Sample records for physical failure analysis

  1. Security Analysis of Smart Grid Cyber Physical Infrastructures Using Modeling and Game Theoretic Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abercrombie, Robert K; Sheldon, Frederick T.

    Cyber physical computing infrastructures typically consist of a number of sites are interconnected. Its operation critically depends both on cyber components and physical components. Both types of components are subject to attacks of different kinds and frequencies, which must be accounted for the initial provisioning and subsequent operation of the infrastructure via information security analysis. Information security analysis can be performed using game theory implemented in dynamic Agent Based Game Theoretic (ABGT) simulations. Such simulations can be verified with the results from game theory analysis and further used to explore larger scale, real world scenarios involving multiple attackers, defenders, andmore » information assets. We concentrated our analysis on the electric sector failure scenarios and impact analyses by the NESCOR Working Group Study, From the Section 5 electric sector representative failure scenarios; we extracted the four generic failure scenarios and grouped them into three specific threat categories (confidentiality, integrity, and availability) to the system. These specific failure scenarios serve as a demonstration of our simulation. The analysis using our ABGT simulation demonstrates how to model the electric sector functional domain using a set of rationalized game theoretic rules decomposed from the failure scenarios in terms of how those scenarios might impact the cyber physical infrastructure network with respect to CIA.« less

  2. Tribology symposium 1995. PD-Volume 72

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masudi, H.

    After the keynote presentation by Professor Aaron Cohen of Texas A and M University, entitled Processes Used in Design, the program is divided into five major sessions: Research and Development -- Recent research and development of tribological components; Tribology in Manufacturing -- The impact of tribology on modern manufacturing; Design/Design Representation -- Aspects of design related to tribological systems; Tribo-Chemistry/Tribo-Physics -- Discussion of chemical and physical behavior of substances as related to tribology; and Failure Analysis -- An analysis of failure, failure detection, and failure monitoring as related to manufacturing processes. Papers have been processed separately for inclusion on themore » data base.« less

  3. Physical Exercise and Patients with Chronic Renal Failure: A Meta-Analysis.

    PubMed

    Qiu, Zhenzhen; Zheng, Kai; Zhang, Haoxiang; Feng, Ji; Wang, Lizhi; Zhou, Hao

    2017-01-01

    Chronic renal failure is a severe clinical problem which has some significant socioeconomic impact worldwide and hemodialysis is an important way to maintain patients' health state, but it seems difficult to get better in short time. Considering these, the aim in our research is to update and evaluate the effects of exercise on the health of patients with chronic renal failure. The databases were used to search for the relevant studies in English or Chinese. And the association between physical exercise and health state of patients with chronic renal failure has been investigated. Random-effect model was used to compare the physical function and capacity in exercise and control groups. Exercise is helpful in ameliorating the situation of blood pressure in patients with renal failure and significantly reduces VO 2 in patients with renal failure. The results of subgroup analyses show that, in the age >50, physical activity can significantly reduce blood pressure in patients with renal failure. The activity program containing warm-up, strength, and aerobic exercises has benefits in blood pressure among sick people and improves their maximal oxygen consumption level. These can help patients in physical function and aerobic capacity and may give them further benefits.

  4. Physical Exercise and Patients with Chronic Renal Failure: A Meta-Analysis

    PubMed Central

    Qiu, Zhenzhen; Zheng, Kai; Zhang, Haoxiang; Feng, Ji; Wang, Lizhi

    2017-01-01

    Chronic renal failure is a severe clinical problem which has some significant socioeconomic impact worldwide and hemodialysis is an important way to maintain patients' health state, but it seems difficult to get better in short time. Considering these, the aim in our research is to update and evaluate the effects of exercise on the health of patients with chronic renal failure. The databases were used to search for the relevant studies in English or Chinese. And the association between physical exercise and health state of patients with chronic renal failure has been investigated. Random-effect model was used to compare the physical function and capacity in exercise and control groups. Exercise is helpful in ameliorating the situation of blood pressure in patients with renal failure and significantly reduces VO2 in patients with renal failure. The results of subgroup analyses show that, in the age >50, physical activity can significantly reduce blood pressure in patients with renal failure. The activity program containing warm-up, strength, and aerobic exercises has benefits in blood pressure among sick people and improves their maximal oxygen consumption level. These can help patients in physical function and aerobic capacity and may give them further benefits. PMID:28316986

  5. Microcircuit failure analysis using the SEM. [Scanning Electron Microscopes

    NASA Technical Reports Server (NTRS)

    Nicolas, D. P.

    1974-01-01

    The scanning electron microscope adds a new dimension to the knowledge that can be obtained from a failed microcircuit. When used with conventional techniques, SEM assists and clarifies the analysis, but it does not replace light microscopy. The most advantageous features for microcircuit analysis are long working distances and great depth of field. Manufacturer related failure modes of microcircuits are metallization defects, poor bonding, surface and particle contamination, and design and fabrication faults. User related failure modes are caused by abuse, such as overstress. The Physics of Failure Procedure followed by the Astrionics Laboratory in failure analysis is described, which is designed to obtain maximum information available from each step.

  6. A Comprehensive Availability Modeling and Analysis of a Virtualized Servers System Using Stochastic Reward Nets

    PubMed Central

    Kim, Dong Seong; Park, Jong Sou

    2014-01-01

    It is important to assess availability of virtualized systems in IT business infrastructures. Previous work on availability modeling and analysis of the virtualized systems used a simplified configuration and assumption in which only one virtual machine (VM) runs on a virtual machine monitor (VMM) hosted on a physical server. In this paper, we show a comprehensive availability model using stochastic reward nets (SRN). The model takes into account (i) the detailed failures and recovery behaviors of multiple VMs, (ii) various other failure modes and corresponding recovery behaviors (e.g., hardware faults, failure and recovery due to Mandelbugs and aging-related bugs), and (iii) dependency between different subcomponents (e.g., between physical host failure and VMM, etc.) in a virtualized servers system. We also show numerical analysis on steady state availability, downtime in hours per year, transaction loss, and sensitivity analysis. This model provides a new finding on how to increase system availability by combining both software rejuvenations at VM and VMM in a wise manner. PMID:25165732

  7. Statistics-related and reliability-physics-related failure processes in electronics devices and products

    NASA Astrophysics Data System (ADS)

    Suhir, E.

    2014-05-01

    The well known and widely used experimental reliability "passport" of a mass manufactured electronic or a photonic product — the bathtub curve — reflects the combined contribution of the statistics-related and reliability-physics (physics-of-failure)-related processes. When time progresses, the first process results in a decreasing failure rate, while the second process associated with the material aging and degradation leads to an increased failure rate. An attempt has been made in this analysis to assess the level of the reliability physics-related aging process from the available bathtub curve (diagram). It is assumed that the products of interest underwent the burn-in testing and therefore the obtained bathtub curve does not contain the infant mortality portion. It has been also assumed that the two random processes in question are statistically independent, and that the failure rate of the physical process can be obtained by deducting the theoretically assessed statistical failure rate from the bathtub curve ordinates. In the carried out numerical example, the Raleigh distribution for the statistical failure rate was used, for the sake of a relatively simple illustration. The developed methodology can be used in reliability physics evaluations, when there is a need to better understand the roles of the statistics-related and reliability-physics-related irreversible random processes in reliability evaluations. The future work should include investigations on how powerful and flexible methods and approaches of the statistical mechanics can be effectively employed, in addition to reliability physics techniques, to model the operational reliability of electronic and photonic products.

  8. The use of light emission in failure analysis of CMOS ICs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawkins, C.F.; Soden, J.M.; Cole, E.I. Jr.

    1990-01-01

    The use of photon emission for analyzing failure mechanisms and defects in CMOS ICs is presented. Techniques are given for accurate identification and spatial localization of failure mechanisms and physical defects, including defects such as short and open circuits which do not themselves emit photons.

  9. Memory Circuit Fault Simulator

    NASA Technical Reports Server (NTRS)

    Sheldon, Douglas J.; McClure, Tucker

    2013-01-01

    Spacecraft are known to experience significant memory part-related failures and problems, both pre- and postlaunch. These memory parts include both static and dynamic memories (SRAM and DRAM). These failures manifest themselves in a variety of ways, such as pattern-sensitive failures, timingsensitive failures, etc. Because of the mission critical nature memory devices play in spacecraft architecture and operation, understanding their failure modes is vital to successful mission operation. To support this need, a generic simulation tool that can model different data patterns in conjunction with variable write and read conditions was developed. This tool is a mathematical and graphical way to embed pattern, electrical, and physical information to perform what-if analysis as part of a root cause failure analysis effort.

  10. Fault management for the Space Station Freedom control center

    NASA Technical Reports Server (NTRS)

    Clark, Colin; Jowers, Steven; Mcnenny, Robert; Culbert, Chris; Kirby, Sarah; Lauritsen, Janet

    1992-01-01

    This paper describes model based reasoning fault isolation in complex systems using automated digraph analysis. It discusses the use of the digraph representation as the paradigm for modeling physical systems and a method for executing these failure models to provide real-time failure analysis. It also discusses the generality, ease of development and maintenance, complexity management, and susceptibility to verification and validation of digraph failure models. It specifically describes how a NASA-developed digraph evaluation tool and an automated process working with that tool can identify failures in a monitored system when supplied with one or more fault indications. This approach is well suited to commercial applications of real-time failure analysis in complex systems because it is both powerful and cost effective.

  11. Reliability Quantification of Advanced Stirling Convertor (ASC) Components

    NASA Technical Reports Server (NTRS)

    Shah, Ashwin R.; Korovaichuk, Igor; Zampino, Edward

    2010-01-01

    The Advanced Stirling Convertor, is intended to provide power for an unmanned planetary spacecraft and has an operational life requirement of 17 years. Over this 17 year mission, the ASC must provide power with desired performance and efficiency and require no corrective maintenance. Reliability demonstration testing for the ASC was found to be very limited due to schedule and resource constraints. Reliability demonstration must involve the application of analysis, system and component level testing, and simulation models, taken collectively. Therefore, computer simulation with limited test data verification is a viable approach to assess the reliability of ASC components. This approach is based on physics-of-failure mechanisms and involves the relationship among the design variables based on physics, mechanics, material behavior models, interaction of different components and their respective disciplines such as structures, materials, fluid, thermal, mechanical, electrical, etc. In addition, these models are based on the available test data, which can be updated, and analysis refined as more data and information becomes available. The failure mechanisms and causes of failure are included in the analysis, especially in light of the new information, in order to develop guidelines to improve design reliability and better operating controls to reduce the probability of failure. Quantified reliability assessment based on fundamental physical behavior of components and their relationship with other components has demonstrated itself to be a superior technique to conventional reliability approaches based on utilizing failure rates derived from similar equipment or simply expert judgment.

  12. Direct modeling parameter signature analysis and failure mode prediction of physical systems using hybrid computer optimization

    NASA Technical Reports Server (NTRS)

    Drake, R. L.; Duvoisin, P. F.; Asthana, A.; Mather, T. W.

    1971-01-01

    High speed automated identification and design of dynamic systems, both linear and nonlinear, are discussed. Special emphasis is placed on developing hardware and techniques which are applicable to practical problems. The basic modeling experiment and new results are described. Using the improvements developed successful identification of several systems, including a physical example as well as simulated systems, was obtained. The advantages of parameter signature analysis over signal signature analysis in go-no go testing of operational systems were demonstrated. The feasibility of using these ideas in failure mode prediction in operating systems was also investigated. An improved digital controlled nonlinear function generator was developed, de-bugged, and completely documented.

  13. Reliability analysis for the smart grid : from cyber control and communication to physical manifestations of failure.

    DOT National Transportation Integrated Search

    2010-01-01

    The Smart Grid is a cyber-physical system comprised of physical components, such as transmission lines and generators, and a : network of embedded systems deployed for their cyber control. Our objective is to qualitatively and quantitatively analyze ...

  14. SU-E-T-421: Failure Mode and Effects Analysis (FMEA) of Xoft Electronic Brachytherapy for the Treatment of Superficial Skin Cancers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoisak, J; Manger, R; Dragojevic, I

    Purpose: To perform a failure mode and effects analysis (FMEA) of the process for treating superficial skin cancers with the Xoft Axxent electronic brachytherapy (eBx) system, given the recent introduction of expanded quality control (QC) initiatives at our institution. Methods: A process map was developed listing all steps in superficial treatments with Xoft eBx, from the initial patient consult to the completion of the treatment course. The process map guided the FMEA to identify the failure modes for each step in the treatment workflow and assign Risk Priority Numbers (RPN), calculated as the product of the failure mode’s probability ofmore » occurrence (O), severity (S) and lack of detectability (D). FMEA was done with and without the inclusion of recent QC initiatives such as increased staffing, physics oversight, standardized source calibration, treatment planning and documentation. The failure modes with the highest RPNs were identified and contrasted before and after introduction of the QC initiatives. Results: Based on the FMEA, the failure modes with the highest RPN were related to source calibration, treatment planning, and patient setup/treatment delivery (Fig. 1). The introduction of additional physics oversight, standardized planning and safety initiatives such as checklists and time-outs reduced the RPNs of these failure modes. High-risk failure modes that could be mitigated with improved hardware and software interlocks were identified. Conclusion: The FMEA analysis identified the steps in the treatment process presenting the highest risk. The introduction of enhanced QC initiatives mitigated the risk of some of these failure modes by decreasing their probability of occurrence and increasing their detectability. This analysis demonstrates the importance of well-designed QC policies, procedures and oversight in a Xoft eBx programme for treatment of superficial skin cancers. Unresolved high risk failure modes highlight the need for non-procedural quality initiatives such as improved planning software and more robust hardware interlock systems.« less

  15. Psychometric properties of the Symptom Status Questionnaire-Heart Failure.

    PubMed

    Heo, Seongkum; Moser, Debra K; Pressler, Susan J; Dunbar, Sandra B; Mudd-Martin, Gia; Lennie, Terry A

    2015-01-01

    Many patients with heart failure (HF) experience physical symptoms, poor health-related quality of life (HRQOL), and high rates of hospitalization. Physical symptoms are associated with HRQOL and are major antecedents of hospitalization. However, reliable and valid physical symptom instruments have not been established. Therefore, this study examined the psychometric properties of the Symptom Status Questionnaire-Heart Failure (SSQ-HF) in patients with HF. Data on symptoms using the SSQ-HF were collected from 249 patients (aged 61 years, 67% male, 45% in New York Heart Association functional class III/IV). Internal consistency reliability was assessed using Cronbach's α. Item homogeneity was assessed using item-total and interitem correlations. Construct validity was assessed using factor analysis and testing hypotheses on known relationships. Data on depressive symptoms (Beck Depression Inventory II), HRQOL (Minnesota Living With Heart Failure Questionnaire), and event-free survival were collected to test known relationships. Internal consistency reliability was supported: Cronbach's α was .80. Item-total correlation coefficients and interitem correlation coefficients were acceptable. Factor analysis supported the construct validity of the instrument. More severe symptoms were associated with more depressive symptoms, poorer HRQOL, and more risk for hospitalization, emergency department visit, or death, controlling for covariates. The findings of this study support the reliability and validity of the SSQ-HF. Clinicians and researchers can use this instrument to assess physical symptoms in patients with HF.

  16. An efficient scan diagnosis methodology according to scan failure mode for yield enhancement

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Tae; Seo, Nam-Sik; Oh, Ghil-Geun; Kim, Dae-Gue; Lee, Kyu-Taek; Choi, Chi-Young; Kim, InSoo; Min, Hyoung Bok

    2008-12-01

    Yield has always been a driving consideration during fabrication of modern semiconductor industry. Statistically, the largest portion of wafer yield loss is defective scan failure. This paper presents efficient failure analysis methods for initial yield ramp up and ongoing product with scan diagnosis. Result of our analysis shows that more than 60% of the scan failure dies fall into the category of shift mode in the very deep submicron (VDSM) devices. However, localization of scan shift mode failure is very difficult in comparison to capture mode failure because it is caused by the malfunction of scan chain. Addressing the biggest challenge, we propose the most suitable analysis method according to scan failure mode (capture / shift) for yield enhancement. In the event of capture failure mode, this paper describes the method that integrates scan diagnosis flow and backside probing technology to obtain more accurate candidates. We also describe several unique techniques, such as bulk back-grinding solution, efficient backside probing and signal analysis method. Lastly, we introduce blocked chain analysis algorithm for efficient analysis of shift failure mode. In this paper, we contribute to enhancement of the yield as a result of the combination of two methods. We confirm the failure candidates with physical failure analysis (PFA) method. The direct feedback of the defective visualization is useful to mass-produce devices in a shorter time. The experimental data on mass products show that our method produces average reduction by 13.7% in defective SCAN & SRAM-BIST failure rates and by 18.2% in wafer yield rates.

  17. Analysis of rockbolt performance at the Waste Isolation Pilot Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terrill, L.J.; Francke, C.T.; Saeb, S.

    Rockbolt failures at the Waste Isolation Pilot Plant have been recorded since 1990 and are categorized in terms of mode of failure. The failures are evaluated in terms of physical location of installation within the mine, local excavation geometry and stratigraphy, proximity to other excavations or shafts, and excavation age. The database of failures has revealed discrete ares of the mine containing relatively large numbers of failures. The results of metallurgical analyses and standard rockbolt load testing have generally been in agreement with the in situ evaluations.

  18. Field failure mechanisms for photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Dumas, L. N.; Shumka, A.

    1981-01-01

    Beginning in 1976, Department of Energy field centers have installed and monitored a number of field tests and application experiments using current state-of-the-art photovoltaic modules. On-site observations of module physical and electrical degradation, together with in-depth laboratory analysis of failed modules, permits an overall assessment of the nature and causes of early field failures. Data on failure rates are presented, and key failure mechanisms are analyzed with respect to origin, effect, and prospects for correction. It is concluded that all failure modes identified to date are avoidable or controllable through sound design and production practices.

  19. Predicting Failure Under Laboratory Conditions: Learning the Physics of Slow Frictional Slip and Dynamic Failure

    NASA Astrophysics Data System (ADS)

    Rouet-Leduc, B.; Hulbert, C.; Riviere, J.; Lubbers, N.; Barros, K.; Marone, C.; Johnson, P. A.

    2016-12-01

    Forecasting failure is a primary goal in diverse domains that include earthquake physics, materials science, nondestructive evaluation of materials and other engineering applications. Due to the highly complex physics of material failure and limitations on gathering data in the failure nucleation zone, this goal has often appeared out of reach; however, recent advances in instrumentation sensitivity, instrument density and data analysis show promise toward forecasting failure times. Here, we show that we can predict frictional failure times of both slow and fast stick slip failure events in the laboratory. This advance is made possible by applying a machine learning approach known as Random Forests1(RF) to the continuous acoustic emission (AE) time series recorded by detectors located on the fault blocks. The RF is trained using a large number of statistical features derived from the AE time series signal. The model is then applied to data not previously analyzed. Remarkably, we find that the RF method predicts upcoming failure time far in advance of a stick slip event, based only on a short time window of data. Further, the algorithm accurately predicts the time of the beginning and end of the next slip event. The predicted time improves as failure is approached, as other data features add to prediction. Our results show robust predictions of slow and dynamic failure based on acoustic emissions from the fault zone throughout the laboratory seismic cycle. The predictions are based on previously unidentified tremor-like acoustic signals that occur during stress build up and the onset of macroscopic frictional weakening. We suggest that the tremor-like signals carry information about fault zone processes and allow precise predictions of failure at any time in the slow slip or stick slip cycle2. If the laboratory experiments represent Earth frictional conditions, it could well be that signals are being missed that contain highly useful predictive information. 1Breiman, L. Random forests. Machine Learning 45, 5-32 (2001). 2Rouet-Leduc, B. C. Hulbert, N. Lubbers, K. Barros and P. A. Johnson, Learning the physics of failure, in review (2016).

  20. Failure time analysis with unobserved heterogeneity: Earthquake duration time of Turkey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ata, Nihal, E-mail: nihalata@hacettepe.edu.tr; Kadilar, Gamze Özel, E-mail: gamzeozl@hacettepe.edu.tr

    Failure time models assume that all units are subject to same risks embodied in the hazard functions. In this paper, unobserved sources of heterogeneity that are not captured by covariates are included into the failure time models. Destructive earthquakes in Turkey since 1900 are used to illustrate the models and inter-event time between two consecutive earthquakes are defined as the failure time. The paper demonstrates how seismicity and tectonics/physics parameters that can potentially influence the spatio-temporal variability of earthquakes and presents several advantages compared to more traditional approaches.

  1. Minding the Cyber-Physical Gap: Model-Based Analysis and Mitigation of Systemic Perception-Induced Failure.

    PubMed

    Mordecai, Yaniv; Dori, Dov

    2017-07-17

    The cyber-physical gap (CPG) is the difference between the 'real' state of the world and the way the system perceives it. This discrepancy often stems from the limitations of sensing and data collection technologies and capabilities, and is inevitable at some degree in any cyber-physical system (CPS). Ignoring or misrepresenting such limitations during system modeling, specification, design, and analysis can potentially result in systemic misconceptions, disrupted functionality and performance, system failure, severe damage, and potential detrimental impacts on the system and its environment. We propose CPG-Aware Modeling & Engineering (CPGAME), a conceptual model-based approach to capturing, explaining, and mitigating the CPG. CPGAME enhances the systems engineer's ability to cope with CPGs, mitigate them by design, and prevent erroneous decisions and actions. We demonstrate CPGAME by applying it for modeling and analysis of the 1979 Three Miles Island 2 nuclear accident, and show how its meltdown could be mitigated. We use ISO-19450:2015-Object Process Methodology as our conceptual modeling framework.

  2. Electrical failure debug using interlayer profiling method

    NASA Astrophysics Data System (ADS)

    Yang, Thomas; Shen, Yang; Zhang, Yifan; Sweis, Jason; Lai, Ya-Chieh

    2017-03-01

    It is very well known that as technology nodes move to smaller sizes, the number of design rules increases while design structures become more regular and the process manufacturing steps have increased as well. Normal inspection tools can only monitor hard failures on a single layer. For electrical failures that happen due to inter layers misalignments, we can only detect them through testing. This paper will present a working flow for using pattern analysis interlayer profiling techniques to turn multiple layer physical info into group linked parameter values. Using this data analysis flow combined with an electrical model allows us to find critical regions on a layout for yield learning.

  3. Photoresist and stochastic modeling

    NASA Astrophysics Data System (ADS)

    Hansen, Steven G.

    2018-01-01

    Analysis of physical modeling results can provide unique insights into extreme ultraviolet stochastic variation, which augment, and sometimes refute, conclusions based on physical intuition and even wafer experiments. Simulations verify the primacy of "imaging critical" counting statistics (photons, electrons, and net acids) and the image/blur-dependent dose sensitivity in describing the local edge or critical dimension variation. But the failure of simple counting when resist thickness is varied highlights a limitation of this exact analytical approach, so a calibratable empirical model offers useful simplicity and convenience. Results presented here show that a wide range of physical simulation results can be well matched by an empirical two-parameter model based on blurred image log-slope (ILS) for lines/spaces and normalized ILS for holes. These results are largely consistent with a wide range of published experimental results; however, there is some disagreement with the recently published dataset of De Bisschop. The present analysis suggests that the origin of this model failure is an unexpected blurred ILS:dose-sensitivity relationship failure in that resist process. It is shown that a photoresist mechanism based on high photodecomposable quencher loading and high quencher diffusivity can give rise to pitch-dependent blur, which may explain the discrepancy.

  4. Verification and Validation Process for Progressive Damage and Failure Analysis Methods in the NASA Advanced Composites Consortium

    NASA Technical Reports Server (NTRS)

    Wanthal, Steven; Schaefer, Joseph; Justusson, Brian; Hyder, Imran; Engelstad, Stephen; Rose, Cheryl

    2017-01-01

    The Advanced Composites Consortium is a US Government/Industry partnership supporting technologies to enable timeline and cost reduction in the development of certified composite aerospace structures. A key component of the consortium's approach is the development and validation of improved progressive damage and failure analysis methods for composite structures. These methods will enable increased use of simulations in design trade studies and detailed design development, and thereby enable more targeted physical test programs to validate designs. To accomplish this goal with confidence, a rigorous verification and validation process was developed. The process was used to evaluate analysis methods and associated implementation requirements to ensure calculation accuracy and to gage predictability for composite failure modes of interest. This paper introduces the verification and validation process developed by the consortium during the Phase I effort of the Advanced Composites Project. Specific structural failure modes of interest are first identified, and a subset of standard composite test articles are proposed to interrogate a progressive damage analysis method's ability to predict each failure mode of interest. Test articles are designed to capture the underlying composite material constitutive response as well as the interaction of failure modes representing typical failure patterns observed in aerospace structures.

  5. Prognostic value of the physical examination in patients with heart failure and atrial fibrillation: insights from the AF-CHF trial (atrial fibrillation and chronic heart failure).

    PubMed

    Caldentey, Guillem; Khairy, Paul; Roy, Denis; Leduc, Hugues; Talajic, Mario; Racine, Normand; White, Michel; O'Meara, Eileen; Guertin, Marie-Claude; Rouleau, Jean L; Ducharme, Anique

    2014-02-01

    This study sought to assess the prognostic value of physical examination in a modern treated heart failure population. The physical examination is the cornerstone of the evaluation and monitoring of patients with heart failure. Yet, the prognostic value of congestive signs (i.e., peripheral edema, jugular venous distension, a third heart sound, and pulmonary rales) has not been assessed in the current era. A post-hoc analysis was conducted on all 1,376 patients, 81% male, mean age 67 ± 11 years, with symptomatic left ventricular systolic dysfunction enrolled in the AF-CHF (Atrial Fibrillation and Congestive Heart Failure) trial. The prognostic value of baseline physical examination findings was assessed in univariate and multivariate Cox regression analyses. Peripheral edema was observed in 425 (30.9%), jugular venous distension in 297 (21.6%), a third heart sound in 207 (15.0%), and pulmonary rales in 178 (12.9%) patients. Death from cardiovascular causes occurred in 357 (25.9%) patients over a mean follow-up of 37 ± 19 months. All 4 physical examination findings were associated with cardiovascular mortality in univariate analyses (all p values <0.01). In multivariate analyses, taking all 4 signs as potential covariates, only rales (hazard ratio 1.41; 95% confidence interval: 1.07 to 1.86; p = 0.013) and peripheral edema (hazard ratio: 1.25; 95% confidence interval: 1.00 to 1.57; p = 0.048) were associated with cardiovascular mortality, independent of other variables. In the modern era, congestive signs on the physical examination (i.e., peripheral edema, jugular venous distension, a third heart sound, and pulmonary rales) continue to provide important prognostic information in patients with congestive heart failure. Copyright © 2014 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  6. Minding the Cyber-Physical Gap: Model-Based Analysis and Mitigation of Systemic Perception-Induced Failure

    PubMed Central

    2017-01-01

    The cyber-physical gap (CPG) is the difference between the ‘real’ state of the world and the way the system perceives it. This discrepancy often stems from the limitations of sensing and data collection technologies and capabilities, and is inevitable at some degree in any cyber-physical system (CPS). Ignoring or misrepresenting such limitations during system modeling, specification, design, and analysis can potentially result in systemic misconceptions, disrupted functionality and performance, system failure, severe damage, and potential detrimental impacts on the system and its environment. We propose CPG-Aware Modeling & Engineering (CPGAME), a conceptual model-based approach to capturing, explaining, and mitigating the CPG. CPGAME enhances the systems engineer’s ability to cope with CPGs, mitigate them by design, and prevent erroneous decisions and actions. We demonstrate CPGAME by applying it for modeling and analysis of the 1979 Three Miles Island 2 nuclear accident, and show how its meltdown could be mitigated. We use ISO-19450:2015—Object Process Methodology as our conceptual modeling framework. PMID:28714910

  7. Capacitor Technologies, Applications and Reliability

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Various aspects of capacitor technologies and applications are discussed. Major emphasis is placed on: the causes of failures; accelerated testing; screening tests; destructive physical analysis; applications techniques; and improvements in capacitor capabilities.

  8. A simple landslide susceptibility analysis for hazard and risk assessment in developing countries

    NASA Astrophysics Data System (ADS)

    Guinau, M.; Vilaplana, J. M.

    2003-04-01

    In recent years, a number of techniques and methodologies have been developed for mitigating natural disasters. The complexity of these methodologies and the scarcity of material and data series justify the need for simple methodologies to obtain the necessary information for minimising the effects of catastrophic natural phenomena. The work with polygonal maps using a GIS allowed us to develop a simple methodology, which was developed in an area of 473 Km2 in the Departamento de Chinandega (NW Nicaragua). This area was severely affected by a large number of landslides (mainly debris flows), triggered by the Hurricane Mitch rainfalls in October 1998. With the aid of aerial photography interpretation at 1:40.000 scale, amplified to 1:20.000, and detailed field work, a landslide map at 1:10.000 scale was constructed. The failure zones of landslides were digitized in order to obtain a failure zone digital map. A terrain unit digital map, in which a series of physical-environmental terrain factors are represented, was also used. Dividing the studied area into two zones (A and B) with homogeneous physical and environmental characteristics, allows us to develop the proposed methodology and to validate it. In zone A, the failure zone digital map is superimposed onto the terrain unit digital map to establish the relationship between the different terrain factors and the failure zones. The numerical expression of this relationship enables us to classify the terrain by its landslide susceptibility. In zone B, this numerical relationship was employed to obtain a landslide susceptibility map, obviating the need for a failure zone map. The validity of the methodology can be tested in this area by using the degree of superposition of the susceptibility map and the failure zone map. The implementation of the methodology in tropical countries with physical and environmental characteristics similar to those of the study area allows us to carry out a landslide susceptibility analysis in areas where landslide records do not exist. This analysis is essential to landslide hazard and risk assessment, which is necessary to determine the actions for mitigating landslide effects, e.g. land planning, emergency aid actions, etc.

  9. Physical explosion analysis in heat exchanger network design

    NASA Astrophysics Data System (ADS)

    Pasha, M.; Zaini, D.; Shariff, A. M.

    2016-06-01

    The failure of shell and tube heat exchangers is being extensively experienced by the chemical process industries. This failure can create a loss of production for long time duration. Moreover, loss of containment through heat exchanger could potentially lead to a credible event such as fire, explosion and toxic release. There is a need to analyse the possible worst case effect originated from the loss of containment of the heat exchanger at the early design stage. Physical explosion analysis during the heat exchanger network design is presented in this work. Baker and Prugh explosion models are deployed for assessing the explosion effect. Microsoft Excel integrated with process design simulator through object linking and embedded (OLE) automation for this analysis. Aspen HYSYS V (8.0) used as a simulation platform in this work. A typical heat exchanger network of steam reforming and shift conversion process was presented as a case study. It is investigated from this analysis that overpressure generated from the physical explosion of each heat exchanger can be estimated in a more precise manner by using Prugh model. The present work could potentially assist the design engineer to identify the critical heat exchanger in the network at the preliminary design stage.

  10. Simulation Assisted Risk Assessment Applied to Launch Vehicle Conceptual Design

    NASA Technical Reports Server (NTRS)

    Mathias, Donovan L.; Go, Susie; Gee, Ken; Lawrence, Scott

    2008-01-01

    A simulation-based risk assessment approach is presented and is applied to the analysis of abort during the ascent phase of a space exploration mission. The approach utilizes groupings of launch vehicle failures, referred to as failure bins, which are mapped to corresponding failure environments. Physical models are used to characterize the failure environments in terms of the risk due to blast overpressure, resulting debris field, and the thermal radiation due to a fireball. The resulting risk to the crew is dynamically modeled by combining the likelihood of each failure, the severity of the failure environments as a function of initiator and time of the failure, the robustness of the crew module, and the warning time available due to early detection. The approach is shown to support the launch vehicle design process by characterizing the risk drivers and identifying regions where failure detection would significantly reduce the risk to the crew.

  11. A physically-based earthquake recurrence model for estimation of long-term earthquake probabilities

    USGS Publications Warehouse

    Ellsworth, William L.; Matthews, Mark V.; Nadeau, Robert M.; Nishenko, Stuart P.; Reasenberg, Paul A.; Simpson, Robert W.

    1999-01-01

    A physically-motivated model for earthquake recurrence based on the Brownian relaxation oscillator is introduced. The renewal process defining this point process model can be described by the steady rise of a state variable from the ground state to failure threshold as modulated by Brownian motion. Failure times in this model follow the Brownian passage time (BPT) distribution, which is specified by the mean time to failure, μ, and the aperiodicity of the mean, α (equivalent to the familiar coefficient of variation). Analysis of 37 series of recurrent earthquakes, M -0.7 to 9.2, suggests a provisional generic value of α = 0.5. For this value of α, the hazard function (instantaneous failure rate of survivors) exceeds the mean rate for times > μ⁄2, and is ~ ~ 2 ⁄ μ for all times > μ. Application of this model to the next M 6 earthquake on the San Andreas fault at Parkfield, California suggests that the annual probability of the earthquake is between 1:10 and 1:13.

  12. Elastic Rock Heterogeneity Controls Brittle Rock Failure during Hydraulic Fracturing

    NASA Astrophysics Data System (ADS)

    Langenbruch, C.; Shapiro, S. A.

    2014-12-01

    For interpretation and inversion of microseismic data it is important to understand, which properties of the reservoir rock control the occurrence probability of brittle rock failure and associated seismicity during hydraulic stimulation. This is especially important, when inverting for key properties like permeability and fracture conductivity. Although it became accepted that seismic events are triggered by fluid flow and the resulting perturbation of the stress field in the reservoir rock, the magnitude of stress perturbations, capable of triggering failure in rocks, can be highly variable. The controlling physical mechanism of this variability is still under discussion. We compare the occurrence of microseismic events at the Cotton Valley gas field to elastic rock heterogeneity, obtained from measurements along the treatment wells. The heterogeneity is characterized by scale invariant fluctuations of elastic properties. We observe that the elastic heterogeneity of the rock formation controls the occurrence of brittle failure. In particular, we find that the density of events is increasing with the Brittleness Index (BI) of the rock, which is defined as a combination of Young's modulus and Poisson's ratio. We evaluate the physical meaning of the BI. By applying geomechanical investigations we characterize the influence of fluctuating elastic properties in rocks on the probability of brittle rock failure. Our analysis is based on the computation of stress fluctuations caused by elastic heterogeneity of rocks. We find that elastic rock heterogeneity causes stress fluctuations of significant magnitude. Moreover, the stress changes necessary to open and reactivate fractures in rocks are strongly related to fluctuations of elastic moduli. Our analysis gives a physical explanation to the observed relation between elastic heterogeneity of the rock formation and the occurrence of brittle failure during hydraulic reservoir stimulations. A crucial factor for understanding seismicity in unconventional reservoirs is the role of anisotropy of rocks. We evaluate an elastic VTI rock model corresponding to a shale gas reservoir in the Horn River Basin to understand the relation between stress, event occurrence and elastic heterogeneity in anisotropic rocks.

  13. Reliability and availability analysis of a 10 kW@20 K helium refrigerator

    NASA Astrophysics Data System (ADS)

    Li, J.; Xiong, L. Y.; Liu, L. Q.; Wang, H. R.; Wang, B. M.

    2017-02-01

    A 10 kW@20 K helium refrigerator has been established in the Technical Institute of Physics and Chemistry, Chinese Academy of Sciences. To evaluate and improve this refrigerator’s reliability and availability, a reliability and availability analysis is performed. According to the mission profile of this refrigerator, a functional analysis is performed. The failure data of the refrigerator components are collected and failure rate distributions are fitted by software Weibull++ V10.0. A Failure Modes, Effects & Criticality Analysis (FMECA) is performed and the critical components with higher risks are pointed out. Software BlockSim V9.0 is used to calculate the reliability and the availability of this refrigerator. The result indicates that compressors, turbine and vacuum pump are the critical components and the key units of this refrigerator. The mitigation actions with respect to design, testing, maintenance and operation are proposed to decrease those major and medium risks.

  14. Reformulation of Nonlinear Anisotropic Crystal Elastoplasticity for Impact Physics

    DTIC Science & Technology

    2015-03-01

    interest include metals, ceramics , minerals, and energetic materials . Accurate, efficient, stable, and thermodynamically consistent models for...Clayton JD. Phase field theory and analysis of pressure-shear induced amorphization and failure in boron carbide ceramic . AIMS Materials Science. 2014;1...of Nonlinear Anisotropic Crystal Elastoplasticity for Impact Physics by JD Clayton Weapons and Materials Research Directorate, ARL

  15. Fundamental Studies of Strength Physics--Methodology of Longevity Prediction of Materials under Arbitrary Thermally and Forced Effects

    ERIC Educational Resources Information Center

    Petrov, Mark G.

    2016-01-01

    Thermally activated analysis of experimental data allows considering about the structure features of each material. By modelling the structural heterogeneity of materials by means of rheological models, general and local plastic flows in metals and alloys can be described over. Based on physical fundamentals of failure and deformation of materials…

  16. Association of Physical Activity or Fitness With Incident Heart Failure: A Systematic Review and Meta-Analysis.

    PubMed

    Echouffo-Tcheugui, Justin B; Butler, Javed; Yancy, Clyde W; Fonarow, Gregg C

    2015-09-01

    Previous studies have shown that high levels of physical activity are associated with lower risk of risk factors for heart failure (HF), such as coronary heart disease, hypertension, and diabetes mellitus. However, the effects of physical activity or fitness on the incidence of HF remain unclear. MEDLINE and EMBASE were systematically searched until November 30, 2014. Prospective cohort studies reporting measures of the association of physical activity (n=10) or fitness (n=2) with incident HF were included. Extracted effect estimates from the eligible studies were pooled using a random-effects model meta-analysis, with heterogeneity assessed with the I(2) statistic. Ten cohort studies on physical activity eligible for meta-analysis included a total of 282 889 participants followed for 7 to 30 years. For the physical activity studies, maximum versus minimal amount of physical activity groups were used for analyses; with a total number of participants (n=165 695). The pooled relative risk (95% confidence interval [CI]) for HF among those with a regular exercise pattern was 0.72 (95% CI, 0.67-0.79). Findings were similar for men (0.71 [95% CI, 0.61-0.83]) and women (0.72 [95% CI, 0.67-0.77]) and by type of exercise. There was no evidence of publication bias (P value for Egger test=0.34). The pooled associated effect of physical fitness on incident HF was 0.79 (95% CI, 0.75-0.83) for each unit increase in metabolic equivalent of oxygen consumption. Published literature support a significant association between increased physical activity or fitness and decreased incidence of HF. © 2015 American Heart Association, Inc.

  17. Fatigue lifetime prediction of a reduced-diameter dental implant system: Numerical and experimental study.

    PubMed

    Duan, Yuanyuan; Gonzalez, Jorge A; Kulkarni, Pratim A; Nagy, William W; Griggs, Jason A

    2018-06-16

    To validate the fatigue lifetime of a reduced-diameter dental implant system predicted by three-dimensional finite element analysis (FEA) by testing physical implant specimens using an accelerated lifetime testing (ALT) strategy with the apparatus specified by ISO 14801. A commercially-available reduced-diameter titanium dental implant system (Straumann Standard Plus NN) was digitized using a micro-CT scanner. Axial slices were processed using an interactive medical image processing software (Mimics) to create 3D models. FEA analysis was performed in ABAQUS, and fatigue lifetime was predicted using fe-safe ® software. The same implant specimens (n=15) were tested at a frequency of 2Hz on load frames using apparatus specified by ISO 14801 and ALT. Multiple step-stress load profiles with various aggressiveness were used to improve testing efficiency. Fatigue lifetime statistics of physical specimens were estimated in a reliability analysis software (ALTA PRO). Fractured specimens were examined using SEM with fractographic technique to determine the failure mode. FEA predicted lifetime was within the 95% confidence interval of lifetime estimated by experimental results, which suggested that FEA prediction was accurate for this implant system. The highest probability of failure was located at the root of the implant body screw thread adjacent to the simulated bone level, which also agreed with the failure origin in physical specimens. Fatigue lifetime predictions based on finite element modeling could yield similar results in lieu of physical testing, allowing the use of virtual testing in the early stages of future research projects on implant fatigue. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.

  18. The SAM framework: modeling the effects of management factors on human behavior in risk analysis.

    PubMed

    Murphy, D M; Paté-Cornell, M E

    1996-08-01

    Complex engineered systems, such as nuclear reactors and chemical plants, have the potential for catastrophic failure with disastrous consequences. In recent years, human and management factors have been recognized as frequent root causes of major failures in such systems. However, classical probabilistic risk analysis (PRA) techniques do not account for the underlying causes of these errors because they focus on the physical system and do not explicitly address the link between components' performance and organizational factors. This paper describes a general approach for addressing the human and management causes of system failure, called the SAM (System-Action-Management) framework. Beginning with a quantitative risk model of the physical system, SAM expands the scope of analysis to incorporate first the decisions and actions of individuals that affect the physical system. SAM then links management factors (incentives, training, policies and procedures, selection criteria, etc.) to those decisions and actions. The focus of this paper is on four quantitative models of action that describe this last relationship. These models address the formation of intentions for action and their execution as a function of the organizational environment. Intention formation is described by three alternative models: a rational model, a bounded rationality model, and a rule-based model. The execution of intentions is then modeled separately. These four models are designed to assess the probabilities of individual actions from the perspective of management, thus reflecting the uncertainties inherent to human behavior. The SAM framework is illustrated for a hypothetical case of hazardous materials transportation. This framework can be used as a tool to increase the safety and reliability of complex technical systems by modifying the organization, rather than, or in addition to, re-designing the physical system.

  19. [Analysis of quality of life using the generic SF-36 questionnaire in patients with heart failure].

    PubMed

    López Castro, J; Cid Conde, L; Fernández Rodríguez, V; Failde Garrido, J M; Almazán Ortega, R

    2013-01-01

    Heart failure is one of the major chronic diseases that affect health related quality of life. The objective of this study was to evaluate the quality of life in patients with New York Heart Association functional class I-III using the SF-36 on a cohort of survivors of the EPICOUR Study Group and compare the quality of life with the general Spanish population of the same sex and age group. A cohort study, observational, and prospective study was conducted on survivors of the EPICOUR Study Group, on whom a clinical-progression-outcome review was performed along with the SF-36. The quality of life was studied in 50 patients (60% male). The average age of men was 64.8 years and women 68.3. When analyzing the SF-36, it was observed that the results were lower in the physical dimensions than in the mental dimensions. The quality of life worsened with increasing functional class (statistically significant differences for scales of physical functioning, social functioning and borderline significance in mental health scale). When comparing patients with the general population of the same age and sex, patients with heart failure showed lower scores on all scales (significant differences in physical functioning, body pain, vitality, and social role for men, and physical function and emotional role for women). Heart failure causes a negative impact on quality of life, physical functioning, as well as psychosocial function, with the impairment becoming worse with increased functional class. Copyright © 2013 SECA. Published by Elsevier Espana. All rights reserved.

  20. Fear of failure and self-handicapping in college physical education.

    PubMed

    Chen, Lung Hung; Chen, Mei-Yen; Lin, Meng-Shyan; Kee, Ying Hwa; Shui, Shang-Hsueh

    2009-12-01

    The purpose of this study was to examine the relationship between fear of failure and self-handicapping within the context of physical education. Participants were 103 college freshmen enrolled in aerobic dance physical education classes in Taiwan. They completed the Performance Failure Appraisal Inventory and Self-Handicapping Scale for Sport 3 mo. after entering the class. Hierarchical regression indicated that scores on fear of failure predicted self-handicapping scores.

  1. Methods for improved forewarning of condition changes in monitoring physical processes

    DOEpatents

    Hively, Lee M.

    2013-04-09

    This invention teaches further improvements in methods for forewarning of critical events via phase-space dissimilarity analysis of data from biomedical equipment, mechanical devices, and other physical processes. One improvement involves objective determination of a forewarning threshold (U.sub.FW), together with a failure-onset threshold (U.sub.FAIL) corresponding to a normalized value of a composite measure (C) of dissimilarity; and providing a visual or audible indication to a human observer of failure forewarning and/or failure onset. Another improvement relates to symbolization of the data according the binary numbers representing the slope between adjacent data points. Another improvement relates to adding measures of dissimilarity based on state-to-state dynamical changes of the system. And still another improvement relates to using a Shannon entropy as the measure of condition change in lieu of a connected or unconnected phase space.

  2. Graph-theoretic analysis of discrete-phase-space states for condition change detection and quantification of information

    DOEpatents

    Hively, Lee M.

    2014-09-16

    Data collected from devices and human condition may be used to forewarn of critical events such as machine/structural failure or events from brain/heart wave data stroke. By monitoring the data, and determining what values are indicative of a failure forewarning, one can provide adequate notice of the impending failure in order to take preventive measures. This disclosure teaches a computer-based method to convert dynamical numeric data representing physical objects (unstructured data) into discrete-phase-space states, and hence into a graph (structured data) for extraction of condition change.

  3. Survey of critical failure events in on-chip interconnect by fault tree analysis

    NASA Astrophysics Data System (ADS)

    Yokogawa, Shinji; Kunii, Kyousuke

    2018-07-01

    In this paper, a framework based on reliability physics is proposed for adopting fault tree analysis (FTA) to the on-chip interconnect system of a semiconductor. By integrating expert knowledge and experience regarding the possibilities of failure on basic events, critical issues of on-chip interconnect reliability will be evaluated by FTA. In particular, FTA is used to identify the minimal cut sets with high risk priority. Critical events affecting the on-chip interconnect reliability are identified and discussed from the viewpoint of long-term reliability assessment. The moisture impact is evaluated as an external event.

  4. Probabilistic Design Analysis (PDA) Approach to Determine the Probability of Cross-System Failures for a Space Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Shih, Ann T.; Lo, Yunnhon; Ward, Natalie C.

    2010-01-01

    Quantifying the probability of significant launch vehicle failure scenarios for a given design, while still in the design process, is critical to mission success and to the safety of the astronauts. Probabilistic risk assessment (PRA) is chosen from many system safety and reliability tools to verify the loss of mission (LOM) and loss of crew (LOC) requirements set by the NASA Program Office. To support the integrated vehicle PRA, probabilistic design analysis (PDA) models are developed by using vehicle design and operation data to better quantify failure probabilities and to better understand the characteristics of a failure and its outcome. This PDA approach uses a physics-based model to describe the system behavior and response for a given failure scenario. Each driving parameter in the model is treated as a random variable with a distribution function. Monte Carlo simulation is used to perform probabilistic calculations to statistically obtain the failure probability. Sensitivity analyses are performed to show how input parameters affect the predicted failure probability, providing insight for potential design improvements to mitigate the risk. The paper discusses the application of the PDA approach in determining the probability of failure for two scenarios from the NASA Ares I project

  5. Failure Criteria for FRP Laminates in Plane Stress

    NASA Technical Reports Server (NTRS)

    Davila, Carlos G.; Camanho, Pedro P.

    2003-01-01

    A new set of six failure criteria for fiber reinforced polymer laminates is described. Derived from Dvorak's fracture mechanics analyses of cracked plies and from Puck's action plane concept, the physically-based criteria, denoted LaRC03, predict matrix and fiber failure accurately without requiring curve-fitting parameters. For matrix failure under transverse compression, the fracture plane is calculated by maximizing the Mohr-Coulomb effective stresses. A criterion for fiber kinking is obtained by calculating the fiber misalignment under load, and applying the matrix failure criterion in the coordinate frame of the misalignment. Fracture mechanics models of matrix cracks are used to develop a criterion for matrix in tension and to calculate the associated in-situ strengths. The LaRC03 criteria are applied to a few examples to predict failure load envelopes and to predict the failure mode for each region of the envelope. The analysis results are compared to the predictions using other available failure criteria and with experimental results. Predictions obtained with LaRC03 correlate well with the experimental results.

  6. High Speed Dynamics in Brittle Materials

    NASA Astrophysics Data System (ADS)

    Hiermaier, Stefan

    2015-06-01

    Brittle Materials under High Speed and Shock loading provide a continuous challenge in experimental physics, analysis and numerical modelling, and consequently for engineering design. The dependence of damage and fracture processes on material-inherent length and time scales, the influence of defects, rate-dependent material properties and inertia effects on different scales make their understanding a true multi-scale problem. In addition, it is not uncommon that materials show a transition from ductile to brittle behavior when the loading rate is increased. A particular case is spallation, a brittle tensile failure induced by the interaction of stress waves leading to a sudden change from compressive to tensile loading states that can be invoked in various materials. This contribution highlights typical phenomena occurring when brittle materials are exposed to high loading rates in applications such as blast and impact on protective structures, or meteorite impact on geological materials. A short review on experimental methods that are used for dynamic characterization of brittle materials will be given. A close interaction of experimental analysis and numerical simulation has turned out to be very helpful in analyzing experimental results. For this purpose, adequate numerical methods are required. Cohesive zone models are one possible method for the analysis of brittle failure as long as some degree of tension is present. Their recent successful application for meso-mechanical simulations of concrete in Hopkinson-type spallation tests provides new insight into the dynamic failure process. Failure under compressive loading is a particular challenge for numerical simulations as it involves crushing of material which in turn influences stress states in other parts of a structure. On a continuum scale, it can be modeled using more or less complex plasticity models combined with failure surfaces, as will be demonstrated for ceramics. Models which take microstructural cracking directly into account may provide a more physics-based approach for compressive failure in the future.

  7. Burn Severity and Its Impact on Soil Properties: 2016 Erskine Fire in the Southern Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Haake, S.; Guo, J.; Krugh, W. C.

    2017-12-01

    Wildfire frequency in the southern Sierra Nevada has increased over the past decades. The effects of wildfires on soils can increase the frequency of slope failure and debris flow events, which pose a greater risk to people, as human populations expand into foothill and mountainous communities of the Sierra Nevada. Alterations in the physical properties of burned soils are one such effect that can catalyze slope failure and debris flow events. Moreover, the degree of a soil's physical alteration resulting from wildfire is linked to fire intensity. The 2016 Erskine fire occurred in the southern Sierra Nevada, burning 48,019 acres, resulting in soils of unburned, low, moderate, and high burn severities. In this study, the physical properties of soils with varying degrees of burn severity are explored within the 2016 Erskine fire perimeter. The results constrain the effects of burn severity on soil's physical properties. Unburned, low, moderate, and high burn severity soil samples were collected within the Erskine fire perimeter. Alterations in soils' physical properties resulting from burn severity are explored using X-ray diffractometry analysis, liquid limit, plastic limit, and shear strength tests. Preliminary results from this study will be used to assess debris flow and slope failure hazard models within burned areas of the Kern River watershed in the southern Sierra Nevada.

  8. Effects of Sacubitril/Valsartan on Physical and Social Activity Limitations in Patients With Heart Failure: A Secondary Analysis of the PARADIGM-HF Trial.

    PubMed

    Chandra, Alvin; Lewis, Eldrin F; Claggett, Brian L; Desai, Akshay S; Packer, Milton; Zile, Michael R; Swedberg, Karl; Rouleau, Jean L; Shi, Victor C; Lefkowitz, Martin P; Katova, Tzvetana; McMurray, John J V; Solomon, Scott D

    2018-04-04

    Health-related quality of life (HRQL) of patients with heart failure is markedly reduced compared with that in patients with other chronic diseases, demonstrating substantial limitations in physical and social activities. In the Prospective Comparison of ARNI With an ACE-Inhibitor to Determine Impact on Global Mortality and Morbidity in Heart Failure (PARADIGM-HF) trial, sacubitril/valsartan improved overall HRQL compared with enalapril, as determined by the Kansas City Cardiomyopathy Questionnaire (KCCQ). To examine the effects of sacubitril/valsartan on physical and social activities. The PARADIGM-HF trial was a randomized, double-blind, active treatment-controlled clinical trial performed from December 8, 2009, to March 31, 2014, in 8399 patients with New York Heart Association class II to IV disease and a left ventricular ejection fraction of 40% or less at 1043 centers in 38 countries. Data analysis was performed from August 1, 2017, to December 25, 2017. Sacubitril/valsartan, 200 mg twice daily, or enalapril, 10 mg twice daily. Patients completed HRQL assessments using the KCCQ at randomization, 4-month, 8-month, and annual visits. The effect of sacubitril/valsartan on components of the physical and social limitation sections of the KCCQ at 8 months and longitudinally and related biomarkers and clinical outcomes were studied. At baseline, 7618 of 8399 patients (90.7%) (mean [SD] age, 64 [11] years; 5987 [78.6%] male and 1631 [21.4%] female) completed the initial KCCQ assessment. Patients reported the greatest limitations at baseline in jogging and sexual relationships. Patients receiving sacubitril/valsartan had significantly better adjusted change scores in most physical and social activities at 8 months and during 36 months compared with those receiving enalapril. The largest improvement over enalapril was in household chores (adjusted change score difference, 2.35; 95% CI, 1.19-3.50; P < .001) and sexual relationships (adjusted change score difference, 2.72; 95% CI, 0.97-4.46; P = .002); both persisted through 36 months (overall change score difference, 1.69 [95% CI, 0.78-2.60], P < .001; and 2.36 [95% CI, 1.01-3.71], P = .001, respectively). In patients with heart failure with reduced ejection fraction, sacubitril/valsartan significantly improved nearly all KCCQ physical and social activities compared with enalapril, with the largest responses in household chores and sexual relationships. In addition to reduced likelihood of cardiovascular death, all-cause mortality, and heart failure hospitalization, sacubitril/valsartan may improve limitations in common activities in these patients. clinicaltrials.gov Identifier: NCT01035255.

  9. WE-G-BRC-03: Risk Assessment for Physics Plan Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, S.

    2016-06-15

    Failure Mode and Effects Analysis (FMEA) originated as an industrial engineering technique used for risk management and safety improvement of complex processes. In the context of radiotherapy, the AAPM Task Group 100 advocates FMEA as the framework of choice for establishing clinical quality management protocols. However, there is concern that widespread adoption of FMEA in radiation oncology will be hampered by the perception that implementation of the tool will have a steep learning curve, be extremely time consuming and labor intensive, and require additional resources. To overcome these preconceptions and facilitate the introduction of the tool into clinical practice, themore » medical physics community must be educated in the use of this tool and the ease in which it can be implemented. Organizations with experience in FMEA should share their knowledge with others in order to increase the implementation, effectiveness and productivity of the tool. This session will include a brief, general introduction to FMEA followed by a focus on practical aspects of implementing FMEA for specific clinical procedures including HDR brachytherapy, physics plan review and radiosurgery. A description of common equipment and devices used in these procedures and how to characterize new devices for safe use in patient treatments will be presented. This will be followed by a discussion of how to customize FMEA techniques and templates to one’s own clinic. Finally, cases of common failure modes for specific procedures (described previously) will be shown and recommended intervention methodologies and outcomes reviewed. Learning Objectives: Understand the general concept of failure mode and effect analysis Learn how to characterize new equipment for safety Be able to identify potential failure modes for specific procedures and learn mitigation techniques Be able to customize FMEA examples and templates for use in any clinic.« less

  10. Agent autonomy approach to probabilistic physics-of-failure modeling of complex dynamic systems with interacting failure mechanisms

    NASA Astrophysics Data System (ADS)

    Gromek, Katherine Emily

    A novel computational and inference framework of the physics-of-failure (PoF) reliability modeling for complex dynamic systems has been established in this research. The PoF-based reliability models are used to perform a real time simulation of system failure processes, so that the system level reliability modeling would constitute inferences from checking the status of component level reliability at any given time. The "agent autonomy" concept is applied as a solution method for the system-level probabilistic PoF-based (i.e. PPoF-based) modeling. This concept originated from artificial intelligence (AI) as a leading intelligent computational inference in modeling of multi agents systems (MAS). The concept of agent autonomy in the context of reliability modeling was first proposed by M. Azarkhail [1], where a fundamentally new idea of system representation by autonomous intelligent agents for the purpose of reliability modeling was introduced. Contribution of the current work lies in the further development of the agent anatomy concept, particularly the refined agent classification within the scope of the PoF-based system reliability modeling, new approaches to the learning and the autonomy properties of the intelligent agents, and modeling interacting failure mechanisms within the dynamic engineering system. The autonomous property of intelligent agents is defined as agent's ability to self-activate, deactivate or completely redefine their role in the analysis. This property of agents and the ability to model interacting failure mechanisms of the system elements makes the agent autonomy fundamentally different from all existing methods of probabilistic PoF-based reliability modeling. 1. Azarkhail, M., "Agent Autonomy Approach to Physics-Based Reliability Modeling of Structures and Mechanical Systems", PhD thesis, University of Maryland, College Park, 2007.

  11. Reliability Technology to Achieve Insertion of Advanced Packaging (RELTECH) program

    NASA Astrophysics Data System (ADS)

    Fayette, Daniel F.; Speicher, Patricia; Stoklosa, Mark J.; Evans, Jillian V.; Evans, John W.; Gentile, Mike; Pagel, Chuck A.; Hakim, Edward

    1993-08-01

    A joint military-commercial effort to evaluate multichip module (MCM) structures is discussed. The program, Reliability Technology to Achieve Insertion of Advanced Packaging (RELTECH), has been designed to identify the failure mechanisms that are possible in MCM structures. The RELTECH test vehicles, technical assessment task, product evaluation plan, reliability modeling task, accelerated and environmental testing, and post-test physical analysis and failure analysis are described. The information obtained through RELTECH can be used to address standardization issues, through development of cost effective qualification and appropriate screening criteria, for inclusion into a commercial specification and the MIL-H-38534 general specification for hybrid microcircuits.

  12. Reliability Technology to Achieve Insertion of Advanced Packaging (RELTECH) program

    NASA Technical Reports Server (NTRS)

    Fayette, Daniel F.; Speicher, Patricia; Stoklosa, Mark J.; Evans, Jillian V.; Evans, John W.; Gentile, Mike; Pagel, Chuck A.; Hakim, Edward

    1993-01-01

    A joint military-commercial effort to evaluate multichip module (MCM) structures is discussed. The program, Reliability Technology to Achieve Insertion of Advanced Packaging (RELTECH), has been designed to identify the failure mechanisms that are possible in MCM structures. The RELTECH test vehicles, technical assessment task, product evaluation plan, reliability modeling task, accelerated and environmental testing, and post-test physical analysis and failure analysis are described. The information obtained through RELTECH can be used to address standardization issues, through development of cost effective qualification and appropriate screening criteria, for inclusion into a commercial specification and the MIL-H-38534 general specification for hybrid microcircuits.

  13. SU-E-T-627: Failure Modes and Effect Analysis for Monthly Quality Assurance of Linear Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, J; Xiao, Y; Wang, J

    2014-06-15

    Purpose: To develop and implement a failure mode and effect analysis (FMEA) on routine monthly Quality Assurance (QA) tests (physical tests part) of linear accelerator. Methods: A systematic failure mode and effect analysis method was performed for monthly QA procedures. A detailed process tree of monthly QA was created and potential failure modes were defined. Each failure mode may have many influencing factors. For each factor, a risk probability number (RPN) was calculated from the product of probability of occurrence (O), the severity of effect (S), and detectability of the failure (D). The RPN scores are in a range ofmore » 1 to 1000, with higher scores indicating stronger correlation to a given influencing factor of a failure mode. Five medical physicists in our institution were responsible to discuss and to define the O, S, D values. Results: 15 possible failure modes were identified and all RPN scores of all influencing factors of these 15 failue modes were from 8 to 150, and the checklist of FMEA in monthly QA was drawn. The system showed consistent and accurate response to erroneous conditions. Conclusion: The influencing factors of RPN greater than 50 were considered as highly-correlated factors of a certain out-oftolerance monthly QA test. FMEA is a fast and flexible tool to develop an implement a quality management (QM) frame work of monthly QA, which improved the QA efficiency of our QA team. The FMEA work may incorporate more quantification and monitoring fuctions in future.« less

  14. Physical and chemical analysis of lithium-ion battery cell-to-cell failure events inside custom fire chamber

    NASA Astrophysics Data System (ADS)

    Spinner, Neil S.; Field, Christopher R.; Hammond, Mark H.; Williams, Bradley A.; Myers, Kristina M.; Lubrano, Adam L.; Rose-Pehrsson, Susan L.; Tuttle, Steven G.

    2015-04-01

    A 5-cubic meter decompression chamber was re-purposed as a fire test chamber to conduct failure and abuse experiments on lithium-ion batteries. Various modifications were performed to enable remote control and monitoring of chamber functions, along with collection of data from instrumentation during tests including high speed and infrared cameras, a Fourier transform infrared spectrometer, real-time gas analyzers, and compact reconfigurable input and output devices. Single- and multi-cell packages of LiCoO2 chemistry 18650 lithium-ion batteries were constructed and data was obtained and analyzed for abuse and failure tests. Surrogate 18650 cells were designed and fabricated for multi-cell packages that mimicked the thermal behavior of real cells without using any active components, enabling internal temperature monitoring of cells adjacent to the active cell undergoing failure. Heat propagation and video recordings before, during, and after energetic failure events revealed a high degree of heterogeneity; some batteries exhibited short burst of sparks while others experienced a longer, sustained flame during failure. Carbon monoxide, carbon dioxide, methane, dimethyl carbonate, and ethylene carbonate were detected via gas analysis, and the presence of these species was consistent throughout all failure events. These results highlight the inherent danger in large format lithium-ion battery packs with regards to cell-to-cell failure, and illustrate the need for effective safety features.

  15. A Comparison of Functional Models for Use in the Function-Failure Design Method

    NASA Technical Reports Server (NTRS)

    Stock, Michael E.; Stone, Robert B.; Tumer, Irem Y.

    2006-01-01

    When failure analysis and prevention, guided by historical design knowledge, are coupled with product design at its conception, shorter design cycles are possible. By decreasing the design time of a product in this manner, design costs are reduced and the product will better suit the customer s needs. Prior work indicates that similar failure modes occur with products (or components) with similar functionality. To capitalize on this finding, a knowledge base of historical failure information linked to functionality is assembled for use by designers. One possible use for this knowledge base is within the Elemental Function-Failure Design Method (EFDM). This design methodology and failure analysis tool begins at conceptual design and keeps the designer cognizant of failures that are likely to occur based on the product s functionality. The EFDM offers potential improvement over current failure analysis methods, such as FMEA, FMECA, and Fault Tree Analysis, because it can be implemented hand in hand with other conceptual design steps and carried throughout a product s design cycle. These other failure analysis methods can only truly be effective after a physical design has been completed. The EFDM however is only as good as the knowledge base that it draws from, and therefore it is of utmost importance to develop a knowledge base that will be suitable for use across a wide spectrum of products. One fundamental question that arises in using the EFDM is: At what level of detail should functional descriptions of components be encoded? This paper explores two approaches to populating a knowledge base with actual failure occurrence information from Bell 206 helicopters. Functional models expressed at various levels of detail are investigated to determine the necessary detail for an applicable knowledge base that can be used by designers in both new designs as well as redesigns. High level and more detailed functional descriptions are derived for each failed component based on NTSB accident reports. To best record this data, standardized functional and failure mode vocabularies are used. Two separate function-failure knowledge bases are then created aid compared. Results indicate that encoding failure data using more detailed functional models allows for a more robust knowledge base. Interestingly however, when applying the EFDM, high level descriptions continue to produce useful results when using the knowledge base generated from the detailed functional models.

  16. Report of the Odyssey FPGA Independent Assessment Team

    NASA Technical Reports Server (NTRS)

    Mayer, Donald C.; Katz, Richard B.; Osborn, Jon V.; Soden, Jerry M.; Barto, R.; Day, John H. (Technical Monitor)

    2001-01-01

    An independent assessment team (IAT) was formed and met on April 2, 2001, at Lockheed Martin in Denver, Colorado, to aid in understanding a technical issue for the Mars Odyssey spacecraft scheduled for launch on April 7, 2001. An RP1280A field-programmable gate array (FPGA) from a lot of parts common to the SIRTF, Odyssey, and Genesis missions had failed on a SIRTF printed circuit board. A second FPGA from an earlier Odyssey circuit board was also known to have failed and was also included in the analysis by the IAT. Observations indicated an abnormally high failure rate for flight RP1280A devices (the first flight lot produced using this flow) at Lockheed Martin and the causes of these failures were not determined. Standard failure analysis techniques were applied to these parts, however, additional diagnostic techniques unique for devices of this class were not used, and the parts were prematurely submitted to a destructive physical analysis, making a determination of the root cause of failure difficult. Any of several potential failure scenarios may have caused these failures, including electrostatic discharge, electrical overstress, manufacturing defects, board design errors, board manufacturing errors, FPGA design errors, or programmer errors. Several of these mechanisms would have relatively benign consequences for disposition of the parts currently installed on boards in the Odyssey spacecraft if established as the root cause of failure. However, other potential failure mechanisms could have more dire consequences. As there is no simple way to determine the likely failure mechanisms with reasonable confidence before Odyssey launch, it is not possible for the IAT to recommend a disposition for the other parts on boards in the Odyssey spacecraft based on sound engineering principles.

  17. Life Cycle Analysis of a SpaceCube Printed Circuit Board Assembly Using Physics of Failure Methodologies

    NASA Technical Reports Server (NTRS)

    Sood, Bhanu; Evans, John; Daniluk, Kelly; Sturgis, Jason; Davis, Milton; Petrick, David

    2017-01-01

    In this reliability life cycle evaluation of the SpaceCube 2.0 processor card, a partially populated version of the card is being evaluated to determine its durability with respect to typical GSFC mission loads.

  18. Depressive symptoms and the relationship of inflammation to physical signs and symptoms in heart failure patients.

    PubMed

    Heo, Seongkum; Moser, Debra K; Pressler, Susan J; Dunbar, Sandra B; Dekker, Rebecca L; Lennie, Terry A

    2014-09-01

    Depressive symptoms in patients with heart failure can affect the relationship between physical signs and symptoms and inflammation. To examine the relationship between soluble tumor necrosis factor receptor I and physical signs and symptoms and the effects of depressive symptoms on this relationship in patients with heart failure. Data on physical signs and symptoms (Symptom Status Questionnaire-Heart Failure), depressive symptoms (Beck Depression Inventory-II), and levels of the receptor (blood samples) were collected from 145 patients with heart failure. Data on the receptor were square root transformed to achieve normality. Patients were divided into 2 groups according to their scores for depressive symptoms (nondepressed <14 and depressed ≥14). Hierarchical multiple regression was used to analyze the data. In the total sample, with controls for covariates, higher levels of the receptor were significantly related to more severe physical signs and symptoms (F = 7.915; P < .001). In subgroup analyses, with controls for covariates, levels of the receptor were significantly related to physical signs and symptoms only in the patients without depression (F = 3.174; P = .005). Both depressive symptoms and inflammation should be considered along with physical signs and symptoms in patients with heart failure. Further studies are needed to determine the effects of improvement in inflammation on improvement in physical signs and symptoms, with consideration given to the effects of depressive symptoms. ©2014 American Association of Critical-Care Nurses.

  19. Incidence of School Failure According to Baseline Leisure-Time Physical Activity Practice: Prospective Study

    PubMed Central

    Rombaldi, Airton J.; Clark, Valerie L.; Reichert, Felipe F.; Araújo, Cora L.P.; Assunção, Maria C.; Menezes, Ana M.B.; Horta, Bernardo L.; Hallal, Pedro C.

    2012-01-01

    Purpose To evaluate the prospective association between leisure-time physical activity practice at 11 years of age and incidence of school failure from 11 to 15 years of age. Methods The sample comprised >4,300 adolescents followed up from birth to 15 years of age participating in a birth cohort study in Pelotas, Brazil. The incidence of school failure from age 11 to 15 years was calculated by first excluding from the analyses all subjects who experienced a school failure before 11 years of age, and then categorizing as “positive” all those who reported repeating a grade at school from 11 to 15 years of age. Leisure-time physical activity was measured using a validated questionnaire. Results The incidence of school failure was 47.9% among boys and 38.2% among girls. Adolescents in the top quartile of leisure-time physical activity practice at 11 years of age had a higher likelihood of school failure (OR: 1.36; 95% CI: 1.06, 1.75) compared with the least active adolescents. In adjusted analyses stratified by sex, boys in the top quartile of leisure-time physical activity practice at 11 years of age were also more likely to have failed at school from age 11 to 15 years (OR: 1.60; 95% CI: 1.09, 2.33). Conclusions Adolescents allocating >1,000 min/wk to leisure-time physical activity were more likely to experience a school failure from 11 to 15 years of age. Although this finding does not advocate against physical activity promotion, it indicates that excess time allocated to physical activity may jeopardize school performance among adolescents. PMID:23283155

  20. Incidence of school failure according to baseline leisure-time physical activity practice: prospective study.

    PubMed

    Rombaldi, Airton J; Clark, Valerie L; Reichert, Felipe F; Araújo, Cora L P; Assunção, Maria C; Menezes, Ana M B; Horta, Bernardo L; Hallal, Pedro C

    2012-12-01

    To evaluate the prospective association between leisure-time physical activity practice at 11 years of age and incidence of school failure from 11 to 15 years of age. The sample comprised >4,300 adolescents followed up from birth to 15 years of age participating in a birth cohort study in Pelotas, Brazil. The incidence of school failure from age 11 to 15 years was calculated by first excluding from the analyses all subjects who experienced a school failure before 11 years of age, and then categorizing as "positive" all those who reported repeating a grade at school from 11 to 15 years of age. Leisure-time physical activity was measured using a validated questionnaire. The incidence of school failure was 47.9% among boys and 38.2% among girls. Adolescents in the top quartile of leisure-time physical activity practice at 11 years of age had a higher likelihood of school failure (OR: 1.36; 95% CI: 1.06, 1.75) compared with the least active adolescents. In adjusted analyses stratified by sex, boys in the top quartile of leisure-time physical activity practice at 11 years of age were also more likely to have failed at school from age 11 to 15 years (OR: 1.60; 95% CI: 1.09, 2.33). Adolescents allocating >1,000 min/wk to leisure-time physical activity were more likely to experience a school failure from 11 to 15 years of age. Although this finding does not advocate against physical activity promotion, it indicates that excess time allocated to physical activity may jeopardize school performance among adolescents. Copyright © 2012 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  1. Physical Functioning, Physical Activity, Exercise Self-Efficacy, and Quality of Life Among Individuals With Chronic Heart Failure in Korea: A Cross-Sectional Descriptive Study.

    PubMed

    Lee, Haejung; Boo, Sunjoo; Yu, Jihyoung; Suh, Soon-Rim; Chun, Kook Jin; Kim, Jong Hyun

    2017-04-01

    Both the beneficial relationship between exercise and quality of life and the important role played by exercise self-efficacy in maintaining an exercise regimen among individuals with chronic heart failure are well known. However, most nursing interventions for Korean patients with chronic heart failure focus only on providing education related to risk factors and symptoms. Little information is available regarding the influence of physical functions, physical activity, and exercise self-efficacy on quality of life. This study was conducted to examine the impact of physical functioning, physical activity, and exercise self-efficacy on quality of life among individuals with chronic heart failure. This study used a cross-sectional descriptive design. Data were collected from 116 outpatients with chronic heart failure in Korea. Left ventricular ejection fraction and New York Heart Association classifications were chart reviewed. Information pertaining to levels of physical activity, exercise self-efficacy, and quality of life were collected using self-administered questionnaires. Data were analyzed using descriptive statistics, t tests, analyses of variance, correlations, and hierarchical multiple regressions. About 60% of participants were physically inactive, and most showed relatively low exercise self-efficacy. The mean quality-of-life score was 80.09. The significant correlates for quality of life were poverty, functional status, physical inactivity, and exercise self-efficacy. Collectively, these four variables accounted for 50% of the observed total variance in quality of life. Approaches that focus on enhancing exercise self-efficacy may improve patient-centered outcomes in those with chronic heart failure. In light of the low level of exercise self-efficacy reported and the demonstrated ability of this factor to predict quality of life, the development of effective strategies to enhance exercise self-efficacy offers a novel and effective approach to improving the quality of life of patients with chronic heart failure. Nurses should be proactive in advising patients with chronic heart failure to be more physically active and to enhance their self-confidence in diverse ways.

  2. In-situ microscale through-silicon via strain measurements by synchrotron x-ray microdiffraction exploring the physics behind data interpretation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xi; School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332; Thadesar, Paragkumar A.

    2014-09-15

    In-situ microscale thermomechanical strain measurements have been performed in combination with synchrotron x-ray microdiffraction to understand the fundamental cause of failures in microelectronics devices with through-silicon vias. The physics behind the raster scan and data analysis of the measured strain distribution maps is explored utilizing the energies of indexed reflections from the measured data and applying them for beam intensity analysis and effective penetration depth determination. Moreover, a statistical analysis is performed for the beam intensity and strain distributions along the beam penetration path to account for the factors affecting peak search and strain refinement procedure.

