxmanAstrophys. J.4521995L1Note that the neutrino spectral shape can deviate from that for protons if the Feynman plateau is not flat in pseudo-rapidity space;L.AnchordoquiH.GoldbergC.NunezPhys. Rev. D712005065014This is in fact suggested by Tevatron data;F.AbeCDF CollaborationPhys. Rev. D4119902330J.G.LearnedS.PakvasaAstropart. Phys.31995267F.HalzenD.SaltzbergPhys. Rev. Lett.8119984305J.F.BeacomN.F.BellD.HooperS.PakvasaT.J.WeilerPhys. Rev. D682003093005(Erratum-ibid. D 72 (2005) 019901)L.A.AnchordoquiH.GoldbergF.HalzenT.J.WeilerPhys. Lett. B593200442L.A.AnchordoquiH.GoldbergF.HalzenT.J.WeilerPhys. Lett. B621200518A.M.HillasAnn. Rev. Astron. Astrophys.221984425For a general discussion on the acceleration time-scale in these sources see, e.g.,D.F.TorresL.A.AnchordoquiRep. Prog. Phys.6720041663M.C.BegelmanB.RudakM.SikoraAstrophys. J.362199038M.J.ChodorowskiA.A.ZdziarskiM.SikoraAstrophys. J.4001992181S.MichalowskiD.AndrewsJ.EickmeyerT.GentileN.MistryR.TalmanK.UenoPhys. Rev. Lett.391977737J.L.PugetF.W.SteckerJ.H.BredekampAstrophys. J.2051976638D.HooperS.SarkarA.M.TaylorAstropart. Phys.272007199The non-thermal energy release in GRBs is much smaller than that output by AGN.P.L.BiermannP.A.StrittmatterAstrophys. J.3221987643R.J.ProtheroeA.P.SzaboPhys. Rev. Lett.6919922885J.P.RachenP.L.BiermannAstron. Astrophys.2721993161J.P.RachenT.StanevP.L.BiermannAstron. Astrophys.2731993377R.C.HartmanEGRET CollaborationAstrophys. J. Suppl.123199979See e.g.,M.PunchNature3581992477D.PetryHEGRA CollaborationAstron. Astrophys.3111996L13P.M.ChadwickAstrophys. J.5131999161C.D.DermerR.SchlickeiserA.MastichiadisAstron. Astrophys.2561992L27S.D.BloomA.P.MarscherAstrophys. J.4611996657K.MannheimAstron. Astrophys.269199367K.MannheimScience2791998684A.DarA.LaorAstrophys. J.4781997L5F.A.AharonianNew Astron.52000377M.BoettcherAstrophys. J.5151999L21C.D.DermerR.SchlickeiserAstrophys. J.4161993458F.W.SteckerPhys. Rev. Lett.2119681016G.J.FishmanC.A.MeeganAnn. Rev. Astron. Astrophys.331995415For a list of papers related to SWIFT, see: http://swift.gsfc.nasa.gov/docs/swift/results/publist/.B.LinkR.I.EpsteinAstrophys. J.4661996764C.A.MeeganNature3551992143M.R.MetzgerNature3871997878See e.g.,T.PiranPhys. Rep.3141999575T.PiranPhys. Rep.3332000529For a recent review of GRB phenomenology, see:P.MeszarosRep. Prog. Phys.6920062259E.WaxmanLect. Notes Phys.5762001122M.MilgromV.UsovAstrophys. J.4491995L37E.WaxmanPhys. Rev. Lett.751995386M.VietriPhys. Rev. Lett.7819974328D.BandAstrophys. J.4131993281F. Halzen, in: K. Oliver (Ed.), Proceedings of the TASI’98, Boulder, 1998, p. 524.J.W.ElbertP.SommersAstrophys. J.4411995151L.A.AnchordoquiG.E.RomeroJ.A.CombiPhys. Rev. D601999103001L.A. Anchordoqui, J.F. Beacom, H. Goldberg, S. Palomares-Ruiz, T.J. Weiler, arXiv:astro-ph/0611580; arXiv:astro-ph/0611581.The factor 9/(4R) results from calculating ∫dr∫dr|r-r|(4πR/3), where r is the position of a star and r is the position of an observer (the position of the reaction), in a region of radius R uniformly filled with sources.D.A.ForbesM.J.WardV.RotaciucM.BlietzR.GenzelS.DrapatzP.P.van der WerfA.KrabbeAstrophys. J.4061993L11P. Chanial, H. Flores, B. Guiderdoni, D. Elbaz, F. Hammer, L. Vigroux, arXiv:astro-ph/0610900.P.O.LagageC.J.CesarskyAstron. Astrophys.1181983223S.P.LaiJ.M.GirartR.CrutcherAstrophys. J.5982003392W.BednarekMon. Not. R. Astron. Soc.3452003847W.BednarekR.J.ProtheroeAstropart. Phys.162002397P.BlasiA.V.OlintoPhys. Rev. D591999023001F.W.SteckerAstropart. Phys.262007398F.W. Stecker, arXiv:astro-ph/0610208.A γ-ray signal from the nearby starburst galaxy NGC253 was reported by the CANGAROO-II Collaboration but their subsequent re-analysis of the data is consistent with the expectation from backgrounds:C.ItohCANGAROO-II CollaborationAstron. Astrophys.3962002L1(Erratum-ibid. 462 (2007) 67)T.A. Thompson, E. Quataert, E. Waxman, A. Loeb, arXiv:astro-ph/0608699.D.J.BirdFly’s Eye CollaborationPhys. Rev. Lett.7119933401D.R.BergmanHiRes CollaborationNucl. Phys. Proc. Suppl.136200440T.Abu-ZayyadHiRes-MIA CollaborationAstrophys. J.5572001686M.NaganoJ. Phys. G181992423V.BerezinskyA.Z.GazizovS.I.GrigorievaPhys. Rev. D742006043005R.U.AbbasiHiRes CollaborationPhys. Rev. Lett.922004151101V.BerezinskyA.Z.GazizovS.I.GrigorievaPhys. Lett. B6122005147V.S.BerezinskyS.I.GrigorievaB.I.HnatykAstropart. Phys.212004617See Fig. 21 in:L.AnchordoquiM.T.DovaA.MariazziT.McCauleyT.PaulS.ReucroftJ.SwainAnn. Phys.3142004145D.AllardE.ParizotE.KhanS.GorielyA.V.OlintoAstron. Astrophys.4432005L29D.AllardE.ParizotA.V.OlintoAstropart. Phys.27200761T.Abu-ZayyadHigh Resolution Fly’s Eye CollaborationAstropart. Phys.232005157P. Sommers, et al., Pierre Auger Collaboration, arXiv:astro-ph/0507150.R.U.AbbasiHiRes CollaborationAstrophys. J.6222005910B.N. Afanasiev, et al., Yakutsk Collaboration, in: M. Nagano (Ed.), Proceedings of the Tokyo Workshop on Techniques for the Study of the Extremely High Energy Cosmic Rays, 1993.J. Knapp, private communication.J.RanftPhys. Rev. D51199564R.S.FletcherT.K.GaisserP.LipariT.StanevPhys. Rev. D5019945710J.EngelT.K.GaisserT.StanevP.LipariPhys. Rev. D4619925013N.N.KalmykovS.S.OstapchenkoA.I.PavlovNucl. Phys. Proc. Suppl.52B19977It is important to stress that the Auger data are still at a preliminary stage and the reconstruction procedures are still to be finalised. However, even allowing for the systematic uncertainties still present, it does appear that at the highest energies fewer events are seen than expected from the AGASA analysis.V.S.BerezinskyG.T.ZatsepinPhys. Lett. B281969423F.W.SteckerAstrophys. J.2281979919R.EngelD.SeckelT.StanevPhys. Rev. D642001093010Z.FodorS.D.KatzA.RingwaldH.TuJCAP03112003015D.De MarcoT.StanevF.W.SteckerPhys. Rev. D732006043003D.HooperA.TaylorS.SarkarAstropart. Phys.23200511M.AveN.BuscaA.V.OlintoA.A.WatsonT.YamamotoAstropart. Phys.23200519A point worth noting at this juncture: If iron nuclei are accelerated to very high energies (much higher than the energy spectrum has been measured), then disintegration can lead to large numbers of protons above the spectrum cutoff. In this case, the resulting cosmogenic neutrino flux is not dramatically suppressed. On the other hand, if iron nuclei are only largely accelerated to around 10eV or less, then the liberated protons will only rarely interact with the CMB to produce pions, hence the cosmogenic neutrino flux will be significantly reduced.
Galactic Shapiro delay to the Crab pulsar and limit on weak equivalence principle violation
NASA Astrophysics Data System (ADS)
Desai, Shantanu; Kahya, Emre
2018-02-01
We calculate the total galactic Shapiro delay to the Crab pulsar by including the contributions from the dark matter as well as baryonic matter along the line of sight. The total delay due to dark matter potential is about 3.4 days. For baryonic matter, we included the contributions from both the bulge and the disk, which are approximately 0.12 and 0.32 days respectively. The total delay from all the matter distribution is therefore 3.84 days. We also calculate the limit on violations of Weak equivalence principle by using observations of "nano-shot" giant pulses from the Crab pulsar with time-delay <0.4 ns, as well as using time differences between radio and optical photons observed from this pulsar. Using the former, we obtain a limit on violation of Weak equivalence principle in terms of the PPN parameter Δ γ < 2.41× 10^{-15}. From the time-difference between simultaneous optical and radio observations, we get Δ γ < 1.54× 10^{-9}. We also point out differences in our calculation of Shapiro delay and that from two recent papers (Yang and Zhang, Phys Rev D 94(10):101501, 2016; Zhang and Gong, Astrophys J 837:134, 2017), which used the same observations to obtain a corresponding limit on Δ γ.
Methods to expedite and streamline utility relocations for road projects.
DOT National Transportation Integrated Search
2014-12-01
This report describes best practices and tools to streamline and expedite utility relocations when they : are required as part of road construction projects. As part of this effort, a research team from the : Kentucky Transportation Center (KTC) cond...
Driver response to unexpected situations when using and in-vehicle information system
DOT National Transportation Integrated Search
1999-12-01
This investigation is one of a series of studies aimed at investigating Advanced Traveler Information Systems (ATIS) and Commercial Vehicle Operations (CVO) applications and their effect on driver behavior and performance. A field experiment was cond...
DOT National Transportation Integrated Search
2017-01-01
Using a combination of simulation and field studies, the research team found that agencies can achieve slight improvements by adjusting their traffic signal timing plans during adverse weather conditions. Agencies can detect when adverse weather cond...
The Effects of Admixed Dark Matter on Accretion Induced Collapse
NASA Astrophysics Data System (ADS)
Leung, Shing-Chi; Chu, Ming-Chung; Lin, Lap-Ming; Nomoto, Ken'ichi
About 90% mass of matter in the universe is dark matter (DM) and most of its properties remain poorly constrained since it does not interact with electromagnetic and strong forces. To constrain the properties of DM, studying its effects on stellar objects is one of the methods. In [Leung et al., Phys. Rev. D 87, 123506 (2013); Leung et al., Astrophys. J. 812, 110 (2015)] we have shown that the dark matter admixture can significantly lower the Chandrasekhar mass of a white dwarf and also its corresponding explosion as a Type Ia supernova (SNe Ia). This type of objects may explain some observed sub-luminous SNe Ia. Depending on their stellar evolution path and interactions with companion stars, such objects can also undergo a direct collapse to form neutron stars (NSs) instead of explosion. Here we present results of one-dimensional hydrodynamics simulations of a NS with admixed DM. The DM is assumed to be asymmetric and in the form of an ideal degenerate Fermi gas. We study how the admixture of DM affects the collapse dynamics, its neutrino signals and the properties of the proto-NS. Possible observational signals are also discussed.
Real-space decoupling transformation for quantum many-body systems.
Evenbly, G; Vidal, G
2014-06-06
We propose a real-space renormalization group method to explicitly decouple into independent components a many-body system that, as in the phenomenon of spin-charge separation, exhibits separation of degrees of freedom at low energies. Our approach produces a branching holographic description of such systems that opens the path to the efficient simulation of the most entangled phases of quantum matter, such as those whose ground state violates a boundary law for entanglement entropy. As in the coarse-graining transformation of Vidal [Phys. Rev. Lett. 99, 220405 (2007).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burkart, F.; Schmidt, R.; Wollmann, D.
2015-08-07
In a previous paper [Schmidt et al., Phys. Plasmas 21, 080701 (2014)], we presented the first results on beam–matter interaction experiments that were carried out at the High Radiation Materials test facility at CERN. In these experiments, extended cylindrical targets of solid copper were irradiated with beam of 440 GeV protons delivered by the Super Proton Synchrotron (SPS). The beam comprised of a large number of high intensity proton bunches, each bunch having a length of 0.5 ns with a 50 ns gap between two neighboring bunches, while the length of this entire bunch train was about 7 μs. These experiments established the existencemore » of the hydrodynamic tunneling phenomenon the first time. Detailed numerical simulations of these experiments were also carried out which were reported in detail in another paper [Tahir et al., Phys. Rev. E 90, 063112 (2014)]. Excellent agreement was found between the experimental measurements and the simulation results that validate our previous simulations done using the Large Hadron Collider (LHC) beam of 7 TeV protons [Tahir et al., Phys. Rev. Spec. Top.--Accel. Beams 15, 051003 (2012)]. According to these simulations, the range of the full LHC proton beam and the hadronic shower can be increased by more than an order of magnitude due to the hydrodynamic tunneling, compared to that of a single proton. This effect is of considerable importance for the design of machine protection system for hadron accelerators such as SPS, LHC, and Future Circular Collider. Recently, using metal cutting technology, the targets used in these experiments have been dissected into finer pieces for visual and microscopic inspection in order to establish the precise penetration depth of the protons and the corresponding hadronic shower. This, we believe will be helpful in studying the very important phenomenon of hydrodynamic tunneling in a more quantitative manner. The details of this experimental work together with a comparison with the numerical simulations are presented in this paper.« less
DOT National Transportation Integrated Search
2015-01-01
The National Highway Traffic Safety Administration, the California Office of Traffic Safety, and the Delaware Highway Safety Office demonstrated State high-visibility enforcement (HVE) programs to reduce handheld phone use while driving. HVE was cond...
Engineering studies on joint bar integrity, part II : finite element analysis
DOT National Transportation Integrated Search
2014-04-02
This paper is the second in a two-part series describing : research sponsored by the Federal Railroad Administration : (FRA) to study the structural integrity of joint bars. In Part I, : observations from field surveys of joint bar inspections : cond...
Recycled Portland cement concrete pavements : Part II, state-of-the art summary.
DOT National Transportation Integrated Search
1979-01-01
This report constitutes a review of the literature concerning recycling of portland cement concrete pavements by crushing the old pavement and reusing the crushed material as aggregate in a number of applications. A summary of the major projects cond...
Trends in public information within the Fairfax Alcohol Safety Action Project, 1975.
DOT National Transportation Integrated Search
1976-01-01
To assess current trends in the effectiveness of the public information and education countermeasure of the Fairfax Alcohol Safety Action Project, two pieces of survey type research are conducted on a periodic basis. The roadside survey has been cond...
X-cube model on generic lattices: Fracton phases and geometric order
NASA Astrophysics Data System (ADS)
Slagle, Kevin; Kim, Yong Baek
2018-04-01
Fracton order is a new kind of quantum order characterized by topological excitations that exhibit remarkable mobility restrictions and a robust ground-state degeneracy (GSD) which can increase exponentially with system size. In this paper, we present a generic lattice construction (in three dimensions) for a generalized X-cube model of fracton order, where the mobility restrictions of the subdimensional particles inherit the geometry of the lattice. This helps explain a previous result that lattice curvature can produce a robust GSD, even on a manifold with trivial topology. We provide explicit examples to show that the (zero-temperature) phase of matter is sensitive to the lattice geometry. In one example, the lattice geometry confines the dimension-1 particles to small loops, which allows the fractons to be fully mobile charges, and the resulting phase is equivalent to (3+1)-dimensional toric code. However, the phase is sensitive to more than just lattice curvature; different lattices without curvature (e.g., cubic or stacked kagome lattices) also result in different phases of matter, which are separated by phase transitions. Unintuitively, however, according to a previous definition of phase [X. Chen et al., Phys. Rev. B 82, 155138 (2010), 10.1103/PhysRevB.82.155138], even just a rotated or rescaled cubic results in different phases of matter, which motivates us to propose a coarser definition of phase for gapped ground states and fracton order. This equivalence relation between ground states is given by the composition of a local unitary transformation and a quasi-isometry (which can rotate and rescale the lattice); equivalently, ground states are in the same phase if they can be adiabatically connected by varying both the Hamiltonian and the positions of the degrees of freedom (via a quasi-isometry). In light of the importance of geometry, we further propose that fracton orders should be regarded as a geometric order.
Transport and Dynamics in Toroidal Fusion Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sovinec, Carl
The study entitled, "Transport and Dynamics in Toroidal Fusion Systems," (TDTFS) applied analytical theory and numerical computation to investigate topics of importance to confining plasma, the fourth state of matter, with magnetic fields. A central focus of the work is how non-thermal components of the ion particle distribution affect the "sawtooth" collective oscillation in the core of the tokamak magnetic configuration. Previous experimental and analytical research had shown and described how the oscillation frequency decreases and amplitude increases, leading to "monster" or "giant" sawteeth, when the non-thermal component is increased by injecting particle beams or by exciting ions with imposedmore » electromagnetic waves. The TDTFS study applied numerical computation to self-consistently simulate the interaction between macroscopic collective plasma dynamics and the non-thermal particles. The modeling used the NIMROD code [Sovinec, Glasser, Gianakon, et al., J. Comput. Phys. 195, 355 (2004)] with the energetic component represented by simulation particles [Kim, Parker, Sovinec, and the NIMROD Team, Comput. Phys. Commun. 164, 448 (2004)]. The computations found decreasing growth rates for the instability that drives the oscillations, but they were ultimately limited from achieving experimentally relevant parameters due to computational practicalities. Nonetheless, this effort provided valuable lessons for integrated simulation of macroscopic plasma dynamics. It also motivated an investigation of the applicability of fluid-based modeling to the ion temperature gradient instability, leading to the journal publication [Schnack, Cheng, Barnes, and Parker, Phys. Plasmas 20, 062106 (2013)]. Apart from the tokamak-specific topics, the TDTFS study also addressed topics in the basic physics of magnetized plasma and in the dynamics of the reversed-field pinch (RFP) configuration. The basic physics work contributed to a study of two-fluid effects on interchange dynamics, where "two-fluid" refers to modeling independent dynamics of electron and ion species without full kinetic effects. In collaboration with scientist Ping Zhu, who received separate support, it was found that the rule-of-thumb criteria on stabilizing interchange has caveats that depend on the plasma density and temperature profiles. This work was published in [Zhu, Schnack, Ebrahimi, et al., Phys. Rev. Lett. 101, 085005 (2008)]. An investigation of general nonlinear relaxation with fluid models was partially supported by the TDTFS study and led to the publication [Khalzov, Ebrahimi, Schnack, and Mirnov, Phys. Plasmas 19, 012111 (2012)]. Work specific to the RFP included an investigation of interchange at large plasma pressure and support for applications [for example, Scheffel, Schnack, and Mirza, Nucl. Fusion 53, 113007 (2013)] of the DEBS code [Schnack, Barnes, Mikic, Harned, and Caramana, J. Comput. Phys. 70, 330 (1987)]. Finally, the principal investigator over most of the award period, Dalton Schnack, supervised a numerical study of modeling magnetic island suppression [Jenkins, Kruger, Hegna, Schnack, and Sovinec, Phys. Plasmas 17, 12502 (2010)].« less
Coulomb crystallization in classical and quantum systems
NASA Astrophysics Data System (ADS)
Bonitz, Michael
2007-11-01
Coulomb crystallization occurs in one-component plasmas when the average interaction energy exceeds the kinetic energy by about two orders of magnitude. A simple road to reach such strong coupling consists in using external confinement potentials the strength of which controls the density. This has been succsessfully realized with ions in traps and storage rings and also in dusty plasma. Recently a three-dimensional spherical confinement could be created [1] which allows to produce spherical dust crystals containing concentric shells. I will give an overview on our recent results for these ``Yukawa balls'' and compare them to experiments. The shell structure of these systems can be very well explained by using an isotropic statically screened pair interaction. Further, the thermodynamic properties of these systems, such as the radial density distribution are discussed based on an analytical theory [3]. I then will discuss Coulomb crystallization in trapped quantum systems, such as mesoscopic electron and electron hole plasmas in coupled layers [4,5]. These systems show a very rich correlation behavior, including liquid and solid like states and bound states (excitons, biexcitons) and their crystals. On the other hand, also collective quantum and spin effects are observed, including Bose-Einstein condensation and superfluidity of bound electron-hole pairs [4]. Finally, I consider Coulomb crystallization in two-component neutral plasmas in three dimensions. I discuss the necessary conditions for crystals of heavy charges to exist in the presence of a light component which typically is in the Fermi gas or liquid state. It can be shown that their exists a critical ratio of the masses of the species of the order of 80 [5] which is confirmed by Quantum Monte Carlo simulations [6]. Familiar examples are crystals of nuclei in the core of White dwarf stars, but the results also suggest the existence of other crystals, including proton or α-particle crystals in dense matter and of hole crystals in semiconductors. [1] O. Arp, D. Block, A. Piel, and A. Melzer, Phys. Rev. Lett. 93, 165004 (2004). [2] M. Bonitz, D. Block, O. Arp, V. Golubnychiy, H. Baumgartner, P. Ludwig, A. Piel, and A. Filinov, Phys. Rev. Lett. 96, 075001 (2006). [3] C. Henning, H. Baumgartner, A. Piel, P. Ludwig, V. Golubnychiy, M. Bonitz, and D. Block, Phys. Rev. E 74, 056403 (2006) and Phys. Rev. E (2007). [4] A. Filinov, M. Bonitz, and Yu. Lozovik, Phys. Rev. Lett. 86, 3851 (2001). [5] M. Bonitz, V. Filinov, P. Levashov, V. Fortov, and H. Fehske, Phys. Rev. Lett. 95, 235006 (2005) and J. Phys. A: Math. Gen. 39, 4717 (2006). [6] Introduction to Computational Methods for Many-Body Systems, M. Bonitz and D. Semkat (eds.), Rinton Press, Princeton (2006)
Estereotipos Sexuales y su Relación con Conductas Sexuales Riesgosas1,2,3
Pérez-Jiménez, David; Orengo-Aguayo, Rosaura E.
2012-01-01
Resumen Los estereotipos sexuales son creencias generalmente aceptadas y poco cuestionadas que podrían contribuir a cómo los hombres y las mujeres debemos expresar nuestra sexualidad. Los objetivos de este estudio eran identificar cuántos hombres y mujeres heterosexuales en Puerto Rico endosaban ciertos estereotipos acerca de la sexualidad masculina y femenina y explorar la relación entre el endoso de estos estereotipos sexuales y las actitudes hacia el condón masculino y su uso en relaciones sexuales vaginales Llevamos a cabo un estudio descriptivo-correlacional mediante el cual le administramos dos escalas, una sobre sexualidad masculina y otra sobre sexualidad femenina a un grupo de 429 personas heterosexuales. Encontramos que los hombres endosaron estereotipos sexuales masculinos y femeninos más que las mujeres y que estos tienden a tener una visión más conservadora respecto a la sexualidad femenina que la que tienen sobre su propia sexualidad. Las mujeres, por otra parte, tienden a ver su propia sexualidad y la sexualidad masculina en términos menos estereotipados y más equitativos. También encontramos que a mayor endoso de creencias tradicionales sobre la sexualidad masculina y femenina, peor la actitud hacia el uso del condón masculino. Sin embargo, el endosar estereotipos sexuales masculinos y/o femeninos no se relacionó con el uso del condón. Estos hallazgos contradicen la literatura que sugiere que estos estereotipos sexuales y de género resultan en conductas sexuales de alto riesgo, lo cual tiene implicaciones importantes para el desarrollo e implementación de programas de prevención. PMID:24575164
Control of Orange Hawkweed (Hieracium aurantiacum) in Southern Alaska
USDA-ARS?s Scientific Manuscript database
Orange hawkweed is a perennial European plant and an escaped ornamental that has colonized roadsides and grasslands in south central and southeast Alaska. This plant is forming near monotypic stands, reducing plant diversity and decreasing pasture productivity. A replicated greenhouse study was cond...
FIELD OBSERVATIONS TO RECOGNIZE THE NATURAL BIODEGRADATION OF MTBE
At some gasoline spill sites (perhaps a third of sites nationwide) MTBE in ground water has been biologically degraded to TBA. This natural biodegradation of MTBE contributes to the natural attenuation of MTBE, but it produces TBA as a potential contaminant. Under ordinary cond...
Financial Audit: District of Columbia Highway Trust Fund's 1996 Financial Statements
DOT National Transportation Integrated Search
1997-12-15
This report presents the results of efforts to audit the financial statements of the District of Columbia Highway Trust Fund for the 14-month period ended September 30, 1996, and to examine the 5-year forecasted statements of the Fund's expected cond...
An overview of spray drift reduction testing of spray nozzles
USDA-ARS?s Scientific Manuscript database
The importance of the development and testing of drift reduction technologies (DRTs) is increasing. Common spray drift reduction technologies include spray nozzles and spray adjuvants. Following draft procedures developed for a DRT program, three spray nozzles were tested under high air speed cond...
Resonant spin Hall effect in two dimensional electron gas
NASA Astrophysics Data System (ADS)
Shen, Shun-Qing
2005-03-01
Remarkable phenomena have been observed in 2DEG over last two decades, most notably, the discovery of integer and fractional quantum Hall effect. The study of spin transport provides a good opportunity to explore spin physics in two-dimensional electron gas (2DEG) with spin-orbit coupling and other interaction. It is already known that the spin-orbit coupling leads to a zero-field spin splitting, and competes with the Zeeman spin splitting if the system is subjected to a magnetic field perpendicular to the plane of 2DEG. The result can be detected as beating of the Shubnikov-de Haas oscillation. Very recently the speaker and his collaborators studied transport properties of a two-dimensional electron system with Rashba spin-orbit coupling in a perpendicular magnetic field. The spin-orbit coupling competes with the Zeeman splitting to generate additional degeneracies between different Landau levels at certain magnetic fields. It is predicted theoretically that this degeneracy, if occurring at the Fermi level, gives rise to a resonant spin Hall conductance, whose height is divergent as 1/T and whose weight is divergent as -lnT at low temperatures. The charge Hall conductance changes by 2e^2/h instead of e^2/h as the magnetic field changes through the resonant point. The speaker will address the resonance condition, symmetries in the spin-orbit coupling, the singularity of magnetic susceptibility, nonlinear electric field effect, the edge effect and the disorder effect due to impurities. This work was supported by the Research Grants Council of Hong Kong under Grant No.: HKU 7088/01P. *S. Q. Shen, M. Ma, X. C. Xie, and F. C. Zhang, Phys. Rev. Lett. 92, 256603 (2004) *S. Q. Shen, Y. J. Bao, M. Ma, X. C. Xie, and F. C. Zhang, cond-mat/0410169
Void Growth and Coalescence in Dynamic Fracture of FCC and BCC Metals - Molecular Dynamics Study
NASA Astrophysics Data System (ADS)
Seppälä, Eira
2004-03-01
In dynamic fracture of ductile metals, the state of tension causes the nucleation of voids, typically from inclusions or grain boundary junctions, which grow and ultimately coalesce to form the fracture surface. Significant plastic deformation occurs in the process, including dislocations emitted to accommodate the growing voids. We have studied at the atomistic scale growth and coalescence processes of voids with concomitant dislocation formation. Classical molecular dynamics (MD) simulations of one and two pre-existing spherical voids initially a few nanometers in radius have been performed in single-crystal face-centered-cubic (FCC) and body-centered-cubic (BCC) lattices under dilational strain with high strain-rates. Million atom simulations of single void growth have been done to study the effect of stress triaxiality,^1 along with strain rate and lattice-structure dependence. An interesting prolate-to-oblate transition in the void shape in uniaxial expansion has been observed and quantitatively analyzed. The simulations also confirm that the plastic strain results directly from the void growth. Interaction and coalescence between two voids have been studied utilizing a parallel MD code in a seven million atom system. In particular, the movement of centers of the voids, linking of the voids, and the shape changes in vicinity of the other void are studied. Also the critical intervoid ligament distance after which the voids can be treated independently has been searched. ^1 E. T. Seppälä, J. Belak, and R. E. Rudd, cond-mat/0310541, submitted to Phys. Rev. B. Acknowledgment: This work was done in collaboration with Dr. James Belak and Dr. Robert E. Rudd, LLNL. It was performed under the auspices of the US Dept. of Energy at the Univ. of Cal./Lawrence Livermore National Laboratory under contract no. W-7405-Eng-48.
Importance of finite-temperature exchange correlation for warm dense matter calculations.
Karasiev, Valentin V; Calderín, Lázaro; Trickey, S B
2016-06-01
The effects of an explicit temperature dependence in the exchange correlation (XC) free-energy functional upon calculated properties of matter in the warm dense regime are investigated. The comparison is between the Karasiev-Sjostrom-Dufty-Trickey (KSDT) finite-temperature local-density approximation (TLDA) XC functional [Karasiev et al., Phys. Rev. Lett. 112, 076403 (2014)PRLTAO0031-900710.1103/PhysRevLett.112.076403] parametrized from restricted path-integral Monte Carlo data on the homogeneous electron gas (HEG) and the conventional Monte Carlo parametrization ground-state LDA XC [Perdew-Zunger (PZ)] functional evaluated with T-dependent densities. Both Kohn-Sham (KS) and orbital-free density-functional theories are used, depending upon computational resource demands. Compared to the PZ functional, the KSDT functional generally lowers the dc electrical conductivity of low-density Al, yielding improved agreement with experiment. The greatest lowering is about 15% for T=15 kK. Correspondingly, the KS band structure of low-density fcc Al from the KSDT functional exhibits a clear increase in interband separation above the Fermi level compared to the PZ bands. In some density-temperature regimes, the deuterium equations of state obtained from the two XC functionals exhibit pressure differences as large as 4% and a 6% range of differences. However, the hydrogen principal Hugoniot is insensitive to the explicit XC T dependence because of cancellation between the energy and pressure-volume work difference terms in the Rankine-Hugoniot equation. Finally, the temperature at which the HEG becomes unstable is T≥7200 K for the T-dependent XC, a result that the ground-state XC underestimates by about 1000 K.
Compton spectra of atoms at high x-ray intensity
NASA Astrophysics Data System (ADS)
Son, Sang-Kil; Geffert, Otfried; Santra, Robin
2017-03-01
Compton scattering is the nonresonant inelastic scattering of an x-ray photon by an electron and has been used to probe the electron momentum distribution in gas-phase and condensed-matter samples. In the low x-ray intensity regime, Compton scattering from atoms dominantly comes from bound electrons in neutral atoms, neglecting contributions from bound electrons in ions and free (ionized) electrons. In contrast, in the high x-ray intensity regime, the sample experiences severe ionization via x-ray multiphoton multiple ionization dynamics. Thus, it becomes necessary to take into account all the contributions to the Compton scattering signal when atoms are exposed to high-intensity x-ray pulses provided by x-ray free-electron lasers (XFELs). In this paper, we investigate the Compton spectra of atoms at high x-ray intensity, using an extension of the integrated x-ray atomic physics toolkit, xatom. As the x-ray fluence increases, there is a significant contribution from ionized electrons to the Compton spectra, which gives rise to strong deviations from the Compton spectra of neutral atoms. The present study provides not only understanding of the fundamental XFEL-matter interaction but also crucial information for single-particle imaging experiments, where Compton scattering is no longer negligible. , which features invited work from the best early-career researchers working within the scope of J. Phys. B. This project is part of the Journal of Physics series’ 50th anniversary celebrations in 2017. Sang-Kil Son was selected by the Editorial Board of J. Phys. B as an Emerging Leader.
NASA Astrophysics Data System (ADS)
Yano, Ryosuke; Matsumoto, Jun; Suzuki, Kojiro
2011-06-01
Thermally relativistic flow with dissipation was analyzed by solving the rarefied supersonic flow of thermally relativistic matter around a triangle prism by Yano and Suzuki [Phys. Rev. DPRVDAQ1550-7998 83, 023517 (2011)10.1103/PhysRevD.83.023517], where the Anderson-Witting (AW) model was used as a solver. In this paper, we solve the same problem, which was analyzed by Yano and Suzuki, using the relativistic Boltzmann equation (RBE). To solve the RBE, the conventional direct simulation Monte Carlo method for the nonrelativistic Boltzmann equation is extended to a new direct simulation Monte Carlo method for the RBE. Additionally, we solve the modified Marle (MM) model proposed by Yano-Suzuki-Kuroda for comparisons. The solution of the thermally relativistic shock layer around the triangle prism obtained using the relativistic Boltzmann equation is considered by focusing on profiles of macroscopic quantities, such as the density, velocity, temperature, heat flux and dynamic pressure along the stagnation streamline (SSL). Differences among profiles of the number density, velocity and temperature along the SSL obtained using the RBE, the AW and MM. models are described in the framework of the relativistic Navier-Stokes-Fourier law. Finally, distribution functions on the SSL obtained using the RBE are compared with those obtained using the AW and MM models. The distribution function inside the shock wave obtained using the RBE does not indicate a bimodal form, which is obtained using the AW and MM models, but a smooth deceleration of thermally relativistic matter inside a shock wave.
Neutrino flavor evolution in neutron star mergers
NASA Astrophysics Data System (ADS)
Tian, James Y.; Patwardhan, Amol V.; Fuller, George M.
2017-08-01
We examine the flavor evolution of neutrinos emitted from the disklike remnant (hereafter called "neutrino disk") of a binary neutron star (BNS) merger. We specifically follow the neutrinos emitted from the center of the disk, along the polar axis perpendicular to the equatorial plane. We carried out two-flavor simulations using a variety of different possible initial neutrino luminosities and energy spectra and, for comparison, three-flavor simulations in specific cases. In all simulations, the normal neutrino mass hierarchy was used. The flavor evolution was found to be highly dependent on the initial neutrino luminosities and energy spectra; in particular, we found two broad classes of results depending on the sign of the initial net electron neutrino lepton number (i.e., the number of neutrinos minus the number of antineutrinos). In the antineutrino-dominated case, we found that the matter-neutrino resonance effect dominates, consistent with previous results, whereas in the neutrino-dominated case, a bipolar spectral swap develops. The neutrino-dominated conditions required for this latter result have been realized, e.g., in a BNS merger simulation that employs the "DD2" equation of state for neutron star matter [Phys. Rev. D 93, 044019 (2016), 10.1103/PhysRevD.93.044019]. For this case, in addition to the swap at low energies, a collective Mikheyev-Smirnov-Wolfenstein mechanism generates a high-energy electron neutrino tail. The enhanced population of high-energy electron neutrinos in this scenario could have implications for the prospects of r -process nucleosynthesis in the material ejected outside the plane of the neutrino disk.
Analysis of biosurfaces by neutron reflectometry: From simple to complex interfaces
Junghans, Ann; Watkins, Erik B.; Barker, Robert D.; ...
2015-03-16
Because of its high sensitivity for light elements and the scattering contrast manipulation via isotopic substitutions, neutron reflectometry (NR) is an excellent tool for studying the structure of soft-condensed material. These materials include model biophysical systems as well as in situ living tissue at the solid–liquid interface. The penetrability of neutrons makes NR suitable for probing thin films with thicknesses of 5–5000 Å at various buried, for example, solid–liquid, interfaces [J. Daillant and A. Gibaud, Lect. Notes Phys. 770, 133 (2009); G. Fragneto-Cusani, J. Phys.: Condens. Matter 13, 4973 (2001); J. Penfold, Curr. Opin. Colloid Interface Sci. 7, 139 (2002)].more » Over the past two decades, NR has evolved to become a key tool in the characterization of biological and biomimetic thin films. Highlighted In the current report are some of the authors' recent accomplishments in utilizing NR to study highly complex systems, including in-situ experiments. Such studies will result in a much better understanding of complex biological problems, have significant medical impact by suggesting innovative treatment, and advance the development of highly functionalized biomimetic materials.« less
Anisotropic pressure and hyperons in neutron stars
NASA Astrophysics Data System (ADS)
Sulaksono, A.
2015-01-01
We study the effects of anisotropic pressure (AI-P) on properties of the neutron stars (NSs) with hyperons inside its core within the framework of extended relativistic mean field. It is found that the main effects of AI-P on NS matter is to increase the stiffness of the equation of state EOS, which compensates for the softening of the EOS due to the hyperons. The maximum mass and redshift predictions of anisotropic neutron star with hyperonic core are quite compatible with the result of recent observational constraints if we use the parameter of AI-P model h ≤ 0.8 [L. Herrera and W. Barreto, Phys. Rev. D 88 (2013) 084022.] and Λ ≤ -1.15 [D. D. Doneva and S. S. Yazadjiev, Phys. Rev. D 85 (2012) 124023.]. The radius of the corresponding NS at M = 1.4 M⊙ is more than 13 km, while the effect of AI-P on the minimum mass of NS is insignificant. Furthermore, due to the AI-P in the NS, the maximum mass limit of higher than 2.1 M⊙ cannot rule out the presence of hyperons in the NS core.
Freezing of soft spheres: A critical test for weighted-density-functional theories
NASA Astrophysics Data System (ADS)
Laird, Brian B.; Kroll, D. M.
1990-10-01
We study the freezing properties of systems with inverse-power and Yukawa interactions (soft spheres), using recently developed weighted-density-functional theories. We find that the modified weighted-density-functional approximation (MWDA) of Denton and Ashcroft yields results for the liquid to face-centered-cubic (fcc) structure transition that represent a significant improvement over those of earlier ``second-order'' density-functional freezing theories; however, this theory, like the earlier ones, fails to predict any liquid to body-centered-cubic (bcc) transition, even under conditions where the computer simulations indicate that this should be the equilibrium solid structure. In addition, we show that both the modified effective-liquid approximation (MELA) of Baus [J. Phys. Condens. Matter 2, 2111 (1990)] and the generalized effective-liquid approximation of Lutsko and Baus [Phys. Rev. Lett. 64, 761 (1990)], while giving excellent results for the freezing of hard spheres, fail completely to predict freezing into either fcc or bcc solid phases for soft inverse-power potentials. We also give an alternate derivation of the MWDA that makes clearer its connection to earlier theories.
Dense crystalline packings of ellipsoids
NASA Astrophysics Data System (ADS)
Jin, Weiwei; Jiao, Yang; Liu, Lufeng; Yuan, Ye; Li, Shuixiang
2017-03-01
An ellipsoid, the simplest nonspherical shape, has been extensively used as a model for elongated building blocks for a wide spectrum of molecular, colloidal, and granular systems. Yet the densest packing of congruent hard ellipsoids, which is intimately related to the high-density phase of many condensed matter systems, is still an open problem. We discover an unusual family of dense crystalline packings of self-dual ellipsoids (ratios of the semiaxes α : √{α }:1 ), containing 24 particles with a quasi-square-triangular (SQ-TR) tiling arrangement in the fundamental cell. The associated packing density ϕ exceeds that of the densest known SM2 crystal [ A. Donev et al., Phys. Rev. Lett. 92, 255506 (2004), 10.1103/PhysRevLett.92.255506] for aspect ratios α in (1.365, 1.5625), attaining a maximal ϕ ≈0.758 06 ... at α = 93 /64 . We show that the SQ-TR phase derived from these dense packings is thermodynamically stable at high densities over the aforementioned α range and report a phase diagram for self-dual ellipsoids. The discovery of the SQ-TR crystal suggests organizing principles for nonspherical particles and self-assembly of colloidal systems.
Mechanical pressure and momentum conservation in dry active matter
NASA Astrophysics Data System (ADS)
Fily, Y.; Kafri, Y.; Solon, A. P.; Tailleur, J.; Turner, A.
2018-01-01
We relate the breakdown of equations of states (EOS) for the mechanical pressure of generic dry active systems to the lack of momentum conservation in such systems. We show how net sources and sinks of momentum arise generically close to confining walls. These typically depend on the interactions of the container with the particles, which makes the mechanical pressure a container-dependent quantity. We show that an EOS is recovered if the dynamics of the propulsive forces of the particles are decoupled from other degrees of freedom and lead to an apolar bulk steady-state. This recovery of an EOS stems from the mean steady-state active force density being the divergence of the flux of ‘active impulse’, an observable which measures the mean momentum particles will receive from the substrate in the future. ), which features invited work from the best early-career researchers working within the scope of J. Phys. A. This project is part of the Journal of Physics series’ 50th anniversary celebrations in 2017. Julien Tailleur was selected by the Editorial Board of J. Phys. A as an Emerging Talent.
First-principles calculations of finite temperature Sc and O NMR parameters in Pb(Sc2/3W1/3)O3
NASA Astrophysics Data System (ADS)
Krakauer, Henry; Walter, Eric J.; Ellden, Jeremy; Hoatson, Gina L.; Vold, Robert L.
2012-02-01
Understanding the dynamics of complex relaxor ferroelectrics is important to characterizing their large electromechanical coupling. Preliminary NMR measurements of Sc electric-field-gradients (EFG) in Pb(Sc2/3W1/3)O3 (PSW) show a strong temperature dependence in the range T = 250 - 330 K. To understand this behavior, we use the first-principles GIPAWootnotetextC. J. Pickard and F. Mauri, Phys. Rev. B 63, 245101 (2001); method within the Quantum Espresso (QE) packageootnotetextP. Giannozzi et al., Journal of Physics: Condensed Matter 21, 395502 (2009) to calculate ^45Sc and ^17O chemical-shifts and EFG tensors. To study finite temperature effects, we incorporate the thermal expansion of the lattice and sample thermal disorder, using the phonon degrees of freedom. As in our previous studies of perovksites,ootnotetextD. L. Pechkis, E. J. Walter, and H. Krakauer. J. Chem. Phys. 135, 114507 (2011); ibid. 131, 184511 (2009) we show that the ^17O chemical shifts in PSW also exhibit a linear correlation with the nearest-neighbor B-O bond length.
Capillary waves and the decay of density correlations at liquid surfaces
NASA Astrophysics Data System (ADS)
Hernández-Muñoz, Jose; Chacón, Enrique; Tarazona, Pedro
2016-12-01
Wertheim predicted strong density-density correlations at free liquid surfaces, produced by capillary wave fluctuations of the interface [M. S. Wertheim, J. Chem. Phys. 65, 2377 (1976), 10.1063/1.433352]. That prediction has been used to search for a link between capillary wave (CW) theory and density functional (DF) formalism for classical fluids. In particular, Parry et al. have recently analyzed the decaying tails of these CW effects moving away from the interface as a clue for the extended CW theory [A. O. Parry et al., J. Phys.: Condens. Matter 28, 244013 (2016), 10.1088/0953-8984/28/24/244013], beyond the strict long-wavelength limit studied by Wertheim. Some apparently fundamental inconsistencies between the CW and the DF theoretical views of the fluid interfaces arose from the asymptotic analysis of the CW signal. In this paper we revisit the problem of the CW asymptotic decay with a separation of local non-CW surface correlation effects from those that are a truly nonlocal propagation of the CW fluctuations from the surface towards the liquid bulk.
Perturbative instability of inflationary cosmology from quantum potentials
NASA Astrophysics Data System (ADS)
Tawfik, A.; Diab, A.; Abou El Dahab, E.
2017-09-01
It was argued that the Raychaudhuri equation with a quantum correction term seems to avoid the Big Bang singularity and to characterize an everlasting Universe (Ali and Das in Phys Lett B 741:276, 2015). Critical comments on both conclusions and on the correctness of the key expressions of this work were discussed in literature (Lashin in Mod Phys Lett 31:1650044, 2016). In the present work, we have analyzed the perturbative (in)stability conditions in the inflationary era of the early Universe. We conclude that both unstable and stable modes are incompatible with the corresponding ones obtained in the standard FLRW Universe. We have shown that unstable modes do exist at small (an)isotropic perturbation and for different equations of state. Inequalities for both unstable and stable solutions with the standard FLRW space were derived. They reveal that in the FLRW flat Universe both perturbative instability and stability are likely. While negative stability modes have been obtained for radiation- and matter-dominated eras, merely, instability modes exist in case of a finite cosmological constant and also if the vacuum energy dominates the cosmic background geometry.
Quantum collapse of dust shells in 2 + 1 gravity
NASA Astrophysics Data System (ADS)
Ortíz, L.; Ryan, M. P.
2007-08-01
This paper considers the quantum collapse of infinitesimally thin dust shells in 2 + 1 gravity. In 2 + 1 gravity a shell is no longer a sphere, but a ring of matter. The classical equation of motion of such shells in terms of variables defined on the shell has been considered by Peleg and Steif (Phys Rev D 51:3992, 1995), using the 2 + 1 version of the original formulation of Israel (Nuovo Cimento B 44:1, 1966), and Crisóstomo and Olea (Phys Rev D 69:104023, 2004), using canonical methods. The minisuperspace quantum problem can be reduced to that of a harmonic oscillator in terms of the curvature radius of the shell, which allows us to use well-known methods to find the motion of coherent wave packets that give the quantum collapse of the shell. Classically, as the radius of the shell falls below a certain point, a horizon forms. In the quantum problem one can define various quantities that give “indications” of horizon formation. Without a proper definition of a “horizon” in quantum gravity, these can be nothing but indications.
New Kohn-Sham density functional based on microscopic nuclear and neutron matter equations of state
NASA Astrophysics Data System (ADS)
Baldo, M.; Robledo, L. M.; Schuck, P.; Viñas, X.
2013-06-01
A new version of the Barcelona-Catania-Paris energy functional is applied to a study of nuclear masses and other properties. The functional is largely based on calculated ab initio nuclear and neutron matter equations of state. Compared to typical Skyrme functionals having 10-12 parameters apart from spin-orbit and pairing terms, the new functional has only 2 or 3 adjusted parameters, fine tuning the nuclear matter binding energy and fixing the surface energy of finite nuclei. An energy rms value of 1.58 MeV is obtained from a fit of these three parameters to the 579 measured masses reported in the Audi and Wapstra [Nucl. Phys. ANUPABL0375-947410.1016/j.nuclphysa.2003.11.003 729, 337 (2003)] compilation. This rms value compares favorably with the one obtained using other successful mean field theories, which range from 1.5 to 3.0 MeV for optimized Skyrme functionals and 0.7 to 3.0 for the Gogny functionals. The other properties that have been calculated and compared to experiment are nuclear radii, the giant monopole resonance, and spontaneous fission lifetimes.
Photoinduced Electron Transfer in the Strong Coupling Regime: Waveguide-Plasmon Polaritons.
Zeng, Peng; Cadusch, Jasper; Chakraborty, Debadi; Smith, Trevor A; Roberts, Ann; Sader, John E; Davis, Timothy J; Gómez, Daniel E
2016-04-13
Reversible exchange of photons between a material and an optical cavity can lead to the formation of hybrid light-matter states where material properties such as the work function [ Hutchison et al. Adv. Mater. 2013 , 25 , 2481 - 2485 ], chemical reactivity [ Hutchison et al. Angew. Chem., Int. Ed. 2012 , 51 , 1592 - 1596 ], ultrafast energy relaxation [ Salomon et al. Angew. Chem., Int. Ed. 2009 , 48 , 8748 - 8751 ; Gomez et al. J. Phys. Chem. B 2013 , 117 , 4340 - 4346 ], and electrical conductivity [ Orgiu et al. Nat. Mater. 2015 , 14 , 1123 - 1129 ] of matter differ significantly to those of the same material in the absence of strong interactions with the electromagnetic fields. Here we show that strong light-matter coupling between confined photons on a semiconductor waveguide and localized plasmon resonances on metal nanowires modifies the efficiency of the photoinduced charge-transfer rate of plasmonic derived (hot) electrons into accepting states in the semiconductor material. Ultrafast spectroscopy measurements reveal a strong correlation between the amplitude of the transient signals, attributed to electrons residing in the semiconductor and the hybridization of waveguide and plasmon excitations.
Nanosystems in ultrafast and superstrong fields: attosecond phenomena (Conference Presentation)
NASA Astrophysics Data System (ADS)
Stockman, Mark I.
2017-02-01
We present our latest results for a new class of phenomena in condensed matter nanooptics when a strong optical field ˜1-3 V/Å changes a solid within optical cycle [1-8]. Such a pulse drives ampere-scale currents in dielectrics and adiabatically controls their properties, including optical absorption and reflection, extreme UV absorption, and generation of high harmonics [9] in a non-perturbative manner on a 100-as temporal scale. Applied to a metal, such a pulse causes an instantaneous and, potentially, reversible change from the metallic to semimetallic properties. We will also discuss our latest theoretical results on graphene that in a strong ultrashort pulse field exhibits unique behavior [10-12]. New phenomena are predicted for buckled two-dimensional solids, silicene and germanene [13]. These are fastest phenomena in optics unfolding within half period of light. They offer potential for petahertz-bandwidth signal processing, generation of high harmonics on a nanometer spatial scale, etc. References 1. M. Durach, A. Rusina, M. F. Kling, and M. I. Stockman, Metallization of Nanofilms in Strong Adiabatic Electric Fields, Phys. Rev. Lett. 105, 086803-1-4 (2010). 2. M. Durach, A. Rusina, M. F. Kling, and M. I. Stockman, Predicted Ultrafast Dynamic Metallization of Dielectric Nanofilms by Strong Single-Cycle Optical Fields, Phys. Rev. Lett. 107, 086602-1-5 (2011). 3. A. Schiffrin, T. Paasch-Colberg, N. Karpowicz, V. Apalkov, D. Gerster, S. Muhlbrandt, M. Korbman, J. Reichert, M. Schultze, S. Holzner, J. V. Barth, R. Kienberger, R. Ernstorfer, V. S. Yakovlev, M. I. Stockman, and F. Krausz, Optical-Field-Induced Current in Dielectrics, Nature 493, 70-74 (2013). 4. M. Schultze, E. M. Bothschafter, A. Sommer, S. Holzner, W. Schweinberger, M. Fiess, M. Hofstetter, R. Kienberger, V. Apalkov, V. S. Yakovlev, M. I. Stockman, and F. Krausz, Controlling Dielectrics with the Electric Field of Light, Nature 493, 75-78 (2013). 5. V. Apalkov and M. I. Stockman, Metal Nanofilm in Strong Ultrafast Optical Fields, Phys. Rev. B 88, 245438-1-7 (2013). 6. V. Apalkov and M. I. Stockman, Theory of Dielectric Nanofilms in Strong Ultrafast Optical Fields, Phys. Rev. B 86, 165118-1-13 (2012). 7. F. Krausz and M. I. Stockman, Attosecond Metrology: From Electron Capture to Future Signal Processing, Nat. Phot. 8, 205-213 (2014). 8. O. Kwon, T. Paasch-Colberg, V. Apalkov, B.-K. Kim, J.-J. Kim, M. I. Stockman, and D. E. Kim, Semimetallization of Dielectrics in Strong Optical Fields, Sci. Rep, 6, 21272-1-9 (2016). 9. T. Higuchi, M. I. Stockman, and P. Hommelhoff, Strong-Field Perspective on High-Harmonic Radiation from Bulk Solids, Phys. Rev. Lett. 113, 213901-1-5 (2014). 10. H. K. Kelardeh, V. Apalkov, and M. I. Stockman, Wannier-Stark States of Graphene in Strong Electric Field, Phys. Rev. B 90, 085313-1-11 (2014). 11. H. K. Kelardeh, V. Apalkov, and M. I. Stockman, Graphene in Ultrafast and Superstrong Laser Fields, Phys. Rev. B 91, 0454391-8 (2015). 12. H. K. Kelardeh, V. Apalkov, and M. I. Stockman, Attosecond Strong-Field Interferometry in Graphene: Chirality, Singularity, and Berry Phase, Phys. Rev. B 93, 155434-1-7 (2016). 13. H. K. Kelardeh, V. Apalkov, and M. I. Stockman, Ultrafast Field Control of Symmetry, Reciprocity, and Reversibility in Buckled Graphene-Like Materials, Phys. Rev. B 92, 045413-1-9 (2015).
On the Application of Information Theory to Sustainability
According to the 2nd Law of Thermodynamics, entropy must be an increasing function of time for the whole universe, system plus surroundings. This gives rise to conjectures regarding the lost of work with entropy generation in a general processes. It can be shown that under cond...
Exploring an alternative transportation program to reduce impaired driving.
DOT National Transportation Integrated Search
2001-11-01
This study assessed the impact of an alternate ride home for persons who wanted to plan ahead for instances when they may be too impaired to drive, specifically targeting persons between the ages of 29 and 49. First, a series of focus groups was cond...
The self-description inventory+, part 1 : factor structure and convergent validity analyses.
DOT National Transportation Integrated Search
2013-07-01
Each year the FAA hires approximately 900 new air traffic controller candidates, the majority of whom take the Air Traffic Selection and Training test battery, better known as AT-SAT. This test, developed in 1997, is based on a job/task analysis cond...
Soluble collagen approach to a combination tannage mechanism
USDA-ARS?s Scientific Manuscript database
Although complex salts of Cr(III) sulfate are currently the most effective tanning agents, salts of other metals, including aluminum, have been used either alone or in combination with vegetable tannins or other organic chemicals. In the present study, the interactions of metallic sulfates, and cond...
Factors that influence tractive performance of wheels, tracks, and vehicles
USDA-ARS?s Scientific Manuscript database
Traction of agricultural vehicles and other off-road vehicles is important in allowing these vehicles to perform their desired tasks. This book chapter describes factors affecting the off-road tractive performance of tires and rubber tracks. Tractive performance is affected by soil type, soil cond...
Iodide is an essential nutrient for thyroid hormone synthesis and severe iodide deficiency (ID) during early development is associated with neurological impairments. Several environmental contaminants can perturb the thyroid axis and this perturbation may be more acute under cond...
Ionization of Atoms by Slow Heavy Particles, Including Dark Matter.
Roberts, B M; Flambaum, V V; Gribakin, G F
2016-01-15
Atoms and molecules can become ionized during the scattering of a slow, heavy particle off a bound electron. Such an interaction involving leptophilic weakly interacting massive particles (WIMPs) is a promising possible explanation for the anomalous 9σ annual modulation in the DAMA dark matter direct detection experiment [R. Bernabei et al., Eur. Phys. J. C 73, 2648 (2013)]. We demonstrate the applicability of the Born approximation for such an interaction by showing its equivalence to the semiclassical adiabatic treatment of atomic ionization by slow-moving WIMPs. Conventional wisdom has it that the ionization probability for such a process should be exponentially small. We show, however, that due to nonanalytic, cusplike behavior of Coulomb functions close to the nucleus this suppression is removed, leading to an effective atomic structure enhancement. We also show that electron relativistic effects actually give the dominant contribution to such a process, enhancing the differential cross section by up to 1000 times.
Anisotropic charged stellar models in Generalized Tolman IV spacetime
NASA Astrophysics Data System (ADS)
Murad, Mohammad Hassan; Fatema, Saba
2015-01-01
With the presence of electric charge and pressure anisotropy some anisotropic stellar models have been developed. An algorithm recently presented by Herrera et al. (Phys. Rev. D 77, 027502 (2008)) to generate static spherically symmetric anisotropic solutions of Einstein's equations has been used to derive relativistic anisotropic charged fluid spheres. In the absence of pressure anisotropy the fluid spheres reduce to some well-known Generalized Tolman IV exact metrics. The astrophysical significance of the resulting equations of state (EOS) for a particular case (Wyman-Leibovitz-Adler) for the anisotropic charged matter distribution has been discussed. Physical analysis shows that the relativistic stellar structure obtained in this work may reasonably model an electrically charged compact star, whose energy density associated with the electric fields is on the same order of magnitude as the energy density of fluid matter itself like electrically charged bare strange quark stars.
High-energy effective theory for matter on close Randall-Sundrum branes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rham, Claudia de; Webster, Samuel
2005-09-15
Extending the analysis of C. de Rham and S. Webster [Phys. Rev. D 71, 124025 (2005)], we obtain a formal expression for the coupling between brane matter and the radion in a Randall-Sundrum braneworld. This effective theory is correct to all orders in derivatives of the radion in the limit of small brane separation, and, in particular, contains no higher than second derivatives. In the case of cosmological symmetry the theory can be obtained in closed form and reproduces the five-dimensional behavior. Perturbations in the tensor and scalar sectors are then studied. When the branes are moving, the effective Newtonianmore » constant on the brane is shown to depend both on the distance between the branes and on their velocity. In the small-distance limit, we compute the exact dependence between the four-dimensional and the five-dimensional Newtonian constants.« less
Turbulence and turbulent drag reduction in swirling flow: Inertial versus viscous forcing
NASA Astrophysics Data System (ADS)
Burnishev, Yuri; Steinberg, Victor
2015-08-01
We report unexpected results of a drastic difference in the transition to fully developed turbulent and turbulent drag reduction (TDR) regimes and in their properties in a von Karman swirling flow with counter-rotating disks of water-based polymer solutions for viscous (by smooth disks) as well as inertial (by bladed disks) forcing and by tracking just torque Γ (t ) and pressure p (t ) . For the viscous forcing, just a single TDR regime is found with the transition values of the Reynolds number (Re) Recturb=RecTDR≃(4.8 ±0.2 ) ×105 independent of ϕ , whereas for the inertial forcing two turbulent regimes are revealed. The first transition is to fully developed turbulence, and the second one is to the TDR regime with both Recturb and RecTDR depending on polymer concentration ϕ . Both regimes differ by the values of Cf and Cp, by the scaling exponents of the fundamental turbulent characteristics, by the nonmonotonic dependencies of skewness and flatness of the pressure PDFs on Re, and by the different frequency power spectra of p with the different dependencies of the main vortex peak frequency in the p power spectra on ϕ and Re. Thus our experimental results show the transition to the TDR regime in a von Karman swirling flow for the viscous and inertial forcings in a sharp contrast to the recent experiments [Phys. Fluids 10, 426 (1998), 10.1063/1.869532; Phys. Rev. E 47, R28(R) (1993), 10.1103/PhysRevE.47.R28; and J. Phys.: Condens. Matter 17, S1195 (2005), 10.1088/0953-8984/17/14/008] where the transition to TDR is observed in the same swirling flow with counter-rotating disks only for the viscous forcing. The latter result has led its authors to the wrong conclusion that TDR is a solely boundary effect contrary to the inertial forcing associated with the bulk effect, and this conception is currently rather widely accepted in literature.
NASA Astrophysics Data System (ADS)
Kapko, Vitaliy; Zhao, Zuofeng; Matyushov, Dmitry V.; Austen Angell, C.
2013-03-01
The ability of some liquids to vitrify during supercooling is usually seen as a consequence of the rates of crystal nucleation (and/or crystal growth) becoming small [D. R. Uhlmann, J. Non-Cryst. Solids 7, 337 (1972), 10.1016/0022-3093(72)90269-4] - and thus a matter of kinetics. However, there is evidence dating back to the empirics of coal briquetting for maximum trucking efficiency [D. Frenkel, Physics 3, 37 (2010), 10.1103/Physics.3.37] that some object shapes find little advantage in self-assembly to ordered structures - meaning random packings prevail. Noting that key studies of non-spherical object packing have never been followed from hard ellipsoids [A. Donev, F. H. Stillinger, P. M. Chaikin, and S. Torquato, Phys. Rev. Lett. 92, 255506 (2004), 10.1103/PhysRevLett.92.255506; A. Donev, I. Cisse, D. Sachs, E. A. Variano, F. H. Stillinger, R. Connelly, S. Torquato, and P. M. Chaikin, Science 303, 990 (2004), 10.1126/science.1093010] or spherocylinders [S. R. Williams and A. P. Philipse, Phys. Rev. E 67, 051301 (2003), 10.1103/PhysRevE.67.051301] (diatomics excepted [S.-H. Chong, A. J. Moreno, F. Sciortino, and W. Kob, Phys. Rev. Lett. 94, 215701 (2005), 10.1103/PhysRevLett.94.215701] into the world of molecules with attractive forces, we have made a molecular dynamics study of crystal melting and glass formation on the Gay-Berne (G-B) model of ellipsoidal objects [J. G. Gay and B. J. Berne, J. Chem. Phys. 74, 3316 (1981), 10.1063/1.441483] across the aspect ratio range of the hard ellipsoid studies. Here, we report that in the aspect ratio range of maximum ellipsoid packing efficiency, various G-B crystalline states that cannot be obtained directly from the liquid, disorder spontaneously near 0 K and transform to liquids without any detectable enthalpy of fusion. Without claiming to have proved the existence of single component examples, we use the present observations, together with our knowledge of non-ideal mixing effects, to discuss the probable existence of "ideal glassformers" - single or multicomponent liquids that vitrify before ever becoming metastable with respect to crystals. We find evidence that "ideal glassformer" systems might also be highly fragile systems, approaching the "ideal glass" condition. We link this to the high "volume fragility" behavior observed in recent hard dumbbell studies at similar length/diameter ratios [R. Zhang and K. S. Schweitzer, J. Chem. Phys. 133, 104902 (2010), 10.1063/1.3483601]. The discussion suggests some unusual systems for laboratory study. Using differential scanning calorimetry detection of fusion points Tm, liquidus temperatures Tl, and glass transition temperatures Tg, we describe a system that would seem incapable of crystallizing before glass transition, i.e., an "ideal glassformer." The existence of crystal-free routes to the glassy state will eliminate precrystalline fluctuations as a source of the dynamic heterogeneities that are generally considered important in the discussion of the "glassy state problem [P. W. Anderson, Science 267, 1615 (1995), 10.1126/science.267.5204.1615-e]."
Modified Saez–Ballester scalar–tensor theory from 5D space-time
NASA Astrophysics Data System (ADS)
Rasouli, S. M. M.; Vargas Moniz, Paulo
2018-01-01
In this paper, we bring together the five-dimensional Saez–Ballester (SB) scalar–tensor theory (Saez and Ballester 1986 Phys. Lett. 113A 9) and the induced-matter-theory (IMT) setting (Wesson and Ponce de Leon 1992 J. Math. Phys. 33 3883), to obtain a modified SB theory (MSBT) in four dimensions. Specifically, by using an intrinsic dimensional reduction procedure into the SB field equations in five-dimensions, a MSBT is obtained onto a hypersurface orthogonal to the extra dimension. This four-dimensional MSBT is shown to bear distinctive new features in contrast to the usual corresponding SB theory as well as to IMT and the modified Brans–Dicke theory (MBDT) (Rasouli et al 2014 Class. Quantum Grav. 31 115002). In more detail, besides the usual induced matter terms retrieved through the IMT, the MSBT scalar field is provided with additional physically distinct (namely, SB induced) terms as well as an intrinsic self-interacting potential (interpreted as a consequence of the IMT process and the concrete geometry associated with the extra dimension). Moreover, our MSBT has four sets of field equations, with two sets having no analog in the standard SB scalar–tensor theory. It should be emphasized that the herein appealing solutions can emerge solely from the geometrical reductional process, from the presence also of extra dimension(s) and not from any ad-hoc matter either in the bulk or on the hypersurface. Subsequently, we apply the herein MSBT to cosmology and consider an extended spatially flat FLRW geometry in a five-dimensional vacuum space-time. After obtaining the exact solutions in the bulk, we proceed to construct, by means of the MSBT setting, the corresponding dynamic, on the four-dimensional hypersurface. More precisely, we obtain the (SB) components of the induced matter, including the induced scalar potential terms. We retrieve two different classes of solutions. Concerning the first class, we show that the MSBT yields a barotropic equation of state for the induced perfect fluid. We then investigate vacuum, dust, radiation, stiff fluid and false vacuum cosmologies for this scenario and contrast the results with those obtained in the standard SB theory, IMT and BD theory. Regarding the second class solutions, we show that the scale factor behaves in a similar way to a de Sitter (DeS) model. However, in our MSBT setting, this behavior is assisted by non-vanishing induced matter instead, without any a priori cosmological constant. Moreover, for all these solutions, we show that the extra dimension contracts with the cosmic time.
On the Application of Information Theory to Regime Changes and Sustainability
According to the 2nd Law of Thermodynamics, entropy must be an increasing function of time for the whole universe, system plus surroundings. This gives rise to conjectures regarding the lost of work with entropy generation in a general processes. It can be shown that under cond...
Potential economic impact assessment for cattle parasites in Mexico review
USDA-ARS?s Scientific Manuscript database
Here, economic losses caused by cattle parasites in Mexico were estimated on an annual basis. The main factors taken into consideration for this assessment included the total number of animals at risk, potential detrimental effects of parasitism on milk production or weight gain, and records of cond...
A plausible and consistent model is developed to obtain a quantitative description of the gradual disappearance of hexavalent chromium (Cr(VI)) from groundwater in a small-scale field tracer test and in batch kinetic experiments using aquifer sediments under similar chemical cond...
Gully head retreat in the sub-humid Ethiopian Highlands: The Ene-Chilala catchment
USDA-ARS?s Scientific Manuscript database
In the northern highlands of Ethiopia, gully erosion is severe. Despite many efforts to implement gully prevention measures, controlling gully erosion remains a challenge. The objective is to better understand the regional gully erosion processes and to prevent gully head retreat. The study was cond...
The role of condensed tannins in animal production: advances, limitations and future directions
USDA-ARS?s Scientific Manuscript database
Tannins represent one of the most abundant polyphenolic compounds in plants, second only to lignin. Tannins exist as a multitude of chemically unique entities in nature. The most commonly occurring tannins are typically divided into two major classes based on chemical structure: hydrolysable or cond...
This report summarizes the findings of an evaluation of the Unterdruck-Verdampfer-Brunnen (UVB) technology developed by IEG Technologies (IEG) and licensed in the eastern United States by Environmental Laboratories, Inc. (ELI) and SBP Technologies (SBP). This evaluation was cond...
Rule-Based Motion Coordination for the Adaptive Suspension Vehicle on Ternary-Type Terrain
1990-12-01
robot-window-array* nil) (defvar *robot..window..width* nil) (defvar * rebot -.window..heig)ht* nil) (defvar *terrain-buffer* nil) (defvar *terrain...cond ((momrber leg lift-able-leg. -test #’equal) log) (t nil)) .(dafmethod (test-overlap- rebot ipltcable-leg) (log) (nond ((and (member leg place-able
Modification of vital wheat gluten with phosphoric acid to produce high free-solution capacity
USDA-ARS?s Scientific Manuscript database
Wheat gluten reacts with phosphoric acid to produce natural superabsorbent gels. The gel properties are defined by Fourier Transform Infra-red (FTIR) spectroscopy, 2-dimensional gel electrophoresis (2DE), and uptake of water, salt solutions, and aqueous ethanol. Temperatures above 120'C and dry cond...
USDA-ARS?s Scientific Manuscript database
The National Environmental Observatory Network (NEON) has recently released a series of protocols presented with apparently broad community support for studies of small mammals and parasites. Sampling designs were outlined outlined, collectively aimed at understanding how changing environmental cond...
USDA-ARS?s Scientific Manuscript database
Ethanol acts as a long range cue that aids Xylosandrus germanus (Blandford) in locating living, but weakened trees. Conophthorin is associated with a variety of deciduous trees and enhances X. germanus’ attraction to vulnerable trees. Electroantennogram (EAG) and field trapping experiments were cond...
Coupled Eulerian-Lagrangian transport of large debris by tsunamis
NASA Astrophysics Data System (ADS)
Conde, Daniel A. S.; Ferreira, Rui M. L.; Sousa Oliveira, Carlos
2016-04-01
Tsunamis are notorious for the large disruption they can cause on coastal environments, not only due to the imparted momentum of the incoming wave but also due to its capacity to transport large quantities of solid debris, either from natural or human-made sources, over great distances. A 2DH numerical model under development at CERIS-IST (Ferreira et al., 2009; Conde, 2013) - STAV2D - capable of simulating solid transport in both Eulerian and Lagrangian paradigms will be used to assess the relevance of Lagrangian-Eulerian coupling when modelling the transport of solid debris by tsunamis. The model has been previously validated and applied to tsunami scenarios (Conde, 2013), being well-suited for overland tsunami propagation and capable of handling morphodynamic changes in estuaries and seashores. The discretization scheme is an explicit Finite Volume technique employing flux-vector splitting and a reviewed Roe-Riemann solver. Source term formulations are employed in a semi-implicit way, including the two-way coupling of the Lagrangian and Eulerian solvers by means of conservative mass and momentum transfers between fluid and solid phases. The model was applied to Sines Port, a major commercial port in Portugal, where two tsunamigenic scenarios are considered: an 8.5 Mw scenario, consistent with the Great Lisbon Earthquake and Tsunami of the 1st November 1755 (Baptista, 2009), and an hypothetical 9.5 Mw worst-case scenario based on the same historical event. Open-ocean propagation of these scenarios were simulated with GeoClaw model from ClawPack (Leveque, 2011). Following previous efforts on the modelling of debris transport by tsunamis in seaports (Conde, 2015), this work discusses the sensitivity of the obtained results with respect to the phenomenological detail of the employed Eulerian-Lagrangian formulation and the resolution of the mesh used in the Eulerian solver. The results have shown that the fluid to debris mass ratio is the key parameter regarding the conservativeness of the model. This way, in highly resolved meshes and high quantities of debris, the model approaches full conservativeness only if the two-way coupling feature is present, an effect that is attenuated in coarse meshes or with small debris quantities. Aknownledgements: This work was partially funded by FEDER, program COMPETE, and by national funds through the Portuguese Foundation for Science and Technology (FCT) with project RECI/ECM-HID/0371/2012. References: Baptista M.A. & Miranda, J.M. (2009) Revision of the Portuguese catalog of tsunamis. Nat. Hazards Earth Syst. Sci., 9, 25-42. Conde, D. A. S.; Baptista, M. A. V.; Sousa Oliveira, C. & Ferreira, R. M. L. (2013) A shallow-flow model for the propagation of tsunamis over complex geometries and mobile beds, Nat. Hazards Earth Syst. Sci., 13, 2533-2542. Conde, D. A. S.; Baptista, M. A. V.; Sousa Oliveira, C. & Ferreira, R. M. L. (2015) Mathematical modelling of tsunami impacts on critical infrastructures: exposure and severity associated with debris transport at Sines port. EGU General Assembly 2015, Vienna, Austria. Ferreira, R. M. L.; Franca, M. J.; Leal, J. G. & Cardoso, A. H. (2009) Mathematical modelling of shallow flows: Closure models drawn from grain-scale mechanics of sediment transport and flow hydrodynamics, Can. J. Civil. Eng., 36, 1604-1621. LeVeque, R. J., George, D. L., & Berger, M. J. (2011) Tsunami modelling with adaptively refined finite volume methods, Acta Numerica, pp. 211-289.
MAGNETIC BEHAVIOR OF FUNCTIONALLY MODIFIED SPINEL Ni0.4Ca0.6Fe2O4 NANOFERRITE
NASA Astrophysics Data System (ADS)
Prasad, Arun S.; Dhawan, M. S.; Dolia, S. N.; Samariya, Arvind; Reddy, V. R.; Singhal, R. K.; Predeep, P.
2011-06-01
The editorial board discovered that the data points in several sections of the Mossbauer spectra as given in Figs. 3(a) and 3(b) are exactly identical. This is impossible and nonphysical for the measurement of two different samples (or for that matter not even for the same sample!). The only conclusion we can draw from this figure is that some of the data is fabricated. As a result, the results and conclusions as described in the paper are unacceptable. This article is retracted from its publication in Int. J. Mod. Phys. B.
NASA Astrophysics Data System (ADS)
Mehedi Faruk, Mir; Sazzad Hossain, Md.; Muktadir Rahman, Md.
2016-02-01
The changes in characteristics of Bose condensation of ideal Bose gas due to an external generic power law potential U=\\sumi=1dci\\vert xi/ai\\vertni are studied carefully. Detailed calculation of Kim et al. (J. Phys. Condens. Matter 11 (1999) 10269) yielded the hierarchy of condensation transitions with changing fractional dimensionality. In this manuscript, some theorems regarding specific heat at constant volume CV are presented. Careful examination of these theorems reveal the existence of hidden hierarchy of the condensation transition in trapped systems as well.
NASA Astrophysics Data System (ADS)
Geshev, J.
2009-02-01
Thakur et al (2008 J. Phys.: Condens. Matter 20 195215) have recently reported magnetization hysteresis loops shifted along the field axis of the cluster-glass compound LaMn0.7Fe0.3O3, attributed there to exchange bias induced at ferromagnetic/spin-glass-like interfaces. The present comment affirms that their results are insufficient for assigning the phenomenon solely to exchange bias since the corresponding field shift, if any, cannot be separated from that of a minor hysteresis loop of a ferromagnet, naturally displaced from the origin.
A dichotomy in primary marine organic aerosol-cloud-climate system
NASA Astrophysics Data System (ADS)
Ceburnis, D.; Ovadnevaite, J.; Martucci, G.; Bialek, J.; Monahan, C.; Rinaldi, M.; Facchini, C.; Berresheim, H.; Worsnop, D. R.; O'Dowd, C.
2011-12-01
D. Ceburnis1, J. Ovadnevaite1, G. Martucci1, J. Bialek1, C. Monahan1, M. Rinaldi2, M. C. Facchini2, H. Berresheim1, D. R. Worsnop3,4 and C. D. O'Dowd1 1School of Physics & Centre for Climate and Air Pollution Studies, National University of Ireland Galway, University Road, Galway, Ireland 2Institute of Atmospheric Sciences and Climate, National Research Council, Bologna, 20129, Italy. 3 Aerodyne Research, Inc., 45 Manning Road, Billerica, MA 01821-3976, USA 4 Physics Department, University of Helsinki, P.O. Box 64, 00014, Helsinki, Finland Organic matter has been observed to significantly contribute to particulate matter in every environment including pristine remote oceans. A significant if not dominant contribution of insoluble organic matter to marine aerosol has been proved to be of biogenic origin1,2. High time resolution measurements of marine organic matter have demonstrated a dynamic system with regular organic matter plume events occurring during summer3 as well as frequent open ocean particle formation events4. High-time resolution measurements of primary marine organic sea-spray physico-chemical properties reveal an apparent dichotomous behavior in terms of water uptake: specifically sea-spray aerosol enriched in organic matter possesses a low hygroscopic Growth Factor (GF~1.25) while simultaneously having a cloud condensation nucleus/condensation nuclei (CCN/CN) activation efficiency of between 83% at 0.25% supersaturation and 100% at 0.75%5. Simultaneous retrieval of Cloud Droplet Number Concentration (CDNC) during primary organic aerosol plumes reveal CDNC concentrations of 350 cm-3 in newly formed marine stratocumulus cloud for boundary layer organic mass concentrations of 3-4 ug m-36. It is suggested that marine hydrogels are responsible for this dichotomous behavior which has profound impacts to aerosol-cloud-climate system along with a better understood process analysis of aerosol formation by sea-spray7. A hydrophobic character of organic matter dominated aerosol in sub-saturated conditions should have significant implications for direct radiative effect while effectively forming cloud condensation nuclei should have significant contribution to indirect effect. 1 O'Dowd, C. D. et al. Nature 431, 676-680, doi:10.1038/Nature02959 (2004). 2 Ceburnis, D. et al. Atmos. Chem. Phys. Discuss. 11, 2749-2772, doi:doi:10.5194/acpd-11-2749-2011 (2011). 3 Ovadnevaite, J. et al. Geophys Res Lett 38, L02807, doi:10.1029/2010gl046083 (2011). 4 O'Dowd, C., et al. Geophys Res Lett 37, doi:L19805 10.1029/2010gl044679 (2010). 5 Ovadnevaite, J. et al. Geophys Res Lett (2011). 6 Martucci, G. and O'Dowd, C. D. Atmos. Meas. Tech. Discuss., 4, 4825-4865, doi:10.5194/amtd-4-4825-2011 (2011) 7 Gantt, B. et al. Atmos. Chem. Phys. Discuss. 11, 10525-10555, doi:10.5194/acpd-11-10525-2011 (2011).
Theory of Current-Driven Domain Wall Motion
NASA Astrophysics Data System (ADS)
Tatara, Gen
2004-03-01
Current-induced motion of a domain wall is studied starting from a microscopic Hamiltonian with an exchange interaction between conduction electrons and spins of the wall [1]. With a key observation that the position X and the angle φ0 the wall magnetization forms with the easy plane are the proper collective coordinates to describe its dynamics, it follows straightforwardly that the electric current affects the wall motion in two different ways, in agreement with Berger's pioneering observations[2]. The first is as a force, or momentum transfer, due to the reflection of conduction electrons. This force is proportional to the charge current j and wall resistivity ρ_w, and hence becomes important in thin walls. The other is as a spin torque or spin transfer[3], which is dominant for thick walls where the spin of conduction electron follows the magnetization adiabatically. The motion of a domain wall under a steady current is studied in two limiting cases. In the adiabatic case, we show that even without a pinning force, there is a threshold spin current, j_s^cr∝ K_⊥λ, below which the wall does not move (K_⊥ and λ being the hard-axis magnetic anisotropy and wall thickness, respectively). Below the threshold, the transferred angular momentum is used to shift φ0 and not to the wall motion. The pinning potential V0 affects j_s^cr only if it is very strong, V0 > K_⊥/α, where α is the damping parameter in the Landau-Lifshits-Gilbert equation. Therefore, the critical current for the adiabatic wall does not suffer very much from weak pinning, which is consistent with experimental observations[4]. The wall velocity after depinning is found to be
Atom-chip-based quantum gravimetry for the precise determination of absolute gravity
NASA Astrophysics Data System (ADS)
Abend, Sven; Schubert, Christian; Ertmer, Wolfgang; Rasel, Ernst
2017-04-01
We present a novel technique for the precise measurement of absolute local gravity with a quantum gravimeter based on an atom chip. Atom interferometry utilizes the interference of matter waves interrogated by laser light to read out inertial forces. Today's generation of these devices typically operate with test mass samples, that consists of ensembles of laser cooled atoms. Their performance is limited by the velocity spread and finite-size of the test masses that impose systematic uncertainties at the level of a few μGal [1]. Rather than laser cooled atoms we employ quantum degenerate ensembles, so called Bose-Einstein condensates [2], as ultra-sensitive probes for gravity. These sources offer unique properties that will allow to overcome the current limitations in the next generation of sensors. Furthermore, atom-chip technology offers the possibility to generate Bose-Einstein condensates in a fast and reliable way. We present a lab-based prototype that uses the atom chip itself to retro-reflect the interrogation laser and thus serves as inertial reference inside the vacuum [3]. With this setup, it is possible to demonstrate all necessary steps to measure gravity, including the preparation of the source, spanning an interferometer as well as the detection of the output signal. All steps are pursued on a baseline of 1 cm right below the atom chip and to analyze relevant systematic effects. In the framework of the center of excellence geoQ a next generation device is under construction at the Institut für Quantenoptik, that will target for in-field measurements. This device will feature a state-of-the-art atom-chip source with a high-flux of ultra-cold atoms at a repetition rate of 1-2 Hz [4]. The device will be characterized in cooperation with the Müller group at the Institut für Erdmessung the sensor and finally employed in a campaign to measure the Fennoscandian uplift at the level of 1 μGal. The presented work is supported by the CRC 1227 DQ-mat, the CRC 1128 geo-Q, the RTG 1729, the QUEST-LFS, by the German Space Agency (DLR) with funds provided by the Federal Ministry of Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under Grant No. DLR 50WM1552-1557. [1] A. Peters et al., Nature 400, 849, 1999; A. Louchet-Chauvet et al., New J. Phys. 13, 065026, 2011; C. Freier et al., J. of Phys.: Conf. Series 723, 012050, 2016; V. Schkolnik et al., Appl. Phys. B 120, 311-316 (2015). [2] K. B. Davis et al., Phys. Rev. Lett. 74, 5202, 1995; M. H. Anderson et al., Science 269, 198, 1995; C. C. Bradley et al., Phys. Rev. Lett. 75, 1687, 1995. [3] S. Abend et al., Phys. Rev. Lett. 117, 203003, 2016. [4] J. Rudolph et al., New J. Phys. 17, 065001, 2015.
NASA Astrophysics Data System (ADS)
Somogyi, Gábor; Smith, Robert E.
2010-01-01
We generalize the renormalized perturbation theory (RPT) formalism of Crocce and Scoccimarro [M. Crocce and R. Scoccimarro, Phys. Rev. DPRVDAQ1550-7998 73, 063519 (2006)10.1103/PhysRevD.73.063519] to deal with multiple fluids in the Universe and here we present the complete calculations up to the one-loop level in the RPT. We apply this approach to the problem of following the nonlinear evolution of baryon and cold dark matter (CDM) perturbations, evolving from the distinct sets of initial conditions, from the high redshift post-recombination Universe right through to the present day. In current theoretical and numerical models of structure formation, it is standard practice to treat baryons and CDM as an effective single matter fluid—the so-called dark matter only modeling. In this approximation, one uses a weighed sum of late-time baryon and CDM transfer functions to set initial mass fluctuations. In this paper we explore whether this approach can be employed for high precision modeling of structure formation. We show that, even if we only follow the linear evolution, there is a large-scale scale-dependent bias between baryons and CDM for the currently favored WMAP5 ΛCDM model. This time evolving bias is significant (>1%) until the present day, when it is driven towards unity through gravitational relaxation processes. Using the RPT formalism we test this approximation in the nonlinear regime. We show that the nonlinear CDM power spectrum in the two-component fluid differs from that obtained from an effective mean-mass one-component fluid by ˜3% on scales of order k˜0.05hMpc-1 at z=10, and by ˜0.5% at z=0. However, for the case of the nonlinear evolution of the baryons the situation is worse and we find that the power spectrum is suppressed, relative to the total matter, by ˜15% on scales k˜0.05hMpc-1 at z=10, and by ˜3%-5% at z=0. Importantly, besides the suppression of the spectrum, the baryonic acoustic oscillation (BAO) features are amplified for baryon and slightly damped for CDM spectra. If we compare the total matter power spectra in the two- and one-component fluid approaches, then we find excellent agreement, with deviations being <0.5% throughout the evolution. Consequences: high precision modeling of the large-scale distribution of baryons in the Universe cannot be achieved through an effective mean-mass one-component fluid approximation; detection significance of BAO will be amplified in probes that study baryonic matter, relative to probes that study the CDM or total mass only. The CDM distribution can be modeled accurately at late times and the total matter at all times. This is good news for probes that are sensitive to the total mass, such as gravitational weak lensing as existing modeling techniques are good enough. Lastly, we identify an analytic approximation that greatly simplifies the evaluation of the full PT expressions, and it is better than <1% over the full range of scales and times considered.