  3. Stroboscopic Imaging Interferometer for MEMS Performance Measurement

    DTIC Science & Technology

    2007-07-15

    Optical Iocusing L.aser Fiber Optics I) c 0 Mim er Collimator - C d Microcope lcam. indo Cold Objcclive Splitte FingerCCD "Mount irnro MEMS PicL zStack...Electronics and Photonics Laboratory: Microelectronics, VLSI reliability, failure analysis, solid-state device physics, compound semiconductors

  4. Long-term effectiveness of telephone-based health coaching for heart failure patients: A post-only randomised controlled trial.

    PubMed

    Tiede, Michel; Dwinger, Sarah; Herbarth, Lutz; Härter, Martin; Dirmaier, Jörg

    2017-09-01

    Introduction The * Equal contributors. health-status of heart failure patients can be improved to some extent by disease self-management. One method of developing such skills is telephone-based health coaching. However, the effects of telephone-based health coaching remain inconclusive. The aim of this study was to evaluate the effects of telephone-based health coaching for people with heart failure. Methods A total sample of 7186 patients with various chronic diseases was randomly assigned to either the coaching or the control group. Then 184 patients with heart failure were selected by International Classification of Diseases (ICD)-10 code for subgroup analysis. Data were collected at 24 and 48 months after the beginning of the coaching. The primary outcome was change in quality of life. Secondary outcomes were changes in depression and anxiety, health-related control beliefs, control preference, health risk behaviour and health-related behaviours. Statistical analyses included a per-protocol evaluation, employing analysis of variance and analysis of covariance (ANCOVA) as well as Mann-Whitney U tests. Results Participants' average age was 73 years (standard deviation (SD) = 9) and the majority were women (52.8%). In ANCOVA analyses there were no significant differences between groups for the change in quality of life (QoL) . However, the coaching group reported a significantly higher level of physical activity ( p = 0.03), lower intake of non-prescribed drugs ( p = 0.04) and lower levels of stress ( p = 0.02) than the control group. Mann-Whitney U tests showed a different external locus of control ( p = 0.014), and higher reduction in unhealthy nutrition ( p = 0.019), physical inactivity ( p = 0.004) and stress ( p = 0.028). Discussion Our results suggest that telephone-based health coaching has no effect on QoL, anxiety and depression of heart failure patients, but helps in improving certain risk behaviours and changes the locus of control to be more externalised.

  5. Experimental and failure analysis of the prosthetic finger joint implants

    NASA Astrophysics Data System (ADS)

    Naidu, Sanjiv H.

    Small joint replacement arthroplasty of the hand is a well accepted surgical procedure to restore function and cosmesis in an individual with a crippled hand. Silicone elastomers have been used as prosthetic material in various small hand joints for well over three decades. Although the clinical science aspects of silicone elastomer failure are well known, the physical science aspects of prosthetic failure are scant and vague. In the following thesis, using both an animal model, and actual retrieved specimens which have failed in human service, experimental and failure analysis of silicone finger joints are presented. Fractured surfaces of retrieved silicone trapezial implants, and silicone finger joint implants were studied with both FESEM and SEM; the mode of failure for silicone trapezium is by wear polishing, whereas the finger joint implants failed either by fatigue fracture or tearing of the elastomer, or a combination of both. Thermal analysis revealed that the retrieved elastomer implants maintained its viscoelastic properties throughout the service period. In order to provide for a more functional and physiologic arthroplasty a novel finger joint (Rolamite prosthesis) is proposed using more recently developed thermoplastic polymers. The following thesis also addresses the outcome of the experimental studies of the Rolamite prosthesis in a rabbit animal model, in addition to the failure analysis of the thermoplastic polymers while in service in an in vivo synovial environment. Results of retrieved Rolamite specimens suggest that the use for thermoplastic elastomers such as block copolymer based elastomers in a synovial environment such as a mammalian joint may very well be limited.

  6. Riding the Right Wavelet: Quantifying Scale Transitions in Fractured Rocks

    NASA Astrophysics Data System (ADS)

    Rizzo, Roberto E.; Healy, David; Farrell, Natalie J.; Heap, Michael J.

    2017-12-01

    The mechanics of brittle failure is a well-described multiscale process that involves a rapid transition from distributed microcracks to localization along a single macroscopic rupture plane. However, considerable uncertainty exists regarding both the length scale at which this transition occurs and the underlying causes that prompt this shift from a distributed to a localized assemblage of cracks or fractures. For the first time, we used an image analysis tool developed to investigate orientation changes at different scales in images of fracture patterns in faulted materials, based on a two-dimensional continuous wavelet analysis. We detected the abrupt change in the fracture pattern from distributed tensile microcracks to localized shear failure in a fracture network produced by triaxial deformation of a sandstone core plug. The presented method will contribute to our ability of unraveling the physical processes at the base of catastrophic rock failure, including the nucleation of earthquakes, landslides, and volcanic eruptions.

  7. Treatment of esophageal anastomotic leakage with self-expanding metal stents: analysis of risk factors for treatment failure

    PubMed Central

    Persson, Saga; Rouvelas, Ioannis; Kumagai, Koshi; Song, Huan; Lindblad, Mats; Lundell, Lars; Nilsson, Magnus; Tsai, Jon A.

    2016-01-01

    Background and study aim: The endoscopic placement of self-expandable metallic esophageal stents (SEMS) has become the preferred primary treatment for esophageal anastomotic leakage in many institutions. The aim of this study was to investigate possible risk factors for failure of SEMS-based therapy in patients with esophageal anastomotic leakage. Patients and methods: Beginning in 2003, all patients with an esophageal leak were initially approached and assessed for temporary closure with a SEMS. Until 2014, all patients at the Karolinska University Hospital with a leak from an esophagogastric or esophagojejunal anastomosis were identified. Data regarding the characteristics of the patients and leaks and the treatment outcomes were compiled. Failure of the SEMS treatment strategy was defined as death due to the leak or a major change in management strategy. The risk factors for treatment failure were analyzed with simple and multivariable logistic regression statistics. Results: A total of 447 patients with an esophagogastric or esophagojejunal anastomosis were identified. Of these patients, 80 (18 %) had an anastomotic leak, of whom 46 (58 %) received a stent as first-line treatment. In 29 of these 46 patients, the leak healed without any major change in treatment strategy. Continuous leakage after the application of a stent, decreased physical performance preoperatively, and concomitant esophagotracheal fistula were identified as independent risk factors for failure with multivariable logistic regression analysis. Conclusion: Stent treatment for esophageal anastomotic leakage is successful in the majority of cases. Continuous leakage after initial stent insertion, decreased physical performance preoperatively, and the development of an esophagotracheal fistula decrease the probability of successful treatment. PMID:27092321

  8. Performance and Reliability Analysis of Water Distribution Systems under Cascading Failures and the Identification of Crucial Pipes

    PubMed Central

    Shuang, Qing; Zhang, Mingyuan; Yuan, Yongbo

    2014-01-01

    As a mean of supplying water, Water distribution system (WDS) is one of the most important complex infrastructures. The stability and reliability are critical for urban activities. WDSs can be characterized by networks of multiple nodes (e.g. reservoirs and junctions) and interconnected by physical links (e.g. pipes). Instead of analyzing highest failure rate or highest betweenness, reliability of WDS is evaluated by introducing hydraulic analysis and cascading failures (conductive failure pattern) from complex network. The crucial pipes are identified eventually. The proposed methodology is illustrated by an example. The results show that the demand multiplier has a great influence on the peak of reliability and the persistent time of the cascading failures in its propagation in WDS. The time period when the system has the highest reliability is when the demand multiplier is less than 1. There is a threshold of tolerance parameter exists. When the tolerance parameter is less than the threshold, the time period with the highest system reliability does not meet minimum value of demand multiplier. The results indicate that the system reliability should be evaluated with the properties of WDS and the characteristics of cascading failures, so as to improve its ability of resisting disasters. PMID:24551102

  9. Investigating failure behavior and origins under supposed "shear bond" loading.

    PubMed

    Sultan, Hassam; Kelly, J Robert; Kazemi, Reza B

    2015-07-01

    This study evaluated failure behavior when resin-composite cylinders bonded to dentin fractured under traditional "shear" testing. Failure was assessed by scaling of failure loads to changes in cylinder radii and fracture surface analysis. Three stress models were examined including failure by: bonded area; flat-on-cylinder contact; and, uniformly-loaded, cantilevered-beam. Nine 2-mm dentin occlusal dentin discs for each radii tested were embedded in resin and bonded to resin-composite cylinders; radii (mm)=0.79375; 1.5875; 2.38125; 3.175. Samples were "shear" tested at 1.0mm/min. Following testing, disks were finished with silicone carbide paper (240-600grit) to remove residual composite debris and tested again using different radii. Failure stresses were calculated for: "shear"; flat-on-cylinder contact; and, bending of a uniformly-loaded cantilevered beam. Stress equations and constants were evaluated for each model. Fracture-surface analysis was performed. Failure stresses calculated as flat-on-cylinder contact scaled best with its radii relationship. Stress equation constants were constant for failure from the outside surface of the loaded cylinders and not with the bonded surface area or cantilevered beam. Contact failure stresses were constant over all specimen sizes. Fractography reinforced that failures originated from loaded cylinder surface and were unrelated to the bonded surface area. "Shear bond" testing does not appear to test the bonded interface. Load/area "stress" calculations have no physical meaning. While failure is related to contact stresses, the mechanism(s) likely involve non-linear damage accumulation, which may only indirectly be influenced by the interface. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  10. The predictive value of physical examination findings in patients with suspected acute heart failure syndrome.

    PubMed

    Jang, Timothy B; Aubin, Chandra; Naunheim, Rosanne; Lewis, Lawrence M; Kaji, Amy H

    2012-06-01

    It can be difficult to differentiate acute heart failure syndrome (AHFS) from other causes of acute dyspnea, especially when patients present in extremis. The objective of the study was to determine the predictive value of physical examination findings for pulmonary edema and elevated B-type natriuretic peptide (BNP) levels in patients with suspected AHFS. This was a secondary analysis of a previously reported prospective study of jugular vein ultrasonography in patients with suspected AHFS. Charts were reviewed for physical examination findings, which were then compared to pulmonary edema on chest radiography (CXR) read by radiologists blinded to clinical information and BNP levels measured at presentation. The predictive value of every sign and combination of signs for pulmonary edema on CXR or an elevated BNP was poor. Since physical examination findings alone are not predictive of pulmonary edema or an elevated BNP, clinicians should have a low threshold for using CXR or BNP in clinical evaluation. This brief research report suggests that no physical examination finding or constellation of findings can be used to reliably predict pulmonary edema or an elevated BNP in patients with suspected AHFS.

  11. Efficient Simulation and Abuse Modeling of Mechanical-Electrochemical-Thermal Phenomena in Lithium-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santhanagopalan, Shriram; Smith, Kandler A; Graf, Peter A

    NREL's Energy Storage team is exploring the effect of mechanical crush of lithium ion cells on their thermal and electrical safety. PHEV cells, fresh as well as ones aged over 8 months under different temperatures, voltage windows, and charging rates, were subjected to destructive physical analysis. Constitutive relationship and failure criteria were developed for the electrodes, separator as well as packaging material. The mechanical models capture well, the various modes of failure across different cell components. Cell level validation is being conducted by Sandia National Laboratories.

  12. Patients' experiences of physical limitations in daily life activities when suffering from chronic heart failure; a phenomenographic analysis.

    PubMed

    Pihl, Emma; Fridlund, Bengt; Mårtensson, Jan

    2011-03-01

    The aim of the study was to describe how patients suffering from chronic heart failure conceived their physical limitations in daily life activities. An explorative and qualitative design with a phenomenographic approach was chosen, a total of 15 patients were interviewed. The findings indicate that participants perceived a variety of structural aspects pertaining to physical limitations in activities of daily life which resulted in four referential aspects. Need of finding practical solutions in daily life focused on how life had to be changed and other ways of performing activities of daily life had to be invented. Having realistic expectations about the future was characterised by belief that the future itself would be marked by change in physical functioning, but an incentive to maintain functions and activities ensured good quality of or even increased capacity in daily life. Not believing in one's own ability included the perception of having no opportunity to improve ability to perform activities of daily life. There were perceptions of undesired passivity, undefined fear of straining themselves or performing activities that could endanger their health in addition to uncertainty about the future. In Losing one's social role in daily life, participants described losing their social network and their position in society and family because of limited physical capacity. A lack of important issues, mental and physical, occurred when physical capacity was lost. In conclusion, patients suffering from chronic heart failure found new solutions to manage activities in daily life, including willingness to change focus and identify other ways of doing important things. Patients had an incentive to maintain functions and activities to ensure a good quality of and strengthen their physical capacity in daily life. Inability to trust in their physical capacity in combination with experienced limitations in daily life prevented patients from attempting to increase activities. © 2010 The Authors. Scandinavian Journal of Caring Sciences © 2010 Nordic College of Caring Science.

  13. Physical nature of longevity of light actinides in dynamic failure phenomenon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uchaev, A. Ya., E-mail: uchaev@expd.vniief.ru; Punin, V. T.; Selchenkova, N. I.

    It is shown in this work that the physical nature of the longevity of light actinides under extreme conditions in a range of nonequilibrium states of t ∼ 10{sup –6}–10{sup –10} s is determined by the time needed for the formation of a critical concentration of a cascade of failure centers, which changes connectivity of the body. These centers form a percolation cluster. The longevity is composed of waiting time t{sub w} for the appearance of failure centers and clusterization time t{sub c} of cascade of failure centers, when connectivity in the system of failure centers and the percolation clustermore » arise. A unique mechanism of the dynamic failure process, a unique order parameter, and an equal dimensionality of the space in which the process occurs determine the physical nature of the longevity of metals, including fissionable materials.« less

  14. Launch Vehicle Debris Models and Crew Vehicle Ascent Abort Risk

    NASA Technical Reports Server (NTRS)

    Gee, Ken; Lawrence, Scott

    2013-01-01

    For manned space launch systems, a reliable abort system is required to reduce the risks associated with a launch vehicle failure during ascent. Understanding the risks associated with failure environments can be achieved through the use of physics-based models of these environments. Debris fields due to destruction of the launch vehicle is one such environment. To better analyze the risk posed by debris, a physics-based model for generating launch vehicle debris catalogs has been developed. The model predicts the mass distribution of the debris field based on formulae developed from analysis of explosions. Imparted velocity distributions are computed using a shock-physics code to model the explosions within the launch vehicle. A comparison of the debris catalog with an existing catalog for the Shuttle external tank show good comparison in the debris characteristics and the predicted debris strike probability. The model is used to analyze the effects of number of debris pieces and velocity distributions on the strike probability and risk.

  15. Perceived success/failure and attributions associated with self-regulatory efficacy to meet physical activity recommendations for women with arthritis.

    PubMed

    Spink, Kevin S; Brawley, Lawrence R; Gyurcsik, Nancy C

    2016-10-01

    The relationship between attributional dimensions women assign to the cause of their perceived success or failure at meeting the recommended physical activity dose and self-regulatory efficacy for future physical activity was examined among women with arthritis. Women (N = 117) aged 18-84 years, with self-reported medically-diagnosed arthritis, completed on-line questions in the fall of 2013 assessing endurance physical activity, perceived outcome for meeting the recommended levels of endurance activity, attributions for one's success or failure in meeting the recommendations, and self-regulatory efficacy to schedule/plan endurance activity over the next month. The main theoretically-driven finding revealed that the interaction of the stability dimension with perceived success/failure was significantly related to self-regulatory efficacy for scheduling and planning future physical activity (β = 0.35, p = .002). Outcomes attributed to more versus less stable factors accentuated differences in self-regulatory efficacy beliefs following perceived success and failure at being active. It appears that attributional dimensions were associated with self-regulatory efficacy in women with arthritis. This suggests that rather than objectively observed past mastery experience, women's subjective perceptions and explanations of their past experiences were related to efficacy beliefs, especially following a failure experience.

  16. Limited-scope probabilistic safety analysis for the Los Alamos Meson Physics Facility (LAMPF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharirli, M.; Rand, J.L.; Sasser, M.K.

    1992-01-01

    The reliability of instrumentation and safety systems is a major issue in the operation of accelerator facilities. A probabilistic safety analysis was performed or the key safety and instrumentation systems at the Los Alamos Meson Physics Facility (LAMPF). in Phase I of this unique study, the Personnel Safety System (PSS) and the Current Limiters (XLs) were analyzed through the use of the fault tree analyses, failure modes and effects analysis, and criticality analysis. Phase II of the program was done to update and reevaluate the safety systems after the Phase I recommendations were implemented. This paper provides a brief reviewmore » of the studies involved in Phases I and II of the program.« less

  17. Limited-scope probabilistic safety analysis for the Los Alamos Meson Physics Facility (LAMPF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharirli, M.; Rand, J.L.; Sasser, M.K.

    1992-12-01

    The reliability of instrumentation and safety systems is a major issue in the operation of accelerator facilities. A probabilistic safety analysis was performed or the key safety and instrumentation systems at the Los Alamos Meson Physics Facility (LAMPF). in Phase I of this unique study, the Personnel Safety System (PSS) and the Current Limiters (XLs) were analyzed through the use of the fault tree analyses, failure modes and effects analysis, and criticality analysis. Phase II of the program was done to update and reevaluate the safety systems after the Phase I recommendations were implemented. This paper provides a brief reviewmore » of the studies involved in Phases I and II of the program.« less

  18. SU-E-T-179: Clinical Impact of IMRT Failure Modes at Or Near TG-142 Tolerance Criteria Levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faught, J Tonigan; Balter, P; Johnson, J

    2015-06-15

    Purpose: Quantitatively assess the clinical impact of 11 critical IMRT dose delivery failure modes. Methods: Eleven step-and-shoot IMRT failure modes (FMs) were introduced into twelve Pinnacle v9.8 treatment plans. One standard and one highly modulated plan on the IROC IMRT phantom and ten previous H&N patient treatment plans were used. FMs included physics components covered by basic QA near tolerance criteria levels (TG-142) such as beam energy, MLC positioning, and MLC modeling. Resultant DVHs were compared to those of failure-free plans and the severity of plan degradation was assessed considering PTV coverage and OAR and normal tissue tolerances and usedmore » for FMEA severity scoring. Six of these FMs were physically simulated and phantom irradiations performed. TLD and radiochromic film results are used for comparison to treatment planning studies. Results: Based on treatment planning studies, the largest clinical impact from the phantom cases was induced by 2 mm systematic MLC shift in one bank with the combination of a D95% target under dose near 16% and OAR overdose near 8%. Cord overdoses of 5%–11% occurred with gantry angle, collimator angle, couch angle, MLC leaf end modeling, and MLC transmission and leakage modeling FMs. PTV coverage and/or OAR sparing was compromised in all FMs introduced in phantom plans with the exception of CT number to electron density tables, MU linearity, and MLC tongue-and-groove modeling. Physical measurements did not entirely agree with treatment planning results. For example, symmetry errors resulted in the largest physically measured discrepancies of up to 3% in the PTVs while a maximum of 0.5% deviation was seen in the treatment planning studies. Patient treatment plan study results are under analysis. Conclusion: Even in the simplistic anatomy of the IROC phantom, some basic physics FMs, just outside of TG-142 tolerance criteria, appear to have the potential for large clinical implications.« less

  19. Frailty Assessment in Heart Failure: an Overview of the Multi-domain Approach.

    PubMed

    McDonagh, Julee; Ferguson, Caleb; Newton, Phillip J

    2018-02-01

    The study aims (1) to provide a contemporary description of frailty assessment in heart failure and (2) to provide an overview of multi-domain frailty assessment in heart failure. Frailty assessment is an important predictive measure for mortality and hospitalisation in individuals with heart failure. To date, there are no frailty assessment instruments validated for use in heart failure. This has resulted in significant heterogeneity between studies regarding the assessment of frailty. The most common frailty assessment instrument used in heart failure is the Frailty Phenotype which focuses on five physical domains of frailty; the appropriateness a purely physical measure of frailty in individuals with heart failure who frequently experience decreased exercise tolerance and shortness of breath is yet to be determined. A limited number of studies have approached frailty assessment using a multi-domain view which may be more clinically relevant in heart failure. There remains a lack of consensus regarding frailty assessment and an absence of a validated instrument in heart failure. Despite this, frailty continues to be assessed frequently, primarily for research purposes, using predominantly physical frailty measures. A more multidimensional view of frailty assessment using a multi-domain approach will likely be more sensitive to identifying at risk patients.

  20. Origin of anomalous inverse notch effect in bulk metallic glasses

    NASA Astrophysics Data System (ADS)

    Pan, J.; Zhou, H. F.; Wang, Z. T.; Li, Y.; Gao, H. J.

    2015-11-01

    Understanding notch-related failure is crucial for the design of reliable engineering structures. However, substantial controversies exist in the literature on the notch effect in bulk metallic glasses (BMGs), and the underlying physical mechanism responsible for the apparent confusion is still poorly understood. Here we investigate the physical origin of an inverse notch effect in a Zr-based metallic glass, where the tensile strength of the material is dramatically enhanced, rather than decreased (as expected from the stress concentration point of view), by introduction of a notch. Our experiments and molecular dynamics simulations show that the seemingly anomalous inverse notch effect is in fact caused by a transition in failure mechanism from shear banding at the notch tip to cavitation and void coalescence. Based on our theoretical analysis, the transition occurs as the stress triaxiality in the notched sample exceeds a material-dependent threshold value. Our results fill the gap in the current understanding of BMG strength and failure mechanism by resolving the conflicts on notch effects and may inspire re-interpretation of previous reports on BMG fracture toughness where pre-existing notches were routinely adopted.

  1. Structural health monitoring of wind turbine blades : SE 265 Final Project.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barkley, W. C.; Jacobs, Laura D.; Rutherford, A. C.

    2006-03-23

    ACME Wind Turbine Corporation has contacted our dynamic analysis firm regarding structural health monitoring of their wind turbine blades. ACME has had several failures in previous years. Examples are shown in Figure 1. These failures have resulted in economic loss for the company due to down time of the turbines (lost revenue) and repair costs. Blade failures can occur in several modes, which may depend on the type of construction and load history. Cracking and delamination are some typical modes of blade failure. ACME warranties its turbines and wishes to decrease the number of blade failures they have to repairmore » and replace. The company wishes to implement a real time structural health monitoring system in order to better understand when blade replacement is necessary. Because of warranty costs incurred to date, ACME is interested in either changing the warranty period for the blades in question or predicting imminent failure before it occurs. ACME's current practice is to increase the number of physical inspections when blades are approaching the end of their fatigue lives. Implementation of an in situ monitoring system would eliminate or greatly reduce the need for such physical inspections. Another benefit of such a monitoring system is that the life of any given component could be extended since real conditions would be monitored. The SHM system designed for ACME must be able to operate while the wind turbine is in service. This means that wireless communication options will likely be implemented. Because blade failures occur due to cyclic stresses in the blade material, the sensing system will focus on monitoring strain at various points.« less

  2. Carbon Fiber Strand Tensile Failure Dynamic Event Characterization

    NASA Technical Reports Server (NTRS)

    Johnson, Kenneth L.; Reeder, James

    2016-01-01

    There are few if any clear, visual, and detailed images of carbon fiber strand failures under tension useful for determining mechanisms, sequences of events, different types of failure modes, etc. available to researchers. This makes discussion of physics of failure difficult. It was also desired to find out whether the test article-to-test rig interface (grip) played a part in some failures. These failures have nothing to do with stress rupture failure, thus representing a source of waste for the larger 13-00912 investigation into that specific failure type. Being able to identify or mitigate any competing failure modes would improve the value of the 13-00912 test data. The beginnings of the solution to these problems lay in obtaining images of strand failures useful for understanding physics of failure and the events leading up to failure. Necessary steps include identifying imaging techniques that result in useful data, using those techniques to home in on where in a strand and when in the sequence of events one should obtain imaging data.

  3. Determining bruise etiology in muscle tissue using finite element analysis.

    PubMed

    Tang, Kevin; Sharpe, Wyatt; Schulz, Alexandra; Tam, Edric; Grosse, Ian; Tis, John; Cullinane, Dennis

    2014-03-01

    Bruising, the result of capillary failure, is a common physical exam finding due to blunt trauma and, depending on location and severity, a potential indicator of abuse. Despite its clinical relevance, few studies have investigated the etiology of capillary failure. The goal of this study was to determine whether capillaries primarily fail under shear stress or hydraulic-induced tensile stress. An arteriole bifurcating into four capillaries was modeled using ANSYS 14.0 (®) . The capillaries were embedded in muscle tissue and a pressure of 20.4 kPa was applied. Any tensile stress exceeding 8.4 × 10(4)  Pa was considered failure. Results showed that failure occurred directly under the impact zone and where capillaries bifurcated, rather than along the line of greatest shear stress, indicating that internal tensile stress is likely the primary mode of capillary failure in bruising. These results are supported by the concept that bruising can occur via blunt trauma in which no shearing lacerations occur. © 2013 American Academy of Forensic Sciences.

  4. A Novel Multiscale Physics Based Progressive Failure Methodology for Laminated Composite Structures

    NASA Technical Reports Server (NTRS)

    Pineda, Evan J.; Waas, Anthony M.; Bednarcyk, Brett A.; Collier, Craig S.; Yarrington, Phillip W.

    2008-01-01

    A variable fidelity, multiscale, physics based finite element procedure for predicting progressive damage and failure of laminated continuous fiber reinforced composites is introduced. At every integration point in a finite element model, progressive damage is accounted for at the lamina-level using thermodynamically based Schapery Theory. Separate failure criteria are applied at either the global-scale or the microscale in two different FEM models. A micromechanics model, the Generalized Method of Cells, is used to evaluate failure criteria at the micro-level. The stress-strain behavior and observed failure mechanisms are compared with experimental results for both models.

  5. Seismic precursory patterns before a cliff collapse and critical point phenomena

    USGS Publications Warehouse

    Amitrano, D.; Grasso, J.-R.; Senfaute, G.

    2005-01-01

    We analyse the statistical pattern of seismicity before a 1-2 103 m3 chalk cliff collapse on the Normandie ocean shore, Western France. We show that a power law acceleration of seismicity rate and energy in both 40 Hz-1.5 kHz and 2 Hz-10kHz frequency range, is defined on 3 orders of magnitude, within 2 hours from the collapse time. Simultaneously, the average size of the seismic events increases toward the time to failure. These in situ results are derived from the only station located within one rupture length distance from the rock fall rupture plane. They mimic the "critical point" like behavior recovered from physical and numerical experiments before brittle failures and tertiary creep failures. Our analysis of this first seismic monitoring data of a cliff collapse suggests that the thermodynamic phase transition models for failure may apply for cliff collapse. Copyright 2005 by the American Geophysical Union.

  6. Nonlinear structural crack growth monitoring

    DOEpatents

    Welch, Donald E.; Hively, Lee M.; Holdaway, Ray F.

    2002-01-01

    A method and apparatus are provided for the detection, through nonlinear manipulation of data, of an indicator of imminent failure due to crack growth in structural elements. The method is a process of determining energy consumption due to crack growth and correlating the energy consumption with physical phenomena indicative of a failure event. The apparatus includes sensors for sensing physical data factors, processors or the like for computing a relationship between the physical data factors and phenomena indicative of the failure event, and apparatus for providing notification of the characteristics and extent of such phenomena.

  7. Capturing strain localization behind a geosynthetic-reinforced soil wall

    NASA Astrophysics Data System (ADS)

    Lai, Timothy Y.; Borja, Ronaldo I.; Duvernay, Blaise G.; Meehan, Richard L.

    2003-04-01

    This paper presents the results of finite element (FE) analyses of shear strain localization that occurred in cohesionless soils supported by a geosynthetic-reinforced retaining wall. The innovative aspects of the analyses include capturing of the localized deformation and the accompanying collapse mechanism using a recently developed embedded strong discontinuity model. The case study analysed, reported in previous publications, consists of a 3.5-m tall, full-scale reinforced wall model deforming in plane strain and loaded by surcharge at the surface to failure. Results of the analysis suggest strain localization developing from the toe of the wall and propagating upward to the ground surface, forming a curved failure surface. This is in agreement with a well-documented failure mechanism experienced by the physical wall model showing internal failure surfaces developing behind the wall as a result of the surface loading. Important features of the analyses include mesh sensitivity studies and a comparison of the localization properties predicted by different pre-localization constitutive models, including a family of three-invariant elastoplastic constitutive models appropriate for frictional/dilatant materials. Results of the analysis demonstrate the potential of the enhanced FE method for capturing a collapse mechanism characterized by the presence of a failure, or slip, surface through earthen materials.

  8. Identifying novel phenotypes of acute heart failure using cluster analysis of clinical variables.

    PubMed

    Horiuchi, Yu; Tanimoto, Shuzou; Latif, A H M Mahbub; Urayama, Kevin Y; Aoki, Jiro; Yahagi, Kazuyuki; Okuno, Taishi; Sato, Yu; Tanaka, Tetsu; Koseki, Keita; Komiyama, Kota; Nakajima, Hiroyoshi; Hara, Kazuhiro; Tanabe, Kengo

    2018-07-01

    Acute heart failure (AHF) is a heterogeneous disease caused by various cardiovascular (CV) pathophysiology and multiple non-CV comorbidities. We aimed to identify clinically important subgroups to improve our understanding of the pathophysiology of AHF and inform clinical decision-making. We evaluated detailed clinical data of 345 consecutive AHF patients using non-hierarchical cluster analysis of 77 variables, including age, sex, HF etiology, comorbidities, physical findings, laboratory data, electrocardiogram, echocardiogram and treatment during hospitalization. Cox proportional hazards regression analysis was performed to estimate the association between the clusters and clinical outcomes. Three clusters were identified. Cluster 1 (n=108) represented "vascular failure". This cluster had the highest average systolic blood pressure at admission and lung congestion with type 2 respiratory failure. Cluster 2 (n=89) represented "cardiac and renal failure". They had the lowest ejection fraction (EF) and worst renal function. Cluster 3 (n=148) comprised mostly older patients and had the highest prevalence of atrial fibrillation and preserved EF. Death or HF hospitalization within 12-month occurred in 23% of Cluster 1, 36% of Cluster 2 and 36% of Cluster 3 (p=0.034). Compared with Cluster 1, risk of death or HF hospitalization was 1.74 (95% CI, 1.03-2.95, p=0.037) for Cluster 2 and 1.82 (95% CI, 1.13-2.93, p=0.014) for Cluster 3. Cluster analysis may be effective in producing clinically relevant categories of AHF, and may suggest underlying pathophysiology and potential utility in predicting clinical outcomes. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Enhanced Schapery Theory Software Development for Modeling Failure of Fiber-Reinforced Laminates

    NASA Technical Reports Server (NTRS)

    Pineda, Evan J.; Waas, Anthony M.

    2013-01-01

    Progressive damage and failure analysis (PDFA) tools are needed to predict the nonlinear response of advanced fiber-reinforced composite structures. Predictive tools should incorporate the underlying physics of the damage and failure mechanisms observed in the composite, and should utilize as few input parameters as possible. The purpose of the Enhanced Schapery Theory (EST) was to create a PDFA tool that operates in conjunction with a commercially available finite element (FE) code (Abaqus). The tool captures the physics of the damage and failure mechanisms that result in the nonlinear behavior of the material, and the failure methodology employed yields numerical results that are relatively insensitive to changes in the FE mesh. The EST code is written in Fortran and compiled into a static library that is linked to Abaqus. A Fortran Abaqus UMAT material subroutine is used to facilitate the communication between Abaqus and EST. A clear distinction between damage and failure is imposed. Damage mechanisms result in pre-peak nonlinearity in the stress strain curve. Four internal state variables (ISVs) are utilized to control the damage and failure degradation. All damage is said to result from matrix microdamage, and a single ISV marks the micro-damage evolution as it is used to degrade the transverse and shear moduli of the lamina using a set of experimentally obtainable matrix microdamage functions. Three separate failure ISVs are used to incorporate failure due to fiber breakage, mode I matrix cracking, and mode II matrix cracking. Failure initiation is determined using a failure criterion, and the evolution of these ISVs is controlled by a set of traction-separation laws. The traction separation laws are postulated such that the area under the curves is equal to the fracture toughness of the material associated with the corresponding failure mechanism. A characteristic finite element length is used to transform the traction-separation laws into stress-strain laws. The ISV evolution equations are derived in a thermodynamically consistent manner by invoking the stationary principle on the total work of the system with respect to each ISV. A novel feature is the inclusion of both pre-peak damage and appropriately scaled, post-peak strain softening failure. Also, the characteristic elements used in the failure degradation scheme are calculated using the element nodal coordinates, rather than simply the square root of the area of the element.

  10. Chapter 7: Nondestructive Testing in the Urban Forest

    Treesearch

    R. Bruce Allison; Xiping Wang

    2015-01-01

    Trees within an urban community provide measurable aesthetic, social, ecological and economic benefits. When growing normally and stably, they contribute to making a city more livable and comfortable for its inhabitants. However, as large physical structures in close proximity to people and property, their failure can cause harm. The science of tree stability analysis...

  11. An experimental evaluation of software redundancy as a strategy for improving reliability

    NASA Technical Reports Server (NTRS)

    Eckhardt, Dave E., Jr.; Caglayan, Alper K.; Knight, John C.; Lee, Larry D.; Mcallister, David F.; Vouk, Mladen A.; Kelly, John P. J.

    1990-01-01

    The strategy of using multiple versions of independently developed software as a means to tolerate residual software design faults is suggested by the success of hardware redundancy for tolerating hardware failures. Although, as generally accepted, the independence of hardware failures resulting from physical wearout can lead to substantial increases in reliability for redundant hardware structures, a similar conclusion is not immediate for software. The degree to which design faults are manifested as independent failures determines the effectiveness of redundancy as a method for improving software reliability. Interest in multi-version software centers on whether it provides an adequate measure of increased reliability to warrant its use in critical applications. The effectiveness of multi-version software is studied by comparing estimates of the failure probabilities of these systems with the failure probabilities of single versions. The estimates are obtained under a model of dependent failures and compared with estimates obtained when failures are assumed to be independent. The experimental results are based on twenty versions of an aerospace application developed and certified by sixty programmers from four universities. Descriptions of the application, development and certification processes, and operational evaluation are given together with an analysis of the twenty versions.

  12. Multi-terabyte EIDE disk arrays running Linux RAID5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanders, D.A.; Cremaldi, L.M.; Eschenburg, V.

    2004-11-01

    High-energy physics experiments are currently recording large amounts of data and in a few years will be recording prodigious quantities of data. New methods must be developed to handle this data and make analysis at universities possible. Grid Computing is one method; however, the data must be cached at the various Grid nodes. We examine some storage techniques that exploit recent developments in commodity hardware. Disk arrays using RAID level 5 (RAID-5) include both parity and striping. The striping improves access speed. The parity protects data in the event of a single disk failure, but not in the case ofmore » multiple disk failures. We report on tests of dual-processor Linux Software RAID-5 arrays and Hardware RAID-5 arrays using a 12-disk 3ware controller, in conjunction with 250 and 300 GB disks, for use in offline high-energy physics data analysis. The price of IDE disks is now less than $1/GB. These RAID-5 disk arrays can be scaled to sizes affordable to small institutions and used when fast random access at low cost is important.« less

  13. Correlation between inner strength and health-promoting behaviors in women with heart failure.

    PubMed

    Hosseini, Meimanat; Vasli, Parvaneh; Rashidi, Sakineh; Shahsavari, Soodeh

    2016-08-01

    Inner strength is a factor for mental health and well-being and, consequently, a dynamic component of holistic healing. Health-promoting behaviors are appropriate activities to improve health status and prevent the progression of the functional defect resulting from heart failure. The present study aimed to determine the correlation between inner strength and health-promoting behaviors in women with heart failure referred to hospitals affiliated with Shahid Beheshti University of Medical Sciences (SBMU) in 2013. In this cross-sectional study, 145 women with hearth failure were selected through convenient sampling from the clients referred to hospitals affiliated with SBMU. The data collection tool included a three-section questionnaire of personal characteristics, inner strength, and health-promoting life profile II (HPLP II). The data analysis used descriptive statistical tests and Pearson correlation coefficient through SPSS version 20. A direct significant correlation was found between inner strength and all dimensions of health-promoting behaviors and overall health-promoting behaviors (p=0.000) as well as between all dimensions of inner strength (except for the dimension of knowing and searching with physical activity and the dimension of connectedness with personal accountability in healthcare as well as connectedness with physical activity) with health-promoting behaviors (p=0.000 to p=0008). To improve the level of health and well-being and reduce the costs of care services in women with health failure, close attention should be paid to developing and empowering their inner strength.

  14. Will electrical cyber-physical interdependent networks undergo first-order transition under random attacks?

    NASA Astrophysics Data System (ADS)

    Ji, Xingpei; Wang, Bo; Liu, Dichen; Dong, Zhaoyang; Chen, Guo; Zhu, Zhenshan; Zhu, Xuedong; Wang, Xunting

    2016-10-01

    Whether the realistic electrical cyber-physical interdependent networks will undergo first-order transition under random failures still remains a question. To reflect the reality of Chinese electrical cyber-physical system, the "partial one-to-one correspondence" interdependent networks model is proposed and the connectivity vulnerabilities of three realistic electrical cyber-physical interdependent networks are analyzed. The simulation results show that due to the service demands of power system the topologies of power grid and its cyber network are highly inter-similar which can effectively avoid the first-order transition. By comparing the vulnerability curves between electrical cyber-physical interdependent networks and its single-layer network, we find that complex network theory is still useful in the vulnerability analysis of electrical cyber-physical interdependent networks.

  15. Telemetry Option in the Measurement of Physical Activity for Patients with Heart Failure

    ERIC Educational Resources Information Center

    Melczer, Csaba; Melczer, László; Oláh, András; Sélleyné-Gyúró, Mónika; Welker, Zsanett; Ács, Pongrác

    2015-01-01

    Measurement of physical activity among patients with heart failure typically requires a special approach due to the patients' physical status. Nowadays, a technology is already available that can measure the kinematic movements in 3-D by a pacemaker and implantable defibrillator giving an assessment on software. The telemetry data can be…

  16. Use of a pretest strategy for physical therapist assistant programs to predict success rate on the national physical therapy exam.

    PubMed

    Sloas, Stacey B; Keith, Becky; Whitehead, Malcolm T

    2013-01-01

    This study investigated a pretest strategy that identified physical therapist assistant (PTA) students who were at risk of failure on the National Physical Therapy Examination (NPTE). Program assessment data from five cohorts of PTA students (2005-2009) were used to develop a stepwise multiple regression formula that predicted first-time NPTE licensure scores. Data used included the Nelson-Denny Reading Test, grades from eight core courses, grade point average upon admission to the program, and scores from three mock NPTE exams given during the program. Pearson correlation coefficients were calculated between each of the 15 variables and NPTE scores. Stepwise multiple regression analysis was performed using data collected at the ends of the first, second, and third (final) semesters of the program. Data from the class of 2010 were then used to validate the formula. The end-of-program formula accounted for the greatest variance (57%) in predicted scores. Those students scoring below a predicted scaled score of 620 were identified to be at risk of failure of the licensure exam. These students were counseled, and a remedial plan was developed based on regression predictions prior to them sitting for the licensure exam.

  17. A Prospective, Randomized Trial of Routine Duplex Ultrasound Surveillance on Arteriovenous Fistula Maturation.

    PubMed

    Han, Ahram; Min, Seung-Kee; Kim, Mi-Sook; Joo, Kwon Wook; Kim, Jungsun; Ha, Jongwon; Lee, Joongyub; Min, Sang-Il

    2016-10-07

    Use of arteriovenous fistulas, the most preferred type of access for hemodialysis, is limited by their high maturation failure rate. The aim of this study was to assess whether aggressive surveillance with routine duplex ultrasound and intervention can decrease the maturation failure rate of arteriovenous fistulas. We conducted a single-center, parallel-group, randomized, controlled trial of patients undergoing autogenous arteriovenous fistula. Patients were randomly assigned (1:1) to either the routine duplex or selective duplex group. In the routine duplex group, duplex ultrasound and physical examination were performed 2, 4, and 8 weeks postoperatively. In the selective duplex group, duplex examination was performed only when physical examination detected an abnormality. The primary end point was the maturation failure rate 8 weeks after fistula creation. Maturation failure was defined as the inability to achieve clinical maturation ( i.e. , a successful first use) and failure to achieve sonographic maturation (fistula flow >500 ml/min and diameter >6 mm) within 8 weeks. Between June 14, 2012, and June 25, 2014, 150 patients were enrolled (75 patients in each group), and 118 of those were included in the final analysis. The maturation failure rate was lower in the routine duplex group (8 of 59; 13.6%) than in the selective duplex group (15 of 59; 25.4%), but the difference was not statistically significant (odds ratio, 0.46; 95% confidence interval, 0.18 to 1.19; P =0.10). Factors associated with maturation failure were women (odds ratio, 3.84; 95% confidence interval, 1.05 to 14.06; P =0.04), coronary artery disease (odds ratio, 6.36; 95% confidence interval, 1.62 to 24.95; P <0.01), diabetes (odds ratio, 6.10; 95% confidence interval, 1.76 to 21.19; P <0.01), and the preoperative cephalic vein diameter (odds ratio, 0.30; 95% confidence interval, 0.13 to 0.71; P <0.01). Postoperative routine duplex surveillance failed to prove superiority compared with selective duplex after physical examination for reducing arteriovenous fistula maturation failure. However, the wide 95% confidence interval for the effect of intervention precludes a firm conclusion that routine duplex surveillance was not beneficial. Copyright © 2016 by the American Society of Nephrology.

  18. Towards Prognostics of Power MOSFETs: Accelerated Aging and Precursors of Failure

    NASA Technical Reports Server (NTRS)

    Celaya, Jose R.; Saxena, Abhinav; Wysocki, Philip; Saha, Sankalita; Goebel, Kai

    2010-01-01

    This paper presents research results dealing with power MOSFETs (metal oxide semiconductor field effect transistor) within the prognostics and health management of electronics. Experimental results are presented for the identification of the on-resistance as a precursor to failure of devices with die-attach degradation as a failure mechanism. Devices are aged under power cycling in order to trigger die-attach damage. In situ measurements of key electrical and thermal parameters are collected throughout the aging process and further used for analysis and computation of the on-resistance parameter. Experimental results show that the devices experience die-attach damage and that the on-resistance captures the degradation process in such a way that it could be used for the development of prognostics algorithms (data-driven or physics-based).

  19. Explosion/Blast Dynamics for Constellation Launch Vehicles Assessment

    NASA Technical Reports Server (NTRS)

    Baer, Mel; Crawford, Dave; Hickox, Charles; Kipp, Marlin; Hertel, Gene; Morgan, Hal; Ratzel, Arthur; Cragg, Clinton H.

    2009-01-01

    An assessment methodology is developed to guide quantitative predictions of adverse physical environments and the subsequent effects on the Ares-1 crew launch vehicle associated with the loss of containment of cryogenic liquid propellants from the upper stage during ascent. Development of the methodology is led by a team at Sandia National Laboratories (SNL) with guidance and support from a number of National Aeronautics and Space Administration (NASA) personnel. The methodology is based on the current Ares-1 design and feasible accident scenarios. These scenarios address containment failure from debris impact or structural response to pressure or blast loading from an external source. Once containment is breached, the envisioned assessment methodology includes predictions for the sequence of physical processes stemming from cryogenic tank failure. The investigative techniques, analysis paths, and numerical simulations that comprise the proposed methodology are summarized and appropriate simulation software is identified in this report.

  20. Multivariate analysis of fears in dental phobic patients according to a reduced FSS-II scale.

    PubMed

    Hakeberg, M; Gustafsson, J E; Berggren, U; Carlsson, S G

    1995-10-01

    This study analyzed and assessed dimensions of a questionnaire developed to measure general fears and phobias. A previous factor analysis among 109 dental phobics had revealed a five-factor structure with 22 items and an explained total variance of 54%. The present study analyzed the same material using a multivariate statistical procedure (LISREL) to reveal structural latent variables. The LISREL analysis, based on the correlation matrix, yielded a chi-square of 216.6 with 195 degrees of freedom (P = 0.138) and showed a model with seven latent variables. One was a general fear factor correlated to all 22 items. The other six factors concerned "Illness & Death" (5 items), "Failures & Embarrassment" (5 items), "Social situations" (5 items), "Physical injuries" (4 items), "Animals & Natural phenomena" (4 items). One item (opposite sex) was included in both "Failures & Embarrassment" and "Social situations". The last factor, "Social interaction", combined all the items in "Failures & Embarrassment" and "Social situations" (9 items). In conclusion, this multivariate statistical analysis (LISREL) revealed and confirmed a factor structure similar to our previous study, but added two important dimensions not shown with a traditional factor analysis. This reduced FSS-II version measures general fears and phobias and may be used on a routine clinical basis as well as in dental phobia research.

  1. A structured analysis of in vitro failure loads and failure modes of fiber, metal, and ceramic post-and-core systems.

    PubMed

    Fokkinga, Wietske A; Kreulen, Cees M; Vallittu, Pekka K; Creugers, Nico H J

    2004-01-01

    This study sought to aggregate literature data on in vitro failure loads and failure modes of prefabricated fiber-reinforced composite (FRC) post systems and to compare them to those of prefabricated metal, custom-cast, and ceramic post systems. The literature was searched using MEDLINE from 1984 to 2003 for dental articles in English. Keywords used were (post or core or buildup or dowel) and (teeth or tooth). Additional inclusion/exclusion steps were conducted, each step by two independent readers: (1) Abstracts describing post-and-core techniques to reconstruct endodontically treated teeth and their mechanical and physical characteristics were included (descriptive studies or reviews were excluded); (2) articles that included FRC post systems were selected; (3) in vitro studies, single-rooted human teeth, prefabricated FRC posts, and composite as the core material were the selection criteria; and (4) failure loads and modes were extracted from the selected papers, and failure modes were dichotomized (distinction was made between "favorable failures," defined as reparable failures, and "unfavorable failures,"defined as irreparable [root] fractures). The literature search revealed 1,984 abstracts. Included were 244, 42, and 12 articles in the first, second, and third selection steps, respectively. Custom-cast post systems showed higher failure loads than prefabricated FRC post systems, whereas ceramic showed lower failure loads. Significantly more favorable failures occurred with prefabricated FRC post systems than with prefabricated and custom-cast metal post systems. The variable "post system" had a significant effect on mean failure loads. FRC post systems more frequently showed favorable failure modes than did metal post systems.

  2. Effects of enhanced external counterpulsation on skeletal muscle gene expression in patients with severe heart failure.

    PubMed

    Melin, Michael; Montelius, Andreas; Rydén, Lars; Gonon, Adrian; Hagerman, Inger; Rullman, Eric

    2018-01-01

    Enhanced external counterpulsation (EECP) is a non-invasive treatment in which leg cuff compressions increase diastolic aortic pressure and coronary perfusion. EECP is offered to patients with refractory angina pectoris and increases physical capacity. Benefits in heart failure patients have been noted, but EECP is still considered to be experimental and its effects must be confirmed. The mechanism of action is still unclear. The aim of this study was to evaluate the effect of EECP on skeletal muscle gene expression and physical performance in patients with severe heart failure. Patients (n = 9) in NYHA III-IV despite pharmacological therapy were subjected to 35 h of EECP during 7 weeks. Before and after, lateral vastus muscle biopsies were obtained, and functional capacity was evaluated with a 6-min walk test. Skeletal muscle gene expression was evaluated using Affymetrix Hugene 1.0 arrays. Maximum walking distance increased by 15%, which is in parity to that achieved after aerobic exercise training in similar patients. Skeletal muscle gene expression analysis using Ingenuity Pathway Analysis showed an increased expression of two networks of genes with FGF-2 and IGF-1 as central regulators. The increase in gene expression was quantitatively small and no overlap with gene expression profiles after exercise training could be detected despite adequate statistical power. EECP treatment leads to a robust improvement in walking distance in patients with severe heart failure and does induce a skeletal muscle transcriptional response, but this response is small and with no significant overlap with the transcriptional signature seen after exercise training. © 2016 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  3. WE-G-BRC-02: Risk Assessment for HDR Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayadev, J.

    2016-06-15

    Failure Mode and Effects Analysis (FMEA) originated as an industrial engineering technique used for risk management and safety improvement of complex processes. In the context of radiotherapy, the AAPM Task Group 100 advocates FMEA as the framework of choice for establishing clinical quality management protocols. However, there is concern that widespread adoption of FMEA in radiation oncology will be hampered by the perception that implementation of the tool will have a steep learning curve, be extremely time consuming and labor intensive, and require additional resources. To overcome these preconceptions and facilitate the introduction of the tool into clinical practice, themore » medical physics community must be educated in the use of this tool and the ease in which it can be implemented. Organizations with experience in FMEA should share their knowledge with others in order to increase the implementation, effectiveness and productivity of the tool. This session will include a brief, general introduction to FMEA followed by a focus on practical aspects of implementing FMEA for specific clinical procedures including HDR brachytherapy, physics plan review and radiosurgery. A description of common equipment and devices used in these procedures and how to characterize new devices for safe use in patient treatments will be presented. This will be followed by a discussion of how to customize FMEA techniques and templates to one’s own clinic. Finally, cases of common failure modes for specific procedures (described previously) will be shown and recommended intervention methodologies and outcomes reviewed. Learning Objectives: Understand the general concept of failure mode and effect analysis Learn how to characterize new equipment for safety Be able to identify potential failure modes for specific procedures and learn mitigation techniques Be able to customize FMEA examples and templates for use in any clinic.« less

  4. WE-G-BRC-01: Risk Assessment for Radiosurgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, G.

    2016-06-15

    Failure Mode and Effects Analysis (FMEA) originated as an industrial engineering technique used for risk management and safety improvement of complex processes. In the context of radiotherapy, the AAPM Task Group 100 advocates FMEA as the framework of choice for establishing clinical quality management protocols. However, there is concern that widespread adoption of FMEA in radiation oncology will be hampered by the perception that implementation of the tool will have a steep learning curve, be extremely time consuming and labor intensive, and require additional resources. To overcome these preconceptions and facilitate the introduction of the tool into clinical practice, themore » medical physics community must be educated in the use of this tool and the ease in which it can be implemented. Organizations with experience in FMEA should share their knowledge with others in order to increase the implementation, effectiveness and productivity of the tool. This session will include a brief, general introduction to FMEA followed by a focus on practical aspects of implementing FMEA for specific clinical procedures including HDR brachytherapy, physics plan review and radiosurgery. A description of common equipment and devices used in these procedures and how to characterize new devices for safe use in patient treatments will be presented. This will be followed by a discussion of how to customize FMEA techniques and templates to one’s own clinic. Finally, cases of common failure modes for specific procedures (described previously) will be shown and recommended intervention methodologies and outcomes reviewed. Learning Objectives: Understand the general concept of failure mode and effect analysis Learn how to characterize new equipment for safety Be able to identify potential failure modes for specific procedures and learn mitigation techniques Be able to customize FMEA examples and templates for use in any clinic.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Failure Mode and Effects Analysis (FMEA) originated as an industrial engineering technique used for risk management and safety improvement of complex processes. In the context of radiotherapy, the AAPM Task Group 100 advocates FMEA as the framework of choice for establishing clinical quality management protocols. However, there is concern that widespread adoption of FMEA in radiation oncology will be hampered by the perception that implementation of the tool will have a steep learning curve, be extremely time consuming and labor intensive, and require additional resources. To overcome these preconceptions and facilitate the introduction of the tool into clinical practice, themore » medical physics community must be educated in the use of this tool and the ease in which it can be implemented. Organizations with experience in FMEA should share their knowledge with others in order to increase the implementation, effectiveness and productivity of the tool. This session will include a brief, general introduction to FMEA followed by a focus on practical aspects of implementing FMEA for specific clinical procedures including HDR brachytherapy, physics plan review and radiosurgery. A description of common equipment and devices used in these procedures and how to characterize new devices for safe use in patient treatments will be presented. This will be followed by a discussion of how to customize FMEA techniques and templates to one’s own clinic. Finally, cases of common failure modes for specific procedures (described previously) will be shown and recommended intervention methodologies and outcomes reviewed. Learning Objectives: Understand the general concept of failure mode and effect analysis Learn how to characterize new equipment for safety Be able to identify potential failure modes for specific procedures and learn mitigation techniques Be able to customize FMEA examples and templates for use in any clinic.« less

  6. Skin Effect Simulation for Area 11 Dense Plasma Focus Hot Plate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meehan, B. Timothy

    Two arc flashover events occurred at the DPF Area 11 facility. These flashover events happened in the same location on the bank current delivery plates. The damage from one of these events can be seen on the left-hand side of Figure 1. Since the flashovers occurred in the same area of the bank, and the reliability of the bank is important for future DPF experiments, a failure analysis effort was initiated. Part of this failure analysis effort was an effort to understand the physical reasons behind why the flashover happened, and why it happened in the same place twice. Thismore » paper summarizes an effort to simulate the current flow in the bank in order to understand the reasons for the flashover.« less

  7. Methods for improved forewarning of critical events across multiple data channels

    DOEpatents

    Hively, Lee M [Philadelphia, TN

    2007-04-24

    This disclosed invention concerns improvements in forewarning of critical events via phase-space dissimilarity analysis of data from mechanical devices, electrical devices, biomedical data, and other physical processes. First, a single channel of process-indicative data is selected that can be used in place of multiple data channels without sacrificing consistent forewarning of critical events. Second, the method discards data of inadequate quality via statistical analysis of the raw data, because the analysis of poor quality data always yields inferior results. Third, two separate filtering operations are used in sequence to remove both high-frequency and low-frequency artifacts using a zero-phase quadratic filter. Fourth, the method constructs phase-space dissimilarity measures (PSDM) by combining of multi-channel time-serial data into a multi-channel time-delay phase-space reconstruction. Fifth, the method uses a composite measure of dissimilarity (C.sub.i) to provide a forewarning of failure and an indicator of failure onset.

  8. Development of GENOA Progressive Failure Parallel Processing Software Systems

    NASA Technical Reports Server (NTRS)

    Abdi, Frank; Minnetyan, Levon

    1999-01-01

    A capability consisting of software development and experimental techniques has been developed and is described. The capability is integrated into GENOA-PFA to model polymer matrix composite (PMC) structures. The capability considers the physics and mechanics of composite materials and structure by integration of a hierarchical multilevel macro-scale (lamina, laminate, and structure) and micro scale (fiber, matrix, and interface) simulation analyses. The modeling involves (1) ply layering methodology utilizing FEM elements with through-the-thickness representation, (2) simulation of effects of material defects and conditions (e.g., voids, fiber waviness, and residual stress) on global static and cyclic fatigue strengths, (3) including material nonlinearities (by updating properties periodically) and geometrical nonlinearities (by Lagrangian updating), (4) simulating crack initiation. and growth to failure under static, cyclic, creep, and impact loads. (5) progressive fracture analysis to determine durability and damage tolerance. (6) identifying the percent contribution of various possible composite failure modes involved in critical damage events. and (7) determining sensitivities of failure modes to design parameters (e.g., fiber volume fraction, ply thickness, fiber orientation. and adhesive-bond thickness). GENOA-PFA progressive failure analysis is now ready for use to investigate the effects on structural responses to PMC material degradation from damage induced by static, cyclic (fatigue). creep, and impact loading in 2D/3D PMC structures subjected to hygrothermal environments. Its use will significantly facilitate targeting design parameter changes that will be most effective in reducing the probability of a given failure mode occurring.

  9. Experimental analysis of computer system dependability

    NASA Technical Reports Server (NTRS)

    Iyer, Ravishankar, K.; Tang, Dong

    1993-01-01

    This paper reviews an area which has evolved over the past 15 years: experimental analysis of computer system dependability. Methodologies and advances are discussed for three basic approaches used in the area: simulated fault injection, physical fault injection, and measurement-based analysis. The three approaches are suited, respectively, to dependability evaluation in the three phases of a system's life: design phase, prototype phase, and operational phase. Before the discussion of these phases, several statistical techniques used in the area are introduced. For each phase, a classification of research methods or study topics is outlined, followed by discussion of these methods or topics as well as representative studies. The statistical techniques introduced include the estimation of parameters and confidence intervals, probability distribution characterization, and several multivariate analysis methods. Importance sampling, a statistical technique used to accelerate Monte Carlo simulation, is also introduced. The discussion of simulated fault injection covers electrical-level, logic-level, and function-level fault injection methods as well as representative simulation environments such as FOCUS and DEPEND. The discussion of physical fault injection covers hardware, software, and radiation fault injection methods as well as several software and hybrid tools including FIAT, FERARI, HYBRID, and FINE. The discussion of measurement-based analysis covers measurement and data processing techniques, basic error characterization, dependency analysis, Markov reward modeling, software-dependability, and fault diagnosis. The discussion involves several important issues studies in the area, including fault models, fast simulation techniques, workload/failure dependency, correlated failures, and software fault tolerance.

  10. Impaired chronotropic response to physical activities in heart failure patients.

    PubMed

    Shen, Hong; Zhao, Jianrong; Zhou, Xiaohong; Li, Jingbo; Wan, Qing; Huang, Jing; Li, Hui; Wu, Liqun; Yang, Shungang; Wang, Ping

    2017-05-25

    While exercise-based cardiac rehabilitation has a beneficial effect on heart failure hospitalization and mortality, it is limited by the presence of chronotropic incompetence (CI) in some patients. This study explored the feasibility of using wearable devices to assess impaired chronotropic response in heart failure patients. Forty patients with heart failure (left ventricular ejection fraction, LVEF: 44.6 ± 5.8; age: 54.4 ± 11.7) received ECG Holter and accelerometer to monitor heart rate (HR) and physical activities during symptom-limited treadmill exercise testing, 6-min hall walk (6MHW), and 24-h daily living. CI was defined as maximal HR during peak exercise testing failing to reach 70% of age-predicted maximal HR (APMHR, 220 - age). The correlation between HR and physical activities in Holter-accelerometer recording was analyzed. Of 40 enrolled patients, 26 were able to perform treadmill exercise testing. Based on exercise test reports, 13 (50%) of 26 patients did not achieve at least 70% of APMHR (CI patients). CI patients achieved a lower % APMHR (62.0 ± 6.3%) than non-CI patients who achieved 72.0 ± 1.2% of APMHR (P < 0.0001). When Holter-accelerometer recording was used to assess chronotropic response, the percent APMHR achieved during 6MHW and physical activities was significantly lower in CI patients than in non-CI patients. CI patients had a significantly shorter 6MHW distance and less physical activity intensity than non-CI patients. The study found impaired chronotropic response in 50% of heart failure patients who took treadmill exercise testing. The wearable Holter-accelerometer recording could help to identify impaired chronotropic response to physical activities in heart failure patients. ClinicalTrials.gov ID NCT02358603 . Registered 16 May 2014.

  11. Factors Affecting Health Related Quality of Life in Hospitalized Patients with Heart Failure.

    PubMed

    Audi, Georgia; Korologou, Aggeliki; Koutelekos, Ioannis; Vasilopoulos, Georgios; Karakostas, Kostas; Makrygianaki, Kleanthi; Polikandrioti, Maria

    2017-01-01

    This study identified factors affecting health related quality of life (HRQOL) in 300 hospitalized patients with heart failure (HF). Data were collected by the completion of a questionnaire which included patients' characteristics and the Minnesota Living with Heart Failure Questionnaire (MLHFQ). Analysis of data showed that the median of the total score of MLHFQ was 46 and the median of the physical and mental state was 22 and 6, respectively. Also, participants who were householders or had "other" professions had lower score of 17 points and therefore better quality of life compared to patients who were civil/private employees ( p < 0.001 and p < 0.001, resp.). Patients not receiving anxiolytics and antidepressants had lower quality of life scores of 6 and 15.5 points, respectively, compared to patients who received ( p = 0.003 and p < 0.001, resp.). Patients with no prior hospitalization had lower score of 7 points compared to those with prior hospitalization ( p = 0.002), whereas patients not retired due to the disease had higher score of 7 points ( p = 0.034). Similar results were observed for the physical and mental state. Improvement of HF patients' quality of life should come to the forefront of clinical practice.

  12. Physics-based Entry, Descent and Landing Risk Model

    NASA Technical Reports Server (NTRS)

    Gee, Ken; Huynh, Loc C.; Manning, Ted

    2014-01-01

    A physics-based risk model was developed to assess the risk associated with thermal protection system failures during the entry, descent and landing phase of a manned spacecraft mission. In the model, entry trajectories were computed using a three-degree-of-freedom trajectory tool, the aerothermodynamic heating environment was computed using an engineering-level computational tool and the thermal response of the TPS material was modeled using a one-dimensional thermal response tool. The model was capable of modeling the effect of micrometeoroid and orbital debris impact damage on the TPS thermal response. A Monte Carlo analysis was used to determine the effects of uncertainties in the vehicle state at Entry Interface, aerothermodynamic heating and material properties on the performance of the TPS design. The failure criterion was set as a temperature limit at the bondline between the TPS and the underlying structure. Both direct computation and response surface approaches were used to compute the risk. The model was applied to a generic manned space capsule design. The effect of material property uncertainty and MMOD damage on risk of failure were analyzed. A comparison of the direct computation and response surface approach was undertaken.

  13. Defective boron nitride nanotubes: mechanical properties, electronic structures and failure behaviors

    NASA Astrophysics Data System (ADS)

    Wang, Huan; Ding, Ning; Zhao, Xian; Wu, Chi-Man Lawrence

    2018-03-01

    Due to their excellent physical and chemical characteristics, boron nitride nanotubes (BNNTs) are regarded as a complementary addition to carbon nanotubes. Pioneer studies have demonstrated that defects in carbon nanotubes are considered tools for tuning the physical properties of these materials. In the present work, investigation on the mechanical and electronic properties of pristine and defective BNNTs was performed using the density functional theory method. The analysis on the intrinsic strength, stiffness, and failure critical strain of different types of BNNTs was conducted systematically. The computing results showed that the intrinsic strength of BNNTs decreased linearly with the increased Stone-Wales (SW) defect density around the axis. The SW defect density along the axis played a minor role on the changing of mechanical properties of BNNTs. The BNNT with a B vacancy expressed higher intrinsic strength than that of the N vacancy model. The final failure of the pristine BNNTs was due to the fracture of the Type1 bonds under the mechanical strain. Defects like SW or vacancy are served as the initial break site of BNNTs. Applying strain or creating defects are both effective methods for reducing the band gap of BNNTs.

  14. Wasting syndrome with deep bradycardia as presenting manifestation of long-standing severe male hypogonadotropic hypogonadism: a case series.

    PubMed

    Passeri, Elena; Bonomi, Marco; Dangelo, Francesco; Persani, Luca; Corbetta, Sabrina

    2014-09-27

    Physiological functioning of the testes is important for cardiac health besides for virilisation, physical strength, behavior and reproduction; moreover, hypogonadism has been demonstrated as a significant risk marker of increased all-cause and cardiovascular mortality. We reported two cases of long-standing hypogonadotropic hypogonadism presenting with wasting, bradycardia and heart failure. The two patients were admitted to emergency department for deep weakness, unresponsive anemia and severe bradycardia, requiring in one case the implanting of a monocameral pace-maker for treatment of heart failure. No previous cardiologic disorders were known and cardiac ischemia was ruled out in both patients. The first patient presented congenital hypogonadotropic hypogonadism combined with mild central hypothyroidism and growth hormone deficiency occurred in the peripubertal age, while the second one was diagnosed with isolated adult-onset severe central hypogonadism. Testosterone deficiency was the main feature in both patients as physical examination revealed clinical stigmata of hypogonadism and testosterone replacement induced a dramatic improvement of general condition. Genetic analysis of genes involved in hypogonadotropic hypogonadism failed to identify alterations. Long-standing hypogonadism in males can be associated with life threatening body alterations including severe bradycardia and heart failure.

  15. Methodology for Physics and Engineering of Reliable Products

    NASA Technical Reports Server (NTRS)

    Cornford, Steven L.; Gibbel, Mark

    1996-01-01

    Physics of failure approaches have gained wide spread acceptance within the electronic reliability community. These methodologies involve identifying root cause failure mechanisms, developing associated models, and utilizing these models to inprove time to market, lower development and build costs and higher reliability. The methodology outlined herein sets forth a process, based on integration of both physics and engineering principles, for achieving the same goals.

  16. NASA's Evolutionary Xenon Thruster (NEXT) Power Processing Unit (PPU) Capacitor Failure Root Cause Analysis

    NASA Technical Reports Server (NTRS)

    Soeder, James F.; Pinero, Luis; Schneidegger, Robert; Dunning, John; Birchenough, Art

    2012-01-01

    The NASA's Evolutionary Xenon Thruster (NEXT) project is developing an advanced ion propulsion system for future NASA missions for solar system exploration. A critical element of the propulsion system is the Power Processing Unit (PPU) which supplies regulated power to the key components of the thruster. The PPU contains six different power supplies including the beam, discharge, discharge heater, neutralizer, neutralizer heater, and accelerator supplies. The beam supply is the largest and processes up to 93+% of the power. The NEXT PPU had been operated for approximately 200+ hours and has experienced a series of three capacitor failures in the beam supply. The capacitors are in the same, nominally non-critical location the input filter capacitor to a full wave switching inverter. The three failures occurred after about 20, 30, and 135 hours of operation. This paper provides background on the NEXT PPU and the capacitor failures. It discusses the failure investigation approach, the beam supply power switching topology and its operating modes, capacitor characteristics and circuit testing. Finally, it identifies root cause of the failures to be the unusual confluence of circuit switching frequency, the physical layout of the power circuits, and the characteristics of the capacitor.

  17. NASA's Evolutionary Xenon Thruster (NEXT) Power Processing Unit (PPU) Capacitor Failure Root Cause Analysis

    NASA Technical Reports Server (NTRS)

    Soeder, James F.; Scheidegger, Robert J.; Pinero, Luis R.; Birchenough, Arthur J.; Dunning, John W.

    2012-01-01

    The NASA s Evolutionary Xenon Thruster (NEXT) project is developing an advanced ion propulsion system for future NASA missions for solar system exploration. A critical element of the propulsion system is the Power Processing Unit (PPU) which supplies regulated power to the key components of the thruster. The PPU contains six different power supplies including the beam, discharge, discharge heater, neutralizer, neutralizer heater, and accelerator supplies. The beam supply is the largest and processes up to 93+% of the power. The NEXT PPU had been operated for approximately 200+ hr and has experienced a series of three capacitor failures in the beam supply. The capacitors are in the same, nominally non-critical location-the input filter capacitor to a full wave switching inverter. The three failures occurred after about 20, 30, and 135 hr of operation. This paper provides background on the NEXT PPU and the capacitor failures. It discusses the failure investigation approach, the beam supply power switching topology and its operating modes, capacitor characteristics and circuit testing. Finally, it identifies root cause of the failures to be the unusual confluence of circuit switching frequency, the physical layout of the power circuits, and the characteristics of the capacitor.

  18. Quality of Life for Saudi Patients With Heart Failure: A Cross-Sectional Correlational Study.

    PubMed

    AbuRuz, Mohannad Eid; Alaloul, Fawwaz; Saifan, Ahmed; Masa'deh, Rami; Abusalem, Said

    2015-06-25

    Heart failure is a major public health issue and a growing concern in developing countries, including Saudi Arabia. Most related research was conducted in Western cultures and may have limited applicability for individuals in Saudi Arabia. Thus, this study assesses the quality of life of Saudi patients with heart failure. A cross-sectional correlational design was used on a convenient sample of 103 patients with heart failure. Data were collected using the Short Form-36 and the Medical Outcomes Study-Social Support Survey. Overall, the patients' scores were low for all domains of Quality of Life. The Physical Component Summary and Mental Component Summary mean scores and SDs were (36.7±12.4, 48.8±6.5) respectively, indicating poor Quality of Life. Left ventricular ejection fraction was the strongest predictor of both physical and mental summaries. Identifying factors that impact quality of life for Saudi heart failure patients is important in identifying and meeting their physical and psychosocial needs.

  19. Destructive physical analysis results of Ni/H2 cells cycled in LEO regime

    NASA Technical Reports Server (NTRS)

    Lim, Hong S.; Zelter, Gabriela R.; Smithrick, John J.; Hall, Stephen W.

    1991-01-01

    Six 48-Ah individual pressure vessel (IPV) Ni/H2 cells containing 26 and 31 percent KOH electrolyte were life cycle tested in low Earth orbit. All three cells containing 31 percent KOH failed (3729, 4165, and 11,355 cycles), while those with 26 percent KOH were cycled over 14,000 times in the continuing test. Destructive physical analysis (DPA) of the failed cells included visual inspections, measurements of electrode thickness, scanning electron microscopy, chemical analysis, and measurements of nickel electrode capacity in an electrolyte flooded cell. The cycling failure was due to a decrease of nickel electrode capacity. As possible causes of the capacity decrease, researchers observed electrode expansion, rupture, and corrosion of the nickel electrode substrate, active material redistribution, and accumulation of electrochemically undischargeable active material with cycling.

  20. Field Programmable Gate Array Reliability Analysis Guidelines for Launch Vehicle Reliability Block Diagrams

    NASA Technical Reports Server (NTRS)

    Al Hassan, Mohammad; Britton, Paul; Hatfield, Glen Spencer; Novack, Steven D.

    2017-01-01

    Field Programmable Gate Arrays (FPGAs) integrated circuits (IC) are one of the key electronic components in today's sophisticated launch and space vehicle complex avionic systems, largely due to their superb reprogrammable and reconfigurable capabilities combined with relatively low non-recurring engineering costs (NRE) and short design cycle. Consequently, FPGAs are prevalent ICs in communication protocols and control signal commands. This paper will identify reliability concerns and high level guidelines to estimate FPGA total failure rates in a launch vehicle application. The paper will discuss hardware, hardware description language, and radiation induced failures. The hardware contribution of the approach accounts for physical failures of the IC. The hardware description language portion will discuss the high level FPGA programming languages and software/code reliability growth. The radiation portion will discuss FPGA susceptibility to space environment radiation.

  1. Real-time forecasting and predictability of catastrophic failure events: from rock failure to volcanoes and earthquakes

    NASA Astrophysics Data System (ADS)

    Main, I. G.; Bell, A. F.; Naylor, M.; Atkinson, M.; Filguera, R.; Meredith, P. G.; Brantut, N.

    2012-12-01

    Accurate prediction of catastrophic brittle failure in rocks and in the Earth presents a significant challenge on theoretical and practical grounds. The governing equations are not known precisely, but are known to produce highly non-linear behavior similar to those of near-critical dynamical systems, with a large and irreducible stochastic component due to material heterogeneity. In a laboratory setting mechanical, hydraulic and rock physical properties are known to change in systematic ways prior to catastrophic failure, often with significant non-Gaussian fluctuations about the mean signal at a given time, for example in the rate of remotely-sensed acoustic emissions. The effectiveness of such signals in real-time forecasting has never been tested before in a controlled laboratory setting, and previous work has often been qualitative in nature, and subject to retrospective selection bias, though it has often been invoked as a basis in forecasting natural hazard events such as volcanoes and earthquakes. Here we describe a collaborative experiment in real-time data assimilation to explore the limits of predictability of rock failure in a best-case scenario. Data are streamed from a remote rock deformation laboratory to a user-friendly portal, where several proposed physical/stochastic models can be analysed in parallel in real time, using a variety of statistical fitting techniques, including least squares regression, maximum likelihood fitting, Markov-chain Monte-Carlo and Bayesian analysis. The results are posted and regularly updated on the web site prior to catastrophic failure, to ensure a true and and verifiable prospective test of forecasting power. Preliminary tests on synthetic data with known non-Gaussian statistics shows how forecasting power is likely to evolve in the live experiments. In general the predicted failure time does converge on the real failure time, illustrating the bias associated with the 'benefit of hindsight' in retrospective analyses. Inference techniques that account explicitly for non-Gaussian statistics significantly reduce the bias, and increase the reliability and accuracy, of the forecast failure time in prospective mode.

  2. Voltage Fluctuation in a Supercapacitor During a High-g Impact

    PubMed Central

    Dai, Keren; Wang, Xiaofeng; Yin, Yajiang; Hao, Chenglong; You, Zheng

    2016-01-01

    Supercapacitors (SCs) are a type of energy storage device with high power density and long lifecycles. They have widespread applications, such as powering electric vehicles and micro scale devices. Working stability is one of the most important properties of SCs, and it is of significant importance to investigate the operational characteristics of SCs working under extreme conditions, particularly during high-g acceleration. In this paper, the failure mechanism of SCs upon high-g impact is thoroughly studied. Through an analysis of the intrinsic reaction mechanism during the high-g impact, a multi-faceted physics model is established. Additionally, a multi-field coupled kinetics simulation of the SC failure during a high-g impact is presented. Experimental tests are conducted that confirm the validity of the proposed model. The key factors of failure, such as discharge currents and discharging levels, are analyzed and discussed. Finally, a possible design is proposed to avoid the failure of SCs upon high-g impact. PMID:27958309

  3. Systematic Destruction of Electronic Parts for Aid in Electronic Failure Analysis

    NASA Technical Reports Server (NTRS)

    Decker, S. E.; Rolin, T. D.; McManus, P. D.

    2012-01-01

    NASA analyzes electrical, electronic, and electromechanical (EEE) parts used in space vehicles to understand failure modes of these components. Operational amplifiers and transistors are two examples of EEE parts critical to NASA missions that can fail due to electrical overstress (EOS). EOS is the result of voltage or current over time conditions that exceeds a component s specification limit. The objective of this study was to provide known voltage pulses over well-defined time intervals to determine the type and extent of damage imparted to the device. The amount of current was not controlled but measured so that pulse energy was determined. The damage was ascertained electrically using curve trace plots and optically using various metallographic techniques. The resulting data can be used to build a database of physical evidence to compare to damaged components removed from flight avionics. The comparison will provide the avionics failure analyst necessary information about voltage and times that caused flight or test failures when no other electrical data is available.

  4. Fracture analysis of tube boiler for physical explosion accident.

    PubMed

    Kim, Eui Soo

    2017-09-01

    Material and failure analysis techniques are key tools for determining causation in case of explosive and bursting accident result from material and process defect of product in the field of forensic science. The boiler rupture generated by defect of the welding division, corrosion, overheating and degradation of the material have devastating power. If weak division of boiler burner is fractured by internal pressure, saturated vapor and water is vaporized suddenly. At that time, volume of the saturated vapor and water increases up to thousands of volume. This failure of boiler burner can lead to a fatal disaster. In order to prevent an explosion and of the boiler, it is critical to introduce a systematic investigation and prevention measures in advance. In this research, the cause of boiler failure is investigated through forensic engineering method. Specifically, the failure mechanism will be identified by fractography using scanning electron microscopes (SEM) and Optical Microscopes (OM) and mechanical characterizations. This paper presents a failure analysis of household welding joints for the water tank of a household boiler burner. Visual inspection was performed to find out the characteristics of the fracture of the as-received material. Also, the micro-structural changes such as grain growth and carbide coarsening were examined by optical microscope. Detailed studies of fracture surfaces were made to find out the crack propagation on the weld joint of a boiler burner. It was concluded that the rupture may be caused by overheating induced by insufficient water on the boiler, and it could be accelerated by the metal temperature increase. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Child Neglect in the Military Community: Are We Neglecting the Child?

    DTIC Science & Technology

    1995-04-01

    encompasses "a parent’s or other caretaker’s failure to provide basic physical health care, supervision, nutrition, personal hygiene, emotional nurturing...the term "child neglect" generally refers to: emotional neglect, abandonment, and the failure to provide: food, shelter, clothing, medical care...Resource Center on Child Abuse and Neglect 26-- divides child neglect into four types: physical, educational, emotional , and medical. Physical neglect

  6. An in-depth, longitudinal examination of the daily physical activity of a patient with heart failure using a Nintendo Wii at home: a case report.

    PubMed

    Klompstra, Leonie Verheijden; Jaarsma, Tiny; Strömberg, Anna

    2013-06-01

    To explore the influence of the Nintendo Wii on the daily physical activity of a patient with chronic heart failure at home. A 74-year-old Swedish patient with heart failure had access to a Nintendo Wii at home for 12 weeks. Exercise motivation, exercise self-efficacy and exercise capacity were assessed before and after the intervention. Data on perceived physical effort, global well-being and expended energy were collected every day during the intervention. During the 12 weeks of access to the Nintendo Wii, daily physical activity increased by 200% on weekdays and 57% on weekends, compared with baseline. The patient's exercise motivation and exercise self-efficacy increased during the study, whereas perceived physical effort and global well-being did not change. The patient had no difficulties in using the system and did not suffer any major harm. The results of this case study suggest that providing patients with heart failure access to a Nintendo Wii is a promising and safe intervention. The energy expended by the patient per day increased, as did exercise capacity. Playing the Nintendo Wii did not increase the perceived physical effort, but increased motivation to exercise and decreased barriers to exercising.

  7. The failure of earthquake failure models

    USGS Publications Warehouse

    Gomberg, J.

    2001-01-01

    In this study I show that simple heuristic models and numerical calculations suggest that an entire class of commonly invoked models of earthquake failure processes cannot explain triggering of seismicity by transient or "dynamic" stress changes, such as stress changes associated with passing seismic waves. The models of this class have the common feature that the physical property characterizing failure increases at an accelerating rate when a fault is loaded (stressed) at a constant rate. Examples include models that invoke rate state friction or subcritical crack growth, in which the properties characterizing failure are slip or crack length, respectively. Failure occurs when the rate at which these grow accelerates to values exceeding some critical threshold. These accelerating failure models do not predict the finite durations of dynamically triggered earthquake sequences (e.g., at aftershock or remote distances). Some of the failure models belonging to this class have been used to explain static stress triggering of aftershocks. This may imply that the physical processes underlying dynamic triggering differs or that currently applied models of static triggering require modification. If the former is the case, we might appeal to physical mechanisms relying on oscillatory deformations such as compaction of saturated fault gouge leading to pore pressure increase, or cyclic fatigue. However, if dynamic and static triggering mechanisms differ, one still needs to ask why static triggering models that neglect these dynamic mechanisms appear to explain many observations. If the static and dynamic triggering mechanisms are the same, perhaps assumptions about accelerating failure and/or that triggering advances the failure times of a population of inevitable earthquakes are incorrect.

  8. Transforming information from silicon testing and design characterization into numerical data sets for yield learning

    NASA Astrophysics Data System (ADS)

    Yang, Thomas; Shen, Yang; Zhang, Yifan; Sweis, Jason; Lai, Ya-Chieh

    2017-03-01

    Silicon testing results are regularly collected for a particular lot of wafers to study yield loss from test result diagnostics. Product engineers will analyze the diagnostic results and perform a number of physical failure analyses to detect systematic defects which cause yield loss for these sets of wafers in order to feedback the information to process engineers for process improvements. Most of time, the systematic defects that are detected are major issues or just one of the causes for the overall yield loss. This paper will present a working flow for using design analysis techniques combined with diagnostic methods to systematically transform silicon testing information into physical layout information. A new set of the testing results are received from a new lot of wafers for the same product. We can then correlate all the diagnostic results from different periods of time to check which blocks or nets have been highlighted or stop occurring on the failure reports in order to monitor process changes which impact the yield. The design characteristic analysis flow is also implemented to find 1) the block connections on a design that have failed electrical test or 2) frequently used cells that been highlighted multiple times.

  9. Heart Failure

    MedlinePlus

    ... cause heart failure, such as coronary artery disease, high blood pressure, diabetes or obesity. Symptoms Heart failure can be ongoing ( ... include: Not smoking Controlling certain conditions, such as high blood pressure and diabetes Staying physically active Eating healthy foods Maintaining a ...

  10. An overview of the mathematical and statistical analysis component of RICIS

    NASA Technical Reports Server (NTRS)

    Hallum, Cecil R.

    1987-01-01

    Mathematical and statistical analysis components of RICIS (Research Institute for Computing and Information Systems) can be used in the following problem areas: (1) quantification and measurement of software reliability; (2) assessment of changes in software reliability over time (reliability growth); (3) analysis of software-failure data; and (4) decision logic for whether to continue or stop testing software. Other areas of interest to NASA/JSC where mathematical and statistical analysis can be successfully employed include: math modeling of physical systems, simulation, statistical data reduction, evaluation methods, optimization, algorithm development, and mathematical methods in signal processing.

  11. Two planar polishing methods by using FIB technique: Toward ultimate top-down delayering for failure analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, D. D., E-mail: dandan.wang@globalfoundries.com; Huang, Y. M.; Tan, P. K.

    2015-12-15

    Presently two major limiting factors are hindering the failure analysis (FA) development during the semiconductor manufacturing process and technology improvement: (1) Impossibility of manual polishing on the edge dies due to the amenability of layer peeling off; (2) Abundant demand of multi-locations FA, especially focusing different levels of layers simultaneously. Aiming at resolving these limitations, here we demonstrate two unique high precision polishing methods by using focused ion beam (FIB) technique. One is the vertical top down chemical etching at the aimed location; the other one is the planar top down slicing. Using the FIB for delayering not only solvesmore » these problems mentioned above, but also offers significant advantages over physical planar polishing methods such as: (1) having a better control of the delayering progress, (2) enabling precisely milling at a region of interest, (3) providing the prevention of over-delayering and (4) possessing capability to capture images at the region of interest simultaneously and cut into the die directly to expose the exact failure without damaging other sections of the specimen.« less

  12. Vibration detection of component health and operability

    NASA Technical Reports Server (NTRS)

    Baird, B. C.

    1975-01-01

    In order to prevent catastrophic failure and eliminate unnecessary periodic maintenance in the shuttle orbiter program environmental control system components, some means of detecting incipient failure in these components is required. The utilization was investigated of vibrational/acoustic phenomena as one of the principal physical parameters on which to base the design of this instrumentation. Baseline vibration/acoustic data was collected from three aircraft type fans and two aircraft type pumps over a frequency range from a few hertz to greater than 3000 kHz. The baseline data included spectrum analysis of the baseband vibration signal, spectrum analysis of the detected high frequency bandpass acoustic signal, and amplitude distribution of the high frequency bandpass acoustic signal. A total of eight bearing defects and two unbalancings was introduced into the five test items. All defects were detected by at least one of a set of vibration/acoustic parameters with a margin of at least 2:1 over the worst case baseline. The design of a portable instrument using this set of vibration/acoustic parameters for detecting incipient failures in environmental control system components is described.

  13. Home disadvantage in professional ice hockey.

    PubMed

    Loignon, Andrew; Gayton, William F; Brown, Melissa; Steinroeder, William; Johnson, Carrie

    2007-06-01

    Occurrence of the home field disadvantage in professional ice hockey was examined by analyzing data on penalty shots from 1983-2004. This datum was used as it does not involve physical contact for only the player taking the penalty shot is involved in the outcome. As a result, inhibition of anxiety associated with physical contact should not occur, and diffusion of responsibility would not occur since only the shooter is involved. Analysis indicated the player who took the penalty shot did not make significantly fewer shots at home than in away games. The result did not support hypotheses about roles of physical contact and diffusion of responsibility in accounting for past failures to find the home disadvantage in professional ice hockey.

  14. Quality of life in patients receiving telemedicine enhanced chronic heart failure disease management: A meta-analysis.

    PubMed

    Knox, Liam; Rahman, Rachel J; Beedie, Chris

    2017-08-01

    Background Previous reviews have investigated the effectiveness of telemedicine in the treatment of heart failure (HF). Dependent variables have included hospitalisations, mortality rates, disease knowledge and health costs. Few reviews, however, have examined the variable of health-related quality of life (QoL). Methods Randomised controlled trials comparing the delivery methods of any form of telemedicine with usual care for the provision of HF disease-management were identified via searches of all relevant databases and reference lists. Studies had to report a quantitative measure for mental, physical or overall QoL in order to be included. Results A total of 33 studies were identified. However, poor reporting of data resulted in the exclusion of seven, leaving 26 studies with 7066 participants. Three separate, random effects meta-analyses were conducted for mental, physical and overall QoL. Telemedicine was not significantly more effective than usual care on mental and physical QoL (standardised mean difference (SMD) 0.03, (95% confidence interval (CI) -0.05-0.12), p = 0.45 and SMD 0.24, (95% CI -0.08-0.56), p = 0.14, respectively). However, when compared to usual care, telemedicine was associated with a small significant increase in overall QoL (SMD 0.23, (95% CI 0.09-0.37), p = 0.001). Moderator analyses indicated that telemedicine delivered over a long-duration (≥52 weeks) and via telemonitoring was most beneficial. Conclusion Compared to usual care, telemedicine significantly increases overall QoL in patients receiving HF disease management. Statistically non-significant but nonetheless positive trends were also observed for physical QoL. These findings provide preliminary support for the use of telemedicine in the management of heart failure without jeopardising patient well-being.

  15. Optimal Performance Monitoring of Hybrid Mid-Infrared Wavelength MIMO Free Space Optical and RF Wireless Networks in Fading Channels

    NASA Astrophysics Data System (ADS)

    Schmidt, Barnet Michael

    An optimal performance monitoring metric for a hybrid free space optical and radio-frequency (RF) wireless network, the Outage Capacity Objective Function, is analytically developed and studied. Current and traditional methods of performance monitoring of both optical and RF wireless networks are centered on measurement of physical layer parameters, the most common being signal-to-noise ratio, error rate, Q factor, and eye diagrams, occasionally combined with link-layer measurements such as data throughput, retransmission rate, and/or lost packet rate. Network management systems frequently attempt to predict or forestall network failures by observing degradations of these parameters and to attempt mitigation (such as offloading traffic, increasing transmitter power, reducing the data rate, or combinations thereof) prior to the failure. These methods are limited by the frequent low sensitivity of the physical layer parameters to the atmospheric optical conditions (measured by optical signal-to-noise ratio) and the radio frequency fading channel conditions (measured by signal-to-interference ratio). As a result of low sensitivity, measurements of this type frequently are unable to predict impending failures sufficiently in advance for the network management system to take corrective action prior to the failure. We derive and apply an optimal measure of hybrid network performance based on the outage capacity of the hybrid optical and RF channel, the outage capacity objective function. The objective function provides high sensitivity and reliable failure prediction, and considers both the effects of atmospheric optical impairments on the performance of the free space optical segment as well as the effect of RF channel impairments on the radio frequency segment. The radio frequency segment analysis considers the three most common RF channel fading statistics: Rayleigh, Ricean, and Nakagami-m. The novel application of information theory to the underlying physics of the gamma-gamma optical channel and radio fading channels in determining the joint hybrid channel outage capacity provides the best performance estimate under any given set of operating conditions. It is shown that, unlike traditional physical layer performance monitoring techniques, the objective function based upon the outage capacity of the hybrid channel at any combination of OSNR and SIR, is able to predict channel degradation and failure well in advance of the actual outage. An outage in the information-theoretic definition occurs when the offered load exceeds the outage capacity under the current conditions of OSNR and SIR. The optical channel is operated at the "long" mid-infrared wavelength of 10000 nm. which provides improved resistance to scattering compared to shorter wavelengths such as 1550 nm.

  16. Rehabilitation Therapy in Older Acute Heart Failure Patients (REHAB-HF) Trial: Design and Rationale

    PubMed Central

    Reeves, Gordon R.; Whellan, David J.; Duncan, Pamela; O’Connor, Christopher M.; Pastva, Amy M.; Eggebeen, Joel D; Hewston, Leigh Ann; Morgan, Timothy M.; Reed, Shelby D.; Rejeski, W. Jack; Mentz, Robert J.; Rosenberg, Paul B.; Kitzman, Dalane W.

    2017-01-01

    Background Acute decompensated heart failure (ADHF) is a leading cause of hospitalization in older persons in the United States. Reduced physical function and frailty are major determinants of adverse outcomes in older patients with hospitalized ADHF. However, these are not addressed by current heart failure (HF) management strategies and there has been little study of exercise training in older, frail HF patients with recent ADHF. Hypothesis Targeting physical frailty with a multi-domain structured physical rehabilitation intervention will improve physical function and reduce adverse outcomes among older patients experiencing a HF hospitalization. Study Design Rehabilitation Therapy in Older Acute Heart Failure Patients (REHAB-HF) is a multi-center clinical trial in which 360 patients ≥ 60 years hospitalized with ADHF will be randomized either to a novel 12-week multi-domain physical rehabilitation intervention or to attention control. The goal of the intervention is to improve balance, mobility, strength and endurance utilizing reproducible, targeted exercises administered by a multi-disciplinary team with specific milestones for progression. The primary study aim is to assess the efficacy of the REHAB-HF intervention on physical function measured by total Short Physical Performance Battery score. The secondary outcome is 6-month all-cause rehospitalization. Additional outcome measures include quality of life and costs. Conclusions REHAB-HF is the first randomized trial of a physical function intervention in older patients with hospitalized ADHF designed to determine if addressing deficits in balance, mobility, strength and endurance improves physical function and reduces rehospitalizations. It will address key evidence gaps concerning the role of physical rehabilitation in the care of older patients, those with ADHF, frailty, and multiple comorbidities. PMID:28267466

  17. Is perceived failure in school performance a trigger of physical injury? A case-crossover study of children in Stockholm County

    PubMed Central

    Laflamme, L; Engstrom, K; Moller, J; Hallqvist, J

    2004-01-01

    Objectives: To investigate whether perceived failure in school performance increases the potential for children to be physically injured. Subjects: Children aged 10–15 years residing in the Stockholm County and hospitalised or called back for a medical check up because of a physical injury during the school years 2000–2001 and 2001–2002 (n = 592). Methods: A case-crossover design was used and information on potential injury triggers was gathered by interview. Information about family socioeconomic circumstances was gathered by a questionnaire filled in by parents during the child interview (response rate 87%). Results: Perceived failure in school performance has the potential to trigger injury within up to 10 hours subsequent to exposure (relative risk = 2.70; 95% confidence intervals = 1.2 to 5.8). The risk is significantly higher among pre-adolescents and among children from families at a higher education level. Conclusions: Experiencing feelings of failure may affect children's physical safety, in particular among pre-adolescents. Possible mechanisms are perceptual deficits and response changes occasioned by the stress experienced after exposure. PMID:15082740

  18. Development of a realistic stress analysis for fatigue analysis of notched composite laminates

    NASA Technical Reports Server (NTRS)

    Humphreys, E. A.; Rosen, B. W.

    1979-01-01

    A finite element stress analysis which consists of a membrane and interlaminar shear spring analysis was developed. This approach was utilized in order to model physically realistic failure mechanisms while maintaining a high degree of computational economy. The accuracy of the stress analysis predictions is verified through comparisons with other solutions to the composite laminate edge effect problem. The stress analysis model was incorporated into an existing fatigue analysis methodology and the entire procedure computerized. A fatigue analysis is performed upon a square laminated composite plate with a circular central hole. A complete description and users guide for the computer code FLAC (Fatigue of Laminated Composites) is included as an appendix.

  19. Quality of Life for Saudi Patients With Heart Failure: A Cross-Sectional Correlational Study

    PubMed Central

    AbuRuz, Mohannad Eid; Alaloul, Fawwaz; Saifan, Ahmed; Masa’Deh, Rami; Abusalem, Said

    2016-01-01

    Introduction: Heart failure is a major public health issue and a growing concern in developing countries, including Saudi Arabia. Most related research was conducted in Western cultures and may have limited applicability for individuals in Saudi Arabia. Thus, this study assesses the quality of life of Saudi patients with heart failure. Materials and Methods: A cross-sectional correlational design was used on a convenient sample of 103 patients with heart failure. Data were collected using the Short Form-36 and the Medical Outcomes Study-Social Support Survey. Results: Overall, the patients’ scores were low for all domains of Quality of Life. The Physical Component Summary and Mental Component Summary mean scores and SDs were (36.7±12.4, 48.8±6.5) respectively, indicating poor Quality of Life. Left ventricular ejection fraction was the strongest predictor of both physical and mental summaries. Conclusion: Identifying factors that impact quality of life for Saudi heart failure patients is important in identifying and meeting their physical and psychosocial needs. PMID:26493415

  20. Forensic engineering: applying materials and mechanics principles to the investigation of product failures.

    PubMed

    Hainsworth, S V; Fitzpatrick, M E

    2007-06-01

    Forensic engineering is the application of engineering principles or techniques to the investigation of materials, products, structures or components that fail or do not perform as intended. In particular, forensic engineering can involve providing solutions to forensic problems by the application of engineering science. A criminal aspect may be involved in the investigation but often the problems are related to negligence, breach of contract, or providing information needed in the redesign of a product to eliminate future failures. Forensic engineering may include the investigation of the physical causes of accidents or other sources of claims and litigation (for example, patent disputes). It involves the preparation of technical engineering reports, and may require giving testimony and providing advice to assist in the resolution of disputes affecting life or property.This paper reviews the principal methods available for the analysis of failed components and then gives examples of different component failure modes through selected case studies.

  1. Degradation mechanisms in high-power multi-mode InGaAs-AlGaAs strained quantum well lasers for high-reliability applications

    NASA Astrophysics Data System (ADS)

    Sin, Yongkun; Presser, Nathan; Brodie, Miles; Lingley, Zachary; Foran, Brendan; Moss, Steven C.

    2015-03-01

    Laser diode manufacturers perform accelerated multi-cell lifetests to estimate lifetimes of lasers using an empirical model. Since state-of-the-art laser diodes typically require a long period of latency before they degrade, significant amount of stress is applied to the lasers to generate failures in relatively short test durations. A drawback of this approach is the lack of mean-time-to-failure data under intermediate and low stress conditions, leading to uncertainty in model parameters (especially optical power and current exponent) and potential overestimation of lifetimes at usage conditions. This approach is a concern especially for satellite communication systems where high reliability is required of lasers for long-term duration in the space environment. A number of groups have studied reliability and degradation processes in GaAs-based lasers, but none of these studies have yielded a reliability model based on the physics of failure. The lack of such a model is also a concern for space applications where complete understanding of degradation mechanisms is necessary. Our present study addresses the aforementioned issues by performing long-term lifetests under low stress conditions followed by failure mode analysis (FMA) and physics of failure investigation. We performed low-stress lifetests on both MBE- and MOCVD-grown broad-area InGaAs- AlGaAs strained QW lasers under ACC (automatic current control) mode to study low-stress degradation mechanisms. Our lifetests have accumulated over 36,000 test hours and FMA is performed on failures using our angle polishing technique followed by EL. This technique allows us to identify failure types by observing dark line defects through a window introduced in backside metal contacts. We also investigated degradation mechanisms in MOCVD-grown broad-area InGaAs-AlGaAs strained QW lasers using various FMA techniques. Since it is a challenge to control defect densities during the growth of laser structures, we chose to control defect densities by introducing extrinsic point defects to the laser via proton irradiation with different energies and fluences. These lasers were subsequently lifetested to study degradation processes in the lasers with different defect densities and also to study precursor signatures of failures - traps and non-radiative recombination centers (NRCs) in pre- and post-stressed lasers. Lastly, we employed focused ion beam (FIB), electron beam induced current (EBIC), and highresolution TEM (HR-TEM) techniques to further study dark line defects and dislocations in both post-aged and postproton irradiated lasers. We report on our long-term low-stress lifetest results and physics of failure investigation results.

  2. 8 CFR 214.4 - Denial of certification, denial of recertification or withdrawal of SEVP certification.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...). (xii) Failure to operate as a bona fide institution of learning. (xiii) Failure to employ adequate...) Failure to maintain the physical plant, curriculum, and teaching staff in the manner represented in the...

  3. Using Controlled Landslide Initiation Experiments to Test Limit-Equilibrium Analyses of Slope Stability

    NASA Astrophysics Data System (ADS)

    Reid, M. E.; Iverson, R. M.; Brien, D. L.; Iverson, N. R.; Lahusen, R. G.; Logan, M.

    2004-12-01

    Most studies of landslide initiation employ limit equilibrium analyses of slope stability. Owing to a lack of detailed data, however, few studies have tested limit-equilibrium predictions against physical measurements of slope failure. We have conducted a series of field-scale, highly controlled landslide initiation experiments at the USGS debris-flow flume in Oregon; these experiments provide exceptional data to test limit equilibrium methods. In each of seven experiments, we attempted to induce failure in a 0.65m thick, 2m wide, 6m3 prism of loamy sand placed behind a retaining wall in the 31° sloping flume. We systematically investigated triggering of sliding by groundwater injection, by prolonged moderate-intensity sprinkling, and by bursts of high intensity sprinkling. We also used vibratory compaction to control soil porosity and thereby investigate differences in failure behavior of dense and loose soils. About 50 sensors were monitored at 20 Hz during the experiments, including nests of tiltmeters buried at 7 cm spacing to define subsurface failure geometry, and nests of tensiometers and pore-pressure sensors to define evolving pore-pressure fields. In addition, we performed ancillary laboratory tests to measure soil porosity, shear strength, hydraulic conductivity, and compressibility. In loose soils (porosity of 0.52 to 0.55), abrupt failure typically occurred along the flume bed after substantial soil deformation. In denser soils (porosity of 0.41 to 0.44), gradual failure occurred within the soil prism. All failure surfaces had a maximum length to depth ratio of about 7. In even denser soil (porosity of 0.39), we could not induce failure by sprinkling. The internal friction angle of the soils varied from 28° to 40° with decreasing porosity. We analyzed stability at failure, given the observed pore-pressure conditions just prior to large movement, using a 1-D infinite-slope method and a more complete 2-D Janbu method. Each method provides a static Factor of Safety (FS), and in theory failure occurs when FS ≤ 1. Using the 1-D analysis, all experiments having failure had FS well below 1 (typically 0.5-0.8). Using the 2-D analysis for these same conditions, FS was less than but closer to 1 (typically 0.8-0.9). For the experiment with no failure, the 2-D FS was, reassuringly, > 1. These results indicate that the 2-D Janbu analysis is more accurate than the 1-D infinite-slope method for computing limit-equilibrium slope stability in shallow slides with limited areal extent.

  4. A Multi-Methods Approach to HRA and Human Performance Modeling: A Field Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacques Hugo; David I Gertman

    2012-06-01

    The Advanced Test Reactor (ATR) is a research reactor at the Idaho National Laboratory is primarily designed and used to test materials to be used in other, larger-scale and prototype reactors. The reactor offers various specialized systems and allows certain experiments to be run at their own temperature and pressure. The ATR Canal temporarily stores completed experiments and used fuel. It also has facilities to conduct underwater operations such as experiment examination or removal. In reviewing the ATR safety basis, a number of concerns were identified involving the ATR canal. A brief study identified ergonomic issues involving the manual handlingmore » of fuel elements in the canal that may increase the probability of human error and possible unwanted acute physical outcomes to the operator. In response to this concern, that refined the previous HRA scoping analysis by determining the probability of the inadvertent exposure of a fuel element to the air during fuel movement and inspection was conducted. The HRA analysis employed the SPAR-H method and was supplemented by information gained from a detailed analysis of the fuel inspection and transfer tasks. This latter analysis included ergonomics, work cycles, task duration, and workload imposed by tool and workplace characteristics, personal protective clothing, and operational practices that have the potential to increase physical and mental workload. Part of this analysis consisted of NASA-TLX analyses, combined with operational sequence analysis, computational human performance analysis (CHPA), and 3D graphical modeling to determine task failures and precursors to such failures that have safety implications. Experience in applying multiple analysis techniques in support of HRA methods is discussed.« less

  5. Reliability Assessment for Low-cost Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Freeman, Paul Michael

    Existing low-cost unmanned aerospace systems are unreliable, and engineers must blend reliability analysis with fault-tolerant control in novel ways. This dissertation introduces the University of Minnesota unmanned aerial vehicle flight research platform, a comprehensive simulation and flight test facility for reliability and fault-tolerance research. An industry-standard reliability assessment technique, the failure modes and effects analysis, is performed for an unmanned aircraft. Particular attention is afforded to the control surface and servo-actuation subsystem. Maintaining effector health is essential for safe flight; failures may lead to loss of control incidents. Failure likelihood, severity, and risk are qualitatively assessed for several effector failure modes. Design changes are recommended to improve aircraft reliability based on this analysis. Most notably, the control surfaces are split, providing independent actuation and dual-redundancy. The simulation models for control surface aerodynamic effects are updated to reflect the split surfaces using a first-principles geometric analysis. The failure modes and effects analysis is extended by using a high-fidelity nonlinear aircraft simulation. A trim state discovery is performed to identify the achievable steady, wings-level flight envelope of the healthy and damaged vehicle. Tolerance of elevator actuator failures is studied using familiar tools from linear systems analysis. This analysis reveals significant inherent performance limitations for candidate adaptive/reconfigurable control algorithms used for the vehicle. Moreover, it demonstrates how these tools can be applied in a design feedback loop to make safety-critical unmanned systems more reliable. Control surface impairments that do occur must be quickly and accurately detected. This dissertation also considers fault detection and identification for an unmanned aerial vehicle using model-based and model-free approaches and applies those algorithms to experimental faulted and unfaulted flight test data. Flight tests are conducted with actuator faults that affect the plant input and sensor faults that affect the vehicle state measurements. A model-based detection strategy is designed and uses robust linear filtering methods to reject exogenous disturbances, e.g. wind, while providing robustness to model variation. A data-driven algorithm is developed to operate exclusively on raw flight test data without physical model knowledge. The fault detection and identification performance of these complementary but different methods is compared. Together, enhanced reliability assessment and multi-pronged fault detection and identification techniques can help to bring about the next generation of reliable low-cost unmanned aircraft.

  6. Value of routine investigations to predict loop diuretic down-titration success in stable heart failure.

    PubMed

    Martens, Pieter; Verbrugge, Frederik H; Boonen, Levinia; Nijst, Petra; Dupont, Matthias; Mullens, Wilfried

    2018-01-01

    Guidelines advocate down-titration of loop diuretics in chronic heart failure (CHF) when patients have no signs of volume overload. Limited data are available on the expected success rate of this practice or how routine diagnostic tests might help steering this process. Fifty ambulatory CHF-patients on stable neurohumoral blocker/diuretic therapy for at least 3months without any clinical sign of volume overload were prospectively included to undergo loop diuretic down-titration. All patients underwent a similar pre-down-titration evaluation consisting of a dyspnea scoring, physical examination, transthoracic echocardiography (diastolic function, right ventricular function, cardiac filling pressures and valvular disease), blood sample (serum creatinine, plasma NT-pro-BNP and neurohormones). Loop diuretic maintenance dose was subsequently reduced by 50% or stopped if dose was ≤40mg furosemide equivalents. Successful down-titration was defined as a persistent dose reduction after 30days without weight increase >1.5kg or new-onset symptoms of worsening heart failure. At 30-day follow-up, down-titration was successful in 62% (n=31). In 12/19 patients exhibiting down-titration failure, this occurred within the first week. Physical examination, transthoracic echocardiography and laboratory analysis had limited predictive capability to detect patients with down-titration success/failure (positive likelihood-ratios below 1.5, or area under the curve [AUC] non-statically different from AUC=0.5). Loop diuretic down-titration is feasible in a majority of stable CHF patients in which the treating clinician felt continuation of loops was unnecessary to sustain euvolemia. Importantly, routine diagnostics which suggest euvolemia, have limited diagnostic impact on the post-test probability. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The effect of renal failure on 18F-FDG uptake: a theoretic assessment.

    PubMed

    Laffon, Eric; Cazeau, Anne-Laure; Monet, Antoine; de Clermont, Henri; Fernandez, Philippe; Marthan, Roger; Ducassou, Dominique

    2008-12-01

    This work addresses the issue of using (18)F-FDG PET in patients with renal failure. A model analysis has been developed to compare tissue (18)F-FDG uptake in a patient who has normal renal function with uptake in a theoretic limiting case that assumes tracer plasma decay is tracer physical decay and is trapped irreversibly. This comparison has allowed us to propose, in the limiting case, that the usually injected activity be lowered by a factor of 3. We also proposed that the PET static acquisition be obtained at about 160 min after tracer injection. These 2 proposals were aimed at obtaining a similar patient radiation dose and similar tissue (18)F-FDG uptake. In patients with arbitrary renal failure (i.e., between the 2 extremes of normal function and the theoretic limiting case), we propose that the injected activity be lowered (without exceeding a factor of 3) and that the acquisition be started between 45 and 160 min after tracer injection, depending on the severity of renal failure. Furthermore, the model also shows that the more severe the renal failure is, the more overestimated is the standardized uptake value, unless the renal failure indirectly impairs tissue sensitivity to insulin and hence glucose metabolism.

  8. Needs of caregivers in heart failure management: A qualitative study

    PubMed Central

    Frost, Julia; Britten, Nicky; Jolly, Kate; Greaves, Colin; Abraham, Charles; Dalal, Hayes

    2015-01-01

    Objectives To identify the needs of caregivers supporting a person with heart failure and to inform the development of a caregiver resource to be used as part of a home-based self-management programme. Methods A qualitative study informed by thematic analysis involving 26 caregivers in individual interviews or a focus group. Results Three distinct aspects of caregiver support in heart failure management were identified. Firstly, caregivers identified needs about supporting management of heart failure including: coping with the variability of heart failure symptoms, what to do in an emergency, understanding and managing medicines, providing emotional support, promoting exercise and physical activity, providing personal care, living with a cardiac device and supporting depression management. Secondly, as they make the transition to becoming a caregiver, they need to develop skills to undertake difficult discussions about the role; communicate with health professionals; manage their own mental health, well-being and sleep; and manage home and work. Thirdly, caregivers require skills to engage social support, and voluntary and formal services while recognising that the long-term future is uncertain. Discussion The identification of the needs of caregiver has been used to inform the development of a home-based heart failure intervention facilitated by a trained health care practitioner. PMID:25795144

  9. Execution Of Systems Integration Principles During Systems Engineering Design

    DTIC Science & Technology

    2016-09-01

    This thesis discusses integration failures observed by DOD and non - DOD systems as, inadequate stakeholder analysis, incomplete problem space and design ... design , development, test and deployment of a system. A lifecycle structure consists of phases within a methodology or process model. There are many...investigate design decisions without the need to commit to physical forms; “ experimental investigation using a model yields design or operational

  10. European Symposium on Reliability of Electron Devices, Failure Physics and Analysis (5th)

    DTIC Science & Technology

    1994-10-07

    Characterisation and Modelling WEDNESDAY 5th OCTOBER Session C Hot Carriers Session D Oxide States Session E Power Devices Workshop 2 Power Devices Session F...Medium Enterprises .......... 17 W2 Power Devices Workshop "Reliability of Power Semiconductors for Traction Applications...New Mexico, USA Sandia National Laboratories, Albuquerque, New Mexico, USA SESSION E Power Devices El Reliability Issues in New Technology

  11. Associations of Intimate Partner Violence with Unintended Pregnancy and Pre-Pregnancy Contraceptive Use in South Asia

    PubMed Central

    Raj, Anita; McDougal, Lotus

    2015-01-01

    Objective To assess associations of intimate partner violence (IPV) with pregnancy intendedness and pre-pregnancy contraceptive use among pregnant women in South Asia. Study Design Cross-sectional analyses were conducted using most recent Demographic and Health Surveys (DHS) from Bangladesh, India and Nepal for married, pregnant women aged 15–49 years who responded to IPV assessments specific to current marriage (N=4738). Adjusted logistic and multinomial regression analyses were conducted with pooled data to assess associations of IPV ever (sexual only, physical only, sexual plus physical, none) with the outcomes of pregnancy intendedness (wanted, mistimed or unwanted) and pre-pregnancy contraceptive use (no, traditional, or modern), for the current pregnancy. Results IPV was not associated with a mistimed or unwanted pregnancy. Sexual IPV was associated with pre-pregnancy modern contraceptive use (aOR=2.32, 95% CI=1.24, 4.36); sexual plus physical IPV was associated with pre-pregnancy traditional contraceptive use (aOR=1.85, 95% CI=1.12, 3.07). Post-hoc analysis of reasons for pre-pregnancy contraceptive discontinuation revealed that women with a history of IPV, particularly sexual IPV, had higher prevalence of contraceptive failure (sexual only: 37.3%, sexual plus physical: 30.9%, physical only: 22.6%, no IPV: 13.6%). Conclusion Pregnant women who experienced sexual IPV from husbands were more likely to use contraceptives pre-pregnancy but had no reduced risk unintended pregnancy, possibly due to higher rates of pre-pregnancy contraceptive failure among those with this history. These findings suggest that victims of sexual IPV are able to acquire and use family planning services, but require more support to sustain effective contraceptive use. Implications Family planning services are reaching women affected by sexual IPV, and programs should be sensitive to this concern and the heightened vulnerability to contraceptive failure these women face. Long-acting reversible contraception could be beneficial by allowing women to have greater reproductive control in situations of compromised sexual autonomy. PMID:25769441

  12. Associations of intimate partner violence with unintended pregnancy and pre-pregnancy contraceptive use in South Asia.

    PubMed

    Raj, Anita; McDougal, Lotus

    2015-06-01

    To assess associations of intimate partner violence (IPV) with pregnancy intendedness and pre-pregnancy contraceptive use among pregnant women in South Asia. Cross-sectional analyses were conducted using the most recent Demographic and Health Surveys from Bangladesh, India and Nepal for married, pregnant women aged 15-49 years who responded to IPV assessments specific to current marriage (N=4738). Adjusted logistic and multinomial regression analyses were conducted with pooled data to assess associations of IPV ever (sexual only, physical only, sexual plus physical or none) with the outcomes of pregnancy intendedness (wanted, mistimed or unwanted) and pre-pregnancy contraceptive use (no, traditional or modern) for the current pregnancy. IPV was not associated with a mistimed or unwanted pregnancy. Sexual IPV was associated with pre-pregnancy modern contraceptive use (aOR=2.32, 95% CI=1.24, 4.36); sexual plus physical IPV was associated with pre-pregnancy traditional contraceptive use (aOR=1.85, 95% CI=1.12, 3.07). Post hoc analysis of reasons for pre-pregnancy contraceptive discontinuation revealed that women with a history of IPV, particularly sexual IPV, had higher prevalence of contraceptive failure (sexual only, 37.3%; sexual plus physical, 30.9%; physical only, 22.6%; no IPV, 13.6%). Pregnant women who experienced sexual IPV from husbands were more likely to use contraceptives pre-pregnancy but had no reduced risk unintended pregnancy, possibly due to higher rates of pre-pregnancy contraceptive failure among those with this history. These findings suggest that victims of sexual IPV are able to acquire and use family planning services but require more support to sustain effective contraceptive use. Family planning services are reaching women affected by sexual IPV, and programs should be sensitive to this concern and the heightened vulnerability to contraceptive failure these women face. Long-acting reversible contraception could be beneficial by allowing women to have greater reproductive control in situations of compromised sexual autonomy. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Patterns of Self-care in Adults With Heart Failure and Their Associations With Sociodemographic and Clinical Characteristics, Quality of Life, and Hospitalizations: A Cluster Analysis.

    PubMed

    Vellone, Ercole; Fida, Roberta; Ghezzi, Valerio; D'Agostino, Fabio; Biagioli, Valentina; Paturzo, Marco; Strömberg, Anna; Alvaro, Rosaria; Jaarsma, Tiny

    Self-care is important in heart failure (HF) treatment, but patients may have difficulties and be inconsistent in its performance. Inconsistencies in self-care behaviors may mirror patterns of self-care in HF patients that are worth identifying to provide interventions tailored to patients. The aims of this study are to identify clusters of HF patients in relation to self-care behaviors and to examine and compare the profile of each HF patient cluster considering the patient's sociodemographics, clinical variables, quality of life, and hospitalizations. This was a secondary analysis of data from a cross-sectional study in which we enrolled 1192 HF patients across Italy. A cluster analysis was used to identify clusters of patients based on the European Heart Failure Self-care Behaviour Scale factor scores. Analysis of variance and χ test were used to examine the characteristics of each cluster. Patients were 72.4 years old on average, and 58% were men. Four clusters of patients were identified: (1) high consistent adherence with high consulting behaviors, characterized by younger patients, with higher formal education and higher income, less clinically compromised, with the best physical and mental quality of life (QOL) and lowest hospitalization rates; (2) low consistent adherence with low consulting behaviors, characterized mainly by male patients, with lower formal education and lowest income, more clinically compromised, and worse mental QOL; (3) inconsistent adherence with low consulting behaviors, characterized by patients who were less likely to have a caregiver, with the longest illness duration, the highest number of prescribed medications, and the best mental QOL; (4) and inconsistent adherence with high consulting behaviors, characterized by patients who were mostly female, with lower formal education, worst cognitive impairment, worst physical and mental QOL, and higher hospitalization rates. The 4 clusters identified in this study and their associated characteristics could be used to tailor interventions aimed at improving self-care behaviors in HF patients.

  14. Factors Affecting Health Related Quality of Life in Hospitalized Patients with Heart Failure

    PubMed Central

    Audi, Georgia; Korologou, Aggeliki; Koutelekos, Ioannis; Karakostas, Kostas; Makrygianaki, Kleanthi

    2017-01-01

    This study identified factors affecting health related quality of life (HRQOL) in 300 hospitalized patients with heart failure (HF). Data were collected by the completion of a questionnaire which included patients' characteristics and the Minnesota Living with Heart Failure Questionnaire (MLHFQ). Analysis of data showed that the median of the total score of MLHFQ was 46 and the median of the physical and mental state was 22 and 6, respectively. Also, participants who were householders or had “other” professions had lower score of 17 points and therefore better quality of life compared to patients who were civil/private employees (p < 0.001 and p < 0.001, resp.). Patients not receiving anxiolytics and antidepressants had lower quality of life scores of 6 and 15.5 points, respectively, compared to patients who received (p = 0.003 and p < 0.001, resp.). Patients with no prior hospitalization had lower score of 7 points compared to those with prior hospitalization (p = 0.002), whereas patients not retired due to the disease had higher score of 7 points (p = 0.034). Similar results were observed for the physical and mental state. Improvement of HF patients' quality of life should come to the forefront of clinical practice. PMID:29201489

  15. Incorporating seismic observations into 2D conduit flow modeling

    NASA Astrophysics Data System (ADS)

    Collier, L.; Neuberg, J.

    2006-04-01

    Conduit flow modeling aims to understand the conditions of magma at depth, and to provide insight into the physical processes that occur inside the volcano. Low-frequency events, characteristic to many volcanoes, are thought to contain information on the state of magma at depth. Therefore, by incorporating information from low-frequency seismic analysis into conduit flow modeling a greater understanding of magma ascent and its interdependence on magma conditions and physical processes is possible. The 2D conduit flow model developed in this study demonstrates the importance of lateral pressure and parameter variations on overall magma flow dynamics, and the substantial effect bubbles have on magma shear viscosity and on magma ascent. The 2D nature of the conduit flow model developed here allows in depth investigation into processes which occur at, or close to the wall, such as magma cooling and brittle failure of melt. These processes are shown to have a significant effect on magma properties and therefore, on flow dynamics. By incorporating low-frequency seismic information, an advanced conduit flow model is developed including the consequences of brittle failure of melt, namely friction-controlled slip and gas loss. This model focuses on the properties and behaviour of magma at depth within the volcano, and their interaction with the formation of seismic events by brittle failure of melt.

  16. Physical modelling of rainfall-induced flow failures in loose granular soils

    NASA Astrophysics Data System (ADS)

    Take, W. A.; Beddoe, R. A.

    2015-09-01

    The tragic consequences of the March 2014 Oso landslide in Washington, USA were particularly high due to the mobility of the landslide debris. Confusingly, a landslide occurred at that exact same location a number of years earlier, but simply slumped into the river at the toe of the slope. Why did these two events differ so drastically in their mobility? Considerable questions remain regarding the conditions required to generate flow failures in loose soils. Geotechnical centrifuge testing, in combination with high-speed cameras and advanced image analysis has now provided the landslides research community with a powerful new tool to experimentally investigate the complex mechanics leading to high mobility landslides. This paper highlights recent advances in our understanding of the process of static liquefaction in loose granular soil slopes achieved through observations of highly-instrumented physical models. In particular, the paper summarises experimental results aimed to identify the point of initiation of the chain-reaction required to trigger liquefaction flow failures, to assess the effect of slope inclination on the likelihood of a flowslide being triggered, and to quantify the effect of antecedent groundwater levels on the distal reach of landslide debris with the objective of beginning to explain why neighbouring slopes can exhibit such a wide variation in landslide travel distance upon rainfall-triggering.

  17. Cycle life test and failure model of nickel-hydrogen cells

    NASA Technical Reports Server (NTRS)

    Smithrick, J. J.

    1983-01-01

    Six ampere hour individual pressure vessel nickel hydrogen cells were charge/discharge cycled to failure. Failure as used here is defined to occur when the end of discharge voltage degraded to 0.9 volts. They were cycled under a low earth orbit cycle regime to a deep depth of discharge (80 percent of rated ampere hour capacity). Both cell designs were fabricated by the same manufacturer and represent current state of the art. A failure model was advanced which suggests both cell designs have inadequate volume tolerance characteristics. The limited existing data base at a deep depth of discharge (DOD) was expanded. Two cells of each design were cycled. One COMSAT cell failed at cycle 1712 and the other failed at cycle 1875. For the Air Force/Hughes cells, one cell failed at cycle 2250 and the other failed at cycle 2638. All cells, of both designs, failed due to low end of discharge voltage (0.9 volts). No cell failed due to electrical shorts. After cell failure, three different reconditioning tests (deep discharge, physical reorientation, and open circuit voltage stand) were conducted on all cells of each design. A fourth reconditioning test (electrolyte addition) was conducted on one cell of each design. In addition post cycle cell teardown and failure analysis were performed on the one cell of each design which did not have electrolyte added after failure.

  18. MODELLING OF FUEL BEHAVIOUR DURING LOSS-OF-COOLANT ACCIDENTS USING THE BISON CODE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pastore, G.; Novascone, S. R.; Williamson, R. L.

    2015-09-01

    This work presents recent developments to extend the BISON code to enable fuel performance analysis during LOCAs. This newly developed capability accounts for the main physical phenomena involved, as well as the interactions among them and with the global fuel rod thermo-mechanical analysis. Specifically, new multiphysics models are incorporated in the code to describe (1) transient fission gas behaviour, (2) rapid steam-cladding oxidation, (3) Zircaloy solid-solid phase transition, (4) hydrogen generation and transport through the cladding, and (5) Zircaloy high-temperature non-linear mechanical behaviour and failure. Basic model characteristics are described, and a demonstration BISON analysis of a LWR fuel rodmore » undergoing a LOCA accident is presented. Also, as a first step of validation, the code with the new capability is applied to the simulation of experiments investigating cladding behaviour under LOCA conditions. The comparison of the results with the available experimental data of cladding failure due to burst is presented.« less

  19. Assessing the Value-Added by the Environmental Testing Process with the Aide of Physics/Engineering of Failure Evaluations

    NASA Technical Reports Server (NTRS)

    Cornford, S.; Gibbel, M.

    1997-01-01

    NASA's Code QT Test Effectiveness Program is funding a series of applied research activities focused on utilizing the principles of physics and engineering of failure and those of engineering economics to assess and improve the value-added by the various validation and verification activities to organizations.

  20. Life Prediction Issues in Thermal/Environmental Barrier Coatings in Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Shah, Ashwin R.; Brewer, David N.; Murthy, Pappu L. N.

    2001-01-01

    Issues and design requirements for the environmental barrier coating (EBC)/thermal barrier coating (TBC) life that are general and those specific to the NASA Ultra-Efficient Engine Technology (UEET) development program have been described. The current state and trend of the research, methods in vogue related to the failure analysis, and long-term behavior and life prediction of EBCITBC systems are reported. Also, the perceived failure mechanisms, variables, and related uncertainties governing the EBCITBC system life are summarized. A combined heat transfer and structural analysis approach based on the oxidation kinetics using the Arrhenius theory is proposed to develop a life prediction model for the EBC/TBC systems. Stochastic process-based reliability approach that includes the physical variables such as gas pressure, temperature, velocity, moisture content, crack density, oxygen content, etc., is suggested. Benefits of the reliability-based approach are also discussed in the report.

  1. CPLOAS_2 User Manual.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sallaberry, Cedric Jean-Marie; Helton, Jon C.

    2015-05-01

    Weak link (WL)/strong link (SL) systems are important parts of the overall operational design of high - consequence systems. In such designs, the SL system is very robust and is intended to permit operation of the entire system under, and only under, intended conditions. In contrast, the WL system is intended to fail in a predictable and irreversible manner under accident conditions and render the entire system inoperable before an accidental operation of the SL system. The likelihood that the WL system will fail to d eactivate the entire system before the SL system fails (i.e., degrades into a configurationmore » that could allow an accidental operation of the entire system) is referred to as probability of loss of assured safety (PLOAS). This report describes the Fortran 90 program CPLOAS_2 that implements the following representations for PLOAS for situations in which both link physical properties and link failure properties are time - dependent: (i) failure of all SLs before failure of any WL, (ii) failure of any SL before f ailure of any WL, (iii) failure of all SLs before failure of all WLs, and (iv) failure of any SL before failure of all WLs. The effects of aleatory uncertainty and epistemic uncertainty in the definition and numerical evaluation of PLOAS can be included in the calculations performed by CPLOAS_2. Keywords: Aleatory uncertainty, CPLOAS_2, Epistemic uncertainty, Probability of loss of assured safety, Strong link, Uncertainty analysis, Weak link« less

  2. Catastrophic optical bulk degradation in high-power single- and multi-mode InGaAs-AlGaAs strained QW lasers: part II

    NASA Astrophysics Data System (ADS)

    Sin, Yongkun; Ayvazian, Talin; Brodie, Miles; Lingley, Zachary

    2018-03-01

    High-power single-mode (SM) and multi-mode (MM) InGaAs-AlGaAs strained quantum well (QW) lasers are critical components for both terrestrial and space satellite communications systems. Since these lasers predominantly fail by catastrophic and sudden degradation due to catastrophic optical damage (COD), it is especially crucial for space satellite applications to investigate reliability, failure modes, precursor signatures of failure, and degradation mechanisms of these lasers. Our group reported a new failure mode in MM and SM InGaAs-AlGaAs strained QW lasers in 2009 and 2016, respectively. Our group also reported in 2017 that bulk failure due to catastrophic optical bulk damage (COBD) is the dominant failure mode of both SM and MM lasers that were subject to long-term life-tests. For the present study, we continued our physics of failure investigation by performing long-term life-tests followed by failure mode analysis (FMA) using nondestructive and destructive micro-analytical techniques. We performed long-term accelerated life-tests on state-of-the-art SM and MM InGaAs- AlGaAs strained QW lasers under ACC mode. Our life-tests have accumulated over 25,000 test hours for SM lasers and over 35,000 test hours for MM lasers. We first employed electron beam induced current (EBIC) technique to identify failure modes of degraded SM lasers by observing dark line defects. All the SM failures that we studied showed catastrophic and sudden degradation and all of these failures were bulk failures. Since degradation mechanisms responsible for COBD are still not well understood, we also employed other techniques including focused ion beam (FIB) and high-resolution TEM to further study dark line defects and dislocations in post-aged lasers. Keywor

  3. Estimated urinary sodium excretion and risk of heart failure in men and women in the EPIC-Norfolk study.

    PubMed

    Pfister, Roman; Michels, Guido; Sharp, Stephen J; Luben, Robert; Wareham, Nick J; Khaw, Kay-Tee

    2014-04-01

    Interventional trials provide evidence for a beneficial effect of reduced dietary sodium intake on blood pressure. The association of sodium intake with heart failure which is a long-term complication of hypertension has not been examined. Hazard ratios [HRs, 95% confidence interval (CI)] of heart failure comparing quintiles of estimated 24 h urinary sodium excretion (USE) were calculated in apparently healthy men (9017) and women (10,840) aged 39–79 participating in the EPIC study in Norfolk. During a mean follow-up of 12.9 years, 1210 incident cases of heart failure occurred. Compared with the reference category (128 mmol/day≤USE≤148 mmol/day), the top quintile (USE≥191 mmol/day) was associated with a significantly increased hazard of heart failure (1.32, 1.07–1.62) in multivariable analysis adjusting for age, sex, body mass index, diabetes, cholesterol, social class, educational level, smoking, physical activity, and alcohol consumption, with a marked attenuation (1.21, 0.98–1.49) when further adjusting for blood pressure. The bottom quintile (USE≤127 mmol/day) was also associated with an increased hazard of heart failure (1.29, 1.04–1.60) in multivariable analysis without relevant attenuation by blood pressure adjustment (1.26, 1.02–1.56), but with substantial attenuation when adjusting for interim ischaemic heart disease and baseline C-reactive protein levels and exclusion of events during the first 2 years (1.18, 0.96–1.47). We demonstrate a U-shaped association between USE and heart failure risk in an apparently healthy middle-aged population. The risk associated with the high range of USE was attenuated after adjustment for blood pressure, whereas the risk associated with the low range of USE was attenuated after adjustment for pre-existing disease processes. © 2014 The Authors. European Journal of Heart Failure © 2014 European Society of Cardiology.

  4. Application of Failure Mode and Effects Analysis to Intraoperative Radiation Therapy Using Mobile Electron Linear Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciocca, Mario, E-mail: mario.ciocca@cnao.it; Cantone, Marie-Claire; Veronese, Ivan

    2012-02-01

    Purpose: Failure mode and effects analysis (FMEA) represents a prospective approach for risk assessment. A multidisciplinary working group of the Italian Association for Medical Physics applied FMEA to electron beam intraoperative radiation therapy (IORT) delivered using mobile linear accelerators, aiming at preventing accidental exposures to the patient. Methods and Materials: FMEA was applied to the IORT process, for the stages of the treatment delivery and verification, and consisted of three steps: 1) identification of the involved subprocesses; 2) identification and ranking of the potential failure modes, together with their causes and effects, using the risk probability number (RPN) scoring system,more » based on the product of three parameters (severity, frequency of occurrence and detectability, each ranging from 1 to 10); 3) identification of additional safety measures to be proposed for process quality and safety improvement. RPN upper threshold for little concern of risk was set at 125. Results: Twenty-four subprocesses were identified. Ten potential failure modes were found and scored, in terms of RPN, in the range of 42-216. The most critical failure modes consisted of internal shield misalignment, wrong Monitor Unit calculation and incorrect data entry at treatment console. Potential causes of failure included shield displacement, human errors, such as underestimation of CTV extension, mainly because of lack of adequate training and time pressures, failure in the communication between operators, and machine malfunctioning. The main effects of failure were represented by CTV underdose, wrong dose distribution and/or delivery, unintended normal tissue irradiation. As additional safety measures, the utilization of a dedicated staff for IORT, double-checking of MU calculation and data entry and finally implementation of in vivo dosimetry were suggested. Conclusions: FMEA appeared as a useful tool for prospective evaluation of patient safety in radiotherapy. The application of this method to IORT lead to identify three safety measures for risk mitigation.« less

  5. A review of the physics and response models for burnout of semiconductor devices

    NASA Astrophysics Data System (ADS)

    Orvis, W. J.; Khanaka, G. H.; Yee, J. H.

    1984-12-01

    Physical mechanisms that cause semiconductor devices to fail from electrical overstress--particularly, EMP-induced electrical stress--are described in light of the current literature and the authors' own research. A major concern is the cause and effects of second breakdown phenomena in p-n junction devices. Models of failure thresholds are evaluated for their inherent errors and for their ability to represent the relevant physics. Finally, the response models that relate electromagnetic stress parameters to appropriate failure-threshold parameters are discussed.

  6. Management of the failed posterior/multidirectional instability patient.

    PubMed

    Forsythe, Brian; Ghodadra, Neil; Romeo, Anthony A; Provencher, Matthew T

    2010-09-01

    Although the results of operative treatment of posterior and multidirectional instability (P-MDI) of the shoulder have improved, they are not as reliable as those treated for anterior instability of the shoulder. This may be attributed to the complexities in the classification, etiology, and physical examination of a patient with suspected posterior and multidirectional instability. Failure to address the primary and concurrent lesion adequately and the development of pain and/or stiffness are contributing factors to the failure of P-MDI procedures. Other pitfalls include errors in history and physical examination, failure to recognize concomitant pathology, and problems with the surgical technique or implant failure. Patulous capsular tissues and glenoid version also play in role management of failed P-MDI patients. With an improved understanding of pertinent clinical complaints and physical examination findings and the advent of arthroscopic techniques and improved implants, successful strategies for the nonoperative and operative management of the patient after a failed posterior or multidirectional instability surgery may be elucidated. This article highlights the common presentation, physical findings, and radiographic workup in a patient that presents after a failed P-MDI repair and offers strategies for revision surgical repair.

  7. 'As many options as there are, there are just not enough for me': contraceptive use and barriers to access among Australian women.

    PubMed

    Dixon, Suzanne C; Herbert, Danielle L; Loxton, Deborah; Lucke, Jayne C

    2014-10-01

    A comprehensive life course perspective of women's experiences in obtaining and using contraception in Australia is lacking. This paper explores free-text comments about contraception provided by women born between 1973 and 1978 who participated in the Australian Longitudinal Study on Women's Health (ALSWH). The ALSWH is a national population-based cohort study involving over 40,000 women from three age groups, who are surveyed every three years. An initial search identified 1600 comments from 690 women across five surveys from 1996 (when they were aged 18-23 years) to 2009 (31-36 years). The analysis included 305 comments from 289 participants. Factors relating to experiences of barriers to access and optimal contraceptive use were identified and explored using thematic analysis. Five themes recurred across the five surveys as women aged: (i) side effects affecting physical and mental health; (ii) lack of information about contraception; (iii) negative experiences with health services; (iv) contraceptive failure; and (v) difficulty with accessing contraception. Side effects of hormonal contraception and concerns about contraceptive failure influence women's mental and physical health. Many barriers to effective contraception persist throughout women's reproductive lives. Further research is needed into reducing barriers and minimising negative experiences, to ensure optimal contraceptive access for Australian women.

  8. Catastrophic optical bulk degradation (COBD) in high-power single- and multi-mode InGaAs-AlGaAs strained quantum well lasers

    NASA Astrophysics Data System (ADS)

    Sin, Yongkun; Lingley, Zachary; Brodie, Miles; Presser, Nathan; Moss, Steven C.

    2017-02-01

    High-power single-mode (SM) and multi-mode (MM) InGaAs-AlGaAs strained quantum well (QW) lasers are critical components for both telecommunications and space satellite communications systems. However, little has been reported on failure modes and degradation mechanisms of high-power SM and MM InGaAs-AlGaAs strained QW lasers although it is crucial to understand failure modes and underlying degradation mechanisms in developing these lasers that meet lifetime requirements for space satellite systems, where extremely high reliability of these lasers is required. Our present study addresses the aforementioned issues by performing long-term life-tests followed by failure mode analysis (FMA) and physics of failure investigation. We performed long-term accelerated life-tests on state-of-the-art SM and MM InGaAs-AlGaAs strained QW lasers under ACC (automatic current control) mode. Our life-tests have accumulated over 25,000 test hours for SM lasers and over 35,000 test hours for MM lasers. FMA was performed on failed SM lasers using electron beam induced current (EBIC). This technique allowed us to identify failure types by observing dark line defects. All the SM failures we studied showed catastrophic and sudden degradation and all of these failures were bulk failures. Our group previously reported that bulk failure or COBD (catastrophic optical bulk damage) is the dominant failure mode of MM InGaAs-AlGaAs strained QW lasers. Since degradation mechanisms responsible for COBD are still not well understood, we also employed other techniques including focused ion beam (FIB) processing and high-resolution TEM to further study dark line defects and dislocations in post-aged lasers. Our long-term life-test results and FMA results are reported.

  9. Fool-proofing design and crisis management for customized intelligent physical fitness and healthcare system.

    PubMed

    Huang, Chung-Chi; Huang, Chung-Lin; Liu, Hsiao-Man

    2015-01-01

    In recent years, it is quite important to develop a customized system which can enhance physical fitness and health for people. And the system reliability is more important. In the paper, a fool-proofing design and crisis management for customized physical fitness and healthcare system is proposed. It is designed to prevent the failure of the various mechanisms of customized physical fitness and healthcare system, including records, surveillance, assessments, predictions, diagnosis, prescription, and scheduling. It is separated into (1) fool-proofing design module (2) crisis management module. The fool-proofing indexes are set to prevent the failure of the various mechanisms. The states of the various mechanisms are managed by the auto-checked fool-proofing indexes. If mistakes prevention was fail, we have to execute the crisis management for stopping harmful results. The crisis management will find the error level and response the solution by using fuzzy method. By the experiments, we can find the advantages of the fool-proofing design and crisis management for customized physical fitness and healthcare system. And it is effective to prevent the failure of the various mechanisms of intelligent customized physical fitness and healthcare system.

  10. Know thy eHealth user: Development of biopsychosocial personas from a study of older adults with heart failure.

    PubMed

    Holden, Richard J; Kulanthaivel, Anand; Purkayastha, Saptarshi; Goggins, Kathryn M; Kripalani, Sunil

    2017-12-01

    Personas are a canonical user-centered design method increasingly used in health informatics research. Personas-empirically-derived user archetypes-can be used by eHealth designers to gain a robust understanding of their target end users such as patients. To develop biopsychosocial personas of older patients with heart failure using quantitative analysis of survey data. Data were collected using standardized surveys and medical record abstraction from 32 older adults with heart failure recently hospitalized for acute heart failure exacerbation. Hierarchical cluster analysis was performed on a final dataset of n=30. Nonparametric analyses were used to identify differences between clusters on 30 clustering variables and seven outcome variables. Six clusters were produced, ranging in size from two to eight patients per cluster. Clusters differed significantly on these biopsychosocial domains and subdomains: demographics (age, sex); medical status (comorbid diabetes); functional status (exhaustion, household work ability, hygiene care ability, physical ability); psychological status (depression, health literacy, numeracy); technology (Internet availability); healthcare system (visit by home healthcare, trust in providers); social context (informal caregiver support, cohabitation, marital status); and economic context (employment status). Tabular and narrative persona descriptions provide an easy reference guide for informatics designers. Personas development using approaches such as clustering of structured survey data is an important tool for health informatics professionals. We describe insights from our study of patients with heart failure, then recommend a generic ten-step personas development process. Methods strengths and limitations of the study and of personas development generally are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Interdependent Multi-Layer Networks: Modeling and Survivability Analysis with Applications to Space-Based Networks

    PubMed Central

    Castet, Jean-Francois; Saleh, Joseph H.

    2013-01-01

    This article develops a novel approach and algorithmic tools for the modeling and survivability analysis of networks with heterogeneous nodes, and examines their application to space-based networks. Space-based networks (SBNs) allow the sharing of spacecraft on-orbit resources, such as data storage, processing, and downlink. Each spacecraft in the network can have different subsystem composition and functionality, thus resulting in node heterogeneity. Most traditional survivability analyses of networks assume node homogeneity and as a result, are not suited for the analysis of SBNs. This work proposes that heterogeneous networks can be modeled as interdependent multi-layer networks, which enables their survivability analysis. The multi-layer aspect captures the breakdown of the network according to common functionalities across the different nodes, and it allows the emergence of homogeneous sub-networks, while the interdependency aspect constrains the network to capture the physical characteristics of each node. Definitions of primitives of failure propagation are devised. Formal characterization of interdependent multi-layer networks, as well as algorithmic tools for the analysis of failure propagation across the network are developed and illustrated with space applications. The SBN applications considered consist of several networked spacecraft that can tap into each other's Command and Data Handling subsystem, in case of failure of its own, including the Telemetry, Tracking and Command, the Control Processor, and the Data Handling sub-subsystems. Various design insights are derived and discussed, and the capability to perform trade-space analysis with the proposed approach for various network characteristics is indicated. The select results here shown quantify the incremental survivability gains (with respect to a particular class of threats) of the SBN over the traditional monolith spacecraft. Failure of the connectivity between nodes is also examined, and the results highlight the importance of the reliability of the wireless links between spacecraft (nodes) to enable any survivability improvements for space-based networks. PMID:23599835

  12. Interdependent multi-layer networks: modeling and survivability analysis with applications to space-based networks.

    PubMed

    Castet, Jean-Francois; Saleh, Joseph H

    2013-01-01

    This article develops a novel approach and algorithmic tools for the modeling and survivability analysis of networks with heterogeneous nodes, and examines their application to space-based networks. Space-based networks (SBNs) allow the sharing of spacecraft on-orbit resources, such as data storage, processing, and downlink. Each spacecraft in the network can have different subsystem composition and functionality, thus resulting in node heterogeneity. Most traditional survivability analyses of networks assume node homogeneity and as a result, are not suited for the analysis of SBNs. This work proposes that heterogeneous networks can be modeled as interdependent multi-layer networks, which enables their survivability analysis. The multi-layer aspect captures the breakdown of the network according to common functionalities across the different nodes, and it allows the emergence of homogeneous sub-networks, while the interdependency aspect constrains the network to capture the physical characteristics of each node. Definitions of primitives of failure propagation are devised. Formal characterization of interdependent multi-layer networks, as well as algorithmic tools for the analysis of failure propagation across the network are developed and illustrated with space applications. The SBN applications considered consist of several networked spacecraft that can tap into each other's Command and Data Handling subsystem, in case of failure of its own, including the Telemetry, Tracking and Command, the Control Processor, and the Data Handling sub-subsystems. Various design insights are derived and discussed, and the capability to perform trade-space analysis with the proposed approach for various network characteristics is indicated. The select results here shown quantify the incremental survivability gains (with respect to a particular class of threats) of the SBN over the traditional monolith spacecraft. Failure of the connectivity between nodes is also examined, and the results highlight the importance of the reliability of the wireless links between spacecraft (nodes) to enable any survivability improvements for space-based networks.

  13. TU-FG-201-01: 18-Month Clinical Experience of a Linac Daily Quality Assurance (QA) Solution Using Only EPID and OBI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, B; Sun, B; Yaddanapudi, S

    Purpose: To describe the clinical use of a Linear Accelerator (Linac) DailyQA system with only EPID and OBI. To assess the reliability over an 18-month period and improve the robustness of this system based on QA failure analysis. Methods: A DailyQA solution utilizing an in-house designed phantom, combined EPID and OBI image acquisitions, and a web-based data analysis and reporting system was commissioned and used in our clinic to measure geometric, dosimetry and imaging components of a Varian Truebeam Linac. During an 18-month period (335 working days), the Daily QA results, including the output constancy, beam flatness and symmetry, uniformity,more » TPR20/10, MV and KV imaging quality, were collected and analyzed. For output constancy measurement, an independent monthly QA system with an ionization chamber (IC) and annual/incidental TG51 measurements with ADCL IC were performed and cross-compared to Daily QA system. Thorough analyses were performed on the recorded QA failures to evaluate the machine performance, optimize the data analysis algorithm, adjust the tolerance setting and improve the training procedure to prevent future failures. Results: A clinical workflow including beam delivery, data analysis, QA report generation and physics approval was established and optimized to suit daily clinical operation. The output tests over the 335 working day period cross-correlated with the monthly QA system within 1.3% and TG51 results within 1%. QA passed with one attempt on 236 days out of 335 days. Based on the QA failures analysis, the Gamma criteria is revised from (1%, 1mm) to (2%, 1mm) considering both QA accuracy and efficiency. Data analysis algorithm is improved to handle multiple entries for a repeating test. Conclusion: We described our 18-month clinical experience on a novel DailyQA system using only EPID and OBI. The long term data presented demonstrated the system is suitable and reliable for Linac daily QA.« less

  14. Motivational Interviewing Tailored Interventions for Heart Failure (MITI-HF): study design and methods.

    PubMed

    Masterson Creber, Ruth; Patey, Megan; Dickson, Victoria Vaughan; DeCesaris, Marissa; Riegel, Barbara

    2015-03-01

    Lack of engagement in self-care is common among patients needing to follow a complex treatment regimen, especially patients with heart failure who are affected by comorbidity, disability and side effects of poly-pharmacy. The purpose of Motivational Interviewing Tailored Interventions for Heart Failure (MITI-HF) is to test the feasibility and comparative efficacy of an MI intervention on self-care, acute heart failure physical symptoms and quality of life. We are conducting a brief, nurse-led motivational interviewing randomized controlled trial to address behavioral and motivational issues related to heart failure self-care. Participants in the intervention group receive home and phone-based motivational interviewing sessions over 90-days and those in the control group receive care as usual. Participants in both groups receive patient education materials. The primary study outcome is change in self-care maintenance from baseline to 90-days. This article presents the study design, methods, plans for statistical analysis and descriptive characteristics of the study sample for MITI-HF. Study findings will contribute to the literature on the efficacy of motivational interviewing to promote heart failure self-care. We anticipate that using an MI approach can help patients with heart failure focus on their internal motivation to change in a non-confrontational, patient-centered and collaborative way. It also affirms their ability to practice competent self-care relevant to their personal health goals. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Accelerated Aging System for Prognostics of Power Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Celaya, Jose R.; Vashchenko, Vladislav; Wysocki, Philip; Saha, Sankalita

    2010-01-01

    Prognostics is an engineering discipline that focuses on estimation of the health state of a component and the prediction of its remaining useful life (RUL) before failure. Health state estimation is based on actual conditions and it is fundamental for the prediction of RUL under anticipated future usage. Failure of electronic devices is of great concern as future aircraft will see an increase of electronics to drive and control safety-critical equipment throughout the aircraft. Therefore, development of prognostics solutions for electronics is of key importance. This paper presents an accelerated aging system for gate-controlled power transistors. This system allows for the understanding of the effects of failure mechanisms, and the identification of leading indicators of failure which are essential in the development of physics-based degradation models and RUL prediction. In particular, this system isolates electrical overstress from thermal overstress. Also, this system allows for a precise control of internal temperatures, enabling the exploration of intrinsic failure mechanisms not related to the device packaging. By controlling the temperature within safe operation levels of the device, accelerated aging is induced by electrical overstress only, avoiding the generation of thermal cycles. The temperature is controlled by active thermal-electric units. Several electrical and thermal signals are measured in-situ and recorded for further analysis in the identification of leading indicators of failures. This system, therefore, provides a unique capability in the exploration of different failure mechanisms and the identification of precursors of failure that can be used to provide a health management solution for electronic devices.

  16. Why earthquakes correlate weakly with the solid Earth tides: Effects of periodic stress on the rate and probability of earthquake occurrence

    USGS Publications Warehouse

    Beeler, N.M.; Lockner, D.A.

    2003-01-01

    We provide an explanation why earthquake occurrence does not correlate well with the daily solid Earth tides. The explanation is derived from analysis of laboratory experiments in which faults are loaded to quasiperiodic failure by the combined action of a constant stressing rate, intended to simulate tectonic loading, and a small sinusoidal stress, analogous to the Earth tides. Event populations whose failure times correlate with the oscillating stress show two modes of response; the response mode depends on the stressing frequency. Correlation that is consistent with stress threshold failure models, e.g., Coulomb failure, results when the period of stress oscillation exceeds a characteristic time tn; the degree of correlation between failure time and the phase of the driving stress depends on the amplitude and frequency of the stress oscillation and on the stressing rate. When the period of the oscillating stress is less than tn, the correlation is not consistent with threshold failure models, and much higher stress amplitudes are required to induce detectable correlation with the oscillating stress. The physical interpretation of tn is the duration of failure nucleation. Behavior at the higher frequencies is consistent with a second-order dependence of the fault strength on sliding rate which determines the duration of nucleation and damps the response to stress change at frequencies greater than 1/tn. Simple extrapolation of these results to the Earth suggests a very weak correlation of earthquakes with the daily Earth tides, one that would require >13,000 earthquakes to detect. On the basis of our experiments and analysis, the absence of definitive daily triggering of earthquakes by the Earth tides requires that for earthquakes, tn exceeds the daily tidal period. The experiments suggest that the minimum typical duration of earthquake nucleation on the San Andreas fault system is ???1 year.

  17. Physicochemical characterization and failure analysis of military coating systems

    NASA Astrophysics Data System (ADS)

    Keene, Lionel Thomas

    Modern military coating systems, as fielded by all branches of the U.S. military, generally consist of a diverse array of organic and inorganic components that can complicate their physicochemical analysis. These coating systems consist of VOC-solvent/waterborne automotive grade polyurethane matrix containing a variety of inorganic pigments and flattening agents. The research presented here was designed to overcome the practical difficulties regarding the study of such systems through the combined application of several cross-disciplinary techniques, including vibrational spectroscopy, electron microscopy, microtomy, ultra-fast laser ablation and optical interferometry. The goal of this research has been to determine the degree and spatial progression of weathering-induced alteration of military coating systems as a whole, as well as to determine the failure modes involved, and characterizing the impact of these failures on the physical barrier performance of the coatings. Transmission-mode Fourier Transform Infrared (FTIR) spectroscopy has been applied to cross-sections of both baseline and artificially weathered samples to elucidate weathering-induced spatial gradients to the baseline chemistry of the coatings. A large discrepancy in physical durability (as indicated by the spatial progression of these gradients) has been found between older and newer generation coatings. Data will be shown implicating silica fillers (previously considered inert) as the probable cause for this behavioral divergence. A case study is presented wherein the application of the aforementioned FTIR technique fails to predict the durability of the coating system as a whole. The exploitation of the ultra-fast optical phenomenon of femtosecond (10-15S) laser ablation is studied as a potential tool to facilitate spectroscopic depth profiling of composite materials. Finally, the interferometric technique of Phase Shifting was evaluated as a potential high-sensitivity technique applied to the problem of determining internal stress evolution in curing and aging coatings.