Interactions of Ultracold Impurity Particles with Bose-Einstein Condensates
2015-06-23
Lukin et al ., Phys. Rev. Lett. 87, 037901 (2001). [2] D. Jaksch et al ., Phys. Rev. Lett. 85, 2208 (2000). [3] L. Isenhower et al ., Phys. Rev. Lett...104, 010503 (2010). [4] T. Wilk et al ., Phys. Rev. Lett. 104, 010502 (2010). [5] I. Mourachko et al ., Phys. Rev. Lett. 80, 253 (1998). [6] W. R...Phys. 12, 103044 (2010). [12] R. M. W. van Bijnen et al ., J. Phys. B 44, 184008 (2011). [13] I. Lesanovsky, Phys. Rev. Lett. 106, 025301 (2011). [14] E
Zagatto, Alessandro M; Ardigò, Luca P; Barbieri, Fabio A; Milioni, Fabio; Dello Iacono, Antonio; Camargo, Bruno H F; Padulo, Johnny
2017-09-01
Zagatto, AM, Ardigò, LP, Barbieri, FA, Milioni, F, Dello Iacono, A, Camargo, BHF, and Padulo, J. Performance and metabolic demand of a new repeated-sprint ability test in basketball players: does the number of changes of direction matter? J Strength Cond Res 31(9): 2438-2446, 2017-This study compared 2 repeated-sprint ability (RSA) tests in basketball players. Both tests included 10 × 30-m sprints, with the difference that the previously validated test (RSA2COD) featured 2 changes of direction (COD) per sprint, whereas the experimental test (RSA5COD) featured 5 CODs per sprint. Test performances and metabolic demands were specifically assessed in 20 basketball players. First, RSA5COD test-retest reliability was investigated. Then, RSA2COD, RSA5COD sprint times, peak speeds, oxygen uptake (V[Combining Dot Above]O2) and posttest blood lactate concentration [La] were measured. The RSA5COD results showed to be reliable. RSA2COD performance resulted better than the RSA5COD version (p < 0.01), with shorter sprint times and higher peak speeds. Over sprints, the tests did not differ from each other in terms of V[Combining Dot Above]O2 (p > 0.05). Over whole bout, the RSA2COD was more demanding than the RSA5COD, considering overall metabolic power requirement (i.e., VO2-driven + [La]-driven components). Given that RSA5COD (a) mimics real game-play as sprint distance and action change frequency/direction and (b) has the same metabolic expenditure per task completion as metabolic cost, RSA5COD is a valuable option for players and coaches for training basketball-specific agility and assessing bioenergetic demands.
USDA-ARS?s Scientific Manuscript database
Measuring gas emission rates from wastewater lagoons and storage ponds using currently available micrometeorological techniques can be an arduous task because typical lagoon environments contain a variety of obstructions (e.g., berm, trees, buildings) to wind flow. These non-homogeneous terrain cond...
Registration of 'Newell' Smooth Bromegrass
USDA-ARS?s Scientific Manuscript database
‘Newell’ (Reg. No. CV-xxxx, PI 671851) smooth bromegrass (Bromus inermis Leyss.) is a steppe or southern type cultivar that is primarily adapted in the USA to areas north of 40o N lat. and east of 100o W long. that have 500 mm or more annual precipitation or in areas that have similar climate cond...
USDA-ARS?s Scientific Manuscript database
Targeted grazing with small ruminants has been suggested as a means to control one-seed juniper encroachment (Juniperus monosperma Englem. Sarg) and enhance habitat for livestock and wildlife. We determined the short term influence of a localized targeted grazing treatment with goats and sheep cond...
1989-09-30
Excelentisimo Conde de Monterey, Virrey Que Era dela Nueva Espana. In Monarchia Indiana, edited by J. de Torquemada, pp. 693-725. Madrid. 101 102 Baumhoff, M...biological bacterias , this includes the destruction of canyons, hills, mountains and the flora and fauna in these areas. Road construction, real
Fate and transport of arsenic from organoarsenicals fed to poultry
USDA-ARS?s Scientific Manuscript database
Little is known about the fate of arsenic (As) in land-applied litter from chickens that have been fed roxarsone, an organic feed additive containing As. This chapter seeks to review the likelyhood of the biodegradation of roxarsone and the subsequent transport of As in runoff from a case study cond...
Gas-phase mechanisms provide important oxidant and gaseous precursors for secondary aerosol formation. Different gas-phase mechanisms may lead to different predictions of gases, aerosols, and aerosol direct and indirect effects. In this study, WRF/Chem-MADRID simulations are cond...
Leaf Area Index (LAI) is an important parameter in assessing vegetation structure for characterizing forest canopies over large areas at broad spatial scales using satellite remote sensing data. However, satellite-derived LAI products can be limited by obstructed atmospheric cond...
High harmonic generation in a gas-filled hollow-core photonic crystal fiber
NASA Astrophysics Data System (ADS)
Heckl, O. H.; Baer, C. R. E.; Kränkel, C.; Marchese, S. V.; Schapper, F.; Holler, M.; Südmeyer, T.; Robinson, J. S.; Tisch, J. W. G.; Couny, F.; Light, P.; Benabid, F.; Keller, U.
2009-10-01
High harmonic generation (HHG) of intense infrared laser radiation (Ferray et al., J. Phys. B: At. Mol. Opt. Phys. 21:L31, 1988; McPherson et al., J. Opt. Soc. Am. B 4:595, 1987) enables coherent vacuum-UV (VUV) to soft-X-ray sources. In the usual setup, energetic femtosecond laser pulses are strongly focused into a gas jet, restricting the interaction length to the Rayleigh range of the focus. The average photon flux is limited by the low conversion efficiency and the low average power of the complex laser amplifier systems (Keller, Nature 424:831, 2003; Südmeyer et al., Nat. Photonics 2:599, 2008; Röser et al., Opt. Lett. 30:2754, 2005; Eidam et al., IEEE J. Sel. Top. Quantum Electron. 15:187, 2009) which typically operate at kilohertz repetition rates. This represents a severe limitation for many experiments using the harmonic radiation in fields such as metrology or high-resolution imaging. Driving HHG with novel high-power diode-pumped multi-megahertz laser systems has the potential to significantly increase the average photon flux. However, the higher average power comes at the expense of lower pulse energies because the repetition rate is increased by more than a thousand times, and efficient HHG is not possible in the usual geometry. So far, two promising techniques for HHG at lower pulse energies were developed: external build-up cavities (Gohle et al., Nature 436:234, 2005; Jones et al., Phys. Rev. Lett. 94:193, 2005) and resonant field enhancement in nanostructured targets (Kim et al., Nature 453:757, 2008). Here we present a third technique, which has advantages in terms of ease of HHG light extraction, transverse beam quality, and the possibility to substantially increase conversion efficiency by phase-matching (Paul et al., Nature 421:51, 2003; Ren et al., Opt. Express 16:17052, 2008; Serebryannikov et al., Phys. Rev. E (Stat. Nonlinear Soft Matter Phys.) 70:66611, 2004; Serebryannikov et al., Opt. Lett. 33:977, 2008; Zhang et al., Nat. Phys. 3:270, 2007). The interaction between the laser pulses and the gas occurs in a Kagome-type Hollow-Core Photonic Crystal Fiber (HC-PCF) (Benabid et al., Science 298:399, 2002), which reduces the detection threshold for HHG to only 200 nJ. This novel type of fiber guides nearly all of the light in the hollow core (Couny et al., Science 318:1118, 2007), preventing damage even at intensities required for HHG. Our fiber guided 30-fs pulses with a pulse energy of more than 10 μJ, which is more than five times higher than for any other photonic crystal fiber (Hensley et al., Conference on Lasers and Electro-Optics (CLEO), IEEE Press, New York, 2008).
NASA Astrophysics Data System (ADS)
Burrows, S. M.; Liu, X.; Elliott, S.; Easter, R. C.; Singh, B.; Rasch, P. J.
2015-12-01
Submicron marine aerosol particles are frequently observed to contain substantial fractions of organic material, hypothesized to enter the atmosphere as part of the primary sea spray aerosol formed through bubble bursting. This organic matter in sea spray aerosol may affect cloud condensation nuclei and ice nuclei concentrations in the atmosphere, particularly in remote marine regions. Members of our team have developed a new, mechanistic representation of the enrichment of sea spray aerosol with organic matter, the OCEANFILMS parameterization (Burrows et al., 2014). This new representation uses fields from an ocean biogeochemistry model to predict properties of the emitted aerosol. We have recently implemented the OCEANFILMS representation of sea spray aerosol composition into the Community Atmosphere Model (CAM), and performed sensitivity experiments and comparisons with alternate formulations. Early results from these sensitivity simulations will be shown, including impacts on aerosols, clouds, and radiation. References: Burrows, S. M., Ogunro, O., Frossard, A. A., Russell, L. M., Rasch, P. J., and Elliott, S. M.: A physically based framework for modeling the organic fractionation of sea spray aerosol from bubble film Langmuir equilibria, Atmos. Chem. Phys., 14, 13601-13629, doi:10.5194/acp-14-13601-2014, 2014.
Checking the Dark Matter Origin of a 3.53 keV Line with the Milky Way Center.
Boyarsky, A; Franse, J; Iakubovskyi, D; Ruchayskiy, O
2015-10-16
We detect a line at 3.539±0.011 keV in the deep exposure data set of the Galactic center region, observed with the x-ray multi-mirror mission Newton. The dark matter interpretation of the signal observed in the Perseus galaxy cluster, the Andromeda galaxy [A. Boyarsky et al., Phys. Rev. Lett. 113, 251301 (2014)], and in the stacked spectra of galaxy clusters [E. Bulbul et al., Astrophys. J. 789, 13 (2014)], together with nonobservation of the line in blank-sky data, put both lower and upper limits on the possible intensity of the line in the Galactic center data. Our result is consistent with these constraints for a class of Milky Way mass models, presented previously by observers, and would correspond to the radiative decay dark matter lifetime, τDM∼6-8×10(27) sec. Although it is hard to exclude an astrophysical origin of this line based on the Galactic center data alone, this is an important consistency check of the hypothesis that encourages us to check it with more observational data that are expected by the end of 2015.
Using the Moon and Mars as Giant Detectors for Strange Quark Nuggets
NASA Technical Reports Server (NTRS)
Chui, Talso; Penanen, Konstantin; Strayer, Don; Banerdt, Bruce; Tepliz, Vigdor; Herrin, Eugene
2004-01-01
On the Earth, the detectability of small seismic signals is limited by pervasive seismic background noise, caused primarily by interactions of the atmosphere and oceans with the solid surface. Mars, with a very thin atmosphere and no ocean is expected to have a noise level at least an order of magnitude lower than the Earth, and the airless Moon is even quieter still. These pristine low-vibration environments are ideal for searching for nuggets of "strange quark matter." Strange quark matter was postulated by Edward Witten [Phys. Rev. D30, 272, 1984] as the lowest possible energy state of matter. It would be made of up, down, and strange quarks, instead of protons and neutrons made only of up and down quarks. It would have nuclear densities, and hence be difficult to detect. Micron-sized nuggets would weigh in the ton range. As suggested by de Rujula and Glashow [Nature 312 (5996): 734, 1984], a massive strange quark nugget can generate a trail of seismic waves, as it traverses a celestial body. We discuss the mission concept for deploying a network of sensitive seismometers on Mars and on the Moon for such a search.
A New Approach to Monte Carlo Simulations in Statistical Physics
NASA Astrophysics Data System (ADS)
Landau, David P.
2002-08-01
Monte Carlo simulations [1] have become a powerful tool for the study of diverse problems in statistical/condensed matter physics. Standard methods sample the probability distribution for the states of the system, most often in the canonical ensemble, and over the past several decades enormous improvements have been made in performance. Nonetheless, difficulties arise near phase transitions-due to critical slowing down near 2nd order transitions and to metastability near 1st order transitions, and these complications limit the applicability of the method. We shall describe a new Monte Carlo approach [2] that uses a random walk in energy space to determine the density of states directly. Once the density of states is known, all thermodynamic properties can be calculated. This approach can be extended to multi-dimensional parameter spaces and should be effective for systems with complex energy landscapes, e.g., spin glasses, protein folding models, etc. Generalizations should produce a broadly applicable optimization tool. 1. A Guide to Monte Carlo Simulations in Statistical Physics, D. P. Landau and K. Binder (Cambridge U. Press, Cambridge, 2000). 2. Fugao Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001); Phys. Rev. E64, 056101-1 (2001).
Role of RuO2(100) in surface oxidation and CO oxidation catalysis on Ru(0001).
Flege, Jan Ingo; Lachnitt, Jan; Mazur, Daniel; Sutter, Peter; Falta, Jens
2016-01-07
We have studied the oxidation of the Ru(0001) surface by in situ microscopy during exposure to NO2, an efficient source of atomic oxygen, at elevated temperatures. In a previous investigation [Flege et al., Phys. Rev. B: Condens. Matter Mater. Phys., 2008, 78, 165407], at O coverages exceeding 1 monolayer, using the combination of intensity-voltage (I(V)) low-energy electron microscopy (LEEM) and multiple scattering calculations for the (00) beam in the very-low-energy range (E≤ 50 eV) we identified three surface components during the initial Ru oxidation: a (1 × 1)-O chemisorption phase, the RuO2(110) oxide phase, and a surface oxide structure characterized by a trilayer O-Ru-O stacking. Here, we use dark-field LEEM imaging and micro-illumination low-energy electron diffraction in the range of 100 to 400 eV to show that this trilayer phase is actually a RuO2(100)-(1 × 1) phase with possibly mixed O and Ru surface terminations. This identification rationalizes the thermodynamic stability of this phase at elevated temperatures and is consistent with the observation of catalytic activity of the phase in CO oxidation.
NASA Astrophysics Data System (ADS)
Rohrer, Jochen; Hyldgaard, Per
2010-12-01
We investigate the chemical composition and adhesion of chemical vapour deposited thin-film alumina on TiC using and extending a recently proposed nonequilibrium method of ab initio thermodynamics of deposition growth (AIT-DG) (Rohrer and Hyldgaard 2010 Phys. Rev. B 82 045415). A previous study of this system (Rohrer et al 2010 J. Phys.: Condens. Matter 22 015004) found that use of equilibrium thermodynamics leads to predictions of a non-binding TiC/alumina interface, despite its industrial use as a wear-resistant coating. This discrepancy between equilibrium theory and experiment is resolved by the AIT-DG method which predicts interfaces with strong adhesion. The AIT-DG method combines density functional theory calculations, rate-equation modelling of the pressure evolution of the deposition environment and thermochemical data. The AIT-DG method was previously used to predict prevalent terminations of growing or as-deposited surfaces of binary materials. Here we extend the method to predict surface and interface compositions of growing or as-deposited thin films on a substrate and find that inclusion of the nonequilibrium deposition environment has important implications for the nature of buried interfaces.
Magnetoelectric effect in Cr2O3 thin films
NASA Astrophysics Data System (ADS)
He, Xi; Wang, Yi; Sahoo, Sarbeswar; Binek, Christian
2008-03-01
Magnetoelectric materials experienced a recent revival as promising components of novel spintronic devices [1, 2, 3]. Since the magnetoelectric (ME) effect is relativistically small in traditional antiferromagnetic compounds like Cr2O3 (max. αzz 4ps/m ) and also cross- coupling between ferroic order parameters is typically small in the modern multiferroics, it is a challenge to electrically induce sufficient magnetization required for the envisioned device applications. A straightforward approach is to increase the electric field at constant voltage by reducing the thickness of the ME material to thin films of a few nm. Since magnetism is known to be affected by geometrical confinement thickness dependence of the ME effect in thin film Cr2O3 is expected. We grow (111) textured Cr2O3 films with various thicknesses below 500 nm and study the ME effect for various ME annealing conditions as a function of temperature with the help of Kerr-magnetometry. [1] P. Borisov et al. Phys. Rev. Lett. 94, 117203 (2005). [2] Ch. Binek, B.Doudin, J. Phys. Condens. Matter 17, L39 (2005). [3] R. Ramesh and Nicola A. Spaldin 2007 Nature Materials 6 21.
Free-space entangled quantum carpets
NASA Astrophysics Data System (ADS)
Barros, Mariana R.; Ketterer, Andreas; Farías, Osvaldo Jiménez; Walborn, Stephen P.
2017-04-01
The Talbot effect in quantum physics is known to produce intricate patterns in the probability distribution of a particle, known as "quantum carpets," corresponding to the revival and replication of the initial wave function. Recently, it was shown that one can encode a D -level qudit in such a way that the Talbot effect can be used to process the D -dimensional quantum information [Farías et al., Phys. Rev. A 91, 062328 (2015), 10.1103/PhysRevA.91.062328]. Here we introduce a scheme to produce free-propagating "entangled quantum carpets" with pairs of photons produced by spontaneous parametric down-conversion. First we introduce an optical device that can be used to synthesize arbitrary superposition states of Talbot qudits. Sending spatially entangled photon pairs through a pair of these devices produces an entangled pair of qudits. As an application, we show how the Talbot effect can be used to test a D -dimensional Bell inequality. Numerical simulations show that violation of the Bell inequality depends strongly on the amount of spatial correlation in the initial two-photon state. We briefly discuss how our optical scheme might be adapted to matter wave experiments.
ΛCDM Cosmology Through the Lens of Einstein's Static Universe, the Mother of Λ
NASA Astrophysics Data System (ADS)
Mitra, Abhas; Bhattacharyya, S.; Bhatt, Nilay
2013-03-01
We show here that, in the context of Einstein's static universe (ESU), the static cosmological constant Λs = 0. We do so by extending (and not contradicting) the ESU relationship from Λs = 4πρ to Λs = 4πρ = 0, where ρ is the ESU matter density (G = c = 1). This extension follows from the fact that the elements of the spacetime geometry depend on pressure and energy density (ρ). Note in the ΛCDM model, Λ is associated with "Dark Energy (DE)." And, if Λ would be considered as a fundamental constant, it should be zero even for a dynamic universe. In such a case, the observed accelerated expansion could be an artifact of inhomogeneity [D. L. Wiltshire, Phys. Rev. D80 (2009) 123512; E. W. Kolb, Class. Quantum. Grav.28 (2011) 164009] or large peculiar acceleration of the Milky way [C. Tasgas, Phys. Rev. D84 (2011) 063503] or extinction of light of distant supernovae [R. E. Schild and M. Dekker, Astron. Nachr.327 (2006) 729, arXiv:astro-ph/0512236]. The same conclusion has also been obtained in an independent manner [A. Mitra, JCAP03 (2013) 007, doi: 10.1088/1475-7516/2013/03/007].
Singles correlation energy contributions in solids
NASA Astrophysics Data System (ADS)
Klimeš, Jiří; Kaltak, Merzuk; Maggio, Emanuele; Kresse, Georg
2015-09-01
The random phase approximation to the correlation energy often yields highly accurate results for condensed matter systems. However, ways how to improve its accuracy are being sought and here we explore the relevance of singles contributions for prototypical solid state systems. We set out with a derivation of the random phase approximation using the adiabatic connection and fluctuation dissipation theorem, but contrary to the most commonly used derivation, the density is allowed to vary along the coupling constant integral. This yields results closely paralleling standard perturbation theory. We re-derive the standard singles of Görling-Levy perturbation theory [A. Görling and M. Levy, Phys. Rev. A 50, 196 (1994)], highlight the analogy of our expression to the renormalized singles introduced by Ren and coworkers [Phys. Rev. Lett. 106, 153003 (2011)], and introduce a new approximation for the singles using the density matrix in the random phase approximation. We discuss the physical relevance and importance of singles alongside illustrative examples of simple weakly bonded systems, including rare gas solids (Ne, Ar, Xe), ice, adsorption of water on NaCl, and solid benzene. The effect of singles on covalently and metallically bonded systems is also discussed.
Gutman, E M
2010-10-27
In a recent publication by Olives (2010 J. Phys.: Condens. Matter 22 085005) he studied 'the thermodynamics and mechanics of the surface of a deformable body, following and refining the general approach of Gibbs' and believed that 'a new definition of the surface stress is given'. However, using the usual way of deriving the equations of Gibbs-Duhem type the author, nevertheless, has fallen into a mathematical discrepancy because he has tried to unite in one equation different thermodynamic systems and 'a new definition of the surface stress' has appeared known in the usual theory of elasticity.
Semimicroscopic, Lane-consistent nucleon-nucleus optical model potential up to 200 MeV
NASA Astrophysics Data System (ADS)
Bauge, Eric; Delaroche, Jean-Paul; Girod, Michel
2000-10-01
Our semimicroscopic optical model potential (E. Bauge et al., Phys. Rev. C 58), 1118 (1998). is re-evaluated in order to obtain a Lane-consistent description of (p,p), (n,n) and (p,n IAS) elastic scattering and reaction observables. The re-assessed nuclear matter interaction (which includes sizable renormalizations of the isovector potentials) is folded with microscopic HFB nuclear densities, producing OMPs that are free of adjustable parameters for nuclei with A >= 40. With Lane-consistency of the interaction, and the predictive nature of our HFB calculations, this scheme can be used to calculate observables for nuclei far from the stability line with good predictivity.
Aerial remote sensing survey of Fusarium wilt of cotton in New Mexico and Texas
USDA-ARS?s Scientific Manuscript database
Fusarium wilt of cotton, caused by the fungus Fusarium oxysporum f. sp. vasinfectum (FOV), is a widespread cotton disease, but the more virulent FOV race 4 (FOV4) has recently been identified in the New Mexico-Texas border area near El Paso, Texas. A preliminary aerial remote sensing survey was cond...
USDA-ARS?s Scientific Manuscript database
The prevalence of root disease after planting in cold spring soils has hindered the adoption of reduced or no-tillage cereal cropping systems in the Pacific Northwest. In particular, Rhizoctonia solani AG-8, a necrotrophic root pathogen, can cause significant damage to wheat stands under these cond...
DOT National Transportation Integrated Search
2006-12-04
A field investigation of the current transportation infrastructure and operations at Humboldt-Toiyabe National Forest (H-TNF): Spring Mountains National Recreation Area (SMNRA or NRA) by the inter-agency Transportation Assistance Group (TAG) was cond...
%}.weather-widget .wx-cond{margin-top:0;font-size:90%}.carousel-control{opacity:1;z-index:100;width:5%;top:0 :0 .25em}.carousel-control .glyphicon-chevron-left,.carousel-control .glyphicon-chevron-right ,.carousel-control .icon-next,.carousel-control .icon-prev{top:40%}h4.date{font-size:1.3em;color:#000;font
1980-09-01
SCIENCE IN MANAGEMENT from the NAVAL POSTGRADUATE SCHOOL September, 1980 Author ______ Approved by: to T) Thesis Advisor -cond Reader Ch , rtment of...40 D. EDUCATIONAL LEVEL ------------------------------- 40 E. MENTAL APTITUDE --------------------------------- 49 F. FAMILY INCOME...65 D. EDUCATIONAL LEVEL ------------------------------- 68 E. FAMILY INCOME ----------------------------------- 69 5LI’_ _ _ _ _ _ _ _ VI. SUMMARY
Effects of dietary tannins on total and extractable nutrients from manure
USDA-ARS?s Scientific Manuscript database
The effects of condensed tannins on N dynamics in ruminants have been a topic of research for some time, but much less work has focused on their impacts on other nutrients in manure A 4 × 4 Latin square sheep trial was used to determine if intake of sericea lespedeza (Lespedeza cuneata; SL; a conde...
On the self-organization of magnetic field and highly diluted matter in astrophysics
NASA Astrophysics Data System (ADS)
Berdichevsky, D. B.
2015-12-01
It is explored the self organization of matter and field in regions beyond our common reach on the surface of our planet and its atmospheric surroundings. This state of matter, which most basic property, the freezing in the magnetic field, see e.g., Chew et al, 1956, has proved to exist in the regions where robotic observations in the near and far space perform detailed observations of magnetic fields, and extreme dilute plasma (commonly about 1000 to 0.1 or less ionized particles per cubic cm). We present and discuss here simple hypotheses on the nature of what could be this state of magnetized matter which in the electron distribution shows a shape which often can successfully be described with a kappa distribution when inside a strongly magnetized transient, of the magnetic cloud kind, see e.g., Nieves Chinchilla and Figueroa-Viñas, 2008. This work is in many ways an extension of Alfven work on magnetized space plasmas, Alven, 1942. Chew, G.F., M.L., Goldberger, and F.E. Low, 1956, the Royal Soc. London, section Math & Phys Sc., 236, pp. 112. Nieves-Chinchilla, T., and A., Figueroa-Viñas, 2008, J. Geophys. Res., 113, A02105. Alfvén, H (1942). "Existence of electromagnetic-hydrodynamic waves". Nature 150: 405.. doi:10.1038/150405d0
PREFACE: Strangeness in Quark Matter (SQM2009) Strangeness in Quark Matter (SQM2009)
NASA Astrophysics Data System (ADS)
Fraga, Eduardo; Kodama, Takeshi; Padula, Sandra; Takahashi, Jun
2010-09-01
The 14th International Conference on Strangeness in Quark Matter (SQM2009) was held in Brazil from 27 September to 2 October 2009 at Hotel Atlântico, Búzios, Rio de Janeiro. The conference was jointly organized by Universidade Federal do Rio de Janeiro, Universidade Estadual de Campinas, Centro Brasileiro de Pesquisas Físicas, Universidade de São Paulo, Universidade Estadual Paulista and Universidade Federal do Rio Grande do Sul. Over 120 scientists from Argentina, Brazil, China, France, Germany, Hungary, Italy, Japan, Mexico, The Netherlands, Norway, Poland, Russia, Slovakia, South Africa, Switzerland, the UK and the USA gathered at the meeting to discuss the physics of hot and dense matter through the signals of strangeness and also the behavior of heavy quarks. Group photograph The topics covered were strange and heavy quark production in nuclear collisions, strange and heavy quark production in elementary processes, bulk matter phenomena associated with strange and heavy quarks, and strangeness in astrophysics. In view of the LHC era and many other upcoming new machines, together with recent theoretical developments, sessions focused on `New developments and new facilities' and 'Open questions' were also included. A stimulating round-table discussion on 'Physics opportunities in the next decade in the view of strangeness and heavy flavor in matter' was chaired in a relaxed atmosphere by Grazyna Odyniec and conducted by P Braun-Munzinger, W Florkowski, K Redlich, K Šafařík and H Stöcker, We thank these colleagues for pointing out to young participants new physics directions to be pursued. We also thank J Dunlop and K Redlich for excellent introductory lectures given on the Sunday evening pre-conference session. In spite of the not-so-helpful weather, the beauty and charm of the town of Búzios helped to make the meeting successful. Nevertheless, the most important contributions were the excellent talks, whose contents are part of these proceedings, given by participants who often came from far away. (One presentation by the NA57 Collaboration is not included in these proceedings because it was recently published in this journal (2010 J. Phys. G: Nucl. Part. Phys. 37 045105) and may be accessed online. Other important contributions came from the unsung heroes who supported the organization of the meeting, to whom we would like to express our gratitude, in the name of the local organizing committee. In particular, the assistance from David Chinellato, Bruno Mintz, Philipe Mota, Leticia Palhares and Rafael de Souza is deeply acknowledged. We also wish to thank Cristina Coelho, Ana Lucia Moraes and Zelia Quadros for secretarial work, and the company META Events for administrative help. Last, but not least, we deeply acknowledge the editorial team of Journal of Physics G for their efficient and excellent work. The organization of the event was supported by CNPq, FAPERJ, PRONEX, RENAFAE/CBPF, Banco do Brasil, FAPESP and IOP Publishing.
NASA Astrophysics Data System (ADS)
Larranaga, Alexis; Cardenas-Avendano, Alejandro; Torres, Daniel Alexdy
2015-07-01
This article has been retracted: please see Elsevier Policy on Article Withdrawal. This article has been retracted at the request of the Editor-in-Chief. The authors have plagiarized part of a paper that had already appeared in Adv. High Energy Physics, P. Nicolini, A. Orlandi, E. Spallucci, The Final Stage of Gravitationally Collapsed Thick Matter Layers, Vol 2013 (2013), Article ID 812084 http://dx.doi.org/10.1155/2013/812084. One of the conditions of submission of a paper for publication is that authors declare explicitly that their work is original and has not appeared in a publication elsewhere. Re-use of any data should be appropriately cited. As such this article represents a severe abuse of the scientific publishing system. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process.
NASA Astrophysics Data System (ADS)
Purohit, G.; Kato, D.
2017-10-01
The single ionization triple differential cross sections (TDCS) of the Ar (3 p ) atoms are reported for the positron and electron impact at 1 keV. The calculated cross sections have been obtained using distorted wave Born approximation (DWBA) approach for the average ejected electron energies 13 and 26 eV at different momentum transfer conditions. The present attempt is helpful to probe the information on the TDCS trends for the particle-matter and antiparticle-matter interactions and to analyze the recent measurements [Phy. Rev. A 95, 062703 (2017), 10.1103/PhysRevA.95.062703]. The binary electron emission is enhanced while the recoil emission is decreased for the positron impact relative to the electron impact in the DWBA calculation results. Systematic shift of peaks, shifting away from the momentum transfer direction for positron impact and shifting towards each other for electron impact, is observed with increasing momentum transfer.
NASA Astrophysics Data System (ADS)
Newman, T. J.; Thompson, A. M.
2012-12-01
The full text of the Preface is given in the PDF file. References [1] Kaur P et al 2012 Phys. Biol. 9 065001 [2] Lobikin M et al 2012 Phys. Biol. 9 065002 [3] Tanner K 2012 Phys. Biol. 9 065003 [4] Liu S V et al 2012 Phys. Biol. 9 065004 [5] Liao D et al 2012 Phys. Biol. 9 065005 [6] Liao D et al 2012 Phys. Biol. 9 065006 [7] Orlando P A et al 2012 Phys. Biol. 9 065007
Revisited comparison of thermal instability theory with MARFE density limit experiment in TEXTOR.
NASA Astrophysics Data System (ADS)
Kelly, Frederick
2006-03-01
Density limit shots in TEXTOR [Tokamak EXperiment for Technology Oriented Research] that ended in MARFE [Multifaceted Asymmetric Radiation From the Edge] are analyzed by several thermal instability theories^1-7 with convective effects included. ^1W. M. Stacey, Phys. Plasmas 3, 2673 (1996); Phys. Plasmas 3, 3032 (1996); Phys. Plasmas 4, 134 (1997); Phys. Plasmas 4, 242 (1997). ^2W. M. Stacey, Plasma Phys. Contr. Fusion 39, 1245 (1997). ^3W. M. Stacey, Fusion Technol. 36, 38 (1999).^ ^4W. M. Stacey, Phys. Plasmas 7, 3464 (2000). ^5F. A. Kelly, W. M. Stacey, J. Rapp and M. Brix, Phys. Plasmas 8, 3382 (2001). ^6M. Z. Tokar and F. A. Kelly, Phys. Plasmas 10, 4378 (2003). ^7M. Z. Tokar, F. A. Kelly and X. Loozen, Phys. Plasmas 12, 052510 (2005).
Black-hole/near-horizon-CFT duality and 4 dimensional classical spacetimes
NASA Astrophysics Data System (ADS)
Rodriguez, Leo L.
2011-09-01
In this thesis we accomplish two goals: We construct a two dimensional conformal field theory (CFT), in the form of a Liouville theory, in the near horizon limit for three and four dimensions black holes. The near horizon CFT assumes the two dimensional black hole solutions that were first introduced by Christensen and Fulling (1977 Phys. Rev. D 15 2088-104) and later expanded to a greater class of black holes via Robinson and Wilczek (2005 Phys. Rev. Lett. 95 011303). The two dimensions black holes admit a Diff( S1) or Witt subalgebra, which upon quantization in the horizon limit becomes Virasoro with calculable central charge. These charges and lowest Virasoro eigen-modes reproduce the correct Bekenstein-Hawking entropy of the four and three dimensions black holes via the Cardy formula (Blote et al 1986 Phys. Rev. Lett. 56 742; Cardy 1986 Nucl. Phys. B 270 186). Furthermore, the two dimensions CFT's energy momentum tensor is anomalous, i.e. its trace is nonzero. However, In the horizon limit the energy momentum tensor becomes holomorphic equaling the Hawking flux of the four and three dimensions black holes. This encoding of both entropy and temperature provides a uniformity in the calculation of black hole thermodynamics and statistical quantities for the non local effective action approach. We also show that the near horizon regime of a Kerr-Newman-AdS (KNAdS) black hole, given by its two dimensional analogue a la Robinson and Wilczek, is asymptotically AdS 2 and dual to a one dimensional quantum conformal field theory (CFT). The s-wave contribution of the resulting CFT's energy-momentum-tensor together with the asymptotic symmetries, generate a centrally extended Virasoro algebra, whose central charge reproduces the Bekenstein-Hawking entropy via Cardy's Formula. Our derived central charge also agrees with the near extremal Kerr/CFT Correspondence in the appropriate limits. We also compute the Hawking temperature of the KNAdS black hole by coupling its Robinson and Wilczek two dimensional analogue (RW2DA) to conformal matter.
NASA Astrophysics Data System (ADS)
Klymko, Katherine; Geissler, Phillip L.; Whitelam, Stephen
2016-08-01
Colloidal particles of two types, driven in opposite directions, can segregate into lanes [Vissers et al., Soft Matter 7, 2352 (2011), 10.1039/c0sm01343a]. This phenomenon can be reproduced by two-dimensional Brownian dynamics simulations of model particles [Dzubiella et al., Phys. Rev. E 65, 021402 (2002), 10.1103/PhysRevE.65.021402]. Here we use computer simulation to assess the generality of lane formation with respect to variation of particle type and dynamical protocol. We find that laning results from rectification of diffusion on the scale of a particle diameter: oppositely driven particles must, in the time taken to encounter each other in the direction of the drive, diffuse in the perpendicular direction by about one particle diameter. This geometric constraint implies that the diffusion constant of a particle, in the presence of those of the opposite type, grows approximately linearly with the Péclet number, a prediction confirmed by our numerics over a range of model parameters. Such environment-dependent diffusion is statistically similar to an effective interparticle attraction; consistent with this observation, we find that oppositely driven nonattractive colloids display features characteristic of the simplest model system possessing both interparticle attractions and persistent motion, the driven Ising lattice gas [Katz, Leibowitz, and Spohn, J. Stat. Phys. 34, 497 (1984), 10.1007/BF01018556]. These features include long-ranged correlations in the disordered regime, a critical regime characterized by a change in slope of the particle current with the Péclet number, and fluctuations that grow with system size. By analogy, we suggest that lane formation in the driven colloid system is a phase transition in the macroscopic limit, but that macroscopic phase separation would not occur in finite time upon starting from disordered initial conditions.
Hydrogen-Antihydrogen Collisions at Cold Temperatures
NASA Astrophysics Data System (ADS)
Zygelman, Bernard
2001-05-01
With the CERN anti-proton de-accelerator now on line, it is anticipated that antihydrogen ( \\overline H) atoms will be created, cooled, and stored in large numbers (M. H. Holzscheitner and M. Charlton, Rep. Prog. Phys. 62),1 (1999). It has recently been proposed that the introduction of cold, spin-polarized, hydrogen atoms into a gas of trapped anti-hydrogen could allow the sympathetic cooling of the anti-hydrogen into the sub-Kelvin regime (P. Froelich, S. Jonsell, A.Saenz, B. Zygelman, and A. Dalgarno, Phys. Rev. Lett. 84), 4577 (2000). In this talk we will present the results of calculations that estimate the rate of elastic scattering of H with \\overline H, and compare that to the rate in which the fragmentation reaction, H + \\overline H arrow p \\overline p + e^+ e^- occurs and limits the utility of sympathetic cooling. Unlike the ground state of the H2 system, the H \\overline H system possesses a non-vanishing electric dipole moment (B. Zygelman, A. Saenz, P. Froelich, S. Jonsell and A. Dalgarno, Phys. Rev. A, in Press (2001).) that allows for the additional inelastic reaction H + \\overline H arrow H\\overline H^* + h ν , where H \\overline H^* is a quasi-bound state of the hydrogen-antihydrogen complex. The rate for radiative association into quasi-bound states of the H \\overline H^* complex will be presented and we will explore the viability for the spectroscopic study of this novel four-body matter-antimatter system. Collaborators in this study include, A. Dalgarno, P. Froelich, A. Saenz and S. Jonsell. I wish to thank the Institute for Theoretical Atomic and Molecular Physics (ITAMP) for their hospitality and support during sabbatical leave where part of this work was done. Partial support was provided by NSF grants to the Smithsonian Institution and Harvard University for ITAMP.