  18. Cyber-Physical System Security of Smart Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dagle, Jeffery E.

    2012-01-31

    Abstract—This panel presentation will provide perspectives of cyber-physical system security of smart grids. As smart grid technologies are deployed, the interconnected nature of these systems is becoming more prevalent and more complex, and the cyber component of this cyber-physical system is increasing in importance. Studying system behavior in the face of failures (e.g., cyber attacks) allows a characterization of the systems’ response to failure scenarios, loss of communications, and other changes in system environment (such as the need for emergent updates and rapid reconfiguration). The impact of such failures on the availability of the system can be assessed and mitigationmore » strategies considered. Scenarios associated with confidentiality, integrity, and availability are considered. The cyber security implications associated with the American Recovery and Reinvestment Act of 2009 in the United States are discussed.« less

  19. Progressive Failure Analysis Methodology for Laminated Composite Structures

    NASA Technical Reports Server (NTRS)

    Sleight, David W.

    1999-01-01

    A progressive failure analysis method has been developed for predicting the failure of laminated composite structures under geometrically nonlinear deformations. The progressive failure analysis uses C(exp 1) shell elements based on classical lamination theory to calculate the in-plane stresses. Several failure criteria, including the maximum strain criterion, Hashin's criterion, and Christensen's criterion, are used to predict the failure mechanisms and several options are available to degrade the material properties after failures. The progressive failure analysis method is implemented in the COMET finite element analysis code and can predict the damage and response of laminated composite structures from initial loading to final failure. The different failure criteria and material degradation methods are compared and assessed by performing analyses of several laminated composite structures. Results from the progressive failure method indicate good correlation with the existing test data except in structural applications where interlaminar stresses are important which may cause failure mechanisms such as debonding or delaminations.

  20. Expert system for online surveillance of nuclear reactor coolant pumps

    DOEpatents

    Gross, Kenny C.; Singer, Ralph M.; Humenik, Keith E.

    1993-01-01

    An expert system for online surveillance of nuclear reactor coolant pumps. This system provides a means for early detection of pump or sensor degradation. Degradation is determined through the use of a statistical analysis technique, sequential probability ratio test, applied to information from several sensors which are responsive to differing physical parameters. The results of sequential testing of the data provide the operator with an early warning of possible sensor or pump failure.

  1. Improved FTA methodology and application to subsea pipeline reliability design.

    PubMed

    Lin, Jing; Yuan, Yongbo; Zhang, Mingyuan

    2014-01-01

    An innovative logic tree, Failure Expansion Tree (FET), is proposed in this paper, which improves on traditional Fault Tree Analysis (FTA). It describes a different thinking approach for risk factor identification and reliability risk assessment. By providing a more comprehensive and objective methodology, the rather subjective nature of FTA node discovery is significantly reduced and the resulting mathematical calculations for quantitative analysis are greatly simplified. Applied to the Useful Life phase of a subsea pipeline engineering project, the approach provides a more structured analysis by constructing a tree following the laws of physics and geometry. Resulting improvements are summarized in comparison table form.

  2. Improved FTA Methodology and Application to Subsea Pipeline Reliability Design

    PubMed Central

    Lin, Jing; Yuan, Yongbo; Zhang, Mingyuan

    2014-01-01

    An innovative logic tree, Failure Expansion Tree (FET), is proposed in this paper, which improves on traditional Fault Tree Analysis (FTA). It describes a different thinking approach for risk factor identification and reliability risk assessment. By providing a more comprehensive and objective methodology, the rather subjective nature of FTA node discovery is significantly reduced and the resulting mathematical calculations for quantitative analysis are greatly simplified. Applied to the Useful Life phase of a subsea pipeline engineering project, the approach provides a more structured analysis by constructing a tree following the laws of physics and geometry. Resulting improvements are summarized in comparison table form. PMID:24667681

  3. The association between physical activity and social isolation in community-dwelling older adults.

    PubMed

    Robins, Lauren M; Hill, Keith D; Finch, Caroline F; Clemson, Lindy; Haines, Terry

    2018-02-01

    Social isolation is an increasing concern in older community-dwelling adults. There is growing need to determine effective interventions addressing social isolation. This study aimed to determine whether a relationship exists between physical activity (recreational and/or household-based) and social isolation. An examination was conducted for whether group- or home-based falls prevention exercise was associated with social isolation. Cross-sectional analysis of telephone survey data was used to investigate relationships between physical activity, health, age, gender, living arrangements, ethnicity and participation in group- or home-based falls prevention exercise on social isolation. Univariable and multivariable ordered logistic regression analyses were conducted. Factors found to be significantly associated with reduced social isolation in multivariable analysis included living with a partner/spouse, reporting better general health, higher levels of household-based physical activity (OR = 1.03, CI = 1.01-1.05) and feeling less downhearted/depressed. Being more socially isolated was associated with symptoms of depression and a diagnosis of congestive heart failure (pseudo R 2 = 0.104). Findings suggest that household-based physical activity is related to social isolation in community-dwelling older adults. Further research is required to determine the nature of this relationship and to investigate the impact of group physical activity interventions on social isolation.

  4. Evaluation of a Progressive Failure Analysis Methodology for Laminated Composite Structures

    NASA Technical Reports Server (NTRS)

    Sleight, David W.; Knight, Norman F., Jr.; Wang, John T.

    1997-01-01

    A progressive failure analysis methodology has been developed for predicting the nonlinear response and failure of laminated composite structures. The progressive failure analysis uses C plate and shell elements based on classical lamination theory to calculate the in-plane stresses. Several failure criteria, including the maximum strain criterion, Hashin's criterion, and Christensen's criterion, are used to predict the failure mechanisms. The progressive failure analysis model is implemented into a general purpose finite element code and can predict the damage and response of laminated composite structures from initial loading to final failure.

  5. Update on Simulating Ice-Cliff Failure

    NASA Astrophysics Data System (ADS)

    Parizek, B. R.; Christianson, K. A.; Alley, R. B.; Voytenko, D.; Vankova, I.; Dixon, T. H.; Walker, R. T.; Holland, D.

    2017-12-01

    Using a 2D full-Stokes diagnostic ice-flow model and engineering and glaciological failure criteria, we simulate the limiting physical conditions for rapid structural failure of subaerial ice cliffs. Previously, using a higher-order flowline model, we reported that the threshold height, in crevassed ice and/or under favorable conditions for hydrofracture or crack lubrication, may be only slightly above the 100-m maximum observed today and that under well-drained or low-melt conditions, mechanically-competent ice supports cliff heights up to 220 m (with a likely range of 180-275 m) before ultimately succumbing to tensional and compressive failure along a listric surface. However, proximal to calving fronts, bridging effects lead to variations in vertical normal stress from the background glaciostatic stress state that give rise to the along-flow gradients in vertical shear stress that are included within a full-Stokes momentum balance. When including all flowline stresses within the physics core, diagnostic solutions continue to support our earlier findings that slumping failure ultimately limits the upper bound for cliff heights. Shear failure still requires low cohesive strength, tensile failure leads to deeper dry-crevasse propagation (albeit, less than halfway through the cliff), and compressive failure drops the threshold height for triggering rapid ice-front retreat via slumping to 200 m (145-280 m).

  6. Exergaming in older adults: A scoping review and implementation potential for patients with heart failure

    PubMed Central

    Verheijden Klompstra, Leonie; Jaarsma, Tiny; Strömberg, Anna

    2013-01-01

    Background: Physical activity can improve exercise capacity, quality of life and reduce mortality and hospitalization in patients with heart failure (HF). Adherence to exercise recommendations in patients with HF is low. The use of exercise games (exergames) might be a way to encourage patients with HF to exercise especially those who may be reluctant to more traditional forms of exercise. No studies have been conducted on patients with HF and exergames. Aim: This scoping review focuses on the feasibility and influence of exergames on physical activity in older adults, aiming to target certain characteristics that are important for patients with HF to become more physically active. Methods: A literature search was undertaken in August 2012 in the databases PsychInfo, PUBMED, Scopus, Web of Science and CINAHL. Included studies evaluated the influence of exergaming on physical activity in older adults. Articles were excluded if they focused on rehabilitation of specific limbs, improving specific tasks or describing no intervention. Fifty articles were found, 11 were included in the analysis. Results: Exergaming was described as safe and feasible, and resulted in more energy expenditure compared to rest. Participants experienced improved balance and reported improved cognitive function after exergaming. Participants enjoyed playing the exergames, their depressive symptoms decreased, and they reported improved quality of life and empowerment. Exergames made them feel more connected with their family members, especially their grandchildren. Conclusion: Although this research field is small and under development, exergaming might be promising in order to enhance physical activity in patients with HF. However, further testing is needed. PMID:24198306

  7. Exergaming in older adults: a scoping review and implementation potential for patients with heart failure.

    PubMed

    Verheijden Klompstra, Leonie; Jaarsma, Tiny; Strömberg, Anna

    2014-10-01

    Physical activity can improve exercise capacity, quality of life and reduce mortality and hospitalization in patients with heart failure (HF). Adherence to exercise recommendations in patients with HF is low. The use of exercise games (exergames) might be a way to encourage patients with HF to exercise especially those who may be reluctant to more traditional forms of exercise. No studies have been conducted on patients with HF and exergames. This scoping review focuses on the feasibility and influence of exergames on physical activity in older adults, aiming to target certain characteristics that are important for patients with HF to become more physically active. A literature search was undertaken in August 2012 in the databases PsychInfo, PUBMED, Scopus, Web of Science and CINAHL. Included studies evaluated the influence of exergaming on physical activity in older adults. Articles were excluded if they focused on rehabilitation of specific limbs, improving specific tasks or describing no intervention. Fifty articles were found, 11 were included in the analysis. Exergaming was described as safe and feasible, and resulted in more energy expenditure compared to rest. Participants experienced improved balance and reported improved cognitive function after exergaming. Participants enjoyed playing the exergames, their depressive symptoms decreased, and they reported improved quality of life and empowerment. Exergames made them feel more connected with their family members, especially their grandchildren. Although this research field is small and under development, exergaming might be promising in order to enhance physical activity in patients with HF. However, further testing is needed. © The European Society of Cardiology 2013.

  8. COMCAN; COMCAN2A; system safety common cause analysis. [IBM360; CDC CYBER176,175; FORTRAN IV (30%) and BAL (70%) (IBM360), FORTRAN IV (97%) and COMPASS (3%) (CDC CYBER176)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burdick, G.R.; Wilson, J.R.

    COMCAN2A and COMCAN are designed to analyze complex systems such as nuclear plants for common causes of failure. A common cause event, or common mode failure, is a secondary cause that could contribute to the failure of more than one component and violates the assumption of independence. Analysis of such events is an integral part of system reliability and safety analysis. A significant common cause event is a secondary cause common to all basic events in one or more minimal cut sets. Minimal cut sets containing events from components sharing a common location or a common link are called commonmore » cause candidates. Components share a common location if no barrier insulates any one of them from the secondary cause. A common link is a dependency among components which cannot be removed by a physical barrier (e.g., a common energy source or common maintenance instructions).IBM360;CDC CYBER176,175; FORTRAN IV (30%) and BAL (70%) (IBM360), FORTRAN IV (97%) and COMPASS (3%) (CDC CYBER176).; OS/360 (IBM360) and NOS/BE 1.4 (CDC CYBER176), NOS 1.3 (CDC CYBER175); 140K bytes of memory for COMCAN and 242K (octal) words of memory for COMCAN2A.« less

  9. Reduced Physical Fitness in Patients With Heart Failure as a Possible Risk Factor for Impaired Driving Performance

    PubMed Central

    Alosco, Michael L.; Penn, Marc S.; Spitznagel, Mary Beth; Cleveland, Mary Jo; Ott, Brian R.

    2015-01-01

    OBJECTIVE. Reduced physical fitness secondary to heart failure (HF) may contribute to poor driving; reduced physical fitness is a known correlate of cognitive impairment and has been associated with decreased independence in driving. No study has examined the associations among physical fitness, cognition, and driving performance in people with HF. METHOD. Eighteen people with HF completed a physical fitness assessment, a cognitive test battery, and a validated driving simulator scenario. RESULTS. Partial correlations showed that poorer physical fitness was correlated with more collisions and stop signs missed and lower scores on a composite score of attention, executive function, and psychomotor speed. Cognitive dysfunction predicted reduced driving simulation performance. CONCLUSION. Reduced physical fitness in participants with HF was associated with worse simulated driving, possibly because of cognitive dysfunction. Larger studies using on-road testing are needed to confirm our findings and identify clinical interventions to maximize safe driving. PMID:26122681

  10. Gender-Specific Physical Symptom Biology in Heart Failure.

    PubMed

    Lee, Christopher S; Hiatt, Shirin O; Denfeld, Quin E; Chien, Christopher V; Mudd, James O; Gelow, Jill M

    2015-01-01

    There are several gender differences that may help explain the link between biology and symptoms in heart failure (HF). The aim of this study was to examine gender-specific relationships between objective measures of HF severity and physical symptoms. Detailed clinical data, including left ventricular ejection fraction and left ventricular internal end-diastolic diameter, and HF-specific physical symptoms were collected as part of a prospective cohort study. Gender interaction terms were tested in linear regression models of physical symptoms. The sample (101 women and 101 men) averaged 57 years of age and most participants (60%) had class III/IV HF. Larger left ventricle size was associated with better physical symptoms for women and worse physical symptoms for men. Decreased ventricular compliance may result in worse physical HF symptoms for women and dilation of the ventricle may be a greater progenitor of symptoms for men with HF.

  11. Reliability analysis of a wastewater treatment plant using fault tree analysis and Monte Carlo simulation.

    PubMed

    Taheriyoun, Masoud; Moradinejad, Saber

    2015-01-01

    The reliability of a wastewater treatment plant is a critical issue when the effluent is reused or discharged to water resources. Main factors affecting the performance of the wastewater treatment plant are the variation of the influent, inherent variability in the treatment processes, deficiencies in design, mechanical equipment, and operational failures. Thus, meeting the established reuse/discharge criteria requires assessment of plant reliability. Among many techniques developed in system reliability analysis, fault tree analysis (FTA) is one of the popular and efficient methods. FTA is a top down, deductive failure analysis in which an undesired state of a system is analyzed. In this study, the problem of reliability was studied on Tehran West Town wastewater treatment plant. This plant is a conventional activated sludge process, and the effluent is reused in landscape irrigation. The fault tree diagram was established with the violation of allowable effluent BOD as the top event in the diagram, and the deficiencies of the system were identified based on the developed model. Some basic events are operator's mistake, physical damage, and design problems. The analytical method is minimal cut sets (based on numerical probability) and Monte Carlo simulation. Basic event probabilities were calculated according to available data and experts' opinions. The results showed that human factors, especially human error had a great effect on top event occurrence. The mechanical, climate, and sewer system factors were in subsequent tier. Literature shows applying FTA has been seldom used in the past wastewater treatment plant (WWTP) risk analysis studies. Thus, the developed FTA model in this study considerably improves the insight into causal failure analysis of a WWTP. It provides an efficient tool for WWTP operators and decision makers to achieve the standard limits in wastewater reuse and discharge to the environment.

  12. Factors Influencing Progressive Failure Analysis Predictions for Laminated Composite Structure

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.

    2008-01-01

    Progressive failure material modeling methods used for structural analysis including failure initiation and material degradation are presented. Different failure initiation criteria and material degradation models are described that define progressive failure formulations. These progressive failure formulations are implemented in a user-defined material model for use with a nonlinear finite element analysis tool. The failure initiation criteria include the maximum stress criteria, maximum strain criteria, the Tsai-Wu failure polynomial, and the Hashin criteria. The material degradation model is based on the ply-discounting approach where the local material constitutive coefficients are degraded. Applications and extensions of the progressive failure analysis material model address two-dimensional plate and shell finite elements and three-dimensional solid finite elements. Implementation details are described in the present paper. Parametric studies for laminated composite structures are discussed to illustrate the features of the progressive failure modeling methods that have been implemented and to demonstrate their influence on progressive failure analysis predictions.

  13. The support-control continuum: An investigation of staff perspectives on factors influencing the success or failure of de-escalation techniques for the management of violence and aggression in mental health settings.

    PubMed

    Price, Owen; Baker, John; Bee, Penny; Lovell, Karina

    2018-01-01

    De-escalation techniques are recommended to manage violence and aggression in mental health settings yet restrictive practices continue to be frequently used. Barriers and enablers to the implementation and effectiveness of de-escalation techniques in practice are not well understood. To obtain staff descriptions of de-escalation techniques currently used in mental health settings and explore factors perceived to influence their implementation and effectiveness. Qualitative, semi-structured interviews and Framework Analysis. Five in-patient wards including three male psychiatric intensive care units, one female acute ward and one male acute ward in three UK Mental Health NHS Trusts. 20 ward-based clinical staff. Individual semi-structured interviews were digitally recorded, transcribed verbatim and analysed using a qualitative data analysis software package. Participants described 14 techniques used in response to escalated aggression applied on a continuum between support and control. Techniques along the support-control continuum could be classified in three groups: 'support' (e.g. problem-solving, distraction, reassurance) 'non-physical control' (e.g. reprimands, deterrents, instruction) and 'physical control' (e.g. physical restraint and seclusion). Charting the reasoning staff provided for technique selection against the described behavioural outcome enabled a preliminary understanding of staff, patient and environmental influences on de-escalation success or failure. Importantly, the more coercive 'non-physical control' techniques are currently conceptualised by staff as a feature of de-escalation techniques, yet, there was evidence of a link between these and increased aggression/use of restrictive practices. Risk was not a consistent factor in decisions to adopt more controlling techniques. Moral judgements regarding the function of the aggression; trial-and-error; ingrained local custom (especially around instruction to low stimulus areas); knowledge of the patient; time-efficiency and staff anxiety had a key role in escalating intervention. This paper provides a new model for understanding staff intervention in response to escalated aggression, a continuum between support and control. It further provides a preliminary explanatory framework for understanding the relationship between patient behaviour, staff response and environmental influences on de-escalation success and failure. This framework reveals potentially important behaviour change targets for interventions seeking to reduce violence and use of restrictive practices through enhanced de-escalation techniques. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Predicting remaining life by fusing the physics of failure modeling with diagnostics

    NASA Astrophysics Data System (ADS)

    Kacprzynski, G. J.; Sarlashkar, A.; Roemer, M. J.; Hess, A.; Hardman, B.

    2004-03-01

    Technology that enables failure prediction of critical machine components (prognostics) has the potential to significantly reduce maintenance costs and increase availability and safety. This article summarizes a research effort funded through the U.S. Defense Advanced Research Projects Agency and Naval Air System Command aimed at enhancing prognostic accuracy through more advanced physics-of-failure modeling and intelligent utilization of relevant diagnostic information. H-60 helicopter gear is used as a case study to introduce both stochastic sub-zone crack initiation and three-dimensional fracture mechanics lifing models along with adaptive model updating techniques for tuning key failure mode variables at a local material/damage site based on fused vibration features. The overall prognostic scheme is aimed at minimizing inherent modeling and operational uncertainties via sensed system measurements that evolve as damage progresses.

  15. Failure Models and Criteria for FRP Under In-Plane or Three-Dimensional Stress States Including Shear Non-Linearity

    NASA Technical Reports Server (NTRS)

    Pinho, Silvestre T.; Davila, C. G.; Camanho, P. P.; Iannucci, L.; Robinson, P.

    2005-01-01

    A set of three-dimensional failure criteria for laminated fiber-reinforced composites, denoted LaRC04, is proposed. The criteria are based on physical models for each failure mode and take into consideration non-linear matrix shear behaviour. The model for matrix compressive failure is based on the Mohr-Coulomb criterion and it predicts the fracture angle. Fiber kinking is triggered by an initial fiber misalignment angle and by the rotation of the fibers during compressive loading. The plane of fiber kinking is predicted by the model. LaRC04 consists of 6 expressions that can be used directly for design purposes. Several applications involving a broad range of load combinations are presented and compared to experimental data and other existing criteria. Predictions using LaRC04 correlate well with the experimental data, arguably better than most existing criteria. The good correlation seems to be attributable to the physical soundness of the underlying failure models.

  16. Influences of personality traits and continuation intentions on physical activity participation within the theory of planned behaviour.

    PubMed

    Chatzisarantis, Nikos L D; Hagger, Martin S

    2008-01-01

    Previous research has suggested that the theory of planned behaviour is insufficient in capturing all the antecedents of physical activity participation and that continuation intentions or personality traits may improve the predictive validity of the model. The present study examined the combined effects of continuation intentions and personality traits on health behaviour within the theory of planned behaviour. To examine these effects, 180 university students (N = 180, Male = 87, Female = 93, Age = 19.14 years, SD = 0.94) completed self-report measures of the theory of planned behaviour, personality traits and continuation intentions. After 5 weeks, perceived achievement of behavioural outcomes and actual participation in physical activities were assessed. Results supported discriminant validity between continuation intentions, conscientiousness and extroversion and indicated that perceived achievement of behavioural outcomes and continuation intentions of failure predicted physical activity participation after controlling for personality effects, past behaviour and other variables in the theory of planned behaviour. In addition, results indicated that conscientiousness moderated the effects of continuation intentions of failure on physical activity such that continuation intentions of failure predicted physical activity participation among conscientious and not among less conscientious individuals. These findings suggest that the effects of continuation intentions on health behaviour are contingent on personality characteristics.

  17. A Physicist in Business: Opportunities, Pitfalls, and Lifestyle.

    NASA Astrophysics Data System (ADS)

    Woollam, John

    2007-03-01

    A traditional education in physics does not normally include business classes or dealing with opportunities to start a company, yet scientists often now start and run small companies. Physicists are mainly interested in technology. However, other factors quickly dominate chances for business success. These include finance, accounting, cash flow analysis, recruiting, interviewing, personnel issues, marketing, investments, retirement plans, patents and other not always so fun activities. Technical decisions are often strongly influenced by company finances and market-analysis. This talk discusses how to recognize opportunity, how to minimize chances for failure, and lifestyle changes one needs to be aware of before entrepreneurship involvement.

  18. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1979-01-01

    A multifaceted program is described in which aeronautical, mechanical, and materials engineers interact to develop composite aircraft structures. Topics covered include: (1) the design of an advanced composite elevator and a proposed spar and rib assembly; (2) optimizing fiber orientation in the vicinity of heavily loaded joints; (3) failure mechanisms and delamination; (4) the construction of an ultralight sailplane; (5) computer-aided design; finite element analysis programs, preprocessor development, and array preprocessor for SPAR; (6) advanced analysis methods for composite structures; (7) ultrasonic nondestructive testing; (8) physical properties of epoxy resins and composites; (9) fatigue in composite materials, and (10) transverse thermal expansion of carbon/epoxy composites.

  19. Correlates of Exercise Self-efficacy in a Randomized Trial of Mind-Body Exercise in Patients With Chronic Heart Failure.

    PubMed

    Yeh, Gloria Y; Mu, Lin; Davis, Roger B; Wayne, Peter M

    2016-01-01

    Exercise self-efficacy is one of the strongest predictors of physical activity behavior. Prior literature suggests that tai chi, a mind-body exercise, may increase self-efficacy; however, this is not extensively studied. Little is known about the factors associated with development of exercise self-efficacy in a population with heart failure. We utilized data from a randomized controlled trial of 12 weeks of group tai chi classes versus education in patients with chronic heart failure (n = 100). Multivariable linear regression was used to explore possible correlates of change in exercise self-efficacy in the entire sample and in the subgroup who received tai chi (n = 50). Covariates included baseline quality of life, social support, functional parameters, physical activity, serum biomarkers, sociodemographics, and clinical heart failure parameters. Baseline 6-minute walk (β=-0.0003, SE = 0.0001, P = .02) and fatigue score (β= 0.03, SE = 0.01, P = .004) were significantly associated with change in self-efficacy, with those in the lowest tertile for 6-minute walk and higher tertiles for fatigue score experiencing the greatest change. Intervention group assignment was highly significant, with self-efficacy significantly improved in the tai chi group compared to the education control over 12 weeks (β= 0.39, SE = 0.11, P < .001). In the tai chi group alone, lower baseline oxygen uptake (β=-0.05, SE = 0.01, P = .001), decreased mood (β=-0.01, SE = 0.003, P = .004), and higher catecholamine level (epinephrine β= 0.003, SE = 0.001, P = .005) were significantly associated with improvements in self-efficacy. In this exploratory analysis, our initial findings support the concept that interventions like tai chi may be beneficial in improving exercise self-efficacy, especially in patients with heart failure who are deconditioned, with lower functional status and mood.

  20. Premature ovarian failure due to tetrasomy X in an adolescent girl.

    PubMed

    Kara, Cengiz; Üstyol, Ala; Yılmaz, Ayşegül; Altundağ, Engin; Oğur, Gönül

    2014-12-01

    Tetrasomy X associated with premature ovarian failure has been described in a few patients, and the parental origin of the extra X chromosomes has not been investigated so far in this group. A 15-year-old girl with mental retardation and minor physical anomalies showed secondary amenorrhea, high gonadotropin levels, and osteoporosis. Molecular analysis of the fibroblast cells revealed pure 48,XXXX constitution despite 48,XXXX/47,XXX mosaicism in peripheral blood. Analysis of the polymorphic markers (X22, DXYS218, DXYS267, HPRT) on the X chromosome by the quantitative fluorescent polymerase chain reaction (QF-PCR) method demonstrated that the extra X chromosomes were maternal in origin. Patients with tetrasomy X syndrome should be screened for ovarian insufficiency during early adolescence because hormone replacement therapy may be required for prevention of osteoporosis. In order to understand a potential impact of the parental origin of the extra X chromosomes on ovarian development and function, further studies are needed.

  1. Development of a parallel FE simulator for modeling the whole trans-scale failure process of rock from meso- to engineering-scale

    NASA Astrophysics Data System (ADS)

    Li, Gen; Tang, Chun-An; Liang, Zheng-Zhao

    2017-01-01

    Multi-scale high-resolution modeling of rock failure process is a powerful means in modern rock mechanics studies to reveal the complex failure mechanism and to evaluate engineering risks. However, multi-scale continuous modeling of rock, from deformation, damage to failure, has raised high requirements on the design, implementation scheme and computation capacity of the numerical software system. This study is aimed at developing the parallel finite element procedure, a parallel rock failure process analysis (RFPA) simulator that is capable of modeling the whole trans-scale failure process of rock. Based on the statistical meso-damage mechanical method, the RFPA simulator is able to construct heterogeneous rock models with multiple mechanical properties, deal with and represent the trans-scale propagation of cracks, in which the stress and strain fields are solved for the damage evolution analysis of representative volume element by the parallel finite element method (FEM) solver. This paper describes the theoretical basis of the approach and provides the details of the parallel implementation on a Windows - Linux interactive platform. A numerical model is built to test the parallel performance of FEM solver. Numerical simulations are then carried out on a laboratory-scale uniaxial compression test, and field-scale net fracture spacing and engineering-scale rock slope examples, respectively. The simulation results indicate that relatively high speedup and computation efficiency can be achieved by the parallel FEM solver with a reasonable boot process. In laboratory-scale simulation, the well-known physical phenomena, such as the macroscopic fracture pattern and stress-strain responses, can be reproduced. In field-scale simulation, the formation process of net fracture spacing from initiation, propagation to saturation can be revealed completely. In engineering-scale simulation, the whole progressive failure process of the rock slope can be well modeled. It is shown that the parallel FE simulator developed in this study is an efficient tool for modeling the whole trans-scale failure process of rock from meso- to engineering-scale.

  2. Unified continuum damage model for matrix cracking in composite rotor blades

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pollayi, Hemaraju; Harursampath, Dineshkumar

    This paper deals with modeling of the first damage mode, matrix micro-cracking, in helicopter rotor/wind turbine blades and how this effects the overall cross-sectional stiffness. The helicopter/wind turbine rotor system operates in a highly dynamic and unsteady environment leading to severe vibratory loads present in the system. Repeated exposure to this loading condition can induce damage in the composite rotor blades. These rotor/turbine blades are generally made of fiber-reinforced laminated composites and exhibit various competing modes of damage such as matrix micro-cracking, delamination, and fiber breakage. There is a need to study the behavior of the composite rotor system undermore » various key damage modes in composite materials for developing Structural Health Monitoring (SHM) system. Each blade is modeled as a beam based on geometrically non-linear 3-D elasticity theory. Each blade thus splits into 2-D analyzes of cross-sections and non-linear 1-D analyzes along the beam reference curves. Two different tools are used here for complete 3-D analysis: VABS for 2-D cross-sectional analysis and GEBT for 1-D beam analysis. The physically-based failure models for matrix in compression and tension loading are used in the present work. Matrix cracking is detected using two failure criterion: Matrix Failure in Compression and Matrix Failure in Tension which are based on the recovered field. A strain variable is set which drives the damage variable for matrix cracking and this damage variable is used to estimate the reduced cross-sectional stiffness. The matrix micro-cracking is performed in two different approaches: (i) Element-wise, and (ii) Node-wise. The procedure presented in this paper is implemented in VABS as matrix micro-cracking modeling module. Three examples are presented to investigate the matrix failure model which illustrate the effect of matrix cracking on cross-sectional stiffness by varying the applied cyclic load.« less

  3. Railcar Roller Bearing Failure Progression Tests

    DOT National Transportation Integrated Search

    1982-04-01

    This report describes the laboratory endurance test of six railcar roller bearings that had previously suffered physical damage or were otherwise degraded as a result of actual railroad service. Two different onboard impending bearing failure sensors...

  4. Failure Analysis and Prevention for the Air Logistics Center Engineer: CAStLE Course Development Summary

    DTIC Science & Technology

    2006-09-01

    Monday through Friday in a single week. This daily schedule was chosen so that engineers could still access their office during part of the normal...aluminum, austenitic SS) structures do not cleave! "* Physical Manifestation - Bright, shiny appearance - " Crystallized " fracture surface - Chevrons...region with the "striations" Fracture mode was actually by SOC *Lesson? Don’t base conclusions on a single observation Higher mag macroscopic image

  5. Qualification of tungsten coatings on plasma-facing components for JET

    NASA Astrophysics Data System (ADS)

    Maier, H.; Neu, R.; Greuner, H.; Böswirth, B.; Balden, M.; Lindig, S.; Matthews, G. F.; Rasinski, M.; Wienhold, P.; Wiltner, A.

    2009-12-01

    This contribution summarizes the work that has been performed to establish the industrial production of tungsten coatings on carbon fibre composite (CFC) for application within the ITER-like Wall Project at JET. This comprises the investigation of vacuum plasma-sprayed coatings, physical vapour deposited tungsten/rhenium multilayers, as well as coatings deposited by combined magnetron-sputtering and ion implantation. A variety of analysis tools were applied to investigate failures and oxide and carbide formation in these systems.

  6. Environmental Impact Analysis Process, Final Environmental Assessment for U.S. Air Force Quick Reaction Launch Vehicle Program

    DTIC Science & Technology

    2001-01-22

    fin whale (Balaenoptera physalis ), minke whale (B. acutorostrata), humpback whale (Megaptera novaeangliae), harbor seal (Phoca vitulina), Dall’s...modification of feeding habitat, 4) physical impacts due to launch failure, and 5) ingestion of toxins . A previous biological assessment (ENRI, 1998...Ingestion of toxins : Off Kodiak, eiders feed by diving and dabbling for mollusks and crustaceans in the shallow water. If, in the event of a launch

  7. Designing dual-plate meteoroid shields: A new analysis

    NASA Technical Reports Server (NTRS)

    Swift, H. F.; Bamford, R.; Chen, R.

    1982-01-01

    Physics governing ultrahigh velocity impacts onto dual-plate meteor armor is discussed. Meteoroid shield design methodologies are considered: failure mechanisms, qualitative features of effective meteoroid shield designs, evaluating/processing meteoroid threat models, and quantitative techniques for optimizing effective meteoroid shield designs. Related investigations are included: use of Kevlar cloth/epoxy panels in meteoroid shields for the Halley's Comet intercept vehicle, mirror exposure dynamics, and evaluation of ion fields produced around the Halley Intercept Mission vehicle by meteoroid impacts.

  8. Representing functions/procedures and processes/structures for analysis of effects of failures on functions and operations

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Leifker, Daniel B.

    1991-01-01

    Current qualitative device and process models represent only the structure and behavior of physical systems. However, systems in the real world include goal-oriented activities that generally cannot be easily represented using current modeling techniques. An extension of a qualitative modeling system, known as functional modeling, which captures goal-oriented activities explicitly is proposed and how they may be used to support intelligent automation and fault management is shown.

  9. Dynamic Fracture Simulations of Explosively Loaded Cylinders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arthur, Carly W.; Goto, D. M.

    2015-11-30

    This report documents the modeling results of high explosive experiments investigating dynamic fracture of steel (AerMet® 100 alloy) cylinders. The experiments were conducted at Lawrence Livermore National Laboratory (LLNL) during 2007 to 2008 [10]. A principal objective of this study was to gain an understanding of dynamic material failure through the analysis of hydrodynamic computer code simulations. Two-dimensional and three-dimensional computational cylinder models were analyzed using the ALE3D multi-physics computer code.

  10. Investigating Main and High-Speed Shaft Bearing Reliability through Uptower Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, Jonathan A

    The most prevalent failure modes in wind turbine drivetrains are main bearing failures stemming from micropitting, white etching or axial cracks in gearbox bearings, and generator bearing failures. These failures are neither well understood nor accounted for in design standards; consequently, the mitigation strategies being developed and fielded may only partially address the physics of failure and can take years to assess. The U.S. Department of Energy continues to support research programs to investigate the influence of rolling element sliding on the formation of bearing axial cracks and main bearing micropitting.

  11. Surgical treatment of chronic exertional compartment syndrome of the leg: failure rates and postoperative disability in an active patient population.

    PubMed

    Waterman, Brian R; Laughlin, Matthew; Kilcoyne, Kelly; Cameron, Kenneth L; Owens, Brett D

    2013-04-03

    Chronic exertional compartment syndrome of the leg is a frequent source of lower-extremity pain in military personnel, competitive athletes, and runners. We are not aware of any previous study in which the authors rigorously evaluated the rates of return to full activity, persistent disability, and surgical revision after operative management of chronic exertional compartment syndrome of the leg in a large, physically active population. Individuals who had undergone surgical fasciotomy of the anterior, lateral, and/or posterior compartments (current procedural terminology [CPT] codes 27600, 27601, and 27602) for nontraumatic compartment syndrome of the lower extremity (International Classification of Diseases, Ninth Revision [ICD-9] code 729.72) between 2003 and 2010 were identified from the Military Health System Management Analysis and Reporting Tool (M2). Demographic variables including age, sex, and rank were extracted, and rates of postoperative complications, activity limitations, and revision surgery or medical discharge were obtained from the electronic medical record and U.S. Army Physical Disability Agency database. A total of 611 patients underwent 754 surgical procedures. The average patient age was 28.0 years, and 91.8% of the patients were male. Of the surgical procedures, 77.4% involved only anterior and lateral compartment releases; 19.4% addressed the anterior, lateral, and posterior compartments; and 2.2% addressed the posterior compartments alone. Symptom recurrence was reported by 44.7% of the patients, and 27.7% were unable to return to full activity. Surgical complications were documented for 15.7% of the patients, 5.9% underwent surgical revision, and 17.3% were referred for medical discharge because of chronic exertional compartment syndrome. Univariate analysis of prognostic factors revealed that surgical failure was associated with bilateral involvement (odds ratio [OR], 1.64), perioperative complications (OR, 2.12), activity limitations (OR, 4.41), and persistence of preoperative symptoms (OR, 8.46). Multivariable analysis confirmed significant associations between surgical failure and perioperative complications (OR, 1.72), activity limitations (OR, 2.23), and persistence of preoperative symptoms (OR, 5.47), whereas other factors were not significantly associated with surgical failure. Chronic exertional compartment syndrome is a substantial contributor to lower-extremity disability in the military population. Nearly half of all service members undergoing fasciotomy reported persistent symptoms, and one in five individuals had unsuccessful surgical treatment.

  12. Semiparametric regression analysis of failure time data with dependent interval censoring.

    PubMed

    Chen, Chyong-Mei; Shen, Pao-Sheng

    2017-09-20

    Interval-censored failure-time data arise when subjects are examined or observed periodically such that the failure time of interest is not examined exactly but only known to be bracketed between two adjacent observation times. The commonly used approaches assume that the examination times and the failure time are independent or conditionally independent given covariates. In many practical applications, patients who are already in poor health or have a weak immune system before treatment usually tend to visit physicians more often after treatment than those with better health or immune system. In this situation, the visiting rate is positively correlated with the risk of failure due to the health status, which results in dependent interval-censored data. While some measurable factors affecting health status such as age, gender, and physical symptom can be included in the covariates, some health-related latent variables cannot be observed or measured. To deal with dependent interval censoring involving unobserved latent variable, we characterize the visiting/examination process as recurrent event process and propose a joint frailty model to account for the association of the failure time and visiting process. A shared gamma frailty is incorporated into the Cox model and proportional intensity model for the failure time and visiting process, respectively, in a multiplicative way. We propose a semiparametric maximum likelihood approach for estimating model parameters and show the asymptotic properties, including consistency and weak convergence. Extensive simulation studies are conducted and a data set of bladder cancer is analyzed for illustrative purposes. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Associations between psychological distress, workplace accidents, workplace failures and workplace successes.

    PubMed

    Hilton, Michael F; Whiteford, Harvey A

    2010-12-01

    This study investigates associations between psychological distress and workplace accidents, workplace failures and workplace successes. The Health and Work Performance Questionnaire (HPQ) was distributed to employees of 58 large employers. A total of 60,556 full-time employees were eligible for analysis. The HPQ probed whether the respondent had, in the past 30-days, a workplace accident, success or failure ("yes" or "no"). Psychological distress was quantified using the Kessler 6 (K6) scale and categorised into low, moderate and high psychological distress. Three binomial logistic regressions were performed with the dependent variables being workplace accident, success or failure. Covariates in the models were K6 category, gender, age, marital status, education level, job category, physical health and employment sector. Accounting for all other variables, moderate and high psychological distress significantly (P < 0.0001) increased the odds ratio (OR) for a workplace accident to 1.4 for both levels of distress. Moderate and high psychological distress significantly (P < 0.0001) increased the OR (OR = 2.3 and 2.6, respectively) for a workplace failure and significantly (P < 0.0001) decreased the OR for a workplace success (OR = 0.8 and 0.7, respectively). Moderate and high psychological distress increase the OR's for workplace accidents work failures and decrease the OR of workplace successes at similar levels. As the prevalence of moderate psychological distress is approximately double that of high psychological distress moderate distress consequentially has a greater workplace impact.

  14. [Sport for pacemaker patients].

    PubMed

    Israel, C W

    2012-06-01

    Sport activity is an important issue in many patients with a pacemaker either because they performed sport activities before pacemaker implantation to reduce the cardiovascular risk or to improve the course of an underlying cardiovascular disease (e.g. coronary artery disease, heart failure) by sports. Compared to patients with an implantable cardioverter defibrillator (ICD) the risks from underlying cardiovascular disease (e.g. ischemia, heart failure), arrhythmia, lead dysfunction or inappropriate therapy are less important or absent. Sport is contraindicated in dyspnea at rest, acute heart failure, new complex arrhythmia, acute myocarditis and acute myocardial infarction, valvular disease with indications for intervention and surgery and comorbidities which prevent physical activity. Patients with underlying cardiovascular disease (including hypertension) should preferably perform types and levels of physical activity that are aerobic (with dynamic exercise) such as running, swimming, cycling instead of sport with high anaerobic demands and high muscular workload. In heart failure, studies demonstrated advantages of isometric sport that increases the amount of muscle, thereby preventing cardiac cachexia. Sport with a risk of blows to the chest or physical contact (e.g. boxing, rugby, martial arts) should be avoided. Implantation, programming and follow-up should respect specific precautions to allow optimal physical activity with a pacemaker including implantation of bipolar leads on the side contralateral to the dominant hand, individual programming of the upper sensor and tracking rate and regular exercise testing.

  15. Complex Failure Forewarning System - DHS Conference Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abercrombie, Robert K; Hively, Lee M; Prowell, Stacy J

    2011-01-01

    As the critical infrastructures of the United States have become more and more dependent on public and private networks, the potential for widespread national impact resulting from disruption or failure of these networks has also increased. Securing the nation s critical infrastructures requires protecting not only their physical systems but, just as important, the cyber portions of the systems on which they rely. A failure is inclusive of random events, design flaws, and instabilities caused by cyber (and/or physical) attack. One such domain, aging bridges, is used to explain the Complex Structure Failure Forewarning System. We discuss the workings ofmore » such a system in the context of the necessary sensors, command and control and data collection as well as the cyber security efforts that would support this system. Their application and the implications of this computing architecture are also discussed, with respect to our nation s aging infrastructure.« less

  16. Forewarning of Failure in Complex Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abercrombie, Robert K; Hively, Lee M; Prowell, Stacy J

    2011-01-01

    As the critical infrastructures of the United States have become more and more dependent on public and private networks, the potential for widespread national impact resulting from disruption or failure of these networks has also increased. Securing the nation s critical infrastructures requires protecting not only their physical systems but, just as important, the cyber portions of the systems on which they rely. A failure is inclusive of random events, design flaws, and instabilities caused by cyber (and/or physical) attack. One such domain is failure in critical equipment. A second is aging bridges. We discuss the workings of such amore » system in the context of the necessary sensors, command and control and data collection as well as the cyber security efforts that would support this system. Their application and the implications of this computing architecture are also discussed, with respect to our nation s aging infrastructure.« less

  17. Rocket Engine Oscillation Diagnostics

    NASA Technical Reports Server (NTRS)

    Nesman, Tom; Turner, James E. (Technical Monitor)

    2002-01-01

    Rocket engine oscillating data can reveal many physical phenomena ranging from unsteady flow and acoustics to rotordynamics and structural dynamics. Because of this, engine diagnostics based on oscillation data should employ both signal analysis and physical modeling. This paper describes an approach to rocket engine oscillation diagnostics, types of problems encountered, and example problems solved. Determination of design guidelines and environments (or loads) from oscillating phenomena is required during initial stages of rocket engine design, while the additional tasks of health monitoring, incipient failure detection, and anomaly diagnostics occur during engine development and operation. Oscillations in rocket engines are typically related to flow driven acoustics, flow excited structures, or rotational forces. Additional sources of oscillatory energy are combustion and cavitation. Included in the example problems is a sampling of signal analysis tools employed in diagnostics. The rocket engine hardware includes combustion devices, valves, turbopumps, and ducts. Simple models of an oscillating fluid system or structure can be constructed to estimate pertinent dynamic parameters governing the unsteady behavior of engine systems or components. In the example problems it is shown that simple physical modeling when combined with signal analysis can be successfully employed to diagnose complex rocket engine oscillatory phenomena.

  18. Advanced Ground Systems Maintenance Physics Models For Diagnostics Project

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M.

    2015-01-01

    The project will use high-fidelity physics models and simulations to simulate real-time operations of cryogenic and systems and calculate the status/health of the systems. The project enables the delivery of system health advisories to ground system operators. The capability will also be used to conduct planning and analysis of cryogenic system operations. This project will develop and implement high-fidelity physics-based modeling techniques tosimulate the real-time operation of cryogenics and other fluids systems and, when compared to thereal-time operation of the actual systems, provide assessment of their state. Physics-modelcalculated measurements (called “pseudo-sensors”) will be compared to the system real-timedata. Comparison results will be utilized to provide systems operators with enhanced monitoring ofsystems' health and status, identify off-nominal trends and diagnose system/component failures.This capability can also be used to conduct planning and analysis of cryogenics and other fluidsystems designs. This capability will be interfaced with the ground operations command andcontrol system as a part of the Advanced Ground Systems Maintenance (AGSM) project to helpassure system availability and mission success. The initial capability will be developed for theLiquid Oxygen (LO2) ground loading systems.

  19. [Analysis of telemetry, on-line and non-telemetry data for characterization of the physical activity of patients with heart failure].

    PubMed

    Melczer, Csaba; Melczer, László; Goják, Ilona; Kónyi, Attila; Szabados, Sándor; Raposa, László Bence; Oláh, András; Ács, Pongrác

    2017-09-01

    Several studies have demonstrated that the prevalence of heart disease can be accounted for between 0.4 and 2% in developed countries. The present study aimed to use the PA% of the telemetry data to estimate the 6-minute walk test result. A total of seventeen patients with heart disease; 3 females and 14 males; age: 57.35 yrs ± 9.54; body mass 98.71 ± 9.89 kg; average BMI 36.69 ± 3.67 were recruited into the study. Using the two sets of values describing physical performance, linear regression was calculated providing a mathematical equation, thus, the Physical Activity % value is used to estimate the distance traveled over a 6-minute walk test. On further data analysis, we have come to the conclusion that the distance walked during the six-minute-long test may be measured by PA% from the data of CRT device. With our method, based on the values received from the physical activity sensor implanted into the resynchronisation devices, changes in patients' health status could be monitored telemetrically with the assistance from the implanted electronic device. Orv Hetil. 2017; 158(35): 1390-1395.

  20. Cabin Environment Physics Risk Model

    NASA Technical Reports Server (NTRS)

    Mattenberger, Christopher J.; Mathias, Donovan Leigh

    2014-01-01

    This paper presents a Cabin Environment Physics Risk (CEPR) model that predicts the time for an initial failure of Environmental Control and Life Support System (ECLSS) functionality to propagate into a hazardous environment and trigger a loss-of-crew (LOC) event. This physics-of failure model allows a probabilistic risk assessment of a crewed spacecraft to account for the cabin environment, which can serve as a buffer to protect the crew during an abort from orbit and ultimately enable a safe return. The results of the CEPR model replace the assumption that failure of the crew critical ECLSS functionality causes LOC instantly, and provide a more accurate representation of the spacecraft's risk posture. The instant-LOC assumption is shown to be excessively conservative and, moreover, can impact the relative risk drivers identified for the spacecraft. This, in turn, could lead the design team to allocate mass for equipment to reduce overly conservative risk estimates in a suboptimal configuration, which inherently increases the overall risk to the crew. For example, available mass could be poorly used to add redundant ECLSS components that have a negligible benefit but appear to make the vehicle safer due to poor assumptions about the propagation time of ECLSS failures.

  1. Voluntary running exercise prevents β-cell failure in susceptible islets of the Zucker diabetic fatty rat.

    PubMed

    Delghingaro-Augusto, Viviane; Décary, Simon; Peyot, Marie-Line; Latour, Martin G; Lamontagne, Julien; Paradis-Isler, Nicolas; Lacharité-Lemieux, Marianne; Akakpo, Huguette; Birot, Olivier; Nolan, Christopher J; Prentki, Marc; Bergeron, Raynald

    2012-01-15

    Physical activity improves glycemic control in type 2 diabetes (T2D), but its contribution to preserving β-cell function is uncertain. We evaluated the role of physical activity on β-cell secretory function and glycerolipid/fatty acid (GL/FA) cycling in male Zucker diabetic fatty (ZDF) rats. Six-week-old ZDF rats engaged in voluntary running for 6 wk (ZDF-A). Inactive Zucker lean and ZDF (ZDF-I) rats served as controls. ZDF-I rats displayed progressive hyperglycemia with β-cell failure evidenced by falling insulinemia and reduced insulin secretion to oral glucose. Isolated ZDF-I rat islets showed reduced glucose-stimulated insulin secretion expressed per islet and per islet protein. They were also characterized by loss of the glucose regulation of fatty acid oxidation and GL/FA cycling, reduced mRNA expression of key β-cell genes, and severe reduction of insulin stores. Physical activity prevented diabetes in ZDF rats through sustaining β-cell compensation to insulin resistance shown in vivo and in vitro. Surprisingly, ZDF-A islets had persistent defects in fatty acid oxidation, GL/FA cycling, and β-cell gene expression. ZDF-A islets, however, had preserved islet insulin mRNA and insulin stores compared with ZDF-I rats. Physical activity did not prevent hyperphagia, dyslipidemia, or obesity in ZDF rats. In conclusion, islets of ZDF rats have a susceptibility to failure that is possibly due to altered β-cell fatty acid metabolism. Depletion of pancreatic islet insulin stores is a major contributor to islet failure in this T2D model, preventable by physical activity.

  2. Material failure modelling in metals at high strain rates

    NASA Astrophysics Data System (ADS)

    Panov, Vili

    2005-07-01

    Plate impact tests have been conducted on the OFHC Cu using single-stage gas gun. Using stress gauges, which were supported with PMMA blocks on the back of the target plates, stress-time histories have been recorded. After testing, micro structural observations of the softly recovered OFHC Cu spalled specimen were carried out and evolution of damage has been examined. To account for the physical mechanisms of failure, the concept that thermal activation in material separation during fracture processes has been adopted as basic mechanism for this material failure model development. With this basic assumption, the proposed model is compatible with the Mechanical Threshold Stress model and therefore in this development it was incorporated into the MTS material model in DYNA3D. In order to analyse proposed criterion a series of FE simulations have been performed for OFHC Cu. The numerical analysis results clearly demonstrate the ability of the model to predict the spall process and experimentally observed tensile damage and failure. It is possible to simulate high strain rate deformation processes and dynamic failure in tension for wide range of temperature. The proposed cumulative criterion, introduced in the DYNA3D code, is able to reproduce the ``pull-back'' stresses of the free surface caused by creation of the internal spalling, and enables one to analyse numerically the spalling over a wide range of impact velocities.

  3. ISS Fiber Optic Failure Investigation Root Cause Report

    NASA Technical Reports Server (NTRS)

    Leidecker, Henning; Plante, Jeannette

    2000-01-01

    In August of 1999, Boeing Corporation (Boeing) engineers began investigating failures of optical fiber being used on International Space Station flight hardware. Catastrophic failures of the fiber were linked to a defect in the glass fiber. Following several meetings of Boeing and NASA engineers and managers, Boeing created and led an investigation team, which examined the reliability of the cable installed in the U.S. Lab. NASA Goddard Space Flight Center's Components Technologies and Radiation Effects Branch (GSFC) led a team investigating the root cause of the failures. Information was gathered from: regular telecons and other communications with the investigation team, investigative trips to the cable distributor's plant, the cable manufacturing plant and the fiber manufacturing plant (including a review of build records), destructive and non-destructive testing, and expertise supplied by scientists from Dupont, and Lucent-Bell Laboratories. Several theories were established early on which were not able to completely address the destructive physical analysis and experiential evidence. Lucent suggested hydrofluoric acid (HF) etching of the glass and successfully duplicated the "rocket engine" defect. Strength testing coupled with examination of the low strength break sites linked features in the polyimide coating with latent defect sites. The information provided below explains what was learned about the susceptibility of the pre-cabled fiber to failure when cabled as it was for Space Station and the nature of the latent defects.

  4. Experiences and attitudes about physical activity and exercise in patients with chronic pain: a qualitative interview study.

    PubMed

    Karlsson, Linn; Gerdle, Björn; Takala, Esa-Pekka; Andersson, Gerhard; Larsson, Britt

    2018-01-01

    The purpose of this study was to describe how patients with chronic pain experience physical activity and exercise (PA&E). This qualitative interview study included 16 women and two men suffering from chronic pain and referred to a multimodal pain rehabilitation program. Semi-structured interviews were conducted and qualitative content analysis was used to analyze the interviews. One main theme emerged: "To overcome obstacles and to seize opportunities to be physically active despite chronic pain." This main theme was abstracted from five themes: "Valuing a life with physical activity," "Physical activity and exercise - before and after pain," "A struggle - difficulties and challenges," "The enabling of physical activity," and "In need of continuous and active support." Although these participants valued PA&E, they seldom achieved desirable levels, and performance of PA&E was undermined by difficulties and failure. The discrepancy between the intention to perform physical activity and the physical activity accomplished could be related to motivation, self-efficacy, and action control. The participants desired high-quality interaction with healthcare providers. The findings can be applied to chronic pain rehabilitation that uses PA&E as treatment.

  5. SU-E-T-192: FMEA Severity Scores - Do We Really Know?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonigan, J; Johnson, J; Kry, S

    2014-06-01

    Purpose: Failure modes and effects analysis (FMEA) is a subjective risk mitigation technique that has not been applied to physics-specific quality management practices. There is a need for quantitative FMEA data as called for in the literature. This work focuses specifically on quantifying FMEA severity scores for physics components of IMRT delivery and comparing to subjective scores. Methods: Eleven physical failure modes (FMs) for head and neck IMRT dose calculation and delivery are examined near commonly accepted tolerance criteria levels. Phantom treatment planning studies and dosimetry measurements (requiring decommissioning in several cases) are performed to determine the magnitude of dosemore » delivery errors for the FMs (i.e., severity of the FM). Resultant quantitative severity scores are compared to FMEA scores obtained through an international survey and focus group studies. Results: Physical measurements for six FMs have resulted in significant PTV dose errors up to 4.3% as well as close to 1 mm significant distance-to-agreement error between PTV and OAR. Of the 129 survey responses, the vast majority of the responders used Varian machines with Pinnacle and Eclipse planning systems. The average years of experience was 17, yet familiarity with FMEA less than expected. Survey reports perception of dose delivery error magnitude varies widely, in some cases 50% difference in dose delivery error expected amongst respondents. Substantial variance is also seen for all FMs in occurrence, detectability, and severity scores assigned with average variance values of 5.5, 4.6, and 2.2, respectively. Survey shows for MLC positional FM(2mm) average of 7.6% dose error expected (range 0–50%) compared to 2% error seen in measurement. Analysis of ranking in survey, treatment planning studies, and quantitative value comparison will be presented. Conclusion: Resultant quantitative severity scores will expand the utility of FMEA for radiotherapy and verify accuracy of FMEA results compared to highly variable subjective scores.« less

  6. A new instrument to measure quality of life of heart failure family caregivers.

    PubMed

    Nauser, Julie A; Bakas, Tamilyn; Welch, Janet L

    2011-01-01

    Family caregivers of heart failure (HF) patients experience poor physical and mental health leading to poor quality of life. Although several quality-of-life measures exist, they are often too generic to capture the unique experience of this population. The purpose of this study was to evaluate the psychometric properties of the Family Caregiver Quality of Life (FAMQOL) Scale that was designed to assess the physical, psychological, social, and spiritual dimensions of quality of life among caregivers of HF patients. Psychometric testing of the FAMQOL with 100 HF family caregivers was conducted using item analysis, Cronbach α, intraclass correlation, factor analysis, and hierarchical multiple regression guided by a conceptual model. Caregivers were predominately female (89%), white, (73%), and spouses (62%). Evidence of internal consistency reliability (α=.89) was provided for the FAMQOL, with item-total correlations of 0.39 to 0.74. Two-week test-retest reliability was supported by an intraclass correlation coefficient of 0.91. Using a 1-factor solution and principal axis factoring, loadings ranged from 0.31 to 0.78, with 41% of the variance explained by the first factor (eigenvalue=6.5). With hierarchical multiple regression, 56% of the FAMQOL variance was explained by model constructs (F8,91=16.56, P<.001). Criterion-related validity was supported by correlations with SF-36 General (r=0.45, P<.001) and Mental (r=0.59, P<.001) Health subscales and Bakas Caregiving Outcomes Scale (r=0.73, P<.001). Evidence of internal and test-retest reliability and construct and criterion validity was provided for physical, psychological, and social well-being subscales. The 16-item FAMQOL is a brief, easy-to-administer instrument that has evidence of reliability and validity in HF family caregivers. Physical, psychological, and social well-being can be measured with 4-item subscales. The FAMQOL scale could serve as a valuable measure in research, as well as an assessment tool to identify caregivers in need of intervention.

  7. Role and Value of Clinical Pharmacy in Heart Failure Management.

    PubMed

    Stough, W G; Patterson, J H

    2017-08-01

    Effectively managing heart failure requires a multidisciplinary, holistic approach attuned to many factors: diagnosis of structural and functional cardiac abnormalities; medication, device, or surgical management; concomitant treatment of comorbidities; physical rehabilitation; dietary considerations; and social factors. This practice paper highlights the pharmacist's role in the management of patients with heart failure, the evidence supporting their functions, and steps to ensure the pharmacist resource is available to the broad population of patients with heart failure. © 2017 American Society for Clinical Pharmacology and Therapeutics.

  8. Cycles till failure of silver-zinc cells with competing failure modes - Preliminary data analysis

    NASA Technical Reports Server (NTRS)

    Sidik, S. M.; Leibecki, H. F.; Bozek, J. M.

    1980-01-01

    The data analysis of cycles to failure of silver-zinc electrochemical cells with competing failure modes is presented. The test ran 129 cells through charge-discharge cycles until failure; preliminary data analysis consisted of response surface estimate of life. Batteries fail through low voltage condition and an internal shorting condition; a competing failure modes analysis was made using maximum likelihood estimation for the extreme value life distribution. Extensive residual plotting and probability plotting were used to verify data quality and selection of model.

  9. Sustaining the Progress to Improve Physics Education

    ERIC Educational Resources Information Center

    Abdul-Razzaq, Wathiq

    2010-01-01

    One of the problems we face in teaching introductory physics courses at the college level is that about 2/3 of students never had physics prior coming to college. Thus, many students find it very difficult to learn physics for the first time at the relatively fast-paced teaching of college physics courses. Sometimes the drop/failure/withdrawal…

  10. Integrated studies into characteristics of physical fields using discontinuous geomedium models under external loading

    NASA Astrophysics Data System (ADS)

    Usoltseva Vostrikov, OM, VI; Tsoy, PA; Semenov, VN

    2018-03-01

    The article presents the laboratory study of deformation in artificial layered geomaterial samples down to failure with the simultaneous measurement of stresses, strains, micro-strains and signals of microseismic emission. The analysis of the synchronized experimental data made it possible to determine features of change in the microseismicity parameters and micro-strain fields in the samples depending on the deformation stage, and also to reveal the dynamics of evolution of microfailures and the main fracture zone.

  11. ESREF 98 - 9th European Symposium on Reliability of Electron Devices, Failure Physics and Analysis

    DTIC Science & Technology

    1998-10-19

    Gap effects within a nanosecond time scale. Effective Density of States Because of the limited possibility of compact Mobility models to deal with the...brackets) and the dislocation source action mobility M. The force is the balance between the normal stress a,, on the dislocations and the osmotic The...on, the electromigration force acts theration kt. on the atoms and a transport to the anode side of the t It is the mobility term that accounts for

  12. Algorithms for Spectral Decomposition with Applications to Optical Plume Anomaly Detection

    NASA Technical Reports Server (NTRS)

    Srivastava, Askok N.; Matthews, Bryan; Das, Santanu

    2008-01-01

    The analysis of spectral signals for features that represent physical phenomenon is ubiquitous in the science and engineering communities. There are two main approaches that can be taken to extract relevant features from these high-dimensional data streams. The first set of approaches relies on extracting features using a physics-based paradigm where the underlying physical mechanism that generates the spectra is used to infer the most important features in the data stream. We focus on a complementary methodology that uses a data-driven technique that is informed by the underlying physics but also has the ability to adapt to unmodeled system attributes and dynamics. We discuss the following four algorithms: Spectral Decomposition Algorithm (SDA), Non-Negative Matrix Factorization (NMF), Independent Component Analysis (ICA) and Principal Components Analysis (PCA) and compare their performance on a spectral emulator which we use to generate artificial data with known statistical properties. This spectral emulator mimics the real-world phenomena arising from the plume of the space shuttle main engine and can be used to validate the results that arise from various spectral decomposition algorithms and is very useful for situations where real-world systems have very low probabilities of fault or failure. Our results indicate that methods like SDA and NMF provide a straightforward way of incorporating prior physical knowledge while NMF with a tuning mechanism can give superior performance on some tests. We demonstrate these algorithms to detect potential system-health issues on data from a spectral emulator with tunable health parameters.

  13. Where's Waldo? The 'decapitation gambit' and the definition of death.

    PubMed

    Lizza, John P

    2011-12-01

    The 'decapitation gambit' holds that, if physical decapitation normally entails the death of the human being, then physiological decapitation, evident in cases of total brain failure, entails the death of the human being. This argument has been challenged by Franklin Miller and Robert Truog, who argue that physical decapitation does not necessarily entail the death of human beings and that therefore, by analogy, artificially sustained human bodies with total brain failure are living human beings. They thus challenge the current neurological criterion for determining death and argue for a return to the traditional criterion of the irreversible loss of circulation and respiration. In this paper, I defend the decapitation gambit and total brain failure as a criterion for determining death against Miller and Truog's criticism.

  14. Crack prediction in EB-PVD thermal barrier coatings based on the simulation of residual stresses

    NASA Astrophysics Data System (ADS)

    Chen, J. W.; Zhao, Y.; Liu, S.; Zhang, Z. Z.; Ma, J.

    2016-07-01

    Thermal barrier coatings systems (TBCs) are widely used in the field of aerospace. The durability and insulating ability of TBCs are highly dependent on the residual stresses of top coatings, thus the investigation of the residual stresses is helpful to understand the failure mechanisms of TBCs. The simulation of residual stresses evolution in electron beam physical vapor deposition (EB-PVD) TBCs is described in this work. The interface morphology of TBCs subjected to cyclic heating and cooling is observed using scanning electron microscope (SEM). An interface model of TBCs is established based on thermal elastic-plastic finite method. Residual stress distributions in TBCs are obtained to reflect the influence of interfacial roughness. Both experimental and simulation results show that it is feasible to predict the crack location by stress analysis, which is crucial to failure prediction.

  15. A correlational study of illness knowledge, self-care behaviors, and quality of life in elderly patients with heart failure.

    PubMed

    Liu, Min-Hui; Wang, Chao-Hung; Huang, Yu-Yen; Cherng, Wen-Jin; Wang, Kai-Wei Katherine

    2014-06-01

    Patients with heart failure experience adverse physical symptoms that affect quality of life. The number of patients with heart failure in Taiwan has been growing in recent years. This article examines correlations among illness knowledge, self-care behaviors, and quality of life in elderly patients with heart failure. A cross-sectional research design using three questionnaires was adopted. The study was undertaken in an outpatient department of a teaching hospital in Taiwan from January to June 2008. Potential participants aged 65 years or older were selected by a physician based on several diagnostic findings of heart failure that included an International Classification of Diseases' code 4280 or 4289. Patients who were bedridden or had a prognosis of less than 6 months were excluded from consideration. One hundred forty-one patients with heart failure were recruited. Most participants were men (51.8%), older adults (49.6% older than 71 years old), and either educated to an elementary school level or illiterate (69.5%) and have New York Heart Association class II (61.0%). Participants had an average left ventricular ejection fraction of 41.1%. The illness knowledge of participants was poor (accuracy rate: 29.3%), and most were unaware of the significance of self-care. Illness knowledge correlated with both self-care behaviors (r = -.42, p < .01) and quality of life (r = -.22, p < .01). Illness knowledge and age were identified as significant correlated factors of self-care behaviors (R = .22); and functional class, living independently, and age were identified as significant correlated factors of quality of life (R = .41). Participants in this study with higher self-reported self-care behaviors and quality of life were younger in age and had better illness knowledge. Furthermore, physical function and independence in daily living significantly affected quality of life. Care for patients with heart failure, particularly older adults, should focus on teaching these patients about heart failure illness and symptom management. Assisting elderly patients with heart failure to promote and maintain physical functions to handle activities of daily living independently is critical to improving patient quality of life.

  16. A physically-based method for predicting peak discharge of floods caused by failure of natural and constructed earthen dams

    USGS Publications Warehouse

    Walder, J.S.

    1997-01-01

    We analyse a simple, physically-based model of breach formation in natural and constructed earthen dams to elucidate the principal factors controlling the flood hydrograph at the breach. Formation of the breach, which is assumed trapezoidal in cross-section, is parameterized by the mean rate of downcutting, k, the value of which is constrained by observations. A dimensionless formulation of the model leads to the prediction that the breach hydrograph depends upon lake shape, the ratio r of breach width to depth, the side slope ?? of the breach, and the parameter ?? = (V/ D3)(k/???gD), where V = lake volume, D = lake depth, and g is the acceleration due to gravity. Calculations show that peak discharge Qp depends weakly on lake shape r and ??, but strongly on ??, which is the product of a dimensionless lake volume and a dimensionless erosion rate. Qp(??) takes asymptotically distinct forms depending on whether ?? > 1. Theoretical predictions agree well with data from dam failures for which k could be reasonably estimated. The analysis provides a rapid and in many cases graphical way to estimate plausible values of Qp at the breach.

  17. Failure Analysis of Discrete Damaged Tailored Extension-Shear-Coupled Stiffened Composite Panels

    NASA Technical Reports Server (NTRS)

    Baker, Donald J.

    2005-01-01

    The results of an analytical and experimental investigation of the failure of composite is tiffener panels with extension-shear coupling are presented. This tailored concept, when used in the cover skins of a tiltrotor aircraft wing has the potential for increasing the aeroelastic stability margins and improving the aircraft productivity. The extension-shear coupling is achieved by using unbalanced 45 plies in the skin. The failure analysis of two tailored panel configurations that have the center stringer and adjacent skin severed is presented. Finite element analysis of the damaged panels was conducted using STAGS (STructural Analysis of General Shells) general purpose finite element program that includes a progressive failure capability for laminated composite structures that is based on point-stress analysis, traditional failure criteria, and ply discounting for material degradation. The progressive failure predicted the path of the failure and maximum load capability. There is less than 12 percent difference between the predicted failure load and experimental failure load. There is a good match of the panel stiffness and strength between the progressive failure analysis and the experimental results. The results indicate that the tailored concept would be feasible to use in the wing skin of a tiltrotor aircraft.

  18. High-Temperature Creep Degradation of the AM1/NiAlPt/EBPVD YSZ System

    NASA Astrophysics Data System (ADS)

    Riallant, Fanny; Cormier, Jonathan; Longuet, Arnaud; Milhet, Xavier; Mendez, José

    2014-01-01

    The failure mechanisms of a NiAlPt/electron beam physical vapor deposition yttria-stabilized-zirconia thermal barrier coating system deposited on the AM1 single crystalline substrate have been investigated under pure creep conditions in the temperature range from 1273 K to 1373 K (1000 °C to 1100 °C) and for durations up to 1000 hours. Doubly tapered specimens were used allowing for the analysis of different stress states and different accumulated viscoplastic strains for a given creep condition. Under such experiments, two kinds of damage mechanisms were observed. Under low applied stress conditions ( i.e., long creep tests), microcracking is localized in the vicinity of the thermally grown oxide (TGO). Under high applied stress conditions, an unconventional failure mechanism at the substrate/bond coat interface is observed because of large creep strains and fast creep deformation, hence leading to a limited TGO growth. This unconventional failure mechanism is observed although the interfacial bond coat/top coat TGO thickening is accelerated by the mechanical applied stress beyond a given stress threshold.

  19. Analysis and control of supersonic vortex breakdown flows

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.

    1990-01-01

    Analysis and computation of steady, compressible, quasi-axisymmetric flow of an isolated, slender vortex are considered. The compressible, Navier-Stokes equations are reduced to a simpler set by using the slenderness and quasi-axisymmetry assumptions. The resulting set along with a compatibility equation are transformed from the diverging physical domain to a rectangular computational domain. Solving for a compatible set of initial profiles and specifying a compatible set of boundary conditions, the equations are solved using a type-differencing scheme. Vortex breakdown locations are detected by the failure of the scheme to converge. Computational examples include isolated vortex flows at different Mach numbers, external axial-pressure gradients and swirl ratios.

  20. The Marfan Syndrome: Physical Activity Guidelines for Physical Educators, Coaches and Physicians.

    ERIC Educational Resources Information Center

    Romeo, Thomas J.

    Intended for physical educators, this manual provides guidelines for providing safe and effective physical activity programs for children with Marfan syndrome, a congenital condition involving the connective tissues and the probable cause of sudden death by heart failure of some young competitive athletes in recent cases. The manual includes…

  1. Physically demanding jobs and occupational injury and disability in the U.S. Army.

    PubMed

    Hollander, Ilyssa E; Bell, Nicole S

    2010-10-01

    Effective job assignments should take into account physical capabilities to perform required tasks. Failure to do so is likely to result in increased injuries and musculoskeletal disability. To evaluate the association between job demands and health outcomes among U.S. Army soldiers. Multivariate Cox proportional hazards analysis is used to describe associations between job demands, hospitalizations, and disability among 261,096 enlisted Army soldiers in heavily, moderately, and lightly physically demanding occupations (2000-2005) who were followed for up to 5 years. Controlling for gender, race, and age, soldiers in heavily demanding jobs were at increased risk for any-cause injury, on-duty injuries, any-cause hospitalizations, and any-cause disability, but not for musculoskeletal disability. Army job assignments should more accurately match physical capabilities to job demands and/or jobs should be redesigned to reduce injuries. Though musculoskeletal disorders are often the result of acute injury, the demographic and occupational risk patterns differ from acute injury.

  2. Multi-Dimensional Simulation of LWR Fuel Behavior in the BISON Fuel Performance Code

    NASA Astrophysics Data System (ADS)

    Williamson, R. L.; Capps, N. A.; Liu, W.; Rashid, Y. R.; Wirth, B. D.

    2016-11-01

    Nuclear fuel operates in an extreme environment that induces complex multiphysics phenomena occurring over distances ranging from inter-atomic spacing to meters, and times scales ranging from microseconds to years. To simulate this behavior requires a wide variety of material models that are often complex and nonlinear. The recently developed BISON code represents a powerful fuel performance simulation tool based on its material and physical behavior capabilities, finite-element versatility of spatial representation, and use of parallel computing. The code can operate in full three dimensional (3D) mode, as well as in reduced two dimensional (2D) modes, e.g., axisymmetric radial-axial ( R- Z) or plane radial-circumferential ( R- θ), to suit the application and to allow treatment of global and local effects. A BISON case study was used to illustrate analysis of Pellet Clad Mechanical Interaction failures from manufacturing defects using combined 2D and 3D analyses. The analysis involved commercial fuel rods and demonstrated successful computation of metrics of interest to fuel failures, including cladding peak hoop stress and strain energy density. In comparison with a failure threshold derived from power ramp tests, results corroborate industry analyses of the root cause of the pellet-clad interaction failures and illustrate the importance of modeling 3D local effects around fuel pellet defects, which can produce complex effects including cold spots in the cladding, stress concentrations, and hot spots in the fuel that can lead to enhanced cladding degradation such as hydriding, oxidation, CRUD formation, and stress corrosion cracking.

  3. Multi-Dimensional Simulation of LWR Fuel Behavior in the BISON Fuel Performance Code

    DOE PAGES

    Williamson, R. L.; Capps, N. A.; Liu, W.; ...

    2016-09-27

    Nuclear fuel operates in an extreme environment that induces complex multiphysics phenomena occurring over distances ranging from inter-atomic spacing to meters, and times scales ranging from microseconds to years. To simulate this behavior requires a wide variety of material models that are often complex and nonlinear. The recently developed BISON code represents a powerful fuel performance simulation tool based on its material and physical behavior capabilities, finite-element versatility of spatial representation, and use of parallel computing. The code can operate in full three dimensional (3D) mode, as well as in reduced two dimensional (2D) modes, e.g., axisymmetric radial-axial (R-Z) ormore » plane radial-circumferential (R-θ), to suit the application and to allow treatment of global and local effects. A BISON case study was used in this paper to illustrate analysis of Pellet Clad Mechanical Interaction failures from manufacturing defects using combined 2D and 3D analyses. The analysis involved commercial fuel rods and demonstrated successful computation of metrics of interest to fuel failures, including cladding peak hoop stress and strain energy density. Finally, in comparison with a failure threshold derived from power ramp tests, results corroborate industry analyses of the root cause of the pellet-clad interaction failures and illustrate the importance of modeling 3D local effects around fuel pellet defects, which can produce complex effects including cold spots in the cladding, stress concentrations, and hot spots in the fuel that can lead to enhanced cladding degradation such as hydriding, oxidation, CRUD formation, and stress corrosion cracking.« less

  4. Review on stress corrosion and corrosion fatigue failure of centrifugal compressor impeller

    NASA Astrophysics Data System (ADS)

    Sun, Jiao; Chen, Songying; Qu, Yanpeng; Li, Jianfeng

    2015-03-01

    Corrosion failure, especially stress corrosion cracking and corrosion fatigue, is the main cause of centrifugal compressor impeller failure. And it is concealed and destructive. This paper summarizes the main theories of stress corrosion cracking and corrosion fatigue and its latest developments, and it also points out that existing stress corrosion cracking theories can be reduced to the anodic dissolution (AD), the hydrogen-induced cracking (HIC), and the combined AD and HIC mechanisms. The corrosion behavior and the mechanism of corrosion fatigue in the crack propagation stage are similar to stress corrosion cracking. The effects of stress ratio, loading frequency, and corrosive medium on the corrosion fatigue crack propagation rate are analyzed and summarized. The corrosion behavior and the mechanism of stress corrosion cracking and corrosion fatigue in corrosive environments, which contain sulfide, chlorides, and carbonate, are analyzed. The working environments of the centrifugal compressor impeller show the behavior and the mechanism of stress corrosion cracking and corrosion fatigue in different corrosive environments. The current research methods for centrifugal compressor impeller corrosion failure are analyzed. Physical analysis, numerical simulation, and the fluid-structure interaction method play an increasingly important role in the research on impeller deformation and stress distribution caused by the joint action of aerodynamic load and centrifugal load.