Special issue: diagnostics of atmospheric pressure microplasmas
NASA Astrophysics Data System (ADS)
Bruggeman, Peter; Czarnetzki, Uwe; Tachibana, Kunihide
2013-11-01
In recent decades, a strong revival of non-equilibrium atmospheric pressure plasma studies has developed in the form of microplasmas. Microplasmas have typical scales of 1 mm or less and offer a very exciting research direction in the field of plasma science and technology as the discharge physics can be considerably different due to high collisionality and the importance of plasma-surface interaction. These high-pressure small-scale plasmas have a diverse range of physical and chemical properties. This diversity coincides with various applications including light/UV sources [1], material processing [2], chemical analysis [3], material synthesis [4], electromagnetics [5], combustion [6] and even medicine [7]. At atmospheric pressure, large scale plasmas have the tendency to become unstable due to the high collision rates leading to enhanced heating and ionization compared to their low-pressure counterparts. As low-pressure plasmas typically operate in reactors with sizes of tens of centimetres, scaling up the pressure to atmospheric pressure the size of the plasma reduces to typical sizes below 1 mm. A natural approach of stabilizing atmospheric pressure plasmas is thus the use of microelectrode geometries. Traditionally microplasmas have been produced in confined geometries which allow one to stabilize dc excited discharges. This stabilization is intrinsically connected to the large surface-to-volume ratio which enhances heat transfer and losses of charged and excited species to the walls. Currently challenging boundaries are pushed by producing microcavity geometries with dimensions of the order of 1 µm [8]. The subject of this special issue, diagnostics of microplasmas, is motivated by the many challenges in microplasma diagnostics in view of the complex chemistry and strong spatial (and even temporal) gradients of species densities and plasma properties. Atmospheric pressure plasmas have a very long history dating back more than 100 years, with early work of, e.g. Werner von Siemens [9], who studied a dielectric barrier discharge (DBD) in the context of ozone generation. DBD discharges often consist of numerous filamentary discharges which are inherently transient in nature and with a characteristic size similar to the dimensions of microplasmas. Several groups are investigating the stabilization of such plasma filaments to perform temporal and spatial resolved diagnostics. To this end and due to the many similar challenges for diagnostics, this type of discharge is also included in this special issue. Research on microplasmas is performed in many groups spread all over the world, and a biannual workshop is devoted to the topic. The 7th edition of this International Workshop on Microplasmas was held in Beijing in May 2013. Large research programs consisting of clusters of research labs such as in Japan, Germany, France and the USA have been producing a wealth of information available in the literature. As the editors of this special issue, we are very pleased to have attracted a collection of excellent papers from leading experts in the field covering most of the current diagnostics performed in microplasmas. As an introduction to the regular special issue papers, a review paper is included [10]. It describes the key characteristics of atmospheric pressure plasmas and microplasmas in particular, and reviews the state of the art in plasma diagnostics. Special attention has been given in this review to highlighting the issues and challenges to probe microplasmas. The regular papers cover a large range of different diagnostics including coherent anti-Stokes Raman scattering (CARS) [11], (two-photon) laser induced fluorescence ((Ta)LIF) [12, 13, 18, 24], absorption spectroscopy [13-18], optical emission spectroscopy [12, 16-21, 24], imaging [22, 23], surface diagnostics [24, 25] and mass spectrometry [26, 27]. Different aspects of microplasmas are broadly investigated from a perspective of diagnostics, modelling and applications. Diagnostics are pivotal to both the development of models and the optimization and exploration of novel applications. Consequently, this special issue is focused on the various aspects and challenges for diagnostics in microplasmas. In addition, previous special issues on the topic of microplasmas have already covered many aspects of source development, applications and modelling [28-31]. The reader who wishes to access additional background information on microplasmas is referred to the following review papers [32-35]. We would like to thank all the contributors and the editorial staff who were of tremendous support in the preparation of this special issue. It is our sincere hope that you enjoy reading this special issue and that it will be a reference and helpful guidance for young researchers embarking in the field of microplasmas. The continued effort to increase our understanding of plasmas by modelling and diagnostics is of key importance for plasma science and the development of novel technologies. References [1] Eden J G, Park S-J, Herring C M and Bulson J M 2011 J. Phys. D: Appl. Phys. 44 224011 [2] Lucas N, Ermel V, Kurrat M and Buttgenbach S 2008 J. Phys. D: Appl. Phys. 41 215202 [3] Karnassios V 2004 Spectrochim. Acta B 59 909-28 [4] Mariotti D and Sankaran RM 2010 J. Phys. D: Appl. Phys. 43 323001 [5] Sakai O and Tachibana K 2012 Plasma Sources Sci. Technol. 21 013001 [6] Starikovskaia S M 2006 Plasma assisted ignition and combustion J. Phys. D.: Appl. Phys. 39 R265-99 [7] Fridman G, Friedman G, Gutsol A, Shekhter A B, Vasilets V N and Fridman A 2008 Plasma Process. Polym. 5 503-33 [8] Eden G et al 2013 IEEE Trans. Plasma Sci. 41 661-75 [9] Siemens W 1857 Poggendorffs. Ann. Phys. Chem. 102 66-122 [10] Bruggeman P and Brandenburg R 2013 J. Phys. D: Appl. Phys. 46 464001 [11] Montello A et al 2013 J. Phys. D: Appl. Phys. 46 464002 [12] Schröder D et al 2013 J. Phys. D: Appl. Phys. 46 464003 [13] Verreycken T et al 2013 J. Phys. D: Appl. Phys. 46 464004 [14] Sousa J S and Puech V 2013 J. Phys. D: Appl. Phys. 46 464005 [15] Takeda K et al 2013 J. Phys. D: Appl. Phys. 46 464006 [16] Vallade J and Massines F 2013 J. Phys. D: Appl. Phys. 46 464007 [17] Wang C and Wu W 2013 J. Phys. D: Appl. Phys. 46 464008 [18] Schröter S et al 2013 J. Phys. D: Appl. Phys. 46 464009 [19] Rusterholtz D L et al 2013 J. Phys. D: Appl. Phys. 46 464010 [20] Huang B-D et al 2013 J. Phys. D: Appl. Phys. 46 464011 [21] Pothiraja R et al 2013 J. Phys. D: Appl. Phys. 46 464012 [22] Marinov I et al 2013 J. Phys. D: Appl. Phys. 46 464013 [23] Akishev Y et al 2013 J. Phys. D: Appl. Phys. 46 464014 [24] Brandenburg R et al 2013 J. Phys. D: Appl. Phys. 46 464015 [25] Houlahan T J Jret al 2013 J. Phys. D: Appl. Phys. 46 464016 [26] Benedikt J et al 2013 J. Phys. D: Appl. Phys. 46 464017 [27] McKay K et al 2013 J. Phys. D: Appl. Phys. 46 464018 [28] Selected papers from the 2nd International Workshop on Microplasmas 2005 J. Phys. D: Appl. Phys. 38 1633-759 [29] Special issue: 3rd International Workshop on Microplasmas 2007 Control. Plasma Phys. 47 3-128 [30] Cluster issue on Microplasmas: 4th International Workshop on Microplasmas 2008 J. Phys. D: Appl. Phys. 41 1904001 [31] Microplasmas: scientific challenges and technological opportunities 2010 Eur. Phys. J. D 60 437-608 [32] Becker K H, Schoenbach K H and Eden J G 2006 J. Phys. D: Appl. Phys. 39 R55 [33] Iza F, Kim G J, Lee S M, Lee J K, Walsh J L, Zhang Y T and Kong M G 2008 Plasma Process. Polym. 5 322-44 [34] Tachibana K 2006 Trans. Electr. Electron. Eng. 1 145-55 [35] Samukawa S et al 2012 J. Phys. D: Appl. Phys. 45 253001
Determining the Location of an Observer with Respect to Aerial Photographs
1988-12-01
at gradient-array (+ 1 j) (+ k I)) threshold) (mett (arot temp-array 1 k) O)M (cond (4- tarot temp-array I k) 1) Isetq sum (* sum tempt 2 (+ I (* 3 k)f...aetq num-edges (+ num-edges 1)))))) (setf taret unique-index-num-array j 1) sum) tsett tarot num-edges-array j 1) num-edges))))) 1 This function
Parallel Artificial Intelligence Search Techniques for Real Time Applications.
1987-12-01
list) (cond ((atom e) e) ((setq a-list (match ’((> v)) e nil)) (inf-to-pre (match-value ’v a-list))) ((setq a-list (match ’((+ 1) (restrict ? oneplus ...defun oneplus (x) 2 (equal x ’) :,- ""find the value of a key into an association list. 7,. :" (defun match-value (key a-list) : : (cadr (assoc key a
USDA-ARS?s Scientific Manuscript database
Lambs and kids weaned and pastured on bermudagrass (BG; Cynodon dactylon) may not receive enough protein to reach maximal growth during mid to late summer when protein in BG pastures declines. As an indicator of physiological status, leptin is an adipocyte-derived hormone that increases as body cond...
Self Assembly of Hard, Space-Filling Polytopes
NASA Astrophysics Data System (ADS)
Schultz, Benjamin; Damasceno, Pablo; Engel, Michael; Glotzer, Sharon
2012-02-01
The thermodynamic behavior of systems of hard particles in the limit of infinite pressure is known to yield the densest possible packing [1,2]. Hard polytopes that tile or fill space in two or three spatial dimensions are guaranteed to obtain packing fractions of unity in the infinite pressure limit. Away from this limit, however, other structures may be possible [3]. We present the results of a simulation study of the thermodynamic self-assembly of hard, space-filling particles from disordered initial conditions. We show that for many polytopes, the infinite pressure structure readily assembles at intermediate pressures and packing fractions significantly less than one; in others, assembly of the infinite pressure structure is foiled by mesophases, jamming and phase separation. Common features of these latter systems are identified and strategies for enhancing assembly of the infinite pressure structure at intermediate pressures through building block modification are discussed.[4pt] [1] P. F. Damasceno, M. Engel, S.C. Glotzer arXiv:1109.1323v1 [cond-mat.soft][0pt] [2] A. Haji-Akbari, M. Engel, S.C. Glotzer arXiv:1106.4765v2 [cond-mat.soft][0pt] [3] U. Agarwal, F.A. Escobedo, Nature Materials 10, 230--235 (2011)
Modelling responses of the inert-gas washout and MRI to bronchoconstriction.
Foy, Brody H; Kay, David; Bordas, Rafel
2017-01-01
Many lung diseases lead to an increase in ventilation heterogeneity (VH). Two clinical practices for the measurement of patient VH are in vivo imaging, and the inert gas multiple breath washout (MBW). In this study computational modelling was used to compare the responses of MBW indices LCI and s cond and MRI measured global and local ventilation indices, σ r and σ local , to constriction of airways in the conducting zone of the lungs. The simulations show that s cond , LCI and σ r behave quite similarly to each other, all being sensitive to increases in the severity of constriction, while exhibiting little sensitivity to the depth at which constriction occurs. In contrast, the local MRI index σ local shows strong sensitivity to depth of constriction, but lowered sensitivity to constriction severity. We finish with an analysis of the sensitivity of MRI indices to grid sizes, showing that results should be interpreted with reference to the image resolution. Overall we conclude that the application of both local and global VH measures may help to classify different types of bronchoconstriction. Copyright © 2016 Elsevier B.V. All rights reserved.
Aging and Rejuvenation with Fractional Derivatives
2004-09-10
Chechkin , J. Klafter, V . Yu . Gonchar , R. Metzler, and L. V . Tanatarov, Phys. Rev. E 67, 010102(R) (2003). [12] I. M. Sokolov and R. Metzler, Phys. Rev. E 67...051106 (2001). [7] A . V . Chechkin , R. Gorenflo, and I. M. Sokolov, Phys. Rev. E 66, 046129 (2002). [8] J. Bisquert, Phys. Rev. Lett. 91, 010602 (2003...9] R. Metzler and J. Klafter, J. Phys. Chem. B 104 3851 (2000). [10] E. Barkai and R. J. Silbey, J. Phys. Chem. B 104 3866 (2000).
NASA Astrophysics Data System (ADS)
Russ, Maximilian; Burkard, Guido
2017-10-01
The goal of this article is to review the progress of three-electron spin qubits from their inception to the state of the art. We direct the main focus towards the exchange-only qubit (Bacon et al 2000 Phys. Rev. Lett. 85 1758-61, DiVincenzo et al 2000 Nature 408 339) and its derived versions, e.g. the resonant exchange (RX) qubit, but we also discuss other qubit implementations using three electron spins. For each three-spin qubit we describe the qubit model, the envisioned physical realization, the implementations of single-qubit operations, as well as the read-out and initialization schemes. Two-qubit gates and decoherence properties are discussed for the RX qubit and the exchange-only qubit, thereby completing the list of requirements for quantum computation for a viable candidate qubit implementation. We start by describing the full system of three electrons in a triple quantum dot, then discuss the charge-stability diagram, restricting ourselves to the relevant subsystem, introduce the qubit states, and discuss important transitions to other charge states (Russ et al 2016 Phys. Rev. B 94 165411). Introducing the various qubit implementations, we begin with the exchange-only qubit (DiVincenzo et al 2000 Nature 408 339, Laird et al 2010 Phys. Rev. B 82 075403), followed by the RX qubit (Medford et al 2013 Phys. Rev. Lett. 111 050501, Taylor et al 2013 Phys. Rev. Lett. 111 050502), the spin-charge qubit (Kyriakidis and Burkard 2007 Phys. Rev. B 75 115324), and the hybrid qubit (Shi et al 2012 Phys. Rev. Lett. 108 140503, Koh et al 2012 Phys. Rev. Lett. 109 250503, Cao et al 2016 Phys. Rev. Lett. 116 086801, Thorgrimsson et al 2016 arXiv:1611.04945). The main focus will be on the exchange-only qubit and its modification, the RX qubit, whose single-qubit operations are realized by driving the qubit at its resonant frequency in the microwave range similar to electron spin resonance. Two different types of two-qubit operations are presented for the exchange-only qubits which can be divided into short-ranged and long-ranged interactions. Both of these interaction types are expected to be necessary in a large-scale quantum computer. The short-ranged interactions use the exchange coupling by placing qubits next to each other and applying exchange-pulses (DiVincenzo et al 2000 Nature 408 339, Fong and Wandzura 2011 Quantum Inf. Comput. 11 1003, Setiawan et al 2014 Phys. Rev. B 89 085314, Zeuch et al 2014 Phys. Rev. B 90 045306, Doherty and Wardrop 2013 Phys. Rev. Lett. 111 050503, Shim and Tahan 2016 Phys. Rev. B 93 121410), while the long-ranged interactions use the photons of a superconducting microwave cavity as a mediator in order to couple two qubits over long distances (Russ and Burkard 2015 Phys. Rev. B 92 205412, Srinivasa et al 2016 Phys. Rev. B 94 205421). The nature of the three-electron qubit states each having the same total spin and total spin in z-direction (same Zeeman energy) provides a natural protection against several sources of noise (DiVincenzo et al 2000 Nature 408 339, Taylor et al 2013 Phys. Rev. Lett. 111 050502, Kempe et al 2001 Phys. Rev. A 63 042307, Russ and Burkard 2015 Phys. Rev. B 91 235411). The price to pay for this advantage is an increase in gate complexity. We also take into account the decoherence of the qubit through the influence of magnetic noise (Ladd 2012 Phys. Rev. B 86 125408, Mehl and DiVincenzo 2013 Phys. Rev. B 87 195309, Hung et al 2014 Phys. Rev. B 90 045308), in particular dephasing due to the presence of nuclear spins, as well as dephasing due to charge noise (Medford et al 2013 Phys. Rev. Lett. 111 050501, Taylor et al 2013 Phys. Rev. Lett. 111 050502, Shim and Tahan 2016 Phys. Rev. B 93 121410, Russ and Burkard 2015 Phys. Rev. B 91 235411, Fei et al 2015 Phys. Rev. B 91 205434), fluctuations of the energy levels on each dot due to noisy gate voltages or the environment. Several techniques are discussed which partly decouple the qubit from magnetic noise (Setiawan et al 2014 Phys. Rev. B 89 085314, West and Fong 2012 New J. Phys. 14 083002, Rohling and Burkard 2016 Phys. Rev. B 93 205434) while for charge noise it is shown that it is favorable to operate the qubit on the so-called ‘(double) sweet spots’ (Taylor et al 2013 Phys. Rev. Lett. 111 050502, Shim and Tahan 2016 Phys. Rev. B 93 121410, Russ and Burkard 2015 Phys. Rev. B 91 235411, Fei et al 2015 Phys. Rev. B 91 205434, Malinowski et al 2017 arXiv: 1704.01298), which are least susceptible to noise, thus providing a longer lifetime of the qubit.
Far Infrared, Magnetic and Electronic Studies of High Tc Superconducting Materials
1992-09-30
Phys. Rev. Left. 63, 2421(1989). 8. K. H. Fischer and T. Nattermann, Phys. Rev. .43, 10372(1991). 9. R. E. Walstedt, R. F. Bell, and D. B. Mitzi , Phys...Duran, J. Yazyi, F. dela Cruz, D. J. Bishop, D. B. Mitzi , and A. Kapitulnik, Phys. Rev. B 44, 17737(1991). 14. Y. Yeshurun and A. P. Malozemoff, Phys
Anisotropic charged generalized polytropic models
NASA Astrophysics Data System (ADS)
Nasim, A.; Azam, M.
2018-06-01
In this paper, we found some new anisotropic charged models admitting generalized polytropic equation of state with spherically symmetry. An analytic solution of the Einstein-Maxwell field equations is obtained through the transformation introduced by Durgapal and Banerji (Phys. Rev. D 27:328, 1983). The physical viability of solutions corresponding to polytropic index η =1/2, 2/3, 1, 2 is analyzed graphically. For this, we plot physical quantities such as radial and tangential pressure, anisotropy, speed of sound which demonstrated that these models achieve all the considerable physical conditions required for a relativistic star. Further, it is mentioned here that previous results for anisotropic charged matter with linear, quadratic and polytropic equation of state can be retrieved.
Observations of non-linear plasmon damping in dense plasmas
NASA Astrophysics Data System (ADS)
Witte, B. B. L.; Sperling, P.; French, M.; Recoules, V.; Glenzer, S. H.; Redmer, R.
2018-05-01
We present simulations using finite-temperature density-functional-theory molecular-dynamics to calculate dynamic dielectric properties in warm dense aluminum. The comparison between exchange-correlation functionals in the Perdew, Burke, Ernzerhof approximation, Strongly Constrained and Appropriately Normed Semilocal Density Functional, and Heyd, Scuseria, Ernzerhof (HSE) approximation indicates evident differences in the electron transition energies, dc conductivity, and Lorenz number. The HSE calculations show excellent agreement with x-ray scattering data [Witte et al., Phys. Rev. Lett. 118, 225001 (2017)] as well as dc conductivity and absorption measurements. These findings demonstrate non-Drude behavior of the dynamic conductivity above the Cooper minimum that needs to be taken into account to determine optical properties in the warm dense matter regime.
Direct observation of attractive skyrmions and skyrmion clusters in the cubic helimagnet Cu2OSeO3
NASA Astrophysics Data System (ADS)
Loudon, J. C.; Leonov, A. O.; Bogdanov, A. N.; Hatnean, M. Ciomaga; Balakrishnan, G.
2018-04-01
We report the discovery of attractive magnetic skyrmions and their clusters in noncentrosymmetric ferromagnets. These three-dimensional solitons have been predicted to exist in the cone phase of chiral ferromagnets [J. Phys: Condens. Matter 28, 35LT01 (2016), 10.1088/0953-8984/28/35/35LT01] and are fundamentally different from the more common repulsive axisymmetric skyrmions that occur in the magnetically saturated state. We present real-space images of these skyrmion clusters in thin (˜70 nm) single-crystal samples of Cu2OSeO3 taken using transmission electron microscopy and develop a phenomenological theory describing this type of skyrmion.
Improved constraints on supersymmetric dark matter from muon g-2
NASA Astrophysics Data System (ADS)
Baltz, E. A.; Gondolo, P.
2003-03-01
The new measurement of the anomalous magnetic moment of the muon by the Brookhaven AGS experiment 821 again shows a discrepancy with the standard model value. We investigate the consequences of these new data for neutralino dark matter, updating and extending our previous work [E. A. Baltz and P. Gondolo, Phys. Rev. Lett. 86, 5004 (2001)]. The measurement excludes the standard model value at 3.0σ confidence, assuming the evaluation using the hadronic e+e- cross section (the τ decay evaluation yields only a 1.6σ discrepancy). We analyze a phenomenological set of supersymmetric models with gaugino mass unification imposed but without a priori constraints on the Higgs sector. Taking the discrepancy as a sign of supersymmetry, we find that the lightest superpartner must be relatively light and it must have a relatively high elastic scattering cross section with nucleons, which brings it almost within reach of proposed direct dark matter searches. The SUSY signal from neutrino telescopes correlates fairly well with the elastic scattering cross section. The rate of cosmic ray antideuterons tends to be large in the allowed models, but the constraint has little effect on the rate of gamma ray lines. We stress that being more conservative may eliminate the discrepancy, but it does not eliminate the possibility of high astrophysical detection rates.
Langmuir-Gibbs Surface Phases and Transitions
NASA Astrophysics Data System (ADS)
Ocko, Benjamin; Sloutskin, Eli; Sapir, Zvi; Tamam, Lilach; Deutsch, Moshe; Bain, Colin
2007-03-01
Recent synchrotron x-ray measurements reveal surface ordering transitions in films of medium-length linear hydrocarbons (alkanes), spread on the water surface. Alkanes longer than hexane do not spread on the free surface of water. However, sub-mM concentrations of some anionic surfactants (e.g. CTAB) induce formation of thermodynamically stable alkane monolayers, through a ``pseudo-partial wetting'' phenomenon[1]. The monolayers, incorporating both water-insoluble alkanes (Langmuir) and water-soluble CTAB molecules (Gibbs) are called Langmuir-Gibbs (LG) films. The films formed by alkanes with n <=17 exhibit ordering transition upon cooling [2], below which the molecules are normal to the water surface and hexagonally packed, with CTAB molecules randomly mixed inside the quasi-2D crystal. Alkanes with n>17 can not form ordered LG monolayers, due to the repulsion from the n=16 tails of CTAB. This repulsion arises from the two chains' length mismatch. A demixing transition occurs upon ordering, with a pure alkane quasi-2D crystal forming on top of disordered alkyl tails of CTAB molecules. [1] K.M. Wilkinson et al., Chem. Phys. Phys. Chem. 6, 547 (2005). [2] E. Sloutskin, Z. Sapir, L. Tamam, B.M. Ocko, C.D. Bain, and M. Deutsch, Thin Solid Films, in press; K.M. Wilkinson, L. Qunfang, and C.D. Bain, Soft Matter 2, 66 (2006).
Adjunctation and Scalar Product in the Dirac Equation - II
NASA Astrophysics Data System (ADS)
Dima, M.
2017-02-01
Part-I Dima (Int. J. Theor. Phys. 55, 949, 2016) of this paper showed in a representation independent way that γ 0 is the Bergmann-Pauli adjunctator of the Dirac { γ μ } set. The distiction was made between similarity (MATH) transformations and PHYS transformations - related to the (covariant) transformations of physical quantities. Covariance is due solely to the gauging of scalar products between systems of reference and not to the particular action of γ 0 on Lorentz boosts - a matter that in the past led inadvertently to the definition of a second scalar product (the Dirac-bar product). Part-II shows how two scalar products lead to contradictions and eliminates this un-natural duality in favour of the canonical scalar product and its gauge between systems of reference. What constitutes a proper observable is analysed and for instance spin is revealed not to embody one (except as projection on the boost direction - helicity). A thorough investigation into finding a proper-observable current for the theory shows that the Dirac equation does not possess one in operator form. A number of problems with the Dirac current operator are revealed - its Klein-Gordon counterpart being significantly more physical. The alternative suggested is finding a current for the Dirac theory in scalar form j^{μ } = < ρ rangle _{_{ψ }}v^{μ }_{ψ }.
The Wang-Landau Sampling Algorithm
NASA Astrophysics Data System (ADS)
Landau, David P.
2003-03-01
Over the past several decades Monte Carlo simulations[1] have evolved into a powerful tool for the study of wide-ranging problems in statistical/condensed matter physics. Standard methods sample the probability distribution for the states of the system, usually in the canonical ensemble, and enormous improvements have been made in performance through the implementation of novel algorithms. Nonetheless, difficulties arise near phase transitions, either due to critical slowing down near 2nd order transitions or to metastability near 1st order transitions, thus limiting the applicability of the method. We shall describe a new and different Monte Carlo approach [2] that uses a random walk in energy space to determine the density of states directly. Once the density of states is estimated, all thermodynamic properties can be calculated at all temperatures. This approach can be extended to multi-dimensional parameter spaces and has already found use in classical models of interacting particles including systems with complex energy landscapes, e.g., spin glasses, protein folding models, etc., as well as for quantum models. 1. A Guide to Monte Carlo Simulations in Statistical Physics, D. P. Landau and K. Binder (Cambridge U. Press, Cambridge, 2000). 2. Fugao Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001); Phys. Rev. E64, 056101-1 (2001).
NASA Astrophysics Data System (ADS)
Karamanos, K.; Mistakidis, S. I.; Massart, T. J.; Mistakidis, I. S.
2015-06-01
The entropy production and the variational functional of a Laplacian diffusional field around the first four fractal iterations of a linear self-similar tree (von Koch curve) is studied analytically and detailed predictions are stated. In a next stage, these predictions are confronted with results from numerical resolution of the Laplace equation by means of Finite Elements computations. After a brief review of the existing results, the range of distances near the geometric irregularity, the so-called "Near Field", a situation never studied in the past, is treated exhaustively. We notice here that in the Near Field, the usual notion of the active zone approximation introduced by Sapoval et al. [M. Filoche and B. Sapoval, Transfer across random versus deterministic fractal interfaces, Phys. Rev. Lett. 84(25) (2000) 5776;1 B. Sapoval, M. Filoche, K. Karamanos and R. Brizzi, Can one hear the shape of an electrode? I. Numerical study of the active zone in Laplacian transfer, Eur. Phys. J. B. Condens. Matter Complex Syst. 9(4) (1999) 739-753.]2 is strictly inapplicable. The basic new result is that the validity of the active-zone approximation based on irreversible thermodynamics is confirmed in this limit, and this implies a new interpretation of this notion for Laplacian diffusional fields.
Suppression of tunneling two-level systems in ultrastable glasses of indomethacin.
Pérez-Castañeda, Tomás; Rodríguez-Tinoco, Cristian; Rodríguez-Viejo, Javier; Ramos, Miguel A
2014-08-05
Glasses and other noncrystalline solids exhibit thermal and acoustic properties at low temperatures anomalously different from those found in crystalline solids, and with a remarkable degree of universality. Below a few kelvin, these universal properties have been successfully interpreted using the tunneling model, which has enjoyed (almost) unanimous recognition for decades. Here we present low-temperature specific-heat measurements of ultrastable glasses of indomethacin that clearly show the disappearance of the ubiquitous linear contribution traditionally ascribed to the existence of tunneling two-level systems (TLS). When the ultrastable thin-film sample is thermally converted into a conventional glass, the material recovers a typical amount of TLS. This remarkable suppression of the TLS found in ultrastable glasses of indomethacin is argued to be due to their particular anisotropic and layered character, which strongly influences the dynamical network and may hinder isotropic interactions among low-energy defects, rather than to the thermodynamic stabilization itself. This explanation may lend support to the criticisms by Leggett and others [Yu CC, Leggett AJ (1988) Comments Condens Matter Phys 14(4):231-251; Leggett AJ, Vural DC (2013) J Phys Chem B 117(42):12966-12971] to the standard tunneling model, although more experiments in different kinds of ultrastable glasses are needed to ascertain this hypothesis.
Decoherence: Intrinsic, Extrinsic, and Environmental
NASA Astrophysics Data System (ADS)
Stamp, Philip
2012-02-01
Environmental decoherence times have been difficult to predict in solid-state systems. In spin systems, environmental decoherence is predicted to arise from nuclear spins, spin-phonon interactions, and long-range dipolar interactions [1]. Recent experiments have confirmed these predictions quantitatively in crystals of Fe8 molecules [2]. Coherent spin dynamics was observed over macroscopic volumes, with a decoherence Q-factor Qφ= 1.5 x10^6 (the upper predicted limit in this system being Qφ= 6 x10^7). Decoherence from dipolar interactions is particularly complex, and depends on the shape and the quantum state of the system. No extrinsic ``noise'' decoherence was observed. The generalization to quantum dot and superconducting qubit systems is also discussed. We then discuss searches for ``intrinsic'' decoherence [3,4], coming from non-linear corrections to quantum mechanics. Particular attention is paid to condensed matter tests of such intrinsic decoherence, in hybrid spin/optomechanical systems, and to ways of distinguishing intrinsic decoherence from environmental and extrinsic decoherence sources. [4pt] [1] Morello, A. Stamp, P. C. E. & Tupitsyn, Phys. Rev. Lett. 97, 207206 (2006).[0pt] [2] S. Takahashi et al., Nature 476, 76 (2011).[0pt] [3] Stamp, P. C. E., Stud. Hist. Phil. Mod. Phys. 37, 467 (2006). [0pt] [4] Stamp, P.C.E., Phil. Trans. Roy. Soc. A (to be published)
On the relation between Vicsek and Kuramoto models of spontaneous synchronization
NASA Astrophysics Data System (ADS)
Chepizhko, A. A.; Kulinskii, V. L.
2010-12-01
The Vicsek model for self-propelling particles in 2D is investigated with respect to the addition of the stochastic perturbation of dynamic equations. We show that this model represents in essence the same type of bifurcations under a different type of noise as the celebrated Kuramoto model of spontaneous synchronization. These models demonstrate similar behavior at least within the mean-field approach. To prove this we consider two types of noise for the Vicsek model which are commonly considered in the literature: the intrinsic and the extrinsic ones (according to the terminology of Pimentel et al. [J.A. Pimentel, M. Aldana, C. Huepe, H. Larralde, Intrinsic and extrinsic noise effects on phase transitions of network models with applications to swarming systems, Physical Review E: Statistical, Nonlinear, and Soft Matter Physics 77 (6) (2008) doi:10.1103/PhysRevE.77.061138. URL: http://dx.doi.org/10.1103/PhysRevE.77.061138]). The qualitative correspondence with the bifurcation of stationary states in the Kuramoto model is stated. A new type of stochastic perturbation-the “mixed” noise is proposed. It is constructed as the weighted superposition of the intrinsic and the extrinsic noises. The corresponding phase diagram “noise amplitude vs. interaction strength” is obtained. The possibility of the tricritical behavior for the Vicsek model is predicted.
Relaxion: A landscape without anthropics
NASA Astrophysics Data System (ADS)
Nelson, Ann; Prescod-Weinstein, Chanda
2017-12-01
The relaxion mechanism provides a potentially elegant solution to the hierarchy problem without resorting to anthropic or other fine-tuning arguments. This mechanism introduces an axion-like field, dubbed the relaxion, whose expectation value determines the electroweak hierarchy as well as the QCD strong C P -violating θ ¯ parameter. During an inflationary period, the Higgs mass squared is selected to be negative and hierarchically small in a theory which is consistent with 't Hooft's technical naturalness criteria. However, in the original model proposed by Graham, Kaplan, and Rajendran [Phys. Rev. Lett. 115, 221801 (2015), 10.1103/PhysRevLett.115.221801], the relaxion does not solve the strong C P problem, and in fact contributes to it, as the coupling of the relaxion to the Higgs field and the introduction of a linear potential for the relaxion produces large strong C P violation. We resolve this tension by considering inflation with a Hubble scale which is above the QCD scale but below the weak scale, and estimating the Hubble temperature dependence of the axion mass. The relaxion potential is thus very different during inflation than it is today. We find that provided the inflationary Hubble scale is between the weak scale and about 3 GeV, the relaxion resolves the hierarchy, strong C P , and dark matter problems in a way that is technically natural.
Thickness-dependent spontaneous dewetting morphology of ultrathin Ag films.
Krishna, H; Sachan, R; Strader, J; Favazza, C; Khenner, M; Kalyanaraman, R
2010-04-16
We show here that the morphological pathway of spontaneous dewetting of ultrathin Ag films on SiO2 under nanosecond laser melting is dependent on film thickness. For films with thickness h of 2 nm < or = h < or = 9.5 nm, the morphology during the intermediate stages of dewetting consisted of bicontinuous structures. For films with 11.5 nm < or = h < or = 20 nm, the intermediate stages consisted of regularly sized holes. Measurement of the characteristic length scales for different stages of dewetting as a function of film thickness showed a systematic increase, which is consistent with the spinodal dewetting instability over the entire thickness range investigated. This change in morphology with thickness is consistent with observations made previously for polymer films (Sharma and Khanna 1998 Phys. Rev. Lett. 81 3463-6; Seemann et al 2001 J. Phys.: Condens. Matter 13 4925-38). Based on the behavior of free energy curvature that incorporates intermolecular forces, we have estimated the morphological transition thickness for the intermolecular forces for Ag on SiO2. The theory predictions agree well with observations for Ag. These results show that it is possible to form a variety of complex Ag nanomorphologies in a consistent manner, which could be useful in optical applications of Ag surfaces, such as in surface enhanced Raman sensing.
NASA Astrophysics Data System (ADS)
Redi, Martha; Canik, John; Fredrickson, E.; Fu, G.; Nuehrenberg, C.; Boozer, A. H.
2000-10-01
The standard ballooning-mode beta limit comes from an infinite-n, radially local, ideal magnetohydrodynamic (MHD) calculation. Finite-n ballooning modes have been observed in tokamak plasmas [1]. Investigations of optimized quasiaxially symmetric stellarators with three dimensional, global, ideal MHD codes have recently shown good stability for the external kink, ``vertical" and infinite-n ballooning modes [2,3]. However, infinite-n ballooning stability may be too restrictive, due to its sensitivity to features in the local shear and curvature. The CAS3D [4] code is being used to compare the stability of the high-n ballooning modes to the infinite-n calculations from TERPSICHORE [5]. [1] E. Fredrickson, et al. Phys. Plas. 3 (1996) 2620. [2] G. Fu, Phys. Plas. 7 (2000)1079; Phys. Plas. 7 (2000) 1809. M. Redi, et al. Phys. Plas 7 (2000)1911. [3] A. Reiman, et al., Plas. Phys. Cont. Fus. 41 (1999) B273. [4] C. Nuehrenberg, Phys. Plas. 6 (1999) 275. C. Nuehrenberg, Phys. Plas. 3 (1996) 2401. C. Schwab, Phys. Fluids B5 (1993) 3195. [5] W. A. Cooper, Phys. Plas. 3 (1996) 275.
Physiochemical data on five iron tubercles from a single Distribution System (DS) are divided into two groups based on internal morphology and the predominate core iron mineral phases, α-FeOOH, γ-FeOOH, or Fe3O4, yet all three coexist in each tubercle. Cond...
NASA Univision Hispanic Education Campaign
2010-02-23
Univision Networks president Cesar Conde speaks at the National Press Club in Washington, Tuesday, Feb. 23, 2010. NASA is working with Univision Communications Inc. to develop a partnership in support of the Spanish-language media outlet's initiative to improve high school graduation rates, prepare Hispanic students for college, and encourage them to pursue careers in science, technology, engineering and mathematics, or STEM, disciplines. Photo Credit: (NASA/Bill Ingalls)
Disability Evaluation Systems Analysis and Research Annual Report 2015
2016-03-21
standards (i.e. overweight or obesity ) was the most common condition listed in MEPS examination records in both the disability evaluated population...The most common conditions noted at the MEPS, were: overweight, obesity , and other hyperalimentation, for all services except the Air Force...Code n % of Cond 1 % of App 2 Overweight, obesity and other hyperalimentation 3,085 33.0 5.7 Overweight, obesity and other
1984-12-01
34 .. - .- . *- * - * 14079- "- UPPERFURNACE CHAMBER 4 in. QUARTZ TUBE RF WORK COIL MAGNET COIL 4 in POLE PIECE IRON YOKEj ALUMINUM SPACER LOWER FURNACE CHAMBER Fi;uru 3...cal/(cm*K) =3.2 lO 6erg/(cm*K) A-I thermometric cond. K =0.15 cm2/s (used Pr .~{=.023) A-I K melting point Tm =1410*C A-2 el. conductivity a =1.29-1O
The long-term effectiveness of a FeSO4 + Na2S2O4 reductant solution blend for in situ saturated zone treatment of dissolved and solid phase Cr(VI) in a high pH chromite ore processing solid waste (COPSW) fill material was investigated. Two field pilot injection studies were cond...
2007-12-11
(from left) NASA Research Scientist Dr. William Saturno, Program Manager for NASA Earth Science Division Mr. Woody Turner, NASA's Deputy Administrator Shana Dale and NASA Deputy Assistant Administrator for External Relations Mr. Al Condes investigate the San Bartolo Maya archaeological site in Peten, Guatemala, Tuesday Dec. 11, 2007. NASA's remote sensing data were used to locate and interpret the remains of the ancient Maya civilization. Photo Credit: (NASA/Bill Ingalls)
2007-12-11
PETEN, GUATEMALA -- (From left) NASA Research Scientist Dr. William Saturno, Program Manager for NASA Earth Science Division Woody Turner, NASA's Deputy Administrator Shana Dale and NASA Deputy Assistant Administrator for External Relations Al Condes investigate the San Bartolo Maya archaeological site in Peten, Guatemala, on Dec. 11. NASA's remote sensing data were used to locate and interpret the remains of the ancient Maya civilization. Photo credit: NASA/Bill Ingalls
Link-Prediction Enhanced Consensus Clustering for Complex Networks (Open Access)
2016-05-20
92:022816. Available from: http://link.aps.org/doi/10.1103/PhysRevE.92.022816. doi: 10. 1103 /PhysRevE.92.022816 16. Aldecoa R, Marín I. Exploring the...from: http://link.aps.org/doi/10.1103/PhysRevE.80.056117. doi: 10. 1103 /PhysRevE.80.056117 18. Dahlin J, Svenson P. Ensemble approaches for improving...046110. Available from: http://link.aps.org/doi/10.1103/PhysRevE.81.046110. doi: 10. 1103 /PhysRevE.81.046110 28. Gfeller D, Chappelier JC, De Los Rios P
Extracting nuclear sizes of medium to heavy nuclei from total reaction cross sections
NASA Astrophysics Data System (ADS)
Horiuchi, W.; Hatakeyama, S.; Ebata, S.; Suzuki, Y.
2016-04-01
Background: Proton and neutron radii are fundamental quantities of atomic nuclei. To study the sizes of short-lived unstable nuclei, there is a need for an alternative to electron scattering. Purpose: The recent paper by Horiuchi et al. [Phys. Rev. C 89, 011601(R) (2014)], 10.1103/PhysRevC.89.011601 proposed a possible way of extracting the matter and neutron-skin thickness of light- to medium-mass nuclei using total reaction cross section, σR. The analysis is extended to medium to heavy nuclei up to lead isotopes with due attention to Coulomb breakup contributions as well as density distributions improved by paring correlation. Methods: We formulate a quantitative calculation of σR based on the Glauber model including the Coulomb breakup. To substantiate the treatment of the Coulomb breakup, we also evaluate the Coulomb breakup cross section due to the electric dipole field in a canonical-basis-time-dependent-Hartree-Fock-Bogoliubov theory in the three-dimensional coordinate space. Results: We analyze σR's of 103 nuclei with Z =20 , 28, 40, 50, 70, and 82 incident on light targets, H,21, 4He, and 12C. Three kinds of Skyrme interactions are tested to generate those wave functions. To discuss possible uncertainty due to the Coulomb breakup, we examine its dependence on the target, the incident energy, and the Skyrme interaction. The proton is a most promising target for extracting the nuclear sizes as the Coulomb excitation can safely be neglected. We find that the so-called reaction radius, aR=√{σR/π } , for the proton target is very well approximated by a linear function of two variables, the matter radius and the skin thickness, in which three constants depend only on the incident energy. We quantify the accuracy of σR measurements needed to extract the nuclear sizes. Conclusions: The proton is the best target because, once the incident energy is set, its aR is very accurately determined by only the matter radius and neutron-skin thickness. If σR's at different incident energies are measured, one can determine both the proton and neutron radii for unstable nuclei as well. The total reaction cross sections calculated in this paper are given as Supplemental Material for the sake of future measurements.
Health effects of particulate air pollution and airborne desert dust
NASA Astrophysics Data System (ADS)
Lelieveld, J.; Pozzer, A.; Giannadaki, D.; Fnais, M.
2013-12-01
Air pollution by fine particulate matter (PM2.5) has increased strongly with industrialization and urbanization. In the past decades this increase has taken place at a particularly high pace in South and East Asia. We estimate the premature mortality and the years of human life lost (YLL) caused by anthropogenic PM2.5 and airborne desert dust (DU2.5) on regional and national scales (Giannadaki et al., 2013; Lelieveld et al., 2013). This is based on high-resolution global model calculations that resolve urban and industrial regions in relatively great detail. We apply an epidemiological health impact function and find that especially in large countries with extensive suburban and rural populations, air pollution-induced mortality rates have been underestimated given that previous studies largely focused on the urban environment. We calculate a global premature mortality by anthropogenic aerosols of 2.2 million/year (YLL ≈ 16 million/year) due to lung cancer and cardiopulmonary disease. High mortality rates by PM2.5 are found in China, India, Bangladesh, Pakistan and Indonesia. Desert dust DU2.5 aerosols add about 0.4 million/year (YLL ≈ 3.6 million/year). Particularly significant mortality rates by DU2.5 occur in Pakistan, China and India. The estimated global mean per capita mortality caused by airborne particulates is about 0.1%/year (about two thirds of that caused by tobacco smoking). We show that the highest premature mortality rates are found in the Southeast Asia and Western Pacific regions (about 25% and 46% of the global rate, respectively) where more than a dozen of the most highly polluted megacities are located. References: Giannadaki, D., A. Pozzer, and J. Lelieveld, Modeled global effects of airborne desert dust on air quality and premature mortality, Atmos. Chem. Phys. Discuss. (submitted), 2013. Lelieveld, J., C. Barlas, D. Giannadaki, and A. Pozzer, Model calculated global, regional and megacity premature mortality due to air pollution by ozone and fine particulate matter, Atmos. Chem. Phys., 13, 7023-7037, 2013.
Thermodynamics of quantum spacetime histories
NASA Astrophysics Data System (ADS)
Smolin, Lee
2017-11-01
We show that the simplicity constraints, which define the dynamics of spin foam models, imply, and are implied by, the first law of thermodynamics, when the latter is applied to causal diamonds in the quantum spacetime. This result reveals an intimate connection between the holographic nature of gravity, as reflected by the Bekenstein entropy, and the fact that general relativity and other gravitational theories can be understood as constrained topological field theories. To state and derive this correspondence we describe causal diamonds in the causal structure of spin foam histories and generalize arguments given for the near horizon region of black holes by Frodden, Gosh and Perez [Phys. Rev. D 87, 121503 (2013); , 10.1103/PhysRevD.87.121503Phys. Rev. D 89, 084069 (2014); , 10.1103/PhysRevD.89.084069Phys. Rev. Lett. 107, 241301 (2011); , 10.1103/PhysRevLett.107.241301Phys. Rev. Lett.108, 169901(E) (2012)., 10.1103/PhysRevLett.108.169901] and Bianchi [arXiv:1204.5122.]. This allows us to apply a recent argument of Jacobson [Phys. Rev. Lett. 116, 201101 (2016).
Einstein Revisited - Gravity in Curved Spacetime Without Event Horizons
NASA Astrophysics Data System (ADS)
Leiter, Darryl
2000-04-01
In terms of covariant derivatives with respect to flat background spacetimes upon which the physical curved spacetime is imposed (1), covariant conservation of energy momentum requires, via the Bianchi Identity, that the Einstein tensor be equated to the matter energy momentum tensor. However the Einstein tensor covariantly splits (2) into two tensor parts: (a) a term proportional to the gravitational stress energy momentum tensor, and (b) an anti-symmetric tensor which obeys a covariant 4-divergence identity called the Freud Identity. Hence covariant conservation of energy momentum requires, via the Freud Identity, that the Freud tensor be equal to a constant times the matter energy momentum tensor. The resultant field equations (3) agree with the Einstein equations to first order, but differ in higher orders (4) such that black holes are replaced by "red holes" i.e., dense objects collapsed inside of their photon orbits with no event horizons. (1) Rosen, N., (1963), Ann. Phys. v22, 1; (2) Rund, H., (1991), Alg. Grps. & Geom. v8, 267; (3) Yilmaz, Hl, (1992), Nuo. Cim. v107B, 946; (4) Roberstson, S., (1999),Ap.J. v515, 365.
Experiments on 1,000 km/s flyer acceleration and collisions
NASA Astrophysics Data System (ADS)
Karasik, Max; Weaver, J. L.; Aglitskiy, Y.; Kehne, D. M.; Zalesak, S. T.; Velikovich, A. L.; Oh, J.; Serlin, V.; Obenschain, S. P.
2012-10-01
We will present results from follow-on experiments to the record-high velocities achieved using the ultra-uniform deep-uv drive of the Nike KrF laser [Karasik et al, Phys. Plasmas 17, 056317 (2010)], in which highly accelerated planar foils of deuterated polystyrene were made to collide with a witness foil to produce ˜1 Gbar shock pressures and result in heating of matter to thermonuclear temperatures. Such velocities may indicate a path to lower minimum energy required for central ignition. Still higher velocities and higher target densities are required for impact fast ignition. New results give velocity of >1,100 km/s achieved through improvements in pulseshaping. Variation of second foil parameters results in significant change in fusion neutron production on impact. In-flight target density is inferred from target heating upon collision via DD neutron time-of-flight ion temperature measurement. Availability of pressures generated by collisions of such highly accelerated flyers may provide an experimental platform for study of matter at extreme conditions. Work is supported by US DOE (NNSA).
X-ray Thomson Scattering in Warm Dense Matter without the Chihara Decomposition.
Baczewski, A D; Shulenburger, L; Desjarlais, M P; Hansen, S B; Magyar, R J
2016-03-18
X-ray Thomson scattering is an important experimental technique used to measure the temperature, ionization state, structure, and density of warm dense matter (WDM). The fundamental property probed in these experiments is the electronic dynamic structure factor. In most models, this is decomposed into three terms [J. Chihara, J. Phys. F 17, 295 (1987)] representing the response of tightly bound, loosely bound, and free electrons. Accompanying this decomposition is the classification of electrons as either bound or free, which is useful for gapped and cold systems but becomes increasingly questionable as temperatures and pressures increase into the WDM regime. In this work we provide unambiguous first principles calculations of the dynamic structure factor of warm dense beryllium, independent of the Chihara form, by treating bound and free states under a single formalism. The computational approach is real-time finite-temperature time-dependent density functional theory (TDDFT) being applied here for the first time to WDM. We compare results from TDDFT to Chihara-based calculations for experimentally relevant conditions in shock-compressed beryllium.
24 +24 real scalar multiplet in four dimensional N =2 conformal supergravity
NASA Astrophysics Data System (ADS)
Hegde, Subramanya; Lodato, Ivano; Sahoo, Bindusar
2018-03-01
Starting from the 48 +48 component multiplet of supercurrents for a rigid N =2 tensor multiplet in four spacetime dimensions, we obtain the transformation of the linearized supergravity multiplet which couples to this supercurrent multiplet. At the linearized level, this 48 +48 component supergravity multiplet decouples into the 24 +24 component linearized standard Weyl multiplet and a 24 +24 component irreducible matter multiplet containing a real scalar field. By a consistent application of the supersymmetry algebra with field-dependent structure constants appropriate to N =2 conformal supergravity, we find the full transformation law for this multiplet in a conformal supergravity background. By performing a suitable field redefinition, we find that the multiplet is a generalization of the flat space multiplet, obtained by Howe et al. in Nucl. Phys. B214, 519 (1983), 10.1016/0550-3213(83)90249-3, to a conformal supergravity background. We also present a set of constraints which can be consistently imposed on this multiplet to obtain a restricted minimal 8 +8 off-shell matter multiplet. We also show, as an example, the precise embedding of the tensor multiplet inside this multiplet.
USDA-ARS?s Scientific Manuscript database
Rising atmospheric [CO2] is a uniform and global change that increases C3 photosynthesis by suppressing the oxygenation reaction of Rubisco and accelerating carboxylation. This has the potential to provide some offset to the negative effects of global change on crop yields. However, under field cond...
Coordinating Learning Agents for Active Information Collection
2011-06-30
the experiments were not particularly sensitive to this parameter. By limiting the number of actions that are updated (DANT-L in black/ dark ), the...Bazzan, A. and Ossowski, S. (eds.), Applications of Agent Technology in Traffic and Transportation (Springer, 2005). [19] Mataric , M. J., Coordination...organizing market (1998), preprint cond- mat/9802177. [19] Jones, C. and Mataric , M. J., Adaptive division of labor in large-scale multi-robot systems, in IEEE
TW-class hollow-fiber compressor with tunable pulse duration (Conference Presentation)
NASA Astrophysics Data System (ADS)
Boehle, Frederik; Vernier, Aline; Kretschmar, Martin; Jullien, Aurélie; Kovacs, Mate; Romero, Rosa M.; Crespo, Helder M.; Simon, Peter; Nagy, Tamas; Lopez-Martens, Rodrigo
2017-05-01
CEP-stable few-cycle light pulses find numerous applications in attosecond science, most notably the production of isolated attosecond pulses for studying ultrafast electronic processes in matter [1]. Scaling up the pulse energy of few-cycle pulses could extend the scope of applications to even higher intensity processes, such as attosecond dynamics of relativistic plasma mirrors [2]. Hollow fiber compressors are widely used to produce few-cycle pulses with excellent spatiotemporal quality [3], where octave-spanning broadened spectra can be temporally compressed to sub-2-cycle duration [4,5]. Several tricks help increase the output energy: using circularly polarized light [6], applying a pressure gradient along the fiber [7] or even temporal multiplexing [8]. The highest pulse energy of 5 mJ at 5 fs pulse duration was achieved by using a hollow fiber in pressure gradient mode [9] but in this case no CEP stabilization was achieved, which is crucial for most applications of few-cycle pulses. Nevertheless, it did show that in order to scale up the peak power, the effective length and area mode of the fiber had to be increased proportionally, thereby requiring the use of longer waveguides with larger apertures. Thanks to an innovative design utilizing stretched flexible capillaries [10], we recently demonstrated the generation CEP-stable sub-4fs pulses with 3mJ energy using a 2m length 450mm bore hollow fiber in pressure gradient mode [11]. Here, we show that a stretched hollow-fiber compressor operated in pressure gradient mode can generate relativistic intensity pulses with continuously tunable waveform down to almost a single cycle (3.5fs at 750nm central wavelength). The pulses are characterized online using an integrated d-scan device directly under vacuum [12]. While the pulse shape is tuned, all other pulse characteristics, such as energy, pointing stability and focal distribution remain the same on target, making it possible to explore the dynamics of plasma mirrors using controllable relativistic-intensity light waveforms at 1kHz. [1] Krausz and Ivanov, Rev. Mod. Phys. 81, 163 (2009). [2] Borot et al., Nature Phys. 8, 417-421 (2012). [3] Nisoli et al., Appl. Phys. Lett. 68, 2793-2795 (1996). [4] Park et al., Opt. Lett. 34, 2342-2344 (2009). [5] Schweinberger et al., Opt. Lett. 37, 3573-5 (2012). [6] Chen et al., Opt. Lett. 34, 1588-1590 (2009). [7] Suda et al., Appl. Phys. Lett. 86, 111116 (2005). [8] Jacqmin et al., Opt. Lett. 40, 709-712 (2015) [9] Bohman et al., Opt. Lett. 35, 1887-9 (2010). [10] Nagy et al., Appl. Opt. 47, 3264-3268 (2008). [11] Boehle et al., Las. Phys. Lett. 11, 095401 (2014). [12] Miranda et al., Opt. Express 20, 18732-43 (2012)
Defects, Tunneling, and EPR Spectra of Single-Molecule Magnets
2003-01-01
Caranin, Phys. Rev. Lett. 87, 187203 (2001); Phys. Rev. B 65, 094423 (2002). 19. A. Cornia, R. Sessoli, L. Sorace, D. Gatteschi , A. L. Barra, and C...Phys. Rev. B 64, 184426 (2001). 25. A. Mukhin, B. Gorshunov, M. Dressel, C. Sangregorio. and D. Gatteschi , Phys. Rev. B 63, 214411 (2001). 26. W
Probing Hydrogen Diffusion under High Pressure
NASA Astrophysics Data System (ADS)
Bove, L. E.; Klotz, S.; Strassle, T.; Saitta, M.
2012-12-01
The study of the microscopic mechanism governing hydrogen and hydrogen-based liquids (as water, ammonia and methane) diffusion is crucial for a variety of scientific issues spanning most of natural sciences. As an example, characterizing hydrogen diffusion in a confined medium, like in porous systems or zeolites, is fundamental in problems relating to environment, hydrogen storage and industrial applications [1]. The presence of water diffusion in the minerals of the Earth's mantle have strong incidence on the processes governing volcanic eruptions and intermediate-depth seismicity. As last example, knowing in details the microscopic dynamics of hydrogen-based simple liquids under extreme conditions is essential in order to interpret observations and develop models of planet interiors [2]. On the other hand, water and other simple hydrogen-based liquids have always been key systems in the development of modern condensed-matter physics, because of their simple electronic structure and the peculiar properties deriving from the hydrogen-bond network. Their high compressibility and chemical reactivity have made these systems very challenging to study experimentally under static high P-T conditions. In the last few years, a large effort has been undertaken by several groups around the world [2] to extend the static and dynamic techniques to high temperatures and pressures, a program in which our group has been actively involved [3-6]. However, while the structure of water and other hydrogenated liquids of geological interest, is now known up to almost 20 GPa, the study of their transport properties greatly lags behind. We have recently developed a new large-volume gasket-anvil ensemble for the Paris-Edinburgh press based on a novel toroidal design [7], which allows to perform quasi elastic neutron scattering measurements on hydrogen based liquids up to one order of magnitude higher pressures (5 GPa) respect to what was achievable with standard methods [8]. The large volume HP press can be now warmed up to 600K and the peculiar geometry of the gasket assure an excellent signal to background ratio. This new device has been recently settled up on neutron scattering facilities (PSI, ILL), successfully showing that very high quality data can be obtained on liquid water, and more generally on hydrogenated liquids dynamics under high pressure. Some new exciting results on the diffusion mechanism in hot dense water will be presented [9]. Possible future implementation of the device to reach the 20GPa and 1000K conditions will be also discussed. References [1] C. Cavazzoni et al., Science 283, 44 (1999) ; T. Guillot, Science 286 (1999), 72 . 77. [2] Some of the most active groups in this field are the Geophysical Laboratory (USA), Lawrence Livermore National Laboratory (USA), CEA/DAM (France) and the Bayerisches Geoinstitut (Allemagne). [3] Klotz S et al, Phys. Rev. Lett. 96 149602, 2006. [4] Nelmes R J Nature Phys. 2 414, 2006. [5] S. Klotz, L. Bove et al., Nature Mat. 8, 405 (2009). [6] L.E. Bove et al., Phys. Rev. Lett., 106 (2011) . [7] L. E. Bove et al., Phys. Appl. Lett., in preparation (2012). [8] A. Cunsolo et al., Journal of Chem. Phys. 124, 084503 (2006). [9] L.E. Bove et al., Phys. Rev. Lett., submitted (2012) .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Yuan; Zuo, Xu, E-mail: xzuo@nankai.edu.cn; Feng, Min
Motivated by recent theoretical predications for Dirac cone in two-dimensional (2D) triangular lattice [H. Ishizuka, Phys. Rev. Lett. 109, 237207 (2012)], first-principles studies are performed to predict Dirac cones in artificial structures of 3d transitional-metals (TM = Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) doped Mg-Al spinels. In investigated artificial structures, TM dopants substitute specific positions of the B sub-lattice in Mg-Al spinel, and form a quasi-2D triangular lattice in the a-b plane. Calculated results illustrate the existence of the spin-polarized Dirac cones formed in d-wave bands at (around) the K-point in the momentum space. The study provides a promisingmore » route for engineering Dirac physics in condensed matters.« less
Electronic transport in torsional strained Weyl semimetals
NASA Astrophysics Data System (ADS)
Soto-Garrido, Rodrigo; Muñoz, Enrique
2018-05-01
In a recent paper (Muñoz and Soto-Garrido 2017 J. Phys.: Condens. Matter 29 445302) we have studied the effects of mechanical strain and magnetic field on the electronic transport properties in graphene. In this article we extended our work to Weyl semimetals (WSM). We show that although the WSM are 3D materials, most of the analysis done for graphene (2D material) can be carried out. In particular, we studied the electronic transport through a cylindrical region submitted to torsional strain and external magnetic field. We provide exact analytical expressions for the scattering cross section and the transmitted electronic current. In addition, we show the node-polarization effect on the current and propose a recipe to measure the torsion angle from transmission experiments.
Equilibrium Structure and Vibrational Spectra of Sila-Adamantane
2006-10-27
42, 3276 (1990); M. R. Pederson, K. A. Jackson, Phys. Rev. B. 43, 7312 ( 1991 ); M. R. Pederson, D. V. Porezag, J. Kortus, and D. C. Patton, Phys... Pankratov , Phys. Rev. B 68, 085310 (2003); P. H. Han, W. G. Schmidt, and F. Becstedt, Phys. Rev. B 72, 245425 (2005). [13] T. Yamada, T. Inoue, K. Yamada, N
Molecular dynamics simulations of bubble nucleation in dark matter detectors.
Denzel, Philipp; Diemand, Jürg; Angélil, Raymond
2016-01-01
Bubble chambers and droplet detectors used in dosimetry and dark matter particle search experiments use a superheated metastable liquid in which nuclear recoils trigger bubble nucleation. This process is described by the classical heat spike model of F. Seitz [Phys. Fluids (1958-1988) 1, 2 (1958)PFLDAS0031-917110.1063/1.1724333], which uses classical nucleation theory to estimate the amount and the localization of the deposited energy required for bubble formation. Here we report on direct molecular dynamics simulations of heat-spike-induced bubble formation. They allow us to test the nanoscale process described in the classical heat spike model. 40 simulations were performed, each containing about 20 million atoms, which interact by a truncated force-shifted Lennard-Jones potential. We find that the energy per length unit needed for bubble nucleation agrees quite well with theoretical predictions, but the allowed spike length and the required total energy are about twice as large as predicted. This could be explained by the rapid energy diffusion measured in the simulation: contrary to the assumption in the classical model, we observe significantly faster heat diffusion than the bubble formation time scale. Finally we examine α-particle tracks, which are much longer than those of neutrons and potential dark matter particles. Empirically, α events were recently found to result in louder acoustic signals than neutron events. This distinction is crucial for the background rejection in dark matter searches. We show that a large number of individual bubbles can form along an α track, which explains the observed larger acoustic amplitudes.
Constraints on Bose-Einstein-condensed axion dark matter from the Hi nearby galaxy survey data
NASA Astrophysics Data System (ADS)
Li, Ming-Hua; Li, Zhi-Bing
2014-05-01
One of the leading candidates for dark matter is the axion or axionlike particle in the form of a Bose-Einstein condensate (BEC). In this paper, we present an analysis of 17 high-resolution galactic rotation curves from the Hi nearby galaxy survey (THINGS) data [F. Walter et al., Astron. J. 136, 2563 (2008)] in the context of the axionic Bose-Einstein condensed dark matter model. Assuming a repulsive two-body interaction, we solve the nonrelativistic Gross-Pitaevskii equation for N gravitationally trapped bosons in the Thomas-Fermi approximation. We obtain the maximum possible radius R and the mass profile M(r) of a dilute axionic Bose-Einstein condensed gas cloud. A standard least- χ2 method is employed to find the best-fit values of the total mass M of the axion BEC and its radius R. The local mass density of BEC axion dark matter is ρa ≃0.02 GeV /cm3, which agrees with that presented by Beck [C. Beck, Phys. Rev. Lett. 111, 231801 (2013)]. The axion mass ma we obtain depends not only on the best-fit value of R, but also on the s-wave scattering length a (ma∝a1/3). The transition temperature Ta of an axion BEC on galactic scales is also estimated. Comparing the calculated Ta with the ambient temperature of galaxies and galaxy clusters implies that a ˜10-3 fm. The corresponding axion mass is ma≃0.58 meV. We compare our results with others.
NASA Astrophysics Data System (ADS)
Seleznev, V. D.; Buchina, O.
2015-06-01
The Sun's radiation is a source of origin and maintenance of life on Earth. The Sun-Earth system is a thermodynamic machine transforming radiation into useful work of living organisms. Despite the importance of efficiency for such a thermodynamic machine, the analysis of its efficiency coefficient (EC) available in the literature has considerable shortcomings: As is noted by the author of the classical study on this subject (Oxenius in J Quant Spectrosc Radiat Transf 6:65-91, 1996), the second law of thermodynamics is violated for the radiation beam (without direction integration). The typical thermodynamic analysis of the interaction between radiation and matter is performed assuming an equilibrium of the chemical composition thereof as opposed to the radiation work in the biosphere (photosynthesis), which usually occurs under the conditions of a significant deviation of the active substance's composition from its equilibrium values. The "black box" model (Aoki in J Phys Soc Jpn 52:1075-1078, 1983) is traditionally used to analyze the work efficiency of the Sun-Earth thermodynamic machine. It fails to explain the influence of many internal characteristics of the radiation-matter interaction on the process's EC. The present paper overcomes the above shortcomings using a relatively simple model of interaction between anisotropic radiation and two-level molecules of a rarefied component in a buffer substance.
Reconstruction of cosmological matter perturbations in modified gravity
NASA Astrophysics Data System (ADS)
Gonzalez, J. E.
2017-12-01
The analysis of perturbative quantities is a powerful tool to distinguish between different dark energy models and gravity theories degenerated at the background level. In this work, we generalize the integral solution of the matter density contrast for general relativity gravity [V. Sahni and A. Starobinsky, Int. J. Mod. Phys. D 15, 2105 (2006)., 10.1142/S0218271806009704, U. Alam, V. Sahni, and A. A. Starobinsky, Astrophys. J. 704, 1086 (2009)., 10.1088/0004-637X/704/2/1086] to a wide class of modified gravity (MG) theories. To calculate this solution, it is necessary to have prior knowledge of the Hubble rate, the density parameter at the present epoch (Ωm 0), and the functional form of the effective Newton's constant that characterizes the gravity theory. We estimate in a model-independent way the Hubble expansion rate by applying a nonparametric reconstruction method to model-independent cosmic chronometer data and high-z quasar data. In order to compare our generalized solution of the matter density contrast, using the nonparametric reconstruction of H (z ) from observational data, with a purely theoretical one, we choose a parametrization of the screened modified gravity and the Ωm 0 from WMAP-9 Collaborations. Finally, we calculate the growth index for the analyzed cases, finding very good agreement between theoretical values and the obtained ones using the approach presented in this work.
Turbulence and turbulent drag reduction in swirling flow: Inertial versus viscous forcing.
Burnishev, Yuri; Steinberg, Victor
2015-08-01
We report unexpected results of a drastic difference in the transition to fully developed turbulent and turbulent drag reduction (TDR) regimes and in their properties in a von Karman swirling flow with counter-rotating disks of water-based polymer solutions for viscous (by smooth disks) as well as inertial (by bladed disks) forcing and by tracking just torque Γ(t) and pressure p(t) . For the viscous forcing, just a single TDR regime is found with the transition values of the Reynolds number (Re) Re turb c =Re TDR c ≃(4.8±0.2)×10(5) independent of ϕ , whereas for the inertial forcing two turbulent regimes are revealed. The first transition is to fully developed turbulence, and the second one is to the TDR regime with both Re turb c and Re TDR c depending on polymer concentration ϕ . Both regimes differ by the values of C f and C p , by the scaling exponents of the fundamental turbulent characteristics, by the nonmonotonic dependencies of skewness and flatness of the pressure PDFs on Re, and by the different frequency power spectra of p with the different dependencies of the main vortex peak frequency in the p power spectra on ϕ and Re. Thus our experimental results show the transition to the TDR regime in a von Karman swirling flow for the viscous and inertial forcings in a sharp contrast to the recent experiments [Phys. Fluids 10, 426 (1998); Phys. Rev. E 47, R28(R) (1993); and J. Phys.: Condens. Matter 17, S1195 (2005)] where the transition to TDR is observed in the same swirling flow with counter-rotating disks only for the viscous forcing. The latter result has led its authors to the wrong conclusion that TDR is a solely boundary effect contrary to the inertial forcing associated with the bulk effect, and this conception is currently rather widely accepted in literature.
Chemical Reactions at the in vacuo Au/InP Interface.
1987-07-25
Phys. C: Solid State Phys. 10, 4545 (1977). 2 A. Hiraki, K. Shuto, S. Kim, W. Kanmnura, and M. Iwami, Appl.Phys. Letts. 31, 611 (1977). 3. P.W. Chye ...Pelous, and P. Henoc, J.Appl.Phys. 52, 5112 (1981). 13. 1. Camlibel, A.K. Chin , F. Ermanis, M.A. DiGiuseppe, J.A. Lourenco and W.A. Bonner
A Study of Selected Problems in Armor Operations
1978-11-01
of external environmental cond~tions on the internal environment of a buttoned-up tank. Another effort was a study of problems in escape and...Test site configuration: Study II ......... ... IV-16 FIG. IVT4. Mean time to lay on target .... ........ .... IV-20 TABLES Chapter III Table III-I...L., and Ton, W. H. Study of the Psychological (and Associated Physiological) Effjcts on a Tank Crew Resulting From Being Buttoned Up, ARI Research
The United States Air Force Academy: A Bibliography 1954 - 1964
1966-01-01
August 1958. 498 Stringer, Roger. " Pro Nobis Astra" (Class of selects its ring), Talon 5;5, May 1960. 499 Trotogott, Pete. Cadet...relate to establishing an air academy. These are not included since they have no specific bearing on the Academy as it now exists. The Library staff...Newsletter AF Times - Air Force Times Air Cond Heat & Ven - Air Conditioning, Heating, and Venti- lating Air Force Airman Air Power Historian
United States Air Force Graduate Student Summer Support Program 1986. Program Management Report
1986-12-01
ng cond iaorns. -: i s ; L s : & i ;al Ii i t r-Lk...reliable technique for obtaining confidence intervals for the population correlation under most selection situations. 197 I . I I .. AN ANALYSIS .r...colIlected Over’ tie. Six analyses were evaiyaterd an ~d sc:me were tested fr effective u.se in :,rilire v-ea It i we aral i s . Recoririlendat i :.ris
Decontamination of Water Containing Radiological Warfare Agents
1975-03-01
debris was cond~ucted undcr Project Snowball. Open tanks of water were exposed to a 500- toxi TNT explosion 2 at varying distances from grouind zero...trailhr; 4-cylinder, 4-stroke, liquid- cooled gasoline engine: aluminum evaporator-conden ser; vapor complressor; watcr pumps; heat exchanger; cngine...field consists of a 10-kw gasoline -engine-driven generator and three electric-motor-driven pumps. See Figure 21 for a photograph of the cation and anion
New Synthetic Approaches to TAT
1990-03-30
stabilized externally by resonance stabilization of electron withdrawing substituents placed on all four Nitrogen aL,.ms (T,- N -:, ...7; 4- N -NO2 HMX, etc...or internally by ring carbonyl groups adja- cent to the ring- N -atoms (amide resonance). 1. Cyclization experiments on methylene-bisacetamide (MBA4...more, the high instability of the desired 8-membered [8]ane- N 4 system, and the difficulty to apply proper cond’tion-. what the final products can
1981-10-16
not cond. totewn endlersment by the Govermeont wrdothey coey orimply the leeneeor rigt @ o Am h products APPROVED BY: DATE: ___________ CDR USN...favorable results from only a few animal experiments (4, 5, 6, 7, 8, 9, 10). Obviously before any human trials may be undertaken much more animal testing must
NASA Astrophysics Data System (ADS)
Yethiraj, Anand
2010-03-01
External fields affect self-organization in Brownian colloidal suspensions in many different ways [1]. High-frequency time varying a.c. electric fields can induce effectively quasi-static dipolar inter-particle interactions. While dipolar interactions can provide access to multiple open equilibrium crystal structures [2] whose origin is now reasonably well understood, they can also give rise to competing interactions on short and long length scales that produce unexpected low-density ordered phases [3]. Farther from equilibrium, competing external fields are active in colloid spincoating. Drying colloidal suspensions on a spinning substrate produces a ``perfect polycrystal'' - tiny polycrystalline domains that exhibit long-range inter-domain orientational order [4] with resultant spectacular optical effects that are decoupled from single-crystallinity. High-speed movies of drying crystals yield insights into mechanisms of structure formation. Phenomena arising from multiple spatially- and temporally-varying external fields can give rise to further control of order and disorder, with potential application as patterned (photonic and magnetic) materials. [4pt] [1] A. Yethiraj, Soft Matter 3, 1099 (2007). [2] A. Yethiraj, A. van Blaaderen, Nature 421, 513 (2003). [3] A.K. Agarwal, A. Yethiraj, Phys. Rev. Lett ,102, 198301 (2009). [4] C. Arcos, K. Kumar, W. Gonz'alez-Viñas, R. Sirera, K. Poduska, A. Yethiraj, Phys. Rev. E ,77, 050402(R) (2008).
Kempa, M; Kamba, S; Savinov, M; Maryško, M; Frait, Z; Vaněk, P; Tomczyk, M; Vilarinho, P M
2010-11-10
We investigated ceramics samples of solid solutions of [PbFe(2/3)W(1/3)O(3)](x)-[PbZr(0.53)Ti(0.47)O(3)](1 - x) (PFW(x)-PZT(1 - x), x = 0.2 and 0.3) by means of broad-band dielectric spectroscopy, differential scanning calorimetry and SQUID magnetometry. We did not confirm the observations of Kumar et al (2009 J. Phys.: Condens. Matter 21 382204), who reported on reversible suppression of ferroelectric polarization in polycrystalline PFW(x)-PZT(1 - x) thin films for magnetic fields above 0.5 T. We did not observe any change of ferroelectric polarization with external magnetic fields up to 3.2 T. Pirc et al (2009 Phys. Rev. B 79 214114) developed a theory explaining the reported large magnetoelectric effect in PFW(x)-PZT(1 - x), taking into account relaxor magnetic and relaxor ferroelectric properties of the system. Our data revealed classical ferroelectric properties below 525 K and 485 K in samples with x = 0.2 and 0.3, respectively. Moreover, paramagnetic behavior was observed down to 4.5 K instead of previously reported relaxor magnetic behavior. It seems that the reported switching-off of ferroelectric polarization in PFW(x)-PZT(1 - x) thin films is not an intrinsic property, but probably an effect of electrodes, interlayers, grain boundaries or second phases presented in polycrystalline thin films.
Analysis of finite-strain equations of state for solids under high pressures
NASA Astrophysics Data System (ADS)
Sushil, K.; Arunesh, K.; Singh, P. K.; Sharma, B. S.
2004-10-01
We have reformulated equations of state (EOS) for solids based on Lagrangian and Eulerian strains following the method developed by Stacey [Phys. Earth Planet. Inter. 128 (2001) 179]. The expressions thus obtained are used conveniently to assess the validity of various EOS for different types of solids. The logarithmic EOS based on the Hencky measure of finite-strain is also modified by including the higher terms arising from the fourth-order contribution in the Taylor series expansion of the free energy. The results are obtained for pressure (P), isothermal bulk modulus (KT) and its pressure derivative (dKT/dP) for Ne, Ar, Al, Cu, LiH and MgO solids for a wide range of compressions (V/V0) down to 0.5. The results determined from the finite-strain equations are compared with those obtained from the Vinet-Rydberg equation and the Shanker equation, which are based on the interatomic potential energy functions. The results are also compared with the ab inito values reported by Hama and Suito [J. Phys.: Condens. Matter 8 (1996) 67] determined from first-principles calculations using the augmented plane wave method and the quantum statistical model. The EOS based on the K‧ finite-strain theory due to Keane and Stacey are also discussed, emphasising the importance of K∞‧ , in the limit P→∞.
Floquet topological phases in a spin-1 /2 double kicked rotor
NASA Astrophysics Data System (ADS)
Zhou, Longwen; Gong, Jiangbin
2018-06-01
The double kicked rotor model is a physically realizable extension of the paradigmatic kicked rotor model in the study of quantum chaos. Even before the concept of Floquet topological phases became widely known, the discovery of the Hofstadter butterfly spectrum in the double kicked rotor model [J. Wang and J. Gong, Phys. Rev. A 77, 031405 (2008), 10.1103/PhysRevA.77.031405] already suggested the importance of periodic driving to the generation of Floquet topological matter. In this work, we explore Floquet topological phases of a double kicked rotor with an extra spin-1 /2 degree of freedom. The latter has been experimentally engineered in a quantum kicked rotor recently by loading 87Rb condensates into a periodically pulsed optical lattice. Theoretically, we found that under the on-resonance condition, the spin-1 /2 double kicked rotor admits rich topological phases due to the interplay between its external and internal degrees of freedom. Each of these topological phases is characterized by a pair of winding numbers, whose combination predicts the number of topologically protected zero and π -quasienergy edge states in the system. Topological phases with arbitrarily large winding numbers can be easily found by tuning the kicking strength. We discuss an experimental proposal to realize this model in kicked 87Rb condensates, and suggest detecting its topological invariants by measuring the mean chiral displacement in momentum space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehtola, Susi; Parkhill, John; Head-Gordon, Martin
Novel implementations based on dense tensor storage are presented here for the singlet-reference perfect quadruples (PQ) [J. A. Parkhill et al., J. Chem. Phys. 130, 084101 (2009)] and perfect hextuples (PH) [J. A. Parkhill and M. Head-Gordon, J. Chem. Phys. 133, 024103 (2010)] models. The methods are obtained as block decompositions of conventional coupled-cluster theory that are exact for four electrons in four orbitals (PQ) and six electrons in six orbitals (PH), but that can also be applied to much larger systems. PQ and PH have storage requirements that scale as the square, and as the cube of the numbermore » of active electrons, respectively, and exhibit quartic scaling of the computational effort for large systems. Applications of the new implementations are presented for full-valence calculations on linear polyenes (C nH n+2), which highlight the excellent computational scaling of the present implementations that can routinely handle active spaces of hundreds of electrons. The accuracy of the models is studied in the π space of the polyenes, in hydrogen chains (H 50), and in the π space of polyacene molecules. In all cases, the results compare favorably to density matrix renormalization group values. With the novel implementation of PQ, active spaces of 140 electrons in 140 orbitals can be solved in a matter of minutes on a single core workstation, and the relatively low polynomial scaling means that very large systems are also accessible using parallel computing.« less
Basis set limit and systematic errors in local-orbital based all-electron DFT
NASA Astrophysics Data System (ADS)
Blum, Volker; Behler, Jörg; Gehrke, Ralf; Reuter, Karsten; Scheffler, Matthias
2006-03-01
With the advent of efficient integration schemes,^1,2 numeric atom-centered orbitals (NAO's) are an attractive basis choice in practical density functional theory (DFT) calculations of nanostructured systems (surfaces, clusters, molecules). Though all-electron, the efficiency of practical implementations promises to be on par with the best plane-wave pseudopotential codes, while having a noticeably higher accuracy if required: Minimal-sized effective tight-binding like calculations and chemically accurate all-electron calculations are both possible within the same framework; non-periodic and periodic systems can be treated on equal footing; and the localized nature of the basis allows in principle for O(N)-like scaling. However, converging an observable with respect to the basis set is less straightforward than with competing systematic basis choices (e.g., plane waves). We here investigate the basis set limit of optimized NAO basis sets in all-electron calculations, using as examples small molecules and clusters (N2, Cu2, Cu4, Cu10). meV-level total energy convergence is possible using <=50 basis functions per atom in all cases. We also find a clear correlation between the errors which arise from underconverged basis sets, and the system geometry (interatomic distance). ^1 B. Delley, J. Chem. Phys. 92, 508 (1990), ^2 J.M. Soler et al., J. Phys.: Condens. Matter 14, 2745 (2002).
On the number of Bose-selected modes in driven-dissipative ideal Bose gases
NASA Astrophysics Data System (ADS)
Schnell, Alexander; Ketzmerick, Roland; Eckardt, André
2018-03-01
In an ideal Bose gas that is driven into a steady state far from thermal equilibrium, a generalized form of Bose condensation can occur. Namely, the single-particle states unambiguously separate into two groups: the group of Bose-selected states, whose occupations increase linearly with the total particle number, and the group of all other states whose occupations saturate [Phys. Rev. Lett. 111, 240405 (2013), 10.1103/PhysRevLett.111.240405]. However, so far very little is known about how the number of Bose-selected states depends on the properties of the system and its coupling to the environment. The answer to this question is crucial since systems hosting a single, a few, or an extensive number of Bose-selected states will show rather different behavior. While in the former two scenarios each selected mode acquires a macroscopic occupation, corresponding to (fragmented) Bose condensation, the latter case rather bears resemblance to a high-temperature state of matter. In this paper, we systematically investigate the number of Bose-selected states, considering different classes of the rate matrices that characterize the driven-dissipative ideal Bose gases in the limit of weak system-bath coupling. These include rate matrices with continuum limit, rate matrices of chaotic driven systems, random rate matrices, and rate matrices resulting from thermal baths that couple to a few observables only.
On the number of Bose-selected modes in driven-dissipative ideal Bose gases.
Schnell, Alexander; Ketzmerick, Roland; Eckardt, André
2018-03-01
In an ideal Bose gas that is driven into a steady state far from thermal equilibrium, a generalized form of Bose condensation can occur. Namely, the single-particle states unambiguously separate into two groups: the group of Bose-selected states, whose occupations increase linearly with the total particle number, and the group of all other states whose occupations saturate [Phys. Rev. Lett. 111, 240405 (2013)PRLTAO0031-900710.1103/PhysRevLett.111.240405]. However, so far very little is known about how the number of Bose-selected states depends on the properties of the system and its coupling to the environment. The answer to this question is crucial since systems hosting a single, a few, or an extensive number of Bose-selected states will show rather different behavior. While in the former two scenarios each selected mode acquires a macroscopic occupation, corresponding to (fragmented) Bose condensation, the latter case rather bears resemblance to a high-temperature state of matter. In this paper, we systematically investigate the number of Bose-selected states, considering different classes of the rate matrices that characterize the driven-dissipative ideal Bose gases in the limit of weak system-bath coupling. These include rate matrices with continuum limit, rate matrices of chaotic driven systems, random rate matrices, and rate matrices resulting from thermal baths that couple to a few observables only.
The area-angular momentum inequality for black holes in cosmological spacetimes
NASA Astrophysics Data System (ADS)
Gabach Clément, María Eugenia; Reiris, Martín; Simon, Walter
2015-07-01
For a stable, marginally outer trapped surface (MOTS) in an axially symmetric spacetime with cosmological constant Λ \\gt 0 and with matter satisfying the dominant energy condition, we prove that the area A and the angular momentum J satisfy the inequality 8π | J| ≤slant A\\sqrt{(1-Λ A/4π )(1-Λ A/12π )}, which is saturated precisely for the extreme Kerr-de Sitter family of metrics. This result entails a universal upper bound | J| ≤slant {J}{max}≈ 0.17/Λ for such MOTS, which is saturated for one particular extreme configuration. Our result sharpens the inequality 8π | J| ≤slant A (Dain and Reiris 2011 Phys. Rev. Lett. 107 051101, Jaramillo, Reiris and Dain 2011 Phys. Rev. Lett. D 84 121503), and we follow the overall strategy of its proof in the sense that we first estimate the area from below in terms of the energy corresponding to a ‘mass functional’, which is basically a suitably regularized harmonic map {{{S}}}2\\to {{{H}}}2. However, in the cosmological case this mass functional acquires an additional potential term which itself depends on the area. To estimate the corresponding energy in terms of the angular momentum and the cosmological constant we use a subtle scaling argument, a generalized ‘Carter-identity’, and various techniques from variational calculus, including the mountain pass theorem.
DPEMC: A Monte Carlo for double diffraction
NASA Astrophysics Data System (ADS)
Boonekamp, M.; Kúcs, T.
2005-05-01
We extend the POMWIG Monte Carlo generator developed by B. Cox and J. Forshaw, to include new models of central production through inclusive and exclusive double Pomeron exchange in proton-proton collisions. Double photon exchange processes are described as well, both in proton-proton and heavy-ion collisions. In all contexts, various models have been implemented, allowing for comparisons and uncertainty evaluation and enabling detailed experimental simulations. Program summaryTitle of the program:DPEMC, version 2.4 Catalogue identifier: ADVF Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADVF Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer: any computer with the FORTRAN 77 compiler under the UNIX or Linux operating systems Operating system: UNIX; Linux Programming language used: FORTRAN 77 High speed storage required:<25 MB No. of lines in distributed program, including test data, etc.: 71 399 No. of bytes in distributed program, including test data, etc.: 639 950 Distribution format: tar.gz Nature of the physical problem: Proton diffraction at hadron colliders can manifest itself in many forms, and a variety of models exist that attempt to describe it [A. Bialas, P.V. Landshoff, Phys. Lett. B 256 (1991) 540; A. Bialas, W. Szeremeta, Phys. Lett. B 296 (1992) 191; A. Bialas, R.A. Janik, Z. Phys. C 62 (1994) 487; M. Boonekamp, R. Peschanski, C. Royon, Phys. Rev. Lett. 87 (2001) 251806; Nucl. Phys. B 669 (2003) 277; R. Enberg, G. Ingelman, A. Kissavos, N. Timneanu, Phys. Rev. Lett. 89 (2002) 081801; R. Enberg, G. Ingelman, L. Motyka, Phys. Lett. B 524 (2002) 273; R. Enberg, G. Ingelman, N. Timneanu, Phys. Rev. D 67 (2003) 011301; B. Cox, J. Forshaw, Comput. Phys. Comm. 144 (2002) 104; B. Cox, J. Forshaw, B. Heinemann, Phys. Lett. B 540 (2002) 26; V. Khoze, A. Martin, M. Ryskin, Phys. Lett. B 401 (1997) 330; Eur. Phys. J. C 14 (2000) 525; Eur. Phys. J. C 19 (2001) 477; Erratum, Eur. Phys. J. C 20 (2001) 599; Eur. Phys. J. C 23 (2002) 311]. This program implements some of the more significant ones, enabling the simulation of central particle production through color singlet exchange between interacting protons or antiprotons. Method of solution: The Monte Carlo method is used to simulate all elementary 2→2 and 2→1 processes available in HERWIG. The color singlet exchanges implemented in DPEMC are implemented as functions reweighting the photon flux already present in HERWIG. Restriction on the complexity of the problem: The program relying extensively on HERWIG, the limitations are the same as in [G. Marchesini, B.R. Webber, G. Abbiendi, I.G. Knowles, M.H. Seymour, L. Stanco, Comput. Phys. Comm. 67 (1992) 465; G. Corcella, I.G. Knowles, G. Marchesini, S. Moretti, K. Odagiri, P. Richardson, M. Seymour, B. Webber, JHEP 0101 (2001) 010]. Typical running time: Approximate times on a 800 MHz Pentium III: 5-20 min per 10 000 unweighted events, depending on the process under consideration.
Voltage and Pressure Scaling of Streamer Dynamics in a Helium Plasma Jet With N2 CO-Flow (Postprint)
2014-08-14
de Wetering, R. Blanc, E. M. van Veldhuizen , and U. Ebert, J. Phys. D: Appl. Phys. 43, 145204 (2010). 26T. M. P. Briels, J. Kos, G. J. J. Winands, E. M... van Veldhuizen , and U. Ebert, J. Phys. D: Appl. Phys. 41, 234004 (2008). 27See http://physics.nist.gov/PhysRefData/ASD for National Institute of...T. Briels, and E. van Velduizen, J. Geophys. Res. 115, A00E43, doi:10.1029/2009JA014867 (2010) and references therein. 25S. Nijdam, F. M. J. H. van
Chaotic and Bifurcating Nonlinear Systems Driven by Noise with Applications to Laser Dynamics
1988-12-30
W. o. leich and M. 0. Scully, Phys. Rev. A . 37, 3010 (1988) and ibid, 1261 (1988), and references therein. 14. A . K. Dhara and S. V . G. Menon, J...Fronzoni, F. Moss, R. Mannella and P. V . E. McClintock. Phys. Rev. A 36. 834 (1987) 35. L. Fronzoni, F. Moss and P. V . E. McClintock, Phys. Rev. A . 36...1492 (1987). 36. V . Altares and G. Nicolis, Phys. Rev. A 37. 3630 (1988) 37. R. Lefever and JI Win. Turner. Phys. Rev. Lett. 56, 1631 (1986) 38. K
NASA Astrophysics Data System (ADS)
Sahai, Aakash A.; Tsung, Frank S.; Tableman, Adam R.; Mori, Warren B.; Katsouleas, Thomas C.