  5. Contemporary Impact Analysis Methodology for Planetary Sample Return Missions

    NASA Technical Reports Server (NTRS)

    Perino, Scott V.; Bayandor, Javid; Samareh, Jamshid A.; Armand, Sasan C.

    2015-01-01

    Development of an Earth entry vehicle and the methodology created to evaluate the vehicle's impact landing response when returning to Earth is reported. NASA's future Mars Sample Return Mission requires a robust vehicle to return Martian samples back to Earth for analysis. The Earth entry vehicle is a proposed solution to this Mars mission requirement. During Earth reentry, the vehicle slows within the atmosphere and then impacts the ground at its terminal velocity. To protect the Martian samples, a spherical energy absorber called an impact sphere is under development. The impact sphere is composed of hybrid composite and crushable foam elements that endure large plastic deformations during impact and cause a highly nonlinear vehicle response. The developed analysis methodology captures a range of complex structural interactions and much of the failure physics that occurs during impact. Numerical models were created and benchmarked against experimental tests conducted at NASA Langley Research Center. The postimpact structural damage assessment showed close correlation between simulation predictions and experimental results. Acceleration, velocity, displacement, damage modes, and failure mechanisms were all effectively captured. These investigations demonstrate that the Earth entry vehicle has great potential in facilitating future sample return missions.

  6. Cyber-Physical Correlations for Infrastructure Resilience: A Game-Theoretic Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Nageswara S; He, Fei; Ma, Chris Y. T.

    In several critical infrastructures, the cyber and physical parts are correlated so that disruptions to one affect the other and hence the whole system. These correlations may be exploited to strategically launch components attacks, and hence must be accounted for ensuring the infrastructure resilience, specified by its survival probability. We characterize the cyber-physical interactions at two levels: (i) the failure correlation function specifies the conditional survival probability of cyber sub-infrastructure given the physical sub-infrastructure as a function of their marginal probabilities, and (ii) the individual survival probabilities of both sub-infrastructures are characterized by first-order differential conditions. We formulate a resiliencemore » problem for infrastructures composed of discrete components as a game between the provider and attacker, wherein their utility functions consist of an infrastructure survival probability term and a cost term expressed in terms of the number of components attacked and reinforced. We derive Nash Equilibrium conditions and sensitivity functions that highlight the dependence of infrastructure resilience on the cost term, correlation function and sub-infrastructure survival probabilities. These results generalize earlier ones based on linear failure correlation functions and independent component failures. We apply the results to models of cloud computing infrastructures and energy grids.« less

  7. Anticipated affective consequences of physical activity adoption and maintenance.

    PubMed

    Dunton, Genevieve Fridlund; Vaughan, Elaine

    2008-11-01

    The expected emotional consequences of future actions are thought to play an important role in health behavior change. This research examined whether anticipated affective consequences of success and failure vary across stages of physical activity change and differentially predict physical activity adoption as compared to maintenance. Using a prospective design over a 3-month period, a community sample of 329 healthy, middle-aged adults were assessed at 2 time points. Anticipated positive and negative emotions, stage of behavior change (precontemplation [PC], contemplation [C], preparation [P], action [A], maintenance [M]), and level of physical activity. At baseline, anticipated positive emotions were greater in C versus PC, whereas anticipated negative emotions were greater in M versus A and in M versus P. Higher anticipated positive but not negative emotions predicted physical activity adoption and maintenance after 3 months. Although the expected affective consequences of future success and failure differentiated among individuals in the early and later stages of physical activity change, respectively; only the anticipated affective consequences of success predicted future behavior.

  8. Reattachment of flexor digitorum profundus avulsion: biomechanical performance of 3 techniques.

    PubMed

    Brar, Ravinder; Owen, John R; Melikian, Raymond; Gaston, R Glenn; Wayne, Jennifer S; Isaacs, Jonathan E

    2014-11-01

    To investigate whether inclusion of the volar plate in repair of flexor digitorum profundus avulsions increases the strength of the repair and resists gapping. Cadaveric fingers (n = 18) were divided into 3 equal groups. The first technique involved 2 micro-suture anchors only (A). The second used only volar plate repair (VP). The third group was a hybrid, combining a micro-suture anchor with volar plate augmentation (AVP). Specimens were loaded cyclically to simulate passive motion rehabilitation before being loaded to failure. Clinical failure was defined as 3 mm of gapping, and physical failure as the highest load associated with hardware failure, suture breakage, anchor pullout, or volar plate avulsion. Gapping throughout cycling was significantly greater for the A group than VP and AVP with no difference detected between VP and AVP groups. Gapping exceeded 3 mm during cycling of 3 A specimens, but in none of the VP or AVP specimens. Load at clinical and physical failure for A was significantly lower than for VP and AVP, whereas no difference was detected between VP and AVP. In this cadaveric model, incorporating the volar plate conferred a significant advantage in strength, increasing the mean load to physical failure by approximately 100 N. According to previous biomechanical studies, current reconstructive strategies for flexor digitorum profundus zone I avulsions are not strong enough to withstand active motion rehabilitation. We demonstrated the potential use of volar plate augmentation and the prospective advantageous increase in strength in this cadaveric model. In vivo performance and effects on digital motion are not known. Copyright © 2014 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  9. A Bayesian network approach for modeling local failure in lung cancer

    NASA Astrophysics Data System (ADS)

    Oh, Jung Hun; Craft, Jeffrey; Lozi, Rawan Al; Vaidya, Manushka; Meng, Yifan; Deasy, Joseph O.; Bradley, Jeffrey D.; El Naqa, Issam

    2011-03-01

    Locally advanced non-small cell lung cancer (NSCLC) patients suffer from a high local failure rate following radiotherapy. Despite many efforts to develop new dose-volume models for early detection of tumor local failure, there was no reported significant improvement in their application prospectively. Based on recent studies of biomarker proteins' role in hypoxia and inflammation in predicting tumor response to radiotherapy, we hypothesize that combining physical and biological factors with a suitable framework could improve the overall prediction. To test this hypothesis, we propose a graphical Bayesian network framework for predicting local failure in lung cancer. The proposed approach was tested using two different datasets of locally advanced NSCLC patients treated with radiotherapy. The first dataset was collected retrospectively, which comprises clinical and dosimetric variables only. The second dataset was collected prospectively in which in addition to clinical and dosimetric information, blood was drawn from the patients at various time points to extract candidate biomarkers as well. Our preliminary results show that the proposed method can be used as an efficient method to develop predictive models of local failure in these patients and to interpret relationships among the different variables in the models. We also demonstrate the potential use of heterogeneous physical and biological variables to improve the model prediction. With the first dataset, we achieved better performance compared with competing Bayesian-based classifiers. With the second dataset, the combined model had a slightly higher performance compared to individual physical and biological models, with the biological variables making the largest contribution. Our preliminary results highlight the potential of the proposed integrated approach for predicting post-radiotherapy local failure in NSCLC patients.

  10. User-Defined Material Model for Progressive Failure Analysis

    NASA Technical Reports Server (NTRS)

    Knight, Norman F. Jr.; Reeder, James R. (Technical Monitor)

    2006-01-01

    An overview of different types of composite material system architectures and a brief review of progressive failure material modeling methods used for structural analysis including failure initiation and material degradation are presented. Different failure initiation criteria and material degradation models are described that define progressive failure formulations. These progressive failure formulations are implemented in a user-defined material model (or UMAT) for use with the ABAQUS/Standard1 nonlinear finite element analysis tool. The failure initiation criteria include the maximum stress criteria, maximum strain criteria, the Tsai-Wu failure polynomial, and the Hashin criteria. The material degradation model is based on the ply-discounting approach where the local material constitutive coefficients are degraded. Applications and extensions of the progressive failure analysis material model address two-dimensional plate and shell finite elements and three-dimensional solid finite elements. Implementation details and use of the UMAT subroutine are described in the present paper. Parametric studies for composite structures are discussed to illustrate the features of the progressive failure modeling methods that have been implemented.

  11. Failure modes and effects analysis (FMEA) for Gamma Knife radiosurgery.

    PubMed

    Xu, Andy Yuanguang; Bhatnagar, Jagdish; Bednarz, Greg; Flickinger, John; Arai, Yoshio; Vacsulka, Jonet; Feng, Wenzheng; Monaco, Edward; Niranjan, Ajay; Lunsford, L Dade; Huq, M Saiful

    2017-11-01

    Gamma Knife radiosurgery is a highly precise and accurate treatment technique for treating brain diseases with low risk of serious error that nevertheless could potentially be reduced. We applied the AAPM Task Group 100 recommended failure modes and effects analysis (FMEA) tool to develop a risk-based quality management program for Gamma Knife radiosurgery. A team consisting of medical physicists, radiation oncologists, neurosurgeons, radiation safety officers, nurses, operating room technologists, and schedulers at our institution and an external physicist expert on Gamma Knife was formed for the FMEA study. A process tree and a failure mode table were created for the Gamma Knife radiosurgery procedures using the Leksell Gamma Knife Perfexion and 4C units. Three scores for the probability of occurrence (O), the severity (S), and the probability of no detection for failure mode (D) were assigned to each failure mode by 8 professionals on a scale from 1 to 10. An overall risk priority number (RPN) for each failure mode was then calculated from the averaged O, S, and D scores. The coefficient of variation for each O, S, or D score was also calculated. The failure modes identified were prioritized in terms of both the RPN scores and the severity scores. The established process tree for Gamma Knife radiosurgery consists of 10 subprocesses and 53 steps, including a subprocess for frame placement and 11 steps that are directly related to the frame-based nature of the Gamma Knife radiosurgery. Out of the 86 failure modes identified, 40 Gamma Knife specific failure modes were caused by the potential for inappropriate use of the radiosurgery head frame, the imaging fiducial boxes, the Gamma Knife helmets and plugs, the skull definition tools as well as other features of the GammaPlan treatment planning system. The other 46 failure modes are associated with the registration, imaging, image transfer, contouring processes that are common for all external beam radiation therapy techniques. The failure modes with the highest hazard scores are related to imperfect frame adaptor attachment, bad fiducial box assembly, unsecured plugs/inserts, overlooked target areas, and undetected machine mechanical failure during the morning QA process. The implementation of the FMEA approach for Gamma Knife radiosurgery enabled deeper understanding of the overall process among all professionals involved in the care of the patient and helped identify potential weaknesses in the overall process. The results of the present study give us a basis for the development of a risk based quality management program for Gamma Knife radiosurgery. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  12. Operations analysis (study 2.1). Contingency analysis. [of failure modes anticipated during space shuttle upper stage planning

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Future operational concepts for the space transportation system were studied in terms of space shuttle upper stage failure contingencies possible during deployment, retrieval, or space servicing of automated satellite programs. Problems anticipated during mission planning were isolated using a modified 'fault tree' technique, normally used in safety analyses. A comprehensive space servicing hazard analysis is presented which classifies possible failure modes under the catagories of catastrophic collision, failure to rendezvous and dock, servicing failure, and failure to undock. The failure contingencies defined are to be taken into account during design of the upper stage.

  13. The application of CAD, CAE & CAM in development of butterfly valve’s disc

    NASA Astrophysics Data System (ADS)

    Asiff Razif Shah Ranjit, Muhammad; Hanie Abdullah, Nazlin

    2017-06-01

    The improved design of a butterfly valve disc is based on the concept of sandwich theory. Butterfly valves are mostly used in various industries such as oil and gas plant. The primary failure modes for valves are indented disc, keyways and shaft failure and the cavitation damage. Emphasis on the application of CAD, a new model of the butterfly valve’s disc structure was designed. The structure analysis was analysed using the finite element analysis. Butterfly valve performance factors can be obtained is by using Computational Fluid Dynamics (CFD) software to simulate the physics of fluid flow in a piping system around a butterfly valve. A comparison analysis was done using the finite element to justify the performance of the structure. The second application of CAE is the computational fluid flow analysis. The upstream pressure and the downstream pressure was analysed to calculate the cavitation index and determine the performance throughout each opening position of the valve. The CAM process was done using 3D printer to produce a prototype and analysed the structure in form of prototype. The structure was downscale fabricated based on the model designed initially through the application of CAD. This study is utilized the application of CAD, CAE and CAM for a better improvement of the butterfly valve’s disc components.

  14. Holistic Care of Hemodialysis Access in Patients with Kidney Failure.

    PubMed

    Bueno, Michael V; Latham, Christine L

    2017-01-01

    Kidney failure requiring hemodialysis is a chronic illness that has physical, psychosocial, and financial consequences. Patients with kidney failure receiving hemodialysis need a renewed focus on self-care, prevention, and community-based health management to reduce healthcare costs and complications, and improve outcomes and quality of life, while living with an altered lifestyle. A holistic chronic care model was applied as a guideline for healthcare professionals involved with this population to more effectively engage people with kidney failure in their management of their hemodialysis access. Copyright© by the American Nephrology Nurses Association.

  15. What Can We Learn from a Simple Physics-Based Earthquake Simulator?

    NASA Astrophysics Data System (ADS)

    Artale Harris, Pietro; Marzocchi, Warner; Melini, Daniele

    2018-03-01

    Physics-based earthquake simulators are becoming a popular tool to investigate on the earthquake occurrence process. So far, the development of earthquake simulators is commonly led by the approach "the more physics, the better". However, this approach may hamper the comprehension of the outcomes of the simulator; in fact, within complex models, it may be difficult to understand which physical parameters are the most relevant to the features of the seismic catalog at which we are interested. For this reason, here, we take an opposite approach and analyze the behavior of a purposely simple earthquake simulator applied to a set of California faults. The idea is that a simple simulator may be more informative than a complex one for some specific scientific objectives, because it is more understandable. Our earthquake simulator has three main components: the first one is a realistic tectonic setting, i.e., a fault data set of California; the second is the application of quantitative laws for earthquake generation on each single fault, and the last is the fault interaction modeling through the Coulomb Failure Function. The analysis of this simple simulator shows that: (1) the short-term clustering can be reproduced by a set of faults with an almost periodic behavior, which interact according to a Coulomb failure function model; (2) a long-term behavior showing supercycles of the seismic activity exists only in a markedly deterministic framework, and quickly disappears introducing a small degree of stochasticity on the recurrence of earthquakes on a fault; (3) faults that are strongly coupled in terms of Coulomb failure function model are synchronized in time only in a marked deterministic framework, and as before, such a synchronization disappears introducing a small degree of stochasticity on the recurrence of earthquakes on a fault. Overall, the results show that even in a simple and perfectly known earthquake occurrence world, introducing a small degree of stochasticity may blur most of the deterministic time features, such as long-term trend and synchronization among nearby coupled faults.

  16. Application of failure mode and effects analysis to treatment planning in scanned proton beam radiotherapy

    PubMed Central

    2013-01-01

    Background A multidisciplinary and multi-institutional working group applied the Failure Mode and Effects Analysis (FMEA) approach to the actively scanned proton beam radiotherapy process implemented at CNAO (Centro Nazionale di Adroterapia Oncologica), aiming at preventing accidental exposures to the patient. Methods FMEA was applied to the treatment planning stage and consisted of three steps: i) identification of the involved sub-processes; ii) identification and ranking of the potential failure modes, together with their causes and effects, using the risk probability number (RPN) scoring system, iii) identification of additional safety measures to be proposed for process quality and safety improvement. RPN upper threshold for little concern of risk was set at 125. Results Thirty-four sub-processes were identified, twenty-two of them were judged to be potentially prone to one or more failure modes. A total of forty-four failure modes were recognized, 52% of them characterized by an RPN score equal to 80 or higher. The threshold of 125 for RPN was exceeded in five cases only. The most critical sub-process appeared related to the delineation and correction of artefacts in planning CT data. Failures associated to that sub-process were inaccurate delineation of the artefacts and incorrect proton stopping power assignment to body regions. Other significant failure modes consisted of an outdated representation of the patient anatomy, an improper selection of beam direction and of the physical beam model or dose calculation grid. The main effects of these failures were represented by wrong dose distribution (i.e. deviating from the planned one) delivered to the patient. Additional strategies for risk mitigation, easily and immediately applicable, consisted of a systematic information collection about any known implanted prosthesis directly from each patient and enforcing a short interval time between CT scan and treatment start. Moreover, (i) the investigation of dedicated CT image reconstruction algorithms, (ii) further evaluation of treatment plan robustness and (iii) implementation of independent methods for dose calculation (such as Monte Carlo simulations) may represent novel solutions to increase patient safety. Conclusions FMEA is a useful tool for prospective evaluation of patient safety in proton beam radiotherapy. The application of this method to the treatment planning stage lead to identify strategies for risk mitigation in addition to the safety measures already adopted in clinical practice. PMID:23705626

  17. Use of failure mode and effects analysis for proactive identification of communication and handoff failures from organ procurement to transplantation.

    PubMed

    Steinberger, Dina M; Douglas, Stephen V; Kirschbaum, Mark S

    2009-09-01

    A multidisciplinary team from the University of Wisconsin Hospital and Clinics transplant program used failure mode and effects analysis to proactively examine opportunities for communication and handoff failures across the continuum of care from organ procurement to transplantation. The team performed a modified failure mode and effects analysis that isolated the multiple linked, serial, and complex information exchanges occurring during the transplantation of one solid organ. Failure mode and effects analysis proved effective for engaging a diverse group of persons who had an investment in the outcome in analysis and discussion of opportunities to improve the system's resilience for avoiding errors during a time-pressured and complex process.

  18. The "Ins" and "Outs" of Physical Activity Policy Implementation: Inadequate Capacity, Inappropriate Outcome Measures, and Insufficient Funds

    ERIC Educational Resources Information Center

    Howie, Erin K.; Stevick, E. Doyle

    2014-01-01

    Background: Despite broad public support and legislative activity, policies intended to promote physical activity in schools have not produced positive outcomes in levels of physical activity or student health. What explains the broad failure of Physical Activity Policies (PAPs)? Thus far, PAP research has used limited quantitative methods to…

  19. Failure Mode, Effects, and Criticality Analysis (FMECA)

    DTIC Science & Technology

    1993-04-01

    Preliminary Failure Modes, Effects and Criticality Analysis (FMECA) of the Brayton Isotope Power System Ground Demonstration System, Report No. TID 27301...No. TID/SNA - 3015, Aeroject Nuclear Systems Co., Sacramento, California: 1970. 95. Taylor , J.R. A Formalization of Failure Mode Analysis of Control...Roskilde, Denmark: 1973. 96. Taylor , J.R. A Semi-Automatic Method for Oualitative Failure Mode Analysis. Report No. RISO-M-1707. Available from a

  20. Comprehension and retrieval of failure cases in airborne observatories

    NASA Technical Reports Server (NTRS)

    Alvarado, Sergio J.; Mock, Kenrick J.

    1995-01-01

    This paper describes research dealing with the computational problem of analyzing and repairing failures of electronic and mechanical systems of telescopes in NASA's airborne observatories, such as KAO (Kuiper Airborne Observatory) and SOFIA (Stratospheric Observatory for Infrared Astronomy). The research has resulted in the development of an experimental system that acquires knowledge of failure analysis from input text, and answers questions regarding failure detection and correction. The system's design builds upon previous work on text comprehension and question answering, including: knowledge representation for conceptual analysis of failure descriptions, strategies for mapping natural language into conceptual representations, case-based reasoning strategies for memory organization and indexing, and strategies for memory search and retrieval. These techniques have been combined into a model that accounts for: (a) how to build a knowledge base of system failures and repair procedures from descriptions that appear in telescope-operators' logbooks and FMEA (failure modes and effects analysis) manuals; and (b) how to use that knowledge base to search and retrieve answers to questions about causes and effects of failures, as well as diagnosis and repair procedures. This model has been implemented in FANSYS (Failure ANalysis SYStem), a prototype text comprehension and question answering program for failure analysis.

  1. Comprehension and retrieval of failure cases in airborne observatories

    NASA Astrophysics Data System (ADS)

    Alvarado, Sergio J.; Mock, Kenrick J.

    1995-05-01

    This paper describes research dealing with the computational problem of analyzing and repairing failures of electronic and mechanical systems of telescopes in NASA's airborne observatories, such as KAO (Kuiper Airborne Observatory) and SOFIA (Stratospheric Observatory for Infrared Astronomy). The research has resulted in the development of an experimental system that acquires knowledge of failure analysis from input text, and answers questions regarding failure detection and correction. The system's design builds upon previous work on text comprehension and question answering, including: knowledge representation for conceptual analysis of failure descriptions, strategies for mapping natural language into conceptual representations, case-based reasoning strategies for memory organization and indexing, and strategies for memory search and retrieval. These techniques have been combined into a model that accounts for: (a) how to build a knowledge base of system failures and repair procedures from descriptions that appear in telescope-operators' logbooks and FMEA (failure modes and effects analysis) manuals; and (b) how to use that knowledge base to search and retrieve answers to questions about causes and effects of failures, as well as diagnosis and repair procedures. This model has been implemented in FANSYS (Failure ANalysis SYStem), a prototype text comprehension and question answering program for failure analysis.

  2. Cyberspace security system

    DOEpatents

    Abercrombie, Robert K; Sheldon, Frederick T; Ferragut, Erik M

    2014-06-24

    A system evaluates reliability, performance and/or safety by automatically assessing the targeted system's requirements. A cost metric quantifies the impact of failures as a function of failure cost per unit of time. The metrics or measurements may render real-time (or near real-time) outcomes by initiating active response against one or more high ranked threats. The system may support or may be executed in many domains including physical domains, cyber security domains, cyber-physical domains, infrastructure domains, etc. or any other domains that are subject to a threat or a loss.

  3. 14 CFR 417.309 - Flight safety system analysis.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... system anomaly occurring and all of its effects as determined by the single failure point analysis and... termination system. (c) Single failure point. A command control system must undergo an analysis that... fault tree analysis or a failure modes effects and criticality analysis; (2) Identify all possible...

  4. 14 CFR 417.309 - Flight safety system analysis.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... system anomaly occurring and all of its effects as determined by the single failure point analysis and... termination system. (c) Single failure point. A command control system must undergo an analysis that... fault tree analysis or a failure modes effects and criticality analysis; (2) Identify all possible...

  5. 14 CFR 417.309 - Flight safety system analysis.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... system anomaly occurring and all of its effects as determined by the single failure point analysis and... termination system. (c) Single failure point. A command control system must undergo an analysis that... fault tree analysis or a failure modes effects and criticality analysis; (2) Identify all possible...

  6. 14 CFR 417.309 - Flight safety system analysis.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... system anomaly occurring and all of its effects as determined by the single failure point analysis and... termination system. (c) Single failure point. A command control system must undergo an analysis that... fault tree analysis or a failure modes effects and criticality analysis; (2) Identify all possible...

  7. 14 CFR 417.309 - Flight safety system analysis.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... system anomaly occurring and all of its effects as determined by the single failure point analysis and... termination system. (c) Single failure point. A command control system must undergo an analysis that... fault tree analysis or a failure modes effects and criticality analysis; (2) Identify all possible...

  8. A thermomechanical constitutive model for cemented granular materials with quantifiable internal variables. Part II - Validation and localization analysis

    NASA Astrophysics Data System (ADS)

    Das, Arghya; Tengattini, Alessandro; Nguyen, Giang D.; Viggiani, Gioacchino; Hall, Stephen A.; Einav, Itai

    2014-10-01

    We study the mechanical failure of cemented granular materials (e.g., sandstones) using a constitutive model based on breakage mechanics for grain crushing and damage mechanics for cement fracture. The theoretical aspects of this model are presented in Part I: Tengattini et al. (2014), A thermomechanical constitutive model for cemented granular materials with quantifiable internal variables, Part I - Theory (Journal of the Mechanics and Physics of Solids, 10.1016/j.jmps.2014.05.021). In this Part II we investigate the constitutive and structural responses of cemented granular materials through analyses of Boundary Value Problems (BVPs). The multiple failure mechanisms captured by the proposed model enable the behavior of cemented granular rocks to be well reproduced for a wide range of confining pressures. Furthermore, through comparison of the model predictions and experimental data, the micromechanical basis of the model provides improved understanding of failure mechanisms of cemented granular materials. In particular, we show that grain crushing is the predominant inelastic deformation mechanism under high pressures while cement failure is the relevant mechanism at low pressures. Over an intermediate pressure regime a mixed mode of failure mechanisms is observed. Furthermore, the micromechanical roots of the model allow the effects on localized deformation modes of various initial microstructures to be studied. The results obtained from both the constitutive responses and BVP solutions indicate that the proposed approach and model provide a promising basis for future theoretical studies on cemented granular materials.

  9. Failure mode analysis to predict product reliability.

    NASA Technical Reports Server (NTRS)

    Zemanick, P. P.

    1972-01-01

    The failure mode analysis (FMA) is described as a design tool to predict and improve product reliability. The objectives of the failure mode analysis are presented as they influence component design, configuration selection, the product test program, the quality assurance plan, and engineering analysis priorities. The detailed mechanics of performing a failure mode analysis are discussed, including one suggested format. Some practical difficulties of implementation are indicated, drawn from experience with preparing FMAs on the nuclear rocket engine program.

  10. Failure Analysis at the Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Salazar, Victoria L.; Wright, M. Clara

    2010-01-01

    History has shown that failures occur in every engineering endeavor, and what we learn from those failures contributes to the knowledge base to safely complete future missions. The necessity of failure analysis is at its apex at the end of one aged program and at the beginning of a new and untested program. The information that we gain through failure analysis corrects the deficiencies in the current vehicle to make the next generation of vehicles more efficient and safe. The Failure Analysis and Materials Evaluation Branch in the Materials Science Division at the Kennedy Space Center performs metallurgical, mechanical, electrical, and non-metallic materials failure analyses and accident investigations on both flight hardware and ground support equipment for the Space Shuttle, International Space Station, Constellation, and Launch Services Programs. This paper will explore a variety of failure case studies at the Kennedy Space Center and the lessons learned that can be applied in future programs.

  11. Reliability of objects in aerospace technologies and beyond: Holistic risk management approach

    NASA Astrophysics Data System (ADS)

    Shai, Yair; Ingman, D.; Suhir, E.

    A “ high level” , deductive-reasoning-based (“ holistic” ), approach is aimed at the direct analysis of the behavior of a system as a whole, rather than with an attempt to understand the system's behavior by conducting first a “ low level” , inductive-reasoning-based, analysis of the behavior and the contributions of the system's elements. The holistic view on treatment is widely accepted in medical practice, and “ holistic health” concept upholds that all the aspects of people's needs (psychological, physical or social), should be seen as a whole, and that a disease is caused by the combined effect of physical, emotional, spiritual, social and environmental imbalances. Holistic reasoning is applied in our analysis to model the behavior of engineering products (“ species” ) subjected to various economic, marketing, and reliability “ health” factors. Vehicular products (cars, aircraft, boats, etc.), e.g., might be still robust enough, but could be out-of-date, or functionally obsolete, or their further use might be viewed as unjustifiably expensive. High-level-performance functions (HLPF) are the essential feature of the approach. HLPFs are, in effect, “ signatures” of the “ species” of interest. The HLPFs describe, in a “ holistic” , and certainly in a probabilistic, way, numerous complex multi-dependable relations among the representatives of the “ species” under consideration. ; umerous inter-related “ stresses” , both actual (“ physical” ) and nonphysical, which affect the probabilistic predictions are inherently being taken into account by the HLPFs. There is no need, and might even be counter-productive, to conduct tedious, time- and labor-consuming experimentations and to invest significant amount of time and resources to accumulate “ representative statistics” to predict - he governing probabilistic characteristics of the system behavior, such as, e.g., life expectancy of a particular type of products. “ Species” of military aircraft, commercial aircraft and private cars have been chosen in our analysis as illustrations of the fruitfulness of the “ holistic” approach. The obtained data show that both commercial “ species” exhibit similar “ survival dynamics” in compare with those of the military species of aircraft: lifetime distributions were found to be Weibull distributions for all “ species” however for commercial vehicles, the shape parameters were a little higher than 2, and scale parameters were 19.8 years (aircraft) and 21.7 (cars) whereas for military aircraft, the shape parameters were much higher and the mean time to failure much longer. The difference between the lifetime characteristics of the “ species” can be attributed to the differences in the social, operational, economic and safety-and-reliability requirements and constraints. The obtained information can be used to make tentative predictions for the most likely trends in the given field of vehicular technology. The following major conclusions can be drawn from our analysis: 1) The suggested concept based on the use of HLPFs reflects the current state and the general perceptions in the given field of engineering, including aerospace technologies, and allows for all the inherent and induced factors to be taken into account: any type of failures, usage profiles, economic factors, environmental conditions, etc. The concept requires only very general input data for the entire population. There is no need for the less available information about individual articles. 2) Failure modes are not restricted to the physical type of failures and include economic, cultural or social effects. All possible causes, which might lead to making a decision to terminate the use of a particular type

  12. Speedy routing recovery protocol for large failure tolerance in wireless sensor networks.

    PubMed

    Lee, Joa-Hyoung; Jung, In-Bum

    2010-01-01

    Wireless sensor networks are expected to play an increasingly important role in data collection in hazardous areas. However, the physical fragility of a sensor node makes reliable routing in hazardous areas a challenging problem. Because several sensor nodes in a hazardous area could be damaged simultaneously, the network should be able to recover routing after node failures over large areas. Many routing protocols take single-node failure recovery into account, but it is difficult for these protocols to recover the routing after large-scale failures. In this paper, we propose a routing protocol, referred to as ARF (Adaptive routing protocol for fast Recovery from large-scale Failure), to recover a network quickly after failures over large areas. ARF detects failures by counting the packet losses from parent nodes, and upon failure detection, it decreases the routing interval to notify the neighbor nodes of the failure. Our experimental results indicate that ARF could provide recovery from large-area failures quickly with less packets and energy consumption than previous protocols.

  13. Development of new physical activity and sedentary behavior change self-efficacy questionnaires using item response modeling

    USDA-ARS?s Scientific Manuscript database

    Theoretically, increased levels of physical activity self-efficacy (PASE) should lead to increased physical activity, but few studies have reported this effect among youth. This failure may be at least partially attributable to measurement limitations. In this study, Item Response Modeling (IRM) was...

  14. Elementary students' engagement in failure-prone engineering design tasks

    NASA Astrophysics Data System (ADS)

    Andrews, Chelsea Joy

    Although engineering education has been practiced at the undergraduate level for over a century, only fairly recently has the field broadened to include the elementary level; the pre-college division of the American Society of Engineering Education was established in 2003. As a result, while recent education standards require engineering in elementary schools, current studies are still filling in basic research on how best to design and implement elementary engineering activities. One area in need of investigation is how students engage with physical failure in design tasks. In this dissertation, I explore how upper elementary students engage in failure-prone engineering design tasks in an out-of-school environment. In a series of three empirical case studies, I look closely at how students evaluate failed tests and decide on changes to their design constructions, how their reasoning evolves as they repeatedly encounter physical failure, and how students and facilitators co-construct testing norms where repetitive failure is manageable. I also briefly investigate how students' engagement differs in a task that features near-immediate success. By closely examining student groups' discourse and their interactions with their design constructions, I found that these students: are able to engage in iteration and see failure-as-feedback with minimal externally-imposed structure; seem to be designing in a more sophisticated manner, attending to multiple causal factors, after experiencing repetitive failure; and are able to manage the stress and frustration of repetitive failure, provided the co-constructed testing norms of the workshop environment are supportive of failure management. These results have both pedagogical implications, in terms of how to create and facilitate design tasks, and methodological implications--namely, I highlight the particular insights afforded by a case study approach for analyzing engagement in design tasks.

  15. Failure Mode Identification Through Clustering Analysis

    NASA Technical Reports Server (NTRS)

    Arunajadai, Srikesh G.; Stone, Robert B.; Tumer, Irem Y.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Research has shown that nearly 80% of the costs and problems are created in product development and that cost and quality are essentially designed into products in the conceptual stage. Currently, failure identification procedures (such as FMEA (Failure Modes and Effects Analysis), FMECA (Failure Modes, Effects and Criticality Analysis) and FTA (Fault Tree Analysis)) and design of experiments are being used for quality control and for the detection of potential failure modes during the detail design stage or post-product launch. Though all of these methods have their own advantages, they do not give information as to what are the predominant failures that a designer should focus on while designing a product. This work uses a functional approach to identify failure modes, which hypothesizes that similarities exist between different failure modes based on the functionality of the product/component. In this paper, a statistical clustering procedure is proposed to retrieve information on the set of predominant failures that a function experiences. The various stages of the methodology are illustrated using a hypothetical design example.

  16. Lived experiences of women who developed uterine rupture following severe obstructed labor in Mulago hospital, Uganda

    PubMed Central

    2014-01-01

    Background Maternal mortality is a major public health challenge in Uganda. Whereas uterine rupture remains a major cause of maternal morbidity and mortality, there is limited research into what happens to women who survive such severe obstetric complications. Understanding their experiences might delineate strategies to support survivors. Methods This qualitative study used a phenomenological approach to explore lived experiences of women who developed uterine rupture following obstructed labor. In-depth interviews initially conducted during their hospitalization were repeated 3–6 months after the childbirth event to explore their health and meanings they attached to the traumatic events and their outcomes. Data were analyzed using thematic analysis. Results The resultant themes included barriers to access healthcare, multiple “losses” and enduring physical, psychosocial and economic consequences. Many women who develop uterine rupture fail to access critical care needed due to failure to recognise danger signs of obstructed labor, late decision making for accessing care, geographical barriers to health facilities, late or failure to diagnose obstructed labor at health facilities, and failure to promptly perform caesarean section. Secondly, the sequel of uterine rupture includes several losses (loss of lives, loss of fertility, loss of body image, poor quality of life and disrupted marital relationships). Thirdly, uterine rupture has grim economic consequences for the survivors (with financial loss and loss of income during and after the calamitous events). Conclusion Uterine rupture is associated with poor quality of care due to factors that operate at personal, household, family, community and society levels, and results in dire physical, psychosocial and financial consequences for survivors. There is need to improve access to and provision of emergency obstetric care in order to prevent uterine rupture consequent to obstructed labor. There is also critical need to provide counselling and support to survivors to enable them cope with physical, social, psychological and economic consequences. PMID:24758354

  17. Probability of failure prediction for step-stress fatigue under sine or random stress

    NASA Technical Reports Server (NTRS)

    Lambert, R. G.

    1979-01-01

    A previously proposed cumulative fatigue damage law is extended to predict the probability of failure or fatigue life for structural materials with S-N fatigue curves represented as a scatterband of failure points. The proposed law applies to structures subjected to sinusoidal or random stresses and includes the effect of initial crack (i.e., flaw) sizes. The corrected cycle ratio damage function is shown to have physical significance.

  18. Detecting Slow Deformation Signals Preceding Dynamic Failure: A New Strategy For The Mitigation Of Natural Hazards (SAFER)

    NASA Astrophysics Data System (ADS)

    Vinciguerra, Sergio; Colombero, Chiara; Comina, Cesare; Ferrero, Anna Maria; Mandrone, Giuseppe; Umili, Gessica; Fiaschi, Andrea; Saccorotti, Gilberto

    2014-05-01

    Rock slope monitoring is a major aim in territorial risk assessment and mitigation. The high velocity that usually characterizes the failure phase of rock instabilities makes the traditional instruments based on slope deformation measurements not applicable for early warning systems. On the other hand the use of acoustic emission records has been often a good tool in underground mining for slope monitoring. Here we aim to identify the characteristic signs of impending failure, by deploying a "site specific" microseismic monitoring system on an unstable patch of the Madonna del Sasso landslide on the Italian Western Alps designed to monitor subtle changes of the mechanical properties of the medium and installed as close as possible to the source region. The initial characterization based on geomechanical and geophysical tests allowed to understand the instability mechanism and to design the monitoring systems to be placed. Stability analysis showed that the stability of the slope is due to rock bridges. Their failure progress can results in a global slope failure. Consequently the rock bridges potentially generating dynamic ruptures need to be monitored. A first array consisting of instruments provided by University of Turin, has been deployed on October 2013, consisting of 4 triaxial 4.5 Hz seismometers connected to a 12 channel data logger arranged in a 'large aperture' configuration which encompasses the entire unstable rock mass. Preliminary data indicate the occurrence of microseismic swarms with different spectral contents. Two additional geophones and 4 triaxial piezoelectric accelerometers able to operate at frequencies up to 23 KHz will be installed during summer 2014. This will allow us to develop a network capable of recording events with Mw < 0.5 and frequencies between 700 Hz and 20 kHz. Rock physical and mechanical characterization along with rock deformation laboratory experiments during which the evolution of related physical parameters under simulated conditions of stress and fluid content will be also studied and theoretical modelling will allow to come up with a full hazard assessment and test new methodologies for a much wider scale of applications within EU.

  19. Graphical Displays Assist In Analysis Of Failures

    NASA Technical Reports Server (NTRS)

    Pack, Ginger; Wadsworth, David; Razavipour, Reza

    1995-01-01

    Failure Environment Analysis Tool (FEAT) computer program enables people to see and better understand effects of failures in system. Uses digraph models to determine what will happen to system if set of failure events occurs and to identify possible causes of selected set of failures. Digraphs or engineering schematics used. Also used in operations to help identify causes of failures after they occur. Written in C language.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    English, Shawn A.; Briggs, Timothy M.; Nelson, Stacy M.

    Simulations of low velocity impact with a flat cylindrical indenter upon a carbon fiber fabric reinforced polymer laminate are rigorously validated. Comparison of the impact energy absorption between the model and experiment is used as the validation metric. Additionally, non-destructive evaluation, including ultrasonic scans and three-dimensional computed tomography, provide qualitative validation of the models. The simulations include delamination, matrix cracks and fiber breaks. An orthotropic damage and failure constitutive model, capable of predicting progressive damage and failure, is developed in conjunction and described. An ensemble of simulations incorporating model parameter uncertainties is used to predict a response distribution which ismore » then compared to experimental output using appropriate statistical methods. Lastly, the model form errors are exposed and corrected for use in an additional blind validation analysis. The result is a quantifiable confidence in material characterization and model physics when simulating low velocity impact in structures of interest.« less

  1. The Family Experience of Fatigue in Heart Failure.

    PubMed

    Whitehead, Lisa

    2017-02-01

    Fatigue is a symptom experienced almost universally by people living with a chronic illness. People diagnosed with heart failure have described experiencing significant levels of fatigue. The family experience of fatigue, that is, how families perceive, respond to, and manage fatigue, is unknown. Semistructured family group interviews with 22 families ( N = 62 family members) were conducted. Thematic analysis was undertaken to explore the family experience of fatigue. Fatigue was described as a significant symptom that affected physical, emotional, and social functioning at a family level. Fatigue was described as difficult to manage, and while most family members interviewed had developed a shared understanding of fatigue, some family members found acceptance of this invisible symptom more difficult. Spouses were more likely to express concern that fatigue, and especially increased fatigue, represented a decline in health. The study highlighted the importance of a shared understanding of fatigue from a family perspective.

  2. Analysis of Weibull Grading Test for Solid Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2010-01-01

    Weibull grading test is a powerful technique that allows selection and reliability rating of solid tantalum capacitors for military and space applications. However, inaccuracies in the existing method and non-adequate acceleration factors can result in significant, up to three orders of magnitude, errors in the calculated failure rate of capacitors. This paper analyzes deficiencies of the existing technique and recommends more accurate method of calculations. A physical model presenting failures of tantalum capacitors as time-dependent-dielectric-breakdown is used to determine voltage and temperature acceleration factors and select adequate Weibull grading test conditions. This, model is verified by highly accelerated life testing (HALT) at different temperature and voltage conditions for three types of solid chip tantalum capacitors. It is shown that parameters of the model and acceleration factors can be calculated using a general log-linear relationship for the characteristic life with two stress levels.

  3. Quantitative validation of carbon-fiber laminate low velocity impact simulations

    DOE PAGES

    English, Shawn A.; Briggs, Timothy M.; Nelson, Stacy M.

    2015-09-26

    Simulations of low velocity impact with a flat cylindrical indenter upon a carbon fiber fabric reinforced polymer laminate are rigorously validated. Comparison of the impact energy absorption between the model and experiment is used as the validation metric. Additionally, non-destructive evaluation, including ultrasonic scans and three-dimensional computed tomography, provide qualitative validation of the models. The simulations include delamination, matrix cracks and fiber breaks. An orthotropic damage and failure constitutive model, capable of predicting progressive damage and failure, is developed in conjunction and described. An ensemble of simulations incorporating model parameter uncertainties is used to predict a response distribution which ismore » then compared to experimental output using appropriate statistical methods. Lastly, the model form errors are exposed and corrected for use in an additional blind validation analysis. The result is a quantifiable confidence in material characterization and model physics when simulating low velocity impact in structures of interest.« less

  4. A Framework for Creating a Function-based Design Tool for Failure Mode Identification

    NASA Technical Reports Server (NTRS)

    Arunajadai, Srikesh G.; Stone, Robert B.; Tumer, Irem Y.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Knowledge of potential failure modes during design is critical for prevention of failures. Currently industries use procedures such as Failure Modes and Effects Analysis (FMEA), Fault Tree analysis, or Failure Modes, Effects and Criticality analysis (FMECA), as well as knowledge and experience, to determine potential failure modes. When new products are being developed there is often a lack of sufficient knowledge of potential failure mode and/or a lack of sufficient experience to identify all failure modes. This gives rise to a situation in which engineers are unable to extract maximum benefits from the above procedures. This work describes a function-based failure identification methodology, which would act as a storehouse of information and experience, providing useful information about the potential failure modes for the design under consideration, as well as enhancing the usefulness of procedures like FMEA. As an example, the method is applied to fifteen products and the benefits are illustrated.

  5. The use of vision-based image quality metrics to predict low-light performance of camera phones

    NASA Astrophysics Data System (ADS)

    Hultgren, B.; Hertel, D.

    2010-01-01

    Small digital camera modules such as those in mobile phones have become ubiquitous. Their low-light performance is of utmost importance since a high percentage of images are made under low lighting conditions where image quality failure may occur due to blur, noise, and/or underexposure. These modes of image degradation are not mutually exclusive: they share common roots in the physics of the imager, the constraints of image processing, and the general trade-off situations in camera design. A comprehensive analysis of failure modes is needed in order to understand how their interactions affect overall image quality. Low-light performance is reported for DSLR, point-and-shoot, and mobile phone cameras. The measurements target blur, noise, and exposure error. Image sharpness is evaluated from three different physical measurements: static spatial frequency response, handheld motion blur, and statistical information loss due to image processing. Visual metrics for sharpness, graininess, and brightness are calculated from the physical measurements, and displayed as orthogonal image quality metrics to illustrate the relative magnitude of image quality degradation as a function of subject illumination. The impact of each of the three sharpness measurements on overall sharpness quality is displayed for different light levels. The power spectrum of the statistical information target is a good representation of natural scenes, thus providing a defined input signal for the measurement of power-spectrum based signal-to-noise ratio to characterize overall imaging performance.

  6. Perinatal Experiences of Women With Physical Disabilities and Their Recommendations for Clinicians

    PubMed Central

    Smeltzer, Suzanne C.; Mitra, Monika; Iezzoni, Lisa I.; Long-Bellil, Linda; Smith, Lauren D.

    2016-01-01

    Objective To explore the perinatal experiences of women with physical disabilities (WWPD) and their associated recommendations for maternity care clinicians to improve care. Design A mixed-method study was conducted using a semi-structured interview guide to identify the experiences of WWPD. This qualitative descriptive study is part of a larger study and was conducted to examine the perceptions of WWPD about their interactions with maternity care clinicians and their recommendations for maternity care clinicians to improve care. Participants Twenty-five women with physical disabilities who gave birth within the last 10 years and were 21–55 years of age were recruited and agreed to participate in the study. Methods Participants were asked about their interactions with clinicians during pregnancy and their recommendations for clinicians to improve perinatal care for women with physical disabilities. Transcribed interviews were analyzed using content analysis. Themes that emerged from analysis of the interviews were identified and coded. Kurasaski’s coding was used to establish the reliability of the coding. Results Three themes emerged from analysis of the interview data: clinicians’ lack of knowledge about pregnancy-related needs of WWPD; clinicians’ failure to consider knowledge, experience, and expertise of women about their own disabilities; and clinicians’ lack of awareness of reproductive concerns of WWPD. Women provided recommendations that warrant attention by clinicians who provide perinatal care for women who live with physical disabilities. Conclusion Participants experienced problematic interactions with clinicians related to pregnancy and identified recommendations for maternity care clinicians to address those problems with the goal of improving perinatal health care for WWPD. PMID:27619410

  7. Combined aerobic and resistance exercise program improves task performance in patients with heart failure.

    PubMed

    Gary, Rebecca A; Cress, M Elaine; Higgins, Melinda K; Smith, Andrew L; Dunbar, Sandra B

    2011-09-01

    To assess the effects of a home-based aerobic and resistance training program on the physical function of adults with New York Heart Association (NYHA) class II and III patients and systolic heart failure (HF). Randomized controlled trial. Home based. Stable patients (N=24; mean age, 60 ± 10 y; left ventricular ejection fraction, 25% ± 9%; 50% white; 50% women) with New York Heart Association (NYHA) classes II and III (NYHA class III, 58%) systolic heart failure (HF). A 12-week progressive home-based program of moderate-intensity aerobic and resistance exercise. Attention control wait list participants performed light stretching and flexibility exercises. A 10-item performance-based physical function measure, the Continuous Scale Physical Functional Performance test (CS-PFP10), was the major outcome variable and included specific physical activities measured in time to complete a task, weight carried during a task, and distance walked. Other measures included muscle strength, HRQOL (Minnesota Living With Heart Failure Questionnaire, Epworth Sleepiness Scale), functional capacity (Duke Activity Status Index), and disease severity (brain natriuretic peptide) levels. After the exercise intervention, 9 of 10 specific task activities were performed more rapidly, with increased weight carried by exercise participants compared with the attention control wait list group. Exercise participants also showed significant improvements in CS-PFP10 total score (P<.025), upper and lower muscle strength, and HRQOL (P<.001) compared with the attention control wait list group. Adherence rates were 83% and 99% for the aerobic and resistance training, respectively. Patients with stable HF who participate in a moderate-intensity combined aerobic and resistance exercise program may improve performance of routine physical activities of daily living by using a home-based exercise approach. Performance-based measures such as the CS-PFP10 may provide additional insights into physical function in patients with HF that more commonly used exercise tests may not identify. Early detection of subtle changes that may signal declining physical function that are amenable to intervention potentially may slow further loss of function in this patient population. Copyright © 2011 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  8. The Readiness of High School Students to Pursue First Year Physics

    ERIC Educational Resources Information Center

    Ramnarain, U.; Molefe, P.

    2012-01-01

    A high failure rate at first year physics is often attributed to the lack of readiness of high school students to pursue such studies. This research explores this issue and reports on the perceptions of five physics lecturers at a South African university on the preparedness of high school students for first year physics. Qualitative data was…

  9. Preventing Early Learning Failure.

    ERIC Educational Resources Information Center

    Sornson, Bob, Ed.

    Noting that thousands of young children with the capacity to experience school success do not because they are unprepared for school learning activities, have experienced physical or emotional setbacks that cause them to be at risk for early learning failure, have never experienced limits on their behavior, or have mild sensory or motor deficits,…

  10. Failure-Modes-And-Effects Analysis Of Software Logic

    NASA Technical Reports Server (NTRS)

    Garcia, Danny; Hartline, Thomas; Minor, Terry; Statum, David; Vice, David

    1996-01-01

    Rigorous analysis applied early in design effort. Method of identifying potential inadequacies and modes and effects of failures caused by inadequacies (failure-modes-and-effects analysis or "FMEA" for short) devised for application to software logic.

  11. Failure Mode and Effects Analysis (FMEA) Introductory Overview

    DTIC Science & Technology

    2012-06-14

    Failure Mode and Effects Analysis ( FMEA ) Introductory Overview TARDEC Systems Engineering Risk Management Team POC: Kadry Rizk or Gregor Ratajczak...2. REPORT TYPE Briefing Charts 3. DATES COVERED 01-05-2012 to 23-05-2012 4. TITLE AND SUBTITLE Failure Mode and Effects Analysis ( FMEA ) 5a...18 WELCOME Welcome to “An introductory overview of Failure Mode and Effects Analysis ( FMEA )”, A brief concerning the use and benefits of FMEA

  12. A physically-based method for predicting peak discharge of floods caused by failure of natural and constructed earthen dams

    USGS Publications Warehouse

    Walder, J.S.; O'Connor, J. E.; Costa, J.E.; ,

    1997-01-01

    We analyse a simple, physically-based model of breach formation in natural and constructed earthen dams to elucidate the principal factors controlling the flood hydrograph at the breach. Formation of the breach, which is assumed trapezoidal in cross-section, is parameterized by the mean rate of downcutting, k, the value of which is constrained by observations. A dimensionless formulation of the model leads to the prediction that the breach hydrograph depends upon lake shape, the ratio r of breach width to depth, the side slope ?? of the breach, and the parameter ?? = (V.D3)(k/???gD), where V = lake volume, D = lake depth, and g is the acceleration due to gravity. Calculations show that peak discharge Qp depends weakly on lake shape r and ??, but strongly on ??, which is the product of a dimensionless lake volume and a dimensionless erosion rate. Qp(??) takes asymptotically distinct forms depending on whether < ??? 1 or < ??? 1. Theoretical predictions agree well with data from dam failures for which k could be reasonably estimated. The analysis provides a rapid and in many cases graphical way to estimate plausible values of Qp at the breach.We analyze a simple, physically-based model of breach formation in natural and constructed earthen dams to elucidate the principal factors controlling the flood hydrograph at the breach. Formation of the breach, which is assumed trapezoidal in cross-section, is parameterized by the mean rate of downcutting, k, the value of which is constrained by observations. A dimensionless formulation of the model leads to the prediction that the breach hydrograph depends upon lake shape, the ratio r of breach width to depth, the side slope ?? of the breach, and the parameter ?? = (V/D3)(k/???gD), where V = lake volume, D = lake depth, and g is the acceleration due to gravity. Calculations show that peak discharge Qp depends weakly on lake shape r and ??, but strongly on ??, which is the product of a dimensionless lake volume and a dimensionless erosion rate. Qp(??) takes asymptotically distinct forms depending on whether ?????1 or ?????1. Theoretical predictions agree well with data from dam failures for which k could be reasonably estimated. The analysis provides a rapid and in many cases graphical way to estimate plausible values of Qp at the breach.

  13. An improved approach for flight readiness certification: Methodology for failure risk assessment and application examples. Volume 2: Software documentation

    NASA Technical Reports Server (NTRS)

    Moore, N. R.; Ebbeler, D. H.; Newlin, L. E.; Sutharshana, S.; Creager, M.

    1992-01-01

    An improved methodology for quantitatively evaluating failure risk of spaceflight systems to assess flight readiness and identify risk control measures is presented. This methodology, called Probabilistic Failure Assessment (PFA), combines operating experience from tests and flights with engineering analysis to estimate failure risk. The PFA methodology is of particular value when information on which to base an assessment of failure risk, including test experience and knowledge of parameters used in engineering analyses of failure phenomena, is expensive or difficult to acquire. The PFA methodology is a prescribed statistical structure in which engineering analysis models that characterize failure phenomena are used conjointly with uncertainties about analysis parameters and/or modeling accuracy to estimate failure probability distributions for specific failure modes, These distributions can then be modified, by means of statistical procedures of the PFA methodology, to reflect any test or flight experience. Conventional engineering analysis models currently employed for design of failure prediction are used in this methodology. The PFA methodology is described and examples of its application are presented. Conventional approaches to failure risk evaluation for spaceflight systems are discussed, and the rationale for the approach taken in the PFA methodology is presented. The statistical methods, engineering models, and computer software used in fatigue failure mode applications are thoroughly documented.

  14. An improved approach for flight readiness certification: Methodology for failure risk assessment and application examples, volume 1

    NASA Technical Reports Server (NTRS)

    Moore, N. R.; Ebbeler, D. H.; Newlin, L. E.; Sutharshana, S.; Creager, M.

    1992-01-01

    An improved methodology for quantitatively evaluating failure risk of spaceflight systems to assess flight readiness and identify risk control measures is presented. This methodology, called Probabilistic Failure Assessment (PFA), combines operating experience from tests and flights with engineering analysis to estimate failure risk. The PFA methodology is of particular value when information on which to base an assessment of failure risk, including test experience and knowledge of parameters used in engineering analyses of failure phenomena, is expensive or difficult to acquire. The PFA methodology is a prescribed statistical structure in which engineering analysis models that characterize failure phenomena are used conjointly with uncertainties about analysis parameters and/or modeling accuracy to estimate failure probability distributions for specific failure modes. These distributions can then be modified, by means of statistical procedures of the PFA methodology, to reflect any test or flight experience. Conventional engineering analysis models currently employed for design of failure prediction are used in this methodology. The PFA methodology is described and examples of its application are presented. Conventional approaches to failure risk evaluation for spaceflight systems are discussed, and the rationale for the approach taken in the PFA methodology is presented. The statistical methods, engineering models, and computer software used in fatigue failure mode applications are thoroughly documented.

  15. Discovering Hidden Controlling Parameters using Data Analytics and Dimensional Analysis

    NASA Astrophysics Data System (ADS)

    Del Rosario, Zachary; Lee, Minyong; Iaccarino, Gianluca

    2017-11-01

    Dimensional Analysis is a powerful tool, one which takes a priori information and produces important simplifications. However, if this a priori information - the list of relevant parameters - is missing a relevant quantity, then the conclusions from Dimensional Analysis will be incorrect. In this work, we present novel conclusions in Dimensional Analysis, which provide a means to detect this failure mode of missing or hidden parameters. These results are based on a restated form of the Buckingham Pi theorem that reveals a ridge function structure underlying all dimensionless physical laws. We leverage this structure by constructing a hypothesis test based on sufficient dimension reduction, allowing for an experimental data-driven detection of hidden parameters. Both theory and examples will be presented, using classical turbulent pipe flow as the working example. Keywords: experimental techniques, dimensional analysis, lurking variables, hidden parameters, buckingham pi, data analysis. First author supported by the NSF GRFP under Grant Number DGE-114747.

  16. Bone-Patellar Tendon-Bone Versus Soft-Tissue Allograft for Anterior Cruciate Ligament Reconstruction: A Systematic Review.

    PubMed

    Joyce, Christopher D; Randall, Kyle L; Mariscalco, Michael W; Magnussen, Robert A; Flanigan, David C

    2016-02-01

    To describe the outcomes of bone-patellar tendon-bone (BPTB) and soft-tissue allografts in anterior cruciate ligament (ACL) reconstruction with respect to graft failure risk, physical examination findings, instrumented laxity, and patient-reported outcomes. A search of the PubMed, Scopus, CINAHL (Cumulative Index to Nursing and Allied Health Literature) Complete, Cochrane Collaboration, and SPORTDiscus databases was performed. English-language studies with outcome data on primary ACL reconstruction with nonirradiated BPTB and soft-tissue allografts were identified. Outcome data included failure risk, physical examination findings, instrumented laxity measurements, and patient-reported outcome scores. Seventeen studies met the inclusion criteria. Of these studies, 11 reported on BPTB allografts exclusively, 5 reported on soft-tissue allografts exclusively, and 1 compared both types. The comparative study showed no difference in failure risk, Lachman grade, pivot-shift grade, instrumented laxity, or overall International Knee Documentation Committee score between the 2 allograft types. Data from all studies yielded a failure risk of 10.3% (95% confidence interval [CI], 4.5% to 18.1%) in the soft-tissue group and 15.2% (95% CI, 11.3% to 19.6%) in the BPTB group. The risk of a Lachman grade greater than 5 mm was 6.4% (95% CI, 1.7% to 13.7%) in the soft-tissue group and 8.6% (95% CI, 6.3% to 11.2%) in the BPTB group. The risk of a grade 2 or 3 pivot shift was 1.4% (95% CI, 0.3% to 3.3%) in the soft-tissue group and 4.1% (95% CI, 1.9% to 7.2%) in the BPTB group. One comparative study showed no difference in results after ACL reconstruction with nonirradiated BPTB and soft-tissue allografts. Inclusion of case series in the analysis showed qualitatively similar outcomes with the 2 graft types. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  17. Correlates of Exercise Self-Efficacy in a Randomized Trial of Mind-Body Exercise in Patients with Chronic Heart Failure

    PubMed Central

    Yeh, Gloria Y.; Mu, Lin; Davis, Roger B.; Wayne, Peter M.

    2015-01-01

    Purpose Exercise self-efficacy is one of the strongest predictors of physical activity behavior. Prior literature suggests that tai chi, a mind-body exercise, may increase self-efficacy, however this is not well-studied. Little is known about the factors associated with development of exercise self-efficacy in a heart failure population. Methods We utilized data from a randomized controlled trial of 12 weeks group tai chi classes vs. education in patients with chronic heart failure (N=100). We used multivariable linear regression to explore possible correlates of change in exercise self-efficacy in the entire sample, and in the subgroup who received tai chi (N=50). Covariates included baseline quality-of-life, social support, functional parameters, physical activity, serum biomarkers, sociodemographics, and clinical HF parameters. Results Baseline 6-minute walk (β= −0.0003;SE 0.0001;p=0.02) and fatigue score (β= 0.03;SE 0.01;p=0.004) were significantly associated with change in self-efficacy, with those in the lowest tertile for 6-minute walk and higher tertiles for fatigue score having the greatest change. Intervention group was highly significant, with self-efficacy significantly improved in the tai chi group compared to the education control over 12 weeks (β= 0.39;SE: 0.11;p< 0.001). In the tai chi group alone, lower baseline oxygen consumption (β= −0.05;SE 0.01;p=0.001), decreased mood (β= −0.01;SE 0.003;p=0.004), and higher catecholamine level (epinephrine β= 0.003;SE 0.001;p=0.005) were significantly associated with improvements in self-efficacy. Conclusions In this exploratory analysis, our initial findings support the concept that interventions like tai chi may be beneficial in improving exercise self-efficacy, especially in patients with heart failure who are deconditioned, with lower functional status and mood. PMID:26959498

  18. A quantitative analysis of rock cliff erosion environments

    NASA Astrophysics Data System (ADS)

    Lim, M.; Rosser, N.; Petley, D. N.; Norman, E. C.; Barlow, J.

    2009-12-01

    The spatial patterns and temporal sequencing of failures from coastal rock cliffs are complex and typically generate weak correlations with environmental variables such as tidal inundation, wave energy, wind and rain. Consequently, understanding of rock cliff behaviour, its response to predicted changes in environmental forcing and, more specifically, the interaction between marine and climatic factors in influencing failure processes has remained limited. This work presents the results from the first attempt to characterise and quantify the conditions on coastal cliffs that lead to accelerated rates of material detachment. The rate of change in an 80 m high section of coastal rock cliffs has been surveyed annually with high-resolution terrestrial laser scanning (TLS). The rockfall data have been analysed according to a simplified source geology that exhibit distinct magnitude-frequency distributions relating to the dominance of particular failure types. An integrated network of sensors and instrumentation designed to reflect the lithological control on failure has been installed to examine both the distinction between prevailing conditions and those affecting the local cliff environment and the physical response of different rock types to micro-climatic processes. The monitoring system records near-surface rock strain, temperature, moisture and micro-seismic displacement in addition to air temperature, humidity, radiation, precipitation, water-level and three-dimensional wind characteristics. A characteristic environmental signal, unique to the cliff face material, has been identified that differs substantially from that experienced by the surrounding area; suggesting that established methods of meteorological and tidal data collection are insufficient and inappropriate to represent erosive processes. The interaction between thermo- and hydro-dynamics of the cliff environment and the physical response of the rock highlights the composite environmental effects acting on the rock mass and provides a new interpretation on the dominant controls on the behaviour of coastal rock cliffs that challenges the almost universal application of undercutting and cantilever collapse as the primary driver of rock cliff erosion.

  19. Weighted Fuzzy Risk Priority Number Evaluation of Turbine and Compressor Blades Considering Failure Mode Correlations

    NASA Astrophysics Data System (ADS)

    Gan, Luping; Li, Yan-Feng; Zhu, Shun-Peng; Yang, Yuan-Jian; Huang, Hong-Zhong

    2014-06-01

    Failure mode, effects and criticality analysis (FMECA) and Fault tree analysis (FTA) are powerful tools to evaluate reliability of systems. Although single failure mode issue can be efficiently addressed by traditional FMECA, multiple failure modes and component correlations in complex systems cannot be effectively evaluated. In addition, correlated variables and parameters are often assumed to be precisely known in quantitative analysis. In fact, due to the lack of information, epistemic uncertainty commonly exists in engineering design. To solve these problems, the advantages of FMECA, FTA, fuzzy theory, and Copula theory are integrated into a unified hybrid method called fuzzy probability weighted geometric mean (FPWGM) risk priority number (RPN) method. The epistemic uncertainty of risk variables and parameters are characterized by fuzzy number to obtain fuzzy weighted geometric mean (FWGM) RPN for single failure mode. Multiple failure modes are connected using minimum cut sets (MCS), and Boolean logic is used to combine fuzzy risk priority number (FRPN) of each MCS. Moreover, Copula theory is applied to analyze the correlation of multiple failure modes in order to derive the failure probabilities of each MCS. Compared to the case where dependency among multiple failure modes is not considered, the Copula modeling approach eliminates the error of reliability analysis. Furthermore, for purpose of quantitative analysis, probabilities importance weight from failure probabilities are assigned to FWGM RPN to reassess the risk priority, which generalize the definition of probability weight and FRPN, resulting in a more accurate estimation than that of the traditional models. Finally, a basic fatigue analysis case drawn from turbine and compressor blades in aeroengine is used to demonstrate the effectiveness and robustness of the presented method. The result provides some important insights on fatigue reliability analysis and risk priority assessment of structural system under failure correlations.

  20. Assuring reliability program effectiveness.

    NASA Technical Reports Server (NTRS)

    Ball, L. W.

    1973-01-01

    An attempt is made to provide simple identification and description of techniques that have proved to be most useful either in developing a new product or in improving reliability of an established product. The first reliability task is obtaining and organizing parts failure rate data. Other tasks are parts screening, tabulation of general failure rates, preventive maintenance, prediction of new product reliability, and statistical demonstration of achieved reliability. Five principal tasks for improving reliability involve the physics of failure research, derating of internal stresses, control of external stresses, functional redundancy, and failure effects control. A final task is the training and motivation of reliability specialist engineers.

  1. The strength study of the rotating device driver indexing spatial mechanism

    NASA Astrophysics Data System (ADS)

    Zakharenkov, N. V.; Kvasov, I. N.

    2018-04-01

    The indexing spatial mechanisms are widely used in automatic machines. The mechanisms maximum load-bearing capacity measurement is possible based on both the physical and numerical models tests results. The paper deals with the driven disk indexing spatial cam mechanism numerical model at the constant angular cam velocity. The presented mechanism kinematics and geometry parameters and finite element model are analyzed in the SolidWorks design environment. The calculation initial data and missing parameters having been found from the structure analysis were identified. The structure and kinematics analysis revealed the mechanism failures possible reasons. The numerical calculations results showing the structure performance at the contact and bending stresses are represented.

  2. Effects of physical guidance on short-term learning of walking on a narrow beam.

    PubMed

    Domingo, Antoinette; Ferris, Daniel P

    2009-11-01

    Physical guidance is often used in rehabilitation when teaching patients to re-learn movements. However, the effects of guidance on motor learning of complex skills, such as walking balance, are not clear. We tested four groups of healthy subjects that practiced walking on a narrow (1.27 cm) or wide (2.5 cm) treadmill-mounted balance beam, with or without physical guidance. Assistance was given by springs attached to a hip belt that applied restoring forces towards beam center. Subjects were evaluated while walking unassisted before and after training by calculating the number of times subjects stepped off of the beam per minute of successful walking on the beam (Failures per Minute). Subjects in Unassisted groups had greater performance improvements in walking balance from pre to post compared to subjects in Assisted groups. During training, Unassisted groups had more Failures per Minute than Assisted groups. Performance improvements were smaller in Narrow Beam groups than in Wide Beam groups. The Unassisted-Wide and Assisted-Narrow groups had similar Failures per Minute during training, but the Unassisted-Wide group had much greater performance gains after training. These results suggest that physical assistance can hinder motor learning of walking balance, assistance appears less detrimental for more difficult tasks, and task-specific dynamics are important to learning independent of error experience.

  3. Causal Modeling of Secondary Science Students' Intentions to Enroll in Physics.

    ERIC Educational Resources Information Center

    Crawley, Frank E.; Black, Carolyn B.

    1992-01-01

    Reports a study using the causal modeling method to verify underlying causes of student interest in enrolling in physics as predicted by the theory of planned behavior. Families were identified as major referents in the social support system for physics enrollment. Course and extracurricular conflicts and fear of failure were primary beliefs…

  4. Bone microarchitecture in adolescent boys with autism spectrum disorder.

    PubMed

    Neumeyer, Ann M; Cano Sokoloff, Natalia; McDonnell, Erin; Macklin, Eric A; McDougle, Christopher J; Misra, Madhusmita

    2017-04-01

    Boys with autism spectrum disorder (ASD) have lower areal bone mineral density (aBMD) than typically developing controls (TDC). Studies of volumetric BMD (vBMD) and bone microarchitecture provide information about fracture risk beyond that provided by aBMD but are currently lacking in ASD. To assess ultradistal radius and distal tibia vBMD, bone microarchitecture and strength estimates in adolescent boys with ASD compared to TDC. Cross-sectional study of 34 boys (16 ASD, 18 TDC) that assessed (i) aBMD at the whole body (WB), WB less head (WBLH), hip and spine using dual X-ray absorptiometry (DXA), (ii) vBMD and bone microarchitecture at the ultradistal radius and distal tibia using high-resolution peripheral quantitative CT (HRpQCT), and (iii) bone strength estimates (stiffness and failure load) using micro-finite element analysis (FEA). We controlled for age in all groupwise comparisons of HRpQCT and FEA measures. Activity questionnaires, food records, physical exam, and fasting levels of 25(OH) vitamin D and bone markers (C-terminal collagen crosslinks and N-terminal telopeptide (CTX and NTX) for bone resorption, N-terminal propeptide of Type 1 procollagen (P1NP) for bone formation) were obtained. ASD participants were slightly younger than TDC participants (13.6 vs. 14.2years, p=0.44). Tanner stage, height Z-scores and fasting serum bone marker levels did not differ between groups. ASD participants had higher BMI Z-scores, percent body fat, IGF-1 Z-scores, and lower lean mass and aBMD Z-scores than TDC at the WB, WBLH, and femoral neck (P<0.1). At the radius, ASD participants had lower trabecular thickness (0.063 vs. 0.070mm, p=0.004), compressive stiffness (56.7 vs. 69.7kN/mm, p=0.030) and failure load (3.0 vs. 3.7kN, p=0.031) than TDC. ASD participants also had 61% smaller cortical area (6.6 vs. 16.4mm 2 , p=0.051) and thickness (0.08 vs. 0.22mm, p=0.054) compared to TDC. At the tibia, ASD participants had lower compressive stiffness (183 vs. 210kN/mm, p=0.048) and failure load (9.4 vs. 10.8kN, p=0.043) and 23% smaller cortical area (60.3 vs. 81.5mm 2 , p=0.078) compared to TDC. A lower proportion of ASD participants were categorized as "very physically active" (20% vs. 72%, p=0.005). Differences in physical activity, calcium intake and IGF-1 responsiveness may contribute to group differences in stiffness and failure load. Bone microarchitectural parameters are impaired in ASD, with reductions in bone strength estimates (stiffness and failure load) at the ultradistal radius and distal tibia. This may result from lower physical activity and calcium intake, and decreased IGF-1 responsiveness. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Progressive Failure Analysis of Composite Stiffened Panels

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Yarrington, Phillip W.; Collier, Craig S.; Arnold, Steven M.

    2006-01-01

    A new progressive failure analysis capability for stiffened composite panels has been developed based on the combination of the HyperSizer stiffened panel design/analysis/optimization software with the Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC). MAC/GMC discretizes a composite material s microstructure into a number of subvolumes and solves for the stress and strain state in each while providing the homogenized composite properties as well. As a result, local failure criteria may be employed to predict local subvolume failure and the effects of these local failures on the overall composite response. When combined with HyperSizer, MAC/GMC is employed to represent the ply level composite material response within the laminates that constitute a stiffened panel. The effects of local subvolume failures can then be tracked as loading on the stiffened panel progresses. Sample progressive failure results are presented at both the composite laminate and the composite stiffened panel levels. Deformation and failure model predictions are compared with experimental data from the World Wide Failure Exercise for AS4/3501-6 graphite/epoxy laminates.

  6. Does improvement in self-management skills predict improvement in quality of life and depressive symptoms? A prospective study in patients with heart failure up to one year after self-management education.

    PubMed

    Musekamp, Gunda; Schuler, Michael; Seekatz, Bettina; Bengel, Jürgen; Faller, Hermann; Meng, Karin

    2017-02-15

    Heart failure (HF) patient education aims to foster patients' self-management skills. These are assumed to bring about, in turn, improvements in distal outcomes such as quality of life. The purpose of this study was to test the hypothesis that change in self-reported self-management skills observed after participation in self-management education predicts changes in physical and mental quality of life and depressive symptoms up to one year thereafter. The sample comprised 342 patients with chronic heart failure, treated in inpatient rehabilitation clinics, who received a heart failure self-management education program. Latent change modelling was used to analyze relationships between both short-term (during inpatient rehabilitation) and intermediate-term (after six months) changes in self-reported self-management skills and both intermediate-term and long-term (after twelve months) changes in physical and mental quality of life and depressive symptoms. Short-term changes in self-reported self-management skills predicted intermediate-term changes in mental quality of life and long-term changes in physical quality of life. Intermediate-term changes in self-reported self-management skills predicted long-term changes in all outcomes. These findings support the assumption that improvements in self-management skills may foster improvements in distal outcomes.

  7. A Comparison of Online, Video Synchronous, and Traditional Learning Modes for an Introductory Undergraduate Physics Course

    NASA Astrophysics Data System (ADS)

    Faulconer, E. K.; Griffith, J.; Wood, B.; Acharyya, S.; Roberts, D.

    2018-05-01

    While the equivalence between online and traditional classrooms has been well-researched, very little of this includes college-level introductory Physics. Only one study explored Physics at the whole-class level rather than specific course components such as a single lab or a homework platform. In this work, we compared the failure rate, grade distribution, and withdrawal rates in an introductory undergraduate Physics course across several learning modes including traditional face-to-face instruction, synchronous video instruction, and online classes. Statistically significant differences were found for student failure rates, grade distribution, and withdrawal rates but yielded small effect sizes. Post-hoc pair-wise test was run to determine differences between learning modes. Online students had a significantly lower failure rate than students who took the class via synchronous video classroom. While statistically significant differences were found for grade distributions, the pair-wise comparison yielded no statistically significance differences between learning modes when using the more conservative Bonferroni correction in post-hoc testing. Finally, in this study, student withdrawal rates were lowest for students who took the class in person (in-person classroom and synchronous video classroom) than online. Students that persist in an online introductory Physics class are more likely to achieve an A than in other modes. However, the withdrawal rate is higher from online Physics courses. Further research is warranted to better understand the reasons for higher withdrawal rates in online courses. Finding the root cause to help eliminate differences in student performance across learning modes should remain a high priority for education researchers and the education community as a whole.