2013-10-01
The relativistically induced transparency acceleration (RITA) scheme of proton and ion acceleration using laser-plasma interactions is introduced, modeled, and compared to the existing schemes. Protons are accelerated with femtosecond relativistic pulses to produce quasimonoenergetic bunches with controllable peak energy. The RITA scheme works by a relativistic laser inducing transparency [Akhiezer and Polovin, Zh. Eksp. Teor. Fiz 30, 915 (1956); Kaw and Dawson, Phys. FluidsPFLDAS0031-917110.1063/1.1692942 13, 472 (1970); Max and Perkins, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.27.1342 27, 1342 (1971)] to densities higher than the cold-electron critical density, while the background heavy ions are stationary. The rising laser pulse creates a traveling acceleration structure at the relativistic critical density by ponderomotively [Lindl and Kaw, Phys. FluidsPFLDAS0031-917110.1063/1.1693437 14, 371 (1971); Silva , Phys. Rev. E1063-651X10.1103/PhysRevE.59.2273 59, 2273 (1999)] driving a local electron density inflation, creating an electron snowplow and a co-propagating electrostatic potential. The snowplow advances with a velocity determined by the rate of the rise of the laser's intensity envelope and the heavy-ion-plasma density gradient scale length. The rising laser is incrementally rendered transparent to higher densities such that the relativistic-electron plasma frequency is resonant with the laser frequency. In the snowplow frame, trace density protons reflect off the electrostatic potential and get snowplowed, while the heavier background ions are relatively unperturbed. Quasimonoenergetic bunches of velocity equal to twice the snowplow velocity can be obtained and tuned by controlling the snowplow velocity using laser-plasma parameters. An analytical model for the proton energy as a function of laser intensity, rise time, and plasma density gradient is developed and compared to 1D and 2D PIC OSIRIS [Fonseca , Lect. Note Comput. Sci.9783-540410.1007/3-540-47789-6_36 2331, 342 (2002)] simulations. We model the acceleration of protons to GeV energies with tens-of-femtoseconds laser pulses of a few petawatts. The scaling of proton energy with laser power compares favorably to other mechanisms for ultrashort pulses [Schreiber , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.97.045005 97, 045005 (2006); Esirkepov , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.92.175003 92, 175003 (2004); Silva , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.92.015002 92, 015002 (2004); Fiuza , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.109.215001 109, 215001 (2012)].
Impact of Duality Violations on Spectral Sum Rule analyses
NASA Astrophysics Data System (ADS)
Catà, Oscar
2007-02-01
Recent sum rule analyses on the
A study of the turn-up effect in the electron momentum spectroscopy
NASA Astrophysics Data System (ADS)
Dal Cappello, C.; Menas, F.; Houamer, S.; Popov, Yu V.; Roy, A. C.
2015-10-01
Recently, a number of electron momentum spectroscopy measurements for the ionization of atoms and molecules have shown that the triple differential cross section (TDCS) has an unexpected higher intensity in a low momentum regime (Brunger M J, Braidwood S W, Mc Carthy I E and Weigold E 1994 J. Phys. B: At. Mol. Opt. Phys. 27 L597, Hollebone B P, Neville J J, Zheng Y, Brion C E, Wang Y and Davidson E R 1995 Chem. Phys. 196 13, Brion C E, Zheng Y, Rolke J, Neville J J, McCarthy I E and Wang J 1998 J. Phys. B: At. Mol. Opt. Phys. 31 L223, Ren X G, Ning C G, Deng J K, Zhang S F, Su G L, Huang F and Li G Q 2005 Phys. Rev. Lett. 94 163201, Deng J K, et al 2001 J. Chem. Phys. 114 882, Ning C G, Ren X G, Deng J K, Su G L, Zhang S F and Li G Q 2006 Phys. Rev. A 73 022704). This surprising result is now called the turn-up effect. Our aim is to investigate such an effect by studying the case of the ionization of atomic hydrogen in an excited state using the 3C model (Brauner M, Briggs J S and Klar H 1989 J. Phys. B: At. Mol. Opt. Phys. 22 2265) which is able to describe all the measured results of the single ionization of atomic hydrogen in its ground state for an incident energy beyond 200 eV. A comparison is also made of the findings of the present method with those of the plane wave impulse approximation and distorted wave models.
Physics of the Cosmos Program Analysis Group (PhysPAG) Report
NASA Astrophysics Data System (ADS)
Nousek, John A.
2015-01-01
The Physics of the Cosmos Program Analysis Group (PhysPAG) serves as a forum for soliciting and coordinating input and analysis from the scientific community in support of the PCOS program objectives. I will outline the activities of the PhysPAG over the past year, since the last meeting during the AAS meeting in National Harbor, and mention the activities of the PhysPAG related Scientific Interest Groups.
Nonequilibrium Plasma Research
2010-05-01
Kulikovsky, IEEE Trans. Plasma Sci. 25, 439 (1997). 61. W. Yi and P. Williams, J. Phys. D: Appl. Phys. 35, 205 (2002). 62. E. van Veldhuizen and W...Rutgers, J. Phys. D: Appl. Phys. 35, 2169 (2002). 63. E. van Veldhuizen , A. Baede, D. Hayashi, and W. Rutgers, APP Spring Meeting (Bad Honnef...Nonequilibrium Air Plasmas at Atmosphere Pressure, (Institute of Physics, Bristol, UK 2005) Review Article: P. Bletzinger, B. N. Ganguly, D. Van Wie and
1982-11-02
Wolfe, Phys. Rev. Lett. 27, 988 (1971). 5. H.R. Fetterman , D.M. Larsen, G.E. Stillman, P.E. Tannenwald, and J. Waldman, Phys.Rev. Lett. 26. 975(1971). 6...Kirkman, P.E. Simmonds, and R.A. Stradling, J. Phys. C., Solid State Phys. 8, 530 (1975). 18. H.R. Fetterman , J. Waldman and C.M. Wolfe, Solid State Commun
NASA Astrophysics Data System (ADS)
Nousek, John A.
2014-01-01
The Physics of the Cosmos Program Analysis Group (PhysPAG) is responsible for solicitiing and coordinating community input for the development and execution of NASA's Physics of the Cosmos (PCOS) program. In this session I will report on the activity of the PhysPAG, and solicit community involvement in the process of defining PCOS objectives, planning SMD architecture, and prioritizing PCOS activities. I will also report on the activities of the PhysPAG Executive Committee, which include the chairs of the Science Analysis Groups/ Science Interest Groups which fall under the PhysPAG sphere of interest. Time at the end of the presentation willl be reserved for questions and discussion from the community.
Quantum-Critical Dynamics of the Skyrmion Lattice.
NASA Astrophysics Data System (ADS)
Green, Andrew G.
2002-03-01
Slightly away from exact filling of the lowest Landau level, the quantum Hall ferromagnet contains a finite density of magnetic vortices or Skyrmions[1,2]. These Skyrmions are expected to form a square lattice[3], the low energy excitations of which (translation/phonon modes and rotation/breathing modes) lead to dramatically enhanced nuclear relaxation[4,5]. Upon changing the filling fraction, the rotational modes undergo a quantum phase transition where zero-point fluctuations destroy the orientational order of the Skyrmions[4,6]. I will discuss the effect of this quantum critical point upon nuclear spin relaxation[7]. [1]S. L. Sondhi et al., Phys. Rev. B47, 16419 (1993). [2]S. E. Barrett et al., Phys. Rev. Lett. 74, 5112 (1995), A. Schmeller et al., Phys. Rev. Lett. 75, 4290 (1995). [3]L. Brey et al, Phys. Rev. Lett. 75, 2562 (1995). [4]R. Côté et al., Phys. Rev. Lett. 78, 4825 (1997). [5]R. Tycko et al., Science 268, 1460 (1995). [6]Yu V. Nazarov and A. V. Khaetskii, Phys. Rev. Lett. 80, 576 (1998). [7]A. G. Green, Phys. Rev. B61, R16 299 (2000).
Reynolds number effects on the single-mode Richtmyer-Meshkov instability
NASA Astrophysics Data System (ADS)
Walchli, B.; Thornber, B.
2017-01-01
The Reynolds number effects on the nonlinear growth rates of the Richtmyer-Meshkov instability are investigated using two-dimensional numerical simulations. A decrease in Reynolds number gives an increased time to reach nonlinear saturation, with Reynolds number effects only significant in the range Re<256 . Within this range there is a sharp change in instability properties. The bubble and spike amplitudes move towards equal size at lower Reynolds numbers and the bubble velocities decay faster than predicted by Sohn's model [S.-I. Sohn, Phys. Rev. E 80, 055302 (2009), 10.1103/PhysRevE.80.055302]. Predicted amplitudes show reasonable agreement with the existing theory of Carles and Popinet [P. Carles and S. Popinet, Phys. Fluids Lett. 13, 1833 (2001), 10.1063/1.1377863; Eur. J. Mech. B 21, 511 (2002), 10.1016/S0997-7546(02)01199-8] and Mikaelian [K. O. Mikaelian, Phys. Rev. E 47, 375 (1993), 10.1103/PhysRevE.47.375; K. O. Mikaelian, Phys. Rev. E 87, 031003 (2013), 10.1103/PhysRevE.87.031003], with the former being the closest match to the current computations.
Reply to "Comment on `Particle path through a nested Mach-Zehnder interferometer' "
NASA Astrophysics Data System (ADS)
Griffiths, Robert B.
2018-02-01
While much of the technical analysis in the preceding Comment is correct, in the end it confirms the conclusion reached in my previous work [Phys. Rev. A 94, 032115 (2016), 10.1103/PhysRevA.94.032115]: A consistent histories analysis provides no support for the claim of counterfactual quantum communication put forward by Salih et al. [Phys. Rev. Lett. 110, 170502 (2013), 10.1103/PhysRevLett.110.170502].
α-decay systematics for superheavy elements
NASA Astrophysics Data System (ADS)
Duarte, S. B.; Teruya, N.
2012-01-01
In this Brief Report we extend the α-decay half-life calculation to the superheavy emitter region to verify whether these nuclei satisfy the recently observed systematics [D. N. Poenaru , Phys. Rev. CPRVCAN0556-281310.1103/PhysRevC.83.014601 83, 014601 (2011);C. Qi , Phys. Rev. CPRVCAN0556-281310.1103/PhysRevC.80.044326 80, 044326 (2009)]. To establish the systematics, we have used the α-cluster potential description, which was originally developed to study α decay in connection with nuclear energy level structure [B. Buck , Phys. Rev. CPRVCAN0556-281310.1103/PhysRevC.51.559 51, 559 (1995)]. The quantum-mechanical tunneling calculation has been employed to obtain the half-lives, showing that with this treatment the systematics are well reproduced in the region of heavy nuclei. Finally, the half-life calculation has been extended to the superheavy emitters to verify whether the systematics can still be observed.
One-loop light-cone QCD, effective action for reggeized gluons and QCD RFT calculus
NASA Astrophysics Data System (ADS)
Bondarenko, S.; Lipatov, L.; Pozdnyakov, S.; Prygarin, A.
2017-09-01
The effective action for reggeized gluons is based on the gluodynamic Yang-Mills Lagrangian with external current for longitudinal gluons added, see Lipatov (Nucl Phys B 452:369, 1995; Phys Rep 286:131, 1997; Subnucl Ser 49:131, 2013; Int J Mod Phys Conf Ser 39:1560082, 2015; Int J Mod Phys A 31(28/29):1645011, 2016; EPJ Web Conf 125:01010, 2016). On the base of classical solutions, obtained in Bondarenko et al. (Eur Phys J C 77(8):527, 2017), the one-loop corrections to this effective action in light-cone gauge are calculated. The RFT calculus for reggeized gluons similarly to the RFT introduced in Gribov (Sov Phys JETP 26:414, 1968) is proposed and discussed. The correctness of the results is verified by calculation of the propagators of A+ and A- reggeized gluons fields and application of the obtained results is discussed as well.
Manufacturing Methods & Technology Project Execution Report. Second Half CY 1980
1981-03-01
TO PURSUE DIETHYLENE GLYCOL PROCESS. 5 76 4114 P27 SOLID WASTE SOIL Dl FOSAL TECHNIQUES EYPERIMENTAL WORK AT CRANE IND PROVED THAT NO AIRBORNE TNT OR...DERIVATIVES RELEASED DURING COMPOSTING OPERATION. ALSO NO TOXIC PRODUCTS PRODUCED* FINAL COMFOSTED PRODUCT MAY BE RETURNED TO THE LAND AS A SOIL ...AND CONSIDERABLY MORE EFFICIENT THAN COMPETING METHODS, A NOZZLE OSN AND OPN COND WERE ESTAB WHICH WILL BE USL ) AS THE FIRST TRIAL DURING THE PILOT
Geophysical Investigation in Support of Beaver Dam Comprehensive Seepage Investigation.
1988-05-01
pervasive rather than occurring in a few well defined cond’iits. Ceophyslea1 evidonce su-- gests that the south bounding fault may act as a broad ...K. Butler, Messrs. J. R. Curro, Jr., J. L. Llopis, D. E. Yule, and M. K. Sharp , EEGD. Messrs. C. M. Deaver and S. C. Hartung, SWL, supervised the...measures. These measurements were accomplished by installing two weirs , a Parshall flume, and twenty-seven piezometers. The data suggested that the
Laser Induced Forced Motion and Stress Waves in Plates and Shells.
1981-08-01
the plate at the center, normal to the plate surface. The Laser used was a Holobeam model 630-QNd glass system. This Laser produces an output power (in...V o 0 0 I lue ceill I Ii 1)r1 i 11im and hot nchary\\ cond i t i ons S or tile i n it i aI I St ate toget her with ji(. 38c ) iiav he u ISed to
1975-01-24
oorrectinq input and a command for entering edit mode with current definitions. 10. 1 THE EDITOR The editor is automatically entered when a sy ...pat-part>::=<consonant- naBe >|l <reduced-name>( <f ull-vowel-naiOf <explici t-stress> 11 <class-naine>|<place- naBe >i <kind- naBe >| VCICE...test>| < voice-test> | (<cond-body>) <kind-test>: : = KIND (EQINQ) fKIND|<)cind- naBe >| <class-test>::=CLASS (BQ|NQ
1980-07-01
CRYOGENIC ENGINEERING - II by R.G.Scurlock 3 PROPERTIES OF MATERIALS: THE PHYSICAL PROPERTIES OF METALS AND NON- METALS by D.A.Wigley 4 REAL GAS EFFECTS - i...atmosphere. Examples include plastics and synthetic polymers in solid, foam, woven or sheet form, lubricating oils and metal powders. DO NOT think that...obtained with non- metals . TABLE 5 Ultimate Yield Thermal Figure Material tensile stress cond strength mega od.t _ i t y of mega N/m 2 N/m 2 Wm K Merit
System Integration and Control in a Speech Understanding System
1975-09-01
aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if...visible. a way that allows the The s~cond part of the paper describes an executive that uses information from these knowledge sources in 1ts control...strategy, System Integration and Control Page 1 A speech understanding system must use manY kinds of knowledge , each playing a particular role during
Distribution and potential sources and sinks of copper chelators in the Sargasso Sea
NASA Astrophysics Data System (ADS)
Moffett, J. W.; Zika, R. G.; Brand, L. E.
1990-01-01
Copper speciation has been studied at an oligotrophic station in the southwestern Sargasso Sea to determine the distribution of Cu binding ligands and evaluate their potential sources and sinks. Speciation was studied using a ligand exchange/liquid-liquid partition procedure used in a previous study in Florida coastal waters [ MOFFET and ZIKA (1987a) Marine Chemistry, 21, 301-313]. Copper speciation was dominated by organic complexation at all depths studied (16-950 m). Complexation was greatest in the region of the chlorophyll maximum. In this region, speciation was dominated by two ligands or ligand classes; L 1, with K cond. = 10 13.2, concentration = 2 nM, and a weaker but more abundant ligand class, L 2 with Kincond. = 10 9.7, concentration = 80 nM. From 140 to 16 m, [Cu(II)] free/[Cu(II)] total increases by a factor of 20, due to a decrease in [L 1] to a value below the ambient Cu concentration. Exposure of water from 140 m to sunlight indicated that photochemical decomposition of L 1 may account for the decrease. Below the chlorophyll maximum there is a gradual increase in [Cu(II)] free/[Cu(II)] total suggesting that the ligands are of recent biological origin rather than derived from refractory materials. Cultures of a ubiquitous marine cyanobacterium, Synechococcus sp. produced a ligand with K cond. comparable to L 1, indicating that a biological source is plausible.
NASA Astrophysics Data System (ADS)
Silva, Antonio
2005-03-01
It is well-known that the mathematical theory of Brownian motion was first developed in the Ph. D. thesis of Louis Bachelier for the French stock market before Einstein [1]. In Ref. [2] we studied the so-called Heston model, where the stock-price dynamics is governed by multiplicative Brownian motion with stochastic diffusion coefficient. We solved the corresponding Fokker-Planck equation exactly and found an analytic formula for the time-dependent probability distribution of stock price changes (returns). The formula interpolates between the exponential (tent-shaped) distribution for short time lags and the Gaussian (parabolic) distribution for long time lags. The theoretical formula agrees very well with the actual stock-market data ranging from the Dow-Jones index [2] to individual companies [3], such as Microsoft, Intel, etc. [] [1] Louis Bachelier, ``Th'eorie de la sp'eculation,'' Annales Scientifiques de l''Ecole Normale Sup'erieure, III-17:21-86 (1900).[] [2] A. A. Dragulescu and V. M. Yakovenko, ``Probability distribution of returns in the Heston model with stochastic volatility,'' Quantitative Finance 2, 443--453 (2002); Erratum 3, C15 (2003). [cond-mat/0203046] [] [3] A. C. Silva, R. E. Prange, and V. M. Yakovenko, ``Exponential distribution of financial returns at mesoscopic time lags: a new stylized fact,'' Physica A 344, 227--235 (2004). [cond-mat/0401225
NASA Astrophysics Data System (ADS)
Watkins, Nicholas; Clarke, Richard; Freeman, Mervyn
2002-11-01
We discuss how the ideal formalism of Computational Mechanics can be adapted to apply to a non-infinite series of corrupted and correlated data, that is typical of most observed natural time series. Specifically, a simple filter that removes the corruption that creates rare unphysical causal states is demonstrated, and the new concept of effective soficity is introduced. The benefits of these new concepts are demonstrated on simulated time series by (a) the effective elimination of white noise corruption from a periodic signal using the expletive filter and (b) the appearance of an effectively sofic region in the statistical complexity of a biased Poisson switch time series that is insensitive to changes in the word length (memory) used in the analysis. The new algorithm is then applied to analysis of a real geomagnetic time series measured at Halley, Antarctica. Two principal components in the structure are detected that are interpreted as the diurnal variation due to the rotation of the earth-based station under an electrical current pattern that is fixed with respect to the sun-earth axis and the random occurrence of a signature likely to be that of the magnetic substorm. In conclusion, a hypothesis is advanced about model construction in general (see also Clarke et al; arXiv::cond-mat/0110228).
Carbon Nanotube Devices for GHz to THz Applications
NASA Astrophysics Data System (ADS)
Burke, Peter
2005-03-01
In this talk I will present an overview of the high-frequency applications of carbon nanotubes, one realization of nano-electronic devices, and where the challenges and opportunities lie in this new field. Specifically, I will first discuss the passive RF circuit models of one-dimensional nanostructures as interconnects[1]. Next, I will discuss circuit models of the ac performance of active 1d transistor structures, leading to the prediction that THz cutoff frequencies should be possible[2]. We recently demonstrated the operation of nanotube transistors at 2.6 GHz[3]. Third, I discuss the radiation properties of 1d wires, which could form antennas linking the nanoworld to the macroworld[4]. This could completely remove the requirements for lithographically defined contacts to nanotube and nanowire devices, one of the greatest unsolved problems in nanotechnology. [1] P.J. Burke "An RF Circuit Model for Carbon Nanotubes" IEEE Transactions on Nanotechnology 2(1), 55-58 (2003). [2] P.J. Burke, ``AC Performance of Nanoelectronics: Towards a Ballistic THz Nanotube Transistor'' Solid State Electronics, 48(10), 1981-1986 (2004). [3] Shengdong Li, Zhen Yu, Sheng-Fen Yeng, W.C. Tang, Peter J. Burke, ``Carbon Nanotube Transistor Operation at 2.6 GHz'' Nano Letters, 4(4), 753-756 (2004). [4] Peter J. Burke, Shengdong Li, Zhen Yu ''Quantitative theory of nanowire and nanotube antenna performance,'' http://xxx.lanl.gov/abs/cond-mat/0408418cond-mat/0408418 (2004).
Failure Wave in DEDF and Soda-Lime Glass During Rod Impact
NASA Astrophysics Data System (ADS)
Orphal, Dennis; Behner, Thilo; Anderson, Charles; Templeton, Douglas
2005-07-01
Investigations of glass by planar, and classical and symmetric Taylor impact experiments reveal that failure wave velocity U/F depends on impact velocity, geometry, and the type of glass. U/F typically increases with impact velocity to between ˜ 1.4 C/S and C/L (shear and longitudinal wave velocities, respectively). This paper reports the results of direct high-speed photographic measurements of the failure wave for gold rod impact from 1.2 and 2.0 km/s on DEDF glass (C/S = 2.0, C/L =3.5 km/s). The average rod penetration velocity, u, was measured using flash X-rays. Gold rods eliminated penetrator strength effects. U/F for gold rod impact on DEDF is ˜ 1.0-1.2 km/s, which is considerably less than C/S. The increase of u with impact velocity is greater than that of U/F. These results are confirmed by soda-lime glass impact on a gold rod at an impact velocity of 1300 m/s. Similar results are found in``edge-on-impact'' tests; U/F values of 1.4 km/s and 2.4-2.6 km/s in soda-lime glass are reported for W-alloy rod impact, considerably less than C/S (3.2 km/s) [1,2]. [1] Bless, et. al.(1990) AIP Proc. Shock Comp. Cond. Matter---1989, pp. 939-942 (1990) [2] E. L. Zilberbrand, et. al. (1999) Int. J. Impact Engng., 23, 995-1001 (1999).
Dirac cones in artificial structures of 3d transitional-metals doped Mg-Al spinels
NASA Astrophysics Data System (ADS)
Lu, Yuan; Feng, Min; Shao, Bin; Zuo, Xu
2014-05-01
Motivated by recent theoretical predications for Dirac cone in two-dimensional (2D) triangular lattice [H. Ishizuka, Phys. Rev. Lett. 109, 237207 (2012)], first-principles studies are performed to predict Dirac cones in artificial structures of 3d transitional-metals (TM = Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) doped Mg-Al spinels. In investigated artificial structures, TM dopants substitute specific positions of the B sub-lattice in Mg-Al spinel, and form a quasi-2D triangular lattice in the a-b plane. Calculated results illustrate the existence of the spin-polarized Dirac cones formed in d-wave bands at (around) the K-point in the momentum space. The study provides a promising route for engineering Dirac physics in condensed matters.
Rubber friction and tire dynamics.
Persson, B N J
2011-01-12
We propose a simple rubber friction law, which can be used, for example, in models of tire (and vehicle) dynamics. The friction law is tested by comparing numerical results to the full rubber friction theory (Persson 2006 J. Phys.: Condens. Matter 18 7789). Good agreement is found between the two theories. We describe a two-dimensional (2D) tire model which combines the rubber friction model with a simple mass-spring description of the tire body. The tire model is very flexible and can be used to accurately calculate μ-slip curves (and the self-aligning torque) for braking and cornering or combined motion (e.g. braking during cornering). We present numerical results which illustrate the theory. Simulations of anti-blocking system (ABS) braking are performed using two simple control algorithms.
NASA Astrophysics Data System (ADS)
Drozd-Rzoska, Aleksandra; Rzoska, Sylwester J.; Tamarit, Josep Ll
2008-06-01
This preface focuses on the importance of pressure studies for explaining the glass transitions puzzle. Subsequently, some issues related to the European Science Foundation Exploratory Workshop (ESF EW) Glassy Liquids under Pressure: Fundamentals and Applications (Ustroń, Poland, 10-12 October 2007) are recalled. Most liquids crystallize on 'normal' cooling at the melting temperature Tm. However, some liquids can skip crystallization and undergo supercooling down to glass temperature Tg. Turnbull 1 proposed an empirical link between these temperatures indicating good glass forming ability (GFA) for Tg/Tm « 2/3. Values of the GFA factor Tg/Tm → 1/2 were suggested for 'poor' glass formers, where crystallization is difficult to avoid. Recently, the significance of the pressure dependence of the GFA factor was also noted 2. Reaching the glass transition is associated with a series of phenomena, namely 3: (i) the thermal expansion coefficient at constant pressure changes smoothly from values common for a liquid to those of a crystal, showing anomalous behaviour near Tg, (ii) viscosity reaches a value of η = 1013 P and the structural relaxation time τ ≈ 100 s, (iii) the specific heat drop occurs, giving rise to the famous Kauzmann paradox. On cooling towards glass transition, the 'pretransitional' behaviour can be observed for dynamic properties even well above Tg + 100 K 3. This includes the non-Arrhenius evolution of such magnitudes as viscosity, primary (structural-, α-) relaxation time, electric conductivity or diffusion coefficient associated with increasingly non-Debye distribution of relaxation times 3. Such behaviour is associated with short-time scale relaxation processes. The most characteristic is the secondary (β-) relaxation 4, 5 which merges with the 'structural' dynamics near τ(TB) = 10-7+/-1s, the hypothetically universal (magic) time-scale 6. Below TB the split in the evolution of the translation and orientation related properties occurs 4, 5. It is worth stressing that these features seem to be universal, shared by various systems, despite their fundamentally different microscopic basis 3-6. It is probable that the latter fact caused the long-standing interest in glass transition phenomenon. It can be said that the puzzling artifacts matched with the intuitive hypothetical universality of the given phenomenon have always attracted the attention of researchers. The modern concept of critical phenomena, developed three to four decades ago, serves as an excellent example 7, 8 Society-relevant applications of the knowledge gained from studies on the vitrification phenomenon are of great significance for material engineering such as rewritable data storage, pharmacy industry, geophysics, biotechnology, etc 3, 9-13. Glass transition physics also constitutes one of the reference points for the novel category of complex liquids/soft matter systems 13. One of the basic hallmarks of the hypothetically universal dynamics on approaching glass transition is the Angell plot 14, 15, log10τ or log10η versus Tg/T collecting 'dynamic' data for different systems with the so called fragility as a classifying metric. The latter was introduced as the slope at Tg/T = 1 in the Angell plot. Fragile liquids (large values of m) are linked to the strongly nonlinear dependence in this plot. The so called strong liquids (glassy systems) are characterized by small values of m. For the latter the most linear, Arrhenius-type behaviour takes place. In subsequent years several other measures of fragility were proposed. Fragility became one of the key concepts for glass transition physics 3, 16-20. Despite extensive experimental findings, numerical results and theoretical concepts 3, 16-20, a breakthrough in explaining the glass transition mystery has not yet been reached. The ultimate model ought to describe vitrification with the use of well defined physical parameters and yield output relations enabling simple and unambiguous experimental tests. Such a model should describe all puzzling dynamical, thermodynamic and structural features as well as identify the origins and the range of the hypothetical universality. Therefore, why are pressure studies so important? Compressing is another way of vitrifying a system without the necessity of changing the temperature. In temperature studies on glass transition both density and thermal effects are involved 3. Comprehensive temperature and pressure studies make it possible to separate these contributions and consequently to understand their role 3, 16, 20. Pressure dependences of various relaxation processes (α-, β-, etc) differ significantly. Hence, pressurization can separate these processes 17. This is hardly possible in temperature investigations under atmospheric pressure. Dynamic 'equation of states' employing data from the pressure-temperature plane may also offer a qualitatively new tool for testing the validity of the existing theoretical models. This has already been used for the study of free volume models, Adam-Gibbs model or mode coupling theory 16-18. Let's present some further possible problems associated with pressure and glass transition: (i) the origin of universal phenomena (ii) the ultimate description of the relaxation time or viscosity versus P and T (iii) the proper description of Tg(P), T0(P), TCMCT(P), evolution (iv) explaining the possible role of the negative pressures domain (v) the mystery of the pre-vitrification behaviour for systems characterized by dTg(P)/dP > 0 and dTg(P)/dP < 0 (vi) the answer to the question 'does fragility depend on pressure?' (vii) understanding the role of volume in vitrification (viii) β- process related questions (ix) the mode-coupling theory predictions for the pressure path: this includes the 'universality' or 'non-universality' of the power exponent describing the evolution of τ(T) or η(T) (x) the appearance of dynamic hetergeneities on pressuirization, (xi) the decoupling between rotational and translational degrees of freedom (xii) the vitrification-related behaviour at extreme pressures in the multi-GPa domain. All these problems show that pressure studies on supercooled liquids and glassy systems can shed new light on properties observed under atmospheric pressure. In our opinion comprehensive pressure and temperature research, supported by PVT measurements and matched with sophisticated state-of-the-art modern techniques, may deliver qualitatively new input data for numerical analysis as well as for verification and construction of theoretical models. All these can form a milestone for reaching a long expected breakthrough in glass transition physics. We would like to stress the interdisciplinary significance of high pressure studies on glass forming materials. They are important not only for condensed matter and soft matter physics but also for tailoring new materials, for biotechnological issues or for deep Earth and planetary sciences 3, 9-13, 16-18. This poses an additional challenge for glassy liquids under pressure studies. This issue contains the majority of results presented at the European Science Foundation Exploratory Workshop (ESF EW) 'Glassy Liquids Under Pressure', Ustroń, Poland, 10-12 October, 2007 (convenors: Aleksandra Drozd-Rzoska (Poland) and Josep Ll Tamarit (Spain)). Aleksandra Drozd-Rzoska belongs to the group (together with Sylwester J Rzoska, Marian Paluch Paluch, Jerzy Zioło, Sebastian Pawlus, Michał Mierzwa and the staff of PhD students) from the Department of Biophysics and Molecular Physics, Institute of Physics, Silesian University, Katowice, Poland), which began pressure studies in liquids almost three decades ago. First, these investigations focused on critical mixtures and liquid crystals 21-24. On the basis of experimental solutions developed in that period, pressure studies of dielectric relaxation in supercooled, vitrifying systems began a decade ago 18, 25-27 Results associated with these studies are recalled in some of the papers presented in this issue. Josep Ll Tamarit is the coordinator of the Group of Characterization of Materials at the Department of Physics and Nuclear Engineering, Universitat Politécnica de Catalunya, Barcelona. Over the last 20 years the group has conducted thermodynamic and structural studies on several series of compounds and on their mixed crystals 28-33. They invariably involve orientationally disordered phases. For such materials, also known as plastic crystals, the average positions of the centers of mass of the molecules form a regular high-symmetry lattice while the orientations are dynamically disordered. It is well known that the dynamics of (canonical) glasses is almost completely controlled by orientational degrees of freedom 34 and thus, vitrifying orientationally disordered crystals can yield materials with a reduction of complexity. This can be important for reaching a better insight into the glass state and vitrification in general. The European Science Foundation Exploratory Workshop (ESF EW) is a brainstorming panel for the best specialists in the given field of science. Participants of the ESF EW 'Glassy Liquids Under Pressure' arrived at the Institute of Physics, the Silesian University, Katowice, Poland on 10 October 2007. Katowice is the capital of Upper Silesia and of the metropolitan area of Silesia (population ≈ 4 000 000)—the most industrial area of Poland. The conference coach took participants to the Jaskółka Hotel in Ustroń, a tourist resort situated in the beautiful valley at the foot of the Beskidy mountains (a part of West Carpaty), 80 km south from Katowice. The picturesque surroundings together with the delicious local cuisine created a stimulating atmosphere for the three days of lectures and discussions. References [1] Turnbull D 1969 Under what criterion the glass can be formed Contemp. Phys.10 3473 [2] Drozd-Rzoska A, Rzoska S J and Imre A R 2007 On the pressure evolution of the melting temperature and the glass transition temperature J. Non-Cryst. Solids 353 3915 [3]Donth E 1998 The Glass Transition. Relaxation Dynamics in Liquids and Disordered Materials(Springer Series in Materials Science II vol 48) (Berlin: Springer) [4] Johari G P and Goldstein M 1971 Viscous liquids and the glass transition in aliphatic alcohols and other norigid molecules J. Chem. Phys. 55 4245 [5] Roland C M and Casalini R 2004 Viscosity crossover in 0-therphenyl and salol under high pressure Phys. Rev. Lett.92 245702 [6] Novikov V N and Sokolov A P 2003 Universality of the dynamic crossover in glass-forming liquids: A 'magic' relaxation time Phys. Rev. E 67 031507 [7] Stanley H E 1971/1987 Introduction to Critical Phenomena (New York: Oxford University Press) [8] Anisimov M A 1993 Critical Phenomena in Liquids and in Liquid Crystals (Reading: Gordon and Breach) [9] McMillan P F 2003 New materials from high pressure experiments: challenges and opportunities High Press. Res. 67 031507 [10] Craig D Q M, Royall P G, Kett V L and Hopton M L 1999 The relevance of the amorphous state to pharmaceutical dosage forms: glass drugs and freeze dried systems Int. J. Pharm. 179 179 [11] Poirier J P 2000 Introduction to the physics of the earth's interior (Cambridge: Cambridge University Press) [12] Mezzega E, Shurtenberger P, Burbridge A and Michel M 2005 Understanding food as soft materials Nature Mater. 4 729 [13] Jones R A L 2002 Soft Condensed Matter Physics (New York: Oxford University Press) [14] Angell C A 1985 Strong and fragile liquids Relaxations in Complex Systems Ngai K L and Wright (ed) (Springfield: National Technical Information Service, US Department of Commerce) 1 [15] Böhmer R, Ngai K L, Angell C A and Plazek D J 1993 Nonexponential relaxations in strong and fragile glass formers J. Chem. Phys. 99 4201 [16] Floudas G 2004 Effects of pressure on systems with intristic orientational order Prog. Polym. Sci. 29 1143 [17] Roland C M, Hensel-Bielowka S, Paluch M and Casalini R 2005 Supercooled dynamics of glass-forming liquids and polymers under hydrostatic pressure Rep. Prog. Phys. 68 1405 [18] Rzoska S J and Mazur V (ed) 2007 Soft Matter Under Exogenic Impacts(NATO Science Series II vol 242) (Berlin: Springer) [19] Sastry S, Debenedetti P G and Stillinger F H 1998 Signatures of distinct dynamical regimes in the energy landscape of a glass-forming liquid Nature 393 54 [20] Niss K, Alba-Simionesco Ch 2006 Effect of density and temperature on correlations between fragility and glassy properties Phys. Rev. B 74 54 024205 [21] Charpeć J, Rzoska S J and Zioło J 1985 The influence of pressure and temperature on the critical properties of a nitrobenzene - hexane solution by the NDE method Phase Transit.5 49 [22] Drozd-Rzoska A, Rzoska S J and Zioło J 1997 High pressure studies of the low-frequency nonlinear dielectric effect in the isotropic phase of octyl- and dodecyl-cyanobiphenyl Phys. Rev. E 55 2888 [23] DRzoska S J, Zioło J, Drozd-Rzoska A 1997 Stretched-relaxation after switching-off a strong electric field in a critical solution under high pressure Phys. Rev. E 56 2578 [24] Rzoska S J, Urbanowicz P, Drozd-Rzoska A, Paluch M and Habdas P 1999 Pressure behaviour of dielectric permittivity on approaching the critical consolute point Europhys. Lett. 45 334 [25] Paluch M, Zioło J and Rzoska S J 1997 Dielectric relaxation of glass-forming epoxy-resin under high pressure Phys. Rev. E 56 5764 [26] Paluch M, Rzoska S J and Zioło J 1998 On the pressure behaviour of dielectric relaxation times in supercooled, glassforming liquids J. Phys.: Condens. Matter 10 4131 [27] Drozd-Rzoska A, Rzoska S J, Paluch M, Imre A R and Roland C M 2007 On the glass temperature under extreme pressures J. Chem. Phys. 126 164504 [28] Reuter J, Büsing D, Tamarit J Ll and Wüflinger A 1996 J. Mater. Chem. 7 41 [29] Rute M A, Salud J, Negrier Ph, López D O, Tamarit J Ll, Puertas R, Barrio M and Mondieig D 2003 The two-component system cycloheptanol (C7) + cyclooctanol (C8): an extraordinary system J. Phys. Chem. B 107 5914 [30] Pardo L C, Veglio N, Bermejo F J, Tamarit J Li and Cuello G J 2005 Orientational short-range-order in disordered phases of methylhalogenomethanes Phys. Rev. B 72 014206 [31] Tamarit J Ll, Pérez-Jubindo M A and de la Fuente M R 1997 Dielectric studies on orientationally disordered phases of neopentylglycol ((CH3)2C(CH2OH)2) and tris(hydroxymethyl) aminomethane (NH2C(CH2OH)3) J. Phys.: Condens. Matter 9 5469 [32] Jenau M, Reuter J, WüflingerA and Tamarit J Ll 1996 Crystal and pvT data and thermodynamics if the phase transitions on 2-methyl-2-nitro-propane J. Chem. Soc. Faraday Trans. E 92 1899 [33] Drozd-Rzoska A, Rzoska S J, Pawlus S and Tamarit J Ll 2006 Dielectric relaxation in compressed glassy and orietationally disordered mixed crystals Phys. Rev. B 56 5764 [34] Talon C, Ramos M A, Vieira S, Cuello G J, Bermejo F J, Criado A, Senent M L, Bennington S M, Fischer H E and Schober H 1998 Low-temperature specific heat and glassy dynamics of a polymorphic molecular solid Phys. Rev. B 58 745
Shock-wave ion acceleration by an ultra-relativistic short laser pulse
NASA Astrophysics Data System (ADS)
Zhidkov, A.; Batishchev, O.; Uesaka, M.
2002-11-01
Research on ion acceleration by intense short laser pulses grows in the last few years [1-9] because of various applications. However, the study is mainly focused on the forward ion acceleration. We study ion inward acceleration, which in contrast to other mechanisms has density of ions per unit energy not decreased with the laser intensity [8]. Magnetic field generated due to a finite size of laser spot can affect electron distribution. In the present work we study the effect of magnetic field on the shock wave formation and ion acceleration in a solid target via 2D PIC and Vlasov simulation. Though the PIC simulation can provide detailed information, in relativistic plasmas it may not calculate B correctly: (i) too many particles are needed to make B disappeared in thermal plasmas, (ii) local scheme [10] does not satisfy curl(Epl)=0. Therefore, two approaches are used in the present study. [1] S. P. Hatchett et al., Phys. Plas. 7, 2076 (2000); [2] A. Maksimchuk et al., Phys. Rev. Lett. 84, 4108 (2000); [3] E.L. Clark et al., Phys. Rev. Lett. 85, 1654 (2000); [4] A. Zhidkov et al., Phys. Rev. E60, 3273 (1999); E61, R2224 (2000); [5] Y. Murakami et al, Phys. Plasmas 8,4138 (2001); [6] T.Zh. Esirkepov et al, JETP Lett. 70, 82 (1999); [7] A. Pukhov, Phys. Rev. Lett. 86, 3562(2001); [8] A.A. Andreev et al., Plasma Phys. Contr. Fusion (2002); [9] O.V. Batishchev et al., Plasma Phys. Rep. 20, 587 (1994); [10] J. Villasenor et al., Comp. Phys. Comm. 69, 306 (1992).
NASA Astrophysics Data System (ADS)
Hey, J. D.
2014-08-01
As a sequel to an earlier study (Hey 2009 J. Phys. B: At. Mol. Opt. Phys. 42 125701), we consider further the application of the line strength formula derived by Watson (2006 J. Phys. B: At. Mol. Opt. Phys. 39 L291) to transitions arising from states of very high principal quantum number in hydrogenic atoms and ions (Rydberg-Rydberg transitions, n > 1000). It is shown how apparent difficulties associated with the use of recurrence relations, derived (Hey 2006 J. Phys. B: At. Mol. Opt. Phys. 39 2641) by the ladder operator technique of Infeld and Hull (1951 Rev. Mod. Phys. 23 21), may be eliminated by a very simple numerical device, whereby this method may readily be applied up to n ≈ 10 000. Beyond this range, programming of the method may entail greater care and complexity. The use of the numerically efficient McLean-Watson formula for such cases is again illustrated by the determination of radiative lifetimes and comparison of present results with those from an asymptotic formula. The question of the influence on the results of the omission or inclusion of fine structure is considered by comparison with calculations based on the standard Condon-Shortley line strength formula. Interest in this work on the radial matrix elements for large n and n‧ is related to measurements of radio recombination lines from tenuous space plasmas, e.g. Stepkin et al (2007 Mon. Not. R. Astron. Soc. 374 852), Bell et al (2011 Astrophys. Space Sci. 333 377), to the calculation of electron impact broadening parameters for such spectra (Watson 2006 J. Phys. B: At. Mol. Opt. Phys. 39 1889) and comparison with other theoretical methods (Peach 2014 Adv. Space Res. in press), to the modelling of physical processes in H II regions (Roshi et al 2012 Astrophys. J. 749 49), and the evaluation bound-bound transitions from states of high n during primordial cosmological recombination (Grin and Hirata 2010 Phys. Rev. D 81 083005, Ali-Haïmoud and Hirata 2010 Phys. Rev. D 82 063521, Ali-Haïmoud 2013 Phys. Rev. D 87 023526).
Reply to "Comment on `Protecting bipartite entanglement by quantum interferences' "
NASA Astrophysics Data System (ADS)
Das, Sumanta; Agarwal, G. S.
2018-03-01
In a recent Comment Nair and Arun, Phys. Rev. A 97, 036301 (2018), 10.1103/PhysRevA.97.036301, it was concluded that the two-qubit entanglement protection reported in our work [Das and Agarwal, Phys. Rev. A 81, 052341 (2010), 10.1103/PhysRevA.81.052341] is erroneous. While we acknowledge the error in analytical results on concurrence when dipole matrix elements were unequal, the essential conclusions on entanglement protection are not affected.
ERRATUM: Papers published in incorrect sections
NASA Astrophysics Data System (ADS)
2004-04-01
A number of J. Phys. A: Math. Gen. articles have mistakenly been placed in the wrong subject section in recent issues of the journal. We would like to apologize to the authors of these articles for publishing their papers in the Fluid and Plasma Theory section. The correct section for each article is given below. Statistical Physics Issue 4: Microcanonical entropy for small magnetizations Behringer H 2004 J. Phys. A: Math. Gen. 37 1443 Mathematical Physics Issue 9: On the solution of fractional evolution equations Kilbas A A, Pierantozzi T, Trujillo J J and Vázquez L 2004 J. Phys. A: Math. Gen. 37 3271 Quantum Mechanics and Quantum Information Theory Issue 6: New exactly solvable isospectral partners for PT-symmetric potentials Sinha A and Roy P 2004 J. Phys. A: Math. Gen. 37 2509 Issue 9: Symplectically entangled states and their applications to coding Vourdas A 2004 J. Phys. A: Math. Gen. 37 3305 Classical and Quantum Field Theory Issue 6: Pairing of parafermions of order 2: seniority model Nelson C A 2004 J. Phys. A: Math. Gen. 37 2497 Issue 7: Jordan-Schwinger map, 3D harmonic oscillator constants of motion, and classical and quantum parameters characterizing electromagnetic wave polarization Mota R D, Xicoténcatl M A and Granados V D 2004 J. Phys. A: Math. Gen. 37 2835 Issue 9: Could only fermions be elementary? Lev F M 2004 J. Phys. A: Math. Gen. 37 3285
Quantum singularities in (2+1) dimensional matter coupled black hole spacetimes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unver, O.; Gurtug, O.
2010-10-15
Quantum singularities considered in the 3D Banados-Teitelboim-Zanelli (BTZ) spacetime by Pitelli and Letelier [Phys. Rev. D 77, 124030 (2008)] is extended to charged BTZ and 3D Einstein-Maxwell-dilaton gravity spacetimes. The occurrence of naked singularities in the Einstein-Maxwell extension of the BTZ spacetime both in linear and nonlinear electrodynamics as well as in the Einstein-Maxwell-dilaton gravity spacetimes are analyzed with the quantum test fields obeying the Klein-Gordon and Dirac equations. We show that with the inclusion of the matter fields, the conical geometry near r=0 is removed and restricted classes of solutions are admitted for the Klein-Gordon and Dirac equations. Hence,more » the classical central singularity at r=0 turns out to be quantum mechanically singular for quantum particles obeying the Klein-Gordon equation but nonsingular for fermions obeying the Dirac equation. Explicit calculations reveal that the occurrence of the timelike naked singularities in the considered spacetimes does not violate the cosmic censorship hypothesis as far as the Dirac fields are concerned. The role of horizons that clothes the singularity in the black hole cases is replaced by repulsive potential barrier against the propagation of Dirac fields.« less
TopoMS: Comprehensive topological exploration for molecular and condensed-matter systems.
Bhatia, Harsh; Gyulassy, Attila G; Lordi, Vincenzo; Pask, John E; Pascucci, Valerio; Bremer, Peer-Timo
2018-06-15
We introduce TopoMS, a computational tool enabling detailed topological analysis of molecular and condensed-matter systems, including the computation of atomic volumes and charges through the quantum theory of atoms in molecules, as well as the complete molecular graph. With roots in techniques from computational topology, and using a shared-memory parallel approach, TopoMS provides scalable, numerically robust, and topologically consistent analysis. TopoMS can be used as a command-line tool or with a GUI (graphical user interface), where the latter also enables an interactive exploration of the molecular graph. This paper presents algorithmic details of TopoMS and compares it with state-of-the-art tools: Bader charge analysis v1.0 (Arnaldsson et al., 01/11/17) and molecular graph extraction using Critic2 (Otero-de-la-Roza et al., Comput. Phys. Commun. 2014, 185, 1007). TopoMS not only combines the functionality of these individual codes but also demonstrates up to 4× performance gain on a standard laptop, faster convergence to fine-grid solution, robustness against lattice bias, and topological consistency. TopoMS is released publicly under BSD License. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adamczyk, L.
We report measurements of Υ meson production in p + p, d + Au, and Au+Au collisions using the STAR detector at RHIC. We compare the Υ yield to the measured cross section in p + p collisions in order to quantify any modifications of the yield in cold nuclear matter using d + Au data and in hot nuclear matter using Au+Au data separated into three centrality classes. Our p + p measurement is based on three times the statistics of our previous result. We obtain a nuclear modification factor for Upsilon (1S + 2S + 3S) in themore » rapidity range |y| < 1 in d + Au collisions of R dAu = 0.79 ± 0.24(stat.) ± 0.03(syst.) ± 0.10(p + p syst.). A comparison with models including shadowing and initial state parton energy loss indicates the presence of additional cold-nuclear matter suppression. Similarly, in the top 10% most-central Au + Au collisions, we measure a nuclear modification factor of R AA = 0.49 ±0.1(stat.) ±0.02(syst.) ±0.06(p + p syst.), which is a larger suppression factor than that seen in cold nuclear matter. Our results are consistent with complete suppression of excited-state Upsilon mesons in Au + Au collisions. The additional suppression in Au + Au is consistent with the level expected in model calculations that include the presence of a hot, deconfined Quark–Gluon Plasma. However, understanding the suppression seen in d + Au is still needed before any definitive statements about the nature of the suppression in Au + Au can be made.« less
NASA Astrophysics Data System (ADS)
Tannenbaum, M. J.
2006-07-01
Experimental physics with relativistic heavy ions dates from 1992 when a beam of 197Au of energy greater than 10 A GeV/c first became available at the Alternating Gradient Synchrotron at Brookhaven National Laboratory (BNL) soon followed in 1994 by a 208Pb beam of 158A GeV/c at the Super Proton Synchrotron at CERN (European Center for Nuclear Research). Previous pioneering measurements at the Berkeley Bevalac (Gutbrod et al 1989 Rep. Prog. Phys. 52 1267-132) in the late 1970s and early 1980s were at much lower bombarding energies (<~1A GeV/c) where nuclear breakup rather than particle production is the dominant inelastic process in A+A collisions. More recently, starting in 2000, the relativistic heavy ion collider at BNL has produced head-on collisions of two 100 A GeV beams of fully stripped Au ions, corresponding to nucleon-nucleon centre-of-mass (cm) energy, \\sqrt{s_NN}=200\\,GeV , total cm energy 200 A GeV. The objective of this research program is to produce nuclear matter with extreme density and temperature, possibly resulting in a state of matter where the quarks and gluons normally confined inside individual nucleons (r < 1 fm) are free to act over distances an order of magnitude larger. Progress from the period 1992 to the present will be reviewed, with reference to previous results from light ion and proton-proton collisions where appropriate. Emphasis will be placed on the measurements which formed the basis for the announcements by the two major laboratories: 'A new state of matter', by CERN on Febraury 10 2000 and 'The perfect fluid' by BNL on April 19 2005.
Adamczyk, L.
2015-04-01
We report measurements of Υ meson production in p + p, d + Au, and Au+Au collisions using the STAR detector at RHIC. We compare the Υ yield to the measured cross section in p + p collisions in order to quantify any modifications of the yield in cold nuclear matter using d + Au data and in hot nuclear matter using Au+Au data separated into three centrality classes. Our p + p measurement is based on three times the statistics of our previous result. We obtain a nuclear modification factor for Upsilon (1S + 2S + 3S) in themore » rapidity range |y| < 1 in d + Au collisions of R dAu = 0.79 ± 0.24(stat.) ± 0.03(syst.) ± 0.10(p + p syst.). A comparison with models including shadowing and initial state parton energy loss indicates the presence of additional cold-nuclear matter suppression. Similarly, in the top 10% most-central Au + Au collisions, we measure a nuclear modification factor of R AA = 0.49 ±0.1(stat.) ±0.02(syst.) ±0.06(p + p syst.), which is a larger suppression factor than that seen in cold nuclear matter. Our results are consistent with complete suppression of excited-state Upsilon mesons in Au + Au collisions. The additional suppression in Au + Au is consistent with the level expected in model calculations that include the presence of a hot, deconfined Quark–Gluon Plasma. However, understanding the suppression seen in d + Au is still needed before any definitive statements about the nature of the suppression in Au + Au can be made.« less
Sequential deconfinement of quark flavors in neutron stars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blaschke, D.; Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, RU-141980 Dubna; Sandin, F.
2009-12-15
A scenario is suggested in which the three light quark flavors are sequentially deconfined under increasing pressure in cold asymmetric nuclear matter as found, for example, in neutron stars. The basis for this analysis is a chiral quark matter model of Nambu-Jona-Lasinio (NJL) type with diquark pairing in the spin-1 single-flavor, spin-0 two-flavor, and three-flavor channels. Nucleon dissociation sets in at about the saturation density, n{sub 0}, when the down-quark Fermi sea is populated (d-quark drip line) because of the flavor asymmetry induced by {beta} equilibrium and charge neutrality. At about 3n{sub 0}, u-quarks appear and a two-flavor color superconductingmore » (2SC) phase is formed. The s-quark Fermi sea is populated only at still higher baryon density, when the quark chemical potential is of the order of the dynamically generated strange quark mass. Two different hybrid equations of state (EOSs) are constructed using the Dirac-Brueckner Hartree-Fock (DBHF) approach and the EOS of Shen et al.[H. Shen, H. Toki, K. Oyamatsu, and K. Sumiyoshi, Nucl. Phys. A637, 435 (1998)] in the nuclear matter sector. The corresponding hybrid star sequences have maximum masses of 2.1 and 2.0 M{sub {center_dot}}, respectively. Two- and three-flavor quark-matter phases exist only in gravitationally unstable hybrid star solutions in the DBHF case, whereas the Shen-based EOSs produce stable configurations with a 2SC phase component in the core of massive stars. Nucleon dissociation via d-quark drip could act as a deep crustal heating process, which apparently is required to explain superbursts and cooling of x-ray transients.« less
A comparison of three radiation models for the calculation of nozzle arcs
NASA Astrophysics Data System (ADS)
Dixon, C. M.; Yan, J. D.; Fang, M. T. C.
2004-12-01
Three radiation models, the semi-empirical model based on net emission coefficients (Zhang et al 1987 J. Phys. D: Appl. Phys. 20 386-79), the five-band P1 model (Eby et al 1998 J. Phys. D: Appl. Phys. 31 1578-88), and the method of partial characteristics (Aubrecht and Lowke 1994 J. Phys. D: Appl.Phys. 27 2066-73, Sevast'yanenko 1979 J. Eng. Phys. 36 138-48), are used to calculate the radiation transfer in an SF6 nozzle arc. The temperature distributions computed by the three models are compared with the measurements of Leseberg and Pietsch (1981 Proc. 4th Int. Symp. on Switching Arc Phenomena (Lodz, Poland) pp 236-40) and Leseberg (1982 PhD Thesis RWTH Aachen, Germany). It has been found that all three models give similar distributions of radiation loss per unit time and volume. For arcs burning in axially dominated flow, such as arcs in nozzle flow, the semi-empirical model and the P1 model give accurate predictions when compared with experimental results. The prediction by the method of partial characteristics is poorest. The computational cost is the lowest for the semi-empirical model.
Reynolds number effects on the single-mode Richtmyer-Meshkov instability.
Walchli, B; Thornber, B
2017-01-01
The Reynolds number effects on the nonlinear growth rates of the Richtmyer-Meshkov instability are investigated using two-dimensional numerical simulations. A decrease in Reynolds number gives an increased time to reach nonlinear saturation, with Reynolds number effects only significant in the range Re<256. Within this range there is a sharp change in instability properties. The bubble and spike amplitudes move towards equal size at lower Reynolds numbers and the bubble velocities decay faster than predicted by Sohn's model [S.-I. Sohn, Phys. Rev. E 80, 055302 (2009)PLEEE81539-375510.1103/PhysRevE.80.055302]. Predicted amplitudes show reasonable agreement with the existing theory of Carles and Popinet [P. Carles and S. Popinet, Phys. Fluids Lett. 13, 1833 (2001)10.1063/1.1377863; Eur. J. Mech. B 21, 511 (2002)EJBFEV0997-754610.1016/S0997-7546(02)01199-8] and Mikaelian [K. O. Mikaelian, Phys. Rev. E 47, 375 (1993)1063-651X10.1103/PhysRevE.47.375; K. O. Mikaelian, Phys. Rev. E 87, 031003 (2013)PLEEE81539-375510.1103/PhysRevE.87.031003], with the former being the closest match to the current computations.
Magnetic and structural X-ray dichroïsms of metallic multilayers
NASA Astrophysics Data System (ADS)
Pizzini, Stefania; Fontaine, A.; Baudelet, F.; Minr, S.; Giorgetti, C.; Dartyge, E.; Bobo, J. F.; Piecuch, M.
1995-05-01
Fe/Cu and Co/Cu multilayers are intensively studied because of their exceptional magnetic properties, i.e., their giant magnetoresistance and the oscillations of the magnetic coupling between magnetic layers as a function of the thickness of the copper spacer [S.S. Parkin et al., Phys. Rev. Lett. 66 (1991) 2152; F. Petroff et al., Phys. Rev. B 44 (1991) 5355]. Spectroscopic approaches to the understanding of the coupling of ferromagnetic layers through a noble metal layer have been recently introduced, in particular spin-resolved photoemission [N.B. Brookes et al., Phys. Rev. Lett. 67 (1991) 354; C. Carbone et al., PRL 71 (1993) 2805] inverse photoemission [J.E. Ortega et al., Phys. Rev. Lett. 69 (1992) 844; Phys. Rev. B 47 (1993) 1540] and magnetic circular dichroism [S. Pizzini et al., MRS Symp. Proc., vol. 313 (1993); M.G. Samant et al. Phys. Rev. Lett. 72 (1994) 2152; S. Pizzini et al., Phys. Rev. Lett. 74 (1995) 1470]. X-ray absorption spectroscopy appears to be effective both for determination of the local structure, specific to the bidimensionality of the system but also for the electron symmetry-dependent evaluation of the spin polarisation of the noble metal as well as the magnetic element.
Fully relativistic B-spline R-matrix calculations for electron collisions with xenon
NASA Astrophysics Data System (ADS)
Bartschat, Klaus; Zatsarinny, Oleg
2009-05-01
We have applied our recently developed fully relativistic Dirac B-spline R-matrix (DBSR) code [1] to calculate electron scattering from xenon atoms. Results from a 31-state close-coupling model for the excitation function of the metastable (5p^5 6s) J=0,2 states show excellent agreement with experiment [2], thereby presenting a significant improvement over the most sophisticated previous Breit-Pauli calculations [3,4]. This allows for a detailed and reliable analysis of the resonance structure. The same model is currently being used to calculate electron-impact excitation from the metastable J=2 state. The results will be compared with recent experimental data [5] and predictions from other theoretical models [6,7]. [1] O. Zatsarinny and K. Bartschat, Phys. Rev. A 77 (2008) 062701. [2] S. J. Buckman et al., J. Phys. B 16 (1983) 4219. [3] A. N. Grum-Grzhimailo and K. Bartschat, J. Phys. B 35 (2002) 3479. [4] M. Allan et al., Phys. Rev. A 74 (2006) 030701(R). [5] R. O. Jung et al., Phys. Rev. A 72 (2005) 022723. [6] R. Srivastava et al., Phys. Rev. A 74 (2006) 012715. [7] J. Jiang et al., J. Phys. B 41 (2008) 245204.
Multiplicity-dependent and nonbinomial efficiency corrections for particle number cumulants
NASA Astrophysics Data System (ADS)
Bzdak, Adam; Holzmann, Romain; Koch, Volker
2016-12-01
In this article we extend previous work on efficiency corrections for cumulant measurements [Bzdak and Koch, Phys. Rev. C 86, 044904 (2012), 10.1103/PhysRevC.86.044904; Phys. Rev. C 91, 027901 (2015), 10.1103/PhysRevC.91.027901]. We will discuss the limitations of the methods presented in these papers. Specifically we will consider multiplicity dependent efficiencies as well as nonbinomial efficiency distributions. We will discuss the most simple and straightforward methods to implement those corrections.
Reply to "Comment on `Troublesome aspects of the Renyi-MaxEnt treatment' "
NASA Astrophysics Data System (ADS)
Plastino, A.; Rocca, M. C.; Pennini, F.
2017-11-01
This Reply is intended as a refutation of the preceding Comment [Oikonomou and Bagci, Phys. Rev. E 96, 056101 (2017), 10.1103/PhysRevE.96.056101] on our paper [Plastino et al., Phys. Rev. E 94, 012145 (2016)., 10.1103/PhysRevE.94.012145]. We show that the Tsallis probability distribution of our paper does not coincide with the Tsallis distribution studied by Oikonomou and Bagci. Consequently, their findings do not apply to our paper.
Reply to "Comment on 'Troublesome aspects of the Renyi-MaxEnt treatment' ".
Plastino, A; Rocca, M C; Pennini, F
2017-11-01
This Reply is intended as a refutation of the preceding Comment [Oikonomou and Bagci, Phys. Rev. E 96, 056101 (2017)10.1103/PhysRevE.96.056101] on our paper [Plastino et al., Phys. Rev. E 94, 012145 (2016).1539-375510.1103/PhysRevE.94.012145]. We show that the Tsallis probability distribution of our paper does not coincide with the Tsallis distribution studied by Oikonomou and Bagci. Consequently, their findings do not apply to our paper.
NASA Astrophysics Data System (ADS)
Bordenave-Montesquieu, A.; Moretto-Capelle, P.; Bordenave-Montesquieu, D.
2003-02-01
The J. Phys. B publishing team would like to apologize to the authors of the above paper. In this paper, references [42] and [43] were printed incorrectly. The correct references are: [42] Bordenave-Montesquieu A, Gleizes A and Benoit-Cattin P 1982 Phys. Rev. A 25 245-67 [43] Bordenave-Montesquieu A et al 1987 J. Phys. B: At. Mol. Phys. 20 L695-703.
Multiplicity-dependent and nonbinomial efficiency corrections for particle number cumulants
Bzdak, Adam; Holzmann, Romain; Koch, Volker
2016-12-19
Here, we extend previous work on efficiency corrections for cumulant measurements [Bzdak and Koch, Phys. Rev. C 86, 044904 (2012)PRVCAN0556-281310.1103/PhysRevC.86.044904; Phys. Rev. C 91, 027901 (2015)PRVCAN0556-281310.1103/PhysRevC.91.027901]. We will then discuss the limitations of the methods presented in these papers. Specifically we will consider multiplicity dependent efficiencies as well as nonbinomial efficiency distributions. We will discuss the most simple and straightforward methods to implement those corrections.
NASA Astrophysics Data System (ADS)
Hey, J. D.
2015-09-01
On the basis of the original definition and analysis of the vector operator by Pauli (1926 Z. Phys. 36 336-63), and further developments by Flamand (1966 J. Math. Phys. 7 1924-31), and by Becker and Bleuler (1976 Z. Naturforsch. 31a 517-23), we consider the action of the operator on both spherical polar and parabolic basis state wave functions, both with and without direct use of Pauli’s identity (Valent 2003 Am. J. Phys. 71 171-75). Comparison of the results, with the aid of two earlier papers (Hey 2006 J. Phys. B: At. Mol. Opt. Phys. 39 2641-64, Hey 2007 J. Phys. B: At. Mol. Opt. Phys. 40 4077-96), yields a convenient ladder technique in the form of a recurrence relation for calculating the transformation coefficients between the two sets of basis states, without explicit use of generalized hypergeometric functions. This result is therefore very useful for application to Stark effect and impact broadening calculations applied to high-n radio recombination lines from tenuous space plasmas. We also demonstrate the versatility of the Runge-Lenz-Pauli vector operator as a means of obtaining recurrence relations between expectation values of successive powers of quantum mechanical operators, by using it to provide, as an example, a derivation of the Kramers-Pasternack relation. It is suggested that this operator, whose potential use in Stark- and Zeeman-effect calculations for magnetically confined fusion edge plasmas (Rosato, Marandet and Stamm 2014 J. Phys. B: At. Mol. Opt. Phys. 47 105702) and tenuous space plasmas ( H II regions) has not been fully explored and exploited, may yet be found to yield a number of valuable results for applications to plasma diagnostic techniques based upon rate calculations of atomic processes.
NASA Astrophysics Data System (ADS)
Zhen, Hui-Ling; Tian, Bo; Xie, Xi-Yang; Wu, Xiao-Yu; Wen, Xiao-Yong
2018-02-01
On our previous construction [H. L. Zhen et al., Phys. Plasmas 23, 052301 (2016)] of the soliton solutions of a model describing the dynamics of the dust particles in a weakly ionized, collisional dusty plasma comprised of the negatively charged cold dust particles, hot ions, hot electrons, and stationary neutrals in the presence of an external static magnetic field, Ali et al. [Phys. Plasmas 24, 094701 (2017)] have commented that there exists a different form of Eq. (4) from that shown in Zhen et al. [Phys. Plasmas 23, 052301 (2016)] and that certain interesting phenomena with the dust neutral collision frequency ν0>0 are ignored in Zhen et al. [Phys. Plasmas 23, 052301 (2016)]. In this Reply, according to the transformation given by the Ali et al. [Phys. Plasmas 24, 094701 (2017)] comment, we present some one-, two-, and N-soliton solutions which have not been obtained in the Ali et al. [Phys. Plasmas 24, 094701 (2017)] comment. We point out that our previous solutions in Zhen et al. [Phys. Plasmas 23, 052301 (2016)] are still valid because of the similarity between the two dispersion relations of previous solutions in Zhen et al. [Phys. Plasmas 23, 052301 (2016)] and the solutions presented in this Reply. Based on our soliton solutions in this Reply, it is found that the soliton amplitude is inversely related to Zd and B0, but positively related to md and α, where α refers to the coefficient of the nonlinear term, Zd and md are the charge number and mass of a dust particle, respectively, B0 represents the strength of the external static magnetic field. We also find that the two solitons are always in parallel during the propagation.
On the dark matter as a geometric effect in f (R) gravity
NASA Astrophysics Data System (ADS)
Usman, Muhammad
2016-11-01
A mysterious type of matter is supposed to exist because the observed rotational velocity curves of particles moving around the galactic center and the expected rotational velocity curves do not match. This type of matter is called dark matter. There are also a number of proposals in the modified gravity which are alternatives to the dark matter. In this contrast, in 2008, Christian G. Böhmer, Tiberiu Harko and Francisco S.N. Lobo presented an interesting idea in Böhmer et al. (Astropart Phys 29(6):386-392, 2008) where they showed that a f (R) gravity model could actually explain dark matter to be a geometric effect only. They solved the gravitational field equations in vacuum using generic f (R) gravity model for constant velocity regions (i.e. dark matter regions around the galaxy). They found that the resulting modifications in the Einstein Hilbert Lagrangian is of the form R^{1+m}, where m=V_{tg}^2/c^2; V_{tg} being the tangential velocity of the test particle moving around the galaxy in the dark matter regions and c being the speed of light. From observations it is known that m≈ O(10^{-6}) (Böhmer et al. 2008; Salucci et al. in Mon Not R Astron Soc 378(1):41-47, 2007; Persic et al. in Mon Not R Astron Soc 281:27-47, 1996; Borriello and Salucci in Mon Not R Astron Soc 323(2):285-292, 2001). In this article, we perform two things (1) We show that the form of f (R) they claimed is not correct. In doing the calculations, we found that when the radial component of the metric for constant velocity regions is a constant then the exact solutions for f (R) obtained is of the form of R^{1-α } which corresponds to a negative correction rather than positive claimed by the authors of Böhmer et al. (2008), where α is the function of m. (2) We also show that we can not have an analytic solution of f(R) for all values of tangential velocity including the observed value of tangential velocity 200-300 km/s (Salucci et al. 2007; Persic et al. 1996; Borriello and Salucci 2001) if the radial coefficient of the metric which describes the dark matter regions is not a constant. Thus, we have to rely on the numerical solutions to get an approximate model for dark matter in f (R) gravity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Michael L. P.; Arora, Vijay K., E-mail: vijay.arora@wilkes.edu; Department of Electrical Engineering and Physics, Wilkes University, Wilkes-Barre, Pennsylvania 18766
2014-12-21
In a recent article, Serov et al. [J. Appl. Phys. 116, 034507 (2014)] claim: “This study represents the first time that the high-field behavior in graphene on a substrate was investigated taking into account intrinsic graphene properties,” ignoring the most recent anisotropic distribution function [V. K. Arora et al., J. Appl. Phys. 112, 114330 (2012)] also published in J. Appl. Phys., targeting the same experimental data [V. E. Dorgan et al., Appl. Phys. Lett. 97, 082112 (2010)]. The claim of Serov et al. of being first is refuted and many shortcomings of the hydrodynamic model for a highly quantum andmore » degenerate graphene nanolayer are pointed out.« less
Complete set of essential parameters of an effective theory
NASA Astrophysics Data System (ADS)
Ioffe, M. V.; Vereshagin, V. V.
2018-04-01
The present paper continues the series [V. V. Vereshagin, True self-energy function and reducibility in effective scalar theories, Phys. Rev. D 89, 125022 (2014); , 10.1103/PhysRevD.89.125022A. Vereshagin and V. Vereshagin, Resultant parameters of effective theory, Phys. Rev. D 69, 025002 (2004); , 10.1103/PhysRevD.69.025002K. Semenov-Tian-Shansky, A. Vereshagin, and V. Vereshagin, S-matrix renormalization in effective theories, Phys. Rev. D 73, 025020 (2006), 10.1103/PhysRevD.73.025020] devoted to the systematic study of effective scattering theories. We consider matrix elements of the effective Lagrangian monomials (in the interaction picture) of arbitrary high dimension D and show that the full set of corresponding coupling constants contains parameters of both kinds: essential and redundant. Since it would be pointless to formulate renormalization prescriptions for redundant parameters, it is necessary to select the full set of the essential ones. This is done in the present paper for the case of the single scalar field.
Dark matter, baryogenesis and neutrino oscillations from right-handed neutrinos
NASA Astrophysics Data System (ADS)
Canetti, Laurent; Drewes, Marco; Frossard, Tibor; Shaposhnikov, Mikhail
2013-05-01
We show that, leaving aside accelerated cosmic expansion, all experimental data in high energy physics that are commonly agreed to require physics beyond the Standard Model can be explained when completing the model by three right-handed neutrinos that can be searched for using present-day experimental techniques. The model that realizes this scenario is known as the Neutrino Minimal Standard Model (νMSM). In this article we give a comprehensive summary of all known constraints in the νMSM, along with a pedagogical introduction to the model. We present the first complete quantitative study of the parameter space of the model where no physics beyond the νMSM is needed to simultaneously explain neutrino oscillations, dark matter, and the baryon asymmetry of the Universe. The key new point of our analysis is leptogenesis after sphaleron freeze-out, which leads to resonant dark matter production, thus evading the constraints on sterile neutrino dark matter from structure formation and x-ray searches. This requires one to track the time evolution of left- and right-handed neutrino abundances from hot big bang initial conditions down to temperatures below the QCD scale. We find that the interplay of resonant amplifications, CP-violating flavor oscillations, scatterings, and decays leads to a number of previously unknown constraints on the sterile neutrino properties. We furthermore reanalyze bounds from past collider experiments and big bang nucleosynthesis in the face of recent evidence for a nonzero neutrino mixing angle θ13. We combine all our results with existing constraints on dark matter properties from astrophysics and cosmology. Our results provide a guideline for future experimental searches for sterile neutrinos. A summary of the constraints on sterile neutrino masses and mixings has appeared in Canetti et al. [Phys. Rev. Lett. 110, 061801 (2013)PRLTAO0031-9007]. In this article we provide all details of our calculations and give constraints on other model parameters.
NASA Astrophysics Data System (ADS)
Chang, Zhe; Li, Ming-Hua; Lin, Hai-Nan; Li, Xin
2012-12-01
The data of the Bullet Cluster 1E0657-558 released on November 15, 2006 reveal that the strong and weak gravitational lensing convergence κ-map has an 8σ offset from the Σ-map. The observed Σ-map is a direct measurement of the surface mass density of the Intracluster medium (ICM) gas. It accounts for 83% of the averaged mass-fraction of the system. This suggests a modified gravity theory at large distances different from Newton's inverse-square gravitational law. In this paper, as a cluster scale generalization of Grumiller's modified gravity model (Phys. Rev. Lett.105 (2010) 211303), we present a gravity model with a generalized linear Rindler potential in Randers-Finslerian spacetime without invoking any dark matter. The galactic limit of the model is qualitatively consistent with the MOND and Grumiller's. It yields approximately the flatness of the rotational velocity profile at the radial distance of several kpcs and gives the velocity scales for spiral galaxies at which the curves become flattened. Plots of convergence κ for a galaxy cluster show that the peak of the gravitational potential has chances to lie on the outskirts of the baryonic mass center. Assuming an isotropic and isothermal ICM gas profile with temperature T = 14.8 keV (which is the center value given by observations), we obtain a good match between the dynamical mass MT of the main cluster given by collisionless Boltzmann equation and that given by the King β-model. We also consider a Randers+dark matter scenario and a Λ-CDM model with the NFW dark matter distribution profile. We find that a mass ratio η between dark matter and baryonic matter about 6 fails to reproduce the observed convergence κ-map for the isothermal temperature T taking the observational center value.
Three-Dimensional Route Planning for a Cruise Missile for Minimal Detection by Observer
1989-06-01
detect the enemy’s weakest avenues of approach are needed. Such systems could also be used to identify our own deficiencies and allow for...vector-k (oval (line-segment-direction-vector (oval line-i))))) ( Tk2 (vector-k (eval (line-segment-direction-voctor (oval line-2))))) (Tval ’nil...zerop Tkl)) (not (zerop Tk2 ))) (setf Tval (/ Tkl Tk2 ))) (t (return-from parallel-lines ’nil))) (cond ((and (equal Til (* Tval Ti2)) (equal Tjl (* Tval
Low-Level Convergence and the Prediction of Convective Precipitation in South Florida.
1981-02-01
Af" -Ao97 55 ILLINOIS STATE WATER SURVEY URBANA F/6 4/2 LOWLEVEL CONVERGENCE AND THE PREDICTION OF CONVECTIVE PRECIPIT-ETC(U) FEB 81 A I WATSON. R L...varying meteorological cond’tions and ti: == UNCLASSIFIED of day. SECURITY CLASSIFICATIOR OF TNIS PAGE (Whven Data Etered) State Water Survey...1981 1: 4. i0 The project "Low-level Convergence and the Prediction of Convective Precipitation" is a coordinated research effort by the State Water
The Role of Neutral Atmospheric Dynamics in Cusp Density and Ionospheric Patch Formation
2012-10-01
J . Moen, K. Oksavik, C. P. Nielsen, I. W. McCrea, T . R. Pedersen, and P. Gallop, Direct observations of injection events of subauroral plasma into...reconnection events at high end (3km/s) of spectrum of typical plasma flow jet events. The doubling is attributed not t o any difference in the model, but...world (at Poker Flat in Alaska, and Mawson in Antarctica), both belonging to Dr Mark Conde at the University of Alaska, who pioneered the technique (e.g
Force Method Optimization II. Volume II. User’s Manual.
1982-11-01
column labels ICC Iteration counter ICHECK Vector for intermediate output, identifying the convergence status of unknowns, 0 = has not converged, 1...NDC,NW,SIG,ND,IDYN,UP,LOW,IAREA,IMU, ALAMBDW,WARAY,NSN.,NDCNL,NXNL,NWNL,NDNNL, NSENLIRST, ICHECK ,WDYN,PR1,MAXIT,WS,ARAY) 8. Input Tapes: None 9. Output...IMUSL,IMUDL,IAREA, IMU, P,NDN,UP,LOW,IX,IDYN,NW,IMUXL,IMUWL,ICC,ALAMBD, AMIN,WT,KL,NODE,ND,COND, IDEL .NSNL,NDCNL, NXNL, NWNL, ICHECK ,WDYN,PRI,WS,MAXT
Lightning Physics: A Three Year Program
1983-01-01
because these aircraft are controlled poeal’ r r o(z’, I- RIC) with low-voltage digital electronics and are in part construct- 4w J(,3 cR "*t • at ed of... millise - limits pretrigger and delayed-trigger mode,. and a variety of sample conds, and hundreds of microseconds, respectively, the time of simple...processes, but we feel it prudent to discontinue use of the Proctor, D. E., A radio study of lightning, Ph.D. thesis , Univ. of designations in order
1988-01-01
activities Joe D. Elms , for their editorial evaluation of the vironmental Assessmant Program. Additional depends to a large extent on weathcr cond...winds of 25 knots lower. icing causes slippery decks, renders moving (13 meters per second) or more, and air tempera- parts inoperable, and, in extreme...try to avoid foul weather an thereby bias the oceanic climatology towards fair weather. A recent study by Elms (1986), in which he compared the
Frequency Hopping Transceiver Multiplexer
1983-03-01
l~o ngth ( method 211) Ile If 19 nose (m Wace em. t amem 0 311c fte s Saa Spray (meto 101. cond. U) nom t 7 o m011 V $h dIVN5k~ WaftIS OCIV16111 ATC...the resonators together to reduce adverse loading is also critical. Figure 5-12 shows two methods of obtaining the desired selectivity. Part A of...this large frequency range required. E.7 CONCLUSIONS It appears that the Helical Resonator with the capacitance bus is the best method available to
Accessing Ultrahigh-Pressure, Quasi-Isentropic States of Matter
NASA Astrophysics Data System (ADS)
Lorenz, Thomas
2004-11-01
A new approach to materials science at extreme pressures has been developed on the OMEGA laser, using a ramped plasma piston drive. The laser drives a shock through a solid plastic reservoir that unloads at the rear free surface, expands across a vacuum gap, and stagnates on the metal sample under study. This produces a gently increasing ram pressure, compressing the sample nearly isentropically. The peak pressure on the sample, diagnosed with VISAR measurements, can be varied by adjusting the laser energy and pulse length, gap size, and reservoir density, and obeys a simple scaling relation. [1] This has been demonstrated at OMEGA at pressures of P = 0.1-2.0 Mbar in Al foils. [2] In an important application, using in-flight x-ray radiography, the material strength of solid-state samples at high pressure can be inferred by measuring the reductions in the growth rates (stabilization) of Rayleigh-Taylor (RT) unstable interfaces. The material strength is predicted to be as much as an order of magnitude higher at P ˜ 1 Mbar than at ambient pressures. Initial RT measurements testing this prediction in foils of Al and V will be shown. We also use TEM microscopy of recovered targets to show that the samples never melted, and the presence of pressure-induced structural defects. [3,4] Experimental designs based on this drive have been developed for the NIF laser, predicting that solid-state samples can be quasi-isentropically driven to pressures an order of magnitude higher than on Omega - accessing new regimes of dense, high-pressure matter. [5] [1] J. Edwards et al., Phys. Rev. Lett., 92, 075002 (2004). [2] K.T. Lorenz et al., submitted, J. Appl. Phys. (2004). [3] J. McNaney et al., in press, Met. Mat. Trans. 35A (2004). [4] E.M. Bringa et al., to be submitted, Nature (2004). [5] B.A. Remington et al., in press, Met. Mat. Trans. 35A (2004). This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.
Nano to Meso-scale Structure in Liquid Crystals: the Cybotactic Nematic Phase of Bent-core Mesogens
NASA Astrophysics Data System (ADS)
Francescangeli, Oriano
2012-02-01
The extent of molecular order and the resulting broken symmetry determine the properties and mesophase type of liquid crystals (LCs). Thermotropic bent-core mesogens (BCMs) represent a new class of LCs exhibiting substantially different physical properties than traditional linear (calamitic) materials. In recent years BCMs have become the focus of intense experimental and theoretical investigation, with several exciting new developments. These include chiral mesophases composed of achiral BCMs, giant flexoelectricity, biaxial nematic (N) order, a ferroelectric response in the N phase, and a large flow birefringence. A key issue that is currently widely debated concerns the actual nature of the N phase of BCMs which gives rise to some of the above mentioned effects and is unambiguously identified by a peculiar low-angle X-ray diffraction pattern (the ``four-spot pattern''). The consensus emerging is that this N phase of BCMs constitutes a new type of mesophase, namely, a cybotactic nematic (Ncyb) phase unrelated to pretransition cybotaxis, in agreement with experimental [1-3] and theoretical findings [4]. This Ncyb phase is composed of nanometer-size clusters of BCMs exhibiting a relatively high degree of internal order---orientational as well as translational order (strata) imposed by close packing the BCM nonlinear shape. This peculiar supramolecular structure of the Ncyb mesophase of BCMs---evanescent, biaxial clusters of tilted and stratified nonlinear mesogens percolating the nematic fluid---accounts for their unusual properties, e.g., biaxial order [4], ferroelectric response [1], and extraordinary field-induced effects [5]. In this talk I will give an overview of the most recent developments and the current state of research on this subject. [4pt] [1] O. Francescangeli et al., Adv. Funct. Mater. 19,2592 (2009). [0pt] [2] O. Francescangeli and E.T. Samulski, Soft Matter 6, 2413 (2010) [0pt] [3] O. Francescangeli et al., Soft Matter 7, 895 (2011). [0pt] [4] A.G. Vanakaras and D.J.Photinos, J. Chem. Phys. 128, 154512 (2008). [0pt] [5] O. Francescangeli et al., Phys. Rev. Lett. 107, 207801 (2011).
An Optical Trap for Relativistic Plasma
NASA Astrophysics Data System (ADS)
Zhang, Ping
2002-11-01
Optical traps have achieved remarkable success recently in confining ultra-cold matter.Traps capable of confining ultra-hot matter, or plasma, have also been built for applications such as basic plasma research and thermonuclear fusion. For instance, low-density plasmas with temperature less than 1 keV have been confined with static magnetic fields in Malmberg-Penning traps. Low-density 10-50 keV plasmas are confined in magnetic mirrors and tokamaks. High density plasmas have been trapped in optical traps with kinetic energies up to 10 keV [J. L. Chaloupka and D. D. Meyerhofer, Phys. Rev. Lett. 83, 4538 (1999)]. We present the results of experiment, theory and numerical simulation on an optical trap capable of confining relativistic plasma. A stationary interference grating with submicron spacing is created when two high-power (terawatt) laser pulses of equal wavelength (1-micron) are focused from orthogonal directions to the same point in space and time in high density underdense plasma. Light pressure gradients bunch electrons into sheets located at the minima of the interference pattern. The density of the bunched electrons is found to be up to ten times the background density, which is orders-of-magnitude above that previously reported for other optical traps or plasma waves. The amplitudes and frequencies of multiple satellites in the scattered spectrum also indicate the presence of a highly nonlinear ion wave and an electron temperature about 100 keV. Energy transfer from the stronger beam to the weaker beam is also observed. Potential applications include a test-bed for detailed studies of relativistic nonlinear scattering, a positron source and an electrostatic wiggler. This research is also relevant to fast igniter fusion or ion acceleration experiments, in which laser pulses with intensities comparable to those used in the experiment may also potentially beat [Y. Sentoku, et al., Appl. Phys. B 74, 207215 (2002)]. The details of a specific application, the injection of electrons into laser-driven plasma waves, will also be presented. With crossed beams, the energy of a laser-accelerated electron beam is increased and its emittance is decreased compared with a single beam, potentially paving the way towards an all-optical monoenergetic electron injector.
Lehtola, Susi; Parkhill, John; Head-Gordon, Martin
2016-10-07
Novel implementations based on dense tensor storage are presented here for the singlet-reference perfect quadruples (PQ) [J. A. Parkhill et al., J. Chem. Phys. 130, 084101 (2009)] and perfect hextuples (PH) [J. A. Parkhill and M. Head-Gordon, J. Chem. Phys. 133, 024103 (2010)] models. The methods are obtained as block decompositions of conventional coupled-cluster theory that are exact for four electrons in four orbitals (PQ) and six electrons in six orbitals (PH), but that can also be applied to much larger systems. PQ and PH have storage requirements that scale as the square, and as the cube of the numbermore » of active electrons, respectively, and exhibit quartic scaling of the computational effort for large systems. Applications of the new implementations are presented for full-valence calculations on linear polyenes (C nH n+2), which highlight the excellent computational scaling of the present implementations that can routinely handle active spaces of hundreds of electrons. The accuracy of the models is studied in the π space of the polyenes, in hydrogen chains (H 50), and in the π space of polyacene molecules. In all cases, the results compare favorably to density matrix renormalization group values. With the novel implementation of PQ, active spaces of 140 electrons in 140 orbitals can be solved in a matter of minutes on a single core workstation, and the relatively low polynomial scaling means that very large systems are also accessible using parallel computing.« less
Solitons in Bose-Einstein Condensates
NASA Astrophysics Data System (ADS)
Carr, Lincoln D.