  8. Is vision function related to physical functional ability in older adults?

    PubMed

    West, Catherine G; Gildengorin, Ginny; Haegerstrom-Portnoy, Gunilla; Schneck, Marilyn E; Lott, Lori; Brabyn, John A

    2002-01-01

    To assess the relationship between a broad range of vision functions and measures of physical performance in older adults. Cross-sectional study. Population-based cohort of community-dwelling older adults, subset of an on-going longitudinal study. Seven hundred eighty-two adults aged 55 and older (65% of living eligible subjects) had subjective health measures and objective physical performance evaluated in 1989/91 and again in 1993/95 and a battery of vision functions tested in 1993/95. Comprehensive battery of vision tests (visual acuity, contrast sensitivity, effects of illumination level, contrast and glare on acuity, visual fields with and without attentional load, color vision, temporal sensitivity, and the impact of dimming light on walking ability) and physical function measures (self-reported mobility limitations and observed measures of walking, rising from a chair and tandem balance). The failure rate for all vision functions and physical performance measures increased exponentially with age. Standard high-contrast visual acuity and standard visual fields showed the lowest failure rates. Nonstandard vision tests showed much higher failure rates. Poor performance on many individual vision functions was significantly associated with particular individual measures of physical performance. Using constructed combination vision variables, significant associations were found between spatial vision, field integrity, binocularity and/or adaptation, and each of the functional outcomes. Vision functions other than standard visual acuity may affect day-to-day functioning of older adults. Additional studies of these other aspects of vision and how they can be treated or rehabilitated are needed to determine whether these aspects play a role in strategies for reducing disability in older adults.

  9. Risk Based Reliability Centered Maintenance of DOD Fire Protection Systems

    DTIC Science & Technology

    1999-01-01

    2.2.3 Failure Mode and Effect Analysis ( FMEA )............................ 2.2.4 Failure Mode Risk Characterization...Step 2 - System functions and functional failures definition Step 3 - Failure mode and effect analysis ( FMEA ) Step 4 - Failure mode risk...system). The Interface Location column identifies the location where the FMEA of the fire protection system began or stopped. For example, for the fire

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    English, Shawn Allen; Nelson, Stacy Michelle; Briggs, Timothy

    Presented is a model verification and validation effort using low - velocity impact (LVI) of carbon fiber reinforced polymer laminate experiments. A flat cylindrical indenter impacts the laminate with enough energy to produce delamination, matrix cracks and fiber breaks. Included in the experimental efforts are ultrasonic scans of the damage for qualitative validation of the models. However, the primary quantitative metrics of validation are the force time history measured through the instrumented indenter and initial and final velocities. The simulations, whi ch are run on Sandia's Sierra finite element codes , consist of all physics and material parameters of importancemore » as determined by a sensitivity analysis conducted on the LVI simulation. A novel orthotropic damage and failure constitutive model that is cap able of predicting progressive composite damage and failure is described in detail and material properties are measured, estimated from micromechanics or optimized through calibration. A thorough verification and calibration to the accompanying experiment s are presented. Specia l emphasis is given to the four - point bend experiment. For all simulations of interest, the mesh and material behavior is verified through extensive convergence studies. An ensemble of simulations incorporating model parameter unc ertainties is used to predict a response distribution which is then compared to experimental output. The result is a quantifiable confidence in material characterization and model physics when simulating this phenomenon in structures of interest.« less

  11. Space Shuttle Stiffener Ring Foam Failure Analysis, a Non-Conventional Approach

    NASA Technical Reports Server (NTRS)

    Howard, Philip M.

    2015-01-01

    The Space Shuttle Program made use of the excellent properties of rigid polyurethane foam for cryogenic tank insulation and as structural protection on the solid rocket boosters. When foam applications de-bond, classical methods of failure analysis did not provide root cause of the failure of the foam. Realizing that foam is the ideal media to document and preserve its own mode of failure, thin sectioning was seen as a logical approach for foam failure analysis to observe the three dimensional morphology of the foam cells. The cell foam morphology provided a much greater understanding of the failure modes than previously achieved.

  12. Ultimate compression after impact load prediction in graphite/epoxy coupons using neural network and multivariate statistical analyses

    NASA Astrophysics Data System (ADS)

    Gregoire, Alexandre David

    2011-07-01

    The goal of this research was to accurately predict the ultimate compressive load of impact damaged graphite/epoxy coupons using a Kohonen self-organizing map (SOM) neural network and multivariate statistical regression analysis (MSRA). An optimized use of these data treatment tools allowed the generation of a simple, physically understandable equation that predicts the ultimate failure load of an impacted damaged coupon based uniquely on the acoustic emissions it emits at low proof loads. Acoustic emission (AE) data were collected using two 150 kHz resonant transducers which detected and recorded the AE activity given off during compression to failure of thirty-four impacted 24-ply bidirectional woven cloth laminate graphite/epoxy coupons. The AE quantification parameters duration, energy and amplitude for each AE hit were input to the Kohonen self-organizing map (SOM) neural network to accurately classify the material failure mechanisms present in the low proof load data. The number of failure mechanisms from the first 30% of the loading for twenty-four coupons were used to generate a linear prediction equation which yielded a worst case ultimate load prediction error of 16.17%, just outside of the +/-15% B-basis allowables, which was the goal for this research. Particular emphasis was placed upon the noise removal process which was largely responsible for the accuracy of the results.

  13. Neonatal Marfan syndrome: Report of two cases.

    PubMed

    Jurko, Tomas; Jurko, Alexander; Minarik, Milan; Micieta, Vladimir; Tonhajzerova, Ingrid; Kolarovszka, Hana; Zibolen, Mirko

    2017-07-01

    Marfan syndrome is rarely diagnosed in the neonatal period because of variable expression and age-dependent appearance of clinical signs. The prognosis is usually poor due to high probability of congestive heart failure, mitral and tricuspid regurgitations with suboptimal response to medical therapy and difficulties in surgical management. The authors have studied two cases of Marfan syndrome in the newborn period. Two cases of neonatal Marfan syndrome, one male and one female, were diagnosed by characteristic physical appearance. Both infants had significant cardiovascular abnormalities diagnosed by ultrasonography. Genetic DNA analysis in the second case confirmed the mutations in the fibrillin-1 gene located on chromosome 15q21 which is responsible for the development of Marfan syndrome. The boy died at six weeks of age with signs of rapidly progressive left ventricular failure associated with pneumonia. The second infant was having only mild signs of congestive heart failure and has been treated with beta blockers. At the age of 4 years her symptoms of congestive heart failure had worsened due to progression of mitral and tricuspid insufficiency and development of significant cardiomegaly. Mitral and tricuspid valvuloplasy had to be done at that time. Early diagnosis of Marfan syndrome in the newborn period can allow treatment in the early stages of cardiovascular abnormalities and may improve the prognosis. It also helps to explain to the family the serious health problem of their child.

  14. A case study in nonconformance and performance trend analysis

    NASA Technical Reports Server (NTRS)

    Maloy, Joseph E.; Newton, Coy P.

    1990-01-01

    As part of NASA's effort to develop an agency-wide approach to trend analysis, a pilot nonconformance and performance trending analysis study was conducted on the Space Shuttle auxiliary power unit (APU). The purpose of the study was to (1) demonstrate that nonconformance analysis can be used to identify repeating failures of a specific item (and the associated failure modes and causes) and (2) determine whether performance parameters could be analyzed and monitored to provide an indication of component or system degradation prior to failure. The nonconformance analysis of the APU did identify repeating component failures, which possibly could be reduced if key performance parameters were monitored and analyzed. The performance-trending analysis verified that the characteristics of hardware parameters can be effective in detecting degradation of hardware performance prior to failure.

  15. Weather is not significantly correlated with destination-specific transport-related physical activity among adults: A large-scale temporally matched analysis.

    PubMed

    Durand, Casey P; Zhang, Kai; Salvo, Deborah

    2017-08-01

    Weather is an element of the natural environment that could have a significant effect on physical activity. Existing research, however, indicates only modest correlations between measures of weather and physical activity. This prior work has been limited by a failure to use time-matched weather and physical activity data, or has not adequately examined the different domains of physical activity (transport, leisure, occupational, etc.). Our objective was to identify the correlation between weather variables and destination-specific transport-related physical activity in adults. Data were sourced from the California Household Travel Survey, collected in 2012-3. Weather variables included: relative humidity, temperature, wind speed, and precipitation. Transport-related physical activity (walking) was sourced from participant-recorded travel diaries. Three-part hurdle models were used to analyze the data. Results indicate statistically or substantively insignificant correlations between the weather variables and transport-related physical activity for all destination types. These results provide the strongest evidence to date that transport-related physical activity may occur relatively independently of weather conditions. The knowledge that weather conditions do not seem to be a significant barrier to this domain of activity may potentially expand the universe of geographic locations that are amenable to environmental and programmatic interventions to increase transport-related walking. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Risk Analysis of Earth-Rock Dam Failures Based on Fuzzy Event Tree Method

    PubMed Central

    Fu, Xiao; Gu, Chong-Shi; Su, Huai-Zhi; Qin, Xiang-Nan

    2018-01-01

    Earth-rock dams make up a large proportion of the dams in China, and their failures can induce great risks. In this paper, the risks associated with earth-rock dam failure are analyzed from two aspects: the probability of a dam failure and the resulting life loss. An event tree analysis method based on fuzzy set theory is proposed to calculate the dam failure probability. The life loss associated with dam failure is summarized and refined to be suitable for Chinese dams from previous studies. The proposed method and model are applied to one reservoir dam in Jiangxi province. Both engineering and non-engineering measures are proposed to reduce the risk. The risk analysis of the dam failure has essential significance for reducing dam failure probability and improving dam risk management level. PMID:29710824

  17. Methodology for the Incorporation of Passive Component Aging Modeling into the RAVEN/ RELAP-7 Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandelli, Diego; Rabiti, Cristian; Cogliati, Joshua

    2014-11-01

    Passive system, structure and components (SSCs) will degrade over their operation life and this degradation may cause to reduction in the safety margins of a nuclear power plant. In traditional probabilistic risk assessment (PRA) using the event-tree/fault-tree methodology, passive SSC failure rates are generally based on generic plant failure data and the true state of a specific plant is not reflected realistically. To address aging effects of passive SSCs in the traditional PRA methodology [1] does consider physics based models that account for the operating conditions in the plant, however, [1] does not include effects of surveillance/inspection. This paper representsmore » an overall methodology for the incorporation of aging modeling of passive components into the RAVEN/RELAP-7 environment which provides a framework for performing dynamic PRA. Dynamic PRA allows consideration of both epistemic and aleatory uncertainties (including those associated with maintenance activities) in a consistent phenomenological and probabilistic framework and is often needed when there is complex process/hardware/software/firmware/ human interaction [2]. Dynamic PRA has gained attention recently due to difficulties in the traditional PRA modeling of aging effects of passive components using physics based models and also in the modeling of digital instrumentation and control systems. RAVEN (Reactor Analysis and Virtual control Environment) [3] is a software package under development at the Idaho National Laboratory (INL) as an online control logic driver and post-processing tool. It is coupled to the plant transient code RELAP-7 (Reactor Excursion and Leak Analysis Program) also currently under development at INL [3], as well as RELAP 5 [4]. The overall methodology aims to: • Address multiple aging mechanisms involving large number of components in a computational feasible manner where sequencing of events is conditioned on the physical conditions predicted in a simulation environment such as RELAP-7. • Identify the risk-significant passive components, their failure modes and anticipated rates of degradation • Incorporate surveillance and maintenance activities and their effects into the plant state and into component aging progress. • Asses aging affects in a dynamic simulation environment 1. C. L. SMITH, V. N. SHAH, T. KAO, G. APOSTOLAKIS, “Incorporating Ageing Effects into Probabilistic Risk Assessment –A Feasibility Study Utilizing Reliability Physics Models,” NUREG/CR-5632, USNRC, (2001). 2. T. ALDEMIR, “A Survey of Dynamic Methodologies for Probabilistic Safety Assessment of Nuclear Power Plants, Annals of Nuclear Energy, 52, 113-124, (2013). 3. C. RABITI, A. ALFONSI, J. COGLIATI, D. MANDELLI and R. KINOSHITA “Reactor Analysis and Virtual Control Environment (RAVEN) FY12 Report,” INL/EXT-12-27351, (2012). 4. D. ANDERS et.al, "RELAP-7 Level 2 Milestone Report: Demonstration of a Steady State Single Phase PWR Simulation with RELAP-7," INL/EXT-12-25924, (2012).« less

  18. An improved approach for flight readiness certification: Methodology for failure risk assessment and application examples. Volume 3: Structure and listing of programs

    NASA Technical Reports Server (NTRS)

    Moore, N. R.; Ebbeler, D. H.; Newlin, L. E.; Sutharshana, S.; Creager, M.

    1992-01-01

    An improved methodology for quantitatively evaluating failure risk of spaceflight systems to assess flight readiness and identify risk control measures is presented. This methodology, called Probabilistic Failure Assessment (PFA), combines operating experience from tests and flights with engineering analysis to estimate failure risk. The PFA methodology is of particular value when information on which to base an assessment of failure risk, including test experience and knowledge of parameters used in engineering analyses of failure phenomena, is expensive or difficult to acquire. The PFA methodology is a prescribed statistical structure in which engineering analysis models that characterize failure phenomena are used conjointly with uncertainties about analysis parameters and/or modeling accuracy to estimate failure probability distributions for specific failure modes. These distributions can then be modified, by means of statistical procedures of the PFA methodology, to reflect any test or flight experience. Conventional engineering analysis models currently employed for design of failure prediction are used in this methodology. The PFA methodology is described and examples of its application are presented. Conventional approaches to failure risk evaluation for spaceflight systems are discussed, and the rationale for the approach taken in the PFA methodology is presented. The statistical methods, engineering models, and computer software used in fatigue failure mode applications are thoroughly documented.

  19. Effect of Discontinuities and Uncertainties on the Response and Failure of Composite Structures

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Perry, Ferman W.; Poteat, Marcia M. (Technical Monitor)

    2000-01-01

    The overall goal of this research was to assess the effect of discontinuities and uncertainties on the nonlinear response and failure of composite structures subjected to combined mechanical and thermal loads. The four key elements of the study were: (1) development of simple and efficient procedures for the accurate determination of transverse shear and transverse normal stresses in structural sandwiches as well as in unstiffened and stiffened composite panels and shells; (2) study the effects of transverse stresses on the response, damage initiation and propagation in composite and sandwich structures; (3) use of hierarchical sensitivity coefficients to identify the major parameters that affect the response and damage in each of the different levels in the hierarchy (micro-mechanical, layer, panel, subcomponent and component levels); and (4) application of fuzzy set techniques to identify the range and variation of possible responses. The computational models developed were used in conjunction with experiments, to understand the physical phenomena associated with the nonlinear response and failure of composite and sandwich structures. A toolkit was developed for use in conjunction with deterministic analysis programs to help the designer in assessing the effect of uncertainties in the different computational model parameters on the variability of the response quantities.

  20. Station blackout at Browns Ferry Unit One: iodine and noble-gas distribution and release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wichner, R.P.; Weber, C.F.; Lorenz, R.A.

    1982-08-01

    This is the second volume of a report describing the predicted response of Unit 1 at the Browns Ferry Nuclear Plant to a postulated Station Blackout, defined as a loss of offsite power combined with failure of all onsite emergency diesel-generators to start and load. The Station Blackout is assumed to persist beyond the point of battery exhaustion and the completely powerless state leads to core uncovery, meltdown, reactor vessel failure, and failure of the primary containment by overtemperature-induced degradation of the electrical penetration assembly seals. The sequence of events is described in Volume 1; the material in this volumemore » deals with the analysis of fission product noble gas and iodine transport during the accident. Factors which affect the fission product movements through the series of containment design barriers are reviewed. For a reactive material such as iodine, proper assessment of the rate of movement requires determination of the chemical changes along the pathway which alter the physical properties such as vapor pressure and solubility and thereby affect the transport rate. A methodology for accomplishing this is demonstrated in this report.« less

  1. Clinically relevant diagnostic research in primary care: the example of B-type natriuretic peptides in the detection of heart failure.

    PubMed

    Kelder, Johannes C; Rutten, Frans H; Hoes, Arno W

    2009-02-01

    With the emergence of novel diagnostic tests, e.g. point-of-care tests, clinically relevant empirical evidence is needed to assess whether such a test should be used in daily practice. With the example of the value of B-type natriuretic peptides (BNP) in the diagnostic assessment of suspected heart failure, we will discuss the major methodological issues crucial in diagnostic research; most notably the choice of the study population and the data analysis with a multivariable approach. BNP have been studied extensively in the emergency care setting, and also several studies in the primary care are available. The usefulness of this test when applied in combination with other readily available tests is still not adequately addressed in the relevant patient domain, i.e. those who are clinically suspected of heart failure by their GP. Future diagnostic research in primary care should be targeted much more at answering the clinically relevant question 'Is it useful to add this (new) test to the other tests I usually perform, including history taking and physical examination, in patients I suspect of having a certain disease'.

  2. Geographic Hotspots of Critical National Infrastructure.

    PubMed

    Thacker, Scott; Barr, Stuart; Pant, Raghav; Hall, Jim W; Alderson, David

    2017-12-01

    Failure of critical national infrastructures can result in major disruptions to society and the economy. Understanding the criticality of individual assets and the geographic areas in which they are located is essential for targeting investments to reduce risks and enhance system resilience. Within this study we provide new insights into the criticality of real-life critical infrastructure networks by integrating high-resolution data on infrastructure location, connectivity, interdependence, and usage. We propose a metric of infrastructure criticality in terms of the number of users who may be directly or indirectly disrupted by the failure of physically interdependent infrastructures. Kernel density estimation is used to integrate spatially discrete criticality values associated with individual infrastructure assets, producing a continuous surface from which statistically significant infrastructure criticality hotspots are identified. We develop a comprehensive and unique national-scale demonstration for England and Wales that utilizes previously unavailable data from the energy, transport, water, waste, and digital communications sectors. The testing of 200,000 failure scenarios identifies that hotspots are typically located around the periphery of urban areas where there are large facilities upon which many users depend or where several critical infrastructures are concentrated in one location. © 2017 Society for Risk Analysis.

  3. Numerical modelling of hydrologically-driven slope instability by means of porous media mechanics

    NASA Astrophysics Data System (ADS)

    Kakogiannou, Evanthia; Sanavia, Lorenzo; Lora, Marco; Schrefler, Bernhard

    2015-04-01

    Heavy rainfall can trigger slope failure which generally involves shallow soil deposit of different grading and origin usually in a state of partial saturation. In this case of slope instability, the behaviour of the soil slope is closely related not only to the distribution of pore-water pressure but also to the stress state during rainfall infiltration involving both mechanical and hydrological processes. In order to understand better these physical key processes, in this research work, the modelling of rainfall induced slope failure is considered as a coupled variably saturated hydro-mechanical problem. Therefore, the geometrically linear finite element code Comes-Geo for non-isothermal elasto-plastic multiphase solid porous materials is used, as developed by B.A. Schrefler and his co-workers. In this context, a detailed numerical analysis of an experimental slope stability test due to rainfall infiltration is presented. The main goals of this work are to understand the triggering mechanisms during the progressive failure, the effect of using different constitutive models of the mechanical soil behavior on the numerical results and the use of the second order work criterion on the detection of slope instability.

  4. Five year survival analysis of an oxidised zirconium total knee arthroplasty.

    PubMed

    Holland, Philip; Santini, Alasdair J A; Davidson, John S; Pope, Jill A

    2013-12-01

    Zirconium total knee arthroplasties theoretically have a low incidence of failure as they are low friction, hard wearing and hypoallergenic. We report the five year survival of 213 Profix zirconium total knee arthroplasties with a conforming all polyethylene tibial component. Data was collected prospectively and multiple strict end points were used. SF12 and WOMAC scores were recorded pre-operatively, at three months, at twelve months, at 3 years and at 5 years. Eight patients died and six were "lost to follow-up". The remaining 199 knees were followed up for five years. The mean WOMAC score improved from 56 to 35 and the mean SF12 physical component score improved from 28 to 34. The five year survival for failure due to implant related reasons was 99.5% (95% CI 97.4-100). This was due to one tibial component becoming loose aseptically in year zero. Our results demonstrate that the Profix zirconium total knee arthroplasty has a low medium term failure rate comparable to the best implants. Further research is needed to establish if the beneficial properties of zirconium improve long term implant survival. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. A Void Growth Failure Criterion Applied to Dynamically and Statically Loaded Thin Rings.

    DTIC Science & Technology

    1980-06-01

    the physical evidences, several other investigators (Berg, 1969, Nagpal , et al., 1972) working on the continuum aspect of failure, considered plastic...by the Growth of Holes", J. of Applied Mechanics, Vol. 35, 1968, p. 363. 23.) Nagpal , V., Mcclintock, F. A., Berg, C. A., and Subudhi, M., "Traction

  6. Precursory changes in seismic velocity for the spectrum of earthquake failure modes

    PubMed Central

    Scuderi, M.M.; Marone, C.; Tinti, E.; Di Stefano, G.; Collettini, C.

    2016-01-01

    Temporal changes in seismic velocity during the earthquake cycle have the potential to illuminate physical processes associated with fault weakening and connections between the range of fault slip behaviors including slow earthquakes, tremor and low frequency earthquakes1. Laboratory and theoretical studies predict changes in seismic velocity prior to earthquake failure2, however tectonic faults fail in a spectrum of modes and little is known about precursors for those modes3. Here we show that precursory changes of wave speed occur in laboratory faults for the complete spectrum of failure modes observed for tectonic faults. We systematically altered the stiffness of the loading system to reproduce the transition from slow to fast stick-slip and monitored ultrasonic wave speed during frictional sliding. We find systematic variations of elastic properties during the seismic cycle for both slow and fast earthquakes indicating similar physical mechanisms during rupture nucleation. Our data show that accelerated fault creep causes reduction of seismic velocity and elastic moduli during the preparatory phase preceding failure, which suggests that real time monitoring of active faults may be a means to detect earthquake precursors. PMID:27597879

  7. Sensor failure and multivariable control for airbreathing propulsion systems. Ph.D. Thesis - Dec. 1979 Final Report

    NASA Technical Reports Server (NTRS)

    Behbehani, K.

    1980-01-01

    A new sensor/actuator failure analysis technique for turbofan jet engines was developed. Three phases of failure analysis, namely detection, isolation, and accommodation are considered. Failure detection and isolation techniques are developed by utilizing the concept of Generalized Likelihood Ratio (GLR) tests. These techniques are applicable to both time varying and time invariant systems. Three GLR detectors are developed for: (1) hard-over sensor failure; (2) hard-over actuator failure; and (3) brief disturbances in the actuators. The probability distribution of the GLR detectors and the detectability of sensor/actuator failures are established. Failure type is determined by the maximum of the GLR detectors. Failure accommodation is accomplished by extending the Multivariable Nyquest Array (MNA) control design techniques to nonsquare system designs. The performance and effectiveness of the failure analysis technique are studied by applying the technique to a turbofan jet engine, namely the Quiet Clean Short Haul Experimental Engine (QCSEE). Single and multiple sensor/actuator failures in the QCSEE are simulated and analyzed and the effects of model degradation are studied.

  8. Reliability training

    NASA Technical Reports Server (NTRS)

    Lalli, Vincent R. (Editor); Malec, Henry A. (Editor); Dillard, Richard B.; Wong, Kam L.; Barber, Frank J.; Barina, Frank J.

    1992-01-01

    Discussed here is failure physics, the study of how products, hardware, software, and systems fail and what can be done about it. The intent is to impart useful information, to extend the limits of production capability, and to assist in achieving low cost reliable products. A review of reliability for the years 1940 to 2000 is given. Next, a review of mathematics is given as well as a description of what elements contribute to product failures. Basic reliability theory and the disciplines that allow us to control and eliminate failures are elucidated.

  9. Metallic wear debris sensors: promising developments in failure prevention for wind turbine gearsets and similar components

    NASA Astrophysics Data System (ADS)

    Poley, Jack; Dines, Michael

    2011-04-01

    Wind turbines are frequently located in remote, hard-to-reach locations, making it difficult to apply traditional oil analysis sampling of the machine's critical gearset at timely intervals. Metal detection sensors are excellent candidates for sensors designed to monitor machine condition in vivo. Remotely sited components, such as wind turbines, therefore, can be comfortably monitored from a distance. Online sensor technology has come of age with products now capable of identifying onset of wear in time to avoid or mitigate failure. Online oil analysis is now viable, and can be integrated with onsite testing to vet sensor alarms, as well as traditional oil analysis, as furnished by offsite laboratories. Controlled laboratory research data were gathered from tests conducted on a typical wind turbine gearbox, wherein total ferrous particle measurement and metallic particle counting were employed and monitored. The results were then compared with a physical inspection for wear experienced by the gearset. The efficacy of results discussed herein strongly suggests the viability of metallic wear debris sensors in today's wind turbine gearsets, as correlation between sensor data and machine trauma were very good. By extension, similar components and settings would also seem amenable to wear particle sensor monitoring. To our knowledge no experiments such as described herein, have previously been conducted and published.

  10. Advances in Micromechanics Modeling of Composites Structures for Structural Health Monitoring

    NASA Astrophysics Data System (ADS)

    Moncada, Albert

    Although high performance, light-weight composites are increasingly being used in applications ranging from aircraft, rotorcraft, weapon systems and ground vehicles, the assurance of structural reliability remains a critical issue. In composites, damage is absorbed through various fracture processes, including fiber failure, matrix cracking and delamination. An important element in achieving reliable composite systems is a strong capability of assessing and inspecting physical damage of critical structural components. Installation of a robust Structural Health Monitoring (SHM) system would be very valuable in detecting the onset of composite failure. A number of major issues still require serious attention in connection with the research and development aspects of sensor-integrated reliable SHM systems for composite structures. In particular, the sensitivity of currently available sensor systems does not allow detection of micro level damage; this limits the capability of data driven SHM systems. As a fundamental layer in SHM, modeling can provide in-depth information on material and structural behavior for sensing and detection, as well as data for learning algorithms. This dissertation focuses on the development of a multiscale analysis framework, which is used to detect various forms of damage in complex composite structures. A generalized method of cells based micromechanics analysis, as implemented in NASA's MAC/GMC code, is used for the micro-level analysis. First, a baseline study of MAC/GMC is performed to determine the governing failure theories that best capture the damage progression. The deficiencies associated with various layups and loading conditions are addressed. In most micromechanics analysis, a representative unit cell (RUC) with a common fiber packing arrangement is used. The effect of variation in this arrangement within the RUC has been studied and results indicate this variation influences the macro-scale effective material properties and failure stresses. The developed model has been used to simulate impact damage in a composite beam and an airfoil structure. The model data was verified through active interrogation using piezoelectric sensors. The multiscale model was further extended to develop a coupled damage and wave attenuation model, which was used to study different damage states such as fiber-matrix debonding in composite structures with surface bonded piezoelectric sensors.

  11. Impact of a comprehensive supportive care team on management of hopelessly ill patients with multiple organ failure.

    PubMed

    Field, B E; Devich, L E; Carlson, R W

    1989-08-01

    We developed a supportive care team for hopelessly ill patients in an urban emergency/trauma hospital. The team includes a clinical nurse specialist and a faculty physician as well as a chaplain and social worker. The supportive care team provides an alternative to intensive care or conventional ward management of hopelessly ill patients and concentrates on the physical and psychosocial comfort needs of patients and their families. We describe our experience with 20 hopelessly ill patients with multiple organ failure vs a similar group treated before the development of the supportive care team. Although there was no difference in mortality (100 percent), the length of stay in the medical ICU for patients with multiple organ failure decreased by 12 days to 6 days. Additionally, there were 50 percent fewer therapeutic interventions provided by the supportive care team vs intensive care or conventional ward treatment of multiple organ failure patients. We describe the methods that the supportive care team uses in an attempt to meet the physical and psychosocial comfort needs of hopelessly ill multiple organ failure patients and their families. This multidisciplinary approach to the care of the hopelessly ill may have applications in other institutions facing the ethical, medical, and administrative challenges raised by these patients.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Suhas; Wang, Ziwen; Huang, Xiaopeng

    While the recent establishment of the role of thermophoresis/diffusion-driven oxygen migration during resistance switching in metal oxide memristors provided critical insights required for memristor modeling, extended investigations of the role of oxygen migration during ageing and failure remain to be detailed. Such detailing will enable failure-tolerant design, which can lead to enhanced performance of memristor-based next-generation storage-class memory. Furthermore, we directly observed lateral oxygen migration using in-situ synchrotron x-ray absorption spectromicroscopy of HfO x memristors during initial resistance switching, wear over millions of switching cycles, and eventual failure, through which we determined potential physical causes of failure. Using this information,more » we reengineered devices to mitigate three failure mechanisms and demonstrated an improvement in endurance of about three orders of magnitude.« less

  13. Fabric controls on the brittle failure of folded gneiss and schist

    NASA Astrophysics Data System (ADS)

    Agliardi, Federico; Zanchetta, Stefano; Crosta, Giovanni B.

    2014-12-01

    We experimentally studied the brittle failure behaviour of folded gneiss and schist. Rock fabric and petrography were characterised by meso-structural analyses, optical microscopy, X-ray diffraction, and SEM imaging. Uniaxial compression, triaxial compression and indirect tension laboratory tests were performed to characterise their strength and stress-strain behaviour. Fracture patterns generated in compression were resolved in 3D through X-ray computed tomography at different resolutions (30 to 625 μm). Uniaxial compression tests revealed relatively low and scattered values of unconfined compressive strength (UCS) and Young's modulus, with no obvious relationships with the orientation of foliation. Samples systematically failed in four brittle modes, involving different combinations of shear fractures along foliation or parallel to fold axial planes, or the development of cm-scale shear zones. Fracture quantification and microstructural analysis show that different failure modes occur depending on the mutual geometrical arrangement and degree of involvement of two distinct physical anisotropies, i.e. the foliation and the fold axial planes. The Axial Plane Anisotropy (APA) is related to micro-scale grain size reduction and shape preferred orientation within quartz-rich domains, and to mechanical rotation or initial crenulation cleavage within phyllosilicate-rich domains at fold hinge zones. In quartz-rich rocks (gneiss), fracture propagation through quartz aggregates forming the APA corresponds to higher fracture energy and strength than found for fracture through phyllosilicate-rich domains. This results in a strong dependence of strength on the failure mode. Conversely, in phyllosilicate-rich rocks (schist), all the failure modes are dominated by the strength of phyllosilicates, resulting in a sharp reduction of strength anisotropy.

  14. Theory and Modeling of Liquid Explosive Detonation

    NASA Astrophysics Data System (ADS)

    Tarver, Craig M.; Urtiew, Paul A.

    2010-10-01

    The current understanding of the detonation reaction zones of liquid explosives is discussed in this article. The physical and chemical processes that precede and follow exothermic chemical reaction within the detonation reaction zone are discussed within the framework of the nonequilibrium Zeldovich-von Neumann-Doring (NEZND) theory of self-sustaining detonation. Nonequilibrium chemical and physical processes cause finite time duration induction zones before exothermic chemical energy release occurs. This separation between the leading shock wave front and the chemical energy release needed to sustain it results in shock wave amplification and the subsequent formation of complex three-dimensional cellular structures in all liquid detonation waves. To develop a practical Zeldovich-von Neumann-Doring (ZND) reactive flow model for liquid detonation, experimental data on reaction zone structure, confined failure diameter, unconfined failure diameter, and failure wave velocity in the Dremin-Trofimov test for detonating nitromethane are calculated using the ignition and growth reactive flow model.

  15. Physics of Earthquake Disaster: From Crustal Rupture to Building Collapse

    NASA Astrophysics Data System (ADS)

    Uenishi, Koji

    2018-05-01

    Earthquakes of relatively greater magnitude may cause serious, sometimes unexpected failures of natural and human-made structures, either on the surface, underground, or even at sea. In this review, by treating several examples of extraordinary earthquake-related failures that range from the collapse of every second building in a commune to the initiation of spontaneous crustal rupture at depth, we consider the physical background behind the apparently abnormal earthquake disaster. Simple but rigorous dynamic analyses reveal that such seemingly unusual failures actually occurred for obvious reasons, which may remain unrecognized in part because in conventional seismic analyses only kinematic aspects of the effects of lower-frequency seismic waves below 1 Hz are normally considered. Instead of kinematics, some dynamic approach that takes into account the influence of higher-frequency components of waves over 1 Hz will be needed to anticipate and explain such extraordinary phenomena and mitigate the impact of earthquake disaster in the future.

  16. Modeling coherent errors in quantum error correction

    NASA Astrophysics Data System (ADS)

    Greenbaum, Daniel; Dutton, Zachary

    2018-01-01

    Analysis of quantum error correcting codes is typically done using a stochastic, Pauli channel error model for describing the noise on physical qubits. However, it was recently found that coherent errors (systematic rotations) on physical data qubits result in both physical and logical error rates that differ significantly from those predicted by a Pauli model. Here we examine the accuracy of the Pauli approximation for noise containing coherent errors (characterized by a rotation angle ɛ) under the repetition code. We derive an analytic expression for the logical error channel as a function of arbitrary code distance d and concatenation level n, in the small error limit. We find that coherent physical errors result in logical errors that are partially coherent and therefore non-Pauli. However, the coherent part of the logical error is negligible at fewer than {ε }-({dn-1)} error correction cycles when the decoder is optimized for independent Pauli errors, thus providing a regime of validity for the Pauli approximation. Above this number of correction cycles, the persistent coherent logical error will cause logical failure more quickly than the Pauli model would predict, and this may need to be combated with coherent suppression methods at the physical level or larger codes.

  17. Oxygen migration during resistance switching and failure of hafnium oxide memristors

    DOE PAGES

    Kumar, Suhas; Wang, Ziwen; Huang, Xiaopeng; ...

    2017-03-06

    While the recent establishment of the role of thermophoresis/diffusion-driven oxygen migration during resistance switching in metal oxide memristors provided critical insights required for memristor modeling, extended investigations of the role of oxygen migration during ageing and failure remain to be detailed. Such detailing will enable failure-tolerant design, which can lead to enhanced performance of memristor-based next-generation storage-class memory. Furthermore, we directly observed lateral oxygen migration using in-situ synchrotron x-ray absorption spectromicroscopy of HfO x memristors during initial resistance switching, wear over millions of switching cycles, and eventual failure, through which we determined potential physical causes of failure. Using this information,more » we reengineered devices to mitigate three failure mechanisms and demonstrated an improvement in endurance of about three orders of magnitude.« less

  18. Dynamic decision making for dam-break emergency management - Part 2: Application to Tangjiashan landslide dam failure

    NASA Astrophysics Data System (ADS)

    Peng, M.; Zhang, L. M.

    2013-02-01

    Tangjiashan landslide dam, which was triggered by the Ms = 8.0 Wenchuan earthquake in 2008 in China, threatened 1.2 million people downstream of the dam. All people in Beichuan Town 3.5 km downstream of the dam and 197 thousand people in Mianyang City 85 km downstream of the dam were evacuated 10 days before the breaching of the dam. Making such an important decision under uncertainty was difficult. This paper applied a dynamic decision-making framework for dam-break emergency management (DYDEM) to help rational decision in the emergency management of the Tangjiashan landslide dam. Three stages are identified with different levels of hydrological, geological and social-economic information along the timeline of the landslide dam failure event. The probability of dam failure is taken as a time series. The dam breaching parameters are predicted with a set of empirical models in stage 1 when no soil property information is known, and a physical model in stages 2 and 3 when knowledge of soil properties has been obtained. The flood routing downstream of the dam in these three stages is analyzed to evaluate the population at risk (PAR). The flood consequences, including evacuation costs, flood damage and monetized loss of life, are evaluated as functions of warning time using a human risk analysis model based on Bayesian networks. Finally, dynamic decision analysis is conducted to find the optimal time to evacuate the population at risk with minimum total loss in each of these three stages.

  19. INTEGRATION OF RELIABILITY WITH MECHANISTIC THERMALHYDRAULICS: REPORT ON APPROACH AND TEST PROBLEM RESULTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. S. Schroeder; R. W. Youngblood

    The Risk-Informed Safety Margin Characterization (RISMC) pathway of the Light Water Reactor Sustainability Program is developing simulation-based methods and tools for analyzing safety margin from a modern perspective. [1] There are multiple definitions of 'margin.' One class of definitions defines margin in terms of the distance between a point estimate of a given performance parameter (such as peak clad temperature), and a point-value acceptance criterion defined for that parameter (such as 2200 F). The present perspective on margin is that it relates to the probability of failure, and not just the distance between a nominal operating point and a criterion.more » In this work, margin is characterized through a probabilistic analysis of the 'loads' imposed on systems, structures, and components, and their 'capacity' to resist those loads without failing. Given the probabilistic load and capacity spectra, one can assess the probability that load exceeds capacity, leading to component failure. Within the project, we refer to a plot of these probabilistic spectra as 'the logo.' Refer to Figure 1 for a notional illustration. The implications of referring to 'the logo' are (1) RISMC is focused on being able to analyze loads and spectra probabilistically, and (2) calling it 'the logo' tacitly acknowledges that it is a highly simplified picture: meaningful analysis of a given component failure mode may require development of probabilistic spectra for multiple physical parameters, and in many practical cases, 'load' and 'capacity' will not vary independently.« less

  20. Independent Orbiter Assessment (IOA): Analysis of the crew equipment subsystem

    NASA Technical Reports Server (NTRS)

    Sinclair, Susan; Graham, L.; Richard, Bill; Saxon, H.

    1987-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical (PCIs) items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results coresponding to the Orbiter crew equipment hardware are documented. The IOA analysis process utilized available crew equipment hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Of the 352 failure modes analyzed, 78 were determined to be PCIs.

  1. Physical Examination Variables Predict Response to Conservative Treatment of Nonchronic Plantar Fasciitis: Secondary Analysis of a Randomized, Placebo-Controlled Footwear Study.

    PubMed

    Wrobel, James S; Fleischer, Adam E; Matzkin-Bridger, Jonathon; Fascione, Jeanna; Crews, Ryan T; Bruning, Nicholas; Jarrett, Beth

    2016-05-01

    Plantar fasciitis is a common, disabling condition, and the prognosis of conservative treatment is difficult to predict. To determine whether initial clinical findings could help predict patient response to conservative treatment that primarily consisted of supportive footwear and stretching. Patients were recruited and seen at 2 outpatient podiatric clinics in the Chicago, Illinois, metropolitan area. Seventy-seven patients with nonchronic plantar fasciitis were recruited. Patients were excluded if they had a heel injection in the previous 6 months or were currently using custom foot orthoses at the time of screening. Sixty-nine patients completed the final follow-up visit 3 months after receiving the footwear intervention. Treatment failure was considered a <50% reduction in heel pain at 3 month follow-up. Logistic regression models evaluated the possible association between more than 30 clinical and physical examination findings prospectively assessed at enrollment, and treatment response. Inability to dorsiflex the ankle past -5° (odds ratio [OR] 3.9, P = .024), nonsevere (≤7 on ordinal scale) first-step pain (OR 3.8, P = .021), and heel valgus in relaxed stance (OR 4.0, P = .014) each predicted treatment failure in multivariable analysis (receiver operating characteristic area under the curve = .769). Limited ankle dorsiflexion also correlated with greater heel pain severity at initial presentation (r = - 0.312, P = .006). Patients with severe ankle equinus were nearly 4 times more likely to experience a favorable response to treatment centered on home Achilles tendon stretching and supportive therapy. Thus, earlier use of more advanced therapies may be most appropriate in those presenting without severe ankle equinus or without severe first step pain. The findings from our study may not be clinically intuitive because patients with less severe equinus and less severe pain at presentation did worse with conservative care. Copyright © 2016 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  2. [Evaluation of a chronic fatigue in patients with moderate-to-severe chronic heart failure].

    PubMed

    Jasiukeviciene, Lina; Vasiliauskas, Donatas; Kavoliūniene, Ausra; Marcinkeviciene, Jolanta; Grybauskiene, Regina; Grizas, Vytautas; Tumyniene, Vida

    2008-01-01

    To evaluate the chronic fatigue and its relation to the function of hypothalamus-pituitary-adrenal axis in patients with New York Heart Association (NYHA) functional class III-IV chronic heart failure. A total of 170 patients with NYHA functional class III-IV chronic heart failure completed MFI-20L, DUFS, and DEFS questionnaires assessing chronic fatigue and underwent echocardiography. Blood cortisol concentration was assessed at 8:00 am and 3:00 pm, and plasma N-terminal brain natriuretic pro-peptide (NT-proBNP) concentration was measured at 8:00 am. Neurohumoral investigations were repeated before cardiopulmonary exercise test and after it. The results of all questionnaires showed that 100% of patients with NYHA functional class III-IV heart failure complained of chronic fatigue. The level of overall fatigue was 54.5+/-31.5 points; physical fatigue - 56.8+/-24.6 points. Blood cortisol concentration at 8:00 am was normal (410.1+/-175.1 mmol/L) in majority of patients. Decreased concentration was only in four patients (122.4+/-15.5 mmol/L); one of these patients underwent heart transplantation. In the afternoon, blood cortisol concentration was insufficiently decreased (355.6+/-160.3 mmol/L); reaction to a physical stress was attenuated (Delta 92.9 mmol/L). Plasma NT-proBNP concentration was 2188.9+/-1852.2 pg/L; reaction to a physical stress was diminished (Delta 490.3 pg/L). All patients with NYHA class III-IV heart failure complained of daily chronic fatigue. Insufficiently decreased blood cortisol concentration in the afternoon showed that in the presence of chronic fatigue in long-term cardiovascular organic disease, disorder of a hypothalamus-pituitary-adrenal axis is involved.

  3. Physical Properties of Granulates Used in Analogue Experiments of Caprock Failure and Sediment Remobilisation

    NASA Astrophysics Data System (ADS)

    Kukowski, N.; Warsitzka, M.; May, F.

    2014-12-01

    Geological systems consisting of a porous reservoir and a low-permeable caprock are prone to hydraulic fracturing, if pore pressure rises to the effective stress. Under certain conditions, hydraulic fracturing is associated with sediment remobilisation, e.g. sand injections or pipes, leading to reduced seal capacity of the caprock. In dynamically scaled analogue experiments using granular materials and air pressure, we intent to investigate strain patterns and deformation mechanisms during caprock failure and fluidisation of shallow over-pressured reservoirs. The aim of this study is to improve the understanding of leakage potential of a sealing formation and the fluidisation potential of a reservoir formation depending on rock properties and effective stress. For reliable interpretation of analogue experiments, physical properties of analogue materials, e.g. frictional strength, cohesion, density, permeability etc., have to be correctly scaled according to those of their natural equivalents. The simulation of caprock requires that the analogue material possess a low permeability and is capable to shear failure and tensional failure. In contrast, materials representing the reservoir have to possess high porosity and low shear strength. In order to find suitable analogue materials, we measured the stress-strain behaviour and the permeability of over 25 different types of natural and artificial granular materials, e.g. glass powder, siliceous microspheres, diatomite powder, loess, or plastic granulate. Here, we present data of frictional parameters, compressibility and permeability of these granular materials characterized as a function of sphericity, grain size, and density. The repertoire of different types of granulates facilitates the adjustment of accurate mechanical properties in the analogue experiments. Furthermore, conditions during seal failure and fluidisation can be examined depending on the wide range of varying physical properties.

  4. Physics-Based Fragment Acceleration Modeling for Pressurized Tank Burst Risk Assessments

    NASA Technical Reports Server (NTRS)

    Manning, Ted A.; Lawrence, Scott L.

    2014-01-01

    As part of comprehensive efforts to develop physics-based risk assessment techniques for space systems at NASA, coupled computational fluid and rigid body dynamic simulations were carried out to investigate the flow mechanisms that accelerate tank fragments in bursting pressurized vessels. Simulations of several configurations were compared to analyses based on the industry-standard Baker explosion model, and were used to formulate an improved version of the model. The standard model, which neglects an external fluid, was found to agree best with simulation results only in configurations where the internal-to-external pressure ratio is very high and fragment curvature is small. The improved model introduces terms that accommodate an external fluid and better account for variations based on circumferential fragment count. Physics-based analysis was critical in increasing the model's range of applicability. The improved tank burst model can be used to produce more accurate risk assessments of space vehicle failure modes that involve high-speed debris, such as exploding propellant tanks and bursting rocket engines.

  5. Laboratory and 3-D distinct element analysis of the failure mechanism of a slope under external surcharge

    NASA Astrophysics Data System (ADS)

    Li, N.; Cheng, Y. M.

    2015-01-01

    Landslide is a major disaster resulting in considerable loss of human lives and property damages in hilly terrain in Hong Kong, China and many other countries. The factor of safety and the critical slip surface for slope stabilization are the main considerations for slope stability analysis in the past, while the detailed post-failure conditions of the slopes have not been considered in sufficient detail. There is however increasing interest in the consequences after the initiation of failure that includes the development and propagation of the failure surfaces, the amount of failed mass and runoff and the affected region. To assess the development of slope failure in more detail and to consider the potential danger of slopes after failure has initiated, the slope stability problem under external surcharge is analyzed by the distinct element method (DEM) and a laboratory model test in the present research. A more refined study about the development of failure, microcosmic failure mechanisms and the post-failure mechanisms of slopes will be carried out. The numerical modeling method and the various findings from the present work can provide an alternate method of analysis of slope failure, which can give additional information not available from the classical methods of analysis.

  6. Laboratory and 3-D-distinct element analysis of failure mechanism of slope under external surcharge

    NASA Astrophysics Data System (ADS)

    Li, N.; Cheng, Y. M.

    2014-09-01

    Landslide is a major disaster resulting in considerable loss of human lives and property damages in hilly terrain in Hong Kong, China and many other countries. The factor of safety and the critical slip surface for slope stabilization are the main considerations for slope stability analysis in the past, while the detailed post-failure conditions of the slopes have not been considered in sufficient details. There are however increasing interest on the consequences after the initiation of failure which includes the development and propagation of the failure surfaces, the amount of failed mass and runoff and the affected region. To assess the development of slope failure in more details and to consider the potential danger of slopes after failure has initiated, the slope stability problem under external surcharge is analyzed by the distinct element method (DEM) and laboratory model test in the present research. A more refined study about the development of failure, microcosmic failure mechanism and the post-failure mechanism of slope will be carried out. The numerical modeling method and the various findings from the present work can provide an alternate method of analysis of slope failure which can give additional information not available from the classical methods of analysis.

  7. Metallurgical failure analysis of MH-1A reactor core hold-down bolts. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawthorne, J.R.; Watson, H.E.

    1976-11-01

    The Naval Research Laboratory has performed a failure analysis on two MH-1A reactor core hold-down bolts that broke in service. Adherence to fabrication specifications, post-service properties and possible causes of bolt failure were investigated. The bolt material was verified as 17-4PH precipitation hardening stainless steel. Measured bolt dimensions also were in accordance with fabrication drawing specifications. Bolt failure occurred in the region of a locking pin hole which reduced the bolt net section by 47 percent. The failure analysis indicates that the probable cause of failure was net section overloading resulting from a lateral bending force on the bolt. Themore » analysis indicates that net section overloading could also have resulted from combined tensile stresses (bolt preloading plus differential thermal expansion). Recommendations are made for improved bolting.« less

  8. IMPACT OF PHYSICAL AND CHEMICAL MUD CONTAMINATION ON WELLBORE CEMENT- FORMATION SHEAR BOND STRENGTH Authors: Arome Oyibo1 and Mileva Radonjic1 * 1. Craft and Hawkins Department of Petroleum Engineering, 2131 Patrick F. Taylor Hall, Louisiana State University, Baton Rouge, LA 70803, aoyibo1@tigers.lsu.edu, mileva@lsu.edu

    NASA Astrophysics Data System (ADS)

    Oyibo, A. E.

    2013-12-01

    Wellbore cement has been used to provide well integrity through zonal isolation in oil & gas wells and geothermal wells. Cementing is also used to provide mechanical support for the casing and protect the casing from corrosive fluids. Failure of cement could be caused by several factors ranging from poor cementing, failure to completely displace the drilling fluids to failure on the path of the casing. A failed cement job could result in creation of cracks and micro annulus through which produced fluids could migrate to the surface which could lead to sustained casing pressure, contamination of fresh water aquifer and blow out in some cases. In addition, cement failures could risk the release of chemicals substances from hydraulic fracturing into fresh water aquifer during the injection process. To achieve proper cementing, the drilling fluid should be completely displaced by the cement slurry. However, this is hard to achieve in practice, some mud is usually left on the wellbore which ends up contaminating the cement afterwards. The purpose of this experimental study is to investigate the impact of both physical and chemical mud contaminations on cement-formation bond strength for different types of formations. Physical contamination occurs when drilling fluids (mud) dries on the surface of the formation forming a mud cake. Chemical contamination on the other hand occurs when the drilling fluids which is still in the liquid form interacts chemically with the cement during a cementing job. We investigated the impact of the contamination on the shear bond strength and the changes in the mineralogy of the cement at the cement-formation interface to ascertain the impact of the contamination on the cement-formation bond strength. Berea sandstone and clay rich shale cores were bonded with cement cores with the cement-formation contaminated either physically or chemically. For the physically contaminated composite cores, we have 3 different sample designs: clean/not contaminated, scrapped and washed composite cores. Similarly, for the chemically contaminated samples we had 3 different sample designs: 0%, 5% and 10% mud contaminated composite cores. Shear test were performed on the composite cores to determine the shear bond strength and the results suggested that the detrimental impact of the contamination is higher when the cores are physically contaminated i.e. when we have mud cake present at the surface of the wellbore before a cement job is performed. Also, the results showed that shear bond strength is higher for sandstone formations as compared to shale formations. Material characterization analysis was carried out to determine the micro structural changes at the cement-formation interface. The results obtained from the SEM and micro CT images taken at the bond interface confirmed that chemical contamination caused substantial changes in the spatial distribution of minerals that impacted bond strength. Keywords: Cement-Formation bond strength, mud contamination, shale, sandstone and material characterization *Corresponding author

  9. An intervention to promote physical activity and self-management in people with stable chronic heart failure The Home-Heart-Walk study: study protocol for a randomized controlled trial

    PubMed Central

    2011-01-01

    Background Chronic heart failure (CHF) is a chronic debilitating condition with economic consequences, mostly because of frequent hospitalisations. Physical activity and adequate self-management capacity are important risk reduction strategies in the management of CHF. The Home-Heart-Walk is a self-monitoring intervention. This model of intervention has adapted the 6-minute walk test as a home-based activity that is self-administered and can be used for monitoring physical functional capacity in people with CHF. The aim of the Home-Heart-Walk program is to promote adherence to physical activity recommendations and improving self-management in people with CHF. Methods/Design A randomised controlled trial is being conducted in English speaking people with CHF in four hospitals in Sydney, Australia. Individuals diagnosed with CHF, in New York Heart Association Functional Class II or III, with a previous admission to hospital for CHF are eligible to participate. Based on a previous CHF study and a loss to follow-up of 10%, 166 participants are required to be able to detect a 12-point difference in the study primary endpoint (SF-36 physical function domain). All enrolled participant receive an information session with a cardiovascular nurse. This information session covers key self-management components of CHF: daily weight; diet (salt reduction); medication adherence; and physical activity. Participants are randomised to either intervention or control group through the study randomisation centre after baseline questionnaires and assessment are completed. For people in the intervention group, the research nurse also explains the weekly Home-Heart-Walk protocol. All participants receive monthly phone calls from a research coordinator for six months, and outcome measures are conducted at one, three and six months. The primary outcome of the trial is the physical functioning domain of quality of life, measured by the physical functioning subscale of the Medical Outcome Study Short Form -36. Secondary outcomes include physical functional capacity measured by the standard six minute walk test, self-management capacity, health related quality of life measured by Medical Outcome Study Short Form -36 and Minnesota Living With Heart Failure Questionnaire, self-efficacy and self-care behaviour. Discussion A self-monitoring intervention that can improve individual's exercise self-efficacy, self-management capacity could have potential significance in improving the management of people with chronic heart failure in community settings. Trial Registration Australian New Zealand Clinical Trial Registry 12609000437268 PMID:21366927

  10. An intervention to promote physical activity and self-management in people with stable chronic heart failure The Home-Heart-Walk study: study protocol for a randomized controlled trial.

    PubMed

    Du, Hui Y; Newton, Phillip J; Zecchin, Robert; Denniss, Robert; Salamonson, Yenna; Everett, Bronwyn; Currow, David C; Macdonald, Peter S; Davidson, Patricia M

    2011-03-02

    Chronic heart failure (CHF) is a chronic debilitating condition with economic consequences, mostly because of frequent hospitalisations. Physical activity and adequate self-management capacity are important risk reduction strategies in the management of CHF. The Home-Heart-Walk is a self-monitoring intervention. This model of intervention has adapted the 6-minute walk test as a home-based activity that is self-administered and can be used for monitoring physical functional capacity in people with CHF. The aim of the Home-Heart-Walk program is to promote adherence to physical activity recommendations and improving self-management in people with CHF. A randomised controlled trial is being conducted in English speaking people with CHF in four hospitals in Sydney, Australia. Individuals diagnosed with CHF, in New York Heart Association Functional Class II or III, with a previous admission to hospital for CHF are eligible to participate. Based on a previous CHF study and a loss to follow-up of 10%, 166 participants are required to be able to detect a 12-point difference in the study primary endpoint (SF-36 physical function domain).All enrolled participant receive an information session with a cardiovascular nurse. This information session covers key self-management components of CHF: daily weight; diet (salt reduction); medication adherence; and physical activity. Participants are randomised to either intervention or control group through the study randomisation centre after baseline questionnaires and assessment are completed. For people in the intervention group, the research nurse also explains the weekly Home-Heart-Walk protocol. All participants receive monthly phone calls from a research coordinator for six months, and outcome measures are conducted at one, three and six months. The primary outcome of the trial is the physical functioning domain of quality of life, measured by the physical functioning subscale of the Medical Outcome Study Short Form -36. Secondary outcomes include physical functional capacity measured by the standard six minute walk test, self-management capacity, health related quality of life measured by Medical Outcome Study Short Form -36 and Minnesota Living With Heart Failure Questionnaire, self-efficacy and self-care behaviour. A self-monitoring intervention that can improve individual's exercise self-efficacy, self-management capacity could have potential significance in improving the management of people with chronic heart failure in community settings. Australian New Zealand Clinical Trial Registry 12609000437268.

  11. Failure Analysis of CCD Image Sensors Using SQUID and GMR Magnetic Current Imaging

    NASA Technical Reports Server (NTRS)

    Felt, Frederick S.

    2005-01-01

    During electrical testing of a Full Field CCD Image Senor, electrical shorts were detected on three of six devices. These failures occurred after the parts were soldered to the PCB. Failure analysis was performed to determine the cause and locations of these failures on the devices. After removing the fiber optic faceplate, optical inspection was performed on the CCDs to understand the design and package layout. Optical inspection revealed that the device had a light shield ringing the CCD array. This structure complicated the failure analysis. Alternate methods of analysis were considered, including liquid crystal, light and thermal emission, LT/A, TT/A SQUID, and MP. Of these, SQUID and MP techniques were pursued for further analysis. Also magnetoresistive current imaging technology is discussed and compared to SQUID.

  12. Stingray Failure Mode, Effects and Criticality Analysis: WEC Risk Registers

    DOE Data Explorer

    Ken Rhinefrank

    2016-07-25

    Analysis method to systematically identify all potential failure modes and their effects on the Stingray WEC system. This analysis is incorporated early in the development cycle such that the mitigation of the identified failure modes can be achieved cost effectively and efficiently. The FMECA can begin once there is enough detail to functions and failure modes of a given system, and its interfaces with other systems. The FMECA occurs coincidently with the design process and is an iterative process which allows for design changes to overcome deficiencies in the analysis.Risk Registers for major subsystems completed according to the methodology described in "Failure Mode Effects and Criticality Analysis Risk Reduction Program Plan.pdf" document below, in compliance with the DOE Risk Management Framework developed by NREL.

  13. The Usability of Rock-Like Materials for Numerical Studies on Rocks

    NASA Astrophysics Data System (ADS)

    Zengin, Enes; Abiddin Erguler, Zeynal

    2017-04-01

    The approaches of synthetic rock material and mass are widely used by many researchers for understanding the failure behavior of different rocks. In order to model the failure behavior of rock material, researchers take advantageous of different techniques and software. But, the majority of all these instruments are based on distinct element method (DEM). For modeling the failure behavior of rocks, and so to create a fundamental synthetic rock material model, it is required to perform related laboratory experiments for providing strength parameters. In modelling studies, model calibration processes are performed by using parameters of intact rocks such as porosity, grain size, modulus of elasticity and Poisson ratio. In some cases, it can be difficult or even impossible to acquire representative rock samples for laboratory experiments from heavily jointed rock masses and vuggy rocks. Considering this limitation, in this study, it was aimed to investigate the applicability of rock-like material (e.g. concrete) to understand and model the failure behavior of rock materials having complex inherent structures. For this purpose, concrete samples having a mixture of %65 cement dust and %35 water were utilized. Accordingly, intact concrete samples representing rocks were prepared in laboratory conditions and their physical properties such as porosity, pore size and density etc. were determined. In addition, to acquire the mechanical parameters of concrete samples, uniaxial compressive strength (UCS) tests were also performed by simultaneously measuring strain during testing. The measured physical and mechanical properties of these extracted concrete samples were used to create synthetic material and then uniaxial compressive tests were modeled and performed by using two dimensional discontinuum program known as Particle Flow Code (PFC2D). After modeling studies in PFC2D, approximately similar failure mechanism and testing results were achieved from both experimental and artificial simulations. The results obtained from these laboratory tests and modelling studies were compared with the other researcher's studies in respect to failure mechanism of different type of rocks. It can be concluded that there is similar failure mechanism between concrete and rock materials. Therefore, the results obtained from concrete samples that would be prepared at different porosity and pore sizes can be used in future studies in selection micro-mechanical and physical properties to constitute synthetic rock materials for understanding failure mechanism of rocks having complex inherent structures such as vuggy rocks or heavily jointed rock masses.

  14. Burnout and Physical Activity in Minnesota Internal Medicine Resident Physicians

    PubMed Central

    Olson, Shawn M.; Odo, Nnaemeka U.; Duran, Alisa M.; Pereira, Anne G.; Mandel, Jeffrey H.

    2014-01-01

    Background Regular physical activity plays an important role in the amelioration of several mental health disorders; however, its relationship with burnout has not yet been clarified. Objective To determine the association between achievement of national physical activity guidelines and burnout in internal medicine resident physicians. Methods A Web-based survey of internal medicine resident physicians at the University of Minnesota and Hennepin County Medical Center was conducted from September to October 2012. Survey measures included the Maslach Burnout Inventory-Human Services Survey and the International Physical Activity Questionnaire. Results Of 149 eligible residents, 76 (51.0%) completed surveys, which were used in the analysis. Burnout prevalence, determined by the Maslach Burnout Inventory, was 53.9% (41 of 76). Prevalence of failure to achieve US Department of Health and Human Services physical activity guidelines was 40.8% (31 of 76), and 78.9% (60 of 76) of residents reported that their level of physical activity has decreased since they began medical training. Residents who were able to meet physical activity guidelines were less likely to be burned out than their fellow residents (OR, 0.38, 95% CI 0.147–0.99). Conclusions Among internal medicine resident physicians, achievement of national physical activity guidelines appears to be inversely associated with burnout. Given the high national prevalence of burnout and inactivity, additional investigation of this relationship appears warranted. PMID:26140116

  15. Characterization of ultrathin insulators in CMOS technology: Wearout and failure mechanisms due to processing and operation

    NASA Astrophysics Data System (ADS)

    Okandan, Murat

    In the CMOS technology the gate dielectric is the most critical layer, as its condition directly dictates the ultimate performance of the devices. In this thesis, the wear-out and failure mechanisms in ultra-thin (around 50A and lower) oxides are investigated. A new degradation phenomenon, quasi-breakdown (or soft-breakdown), and the annealing and stressing behavior of devices after quasi-breakdown are considered in detail. Devices that are in quasi-breakdown continue to operate as switches, but the gate leakage current is two orders of magnitude higher than the leakage in healthy devices and the stressing/annealing behavior of the devices are completely altered. This phenomenon is of utmost interest, since the reduction in SiO2 dielectric thickness has reached its physical limits, and the quasi-breakdown behavior is seen to dominate as a failure mode in this regime. The quasi-breakdown condition can be brought on by stresses during operation or processing. To further study this evolution through stresses and anneals, cyclic current-voltage (I-V) measurement has been further developed and utilized in this thesis. Cyclic IV is a simple and fast, two terminal measurement technique that looks at the transient current flowing in an MOS system during voltage sweeps from accumulation to inversion and back. During these sweeps, carrier trapping/detrapping, generation and recombination are observed. An experimental setup using a fast electrometer and analog to digital conversion (A/D) card and the software for control of the setup and data analysis were also developed to gain further insight into the detailed physics involved. Overall, the crucial aspects of wear-out and quasi-breakdown of ultrathin dielectrics, along with the methods for analyzing this evolution are presented in this thesis.

  16. Iron deficiency is a key determinant of health-related quality of life in patients with chronic heart failure regardless of anaemia status.

    PubMed

    Comín-Colet, Josep; Enjuanes, Cristina; González, Gina; Torrens, Ainhoa; Cladellas, Mercè; Meroño, Oona; Ribas, Nuria; Ruiz, Sonia; Gómez, Miquel; Verdú, José Maria; Bruguera, Jordi

    2013-10-01

    To evaluate the effect of iron deficiency (ID) and/or anaemia on health-related quality of life (HRQoL) in patients with chronic heart failure (CHF). We undertook a post-hoc analysis of a cohort of CHF patients in a single-centre study evaluating cognitive function. At recruitment, patients provided baseline information and completed the Minnesota Living with Heart Failure questionnaire (MLHFQ) for HRQoL (higher scores reflect worse HRQoL). At the same time, blood samples were taken for serological evaluation. ID was defined as serum ferritin levels <100 ng/mL or serum ferritin <800 ng/mL with transferrin saturation <20%. Anaemia was defined as haemoglobin ≤12 g/dL. A total of 552 CHF patients were eligible for inclusion, with an average age of 72 years and 40% in NYHA class III or IV. The MLHFQ overall summary scores were 41.0 ± 24.7 among those with ID, vs. 34.4 ± 26.4 for non-ID patients (P = 0.003), indicating worse HRQoL. When adjusted for other factors associated with HRQoL, ID was significantly associated with worse MLHFQ overall summary (P = 0.008) and physical dimension scores (P = 0.002), whereas anaemia was not (both P > 0.05). Increased levels of soluble transferrin receptor were also associated with impaired HRQoL (P ≤ 0.001). Adjusting for haemoglobin and C-reactive protein, ID was more pronounced in patients with anaemia compared with those without (P < 0.001). In patients with CHF, ID but not anaemia was associated with reduced HRQoL, mostly due to physical factors.

  17. Anorexia, functional capacity, and clinical outcome in patients with chronic heart failure: results from the Studies Investigating Co‐morbidities Aggravating Heart Failure (SICA‐HF)

    PubMed Central

    Saitoh, Masakazu; dos Santos, Marcelo R.; Emami, Amir; Ishida, Junichi; Ebner, Nicole; Valentova, Miroslava; Bekfani, Tarek; Sandek, Anja; Lainscak, Mitja; Doehner, Wolfram; Anker, Stefan D.

    2017-01-01

    Abstract Aims We aimed to assess determinants of anorexia, that is loss of appetite in patients with heart failure (HF) and aimed to further elucidate the association between anorexia, functional capacity, and outcomes in affected patients. Methods and results We assessed anorexia status among 166 patients with HF (25 female, 66 ± 12 years) who participated in the Studies Investigating Co‐morbidities Aggravating HF. Anorexia was assessed by a 6‐point Likert scale (ranging from 0 to 5), wherein values ≥1 indicate anorexia. Functional capacity was assessed as peak oxygen uptake (peak VO2), 6 min walk test, and short physical performance battery test. A total of 57 patients (34%) reported any anorexia, and these patients showed lower values of peak VO2, 6 min walk distance, and short physical performance battery score (all P < 0.05). Using multivariate analysis adjusting for clinically important factors, only high‐sensitivity C‐reactive protein [odds ratio (OR) 1.24, P = 0.04], use of loop diuretics (OR 5.76, P = 0.03), and the presence of cachexia (OR 2.53, P = 0.04) remained independent predictors of anorexia. A total of 22 patients (13%) died during a mean follow‐up of 22.5 ± 5.1 months. Kaplan‐Meier curves for cumulative survival showed that those patients with anorexia presented higher mortality (Log‐rank test P = 0.03). Conclusions Inflammation, use of loop diuretics, and cachexia are associated with an increased likelihood of anorexia in patients with HF, and patients with anorexia showed impaired functional capacity and poor outcomes. PMID:28960880

  18. How to apply clinical cases and medical literature in the framework of a modified "failure mode and effects analysis" as a clinical reasoning tool--an illustration using the human biliary system.

    PubMed

    Wong, Kam Cheong

    2016-04-06

    Clinicians use various clinical reasoning tools such as Ishikawa diagram to enhance their clinical experience and reasoning skills. Failure mode and effects analysis, which is an engineering methodology in origin, can be modified and applied to provide inputs into an Ishikawa diagram. The human biliary system is used to illustrate a modified failure mode and effects analysis. The anatomical and physiological processes of the biliary system are reviewed. Failure is defined as an abnormality caused by infective, inflammatory, obstructive, malignancy, autoimmune and other pathological processes. The potential failures, their effect(s), main clinical features, and investigation that can help a clinician to diagnose at each anatomical part and physiological process are reviewed and documented in a modified failure mode and effects analysis table. Relevant medical and surgical cases are retrieved from the medical literature and weaved into the table. A total of 80 clinical cases which are relevant to the modified failure mode and effects analysis for the human biliary system have been reviewed and weaved into a designated table. The table is the backbone and framework for further expansion. Reviewing and updating the table is an iterative and continual process. The relevant clinical features in the modified failure mode and effects analysis are then extracted and included in the relevant Ishikawa diagram. This article illustrates an application of engineering methodology in medicine, and it sows the seeds of potential cross-pollination between engineering and medicine. Establishing a modified failure mode and effects analysis can be a teamwork project or self-directed learning process, or a mix of both. Modified failure mode and effects analysis can be deployed to obtain inputs for an Ishikawa diagram which in turn can be used to enhance clinical experiences and clinical reasoning skills for clinicians, medical educators, and students.

  19. Collaboration of Miniature Multi-Modal Mobile Smart Robots over a Network

    DTIC Science & Technology

    2015-08-14

    theoretical research on mathematics of failures in sensor-network-based miniature multimodal mobile robots and electromechanical systems. The views...theoretical research on mathematics of failures in sensor-network-based miniature multimodal mobile robots and electromechanical systems. The...independently evolving research directions based on physics-based models of mechanical, electromechanical and electronic devices, operational constraints

  20. Network monitoring in the Tier2 site in Prague

    NASA Astrophysics Data System (ADS)

    Eliáš, Marek; Fiala, Lukáš; Horký, Jiří; Chudoba, Jiří; Kouba, Tomáš; Kundrát, Jan; Švec, Jan

    2011-12-01

    Network monitoring provides different types of view on the network traffic. It's output enables computing centre staff to make qualified decisions about changes in the organization of computing centre network and to spot possible problems. In this paper we present network monitoring framework used at Tier-2 in Prague in Institute of Physics (FZU). The framework consists of standard software and custom tools. We discuss our system for hardware failures detection using syslog logging and Nagios active checks, bandwidth monitoring of physical links and analysis of NetFlow exports from Cisco routers. We present tool for automatic detection of network layout based on SNMP. This tool also records topology changes into SVN repository. Adapted weathermap4rrd is used to visualize recorded data to get fast overview showing current bandwidth usage of links in network.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Chao; Xu, Jun; Cao, Lei

    The electrodes of lithium-ion batteries (LIB) are known to be brittle and to fail earlier than the separators during an external crush event. Thus, the understanding of mechanical failure mechanism for LIB electrodes (anode and cathode) is critical for the safety design of LIB cells. In this paper, we present experimental and numerical studies on the constitutive behavior and progression of failure in LIB electrodes. Mechanical tests were designed and conducted to evaluate the constitutive properties of porous electrodes. Constitutive models were developed to describe the stress-strain response of electrodes under uniaxial tensile and compressive loads. The failure criterion andmore » a damage model were introduced to model their unique tensile and compressive failure behavior. The failure mechanism of LIB electrodes was studied using the blunt rod test on dry electrodes, and numerical models were built to simulate progressive failure. The different failure processes were examined and analyzed in detail numerically, and correlated with experimentally observed failure phenomena. Finally, the test results and models improve our understanding of failure behavior in LIB electrodes, and provide constructive insights on future development of physics-based safety design tools for battery structures under mechanical abuse.« less

  2. Effects of physical guidance on short-term learning of walking on a narrow beam

    PubMed Central

    Domingo, Antoinette; Ferris, Daniel P.

    2009-01-01

    Physical guidance is often used in rehabilitation when teaching patients to re-learn movements. However, the effects of guidance on motor learning of complex skills, such as walking balance, are not clear. We tested four groups of healthy subjects that practiced walking on a narrow (1.27 cm) or wide (2.5 cm) treadmill-mounted balance beam, with or without physical guidance. Assistance was given by springs attached to a hip belt that applied restoring forces towards beam center. Subjects were evaluated while walking unassisted before and after training by calculating the number of times subjects stepped off of the beam per minute of successful walking on the beam (Failures per Minute). Subjects in Unassisted groups had greater performance improvements in walking balance from pre to post compared to subjects in Assisted groups. During training, Unassisted groups had more Failures per Minute than Assisted groups. Performance improvements were smaller in Narrow Beam groups than in Wide Beam groups. The Unassisted-Wide and Assisted-Narrow groups had similar Failures per Minute during training, but the Unassisted-Wide group had much greater performance gains after training. These results suggest that physical assistance can hinder motor learning of walking balance, assistance appears less detrimental for more difficult tasks, and task-specific dynamics are important to learning independent of error experience. PMID:19674900

  3. Educational level and the quality of life of heart failure patients: a longitudinal study.

    PubMed

    Barbareschi, Giorgio; Sanderman, Robbert; Leegte, Ivonne Lesman; van Veldhuisen, Dirk J; Jaarsma, Tiny

    2011-01-01

    Lower education in heart failure (HF) patients is associated with high levels of anxiety, limited physical functioning, and an increased risk of hospitalization. We examined whether educational level is related to longitudinal differences in quality of life (QoL) in HF patients. This research is a substudy of the Coordinating study evaluating Outcomes of Advising and Counselling in Heart failure (COACH). QoL of 553 HF patients (mean age 69, 38% female, mean left ventricular ejection fraction 33%) was assessed during their hospitalization and at 4 follow-up measurements after discharge. In total 32% of the patients had very low, 24% low, 32% medium, and 12% high education. Patients with low educational levels reported the worst QoL. Significant differences between educational groups (P < .05) were only reported in physical functioning, social functioning, energy/fatigue, pain, and limitations in role functioning related to emotional problems. Longitudinal results show that a significantly higher proportion of high-educated patients improved in functional limitations related to emotional problems over time compared with lower-educated patients (P < .05). Patients with low educational levels reported the worst physical and functional condition. High-educated patients improved more than the other patients in functional limitations related to emotional problems over time. Low-educated patients may require different levels of intervention to improve their physical and functional condition. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Discrete Element Method and its application to materials failure problem on the example of Brazilian Test

    NASA Astrophysics Data System (ADS)

    Klejment, Piotr; Kosmala, Alicja; Foltyn, Natalia; Dębski, Wojciech

    2017-04-01

    The earthquake focus is the point where a rock under external stress starts to fracture. Understanding earthquake nucleation and earthquake dynamics requires thus understanding of fracturing of brittle materials. This, however, is a continuing problem and enduring challenge to geoscience. In spite of significant progress we still do not fully understand the failure of rock materials due to extreme stress concentration in natural condition. One of the reason of this situation is that information about natural or induced seismic events is still not sufficient for precise description of physical processes in seismic foci. One of the possibility of improving this situation is using numerical simulations - a powerful tool of contemporary physics. For this reason we used an advanced implementation of the Discrete Element Method (DEM). DEM's main task is to calculate physical properties of materials which are represented as an assembly of a great number of particles interacting with each other. We analyze the possibility of using DEM for describing materials during so called Brazilian Test. Brazilian Test is a testing method to obtain the tensile strength of brittle material. One of the primary reasons for conducting such simulations is to measure macroscopic parameters of the rock sample. We would like to report our efforts of describing the fracturing process during the Brazilian Test from the microscopic point of view and give an insight into physical processes preceding materials failure.

  5. An evidential reasoning extension to quantitative model-based failure diagnosis

    NASA Technical Reports Server (NTRS)

    Gertler, Janos J.; Anderson, Kenneth C.

    1992-01-01

    The detection and diagnosis of failures in physical systems characterized by continuous-time operation are studied. A quantitative diagnostic methodology has been developed that utilizes the mathematical model of the physical system. On the basis of the latter, diagnostic models are derived each of which comprises a set of orthogonal parity equations. To improve the robustness of the algorithm, several models may be used in parallel, providing potentially incomplete and/or conflicting inferences. Dempster's rule of combination is used to integrate evidence from the different models. The basic probability measures are assigned utilizing quantitative information extracted from the mathematical model and from online computation performed therewith.

  6. Anatomy of an incident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cournoyer, Michael E.; Trujillo, Stanley; Lawton, Cindy M.

    A traditional view of incidents is that they are caused by shortcomings in human competence, attention, or attitude. It may be under the label of “loss of situational awareness,” procedure “violation,” or “poor” management. A different view is that human error is not the cause of failure, but a symptom of failure – trouble deeper inside the system. In this perspective, human error is not the conclusion, but rather the starting point of investigations. During an investigation, three types of information are gathered: physical, documentary, and human (recall/experience). Through the causal analysis process, apparent cause or apparent causes are identifiedmore » as the most probable cause or causes of an incident or condition that management has the control to fix and for which effective recommendations for corrective actions can be generated. A causal analysis identifies relevant human performance factors. In the following presentation, the anatomy of a radiological incident is discussed, and one case study is presented. We analyzed the contributing factors that caused a radiological incident. When underlying conditions, decisions, actions, and inactions that contribute to the incident are identified. This includes weaknesses that may warrant improvements that tolerate error. Measures that reduce consequences or likelihood of recurrence are discussed.« less

  7. Anatomy of an incident

    DOE PAGES

    Cournoyer, Michael E.; Trujillo, Stanley; Lawton, Cindy M.; ...

    2016-03-23

    A traditional view of incidents is that they are caused by shortcomings in human competence, attention, or attitude. It may be under the label of “loss of situational awareness,” procedure “violation,” or “poor” management. A different view is that human error is not the cause of failure, but a symptom of failure – trouble deeper inside the system. In this perspective, human error is not the conclusion, but rather the starting point of investigations. During an investigation, three types of information are gathered: physical, documentary, and human (recall/experience). Through the causal analysis process, apparent cause or apparent causes are identifiedmore » as the most probable cause or causes of an incident or condition that management has the control to fix and for which effective recommendations for corrective actions can be generated. A causal analysis identifies relevant human performance factors. In the following presentation, the anatomy of a radiological incident is discussed, and one case study is presented. We analyzed the contributing factors that caused a radiological incident. When underlying conditions, decisions, actions, and inactions that contribute to the incident are identified. This includes weaknesses that may warrant improvements that tolerate error. Measures that reduce consequences or likelihood of recurrence are discussed.« less

  8. Risk management of key issues of FPSO

    NASA Astrophysics Data System (ADS)

    Sun, Liping; Sun, Hai

    2012-12-01

    Risk analysis of key systems have become a growing topic late of because of the development of offshore structures. Equipment failures of offloading system and fire accidents were analyzed based on the floating production, storage and offloading (FPSO) features. Fault tree analysis (FTA), and failure modes and effects analysis (FMEA) methods were examined based on information already researched on modules of relex reliability studio (RRS). Equipment failures were also analyzed qualitatively by establishing a fault tree and Boolean structure function based on the shortage of failure cases, statistical data, and risk control measures examined. Failure modes of fire accident were classified according to the different areas of fire occurrences during the FMEA process, using risk priority number (RPN) methods to evaluate their severity rank. The qualitative analysis of FTA gave the basic insight of forming the failure modes of FPSO offloading, and the fire FMEA gave the priorities and suggested processes. The research has practical importance for the security analysis problems of FPSO.

  9. Analysis of Emergency Diesel Generators Failure Incidents in Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Hunt, Ronderio LaDavis

    In early years of operation, emergency diesel generators have had a minimal rate of demand failures. Emergency diesel generators are designed to operate as a backup when the main source of electricity has been disrupted. As of late, EDGs (emergency diesel generators) have been failing at NPPs (nuclear power plants) around the United States causing either station blackouts or loss of onsite and offsite power. These failures occurred from a specific type called demand failures. This thesis evaluated the current problem that raised concern in the nuclear industry which was averaging 1 EDG demand failure/year in 1997 to having an excessive event of 4 EDG demand failure year which occurred in 2011. To determine the next occurrence of the extreme event and possible cause to an event of such happening, two analyses were conducted, the statistical and root cause analysis. Considering the statistical analysis in which an extreme event probability approach was applied to determine the next occurrence year of an excessive event as well as, the probability of that excessive event occurring. Using the root cause analysis in which the potential causes of the excessive event occurred by evaluating, the EDG manufacturers, aging, policy changes/ maintenance practices and failure components. The root cause analysis investigated the correlation between demand failure data and historical data. Final results from the statistical analysis showed expectations of an excessive event occurring in a fixed range of probability and a wider range of probability from the extreme event probability approach. The root-cause analysis of the demand failure data followed historical statistics for the EDG manufacturer, aging and policy changes/ maintenance practices but, indicated a possible cause regarding the excessive event with the failure components. Conclusions showed the next excessive demand failure year, prediction of the probability and the next occurrence year of such failures, with an acceptable confidence level, was difficult but, it was likely that this type of failure will not be a 100 year event. It was noticeable to see that the majority of the EDG demand failures occurred within the main components as of 2005. The overall analysis of this study provided from percentages, indicated that it would be appropriate to make the statement that the excessive event was caused by the overall age (wear and tear) of the Emergency Diesel Generators in Nuclear Power Plants. Future Work will be to better determine the return period of the excessive event once the occurrence has happened for a second time by implementing the extreme event probability approach.

  10. Extended Testability Analysis Tool

    NASA Technical Reports Server (NTRS)

    Melcher, Kevin; Maul, William A.; Fulton, Christopher

    2012-01-01

    The Extended Testability Analysis (ETA) Tool is a software application that supports fault management (FM) by performing testability analyses on the fault propagation model of a given system. Fault management includes the prevention of faults through robust design margins and quality assurance methods, or the mitigation of system failures. Fault management requires an understanding of the system design and operation, potential failure mechanisms within the system, and the propagation of those potential failures through the system. The purpose of the ETA Tool software is to process the testability analysis results from a commercial software program called TEAMS Designer in order to provide a detailed set of diagnostic assessment reports. The ETA Tool is a command-line process with several user-selectable report output options. The ETA Tool also extends the COTS testability analysis and enables variation studies with sensor sensitivity impacts on system diagnostics and component isolation using a single testability output. The ETA Tool can also provide extended analyses from a single set of testability output files. The following analysis reports are available to the user: (1) the Detectability Report provides a breakdown of how each tested failure mode was detected, (2) the Test Utilization Report identifies all the failure modes that each test detects, (3) the Failure Mode Isolation Report demonstrates the system s ability to discriminate between failure modes, (4) the Component Isolation Report demonstrates the system s ability to discriminate between failure modes relative to the components containing the failure modes, (5) the Sensor Sensor Sensitivity Analysis Report shows the diagnostic impact due to loss of sensor information, and (6) the Effect Mapping Report identifies failure modes that result in specified system-level effects.

  11. Fractal mechanisms and heart rate dynamics. Long-range correlations and their breakdown with disease

    NASA Technical Reports Server (NTRS)

    Peng, C. K.; Havlin, S.; Hausdorff, J. M.; Mietus, J. E.; Stanley, H. E.; Goldberger, A. L.

    1995-01-01

    Under healthy conditions, the normal cardiac (sinus) interbeat interval fluctuates in a complex manner. Quantitative analysis using techniques adapted from statistical physics reveals the presence of long-range power-law correlations extending over thousands of heartbeats. This scale-invariant (fractal) behavior suggests that the regulatory system generating these fluctuations is operating far from equilibrium. In contrast, it is found that for subjects at high risk of sudden death (e.g., congestive heart failure patients), these long-range correlations break down. Application of fractal scaling analysis and related techniques provides new approaches to assessing cardiac risk and forecasting sudden cardiac death, as well as motivating development of novel physiologic models of systems that appear to be heterodynamic rather than homeostatic.

  12. An improved method for predicting the lightning performance of high and extra-high-voltage substation shielding

    NASA Astrophysics Data System (ADS)

    Vinh, T.

    1980-08-01

    There is a need for better and more effective lightning protection for transmission and switching substations. In the past, a number of empirical methods were utilized to design systems to protect substations and transmission lines from direct lightning strokes. The need exists for convenient analytical lightning models adequate for engineering usage. In this study, analytical lightning models were developed along with a method for improved analysis of the physical properties of lightning through their use. This method of analysis is based upon the most recent statistical field data. The result is an improved method for predicting the occurrence of sheilding failure and for designing more effective protection for high and extra high voltage substations from direct strokes.

  13. Representing ductile damage with the dual domain material point method

    DOE PAGES

    Long, C. C.; Zhang, D. Z.; Bronkhorst, C. A.; ...

    2015-12-14

    In this study, we incorporate a ductile damage material model into a computational framework based on the Dual Domain Material Point (DDMP) method. As an example, simulations of a flyer plate experiment involving ductile void growth and material failure are performed. The results are compared with experiments performed on high purity tantalum. We also compare the numerical results obtained from the DDMP method with those obtained from the traditional Material Point Method (MPM). Effects of an overstress model, artificial viscosity, and physical viscosity are investigated. Our results show that a physical bulk viscosity and overstress model are important in thismore » impact and failure problem, while physical shear viscosity and artificial shock viscosity have negligible effects. A simple numerical procedure with guaranteed convergence is introduced to solve for the equilibrium plastic state from the ductile damage model.« less

  14. Comparison of Damage Path Predictions for Composite Laminates by Explicit and Standard Finite Element Analysis Tools

    NASA Technical Reports Server (NTRS)

    Bogert, Philip B.; Satyanarayana, Arunkumar; Chunchu, Prasad B.

    2006-01-01

    Splitting, ultimate failure load and the damage path in center notched composite specimens subjected to in-plane tension loading are predicted using progressive failure analysis methodology. A 2-D Hashin-Rotem failure criterion is used in determining intra-laminar fiber and matrix failures. This progressive failure methodology has been implemented in the Abaqus/Explicit and Abaqus/Standard finite element codes through user written subroutines "VUMAT" and "USDFLD" respectively. A 2-D finite element model is used for predicting the intra-laminar damages. Analysis results obtained from the Abaqus/Explicit and Abaqus/Standard code show good agreement with experimental results. The importance of modeling delamination in progressive failure analysis methodology is recognized for future studies. The use of an explicit integration dynamics code for simple specimen geometry and static loading establishes a foundation for future analyses where complex loading and nonlinear dynamic interactions of damage and structure will necessitate it.

  15. Quantitative method of medication system interface evaluation.

    PubMed

    Pingenot, Alleene Anne; Shanteau, James; Pingenot, James D F

    2007-01-01

    The objective of this study was to develop a quantitative method of evaluating the user interface for medication system software. A detailed task analysis provided a description of user goals and essential activity. A structural fault analysis was used to develop a detailed description of the system interface. Nurses experienced with use of the system under evaluation provided estimates of failure rates for each point in this simplified fault tree. Means of estimated failure rates provided quantitative data for fault analysis. Authors note that, although failures of steps in the program were frequent, participants reported numerous methods of working around these failures so that overall system failure was rare. However, frequent process failure can affect the time required for processing medications, making a system inefficient. This method of interface analysis, called Software Efficiency Evaluation and Fault Identification Method, provides quantitative information with which prototypes can be compared and problems within an interface identified.

  16. Probabilistic safety analysis of earth retaining structures during earthquakes

    NASA Astrophysics Data System (ADS)

    Grivas, D. A.; Souflis, C.

    1982-07-01

    A procedure is presented for determining the probability of failure of Earth retaining structures under static or seismic conditions. Four possible modes of failure (overturning, base sliding, bearing capacity, and overall sliding) are examined and their combined effect is evaluated with the aid of combinatorial analysis. The probability of failure is shown to be a more adequate measure of safety than the customary factor of safety. As Earth retaining structures may fail in four distinct modes, a system analysis can provide a single estimate for the possibility of failure. A Bayesian formulation of the safety retaining walls is found to provide an improved measure for the predicted probability of failure under seismic loading. The presented Bayesian analysis can account for the damage incurred to a retaining wall during an earthquake to provide an improved estimate for its probability of failure during future seismic events.

  17. Independent Orbiter Assessment (IOA): Analysis of the auxiliary power unit

    NASA Technical Reports Server (NTRS)

    Barnes, J. E.

    1986-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter Auxiliary Power Unit (APU). The APUs are required to provide power to the Orbiter hydraulics systems during ascent and entry flight phases for aerosurface actuation, main engine gimballing, landing gear extension, and other vital functions. For analysis purposes, the APU system was broken down into ten functional subsystems. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. A preponderance of 1/1 criticality items were related to failures that allowed the hydrazine fuel to escape into the Orbiter aft compartment, creating a severe fire hazard, and failures that caused loss of the gas generator injector cooling system.

  18. Analyzing Log Files to Predict Students' Problem Solving Performance in a Computer-Based Physics Tutor

    ERIC Educational Resources Information Center

    Lee, Young-Jin

    2015-01-01

    This study investigates whether information saved in the log files of a computer-based tutor can be used to predict the problem solving performance of students. The log files of a computer-based physics tutoring environment called Andes Physics Tutor was analyzed to build a logistic regression model that predicted success and failure of students'…

  19. Generalization of Tactics in Tag Rugby from Practice to Games in Middle School Physical Education

    ERIC Educational Resources Information Center

    Lee, Myung-Ah; Ward, Phillip

    2009-01-01

    Background: Many of the issues relating to game performance of students found in the physical education literature can be considered a failure of generalization from practices to games, and from games to games. However, no study in secondary physical education has examined generalization effects as a result of effective game pedagogy in the…

  20. Simulating direct shear tests with the Bullet physics library: A validation study.

    PubMed

    Izadi, Ehsan; Bezuijen, Adam

    2018-01-01

    This study focuses on the possible uses of physics engines, and more specifically the Bullet physics library, to simulate granular systems. Physics engines are employed extensively in the video gaming, animation and movie industries to create physically plausible scenes. They are designed to deliver a fast, stable, and optimal simulation of certain systems such as rigid bodies, soft bodies and fluids. This study focuses exclusively on simulating granular media in the context of rigid body dynamics with the Bullet physics library. The first step was to validate the results of the simulations of direct shear testing on uniform-sized metal beads on the basis of laboratory experiments. The difference in the average angle of mobilized frictions was found to be only 1.0°. In addition, a very close match was found between dilatancy in the laboratory samples and in the simulations. A comprehensive study was then conducted to determine the failure and post-failure mechanism. We conclude with the presentation of a simulation of a direct shear test on real soil which demonstrated that Bullet has all the capabilities needed to be used as software for simulating granular systems.

  1. Predictors of mortality and short-term physical and cognitive dependence in critically ill persons 75 years and older: a prospective cohort study.

    PubMed

    Daubin, Cédric; Chevalier, Stéphanie; Séguin, Amélie; Gaillard, Cathy; Valette, Xavier; Prévost, Fabrice; Terzi, Nicolas; Ramakers, Michel; Parienti, Jean-Jacques; du Cheyron, Damien; Charbonneau, Pierre

    2011-05-16

    The purpose of this study was to identify predictors of 3-month mortality in critically ill older persons under medical care and to assess the clinical impact of an ICU stay on physical and cognitive dependence and subjective health status in survivors. We conducted a prospective observational cohort study including all older persons 75 years and older consecutively admitted into ICU during a one-year period, except those admitted after cardiac arrest, All patients were followed for 3 months or until death. Comorbidities were assessed using the Charlson index and physical dependence was evaluated using the Katz index of Activity of Daily Living (ADL). Cognitive dependence was determined by a score based on the individual components of the Lawton index of Daily Living and subjective health status was evaluated using the Nottingham Health Profile (NHP) score. One hundred patients were included in the analysis. The mean age was 79.3 ± 3.4 years. The median Charlson index was 6 [IQR, 4 to 7] and the mean ADL and cognitive scores were 5.4 ± 1.1 and 1.2 ± 1.4, respectively, corresponding to a population with a high level of comorbidities but low physical and cognitive dependence. Mortality was 61/100 (61%) at 3 months. In multivariate analysis only comorbidities assessed by the Charlson index [Adjusted Odds Ratio, 1.6; 95% CI, 1.2-2.2; p < 0.003] and the number of organ failures assessed by the SOFA score [Adjusted Odds Ratio, 2.5; 95% CI, 1.1-5.2; p < 0.02] were independently associated with 3-month mortality. All 22 patients needing renal support after Day 3 died. Compared with pre-admission, physical (p = 0.04), and cognitive (p = 0.62) dependence in survivors had changed very little at 3 months. In addition, the mean NHP score was 213.1 ± 132.8 at 3 months, suggesting an acceptable perception of their quality of life. In a selected population of non surgical patients 75 years and older, admission into the ICU is associated with a 3-month survival rate of 38% with little impact on physical and cognitive dependence and subjective health status. Nevertheless, a high comorbidity level (ie, Charlson index), multi-organ failure, and the need for extra-renal support at the early phase of intensive care could be considered as predictors of death.

  2. Self-efficacy: a useful construct to promote physical activity in people with stable chronic heart failure.

    PubMed

    Du, HuiYun; Everett, Bronwyn; Newton, Phillip J; Salamonson, Yenna; Davidson, Patricia M

    2012-02-01

    To explore the conceptual underpinnings of self-efficacy to address the barriers to participating in physical activity and propose a model of intervention. The benefits of physical activity in reducing cardiovascular risk have led to evidence-based recommendations for patients with heart disease, including those with chronic heart failure. However, adherence to best practice recommendations is often suboptimal, particularly in those individuals who experience high symptom burden and feel less confident to undertake physical activity. Self-efficacy is the degree of confidence an individual has in his/her ability to perform behaviour under several specific circumstances. Four factors influence an individual's level of self-efficacy: (1) past performance, (2) vicarious experience, (3) verbal persuasion and (4) physiological arousal. Discursive. Using the method of a discursive paper, this article seeks to explore the conceptual underpinnings of self-efficacy to address the barriers to participating in physical activity and proposes a model of intervention, the Home-Heart-Walk, to promote physical activity and monitor functional status. Implementing effective interventions to promote physical activities require appreciation of factors impacting on behaviour change. Addressing concepts relating to self-efficacy in physical activity interventions may promote participation and adherence in the longer term. The increasing burden of chronic disease and the emphasis on self-management strategies underscore the importance of promoting adherence to recommendations, such as physical activity. © 2011 Blackwell Publishing Ltd.

  3. Warrior Injury Assessment Manikin (WIAMan) Lumbar Spine Model Validation: Development, Testing, and Analysis of Physical and Computational Models of the WIAMan Lumbar Spine Materials Demonstrator

    DTIC Science & Technology

    2016-08-01

    load. The 1 and 10 s-1 rate tests were run on a hydraulic high-rate Instron MTS (8821S), placed in a custom- designed tension fixture (Fig. 8...lateral compression prior to shear testing . The sides of the coupon rest on blocks at the bottom of the vice jaw to allow for travel of the center post ...mode of failure based on the lap shear testing . However, since the pretest spine survived all hits at the BRC speeds, it was decided to proceed with

  4. Getting physical to fix pharma

    NASA Astrophysics Data System (ADS)

    Connelly, Patrick R.; Vuong, T. Minh; Murcko, Mark A.

    2011-09-01

    Powerful technologies allow the synthesis and testing of large numbers of new compounds, but the failure rate of pharmaceutical R&D remains very high. Greater understanding of the fundamental physical chemical behaviour of molecules could be the key to greatly enhancing the success rate of drug discovery.

  5. Predicting subsequent task performance from goal motivation and goal failure.

    PubMed

    Healy, Laura C; Ntoumanis, Nikos; Stewart, Brandon D; Duda, Joan L

    2015-01-01

    Recent research has demonstrated that the cognitive processes associated with goal pursuit can continue to interfere with unrelated tasks when a goal is unfulfilled. Drawing from the self-regulation and goal-striving literatures, the present study explored the impact of goal failure on subsequent cognitive and physical task performance. Furthermore, we examined if the autonomous or controlled motivation underpinning goal striving moderates the responses to goal failure. Athletes (75 male, 59 female, Mage = 19.90 years, SDage = 3.50) completed a cycling trial with the goal of covering a given distance in 8 min. Prior to the trial, their motivation was primed using a video. During the trial they were provided with manipulated performance feedback, thus creating conditions of goal success or failure. No differences emerged in the responses to goal failure between the primed motivation or performance feedback conditions. We make recommendations for future research into how individuals can deal with failure in goal striving.

  6. Predictability of Landslide Timing From Quasi-Periodic Precursory Earthquakes

    NASA Astrophysics Data System (ADS)

    Bell, Andrew F.

    2018-02-01

    Accelerating rates of geophysical signals are observed before a range of material failure phenomena. They provide insights into the physical processes controlling failure and the basis for failure forecasts. However, examples of accelerating seismicity before landslides are rare, and their behavior and forecasting potential are largely unknown. Here I use a Bayesian methodology to apply a novel gamma point process model to investigate a sequence of quasiperiodic repeating earthquakes preceding a large landslide at Nuugaatsiaq in Greenland in June 2017. The evolution in earthquake rate is best explained by an inverse power law increase with time toward failure, as predicted by material failure theory. However, the commonly accepted power law exponent value of 1.0 is inconsistent with the data. Instead, the mean posterior value of 0.71 indicates a particularly rapid acceleration toward failure and suggests that only relatively short warning times may be possible for similar landslides in future.

  7. Improving Patient Outcomes With Oral Heart Failure Medications.

    PubMed

    Sherrod, Melissa M; Cheek, Dennis J; Seale, Ashlie

    2016-05-01

    Hospitals are under immense pressure to reduce heart failure readmissions that occur within 30 days of discharge, and to improve the quality of care for these patients. Penalties mandated by the Affordable Care Act decrease hospital reimbursement and ultimately the overall cost of caring for these patients increases if they are not well managed. Approximately 25% of patients hospitalized for heart failure are at high risk for readmission and these rates have not changed over the past decade. As a result of an aging population, the incidence of heart failure is expected to increase to one in five Americans over the age of 65. Pharmacologic management can reduce the risk of death and help prevent unnecessary hospitalizations. Healthcare providers who have knowledge of heart failure medications and drug interactions and share this information with their patients contribute to improved long-term survival and physical functioning as well as fewer hospitalizations and a delay of progressive worsening of heart failure.

  8. Mod 1 wind turbine generator failure modes and effects analysis

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A failure modes and effects analysis (FMEA) was directed primarily at identifying those critical failure modes that would be hazardous to life or would result in major damage to the system. Each subsystem was approached from the top down, and broken down to successive lower levels where it appeared that the criticality of the failure mode warranted more detail analysis. The results were reviewed by specialists from outside the Mod 1 program, and corrective action taken wherever recommended.

  9. Weighing of risk factors for penetrating keratoplasty graft failure: application of Risk Score System.

    PubMed

    Tourkmani, Abdo Karim; Sánchez-Huerta, Valeria; De Wit, Guillermo; Martínez, Jaime D; Mingo, David; Mahillo-Fernández, Ignacio; Jiménez-Alfaro, Ignacio

    2017-01-01

    To analyze the relationship between the score obtained in the Risk Score System (RSS) proposed by Hicks et al with penetrating keratoplasty (PKP) graft failure at 1y postoperatively and among each factor in the RSS with the risk of PKP graft failure using univariate and multivariate analysis. The retrospective cohort study had 152 PKPs from 152 patients. Eighteen cases were excluded from our study due to primary failure (10 cases), incomplete medical notes (5 cases) and follow-up less than 1y (3 cases). We included 134 PKPs from 134 patients stratified by preoperative risk score. Spearman coefficient was calculated for the relationship between the score obtained and risk of failure at 1y. Univariate and multivariate analysis were calculated for the impact of every single risk factor included in the RSS over graft failure at 1y. Spearman coefficient showed statistically significant correlation between the score in the RSS and graft failure ( P <0.05). Multivariate logistic regression analysis showed no statistically significant relationship ( P >0.05) between diagnosis and lens status with graft failure. The relationship between the other risk factors studied and graft failure was significant ( P <0.05), although the results for previous grafts and graft failure was unreliable. None of our patients had previous blood transfusion, thus, it had no impact. After the application of multivariate analysis techniques, some risk factors do not show the expected impact over graft failure at 1y.

  10. Weighing of risk factors for penetrating keratoplasty graft failure: application of Risk Score System

    PubMed Central

    Tourkmani, Abdo Karim; Sánchez-Huerta, Valeria; De Wit, Guillermo; Martínez, Jaime D.; Mingo, David; Mahillo-Fernández, Ignacio; Jiménez-Alfaro, Ignacio

    2017-01-01

    AIM To analyze the relationship between the score obtained in the Risk Score System (RSS) proposed by Hicks et al with penetrating keratoplasty (PKP) graft failure at 1y postoperatively and among each factor in the RSS with the risk of PKP graft failure using univariate and multivariate analysis. METHODS The retrospective cohort study had 152 PKPs from 152 patients. Eighteen cases were excluded from our study due to primary failure (10 cases), incomplete medical notes (5 cases) and follow-up less than 1y (3 cases). We included 134 PKPs from 134 patients stratified by preoperative risk score. Spearman coefficient was calculated for the relationship between the score obtained and risk of failure at 1y. Univariate and multivariate analysis were calculated for the impact of every single risk factor included in the RSS over graft failure at 1y. RESULTS Spearman coefficient showed statistically significant correlation between the score in the RSS and graft failure (P<0.05). Multivariate logistic regression analysis showed no statistically significant relationship (P>0.05) between diagnosis and lens status with graft failure. The relationship between the other risk factors studied and graft failure was significant (P<0.05), although the results for previous grafts and graft failure was unreliable. None of our patients had previous blood transfusion, thus, it had no impact. CONCLUSION After the application of multivariate analysis techniques, some risk factors do not show the expected impact over graft failure at 1y. PMID:28393027

  11. Andreas Acrivos Dissertation Award: Onset of Dynamic Wetting Failure - The Mechanics of High-Speed Fluid Displacement

    NASA Astrophysics Data System (ADS)

    Vandre, Eric

    2014-11-01

    Dynamic wetting is crucial to processes where a liquid displaces another fluid along a solid surface, such as the deposition of a coating liquid onto a moving substrate. Dynamic wetting fails when process speed exceeds some critical value, leading to incomplete fluid displacement and transient phenomena that impact a variety of applications, such as microfluidic devices, oil-recovery systems, and splashing droplets. Liquid coating processes are particularly sensitive to wetting failure, which can induce air entrainment and other catastrophic coating defects. Despite the industrial incentives for careful control of wetting behavior, the hydrodynamic factors that influence the transition to wetting failure remain poorly understood from empirical and theoretical perspectives. This work investigates the fundamentals of wetting failure in a variety of systems that are relevant to industrial coating flows. A hydrodynamic model is developed where an advancing fluid displaces a receding fluid along a smooth, moving substrate. Numerical solutions predict the onset of wetting failure at a critical substrate speed, which coincides with a turning point in the steady-state solution path for a given set of system parameters. Flow-field analysis reveals a physical mechanism where wetting failure results when capillary forces can no longer support the pressure gradients necessary to steadily displace the receding fluid. Novel experimental systems are used to measure the substrate speeds and meniscus shapes associated with the onset of air entrainment during wetting failure. Using high-speed visualization techniques, air entrainment is identified by the elongation of triangular air films with system-dependent size. Air films become unstable to thickness perturbations and ultimately rupture, leading to the entrainment of air bubbles. Meniscus confinement in a narrow gap between the substrate and a stationary plate is shown to delay air entrainment to higher speeds for a variety of water/glycerol solutions. In addition, liquid pressurization (relative to ambient air) further postpones air entrainment when the meniscus is located near a sharp corner along the plate. Recorded critical speeds compare well to predictions from the model, supporting the hydrodynamic mechanism for the onset of wetting failure. Lastly, the industrial practice of curtain coating is investigated using the hydrodynamic model. Due to the complexity of this system, a new computational approach is developed combining a finite element method and lubrication theory in order to improve the efficiency of the numerical analysis. Results show that the onset of wetting failure varies strongly with the operating conditions of this system. In addition, stresses from the air flow dramatically affect the steady wetting behavior of curtain coating. Ultimately, these findings emphasize the important role of two-fluid displacement mechanics in high-speed wetting systems.

  12. Mechanisms, predictors, and trends of electrical failure of Riata leads.

    PubMed

    Cheung, Jim W; Al-Kazaz, Mohamed; Thomas, George; Liu, Christopher F; Ip, James E; Bender, Seth R; Siddiqi, Faisal K; Markowitz, Steven M; Lerman, Bruce B

    2013-10-01

    Riata and Riata ST implantable cardioverter-defibrillator leads have been shown to be prone to structural and electrical failure. To determine predictors, mechanisms, and temporal patterns of Riata/ST lead electrical failure. All 314 patients who underwent Riata/ST lead implantation at our institution with greater than or equal to 90 days of follow-up were studied. The Kaplan-Meier analysis of lead survival was performed. Results from the returned product analysis of explanted leads with electrical lead failure were recorded. During a median follow-up of 4.1 years, the Riata lead electrical failure rate was 6.6%. The rate of externalized conductors among failed leads was 57%. The engineering analysis of 10 explanted leads revealed 5 (50%) leads with electrical failure owing to breach of ethylene tetrafluoroethylene conductor coating. Female gender (hazard ratio 2.7; 95% confidence interval 1.1-6.7; P = .04) and age (hazard ratio 0.95; 95% confidence interval 0.92-0.97; P < .001) were multivariate predictors of lead failure. By using log-log analysis, we noted that the rate of Riata lead failure initially increased exponentially with a power of 2.1 but leads surviving past 4 years had a linear pattern of lead failure with a power of 1.0. Younger age and female gender are independent predictors of Riata lead failure. Loss of integrity of conductor cables with ethylene tetrafluoroethylene coating is an important mode of electrical failure of the Riata lead. Further study of Riata lead failure trends is warranted to guide lead management. © 2013 Heart Rhythm Society. All rights reserved.

  13. Constitutive behavior and progressive mechanical failure of electrodes in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Xu, Jun; Cao, Lei; Wu, Zenan; Santhanagopalan, Shriram

    2017-07-01

    The electrodes of lithium-ion batteries (LIB) are known to be brittle and to fail earlier than the separators during an external crush event. Thus, the understanding of mechanical failure mechanism for LIB electrodes (anode and cathode) is critical for the safety design of LIB cells. In this paper, we present experimental and numerical studies on the constitutive behavior and progression of failure in LIB electrodes. Mechanical tests were designed and conducted to evaluate the constitutive properties of porous electrodes. Constitutive models were developed to describe the stress-strain response of electrodes under uniaxial tensile and compressive loads. The failure criterion and a damage model were introduced to model their unique tensile and compressive failure behavior. The failure mechanism of LIB electrodes was studied using the blunt rod test on dry electrodes, and numerical models were built to simulate progressive failure. The different failure processes were examined and analyzed in detail numerically, and correlated with experimentally observed failure phenomena. The test results and models improve our understanding of failure behavior in LIB electrodes, and provide constructive insights on future development of physics-based safety design tools for battery structures under mechanical abuse.

  14. Constitutive behavior and progressive mechanical failure of electrodes in lithium-ion batteries

    DOE PAGES

    Zhang, Chao; Xu, Jun; Cao, Lei; ...

    2017-05-05

    The electrodes of lithium-ion batteries (LIB) are known to be brittle and to fail earlier than the separators during an external crush event. Thus, the understanding of mechanical failure mechanism for LIB electrodes (anode and cathode) is critical for the safety design of LIB cells. In this paper, we present experimental and numerical studies on the constitutive behavior and progression of failure in LIB electrodes. Mechanical tests were designed and conducted to evaluate the constitutive properties of porous electrodes. Constitutive models were developed to describe the stress-strain response of electrodes under uniaxial tensile and compressive loads. The failure criterion andmore » a damage model were introduced to model their unique tensile and compressive failure behavior. The failure mechanism of LIB electrodes was studied using the blunt rod test on dry electrodes, and numerical models were built to simulate progressive failure. The different failure processes were examined and analyzed in detail numerically, and correlated with experimentally observed failure phenomena. Finally, the test results and models improve our understanding of failure behavior in LIB electrodes, and provide constructive insights on future development of physics-based safety design tools for battery structures under mechanical abuse.« less

  15. Risk analysis by FMEA as an element of analytical validation.

    PubMed

    van Leeuwen, J F; Nauta, M J; de Kaste, D; Odekerken-Rombouts, Y M C F; Oldenhof, M T; Vredenbregt, M J; Barends, D M

    2009-12-05

    We subjected a Near-Infrared (NIR) analytical procedure used for screening drugs on authenticity to a Failure Mode and Effects Analysis (FMEA), including technical risks as well as risks related to human failure. An FMEA team broke down the NIR analytical method into process steps and identified possible failure modes for each step. Each failure mode was ranked on estimated frequency of occurrence (O), probability that the failure would remain undetected later in the process (D) and severity (S), each on a scale of 1-10. Human errors turned out to be the most common cause of failure modes. Failure risks were calculated by Risk Priority Numbers (RPNs)=O x D x S. Failure modes with the highest RPN scores were subjected to corrective actions and the FMEA was repeated, showing reductions in RPN scores and resulting in improvement indices up to 5.0. We recommend risk analysis as an addition to the usual analytical validation, as the FMEA enabled us to detect previously unidentified risks.

  16. Brain natriuretic peptide-guided therapy in the inpatient management of decompensated heart failure.

    PubMed

    Saremi, Adonis; Gopal, Dipika; Maisel, Alan S

    2012-02-01

    Heart failure is extremely prevalent and is associated with significant mortality, morbidity and cost. Studies have already established mortality benefit with the use of neurohormonal blockade therapy in systolic failure. Unfortunately, physical signs and symptoms of heart failure lack diagnostic sensitivity and specificity, and medication doses proven to improve mortality in clinical trials are often not achieved. Brain natriuretic peptide (BNP) has proven to be of clinical use in the diagnosis and prognosis of heart failure, and recent efforts have been taken to further elucidate its role in guiding heart failure management. Multiple studies have been conducted on outpatient guided management, and although still controversial, there is a trend towards improved outcomes. Inpatient studies are lacking, but preliminary data suggest various BNP cut-off values, as well as percentage changes in BNP, that could be useful in predicting outcomes and improving mortality. In the future, heart failure management will probably involve an algorithm using clinical assessment and a multibiomarker-guided approach.

  17. Similar Outcomes After Osteochondral Allograft Transplantation in Anterior Cruciate Ligament-Intact and -Reconstructed Knees: A Comparative Matched-Group Analysis With Minimum 2-Year Follow-Up.

    PubMed

    Wang, Dean; Eliasberg, Claire D; Wang, Tim; Fader, Ryan R; Coxe, Francesca R; Pais, Mollyann D; Williams, Riley J

    2017-12-01

    To compare failure rates and clinical outcomes of osteochondral allograft transplantation (OCA) in anterior cruciate ligament (ACL)-intact versus ACL-reconstructed knees at midterm follow-up. After a priori power analysis, a prospective registry of patients treated with OCA for focal chondral lesions ≥2 cm 2 in size with minimum 2-year follow-up was used to match ACL-reconstructed knees with ACL-intact knees by age, sex, and primary chondral defect location. Exclusion criteria included meniscus transplantation, realignment osteotomy, or other ligamentous injury. Complications, reoperations, and patient responses to validated outcome measures were reviewed. Failure was defined by any procedure involving allograft removal/revision or conversion to arthroplasty. Kaplan-Meier analysis and multivariate Cox regression were performed to evaluate the association of ACL reconstruction (ACLR) with failure. A total of 50 ACL-intact and 25 ACL-reconstructed (18 prior, 7 concomitant) OCA patients were analyzed. The mean age was 36.2 years (range, 14-62 years). Mean follow-up was 3.9 years (range, 2-14 years). Patient demographics and chondral lesion characteristics were similar between groups. ACL-reconstructed patients averaged 2.2 ± 1.9 prior surgeries on the ipsilateral knee compared with 1.4 ± 1.4 surgeries for ACL-intact patients (P = .014). Grafts used for the last ACLR included bone-patellar tendon-bone autograft, hamstring autograft, Achilles tendon allograft, and tibialis allograft (data available for only 11 of 25 patients). At final follow-up, 22% of ACL-intact and 32% of ACL-reconstructed patients had undergone reoperation. OCA survivorship was 90% and 96% at 2 years and 79% and 85% at 5 years in ACL-intact and ACL-reconstructed patients, respectively (P = .774). ACLR was not independently associated with failure. Both groups demonstrated clinically significant improvements in the Short Form-36 pain and physical functioning, International Knee Documentation Committee subjective, and Knee Outcome Survey-Activities of Daily Living scores at final follow-up (P < .001), with no significant differences in preoperative, postoperative, and change scores between groups. OCA in the setting of prior or concomitant ACLR does not portend higher failure rates or compromise clinical outcomes. Level III, retrospective comparative study. Copyright © 2017 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  18. [Role of controlled physical activity as a method of therapy in patients with heart failure after invasive treatment of angina pectoris].

    PubMed

    Irzmański, Robert; Kapusta, Joanna; Kowalski, Jan

    2014-08-01

    Due to the aging of the population is an increase in the incidence of heart failure. According to the current guidelines for conduct in the treatment of cardiovascular diseases, rehabilitation is introduced in the first treatment period. Individually matched to the severity of illness of each patient, increases the quality of life of patients and reduces mortality in this group of patients. The aim of the study was to evaluate the effect of controlled exercise on left ventricular systolic function of heart and change the level of concentration of natriuretic peptide NT-pro-BNP in patients with heart failure after invasive treatment of angina pectoris. The study group consisted of 87 patients, men and women aged 35 to 85 years (mean age 65.6 +/- 10.4) with a diagnosis of heart failure. Patients were divided into 3 groups. I group numbering 19 patients (67.3 +/- 7.8) were subjected to two-week cardiac rehabilitation program, representing 46. Group II patients (59.4 +/- 10.9) was qualified for the 4-week program. The basis for rehabilitation of patients accounted for interval training was performed using a bicycle ergometer. Group III--control, representing 22 patients (68.1 +/- 9.2) were excluded from the training groups because of the high risk. Used with them individually tailored program of cardiac rehabilitation. All patients were performed: submaximal exercise test, echocardiography and examined the concentration of NT-pro-BNP (N-terminal pro-B-type natriuretic peptide). After a period of 6 months from the end of the second phase of cardiac rehabilitation in 32 patients who agreed repeated the scope of clinical trials. In groups where physical training was conducted controlled noticed an improvement in EF and reduction of NT pro-BNP. It was also a significant, negative correlation between the degree of damage to the left ventricle (EF), and the level of NT pro-BNP. After a period of 6 months from the end of the second stage of rehabilitation, the analysis showed a statistically significant further and improve. It was observed that the best results were obtained in the group with the longest period of rehabilitation. Rehabilitation, part of cardiac rehabilitation is an important component of therapy in patients with heart failure. By influencing the improvement actions cardiovascular favorable effect on the clinical course of the disease.

  19. Reliability Evaluation of Machine Center Components Based on Cascading Failure Analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Ying-Zhi; Liu, Jin-Tong; Shen, Gui-Xiang; Long, Zhe; Sun, Shu-Guang

    2017-07-01

    In order to rectify the problems that the component reliability model exhibits deviation, and the evaluation result is low due to the overlook of failure propagation in traditional reliability evaluation of machine center components, a new reliability evaluation method based on cascading failure analysis and the failure influenced degree assessment is proposed. A direct graph model of cascading failure among components is established according to cascading failure mechanism analysis and graph theory. The failure influenced degrees of the system components are assessed by the adjacency matrix and its transposition, combined with the Pagerank algorithm. Based on the comprehensive failure probability function and total probability formula, the inherent failure probability function is determined to realize the reliability evaluation of the system components. Finally, the method is applied to a machine center, it shows the following: 1) The reliability evaluation values of the proposed method are at least 2.5% higher than those of the traditional method; 2) The difference between the comprehensive and inherent reliability of the system component presents a positive correlation with the failure influenced degree of the system component, which provides a theoretical basis for reliability allocation of machine center system.

  20. Assessing the Relative Mobility of Submarine Landslides from Deposit Morphology and Physical Properties: an Example from Nankai Trough, Offshore Japan

    NASA Astrophysics Data System (ADS)

    Sawyer, D.; Moore, Z. T.

    2014-12-01

    A prominent landslide deposit in the Slope Basin seaward of the Megasplay Fault in the Nankai Trough was emplaced by a high-mobility landslide based on analysis of physical properties and seismic geomorphology. Slide acceleration is a critical variable that determines amplitude of slide-generated tsunami but is many times a variable with large uncertainty. In controlled laboratory experiments, the ratio of the shear stress to yield strength, defined as the Flow Factor, controls a wide spectrum of mass movement styles from slow, retrogressive failure to rapid, liquefied flows. We apply the laboratory Flow Factor approach to a natural landslide in the Nankai Trough by constraining pre-failure particle size analysis and porosity. Several mass transport deposits (MTDs), were drilled and cored at Site C0021 in the Nankai Trough during Integrated Ocean Drilling Program (IODP) Expedition 338. The largest, MTD-6, occurs at 133-176 meters below seafloor and occurred approximately 0.87 Mya. Slide volume is 2 km3, transport distance is 5 km, and average deposit thickness is 50 m (maximum 180 m). Pre-failure water content was estimated from shallow sediments at Site C0018 (porosity = 72%). The average grain size distribution is 39% clay-sized, 58% silt-sized, and 3% sand-size particles as determined by hydrometer analyses of the MTD. Together, the porosity and clay fraction predict a Flow Factor of approximately 4, which corresponds to a relatively high mobility slide. We interpret this result to indicate the landslide that created MTD-6 was a single event that transported the slide mass relatively rapidly as opposed to a slow, episodic landslide event. This is supported by the observation of a completely evacuated source area with no remnant blocks or retrogressive headscarp and the internally chaotic seismic facies with large entrained blocks. Future works will focus on the tsunamigenic potential of this high mobility slide. This approach can be extended to other field settings characterized by fine-grained siliciclastics and where porosity and clay content are known.

  1. Catch-Up Growth Assessment in Long-Term Physically Neglected and Emotionally Abused Preschool Age Male Children.

    ERIC Educational Resources Information Center

    Olivan, Gonzalo

    2003-01-01

    A longitudinal study examined 20 neglected and emotionally abused boys (ages 30-42 months) who entered foster residential care and remained a year after initial placement. At placement, children showed a mild form of chronic malnutrition with growth failure. Growth failure was reversible after the first year of stay. (Contains references.)…

  2. Congenital mitral stenosis, subvalvular aortic stenosis, and congestive heart failure in a duck.

    PubMed

    Mitchell, Elizabeth B; Hawkins, Michelle G; Orvalho, Joao S; Thomas, William P

    2008-06-01

    A 2.6-year-old duck was evaluated for respiratory difficulty. On the basis of physical, radiographic and echocardiographic findings, a diagnosis of congestive heart failure secondary to congenital mitral stenosis and subvalvular aortic stenosis was made. The duck did not respond well to medical therapy and was euthanized. The diagnosis was confirmed at necropsy.

  3. Multiscale modeling of ductile failure in metallic alloys

    NASA Astrophysics Data System (ADS)

    Pardoen, Thomas; Scheyvaerts, Florence; Simar, Aude; Tekoğlu, Cihan; Onck, Patrick R.

    2010-04-01

    Micromechanical models for ductile failure have been developed in the 1970s and 1980s essentially to address cracking in structural applications and complement the fracture mechanics approach. Later, this approach has become attractive for physical metallurgists interested by the prediction of failure during forming operations and as a guide for the design of more ductile and/or high-toughness microstructures. Nowadays, a realistic treatment of damage evolution in complex metallic microstructures is becoming feasible when sufficiently sophisticated constitutive laws are used within the context of a multilevel modelling strategy. The current understanding and the state of the art models for the nucleation, growth and coalescence of voids are reviewed with a focus on the underlying physics. Considerations are made about the introduction of the different length scales associated with the microstructure and damage process. Two applications of the methodology are then described to illustrate the potential of the current models. The first application concerns the competition between intergranular and transgranular ductile fracture in aluminum alloys involving soft precipitate free zones along the grain boundaries. The second application concerns the modeling of ductile failure in friction stir welded joints, a problem which also involves soft and hard zones, albeit at a larger scale.

  4. Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries

    PubMed Central

    Shi, Feifei; Song, Zhichao; Ross, Philip N.; Somorjai, Gabor A.; Ritchie, Robert O.; Komvopoulos, Kyriakos

    2016-01-01

    Long-term durability is a major obstacle limiting the widespread use of lithium-ion batteries in heavy-duty applications and others demanding extended lifetime. As one of the root causes of the degradation of battery performance, the electrode failure mechanisms are still unknown. In this paper, we reveal the fundamental fracture mechanisms of single-crystal silicon electrodes over extended lithiation/delithiation cycles, using electrochemical testing, microstructure characterization, fracture mechanics and finite element analysis. Anisotropic lithium invasion causes crack initiation perpendicular to the electrode surface, followed by growth through the electrode thickness. The low fracture energy of the lithiated/unlithiated silicon interface provides a weak microstructural path for crack deflection, accounting for the crack patterns and delamination observed after repeated cycling. On the basis of this physical understanding, we demonstrate how electrolyte additives can heal electrode cracks and provide strategies to enhance the fracture resistance in future lithium-ion batteries from surface chemical, electrochemical and material science perspectives. PMID:27297565

  5. Predictive factors for the Nursing Diagnoses in people living with Acquired Immune Deficiency Syndrome 1

    PubMed Central

    da Silva, Richardson Augusto Rosendo; Costa, Romanniny Hévillyn Silva; Nelson, Ana Raquel Cortês; Duarte, Fernando Hiago da Silva; Prado, Nanete Caroline da Costa; Rodrigues, Eduardo Henrique Fagundes

    2016-01-01

    Abstract Objective: to identify the predictive factors for the nursing diagnoses in people living with Acquired Immune Deficiency Syndrome. Method: a cross-sectional study, undertaken with 113 people living with AIDS. The data were collected using an interview script and physical examination. Logistic regression was used for the data analysis, considering a level of significance of 10%. Results: the predictive factors identified were: for the nursing diagnosis of knowledge deficit-inadequate following of instructions and verbalization of the problem; for the nursing diagnosis of failure to adhere - years of study, behavior indicative of failure to adhere, participation in the treatment and forgetfulness; for the nursing diagnosis of sexual dysfunction - family income, reduced frequency of sexual practice, perceived deficit in sexual desire, perceived limitations imposed by the disease and altered body function. Conclusion: the predictive factors for these nursing diagnoses involved sociodemographic and clinical characteristics, defining characteristics, and related factors, which must be taken into consideration during the assistance provided by the nurse. PMID:27384466

  6. Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries

    DOE PAGES

    Shi, Feifei; Song, Zhichao; Ross, Philip N.; ...

    2016-06-14

    Long-term durability is a major obstacle limiting the widespread use of lithium-ion batteries in heavy-duty applications and others demanding extended lifetime. As one of the root causes of the degradation of battery performance, the electrode failure mechanisms are still unknown. In this paper, we reveal the fundamental fracture mechanisms of single-crystal silicon electrodes over extended lithiation/delithiation cycles, using electrochemical testing, microstructure characterization, fracture mechanics and finite element analysis. Anisotropic lithium invasion causes crack initiation perpendicular to the electrode surface, followed by growth through the electrode thickness. The low fracture energy of the lithiated/unlithiated silicon interface provides a weak microstructural pathmore » for crack deflection, accounting for the crack patterns and delamination observed after repeated cycling. On the basis of this physical understanding, we demonstrate how electrolyte additives can heal electrode cracks and provide strategies to enhance the fracture resistance in future lithium-ion batteries from surface chemical, electrochemical and material science perspectives.« less

  7. Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Shi, Feifei; Song, Zhichao; Ross, Philip N.; Somorjai, Gabor A.; Ritchie, Robert O.; Komvopoulos, Kyriakos

    2016-06-01

    Long-term durability is a major obstacle limiting the widespread use of lithium-ion batteries in heavy-duty applications and others demanding extended lifetime. As one of the root causes of the degradation of battery performance, the electrode failure mechanisms are still unknown. In this paper, we reveal the fundamental fracture mechanisms of single-crystal silicon electrodes over extended lithiation/delithiation cycles, using electrochemical testing, microstructure characterization, fracture mechanics and finite element analysis. Anisotropic lithium invasion causes crack initiation perpendicular to the electrode surface, followed by growth through the electrode thickness. The low fracture energy of the lithiated/unlithiated silicon interface provides a weak microstructural path for crack deflection, accounting for the crack patterns and delamination observed after repeated cycling. On the basis of this physical understanding, we demonstrate how electrolyte additives can heal electrode cracks and provide strategies to enhance the fracture resistance in future lithium-ion batteries from surface chemical, electrochemical and material science perspectives.

  8. Independent Orbiter Assessment (IOA): Analysis of the pyrotechnics subsystem

    NASA Technical Reports Server (NTRS)

    Robinson, W. W.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter Pyrotechnics hardware. The IOA analysis process utilized available pyrotechnics hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode.

  9. High-Temperature Graphitization Failure of Primary Superheater Tube

    NASA Astrophysics Data System (ADS)

    Ghosh, D.; Ray, S.; Roy, H.; Mandal, N.; Shukla, A. K.

    2015-12-01

    Failure of boiler tubes is the main cause of unit outages of the plant, which further affects the reliability, availability and safety of the unit. So failure analysis of boiler tubes is absolutely essential to predict the root cause of the failure and the steps are taken for future remedial action to prevent the failure in near future. This paper investigates the probable cause/causes of failure of the primary superheater tube in a thermal power plant boiler. Visual inspection, dimensional measurement, chemical analysis, metallographic examination and hardness measurement are conducted as the part of the investigative studies. Apart from these tests, mechanical testing and fractographic analysis are also conducted as supplements. Finally, it is concluded that the superheater tube is failed due to graphitization for prolonged exposure of the tube at higher temperature.

  10. Failure Analysis and Mechanisms of Failure of Fibrous Composite Structures

    NASA Technical Reports Server (NTRS)

    Noor, A. K. (Compiler); Shuart, M. J. (Compiler); Starnes, J. H., Jr. (Compiler); Williams, J. G. (Compiler)

    1983-01-01

    The state of the art of failure analysis and current design practices, especially as applied to the use of fibrous composite materials in aircraft structures is discussed. Deficiencies in these technologies are identified, as are directions for future research.

  11. [Improvement in functional capacity after levothyroxine treatment in patients with chronic heart failure and subclinical hypothyroidism].

    PubMed

    Curotto Grasiosi, Jorge; Peressotti, Bruno; Machado, Rogelio A; Filipini, Eduardo C; Angel, Adriana; Delgado, Jorge; Cortez Quiroga, Gustavo A; Rus Mansilla, Carmen; Martínez Quesada, María del Mar; Degregorio, Alejandro; Cordero, Diego J; Dak, Marcelo; Izurieta, Carlos; Esper, Ricardo J

    2013-10-01

    To assess whether levothyroxine treatment improves functional capacity in patients with chronic heart failure (New York Heart Association class i-iii) and subclinical hypothyroidism. One hundred and sixty-three outpatients with stable chronic heart failure followed up for at least 6 months were enrolled. A physical examination was performed, and laboratory tests including thyroid hormone levels, Doppler echocardiogram, radionuclide ventriculography, and Holter monitoring were requested. Functional capacity was assessed by of the 6-min walk test. Patients with subclinical hypothyroidism were detected and, after undergoing the s6-min walk test, were given replacement therapy. When they reached normal thyrotropin (TSH) levels, the 6-min walk test was performed again. The distance walked in both tests was recorded, and the difference in meters covered by each patient was analyzed. Prevalence of subclinical hypothyroidism in patients with heart failure was 13%. These patients walked 292±63m while they were hypothyroid and 350±76m when TSH levels returned to normal, a difference of 58±11m (P<.011). Patients with normal baseline TSH levels showed no significant difference between the 2 6-min walk tests. Patients with chronic heart failure and subclinical hypothyroidism significantly improved their physical performance when normal TSH levels were reached. Copyright © 2012 SEEN. Published by Elsevier Espana. All rights reserved.

  12. [Hazard function and life table: an introduction to the failure time analysis].

    PubMed

    Matsushita, K; Inaba, H

    1987-04-01

    Failure time analysis has become popular in demographic studies. It can be viewed as a part of regression analysis with limited dependent variables as well as a special case of event history analysis and multistate demography. The idea of hazard function and failure time analysis, however, has not been properly introduced to nor commonly discussed by demographers in Japan. The concept of hazard function in comparison with life tables is briefly described, where the force of mortality is interchangeable with the hazard rate. The basic idea of failure time analysis is summarized for the cases of exponential distribution, normal distribution, and proportional hazard models. The multiple decrement life table is also introduced as an example of lifetime data analysis with cause-specific hazard rates.

  13. Solder Reflow Failures in Electronic Components During Manual Soldering

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander; Greenwell, Chris; Felt, Frederick

    2008-01-01

    This viewgraph presentation reviews the solder reflow failures in electronic components that occur during manual soldering. It discusses the specifics of manual-soldering-induced failures in plastic devices with internal solder joints. The failure analysis turned up that molten solder had squeezed up to the die surface along the die molding compound interface, and the dice were not protected with glassivation allowing solder to short gate and source to the drain contact. The failure analysis concluded that the parts failed due to overheating during manual soldering.

  14. Efficient 3-D finite element failure analysis of compression loaded angle-ply plates with holes

    NASA Technical Reports Server (NTRS)

    Burns, S. W.; Herakovich, C. T.; Williams, J. G.

    1987-01-01

    Finite element stress analysis and the tensor polynomial failure criterion predict that failure always initiates at the interface between layers on the hole edge for notched angle-ply laminates loaded in compression. The angular location of initial failure is a function of the fiber orientation in the laminate. The dominant stress components initiating failure are shear. It is shown that approximate symmetry can be used to reduce the computer resources required for the case of unaxial loading.

  15. Parameter estimation in Cox models with missing failure indicators and the OPPERA study.

    PubMed

    Brownstein, Naomi C; Cai, Jianwen; Slade, Gary D; Bair, Eric

    2015-12-30

    In a prospective cohort study, examining all participants for incidence of the condition of interest may be prohibitively expensive. For example, the "gold standard" for diagnosing temporomandibular disorder (TMD) is a physical examination by a trained clinician. In large studies, examining all participants in this manner is infeasible. Instead, it is common to use questionnaires to screen for incidence of TMD and perform the "gold standard" examination only on participants who screen positively. Unfortunately, some participants may leave the study before receiving the "gold standard" examination. Within the framework of survival analysis, this results in missing failure indicators. Motivated by the Orofacial Pain: Prospective Evaluation and Risk Assessment (OPPERA) study, a large cohort study of TMD, we propose a method for parameter estimation in survival models with missing failure indicators. We estimate the probability of being an incident case for those lacking a "gold standard" examination using logistic regression. These estimated probabilities are used to generate multiple imputations of case status for each missing examination that are combined with observed data in appropriate regression models. The variance introduced by the procedure is estimated using multiple imputation. The method can be used to estimate both regression coefficients in Cox proportional hazard models as well as incidence rates using Poisson regression. We simulate data with missing failure indicators and show that our method performs as well as or better than competing methods. Finally, we apply the proposed method to data from the OPPERA study. Copyright © 2015 John Wiley & Sons, Ltd.

  16. High-throughput sequencing: a failure mode analysis.

    PubMed

    Yang, George S; Stott, Jeffery M; Smailus, Duane; Barber, Sarah A; Balasundaram, Miruna; Marra, Marco A; Holt, Robert A

    2005-01-04

    Basic manufacturing principles are becoming increasingly important in high-throughput sequencing facilities where there is a constant drive to increase quality, increase efficiency, and decrease operating costs. While high-throughput centres report failure rates typically on the order of 10%, the causes of sporadic sequencing failures are seldom analyzed in detail and have not, in the past, been formally reported. Here we report the results of a failure mode analysis of our production sequencing facility based on detailed evaluation of 9,216 ESTs generated from two cDNA libraries. Two categories of failures are described; process-related failures (failures due to equipment or sample handling) and template-related failures (failures that are revealed by close inspection of electropherograms and are likely due to properties of the template DNA sequence itself). Preventative action based on a detailed understanding of failure modes is likely to improve the performance of other production sequencing pipelines.

  17. Application of Interface Technology in Progressive Failure Analysis of Composite Panels

    NASA Technical Reports Server (NTRS)

    Sleight, D. W.; Lotts, C. G.

    2002-01-01

    A progressive failure analysis capability using interface technology is presented. The capability has been implemented in the COMET-AR finite element analysis code developed at the NASA Langley Research Center and is demonstrated on composite panels. The composite panels are analyzed for damage initiation and propagation from initial loading to final failure using a progressive failure analysis capability that includes both geometric and material nonlinearities. Progressive failure analyses are performed on conventional models and interface technology models of the composite panels. Analytical results and the computational effort of the analyses are compared for the conventional models and interface technology models. The analytical results predicted with the interface technology models are in good correlation with the analytical results using the conventional models, while significantly reducing the computational effort.

  18. NASA Applications and Lessons Learned in Reliability Engineering

    NASA Technical Reports Server (NTRS)

    Safie, Fayssal M.; Fuller, Raymond P.

    2011-01-01

    Since the Shuttle Challenger accident in 1986, communities across NASA have been developing and extensively using quantitative reliability and risk assessment methods in their decision making process. This paper discusses several reliability engineering applications that NASA has used over the year to support the design, development, and operation of critical space flight hardware. Specifically, the paper discusses several reliability engineering applications used by NASA in areas such as risk management, inspection policies, components upgrades, reliability growth, integrated failure analysis, and physics based probabilistic engineering analysis. In each of these areas, the paper provides a brief discussion of a case study to demonstrate the value added and the criticality of reliability engineering in supporting NASA project and program decisions to fly safely. Examples of these case studies discussed are reliability based life limit extension of Shuttle Space Main Engine (SSME) hardware, Reliability based inspection policies for Auxiliary Power Unit (APU) turbine disc, probabilistic structural engineering analysis for reliability prediction of the SSME alternate turbo-pump development, impact of ET foam reliability on the Space Shuttle System risk, and reliability based Space Shuttle upgrade for safety. Special attention is given in this paper to the physics based probabilistic engineering analysis applications and their critical role in evaluating the reliability of NASA development hardware including their potential use in a research and technology development environment.

  19. A New Rock Strength Criterion from Microcracking Mechanisms Which Provides Theoretical Evidence of Hybrid Failure

    NASA Astrophysics Data System (ADS)

    Zhu, Qi-Zhi

    2017-02-01

    A proper criterion describing when material fails is essential for deep understanding and constitutive modeling of rock damage and failure by microcracking. Physically, such a criterion should be the global effect of local mechanical response and microstructure evolution inside the material. This paper aims at deriving a new mechanisms-based failure criterion for brittle rocks, based on micromechanical unilateral damage-friction coupling analyses rather than on the basic results from the classical linear elastic fracture mechanics. The failure functions respectively describing three failure modes (purely tensile mode, tensile-shear mode as well as compressive-shear mode) are achieved in a unified upscaling framework and illustrated in the Mohr plane and also in the plane of principal stresses. The strength envelope is proved to be continuous and smooth with a compressive to tensile strength ratio dependent on material properties. Comparisons with experimental data are finally carried out. By this work, we also provide a theoretical evidence on the hybrid failure and the smooth transition from tensile failure to compressive-shear failure.

  20. Fatigue of notched fiber composite laminates. Part 1: Analytical model

    NASA Technical Reports Server (NTRS)

    Mclaughlin, P. V., Jr.; Kulkarni, S. V.; Huang, S. N.; Rosen, B. W.

    1975-01-01

    A description is given of a semi-empirical, deterministic analysis for prediction and correlation of fatigue crack growth, residual strength, and fatigue lifetime for fiber composite laminates containing notches (holes). The failure model used for the analysis is based upon composite heterogeneous behavior and experimentally observed failure modes under both static and fatigue loading. The analysis is consistent with the wearout philosophy. Axial cracking and transverse cracking failure modes are treated together in the analysis. Cracking off-axis is handled by making a modification to the axial cracking analysis. The analysis predicts notched laminate failure from unidirectional material fatique properties using constant strain laminate analysis techniques. For multidirectional laminates, it is necessary to know lamina fatique behavior under axial normal stress, transverse normal stress and axial shear stress. Examples of the analysis method are given.

  1. Risk Factors for Noninvasive Ventilation Failure in Critically Ill Subjects With Confirmed Influenza Infection.

    PubMed

    Rodríguez, Alejandro; Ferri, Cristina; Martin-Loeches, Ignacio; Díaz, Emili; Masclans, Joan R; Gordo, Federico; Sole-Violán, Jordi; Bodí, María; Avilés-Jurado, Francesc X; Trefler, Sandra; Magret, Monica; Moreno, Gerard; Reyes, Luis F; Marin-Corral, Judith; Yebenes, Juan C; Esteban, Andres; Anzueto, Antonio; Aliberti, Stefano; Restrepo, Marcos I

    2017-10-01

    Despite wide use of noninvasive ventilation (NIV) in several clinical settings, the beneficial effects of NIV in patients with hypoxemic acute respiratory failure (ARF) due to influenza infection remain controversial. The aim of this study was to identify the profile of patients with risk factors for NIV failure using chi-square automatic interaction detection (CHAID) analysis and to determine whether NIV failure is associated with ICU mortality. This work was a secondary analysis from prospective and observational multi-center analysis in critically ill subjects admitted to the ICU with ARF due to influenza infection requiring mechanical ventilation. Three groups of subjects were compared: (1) subjects who received NIV immediately after ICU admission for ARF and then failed (NIV failure group); (2) subjects who received NIV immediately after ICU admission for ARF and then succeeded (NIV success group); and (3) subjects who received invasive mechanical ventilation immediately after ICU admission for ARF (invasive mechanical ventilation group). Profiles of subjects with risk factors for NIV failure were obtained using CHAID analysis. Of 1,898 subjects, 806 underwent NIV, and 56.8% of them failed. Acute Physiology and Chronic Health Evaluation II (APACHE II) score, Sequential Organ Failure Assessment (SOFA) score, infiltrates in chest radiograph, and ICU mortality (38.4% vs 6.3%) were higher ( P < .001) in the NIV failure than in the NIV success group. SOFA score was the variable most associated with NIV failure, and 2 cutoffs were determined. Subjects with SOFA ≥ 5 had a higher risk of NIV failure (odds ratio = 3.3, 95% CI 2.4-4.5). ICU mortality was higher in subjects with NIV failure (38.4%) compared with invasive mechanical ventilation subjects (31.3%, P = .018), and NIV failure was associated with increased ICU mortality (odds ratio = 11.4, 95% CI 6.5-20.1). An automatic and non-subjective algorithm based on CHAID decision-tree analysis can help to define the profile of patients with different risks of NIV failure, which might be a promising tool to assist in clinical decision making to avoid the possible complications associated with NIV failure. Copyright © 2017 by Daedalus Enterprises.

  2. Independent Orbiter Assessment (IOA): Analysis of the purge, vent and drain subsystem

    NASA Technical Reports Server (NTRS)

    Bynum, M. C., III

    1987-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter PV and D (Purge, Vent and Drain) Subsystem hardware. The PV and D Subsystem controls the environment of unpressurized compartments and window cavities, senses hazardous gases, and purges Orbiter/ET Disconnect. The subsystem is divided into six systems: Purge System (controls the environment of unpressurized structural compartments); Vent System (controls the pressure of unpressurized compartments); Drain System (removes water from unpressurized compartments); Hazardous Gas Detection System (HGDS) (monitors hazardous gas concentrations); Window Cavity Conditioning System (WCCS) (maintains clear windows and provides pressure control of the window cavities); and External Tank/Orbiter Disconnect Purge System (prevents cryo-pumping/icing of disconnect hardware). Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Four of the sixty-two failure modes analyzed were determined as single failures which could result in the loss of crew or vehicle. A possible loss of mission could result if any of twelve single failures occurred. Two of the criticality 1/1 failures are in the Window Cavity Conditioning System (WCCS) outer window cavity, where leakage and/or restricted flow will cause failure to depressurize/repressurize the window cavity. Two criticality 1/1 failures represent leakage and/or restricted flow in the Orbiter/ET disconnect purge network which prevent cryopumping/icing of disconnect hardware. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode.

  3. Analytical Study of different types Of network failure detection and possible remedies

    NASA Astrophysics Data System (ADS)

    Saxena, Shikha; Chandra, Somnath

    2012-07-01

    Faults in a network have various causes,such as the failure of one or more routers, fiber-cuts, failure of physical elements at the optical layer, or extraneous causes like power outages. These faults are usually detected as failures of a set of dependent logical entities and the links affected by the failed components. A reliable control plane plays a crucial role in creating high-level services in the next-generation transport network based on the Generalized Multiprotocol Label Switching (GMPLS) or Automatically Switched Optical Networks (ASON) model. In this paper, approaches to control-plane survivability, based on protection and restoration mechanisms, are examined. Procedures for the control plane state recovery are also discussed, including link and node failure recovery and the concepts of monitoring paths (MPs) and monitoring cycles (MCs) for unique localization of shared risk linked group (SRLG) failures in all-optical networks. An SRLG failure is a failure of multiple links due to a failure of a common resource. MCs (MPs) start and end at same (distinct) monitoring location(s). They are constructed such that any SRLG failure results in the failure of a unique combination of paths and cycles. We derive necessary and sufficient conditions on the set of MCs and MPs needed for localizing an SRLG failure in an arbitrary graph. Procedure of Protection and Restoration of the SRLG failure by backup re-provisioning algorithm have also been discussed.

  4. Probabilistic models to estimate fire-induced cable damage at nuclear power plants

    NASA Astrophysics Data System (ADS)

    Valbuena, Genebelin R.

    Even though numerous PRAs have shown that fire can be a major contributor to nuclear power plant risk, there are some specific areas of knowledge related to this issue, such as the prediction of fire-induced damage to electrical cables and circuits, and their potential effects in the safety of the nuclear power plant, that still constitute a practical enigma, particularly for the lack of approaches/models to perform consistent and objective assessments. This report contains a discussion of three different models to estimate fire-induced cable damage likelihood given a specified fire profile: the kinetic, the heat transfer and the IR "K Factor" model. These models not only are based on statistical analysis of data available in the open literature, but to the greatest extent possible they use physics based principles to describe the underlying mechanism of failures that take place among the electrical cables upon heating due to external fires. The characterization of cable damage, and consequently the loss of functionality of electrical cables in fire is a complex phenomenon that depends on a variety of intrinsic factors such as cable materials and dimensions, and extrinsic factors such as electrical and mechanical loads on the cables, heat flux severity, and exposure time. Some of these factors are difficult to estimate even in a well-characterized fire, not only for the variability related to the unknown material composition and physical arrangements, but also for the lack of objective frameworks and theoretical models to study the behavior of polymeric wire cable insulation under dynamic external thermal insults. The results of this research will (1) help to develop a consistent framework to predict fire-induced cable failure modes likelihood, and (2) develop some guidance to evaluate and/or reduce the risk associated with these failure modes in existing and new power plant facilities. Among the models evaluated, the physics-based heat transfer model takes into account the properties and characteristics of the cables and cable materials, and the characteristics of the thermal insult. This model can be used to estimate the probability of cable damage under different thermal conditions.

  5. Major depressive disorder: a qualitative study on the experiences of Iranian patients.

    PubMed

    Amini, Kourosh; Negarandeh, Reza; Cheraghi, Mohammad Ali; Eftekhar, Mehrdad

    2013-09-01

    Major depressive disorder (MDD) is one the most common mental disorders; it affects about 5-10% of the world population. This study explores the experiences of people with major depressive disorder in Zanjan, Iran. In order to identify recurring themes and patterns in individuals' experiences of major depressive disorder, semi-structured interviews with 18 patients were recorded and transcribed verbatim. The transcripts were then analyzed based on conventional qualitative content analysis. Five main categories emerged. The first category was called emotional paralysis and included the subcategories feeling severely depressed; feeling anxious; feeling impatient and irritable; and having dyshedonia. The second category was disturbance of thinking and was comprised of the subcategories of preoccupation, instable spiritual beliefs, and guilt. Cognitive decline was the third identified category and was further divided into subcategories of frustration, unawareness of the disorder, negative evaluation, indecisiveness, and loss of focus and loss of memory. Another major category was physical illnesses with the subcategories of physical discomfort, sleep problems, appetite disturbance, facial changes, sexual dysfunction, and medical conditions. The final category was failure in life, which had failure in personal affairs, jeopardized interpersonal relations, and unstable work life as subcategories. These findings provide a base for further research in this area. They also have clinical relevance for health care providers working with patients with MDD. Related cultural issues also are discussed.

  6. Nondestructive Methods and Special Test Instrumentation Supporting NASA Composite Overwrapped Pressure Vessel Assessments

    NASA Technical Reports Server (NTRS)

    Saulsberry, Regor; Greene, Nathanael; Cameron, Ken; Madaras, Eric; Grimes-Ledesma, Lorie; Thesken, John; Phoenix, Leigh; Murthy, Pappu; Revilock, Duane

    2007-01-01

    Many aging composite overwrapped pressure vessels (COPVs), being used by the National Aeronautics and Space Administration (NASA) are currently under evaluation to better quantify their reliability and clarify their likelihood of failure due to stress rupture and age-dependent issues. As a result, some test and analysis programs have been successfully accomplished and other related programs are still in progress at the NASA Johnson Space Center (JSC) White Sands Test Facility (WSTF) and other NASA centers, with assistance from the commercial sector. To support this effort, a group of Nondestructive Evaluation (NDE) experts was assembled to provide NDE competence for pretest evaluation of test articles and for application of NDE technology to real-time testing. Techniques were required to provide assurance that the test article had adequate structural integrity and manufacturing consistency to be considered acceptable for testing and these techniques were successfully applied. Destructive testing is also being accomplished to better understand the physical and chemical property changes associated with progression toward "stress rupture" (SR) failure, and it is being associated with NDE response, so it can potentially be used to help with life prediction. Destructive work also includes the evaluation of residual stresses during dissection of the overwrap, laboratory evaluation of specimens extracted from the overwrap to evaluate physical property changes, and quantitative microscopy to inform the theoretical micromechanics.

  7. Symptom-Hemodynamic Mismatch and Heart Failure Event Risk

    PubMed Central

    Lee, Christopher S.; Hiatt, Shirin O.; Denfeld, Quin E.; Mudd, James O.; Chien, Christopher; Gelow, Jill M.