2003-05-01
The stationary form, dynamical properties, and experimental criteria for creation of matter-wave bright and dark solitons, both singly and in trains, are studied numerically and analytically in the context of Bose-Einstein condensates [1]. The full set of stationary solutions in closed analytic form to the mean field model in the quasi-one-dimensional regime, which is a nonlinear Schrodinger equation equally relevant in nonlinear optics, is developed under periodic and box boundary conditions [2]. These solutions are extended numerically into the two and three dimensional regimes, where it is shown that dark solitons can be used to create vortex-anti-vortex pairs under realistic conditions. Specific experimental prescriptions for creating viable dark and bright solitons in the quasi-one-dimensional regime are provided. These analytic methods are then extended to treat the nonlinear Schrodinger equation with a generalized lattice potential, which models a Bose-Einstein condensate trapped in the potential generated by a standing light wave. A novel solution family is developed and stability criterion are presented. Experiments which successfully carried out these ideas are briefly discussed [3]. [1] Dissertation research completed at the University of Washington Physics Department under the advisorship of Prof. William P. Reinhardt. [2] L. D. Carr, C. W. Clark, and W. P. Reinhardt, Phys. Rev. A v. 62 p. 063610-1--10 and Phys. Rev. A v.62, p.063611-1--10 (2000). [3] L. Khaykovich, F. Schreck, T. Bourdel, J. Cubizolles, G. Ferrari, L. D. Carr, Y. Castin, and C. Salomon, Science v. 296, p.1290--1293 (2002).
Spectral functions of strongly correlated extended systems via an exact quantum embedding
NASA Astrophysics Data System (ADS)
Booth, George H.; Chan, Garnet Kin-Lic
2015-04-01
Density matrix embedding theory (DMET) [Phys. Rev. Lett. 109, 186404 (2012), 10.1103/PhysRevLett.109.186404], introduced an approach to quantum cluster embedding methods whereby the mapping of strongly correlated bulk problems to an impurity with finite set of bath states was rigorously formulated to exactly reproduce the entanglement of the ground state. The formalism provided similar physics to dynamical mean-field theory at a tiny fraction of the cost but was inherently limited by the construction of a bath designed to reproduce ground-state, static properties. Here, we generalize the concept of quantum embedding to dynamic properties and demonstrate accurate bulk spectral functions at similarly small computational cost. The proposed spectral DMET utilizes the Schmidt decomposition of a response vector, mapping the bulk dynamic correlation functions to that of a quantum impurity cluster coupled to a set of frequency-dependent bath states. The resultant spectral functions are obtained on the real-frequency axis, without bath discretization error, and allows for the construction of arbitrary dynamic correlation functions. We demonstrate the method on the one- (1D) and two-dimensional (2D) Hubbard model, where we obtain zero temperature and thermodynamic limit spectral functions, and show the trivial extension to two-particle Green's functions. This advance therefore extends the scope and applicability of DMET in condensed-matter problems as a computationally tractable route to correlated spectral functions of extended systems and provides a competitive alternative to dynamical mean-field theory for dynamic quantities.
Fingerprints of surface magnetism in Cr2O3 based exchange bias heterostructures
NASA Astrophysics Data System (ADS)
He, Xi; Wang, Yi; Binek, Ch.
2009-03-01
Magnetoelectric materials experienced a recent revival as promising components of novel spintronic devices [1, 2, 3]. Since the magnetoelectric (ME) effect is relativistically small in traditional antiferromagnetic (AF) compounds like Cr2O3 (max. αzz 4ps/m) and also cross-coupling between ferroic order parameters is typically small in the modern multiferroics, it is a challenge to electrically induce sufficient magnetization required for the envisioned device applications. In exchange bias systems the bias field depends critically on the AF interface magnetization. Hence, a strong relation between the latter and the surface magnetization of the free Cr2O3 pinning layer can be expected. Our recent research indicates that there are surface magnetic phase transitions in free Cr2O3 (111) films accompanying surface structural phase transitions. Well defined AF interface magnetization is initialized through ME annealing to T=20K. Subsequently, the interface magnetization is thermally driven through phase transitions at T=120 and 210K. Their effects on the exchange bias are studied in Cr2O3 (111)/CoPt films with the help of polar Kerr and SQUID magnetometry. [1] P. Borisov et al. Phys. Rev. Lett. 94, 117203 (2005). [2] Ch. Binek, B.Doudin, J. Phys. Condens. Matter 17, L39 (2005). [3] R. Ramesh et al. 2007 Nature Materials 6 21. Financial support by NSF through Career DMR-0547887, MRSEC DMR-0820521 and the NRI.
NASA Astrophysics Data System (ADS)
Lehtola, Susi; Parkhill, John; Head-Gordon, Martin
2016-10-01
Novel implementations based on dense tensor storage are presented for the singlet-reference perfect quadruples (PQ) [J. A. Parkhill et al., J. Chem. Phys. 130, 084101 (2009)] and perfect hextuples (PH) [J. A. Parkhill and M. Head-Gordon, J. Chem. Phys. 133, 024103 (2010)] models. The methods are obtained as block decompositions of conventional coupled-cluster theory that are exact for four electrons in four orbitals (PQ) and six electrons in six orbitals (PH), but that can also be applied to much larger systems. PQ and PH have storage requirements that scale as the square, and as the cube of the number of active electrons, respectively, and exhibit quartic scaling of the computational effort for large systems. Applications of the new implementations are presented for full-valence calculations on linear polyenes (CnHn+2), which highlight the excellent computational scaling of the present implementations that can routinely handle active spaces of hundreds of electrons. The accuracy of the models is studied in the π space of the polyenes, in hydrogen chains (H50), and in the π space of polyacene molecules. In all cases, the results compare favorably to density matrix renormalization group values. With the novel implementation of PQ, active spaces of 140 electrons in 140 orbitals can be solved in a matter of minutes on a single core workstation, and the relatively low polynomial scaling means that very large systems are also accessible using parallel computing.
Sensitivity of proposed search for axion-induced magnetic field using optically pumped magnetometers
NASA Astrophysics Data System (ADS)
Chu, P.-H.; Duffy, L. D.; Kim, Y. J.; Savukov, I. M.
2018-04-01
We investigate the sensitivity of a search for the oscillating current induced by axion dark matter in an external magnetic field using optically pumped magnetometers. This experiment is based upon the LC circuit (circuit with inductor and capacitor) axion detection concept of Sikivie et al. [Phys. Rev. Lett. 112, 131301 (2014), 10.1103/PhysRevLett.112.131301]. The modification of Maxwell's equations caused by the axion-photon coupling results in a minute magnetic field oscillating at a frequency equal to the axion mass, in the presence of an external magnetic field. The axion-induced magnetic field could be searched for using a LC circuit amplifier with an optically pumped magnetometer, the most sensitive cryogen-free magnetic-field sensor, in a room-temperature experiment, avoiding the need for a complicated and expensive cryogenic system. We discuss how an existing magnetic resonance imaging experiment can be modified to search for axions in a previously unexplored part of the parameter space. Our existing detection setup, optimized for magnetic resonance imagining, is already sensitive to an axion-photon coupling of 10-7 GeV-1 for an axion mass near 3 ×10-10 eV , which is already limited by astrophysical processes and solar axion searches. We show that realistic modifications, and optimization of the experiment for axion detection, can probe the axion-photon coupling up to 4 orders of magnitude beyond the current best limit, for axion masses between 10-11 and 10-7 eV .
Molecular-dynamics simulations of thin films with a free surface
NASA Astrophysics Data System (ADS)
Peter, Simone; Meyer, Hendrik; Baschnagel, Joerg
2007-03-01
We present results [1,2] from molecular-dynamics simulations for a model of non-entangled short polymer chains in a free standing and a supported film geometry. We investigate the influence of confinement on static and dynamic properties of the melt. We find that the relaxation at the surfaces is faster in comparison to the bulk. We perform a layer-resolved analysis of the dynamics and show that it is possible to associate a gradient in critical temperatures Tc(y) with the gradient in the relaxation dynamics. This finding is in qualitative agreement with experimental results on supported polystyrene (PS) films [Ellison et al, Nat. Mater. 2, 695 (2003)]. Furthermore we show that the y-dependence of Tc(y) can be expressed in terms of the depression of Tc(h), the global Tc for a film of thickness h, if we assume that Tc(h) is the arithmetic mean of Tc(y) and parameterize the depression of Tc(h) by Tc(h)=Tc/(1+h0/h), a formula suggested by Herminghaus et al [Eur. Phys. J E 5, 531 (2001)] for the reduction of the glass transition temperature in supported PS films. We demonstrate the validity of this formula by comparing our simulation results to results from other simulations and experiments. [1] S. Peter, H. Meyer and J. Baschnagel, J. Polym. Sci. B, 44, 2951 (2006) [2] S. Peter, H. Meyer, J. Baschnagel and R, Seemann, J. Phys: Condens. Matter (2007)
Alpha Background Discrimination in the MAJORANA DEMONSTRATOR
NASA Astrophysics Data System (ADS)
Gruszko, Julieta; Majorana Collaboration
2017-09-01
The
Direct Methanol Fuel Cell Battery Replacement Program
2011-04-11
Matthey PtRu in operating direct methanol fuel cells” Phys. Chem. Chem. Phys., 10, 6430-6437 (2008) 2. Harry Rivera, Jamie S. Lawton , David E. Budil and...Phys. Chem. B, 112, (29) 8542-8548 (2008) 3. Jamie S. Lawton , Eugene S. Smotkin and David E. Budil, “ESR Investigation of Microviscosity, Microscopic
Pulsed Photolytic Density Scaling Experiment for BiF
1989-05-01
on Lasers 86, ed. W. B. Lacina, Soc. for Opt. and Quantum Electronics, STS Press. 281 (1987). 9a. R. F. Heidner, H . Helvajian , J. S. Holloway, and J. B...Koffend, J. Chem. Phys. 84, 2137 (1986). 9b. H . Helvajian , J. S. Holloway, and J. B. Koffend, J. Chem. Phys. (in press). 10. J. B. Koffend and R. F...C. E. Gardner, and R. F. Heidner, J. Chem. Phys. 83, 2904 (1985). 13. R. F. Heidner, H . Helvajian , and J. B. Koffend, J. Chem. Phys. 87, 520 (1987
Reactive Removal of BiF Ground State
1990-09-28
1978). 3. W E. Jones and T D. McLean, J. Mol. Spectrosc. 90, 481 (1981). 4. R. E Heidner, H . Helvajian , J. S. Holloway, and J. B. Koffend, J. Chem...Phys. 84, 2137 (1986). 5. C. R. Jones and H . P. Broida, J. Chem. Phys. 60, 4369 (1974). 6. H . Helvajian , J. S. Holloway, and J. B. Koffend, J. Chem...Phys. Rev. A6, 631 (1972). 27. H . Hotop and W C. Lineberger, J. Phys. Chem. Ref. Data 4, 539 (1985). 28. J.M. Herbelin, Conf. Proc., Intl. Gonf. on
2009-12-07
18) Emel’yanenko, V. N.; Verevkin, S. P.; Heintz, A.; Corfield, J.-A.; deyko, A.; Lovelock , K. R. J.; Licence, P.; Jones, R. G. J. Phys. Chem. B 2008...112, 11734. (19) Armstrong, J. P.; Hurst, C.; Jones, R. G.; Licence, P.; Lovelock , K. R. J.; Satterly, C. J.; Villar-Garcia, I. J. Phys. Chem. Chem...Phys. 2007, 9, 982. (20) Lovelock , K. R. J.; Deyko, A.; Corfield, J.-A.; Gooden, P. N.; Licence, P.; Jones, R. G. ChemPhysChem 2009, 10, 337. (21
Electrostatic Plugging of Multidipole Cusps.
1982-05-01
8217, -) V0 100 I-’ 60 00 0> :oc 0 \\0H U 0 0- 0- -L 0 0- P4 A- 602- 179 MASS SPECTROMETER CIRCUIT CHME P OGA- SWOT Figue 1. Shemaic f eteralXly...2R. L. Hirsch, J. Appl . Phys. 38, 4522 (1967). 3N. Hershkowitz K. N. Leung, and T. Romesser, Phys. Rev. Lett. 5. 277 (1975 1. 4A. Kitsunezaki, M...R. T. Carpenter, submitted to J. Appl . Phys. 1OD. Rapp and P. Englander-Golden, J. Chem. Phys. 3, 1464 (1965). "A. Lang and N. Hershkowitz, J. Appl
Upper bound on three-tangles of reduced states of four-qubit pure states
NASA Astrophysics Data System (ADS)
Sharma, S. Shelly; Sharma, N. K.
2017-06-01
Closed formulas for upper bounds on three-tangles of three-qubit reduced states in terms of three-qubit-invariant polynomials of pure four-qubit states are obtained. Our results offer tighter constraints on total three-way entanglement of a given qubit with the rest of the system than those used by Regula et al. [Phys. Rev. Lett. 113, 110501 (2014), 10.1103/PhysRevLett.113.110501 and Phys. Rev. Lett. 116, 049902(E) (2016)], 10.1103/PhysRevLett.116.049902 to verify monogamy of four-qubit quantum entanglement.
NASA Astrophysics Data System (ADS)
Li, Fengyu; Jin, Peng; Jiang, De-en; Wang, Lu; Zhang, Shengbai B.; Zhao, Jijun; Chen, Zhongfang
2012-02-01
Prompted by the very recent claim that the volleyball-shaped B80 fullerene [X. Wang, Phys. Rev. B 82, 153409 (2010), 10.1103/PhysRevB.82.153409] is lower in energy than the B80 buckyball [N. G. Szwacki, A. Sadrzadeh, and B. I. Yakobson, Phys. Rev. Lett. 98, 166804 (2007), 10.1103/PhysRevLett.98.166804] and core-shell structure [J. Zhao, L. Wang, F. Li, and Z. Chen, J. Phys. Chem. A 114, 9969 (2010), 10.1021/jp1018873], and inspired by the most recent finding of another core-shell isomer as the lowest energy B80 isomer [S. De, A. Willand, M. Amsler, P. Pochet, L. Genovese, and S. Goedecher, Phys. Rev. Lett. 106, 225502 (2011), 10.1103/PhysRevLett.106.225502], we carefully evaluated the performance of the density functional methods in the energetics of boron clusters and confirmed that the core-shell construction (stuffed fullerene) is thermodynamically the most favorable structural pattern for B80. Our global minimum search showed that both B101 and B103 also prefer a core-shell structure and that B103 can reach the complete core-shell configuration. We called for great attention to the theoretical community when using density functionals to investigate boron-related nanomaterials.
Binding energy of e^+Li using the Peach model potential.
NASA Astrophysics Data System (ADS)
Shertzer, Janine; Ward, Sandra
2006-05-01
The l-independent, parametric model potential developed by Peach^1 for describing the electron interaction with the alkali ion core yields energy levels that are in excellent agreement with experiment. Because of its relative simplicity, this model potential is an attractive choice for studying e^+- Li collisions;^2,3 the e^+-ion core interaction is obtained by changing the sign of the static term in the interaction. In order to test the usefulness of the potential for describing the physics of an effective three-body system, we calculated the binding energy of e^+Li. This is a stringent test, because the system is very weakly bound. Our results are in excellent agreement with previous calculations,^4 including those using the exact four-body Hamiltonian.^5 This work was funded by NSF under collaborative Grant PHYS-0440714 (JS) and PHYS-0440565 (SJW). ^1G. Peach, H.E. Saraph and M.J. Seaton, J. Phys. B 21, 3669 (1988). ^2M.S.T. Watts and J.W. Humberston, J. Phys. B 25, L491 (1992). ^3S. J. Ward and J. Shertzer, Phys. Rev. A 68, 032720 (2003). ^4J. Mitroy, M.W.J. Bromley, and G.G. Ryzhikh, J. Phys. B 35, R81 (2002). ^5Massimo Mella, Gabriele Morosi, and Dario Bressanini, J. Chem. Phys. 111, 108 (1999).
Adaptive clustering procedure for continuous gravitational wave searches
NASA Astrophysics Data System (ADS)
Singh, Avneet; Papa, Maria Alessandra; Eggenstein, Heinz-Bernd; Walsh, Sinéad
2017-10-01
In hierarchical searches for continuous gravitational waves, clustering of candidates is an important post-processing step because it reduces the number of noise candidates that are followed up at successive stages [J. Aasi et al., Phys. Rev. Lett. 88, 102002 (2013), 10.1103/PhysRevD.88.102002; B. Behnke, M. A. Papa, and R. Prix, Phys. Rev. D 91, 064007 (2015), 10.1103/PhysRevD.91.064007; M. A. Papa et al., Phys. Rev. D 94, 122006 (2016), 10.1103/PhysRevD.94.122006]. Previous clustering procedures bundled together nearby candidates ascribing them to the same root cause (be it a signal or a disturbance), based on a predefined cluster volume. In this paper, we present a procedure that adapts the cluster volume to the data itself and checks for consistency of such volume with what is expected from a signal. This significantly improves the noise rejection capabilities at fixed detection threshold, and at fixed computing resources for the follow-up stages, this results in an overall more sensitive search. This new procedure was employed in the first Einstein@Home search on data from the first science run of the advanced LIGO detectors (O1) [LIGO Scientific Collaboration and Virgo Collaboration, arXiv:1707.02669 [Phys. Rev. D (to be published)
Study of Various Types of Resonances within the Phonon Damping Model
NASA Astrophysics Data System (ADS)
Dang, Nguyen Dinh
2001-10-01
The main successes of the Phonon Damping Model (PDM)(N. Dinh Dang and A. Arima, Phys. Rev. Lett. 80), 4145 (1998); Nucl. Phys. A 636, 427 (1998); N. Dinh Dang, K. Tanabe, and A. Arima, Phys. Rev. C 58, 3374 (1998). are presented in the description of: 1) the giant dipole resonance (GDR) in highly excited nuclei, 2) the double giant dipole resonance (DGDR) and multiple phonon resonances, 3) the Gamow-Teller resonance (GTR), and 4) the damping of pygmy dipole resonance (PDR) in neutron-rich nuclei. The analyses of results of numerical calculations are discussed in comparison with the experimental systematics on i) the width and the shape of the GDR at finite temperature ^1,(N. Dinh Dang et al., Phys. Rev. C 61), 027302 (2000). and angular momentum(N. Dinh Dang, Nucl. Phys. A 687), 261c (2001). for tin isotopes , ii) the electromagnetic cross sections of DGDR for ^136Xe and ^208Pb on a lead target at relativistic energies(N. Dinh Dang, V. Kim Au, and A. Arima, Phys. Rev. Lett. 85), 1827 (2000)., iii) the strength function of GTR(N. Dinh Dang, T. Suzuki, and A. Arima, Preprint RIKEN-AF-NF 377 (2000), submitted.), and iv) the PDR in oxygen and calcium isotopes(N. Dinh Dang et al., Phys. Rev. C 63), 044302 (2001)..
Dirac Magnons in Honeycomb Ferromagnets
NASA Astrophysics Data System (ADS)
Pershoguba, Sergey S.; Banerjee, Saikat; Lashley, J. C.; Park, Jihwey; Ågren, Hans; Aeppli, Gabriel; Balatsky, Alexander V.
2018-01-01
The discovery of the Dirac electron dispersion in graphene [A. H. Castro Neto, et al., The Electronic Properties of Graphene, Rev. Mod. Phys. 81, 109 (2009), 10.1103/RevModPhys.81.109] led to the question of the Dirac cone stability with respect to interactions. Coulomb interactions between electrons were shown to induce a logarithmic renormalization of the Dirac dispersion. With a rapid expansion of the list of compounds and quasiparticle bands with linear band touching [T. O. Wehling, et al., Dirac Materials, Adv. Phys. 63, 1 (2014), 10.1080/00018732.2014.927109], the concept of bosonic Dirac materials has emerged. We consider a specific case of ferromagnets consisting of van der Waals-bonded stacks of honeycomb layers, e.g., chromium trihalides CrX3 (X =F , Cl, Br and I), that display two spin wave modes with energy dispersion similar to that for the electrons in graphene. At the single-particle level, these materials resemble their fermionic counterparts. However, how different particle statistics and interactions affect the stability of Dirac cones has yet to be determined. To address the role of interacting Dirac magnons, we expand the theory of ferromagnets beyond the standard Dyson theory [F. J. Dyson, General Theory of Spin-Wave Interactions, Phys. Rev. 102, 1217 (1956), 10.1103/PhysRev.102.1217, F. J. Dyson, Thermodynamic Behavior of an Ideal Ferromagnet, Phys. Rev. 102, 1230 (1956), 10.1103/PhysRev.102.1230] to the case of non-Bravais honeycomb layers. We demonstrate that magnon-magnon interactions lead to a significant momentum-dependent renormalization of the bare band structure in addition to strongly momentum-dependent magnon lifetimes. We show that our theory qualitatively accounts for hitherto unexplained anomalies in nearly half-century-old magnetic neutron-scattering data for CrBr3 [W. B. Yelon and R. Silberglitt, Renormalization of Large-Wave-Vector Magnons in Ferromagnetic CrBr3 Studied by Inelastic Neutron Scattering: Spin-Wave Correlation Effects, Phys. Rev. B 4, 2280 (1971), 10.1103/PhysRevB.4.2280, E. J. Samuelsen, et al., Spin Waves in Ferromagnetic CrBr3 Studied by Inelastic Neutron Scattering, Phys. Rev. B 3, 157 (1971), 10.1103/PhysRevB.3.157]. We also show that honeycomb ferromagnets display dispersive surface and edge states, unlike their electronic analogs.
Rovibrational Quantum Dynamics of the Methane-Water Dimer
NASA Astrophysics Data System (ADS)
Sarka, János; Császár, Attila; Mátyus, Edit
2017-06-01
The challenging quantum dynamical description of the CH_4.H_2O complex has been solved variationally to provide theoretical explanation and assignment to the high-resolution spectroscopic measurements of the methane-water dimer carried out some twenty years ago. The computational results are in excellent agreement with the reported experimental transitions and the experimentally observed reversed rovibrational sequences, i.e., formally negative rotational excitation energies, are also obtained in the computations. In order to better understand the origin of these peculiar features in the energy-level spectrum, we studied all four possible combinations of the light and heavy isotopologues of methane and water and analyzed their rovibrational states using two limiting model systems: the rigidly rotating (RR) molecule and the coupled rotor (CR) system corresponding to the coupling of the two rotating monomers. All rovibrational quantum dynamical computations^{a,c} were carried out with rigid monomers and J = 0,1,2 total angular momentum quantum numbers using the fourth-age quantum chemical code GENIUSH and two different methane-water potential energy surfaces (PES). The numerical and formal analysis of the wave functions give insight into a fascinating complex world worth for further theoretical and experimental inquiries. J. Sarka, A. G. Császár, S. C. Althorpe, D. J. Wales and E. Mátyus, Phys. Chem. Chem. Phys. 18, 22816 (2016). L. Dore, R. C. Cohen, C. A. Schmuttenmaer, K. L. Busarow, M. J. Elrod, J. G. Loeser and R. J. Saykally, J. Chem. Phys. 100, 863 (1994). J. Sarka, A. G. Császár and E. Mátyus, Phys. Chem. Chem. Phys. accepted for publication (2017).} E. Mátyus, G. Czakó and A. G. Császár, J. Chem. Phys. 130, 134112 (2009). C. Fábri, E. Mátyus and A. G. Császár, J. Chem. Phys. 134, 074105 (2011). O. Akin-Ojo and K. Szalewicz, J. Chem. Phys. 123, 134311 (2005). C. Qu, R. Conte, P. L. Houston and J. M. Bowman, Phys. Chem. Chem. Phys. 17, 8172 (2015).
Jackson, Travis C; Kotermanski, Shawn E; Jackson, Edwin K; Kochanek, Patrick M
2018-02-01
Neurobasal®/B27 is a gold standard culture media used to study primary neurons in vitro. An alternative media (BrainPhys®/SM1) was recently developed which robustly enhances neuronal activity vs. Neurobasal® or DMEM. To the best of our knowledge BrainPhys® has not been explored in the setting of neuronal injury. Here we characterized the utility of BrainPhys® in a model of in vitro mechanical-stretch injury. Primary rat cortical neurons were maintained in classic Neurobasal®, or sequentially maintained in Neurocult® followed by BrainPhys® (hereafter simply referred to as "BrainPhys® maintained neurons"). The levels of axonal markers and proteins involved in neurotransmission were compared on day in vitro 10 (DIV10). BrainPhys® maintained neurons had higher levels of GluN2B, GluR1, Neurofilament light/heavy chain (NF-L & NF-H), and protein phosphatase 2 A (PP2A) vs. neurons in Neurobasal®. Mechanical stretch-injury (50ms/54% biaxial stretch) to BrainPhys® maintained neurons modestly (albeit significantly) increased 24h lactate dehydrogenase (LDH) levels but markedly decreased axonal NF-L levels post-injury vs. uninjured controls or neurons given a milder 38% stretch-injury. Furthermore, two 54% stretch-injuries (in tandem) exacerbated 24h LDH release, increased α-spectrin breakdown products (SBDPs), and decreased Tau levels. Also, BrainPhys® maintained cultures had decreased markers of cell damage 24h after a single 54% stretch-injury vs. neurons in Neurobasal®. Finally, we tested the hypothesis that lentivirus mediated overexpression of the pro-death protein RBM5 exacerbates neuronal and/or axonal injury in primary CNS cultures. RBM5 overexpression vs. empty-vector controls increased 24h LDH release, and SBDP levels, after a single 54% stretch-injury but did not affect NF-L levels or Tau. BrainPhys® is a promising new reagent which facilities the investigation of molecular targets involved in axonal and/or neuronal injury in vitro. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Oscillator-field model of moving mirrors in quantum optomechanics
NASA Astrophysics Data System (ADS)
Galley, Chad R.; Behunin, Ryan O.; Hu, B. L.
2013-04-01
We present a microphysics model for the kinematics and dynamics of optomechanics describing the coupling between an optical field, modeled here by a massless scalar field, and the internal and mechanical degrees of freedom of a movable mirror. Instead of implementing boundary conditions on the field, we introduce an internal degree of freedom and its dynamics to describe the mirror's reflectivity. Depending on parameter values, the internal degrees of freedom of the mirror in this model capture a range of its optical activities, from those exhibiting broadband reflective properties to those reflecting only in a narrow band. After establishing the model we show how appropriate parameter choices lead to other well-known optomechanical models, including those of Barton and Calogeracos [Ann. Phys. (NY)0003-491610.1006/aphy.1995.1021 238, 227 (1995)], Calogeracos and Barton, Ann. Phys. (NY)10.1006/aphy.1995.1022 238, 268 (1995), Law [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.51.2537 51, 2537 (1995)], and Golestanian and Kardar [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.78.3421 78, 3421 (1997); Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.58.1713 58, 1713 (1998)]. As a simple illustrative application we derive classical radiation pressure cooling from this model. We then connect our microphysics model to the common descriptions of a moving mirror coupled to radiation pressure (e.g., with Nx coupling, where N is the photon number and x is the mirror displacement), making explicit the underlying assumptions made in these phenomenological models. Our model is also applicable to the lesser explored case of small N, which existing models based on sideband approximations [Kimble , Phys. Rev. DPRVDAQ1550-799810.1103/PhysRevD.65.022002 65, 022002 (2001)] have not addressed. Interestingly, we also find that slow-moving mirrors in our model can be described by the ubiquitous Brownian motion model of quantum open systems. The scope of applications of this model ranges from a full quantum-mechanical treatment of radiation pressure cooling and quantum entanglement between macroscopic mirrors to the back reaction of Hawking radiation on black-hole evaporation in a moving mirror analog.
An efficient parallel algorithm for the calculation of canonical MP2 energies.
Baker, Jon; Pulay, Peter
2002-09-01
We present the parallel version of a previous serial algorithm for the efficient calculation of canonical MP2 energies (Pulay, P.; Saebo, S.; Wolinski, K. Chem Phys Lett 2001, 344, 543). It is based on the Saebo-Almlöf direct-integral transformation, coupled with an efficient prescreening of the AO integrals. The parallel algorithm avoids synchronization delays by spawning a second set of slaves during the bin-sort prior to the second half-transformation. Results are presented for systems with up to 2000 basis functions. MP2 energies for molecules with 400-500 basis functions can be routinely calculated to microhartree accuracy on a small number of processors (6-8) in a matter of minutes with modern PC-based parallel computers. Copyright 2002 Wiley Periodicals, Inc. J Comput Chem 23: 1150-1156, 2002
First principles study of hydroxyapatite surface
NASA Astrophysics Data System (ADS)
Slepko, Alexander; Demkov, Alexander A.
2013-07-01
The biomineral hydroxyapatite (HA) [Ca10(PO4)6(OH)2] is the main mineral constituent of mammal bone. We report a theoretical investigation of the HA surface. We identify the low energy surface orientations and stoichiometry under a variety of chemical environments. The surface most stable in the physiologically relevant OH-rich environment is the OH-terminated (1000) surface. We calculate the work function of HA and relate it to the surface composition. For the lowest energy OH-terminated surface we find the work function of 5.1 eV, in close agreement with the experimentally reported range of 4.7 eV-5.1 eV [V. S. Bystrov, E. Paramonova, Y. Dekhtyar, A. Katashev, A. Karlov, N. Polyaka, A. V. Bystrova, A. Patmalnieks, and A. L. Kholkin, J. Phys.: Condens. Matter 23, 065302 (2011), 10.1088/0953-8984/23/6/065302].
NASA Astrophysics Data System (ADS)
Karasik, Max; Weaver, J. L.; Aglitskiy, Y.; Zalesak, S. T.; Velikovich, A. L.; Oh, J.; Obenschain, S. P.; Arikawa, Y.; Watari, T.
2010-11-01
We will present results from follow-on experiments to the record-high velocities of 1000 km/s achieved on Nike [Karasik et al., Phys. Plasmas 17, 056317 (2010) ], in which highly accelerated planar foils of deuterated polystyrene were made to collide with a witness foil to produce extreme shock pressures and result in heating of matter to thermonuclear temperatures. Still higher velocities and higher target densities are required for impact fast ignition. The aim of these experiments is shaping the driving pulse to minimize shock heating of the accelerated target and using the focal zoom capability of Nike to achieve higher densities and velocities. Spectroscopic measurements of electron temperature achieved upon impact will complement the neutron time-of-flight ion temperature measurement. Work is supported by US DOE and Office of Naval Research.
Integral equation model for warm and hot dense mixtures.
Starrett, C E; Saumon, D; Daligault, J; Hamel, S
2014-09-01
In a previous work [C. E. Starrett and D. Saumon, Phys. Rev. E 87, 013104 (2013)] a model for the calculation of electronic and ionic structures of warm and hot dense matter was described and validated. In that model the electronic structure of one atom in a plasma is determined using a density-functional-theory-based average-atom (AA) model and the ionic structure is determined by coupling the AA model to integral equations governing the fluid structure. That model was for plasmas with one nuclear species only. Here we extend it to treat plasmas with many nuclear species, i.e., mixtures, and apply it to a carbon-hydrogen mixture relevant to inertial confinement fusion experiments. Comparison of the predicted electronic and ionic structures with orbital-free and Kohn-Sham molecular dynamics simulations reveals excellent agreement wherever chemical bonding is not significant.
Unified Theory of Plasma Correlations.
1983-06-13
or more generally, the Balescu -Lenard Equation. 2 6 -3 3 An essential element of these studies is that the correlation functions are assumed to be... Balescu , Phys. Fluids 3, 52 (1960). 27. A. Lenard, Ann. Phys. (N.Y.) 3, 390 (1960). 28. R. L. Liboff and A. H. Merchant, J. Math. Phys. 14, 119 (1973
Mapping Nanoscale Absorption of Femtosecond Laser Pulses Using Plasma Explosion Imaging
2014-08-06
Libby, S. B.; et al. Observation and Control of Shock Waves in Indivi- dual Nanoplasmas . Phys. Rev. Lett. 2014, 112, 115004. 17. Zhang, X.; Smith, K. a...Laser Light. Phys. Plasmas 2005, 12, 056703. 24. Lezius, M.; Dobosz, S. Hot Nanoplasmas from Intense Laser Irradiation of Argon Clusters. J. Phys. B
Asymptotics of the monomer-dimer model on two-dimensional semi-infinite lattices
NASA Astrophysics Data System (ADS)
Kong, Yong
2007-05-01
By using the asymptotic theory of Pemantle and Wilson [R. Pemantle and M. C. Wilson, J. Comb. Theory, Ser. AJCBTA70097-316510.1006/jcta.2001.3201 97, 129 (2002)], asymptotic expansions of the free energy of the monomer-dimer model on two-dimensional semi-infinite ∞×n lattices in terms of dimer density are obtained for small values of n , at both high- and low-dimer-density limits. In the high-dimer-density limit, the theoretical results confirm the dependence of the free energy on the parity of n , a result obtained previously by computational methods by Y. Kong [Y. Kong, Phys. Rev. EPLEEE81063-651X10.1103/PhysRevE.74.061102 74, 061102 (2006); Phys. Rev. EPLEEE81063-651X10.1103/PhysRevE.73.016106 73, 016106 (2006);Phys. Rev. EPLEEE81063-651X10.1103/PhysRevE.74.011102 74, 011102 (2006)]. In the low-dimer-density limit, the free energy on a cylinder ∞×n lattice strip has exactly the same first n terms in the series expansion as that of an infinite ∞×∞ lattice.
NASA Astrophysics Data System (ADS)
Merker, L.; Kirchner, S.; Muñoz, E.; Costi, T. A.
2014-08-01
The Comment of A. A. Aligia claims that the superperturbation theory (SPT) approach [E. Muñoz, C. J. Bolech, and S. Kirchner, Phys. Rev. Lett. 110, 016601 (2013), 10.1103/PhysRevLett.110.016601] formulated using dual fermions [A. N. Rubtsov, M. I. Katsnelson, and A. I. Lichtenstein, Phys. Rev. B 77, 033101 (2008), 10.1103/PhysRevB.77.033101] and used by us to compare with numerical renormalization group (NRG) results for the conductance [L. Merker, S. Kirchner, E. Muñoz, and T. A. Costi, Phys. Rev. B 87, 165132 (2013), 10.1103/PhysRevB.87.165132], fails to correctly extend the results of the symmetric Anderson impurity model (SIAM) for general values of the local level Ed in the Kondo regime. We answer this criticism. We also compare new NRG results for cB, with cB calculated directly from the low-field conductance, with new higher-order SPT calculations for this quantity, finding excellent agreement for all Ed and for U /πΔ extending into the strong coupling regime.
Three-Level Systems as Amplifiers and Attenuators: A Thermodynamic Analysis
NASA Astrophysics Data System (ADS)
Boukobza, E.; Tannor, D. J.
2007-06-01
Thermodynamics of a three-level maser was studied in the pioneering work of Scovil Schulz-DuBois [Phys. Rev. Lett. 2, 262 (1959)PRLTAO0031-900710.1103/PhysRevLett.2.262]. In this Letter we consider the same three-level model, but we give a full thermodynamic analysis based on Hamiltonian and dissipative Lindblad superoperators. The first law of thermodynamics is obtained using a recently developed alternative [Phys. Rev. A 74, 063823 (2006)PLRAAN1050-294710.1103/PhysRevA.74.063823] to Alicki’s definitions for heat flux and power [J. Phys. AJPHAC50305-4470 12, L103 (1979)10.1088/0305-4470/12/5/007]. Using a novel variation on Spohn’s entropy production function [J. Math. Phys. (N.Y.)JMAPAQ0022-2488 19, 1227 (1978)10.1063/1.523789], we obtain Carnot’s efficiency inequality and the Scovil Schulz-DuBois maser efficiency formula when the three-level system is operated as a heat engine (amplifier). Finally, we show that the three-level system has two other modes of operation—a refrigerator mode and a squanderer mode —both of which attenuate the electric field.
EDITORIAL: Annual prizes for best papers
NASA Astrophysics Data System (ADS)
2006-09-01
2005 Roberts Prize The publishers of Physics in Medicine and Biology (PMB) in association with the Institute of Physics and Engineering in Medicine (IPEM) jointly award an annual prize for an article published in PMB during the previous year. The following 14 articles, listed below in chronological order, were rated the best of 2005 based on the (two or three) referees' assessments: P Kundrát et al 2005 Probabilistic two-stage model of cell inactivation by ionizing particles Phys. Med. Biol. 50 1433-47 D Arora et al 2005 Direct thermal dose control of constrained focused ultrasound treatments: phantom and in vivo evaluation Phys. Med. Biol. 50 1919-35 J S Dysart et al 2005 Characterization of Photofrin photobleaching for singlet oxygen dose estimation during photodynamic therapy of MLL cells in vitro Phys. Med. Biol. 50 2597-616 M Defrise et al 2005 Fourier rebinning of time-of-flight PET data Phys. Med. Biol. 50 2749-63 Z Su et al 2005 Systematic investigation of the signal properties of polycrystalline HgI2 detectors under mammographic, radiographic, fluoroscopic and radiotherapy irradiation conditions Phys. Med. Biol. 50 2907-28 E Bräuer-Krisch et al 2005 New irradiation geometry for microbeam radiation therapy Phys. Med. Biol. 50 3103-11 H C Pyo et al 2005 Identification of current density distribution in electrically conducting subject with anisotropic conductivity distribution Phys. Med. Biol. 50 3183-96 R P Findlay et al 2005 Effects of posture on FDTD calculations of specific absorption rate in a voxel model of the human body Phys. Med. Biol. 50 3825-35 G Alexandrakis et al 2005 Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study Phys. Med. Biol. 50 4225-41 J Keshvari et al 2005 Comparison of radio frequency energy absorption in ear and eye region of children and adults at 900, 1800 and 2450 MHz Phys. Med. Biol. 50 4355-69 J Laufer et al 2005 In vitro measurements of absolute blood oxygen saturation using pulsed near-infrared photoacoustic spectroscopy: accuracy and resolution Phys. Med. Biol. 50 4409-28 Z Cao et al 2005 Optimal number of pinholes in multi-pinhole SPECT for mouse brain imaging---a simulation study Phys. Med. Biol. 50 4609-24 R Dharmakumar et al 2005 A novel microbubble construct for intracardiac or intravascular MR manometry: a theoretical study Phys. Med. Biol. 50 4745-62 R Chopra et al 2005 Method for MRI-guided conformal thermal therapy of prostate with planar transurethral ultrasound heating applicators Phys. Med. Biol. 50 4957-75 The IPEM Publications Committee then assessed and rated these papers in order to choose a winner. We have much pleasure in advising readers that the 2005 Roberts Prize is awarded to: J S Dysart and M S Patterson 2005 Characterization of Photofrin photobleaching for singlet oxygen dose estimation during photodynamic therapy of MLL cells in vitro Phys. Med. Biol. 50 2597-616 2006 Prize for the Highest Cited Paper The annual prize for the most highly cited paper is awarded by the journal publishers to the article published in PMB that has received the most citations1 in the previous 5 years (in this case for the period 2001 to 2005 inclusive). We have much pleasure in advising readers that the 2006 prize is awarded to: P J Keall, V R Kini, S S Vedam and R Mohan 2001 Motion adaptive x-ray therapy: a feasibility study Phys. Med. Biol. 46 1-10 Simon Harris, Publisher Steve Webb, Editor-in-Chief 1 Figures taken from Thomson/ISI
Medeiros, Adaelson Campelo; Lima, Marcelo de Oliveira; Guimarães, Raphael Mendonça
2016-03-01
In spite of the great technological advances in processes for treatment of water for human consumption, water actually used for supply has become a major public health challenge. This study assesses the quality of the water consumed in two riverside communities in the Brazilian state of Pará, in an area exposed to domestic and industrial pollutants. Four campaigns of sampling were carried out in the two communities. The variables used for the calculation of the water quality index - Índice de Qualidade da Água, or IQA - were: pH, total solids, chloride, fluoride, hardness and N-Nitrate. The waters used for human consumption in the Maranhão Community, where there is no contamination by industrial pollutants, presented adequate samples, with improvement in the dry season; on the other hand the waters of the Vila do Conde, a location close to the industrial activity, had quality that was unacceptable for human consumption in both the seasonal periods. The principal parameters affected were pH and N-Nitrate, with values up to 25 times the reference level of the Brazilian legislation for water for human consumption. These results indicated greater anthropic interference in the vicinity of Vila do Conde, in Barcarena. It is concluded that this population is in need of clinical assessments by specialized professionals on the state of its health.