    2014-01-01

    Background Heart failure (HF) is a heterogeneous condition of both symptoms and hemodynamics. Objective The goal of this study was to identify distinct profiles among integrated data on physical and psychological symptoms and hemodynamics, and quantify differences in 180-day event-risk among observed profiles. Methods A secondary analysis of data collected during two prospective cohort studies by a single group of investigators was performed. Latent class mixture modeling was used to identify distinct symptom-hemodynamic profiles. Cox proportional hazards modeling was used to quantify difference in event-risk (HF emergency visit, hospitalization or death) among profiles. Results The mean age (n=291) was 57±13 years, 38% were female, and 61% had class III/IV HF. Three distinct symptom-hemodynamic profiles were identified. 17.9% of patients had concordant symptoms and hemodynamics (i.e. moderate physical and psychological symptoms matched the comparatively hemodynamic profile), 17.9% had severe symptoms and average hemodynamics, and 64.2% had poor hemodynamics and mild symptoms. Compared to those in the concordant profile, both profiles of symptom-hemodynamic mismatch were associated with a markedly increased event-risk (severe symptoms hazards ratio = 3.38, p=0.033; poor hemodynamics hazards ratio = 3.48, p=0.016). Conclusions A minority of adults with HF have concordant symptoms and hemodynamics. Either profile of symptom-hemodynamic mismatch in HF is associated with a greater risk of healthcare utilization for HF or death. PMID:24988323

  8. Daily physical activity in stable heart failure patients.

    PubMed

    Dontje, Manon L; van der Wal, Martje H L; Stolk, Ronald P; Brügemann, Johan; Jaarsma, Tiny; Wijtvliet, Petra E P J; van der Schans, Cees P; de Greef, Mathieu H G

    2014-01-01

    Physical activity is the only nonpharmacological therapy that is proven to be effective in heart failure (HF) patients in reducing morbidity. To date, little is known about the levels of daily physical activity in HF patients and about related factors. The objectives of this study were to (a) describe performance-based daily physical activity in HF patients, (b) compare it with physical activity guidelines, and (c) identify related factors of daily physical activity. The daily physical activity of 68 HF patients was measured using an accelerometer (SenseWear) for 48 hours. Psychological characteristics (self-efficacy, motivation, and depression) were measured using questionnaires. To have an indication how to interpret daily physical activity levels of the study sample, time spent on moderate- to vigorous-intensity physical activities was compared with the 30-minute activity guideline. Steps per day was compared with the criteria for healthy adults, in the absence of HF-specific criteria. Linear regression analyses were used to identify related factors of daily physical activity. Forty-four percent were active for less than 30 min/d, whereas 56% were active for more than 30 min/d. Fifty percent took fewer than 5000 steps per day, 35% took 5000 to 10 000 steps per day, and 15% took more than 10 000 steps per day. Linear regression models showed that New York Heart Association classification and self-efficacy were the most important factors explaining variance in daily physical activity. The variance in daily physical activity in HF patients is considerable. Approximately half of the patients had a sedentary lifestyle. Higher New York Heart Association classification and lower self-efficacy are associated with less daily physical activity. These findings contribute to the understanding of daily physical activity behavior of HF patients and can help healthcare providers to promote daily physical activity in sedentary HF patients.

  9. How gender and reformed introductory physics impacts student success in advanced physics courses and continuation in the physics major

    NASA Astrophysics Data System (ADS)

    Rodriguez, Idaykis; Potvin, Geoff; Kramer, Laird H.

    2016-12-01

    [This paper is part of the Focused Collection on Gender in Physics.] Active-learning approaches to teaching introductory physics have been found to improve student learning and affective gains on short-term outcomes [S. Freeman et al., Proc. Natl. Acad. Sci. U.S.A. 111, 8410 (2014)]; however, whether or not the benefits of active learning impact women to the same degree as men has been a point of concern [A. Madsen, S. B. McKagan, and E. C. Sayre, Phys. Rev. ST Phys. Educ. Res. 9, 020121 (2013)]. Further, the long-term impacts of active-learning experiences are also understudied. At Florida International University, a Hispanic-majority institution, we have implemented Modeling Instruction (MI) and the Integrated Science Learning Environment (ISLE) in introductory physics classes for the past decade. In this empirical paper, we report on a longitudinal investigation of student performance and persistence in upper level physics courses after having previously experienced MI or ISLE in their introductory physics courses, and disaggregate students by gender. Using survival analysis methods, we find women who declare physics as a major are more likely than men to graduate with a physics degree. Women are also just as likely as men to pass through the upper division courses, with the highest failure risk for both men and women occurring in the first semester of upper-division course taking. These results reinforce the need to expand considerations of performance outcomes to be longitudinal to measure the effectiveness of the entire physics experience.

  10. Probabilistic analysis on the failure of reactivity control for the PWR

    NASA Astrophysics Data System (ADS)

    Sony Tjahyani, D. T.; Deswandri; Sunaryo, G. R.

    2018-02-01

    The fundamental safety function of the power reactor is to control reactivity, to remove heat from the reactor, and to confine radioactive material. The safety analysis is used to ensure that each parameter is fulfilled during the design and is done by deterministic and probabilistic method. The analysis of reactivity control is important to be done because it will affect the other of fundamental safety functions. The purpose of this research is to determine the failure probability of the reactivity control and its failure contribution on a PWR design. The analysis is carried out by determining intermediate events, which cause the failure of reactivity control. Furthermore, the basic event is determined by deductive method using the fault tree analysis. The AP1000 is used as the object of research. The probability data of component failure or human error, which is used in the analysis, is collected from IAEA, Westinghouse, NRC and other published documents. The results show that there are six intermediate events, which can cause the failure of the reactivity control. These intermediate events are uncontrolled rod bank withdrawal at low power or full power, malfunction of boron dilution, misalignment of control rod withdrawal, malfunction of improper position of fuel assembly and ejection of control rod. The failure probability of reactivity control is 1.49E-03 per year. The causes of failures which are affected by human factor are boron dilution, misalignment of control rod withdrawal and malfunction of improper position for fuel assembly. Based on the assessment, it is concluded that the failure probability of reactivity control on the PWR is still within the IAEA criteria.

  11. Development of STS/Centaur failure probabilities liftoff to Centaur separation

    NASA Technical Reports Server (NTRS)

    Hudson, J. M.

    1982-01-01

    The results of an analysis to determine STS/Centaur catastrophic vehicle response probabilities for the phases of vehicle flight from STS liftoff to Centaur separation from the Orbiter are presented. The analysis considers only category one component failure modes as contributors to the vehicle response mode probabilities. The relevant component failure modes are grouped into one of fourteen categories of potential vehicle behavior. By assigning failure rates to each component, for each of its failure modes, the STS/Centaur vehicle response probabilities in each phase of flight can be calculated. The results of this study will be used in a DOE analysis to ascertain the hazard from carrying a nuclear payload on the STS.

  12. Cycles till failure of silver-zinc cells with completing failures modes: Preliminary data analysis

    NASA Technical Reports Server (NTRS)

    Sidik, S. M.; Leibecki, H. F.; Bozek, J. M.

    1980-01-01

    One hundred and twenty nine cells were run through charge-discharge cycles until failure. The experiment design was a variant of a central composite factorial in five factors. Preliminary data analysis consisted of response surface estimation of life. Batteries fail under two basic modes; a low voltage condition and an internal shorting condition. A competing failure modes analysis using maximum likelihood estimation for the extreme value life distribution was performed. Extensive diagnostics such as residual plotting and probability plotting were employed to verify data quality and choice of model.

  13. Failure Modes and Effects Analysis (FMEA): A Bibliography

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Failure modes and effects analysis (FMEA) is a bottom-up analytical process that identifies process hazards, which helps managers understand vulnerabilities of systems, as well as assess and mitigate risk. It is one of several engineering tools and techniques available to program and project managers aimed at increasing the likelihood of safe and successful NASA programs and missions. This bibliography references 465 documents in the NASA STI Database that contain the major concepts, failure modes or failure analysis, in either the basic index of the major subject terms.

  14. Analysis of Discrete-Source Damage Progression in a Tensile Stiffened Composite Panel

    NASA Technical Reports Server (NTRS)

    Wang, John T.; Lotts, Christine G.; Sleight, David W.

    1999-01-01

    This paper demonstrates the progressive failure analysis capability in NASA Langley s COMET-AR finite element analysis code on a large-scale built-up composite structure. A large-scale five stringer composite panel with a 7-in. long discrete source damage was analyzed from initial loading to final failure including the geometric and material nonlinearities. Predictions using different mesh sizes, different saw cut modeling approaches, and different failure criteria were performed and assessed. All failure predictions have a reasonably good correlation with the test result.

  15. Failure modes and effects analysis automation

    NASA Technical Reports Server (NTRS)

    Kamhieh, Cynthia H.; Cutts, Dannie E.; Purves, R. Byron

    1988-01-01

    A failure modes and effects analysis (FMEA) assistant was implemented as a knowledge based system and will be used during design of the Space Station to aid engineers in performing the complex task of tracking failures throughout the entire design effort. The three major directions in which automation was pursued were the clerical components of the FMEA process, the knowledge acquisition aspects of FMEA, and the failure propagation/analysis portions of the FMEA task. The system is accessible to design, safety, and reliability engineers at single user workstations and, although not designed to replace conventional FMEA, it is expected to decrease by many man years the time required to perform the analysis.

  16. Independent Orbiter Assessment (IOA): Analysis of the electrical power distribution and control subsystem, volume 1

    NASA Technical Reports Server (NTRS)

    Schmeckpeper, K. R.

    1987-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter Electrical Power Distribution and Control (EPD and C) hardware. The EPD and C hardware performs the functions of distributing, sensing, and controlling 28 volt DC power and of inverting, distributing, sensing, and controlling 117 volt 400 Hz AC power to all Orbiter subsystems from the three fuel cells in the Electrical Power Generation (EPG) subsystem. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Of the 1671 failure modes analyzed, 9 single failures were determined to result in loss of crew or vehicle. Three single failures unique to intact abort were determined to result in possible loss of the crew or vehicle. A possible loss of mission could result if any of 136 single failures occurred. Six of the criticality 1/1 failures are in two rotary and two pushbutton switches that control External Tank and Solid Rocket Booster separation. The other 6 criticality 1/1 failures are fuses, one each per Aft Power Control Assembly (APCA) 4, 5, and 6 and one each per Forward Power Control Assembly (FPCA) 1, 2, and 3, that supply power to certain Main Propulsion System (MPS) valves and Forward Reaction Control System (RCS) circuits.

  17. Reevaluating the two-representation model of numerical magnitude processing.

    PubMed

    Jiang, Ting; Zhang, Wenfeng; Wen, Wen; Zhu, Haiting; Du, Han; Zhu, Xiangru; Gao, Xuefei; Zhang, Hongchuan; Dong, Qi; Chen, Chuansheng

    2016-01-01

    One debate in mathematical cognition centers on the single-representation model versus the two-representation model. Using an improved number Stroop paradigm (i.e., systematically manipulating physical size distance), in the present study we tested the predictions of the two models for number magnitude processing. The results supported the single-representation model and, more importantly, explained how a design problem (failure to manipulate physical size distance) and an analytical problem (failure to consider the interaction between congruity and task-irrelevant numerical distance) might have contributed to the evidence used to support the two-representation model. This study, therefore, can help settle the debate between the single-representation and two-representation models.

  18. MEMS reliability: The challenge and the promise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, W.M.; Tanner, D.M.; Miller, S.L.

    1998-05-01

    MicroElectroMechanical Systems (MEMS) that think, sense, act and communicate will open up a broad new array of cost effective solutions only if they prove to be sufficiently reliable. A valid reliability assessment of MEMS has three prerequisites: (1) statistical significance; (2) a technique for accelerating fundamental failure mechanisms, and (3) valid physical models to allow prediction of failures during actual use. These already exist for the microelectronics portion of such integrated systems. The challenge lies in the less well understood micromachine portions and its synergistic effects with microelectronics. This paper presents a methodology addressing these prerequisites and a description ofmore » the underlying physics of reliability for micromachines.« less

  19. [Depression, social support and compliance in patients with chronic heart failure].

    PubMed

    Reutlinger, Julia; Müller-Tasch, Thomas; Schellberg, Dieter; Frankenstein, Lutz; Zugck, Christian; Herzog, Wolfgang; Lossnitzer, Nicole

    2010-01-01

    Depressive patients with chronic heart failure (CHF) show less social integration and greater physical impairment as well as poorer compliance than non depressive CHF patients. Using multiple regression analyses, this study (n=84) investigated a potential mediating effect of depression on the relationship between compliance and both social support and physical functioning. Results did not support the hypothesized mediating effect of depression. However, the variables age, depression, left ventricular ejection fraction (LVEF) and social support were associated with self-reported compliance. Therefore, a lack of social support and depression should be considered as possible reasons, if patients are noncompliant during the treatment process. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Improved symptoms, physical limitation, and self-efficacy after resynchronization in a patient with heart failure and a prolonged QRS duration.

    PubMed

    Conaway, Darcy G; Sullivan, Robbie; McCullough, Peter A

    2004-01-01

    This report examines the impact of resynchronization therapy in a patient with class IV heart failure and a prolonged QRS duration on electrocardiogram. The Kansas City Cardiomyopathy Questionnaire (KCCQ) was used to assess the patient's health status prior to, immediately after, and 2 months after placement of a biventricular pacemaker. B-type natriuretic peptide (BNP) values and electrocardiogram QRS duration were recorded to further document clinical status. Our patient experienced statistically significant improvements in 7 of 10 KCCQ domains after resynchronization. QRS duration narrowed following the procedure and BNP values decreased. Resynchronization therapy improved this patient's symptoms, physical limitations, and self-efficacy when maximal medical therapy failed.

  1. Methods for forewarning of critical condition changes in monitoring civil structures

    DOEpatents

    Abercrombie, Robert K.; Hively, Lee M.

    2013-04-02

    Sensor modules (12) including accelerometers (20) are placed on a physical structure (10) and tri-axial accelerometer data is converted to mechanical power (P) data (41) which then processed to provide a forewarning (57) of a critical event concerning the physical structure (10). The forewarning is based on a number of occurrences of a composite measure of dissimilarity (C.sub.i) exceeding a forewarning threshold over a defined sampling time; and a forewarning signal (58) is provided to a human observer through a visual, audible or tangible signal. A forewarning of a structural failure can also be provided based on a number of occurrences of (C.sub.i) above a failure value threshold.

  2. Erythrocyte Membrane Failure by Electromechanical Stress.

    PubMed

    Du, E; Qiang, Yuhao; Liu, Jia

    2018-01-01

    We envision that electrodeformation of biological cells through dielectrophoresis as a new technique to elucidate the mechanistic details underlying membrane failure by electrical and mechanical stresses. Here we demonstrate the full control of cellular uniaxial deformation and tensile recovery in biological cells via amplitude-modified electric field at radio frequency by an interdigitated electrode array in microfluidics. Transient creep and cyclic experiments were performed on individually tracked human erythrocytes. Observations of the viscoelastic-to-viscoplastic deformation behavior and the localized plastic deformations in erythrocyte membranes suggest that electromechanical stress results in irreversible membrane failure. Examples of membrane failure can be separated into different groups according to the loading scenarios: mechanical stiffening, physical damage, morphological transformation from discocyte to echinocyte, and whole cell lysis. These results show that this technique can be potentially utilized to explore membrane failure in erythrocytes affected by other pathophysiological processes.

  3. Risk-based planning analysis for a single levee

    NASA Astrophysics Data System (ADS)

    Hui, Rui; Jachens, Elizabeth; Lund, Jay

    2016-04-01

    Traditional risk-based analysis for levee planning focuses primarily on overtopping failure. Although many levees fail before overtopping, few planning studies explicitly include intermediate geotechnical failures in flood risk analysis. This study develops a risk-based model for two simplified levee failure modes: overtopping failure and overall intermediate geotechnical failure from through-seepage, determined by the levee cross section represented by levee height and crown width. Overtopping failure is based only on water level and levee height, while through-seepage failure depends on many geotechnical factors as well, mathematically represented here as a function of levee crown width using levee fragility curves developed from professional judgment or analysis. These levee planning decisions are optimized to minimize the annual expected total cost, which sums expected (residual) annual flood damage and annualized construction costs. Applicability of this optimization approach to planning new levees or upgrading existing levees is demonstrated preliminarily for a levee on a small river protecting agricultural land, and a major levee on a large river protecting a more valuable urban area. Optimized results show higher likelihood of intermediate geotechnical failure than overtopping failure. The effects of uncertainty in levee fragility curves, economic damage potential, construction costs, and hydrology (changing climate) are explored. Optimal levee crown width is more sensitive to these uncertainties than height, while the derived general principles and guidelines for risk-based optimal levee planning remain the same.

  4. Finite Element Creep-Fatigue Analysis of a Welded Furnace Roll for Identifying Failure Root Cause

    NASA Astrophysics Data System (ADS)

    Yang, Y. P.; Mohr, W. C.

    2015-11-01

    Creep-fatigue induced failures are often observed in engineering components operating under high temperature and cyclic loading. Understanding the creep-fatigue damage process and identifying failure root cause are very important for preventing such failures and improving the lifetime of engineering components. Finite element analyses including a heat transfer analysis and a creep-fatigue analysis were conducted to model the cyclic thermal and mechanical process of a furnace roll in a continuous hot-dip coating line. Typically, the roll has a short life, <1 year, which has been a problem for a long time. The failure occurred in the weld joining an end bell to a roll shell and resulted in the complete 360° separation of the end bell from the roll shell. The heat transfer analysis was conducted to predict the temperature history of the roll by modeling heat convection from hot air inside the furnace. The creep-fatigue analysis was performed by inputting the predicted temperature history and applying mechanical loads. The analysis results showed that the failure was resulted from a creep-fatigue mechanism rather than a creep mechanism. The difference of material properties between the filler metal and the base metal is the root cause for the roll failure, which induces higher creep strain and stress in the interface between the weld and the HAZ.

  5. Robustness of spatial micronetworks

    NASA Astrophysics Data System (ADS)

    McAndrew, Thomas C.; Danforth, Christopher M.; Bagrow, James P.

    2015-04-01

    Power lines, roadways, pipelines, and other physical infrastructure are critical to modern society. These structures may be viewed as spatial networks where geographic distances play a role in the functionality and construction cost of links. Traditionally, studies of network robustness have primarily considered the connectedness of large, random networks. Yet for spatial infrastructure, physical distances must also play a role in network robustness. Understanding the robustness of small spatial networks is particularly important with the increasing interest in microgrids, i.e., small-area distributed power grids that are well suited to using renewable energy resources. We study the random failures of links in small networks where functionality depends on both spatial distance and topological connectedness. By introducing a percolation model where the failure of each link is proportional to its spatial length, we find that when failures depend on spatial distances, networks are more fragile than expected. Accounting for spatial effects in both construction and robustness is important for designing efficient microgrids and other network infrastructure.

  6. Cardiac Cachexia: Perspectives for Prevention and Treatment.

    PubMed

    Okoshi, Marina Politi; Capalbo, Rafael Verardino; Romeiro, Fernando G; Okoshi, Katashi

    2017-01-01

    Cachexia is a prevalent pathological condition associated with chronic heart failure. Its occurrence predicts increased morbidity and mortality independent of important clinical variables such as age, ventricular function, or heart failure functional class. The clinical consequences of cachexia are dependent on both weight loss and systemic inflammation, which accompany cachexia development. Skeletal muscle wasting is an important component of cachexia; it often precedes cachexia development and predicts poor outcome in heart failure. Cachexia clinically affects several organs and systems. It is a multifactorial condition where underlying pathophysiological mechanisms are not completely understood making it difficult to develop specific prevention and treatment therapies. Preventive strategies have largely focused on muscle mass preservation. Different treatment options have been described, mostly in small clinical studies or experimental settings. These include nutritional support, neurohormonal blockade, reducing intestinal bacterial translocation, anemia and iron deficiency treatment, appetite stimulants, immunomodulatory agents, anabolic hormones, and physical exercise regimens. Currently, nonpharmacological therapy such as nutritional support and physical exercise are considered central to cachexia prevention and treatment.

  7. Independent Orbiter Assessment (IOA): Analysis of the communication and tracking subsystem

    NASA Technical Reports Server (NTRS)

    Gardner, J. R.; Robinson, W. M.; Trahan, W. H.; Daley, E. S.; Long, W. C.

    1987-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter Communication and Tracking hardware. The IOA analysis process utilized available Communication and Tracking hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode.

  8. Investigation of abrupt degradation of drain current caused by under-gate crack in AlGaN/GaN high electron mobility transistors during high temperature operation stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Chang; Liao, XueYang; Li, RuGuan

    2015-09-28

    In this paper, we investigate the degradation mode and mechanism of AlGaN/GaN based high electron mobility transistors (HEMTs) during high temperature operation (HTO) stress. It demonstrates that there was abrupt degradation mode of drain current during HTO stress. The abrupt degradation is ascribed to the formation of crack under the gate which was the result of the brittle fracture of epilayer based on failure analysis. The origin of the mechanical damage under the gate is further investigated and discussed based on top-down scanning electron microscope, cross section transmission electron microscope and energy dispersive x-ray spectroscopy analysis, and stress simulation. Basedmore » on the coupled analysis of the failure physical feature and stress simulation considering the coefficient of thermal expansion (CTE) mismatch in different materials in gate metals/semiconductor system, the mechanical damage under the gate is related to mechanical stress induced by CTE mismatch in Au/Ti/Mo/GaN system and stress concentration caused by the localized structural damage at the drain side of the gate edge. These results indicate that mechanical stress induced by CTE mismatch of materials inside the device plays great important role on the reliability of AlGaN/GaN HEMTs during HTO stress.« less

  9. Meta-analysis of studies on chemical, physical and biological agents in the control of Aedes aegypti.

    PubMed

    Lima, Estelita Pereira; Goulart, Marília Oliveira Fonseca; Rolim Neto, Modesto Leite

    2015-09-04

    Aedes aegypti is a vector of international concern because it can transmit to humans three important arboviral diseases: yellow fever, dengue and chikungunya. Epidemics that are repeated year after year in a variety of urban centers indicate that there are control failures, allowing the vector to continue expanding. To identify the most effective vector control strategies and the factors that contributed to the success or failure of each strategy, we carried out a systematic review with meta-analysis of articles published in 12 databases, from 1974 to the month of December 2013. We evaluated the association between the use of whatever chemical substance, mechanical agent, biological or integrated actions against A. aegypti and the control of the vector, as measured by 10 indicators. We found 2,791 articles, but after careful selection, only 26 studies remained for analysis related to control interventions implemented in 15 countries, with 5 biological, 5 chemical, 3 mechanical and 13 integrated strategies. The comparison among all of them, indicated that the control of A. aegypti is significantly associated with the type of strategy used, and that integrated interventions consist of the most effective method for controlling A. aegypti. The most effective control method was the integrated approach, considering the influence of eco-bio-social determinants in the virus-vector-man epidemiological chain, and community involvement, starting with community empowerment as active agents of vector control.

  10. Development of NASA's Accident Precursor Analysis Process Through Application on the Space Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Maggio, Gaspare; Groen, Frank; Hamlin, Teri; Youngblood, Robert

    2010-01-01

    Accident Precursor Analysis (APA) serves as the bridge between existing risk modeling activities, which are often based on historical or generic failure statistics, and system anomalies, which provide crucial information about the failure mechanisms that are actually operative in the system. APA docs more than simply track experience: it systematically evaluates experience, looking for under-appreciated risks that may warrant changes to design or operational practice. This paper presents the pilot application of the NASA APA process to Space Shuttle Orbiter systems. In this effort, the working sessions conducted at Johnson Space Center (JSC) piloted the APA process developed by Information Systems Laboratories (ISL) over the last two years under the auspices of NASA's Office of Safety & Mission Assurance, with the assistance of the Safety & Mission Assurance (S&MA) Shuttle & Exploration Analysis Branch. This process is built around facilitated working sessions involving diverse system experts. One important aspect of this particular APA process is its focus on understanding the physical mechanism responsible for an operational anomaly, followed by evaluation of the risk significance of the observed anomaly as well as consideration of generalizations of the underlying mechanism to other contexts. Model completeness will probably always be an issue, but this process tries to leverage operating experience to the extent possible in order to address completeness issues before a catastrophe occurs.

  11. An integrated approach coupling physically based models and probabilistic method to assess quantitatively landslide susceptibility at different scale: application to different geomorphological environments

    NASA Astrophysics Data System (ADS)

    Vandromme, Rosalie; Thiéry, Yannick; Sedan, Olivier; Bernardie, Séverine

    2016-04-01

    Landslide hazard assessment is the estimation of a target area where landslides of a particular type, volume, runout and intensity may occur within a given period. The first step to analyze landslide hazard consists in assessing the spatial and temporal failure probability (when the information is available, i.e. susceptibility assessment). Two types of approach are generally recommended to achieve this goal: (i) qualitative approach (i.e. inventory based methods and knowledge data driven methods) and (ii) quantitative approach (i.e. data-driven methods or deterministic physically based methods). Among quantitative approaches, deterministic physically based methods (PBM) are generally used at local and/or site-specific scales (1:5,000-1:25,000 and >1:5,000, respectively). The main advantage of these methods is the calculation of probability of failure (safety factor) following some specific environmental conditions. For some models it is possible to integrate the land-uses and climatic change. At the opposite, major drawbacks are the large amounts of reliable and detailed data (especially materials type, their thickness and the geotechnical parameters heterogeneity over a large area) and the fact that only shallow landslides are taking into account. This is why they are often used at site-specific scales (> 1:5,000). Thus, to take into account (i) materials' heterogeneity , (ii) spatial variation of physical parameters, (iii) different landslide types, the French Geological Survey (i.e. BRGM) has developed a physically based model (PBM) implemented in a GIS environment. This PBM couples a global hydrological model (GARDENIA®) including a transient unsaturated/saturated hydrological component with a physically based model computing the stability of slopes (ALICE®, Assessment of Landslides Induced by Climatic Events) based on the Morgenstern-Price method for any slip surface. The variability of mechanical parameters is handled by Monte Carlo approach. The probability to obtain a safety factor below 1 represents the probability of occurrence of a landslide for a given triggering event. The dispersion of the distribution gives the uncertainty of the result. Finally, a map is created, displaying a probability of occurrence for each computing cell of the studied area. In order to take into account the land-uses change, a complementary module integrating the vegetation effects on soil properties has been recently developed. Last years, the model has been applied at different scales for different geomorphological environments: (i) at regional scale (1:50,000-1:25,000) in French West Indies and French Polynesian islands (ii) at local scale (i.e.1:10,000) for two complex mountainous areas; (iii) at the site-specific scale (1:2,000) for one landslide. For each study the 3D geotechnical model has been adapted. The different studies have allowed : (i) to discuss the different factors included in the model especially the initial 3D geotechnical models; (ii) to precise the location of probable failure following different hydrological scenarii; (iii) to test the effects of climatic change and land-use on slopes for two cases. In that way, future changes in temperature, precipitation and vegetation cover can be analyzed, permitting to address the impacts of global change on landslides. Finally, results show that it is possible to obtain reliable information about future slope failures at different scale of work for different scenarii with an integrated approach. The final information about landslide susceptibility (i.e. probability of failure) can be integrated in landslide hazard assessment and could be an essential information source for future land planning. As it has been performed in the ANR Project SAMCO (Society Adaptation for coping with Mountain risks in a global change COntext), this analysis constitutes a first step in the chain for risk assessment for different climate and economical development scenarios, to evaluate the resilience of mountainous areas.

  12. Simulation Experiment and Acoustic Emission Study on Coal and Gas Outburst

    NASA Astrophysics Data System (ADS)

    Li, Hui; Feng, Zengchao; Zhao, Dong; Duan, Dong

    2017-08-01

    A coal and gas outburst is an extreme hazard in underground mining. The present paper conducts a laboratory simulation of a coal and gas outburst combined with acoustic emission analysis. The experiment uses a three-dimensional stress loading system and a PCI-2 acoustic emission monitoring system. Furthermore, the development of a coal and gas outburst is numerically studied. The results demonstrate that the deformation and failure of a coal sample containing methane under three-dimensional stress involves four stages: initial compression, elastic deformation, plastic deformation and failure. The development of internal microscale fractures within a coal sample containing methane is reflected by the distribution of acoustic emission events. We observed that the deformation and failure zone for a coal sample under three-dimensional stress has an ellipsoid shape. Primary acoustic emission events are generated at the weak structural surface that compresses with ease due to the external ellipsoid-shaped stress. The number of events gradually increases until an outburst occurs. A mathematical model of the internal gas pressure and bulk stress is established through an analysis of the internal gas pressure and bulk stress of a coal sample, and it is useful for reproducing experimental results. The occurrence of a coal and gas outburst depends not only on the in situ stress, gas pressure and physical and mechanical characteristics of the coal mass but also on the free weak surface of the outburst outlet of the coal mass. It is more difficult for an outburst to occur from a stronger free surface.

  13. Fault tree analysis of failure cause of crushing plant and mixing bed hall at Khoy cement factory in Iran☆

    PubMed Central

    Nouri.Gharahasanlou, Ali; Mokhtarei, Ashkan; Khodayarei, Aliasqar; Ataei, Mohammad

    2014-01-01

    Evaluating and analyzing the risk in the mining industry is a new approach for improving the machinery performance. Reliability, safety, and maintenance management based on the risk analysis can enhance the overall availability and utilization of the mining technological systems. This study investigates the failure occurrence probability of the crushing and mixing bed hall department at Azarabadegan Khoy cement plant by using fault tree analysis (FTA) method. The results of the analysis in 200 h operating interval show that the probability of failure occurrence for crushing, conveyor systems, crushing and mixing bed hall department is 73, 64, and 95 percent respectively and the conveyor belt subsystem found as the most probable system for failure. Finally, maintenance as a method of control and prevent the occurrence of failure is proposed. PMID:26779433

  14. Stress Analysis of B-52B and B-52H Air-Launching Systems Failure-Critical Structural Components

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    2005-01-01

    The operational life analysis of any airborne failure-critical structural component requires the stress-load equation, which relates the applied load to the maximum tangential tensile stress at the critical stress point. The failure-critical structural components identified are the B-52B Pegasus pylon adapter shackles, B-52B Pegasus pylon hooks, B-52H airplane pylon hooks, B-52H airplane front fittings, B-52H airplane rear pylon fitting, and the B-52H airplane pylon lower sway brace. Finite-element stress analysis was performed on the said structural components, and the critical stress point was located and the stress-load equation was established for each failure-critical structural component. The ultimate load, yield load, and proof load needed for operational life analysis were established for each failure-critical structural component.

  15. Fault tree analysis of failure cause of crushing plant and mixing bed hall at Khoy cement factory in Iran.

    PubMed

    Nouri Gharahasanlou, Ali; Mokhtarei, Ashkan; Khodayarei, Aliasqar; Ataei, Mohammad

    2014-04-01

    Evaluating and analyzing the risk in the mining industry is a new approach for improving the machinery performance. Reliability, safety, and maintenance management based on the risk analysis can enhance the overall availability and utilization of the mining technological systems. This study investigates the failure occurrence probability of the crushing and mixing bed hall department at Azarabadegan Khoy cement plant by using fault tree analysis (FTA) method. The results of the analysis in 200 h operating interval show that the probability of failure occurrence for crushing, conveyor systems, crushing and mixing bed hall department is 73, 64, and 95 percent respectively and the conveyor belt subsystem found as the most probable system for failure. Finally, maintenance as a method of control and prevent the occurrence of failure is proposed.

  16. The social comfort of wearable technology and gestural interaction.

    PubMed

    Dunne, Lucy E; Profita, Halley; Zeagler, Clint; Clawson, James; Gilliland, Scott; Do, Ellen Yi-Luen; Budd, Jim

    2014-01-01

    The "wearability" of wearable technology addresses the factors that affect the degree of comfort the wearer experiences while wearing a device, including physical, psychological, and social aspects. While the physical and psychological aspects of wearing technology have been investigated since early in the development of the field of wearable computing, the social aspects of wearability have been less fully-explored. As wearable technology becomes increasingly common on the commercial market, social wearability is becoming an ever-more-important variable contributing to the success or failure of new products. Here we present an analysis of social aspects of wearability within the context of the greater understanding of wearability in wearable technology, and focus on selected theoretical frameworks for understanding how wearable products are perceived and evaluated in a social context. Qualitative results from a study of social acceptability of on-body interactions are presented as a case study of social wearability.

  17. Effects of a Problem-based Structure of Physics Contents on Conceptual Learning and the Ability to Solve Problems

    NASA Astrophysics Data System (ADS)

    Becerra-Labra, Carlos; Gras-Martí, Albert; Martínez Torregrosa, Joaquín

    2012-05-01

    A model of teaching/learning is proposed based on a 'problem-based structure' of the contents of the course, in combination with a training in paper and pencil problem solving that emphasizes discussion and quantitative analysis, rather than formulae plug-in. The aim is to reverse the high failure and attrition rate among engineering undergraduates taking physics. A number of tests and questionnaires were administered to a group of students following a traditional lecture-based instruction, as well as to another group that was following an instruction scheme based on the proposed approach and the teaching materials developed ad hoc. The results show that students following the new method can develop scientific reasoning habits in problem-solving skills, and show gains in conceptual learning, attitudes and interests, and that the effects of this approach on learning are noticeable several months after the course is over.

  18. Prognostic value of decreased peripheral congestion detected by Bioelectrical Impedance Vector Analysis (BIVA) in patients hospitalized for acute heart failure: BIVA prognostic value in acute heart failure.

    PubMed

    Santarelli, Simona; Russo, Veronica; Lalle, Irene; De Berardinis, Benedetta; Vetrone, Francesco; Magrini, Laura; Di Stasio, Enrico; Piccoli, Antonio; Codognotto, Marta; Mion, Monica M; Castello, Luigi M; Avanzi, Gian Carlo; Di Somma, Salvatore

    2017-06-01

    The objective of this study was to investigate the prognostic role of quantitative reduction of congestion during hospitalization assessed by Bioelectrical Impedance Vector Analysis (BIVA) serial evaluations in patients admitted for acute heart failure (AHF). AHF is a frequent reason for patients to be admitted. Exacerbation of chronic heart failure is linked with a progressive worsening of the disease with increased incidence of death. Fluid overload is the main mechanism underlying acute decompensation in these patients. BIVA is a validated technique able to quantify fluid overload. a prospective, multicentre, observational study in AHF and no AHF patients in three Emergency Departments centres in Italy. Clinical data and BIVA evaluations were performed at admission (t0) and discharge (tdis). A follow-up phone call was carried out at 90 days. Three hundred and thirty-six patients were enrolled (221 AHF and 115 no AHF patients). We found that clinical signs showed the most powerful prognostic relevance. In particular the presence of rales and lower limb oedema at tdis were linked with events relapse at 90 days. At t0, congestion detected by BIVA was observed only in the AHF group, and significantly decreased at tdis. An increase of resistance variation (dR/H) >11 Ω/m during hospitalization was associated with survival. BIVA showed significant results in predicting total events, both at t0 (area under the curve (AUC) 0.56, p<0.04) and at tdis (AUC 0.57, p<0.03). When combined with clinical signs, BIVA showed a very good predictive value for cardiovascular events at 90 days (AUC 0.97, p<0.0001). In AHF patients, an accurate physical examination evaluating the presence of rales and lower limbs oedema remains the cornerstone in the management of patients with AHF. A congestion reduction, obtained as a consequence of therapies and detected through BIVA analysis, with an increase of dR/H >11 Ω/m during hospitalization seems to be associated with increased 90 day survival in patients admitted for AHF.

  19. Availability Estimate of a Conceptual ESM System.

    DTIC Science & Technology

    1979-06-01

    affect mission operation.t A functional block level failure modes and effects analysis ( FMEA ) performed on the filter resulted in an assessed failure rate...is based on an FMEA of failures that disable the function (see Appendix A). A further 29 examination of the filter piece-parts reveals that the driver...Digital-to-analog converter DC Direct current DF Direction finding ESM Electronic Support Measures FMEA Failure modes and effects analysis FMPO

  20. Failure environment analysis tool applications

    NASA Astrophysics Data System (ADS)

    Pack, Ginger L.; Wadsworth, David B.

    1993-02-01

    Understanding risks and avoiding failure are daily concerns for the women and men of NASA. Although NASA's mission propels us to push the limits of technology, and though the risks are considerable, the NASA community has instilled within, the determination to preserve the integrity of the systems upon which our mission and, our employees lives and well-being depend. One of the ways this is being done is by expanding and improving the tools used to perform risk assessment. The Failure Environment Analysis Tool (FEAT) was developed to help engineers and analysts more thoroughly and reliably conduct risk assessment and failure analysis. FEAT accomplishes this by providing answers to questions regarding what might have caused a particular failure; or, conversely, what effect the occurrence of a failure might have on an entire system. Additionally, FEAT can determine what common causes could have resulted in other combinations of failures. FEAT will even help determine the vulnerability of a system to failures, in light of reduced capability. FEAT also is useful in training personnel who must develop an understanding of particular systems. FEAT facilitates training on system behavior, by providing an automated environment in which to conduct 'what-if' evaluation. These types of analyses make FEAT a valuable tool for engineers and operations personnel in the design, analysis, and operation of NASA space systems.

  1. Failure environment analysis tool applications

    NASA Technical Reports Server (NTRS)

    Pack, Ginger L.; Wadsworth, David B.

    1993-01-01

    Understanding risks and avoiding failure are daily concerns for the women and men of NASA. Although NASA's mission propels us to push the limits of technology, and though the risks are considerable, the NASA community has instilled within, the determination to preserve the integrity of the systems upon which our mission and, our employees lives and well-being depend. One of the ways this is being done is by expanding and improving the tools used to perform risk assessment. The Failure Environment Analysis Tool (FEAT) was developed to help engineers and analysts more thoroughly and reliably conduct risk assessment and failure analysis. FEAT accomplishes this by providing answers to questions regarding what might have caused a particular failure; or, conversely, what effect the occurrence of a failure might have on an entire system. Additionally, FEAT can determine what common causes could have resulted in other combinations of failures. FEAT will even help determine the vulnerability of a system to failures, in light of reduced capability. FEAT also is useful in training personnel who must develop an understanding of particular systems. FEAT facilitates training on system behavior, by providing an automated environment in which to conduct 'what-if' evaluation. These types of analyses make FEAT a valuable tool for engineers and operations personnel in the design, analysis, and operation of NASA space systems.

  2. Failure environment analysis tool applications

    NASA Technical Reports Server (NTRS)

    Pack, Ginger L.; Wadsworth, David B.

    1994-01-01

    Understanding risks and avoiding failure are daily concerns for the women and men of NASA. Although NASA's mission propels us to push the limits of technology, and though the risks are considerable, the NASA community has instilled within it, the determination to preserve the integrity of the systems upon which our mission and, our employees lives and well-being depend. One of the ways this is being done is by expanding and improving the tools used to perform risk assessment. The Failure Environment Analysis Tool (FEAT) was developed to help engineers and analysts more thoroughly and reliably conduct risk assessment and failure analysis. FEAT accomplishes this by providing answers to questions regarding what might have caused a particular failure; or, conversely, what effect the occurrence of a failure might have on an entire system. Additionally, FEAT can determine what common causes could have resulted in other combinations of failures. FEAT will even help determine the vulnerability of a system to failures, in light of reduced capability. FEAT also is useful in training personnel who must develop an understanding of particular systems. FEAT facilitates training on system behavior, by providing an automated environment in which to conduct 'what-if' evaluation. These types of analyses make FEAT a valuable tool for engineers and operations personnel in the design, analysis, and operation of NASA space systems.

  3. Product Support Manager Guidebook

    DTIC Science & Technology

    2011-04-01

    package is being developed using supportability analysis concepts such as Failure Mode, Effects and Criticality Analysis (FMECA), Fault Tree Analysis ( FTA ...Analysis (LORA) Condition Based Maintenance + (CBM+) Fault Tree Analysis ( FTA ) Failure Mode, Effects, and Criticality Analysis (FMECA) Maintenance Task...Reporting and Corrective Action System (FRACAS), Fault Tree Analysis ( FTA ), Level of Repair Analysis (LORA), Maintenance Task Analysis (MTA

  4. Reliability Analysis of Systems Subject to First-Passage Failure

    NASA Technical Reports Server (NTRS)

    Lutes, Loren D.; Sarkani, Shahram

    2009-01-01

    An obvious goal of reliability analysis is the avoidance of system failure. However, it is generally recognized that it is often not feasible to design a practical or useful system for which failure is impossible. Thus it is necessary to use techniques that estimate the likelihood of failure based on modeling the uncertainty about such items as the demands on and capacities of various elements in the system. This usually involves the use of probability theory, and a design is considered acceptable if it has a sufficiently small probability of failure. This report contains findings of analyses of systems subject to first-passage failure.

  5. Bearing failure detection of micro wind turbine via power spectral density analysis for stator current signals spectrum

    NASA Astrophysics Data System (ADS)

    Mahmood, Faleh H.; Kadhim, Hussein T.; Resen, Ali K.; Shaban, Auday H.

    2018-05-01

    The failure such as air gap weirdness, rubbing, and scrapping between stator and rotor generator arise unavoidably and may cause extremely terrible results for a wind turbine. Therefore, we should pay more attention to detect and identify its cause-bearing failure in wind turbine to improve the operational reliability. The current paper tends to use of power spectral density analysis method of detecting internal race and external race bearing failure in micro wind turbine by estimation stator current signal of the generator. The failure detector method shows that it is well suited and effective for bearing failure detection.

  6. Failure analysis of storage tank component in LNG regasification unit using fault tree analysis method (FTA)

    NASA Astrophysics Data System (ADS)

    Mulyana, Cukup; Muhammad, Fajar; Saad, Aswad H.; Mariah, Riveli, Nowo

    2017-03-01

    Storage tank component is the most critical component in LNG regasification terminal. It has the risk of failure and accident which impacts to human health and environment. Risk assessment is conducted to detect and reduce the risk of failure in storage tank. The aim of this research is determining and calculating the probability of failure in regasification unit of LNG. In this case, the failure is caused by Boiling Liquid Expanding Vapor Explosion (BLEVE) and jet fire in LNG storage tank component. The failure probability can be determined by using Fault Tree Analysis (FTA). Besides that, the impact of heat radiation which is generated is calculated. Fault tree for BLEVE and jet fire on storage tank component has been determined and obtained with the value of failure probability for BLEVE of 5.63 × 10-19 and for jet fire of 9.57 × 10-3. The value of failure probability for jet fire is high enough and need to be reduced by customizing PID scheme of regasification LNG unit in pipeline number 1312 and unit 1. The value of failure probability after customization has been obtained of 4.22 × 10-6.

  7. Trajectories of Offending and Their Relation to Life Failure in Late Middle Age: Findings from the Cambridge Study in Delinquent Development

    ERIC Educational Resources Information Center

    Piquero, Alex R.; Farrington, David P.; Nagin, Daniel S.; Moffitt, Terrie E.

    2010-01-01

    Researchers have hypothesized that over the life course, criminal offending varies with problems in other domains, including life failure and physical and mental health. To examine this issue, the authors use data from the Cambridge Study in Delinquent Development, a prospective longitudinal survey of 411 South London males first studied at age 8…

  8. Program Helps In Analysis Of Failures

    NASA Technical Reports Server (NTRS)

    Stevenson, R. W.; Austin, M. E.; Miller, J. G.

    1993-01-01

    Failure Environment Analysis Tool (FEAT) computer program developed to enable people to see and better understand effects of failures in system. User selects failures from either engineering schematic diagrams or digraph-model graphics, and effects or potential causes of failures highlighted in color on same schematic-diagram or digraph representation. Uses digraph models to answer two questions: What will happen to system if set of failure events occurs? and What are possible causes of set of selected failures? Helps design reviewers understand exactly what redundancies built into system and where there is need to protect weak parts of system or remove them by redesign. Program also useful in operations, where it helps identify causes of failure after they occur. FEAT reduces costs of evaluation of designs, training, and learning how failures propagate through system. Written using Macintosh Programmers Workshop C v3.1. Can be linked with CLIPS 5.0 (MSC-21927, available from COSMIC).

  9. Psychometric Analysis of the Heart Failure Somatic Perception Scale as a Measure of Patient Symptom Perception.

    PubMed

    Jurgens, Corrine Y; Lee, Christopher S; Riegel, Barbara

    Symptoms are known to predict survival among patients with heart failure (HF), but discrepancies exist between patients' and health providers' perceptions of HF symptom burden. The purpose of this study is to quantify the internal consistency, validity, and prognostic value of patient perception of a broad range of HF symptoms using an HF-specific physical symptom measure, the 18-item HF Somatic Perception Scale v. 3. Factor analysis of the HF Somatic Perception Scale was conducted in a convenience sample of 378 patients with chronic HF. Convergent validity was examined using the Physical Limitation subscale of the Kansas City Cardiomyopathy Questionnaire. Divergent validity was examined using the Self-care of HF Index self-care management score. One-year survival based on HF Somatic Perception Scale scores was quantified using Cox regression controlling for Seattle HF Model scores to account for clinical status, therapeutics, and lab values. The sample was 63% male, 85% white, 67% functionally compromised (New York Heart Association class III-IV) with a mean (SD) age of 63 (12.8) years. Internal consistency of the HF Somatic Perception Scale was α = .90. Convergent (r = -0.54, P < .0001) and divergent (r = 0.18, P > .05) validities were supported. Controlling for Seattle HF scores, HF Somatic Perception Scale was a significant predictor of 1-year survival, with those most symptomatic having worse survival (hazard ratio, 1.012; 95% confidence interval, 1.001-1.024; P = .038). Perception of HF symptom burden as measured by the HF Somatic Perception Scale is a significant predictor of survival, contributing additional prognostic value over and above objective Seattle HF Risk Model scores. This analysis suggests that assessment of a broad range of HF symptoms, or those related to dyspnea or early and subtle symptoms, may be useful in evaluating therapeutic outcomes and predicting event-free survival.

  10. Practical, transparent prospective risk analysis for the clinical laboratory.

    PubMed

    Janssens, Pim Mw

    2014-11-01

    Prospective risk analysis (PRA) is an essential element in quality assurance for clinical laboratories. Practical approaches to conducting PRA in laboratories, however, are scarce. On the basis of the classical Failure Mode and Effect Analysis method, an approach to PRA was developed for application to key laboratory processes. First, the separate, major steps of the process under investigation are identified. Scores are then given for the Probability (P) and Consequence (C) of predefined types of failures and the chances of Detecting (D) these failures. Based on the P and C scores (on a 10-point scale), an overall Risk score (R) is calculated. The scores for each process were recorded in a matrix table. Based on predetermined criteria for R and D, it was determined whether a more detailed analysis was required for potential failures and, ultimately, where risk-reducing measures were necessary, if any. As an illustration, this paper presents the results of the application of PRA to our pre-analytical and analytical activities. The highest R scores were obtained in the stat processes, the most common failure type in the collective process steps was 'delayed processing or analysis', the failure type with the highest mean R score was 'inappropriate analysis' and the failure type most frequently rated as suboptimal was 'identification error'. The PRA designed is a useful semi-objective tool to identify process steps with potential failures rated as risky. Its systematic design and convenient output in matrix tables makes it easy to perform, practical and transparent. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  11. Failure Engineering Study and Accelerated Stress Test Results for the Mars Global Surveyor Spacecraft's Power Shunt Assemblies

    NASA Technical Reports Server (NTRS)

    Gibbel, Mark; Larson, Timothy

    2000-01-01

    An Engineering-of-Failure approach to designing and executing an accelerated product qualification test was performed to support a risk assessment of a "work-around" necessitated by an on-orbit failure of another piece of hardware on the Mars Global Surveyor spacecraft. The proposed work-around involved exceeding the previous qualification experience both in terms of extreme cold exposure level and in terms of demonstrated low cycle fatigue life for the power shunt assemblies. An analysis was performed to identify potential failure sites, modes and associated failure mechanisms consistent with the new use conditions. A test was then designed and executed which accelerated the failure mechanisms identified by analysis. Verification of the resulting failure mechanism concluded the effort.

  12. Critical elements of clinical follow-up after hospital discharge for heart failure: insights from the EVEREST trial

    PubMed Central

    Dunlay, Shannon M.; Gheorghiade, Mihai; Reid, Kimberly J.; Allen, Larry A.; Chan, Paul S.; Hauptman, Paul J.; Zannad, Faiez; Maggioni, Aldo P.; Swedberg, Karl; Konstam, Marvin A.; Spertus, John A.

    2010-01-01

    Aims Hospitalized heart failure (HF) patients are at high risk for death and readmission. We examined the incremental value of data obtained 1 week after HF hospital discharge in predicting mortality and readmission. Methods and results In the Efficacy of Vasopressin Antagonism in Heart Failure Outcome Study with tolvaptan, 1528 hospitalized patients (ejection fraction ≤40%) with a physical examination, laboratories, and health status [Kansas City Cardiomyopathy Questionnaire (KCCQ)] assessments 1 week after discharge were included. The ability to predict 1 year cardiovascular rehospitalization and mortality was assessed with Cox models, c-statistics, and the integrated discrimination improvement (IDI). Not using a beta-blocker, rales, pedal oedema, hyponatraemia, lower creatinine clearance, higher brain natriuretic peptide, and worse health status were independent risk factors for rehospitalization and death. The c-statistic for the base model (history and medications) was 0.657. The model improved with physical examination, laboratory, and KCCQ results, with IDI increases of 4.9, 7.0, and 3.2%, respectively (P < 0.001 each). The combination of all three offered the greatest incremental gain (c-statistic 0.749; IDI increase 10.8%). Conclusion Physical examination, laboratories, and KCCQ assessed 1 week after discharge offer important prognostic information, suggesting that all are critical components of outpatient evaluation after HF hospitalization. PMID:20197265

  13. Risk analysis of analytical validations by probabilistic modification of FMEA.

    PubMed

    Barends, D M; Oldenhof, M T; Vredenbregt, M J; Nauta, M J

    2012-05-01

    Risk analysis is a valuable addition to validation of an analytical chemistry process, enabling not only detecting technical risks, but also risks related to human failures. Failure Mode and Effect Analysis (FMEA) can be applied, using a categorical risk scoring of the occurrence, detection and severity of failure modes, and calculating the Risk Priority Number (RPN) to select failure modes for correction. We propose a probabilistic modification of FMEA, replacing the categorical scoring of occurrence and detection by their estimated relative frequency and maintaining the categorical scoring of severity. In an example, the results of traditional FMEA of a Near Infrared (NIR) analytical procedure used for the screening of suspected counterfeited tablets are re-interpretated by this probabilistic modification of FMEA. Using this probabilistic modification of FMEA, the frequency of occurrence of undetected failure mode(s) can be estimated quantitatively, for each individual failure mode, for a set of failure modes, and the full analytical procedure. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. [Failure mode and effects analysis (FMEA) of insulin in a mother-child university-affiliated health center].

    PubMed

    Berruyer, M; Atkinson, S; Lebel, D; Bussières, J-F

    2016-01-01

    Insulin is a high-alert drug. The main objective of this descriptive cross-sectional study was to evaluate the risks associated with insulin use in healthcare centers. The secondary objective was to propose corrective measures to reduce the main risks associated with the most critical failure modes in the analysis. We conducted a failure mode and effects analysis (FMEA) in obstetrics-gynecology, neonatology and pediatrics. Five multidisciplinary meetings occurred in August 2013. A total of 44 out of 49 failure modes were analyzed. Nine out of 44 (20%) failure modes were deemed critical, with a criticality score ranging from 540 to 720. Following the multidisciplinary meetings, everybody agreed that an FMEA was a useful tool to identify failure modes and their relative importance. This approach identified many corrective measures. This shared experience increased awareness of safety issues with insulin in our mother-child center. This study identified the main failure modes and associated corrective measures. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  15. Advanced composites structural concepts and materials technologies for primary aircraft structures: Structural response and failure analysis

    NASA Technical Reports Server (NTRS)

    Dorris, William J.; Hairr, John W.; Huang, Jui-Tien; Ingram, J. Edward; Shah, Bharat M.

    1992-01-01

    Non-linear analysis methods were adapted and incorporated in a finite element based DIAL code. These methods are necessary to evaluate the global response of a stiffened structure under combined in-plane and out-of-plane loading. These methods include the Arc Length method and target point analysis procedure. A new interface material model was implemented that can model elastic-plastic behavior of the bond adhesive. Direct application of this method is in skin/stiffener interface failure assessment. Addition of the AML (angle minus longitudinal or load) failure procedure and Hasin's failure criteria provides added capability in the failure predictions. Interactive Stiffened Panel Analysis modules were developed as interactive pre-and post-processors. Each module provides the means of performing self-initiated finite elements based analysis of primary structures such as a flat or curved stiffened panel; a corrugated flat sandwich panel; and a curved geodesic fuselage panel. This module brings finite element analysis into the design of composite structures without the requirement for the user to know much about the techniques and procedures needed to actually perform a finite element analysis from scratch. An interactive finite element code was developed to predict bolted joint strength considering material and geometrical non-linearity. The developed method conducts an ultimate strength failure analysis using a set of material degradation models.

  16. Functional correlation approach to operational risk in banking organizations

    NASA Astrophysics Data System (ADS)

    Kühn, Reimer; Neu, Peter

    2003-05-01

    A Value-at-Risk-based model is proposed to compute the adequate equity capital necessary to cover potential losses due to operational risks, such as human and system process failures, in banking organizations. Exploring the analogy to a lattice gas model from physics, correlations between sequential failures are modeled by as functionally defined, heterogeneous couplings between mutually supportive processes. In contrast to traditional risk models for market and credit risk, where correlations are described as equal-time-correlations by a covariance matrix, the dynamics of the model shows collective phenomena such as bursts and avalanches of process failures.

  17. Learning from Failures: Archiving and Designing with Failure and Risk

    NASA Technical Reports Server (NTRS)

    VanWie, Michael; Bohm, Matt; Barrientos, Francesca; Turner, Irem; Stone, Robert

    2005-01-01

    Identifying and mitigating risks during conceptual design remains an ongoing challenge. This work presents the results of collaborative efforts between The University of Missouri-Rolla and NASA Ames Research Center to examine how an early stage mission design team at NASA addresses risk, and, how a computational support tool can assist these designers in their tasks. Results of our observations are given in addition to a brief example of our implementation of a repository based computational tool that allows users to browse and search through archived failure and risk data as related to either physical artifacts or functionality.

  18. Collaborative Research. Damage and Burst Dynamics in Failure of Complex Geomaterials. A Statistical Physics Approach to Understanding the Complex Emergent Dynamics in Near Mean-Field Geological Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rundle, John B.; Klein, William

    We have carried out research to determine the dynamics of failure in complex geomaterials, specifically focusing on the role of defects, damage and asperities in the catastrophic failure processes (now popularly termed “Black Swan events”). We have examined fracture branching and flow processes using models for invasion percolation, focusing particularly on the dynamics of bursts in the branching process. We have achieved a fundamental understanding of the dynamics of nucleation in complex geomaterials, specifically in the presence of inhomogeneous structures.

  19. The Haunted Inkbottle: Problems of Artistic Communication in Modernism

    DTIC Science & Technology

    1989-07-07

    Whether an artist relates his consciousness to his world--and ultimately to his audience--through physical , intellectual, or spiritual means is the crucial...to his audience--through physical , intellectual, or spiritual means is the crucial factor determining the success or failure of the artist in reaching...the point of physical collapse. Donald Spoto, however, in his biography of the playwright, remarks that company "employment records show that he did

  20. Attributions and self-efficacy for physical activity in multiple sclerosis.

    PubMed

    Nickel, D; Spink, K; Andersen, M; Knox, K

    2014-01-01

    Self-efficacy is an important predictor of health-related physical activity in multiple sclerosis (MS). While past experiences are believed to influence efficacy beliefs, the explanations individuals provide for these experiences also may be critical. Our objective was to test the hypothesis that perceived success or failure to accumulate 150 min of physical activity in the previous week would moderate the relationship between the attributional dimension of stability and self-efficacy to exercise in the future. Forty-two adults with MS participated in this cross-sectional descriptive study. Participants completed questions assessing physical activity, perceived outcome for meeting the recommended level of endurance activity, attributions for the outcome, and exercise self-efficacy. Results from hierarchical multiple regression revealed a significant main effect for perceived outcome predicting self-efficacy that was qualified by a significant interaction. The final model, which included perceived outcome, stability, and the interaction term, predicted 37% of the variance in exercise self-efficacy, F (3, 38) = 7.27, p = .001. Our findings suggest that the best prediction of self-efficacy in the MS population may include the interaction of specific attributional dimensions with success/failure at meeting the recommended physical activity dose. Attributions may be another target for interventions aimed at increasing the physical activity in MS.

  1. Chemical hazards database and detection system for Microgravity and Materials Processing Facility (MMPF)

    NASA Technical Reports Server (NTRS)

    Steele, Jimmy; Smith, Robert E.

    1991-01-01

    The ability to identify contaminants associated with experiments and facilities is directly related to the safety of the Space Station. A means of identifying these contaminants has been developed through this contracting effort. The delivered system provides a listing of the materials and/or chemicals associated with each facility, information as to the contaminant's physical state, a list of the quantity and/or volume of each suspected contaminant, a database of the toxicological hazards associated with each contaminant, a recommended means of rapid identification of the contaminants under operational conditions, a method of identifying possible failure modes and effects analysis associated with each facility, and a fault tree-type analysis that will provide a means of identifying potential hazardous conditions related to future planned missions.

  2. Enhancement of the fatigue performance of Ti-6Al-4V implant products

    NASA Astrophysics Data System (ADS)

    Wimalasiri, Dematapaksha H. R. J.

    Implants surgery, in particular hip implants, is fast becoming a routine, popular approach for curing diseases such as, osteoarthritis and rheumatic arthritis. However one potential problem with the insertion of a metal implant is that of the risk of fatigue failure. Numerous factors affect the propensity of a metal to fatigue, none more so than the physical and stress state of the surface. This research is focused on an assessment of the role of manufacturing processes on the fatigue performance of hip implants made from a Ti-6Al-4V alloy. The role of surface defects, surface residual stresses and material microstructural properties which influence fatigue performance were examined. Characterization of the implant material and of the processes involved in actual hip implant manufacturing were conducted. Rotating bend fatigue testing using hour glass shaped specimens was conducted to evaluate the fatigue performance at selected manufacturing stages. The surface roughness/defects and residual stresses were measured prior to conducting fatigue tests. A variation of fatigue limit, attributed to variations of surface roughness and surface residual stress was observed. The influence of parameters such as, stress ratio and mean stress effect, variation of fracture mechanics parameters (e.g. DeltaK[th]) and the limiting threshold conditions for different stages of cracks were investigated in the context of Kitagawa-Takahashi (K-T) type diagrams. Experimental data was used to develop models which were used to calculate, (i). fatigue life at respective stress amplitude and, (ii). the fatigue limit of components with known surface roughness/defect size and residual stress. To evaluate material crack growth properties a surface replication method was used. The output from both models showed good correlation with experimental data. Comprehensive fractography was conducted using optical, secondary electron, and infinite focus microscopy to support the results obtained from fatigue testing. Analysis was performed on in-vivo hip implant failure data covering the last 12 years. Fatigue failures occur in two locations on the implant stem, namely the cone area and the neck area. These two locations were investigated separately to identify the factors, such as; the category of implant most vulnerable to failure, service life, design features, fixation with the host bone, crack initiation features and propagation details. An attempt was made to compare in-vivo fatigue features with experimental fatigue results. X-ray diffraction (XRD) was used to investigate the surface residual stresses resulting from different manufacturing processes. The results were confirmed and software and hardware settings were calibrated in accordance with the results obtained from XRD analysis conducted at National Physical Laboratories (NPL), UK. Surface roughness measurements were also conducted using stylus type surface profilometer. The knowledge gained from this research can be used to understand the causes and modes of in-vivo fatigue failure of hip implants made of Ti-6Al-4V. Understanding the fatigue/mechanical properties of the implant material enables recommendations and optimization of good practice in manufacturing to eliminate in-vivo fatigue failures.

  3. Petascale computation of multi-physics seismic simulations

    NASA Astrophysics Data System (ADS)

    Gabriel, Alice-Agnes; Madden, Elizabeth H.; Ulrich, Thomas; Wollherr, Stephanie; Duru, Kenneth C.

    2017-04-01

    Capturing the observed complexity of earthquake sources in concurrence with seismic wave propagation simulations is an inherently multi-scale, multi-physics problem. In this presentation, we present simulations of earthquake scenarios resolving high-detail dynamic rupture evolution and high frequency ground motion. The simulations combine a multitude of representations of model complexity; such as non-linear fault friction, thermal and fluid effects, heterogeneous fault stress and fault strength initial conditions, fault curvature and roughness, on- and off-fault non-elastic failure to capture dynamic rupture behavior at the source; and seismic wave attenuation, 3D subsurface structure and bathymetry impacting seismic wave propagation. Performing such scenarios at the necessary spatio-temporal resolution requires highly optimized and massively parallel simulation tools which can efficiently exploit HPC facilities. Our up to multi-PetaFLOP simulations are performed with SeisSol (www.seissol.org), an open-source software package based on an ADER-Discontinuous Galerkin (DG) scheme solving the seismic wave equations in velocity-stress formulation in elastic, viscoelastic, and viscoplastic media with high-order accuracy in time and space. Our flux-based implementation of frictional failure remains free of spurious oscillations. Tetrahedral unstructured meshes allow for complicated model geometry. SeisSol has been optimized on all software levels, including: assembler-level DG kernels which obtain 50% peak performance on some of the largest supercomputers worldwide; an overlapping MPI-OpenMP parallelization shadowing the multiphysics computations; usage of local time stepping; parallel input and output schemes and direct interfaces to community standard data formats. All these factors enable aim to minimise the time-to-solution. The results presented highlight the fact that modern numerical methods and hardware-aware optimization for modern supercomputers are essential to further our understanding of earthquake source physics and complement both physic-based ground motion research and empirical approaches in seismic hazard analysis. Lastly, we will conclude with an outlook on future exascale ADER-DG solvers for seismological applications.

  4. Factors influencing change in walking ability in patients with heart failure undergoing exercise-based cardiac rehabilitation.

    PubMed

    Sutherland, Natasha; Harrison, Alexander; Doherty, Patrick

    2018-05-17

    Exercise-based cardiac rehabilitation (CR) is an effective intervention for patients with heart failure (HF), in which one of the main targets is to increase physical capacity. In the HF population this is traditionally assessed using distance covered during a walking test. This study aims to establish the extent to which change in walking ability, in HF patients attending CR, is determined by patient characteristics and service provision. The study utilised routine clinical data from the National Audit of Cardiac Rehabilitation to perform a robust analysis. Change, in metres, between pre- and post-CR six-minute walk tests was calculated. Multivariate linear regression models were used to explore the relationship between patient characteristics, service-level variables, and change in metres walked. Complete and valid data from 633 patients was analysed, and a mean change of 51.30 m was calculated. Female gender (-34.13 m, p = 0.007), being retired (-36.41 m, p = 0.001) and being married/in a relationship (-32.54 m, p = 0.023) were all significant negative predictors of change. There was an additional negative relationship with body mass index (BMI) whereby for every unit increase in BMI, predicted change reduces by 2.48 m (p = 0.006). This study identified significant patient-level characteristics strongly associated with limited improvement in walking ability following CR. Improving physical capacity is a core component of CR, therefore services should aim to account for baseline characteristics identified in this study as part of tailoring the CR intervention around the individual. Pre- and post-CR physical capacity assessments, which constitute minimum standards for CR, are worryingly low and should be given high priority. Copyright © 2017. Published by Elsevier B.V.

  5. Real-time automated failure analysis for on-orbit operations

    NASA Technical Reports Server (NTRS)

    Kirby, Sarah; Lauritsen, Janet; Pack, Ginger; Ha, Anhhoang; Jowers, Steven; Mcnenny, Robert; Truong, The; Dell, James

    1993-01-01

    A system which is to provide real-time failure analysis support to controllers at the NASA Johnson Space Center Control Center Complex (CCC) for both Space Station and Space Shuttle on-orbit operations is described. The system employs monitored systems' models of failure behavior and model evaluation algorithms which are domain-independent. These failure models are viewed as a stepping stone to more robust algorithms operating over models of intended function. The described system is designed to meet two sets of requirements. It must provide a useful failure analysis capability enhancement to the mission controller. It must satisfy CCC operational environment constraints such as cost, computer resource requirements, verification, and validation. The underlying technology and how it may be used to support operations is also discussed.

  6. Using Seismic Signals to Forecast Volcanic Processes

    NASA Astrophysics Data System (ADS)

    Salvage, R.; Neuberg, J. W.

    2012-04-01

    Understanding seismic signals generated during volcanic unrest have the ability to allow scientists to more accurately predict and understand active volcanoes since they are intrinsically linked to rock failure at depth (Voight, 1988). In particular, low frequency long period signals (LP events) have been related to the movement of fluid and the brittle failure of magma at depth due to high strain rates (Hammer and Neuberg, 2009). This fundamentally relates to surface processes. However, there is currently no physical quantitative model for determining the likelihood of an eruption following precursory seismic signals, or the timing or type of eruption that will ensue (Benson et al., 2010). Since the beginning of its current eruptive phase, accelerating LP swarms (< 10 events per hour) have been a common feature at Soufriere Hills volcano, Montserrat prior to surface expressions such as dome collapse or eruptions (Miller et al., 1998). The dynamical behaviour of such swarms can be related to accelerated magma ascent rates since the seismicity is thought to be a consequence of magma deformation as it rises to the surface. In particular, acceleration rates can be successfully used in collaboration with the inverse material failure law; a linear relationship against time (Voight, 1988); in the accurate prediction of volcanic eruption timings. Currently, this has only been investigated for retrospective events (Hammer and Neuberg, 2009). The identification of LP swarms on Montserrat and analysis of their dynamical characteristics allows a better understanding of the nature of the seismic signals themselves, as well as their relationship to surface processes such as magma extrusion rates. Acceleration and deceleration rates of seismic swarms provide insights into the plumbing system of the volcano at depth. The application of the material failure law to multiple LP swarms of data allows a critical evaluation of the accuracy of the method which further refines current understanding of the relationship between seismic signals and volcanic eruptions. It is hoped that such analysis will assist the development of real time forecasting models.

  7. Damage tolerance modeling and validation of a wireless sensory composite panel for a structural health monitoring system

    NASA Astrophysics Data System (ADS)

    Talagani, Mohamad R.; Abdi, Frank; Saravanos, Dimitris; Chrysohoidis, Nikos; Nikbin, Kamran; Ragalini, Rose; Rodov, Irena

    2013-05-01

    The paper proposes the diagnostic and prognostic modeling and test validation of a Wireless Integrated Strain Monitoring and Simulation System (WISMOS). The effort verifies a hardware and web based software tool that is able to evaluate and optimize sensorized aerospace composite structures for the purpose of Structural Health Monitoring (SHM). The tool is an extension of an existing suite of an SHM system, based on a diagnostic-prognostic system (DPS) methodology. The goal of the extended SHM-DPS is to apply multi-scale nonlinear physics-based Progressive Failure analyses to the "as-is" structural configuration to determine residual strength, remaining service life, and future inspection intervals and maintenance procedures. The DPS solution meets the JTI Green Regional Aircraft (GRA) goals towards low weight, durable and reliable commercial aircraft. It will take advantage of the currently developed methodologies within the European Clean sky JTI project WISMOS, with the capability to transmit, store and process strain data from a network of wireless sensors (e.g. strain gages, FBGA) and utilize a DPS-based methodology, based on multi scale progressive failure analysis (MS-PFA), to determine structural health and to advice with respect to condition based inspection and maintenance. As part of the validation of the Diagnostic and prognostic system, Carbon/Epoxy ASTM coupons were fabricated and tested to extract the mechanical properties. Subsequently two composite stiffened panels were manufactured, instrumented and tested under compressive loading: 1) an undamaged stiffened buckling panel; and 2) a damaged stiffened buckling panel including an initial diamond cut. Next numerical Finite element models of the two panels were developed and analyzed under test conditions using Multi-Scale Progressive Failure Analysis (an extension of FEM) to evaluate the damage/fracture evolution process, as well as the identification of contributing failure modes. The comparisons between predictions and test results were within 10% accuracy.

  8. Uncertainty and Intelligence in Computational Stochastic Mechanics

    NASA Technical Reports Server (NTRS)

    Ayyub, Bilal M.

    1996-01-01

    Classical structural reliability assessment techniques are based on precise and crisp (sharp) definitions of failure and non-failure (survival) of a structure in meeting a set of strength, function and serviceability criteria. These definitions are provided in the form of performance functions and limit state equations. Thus, the criteria provide a dichotomous definition of what real physical situations represent, in the form of abrupt change from structural survival to failure. However, based on observing the failure and survival of real structures according to the serviceability and strength criteria, the transition from a survival state to a failure state and from serviceability criteria to strength criteria are continuous and gradual rather than crisp and abrupt. That is, an entire spectrum of damage or failure levels (grades) is observed during the transition to total collapse. In the process, serviceability criteria are gradually violated with monotonically increasing level of violation, and progressively lead into the strength criteria violation. Classical structural reliability methods correctly and adequately include the ambiguity sources of uncertainty (physical randomness, statistical and modeling uncertainty) by varying amounts. However, they are unable to adequately incorporate the presence of a damage spectrum, and do not consider in their mathematical framework any sources of uncertainty of the vagueness type. Vagueness can be attributed to sources of fuzziness, unclearness, indistinctiveness, sharplessness and grayness; whereas ambiguity can be attributed to nonspecificity, one-to-many relations, variety, generality, diversity and divergence. Using the nomenclature of structural reliability, vagueness and ambiguity can be accounted for in the form of realistic delineation of structural damage based on subjective judgment of engineers. For situations that require decisions under uncertainty with cost/benefit objectives, the risk of failure should depend on the underlying level of damage and the uncertainties associated with its definition. A mathematical model for structural reliability assessment that includes both ambiguity and vagueness types of uncertainty was suggested to result in the likelihood of failure over a damage spectrum. The resulting structural reliability estimates properly represent the continuous transition from serviceability to strength limit states over the ultimate time exposure of the structure. In this section, a structural reliability assessment method based on a fuzzy definition of failure is suggested to meet these practical needs. A failure definition can be developed to indicate the relationship between failure level and structural response. In this fuzzy model, a subjective index is introduced to represent all levels of damage (or failure). This index can be interpreted as either a measure of failure level or a measure of a degree of belief in the occurrence of some performance condition (e.g., failure). The index allows expressing the transition state between complete survival and complete failure for some structural response based on subjective evaluation and judgment.

  9. Failure analysis of aluminum alloy components

    NASA Technical Reports Server (NTRS)

    Johari, O.; Corvin, I.; Staschke, J.

    1973-01-01

    Analysis of six service failures in aluminum alloy components which failed in aerospace applications is reported. Identification of fracture surface features from fatigue and overload modes was straightforward, though the specimens were not always in a clean, smear-free condition most suitable for failure analysis. The presence of corrosion products and of chemically attacked or mechanically rubbed areas here hindered precise determination of the cause of crack initiation, which was then indirectly inferred from the scanning electron fractography results. In five failures the crack propagation was by fatigue, though in each case the fatigue crack initiated from a different cause. Some of these causes could be eliminated in future components by better process control. In one failure, the cause was determined to be impact during a crash; the features of impact fracture were distinguished from overload fractures by direct comparisons of the received specimens with laboratory-generated failures.

  10. Fukushima Daiichi Unit 1 Uncertainty Analysis-Exploration of Core Melt Progression Uncertain Parameters-Volume II.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denman, Matthew R.; Brooks, Dusty Marie

    Sandia National Laboratories (SNL) has conducted an uncertainty analysi s (UA) on the Fukushima Daiichi unit (1F1) accident progression wit h the MELCOR code. Volume I of the 1F1 UA discusses the physical modeling details and time history results of the UA. Volume II of the 1F1 UA discusses the statistical viewpoint. The model used was developed for a previous accident reconstruction investigation jointly sponsored by the US Department of Energy (DOE) and Nuclear Regulatory Commission (NRC). The goal of this work was to perform a focused evaluation of uncertainty in core damage progression behavior and its effect on keymore » figures - of - merit (e.g., hydrogen production, fraction of intact fuel, vessel lower head failure) and in doing so assess the applicability of traditional sensitivity analysis techniques .« less

  11. Model-Driven Safety Analysis of Closed-Loop Medical Systems

    PubMed Central

    Pajic, Miroslav; Mangharam, Rahul; Sokolsky, Oleg; Arney, David; Goldman, Julian; Lee, Insup

    2013-01-01

    In modern hospitals, patients are treated using a wide array of medical devices that are increasingly interacting with each other over the network, thus offering a perfect example of a cyber-physical system. We study the safety of a medical device system for the physiologic closed-loop control of drug infusion. The main contribution of the paper is the verification approach for the safety properties of closed-loop medical device systems. We demonstrate, using a case study, that the approach can be applied to a system of clinical importance. Our method combines simulation-based analysis of a detailed model of the system that contains continuous patient dynamics with model checking of a more abstract timed automata model. We show that the relationship between the two models preserves the crucial aspect of the timing behavior that ensures the conservativeness of the safety analysis. We also describe system design that can provide open-loop safety under network failure. PMID:24177176

  12. Model-Driven Safety Analysis of Closed-Loop Medical Systems.

    PubMed

    Pajic, Miroslav; Mangharam, Rahul; Sokolsky, Oleg; Arney, David; Goldman, Julian; Lee, Insup

    2012-10-26

    In modern hospitals, patients are treated using a wide array of medical devices that are increasingly interacting with each other over the network, thus offering a perfect example of a cyber-physical system. We study the safety of a medical device system for the physiologic closed-loop control of drug infusion. The main contribution of the paper is the verification approach for the safety properties of closed-loop medical device systems. We demonstrate, using a case study, that the approach can be applied to a system of clinical importance. Our method combines simulation-based analysis of a detailed model of the system that contains continuous patient dynamics with model checking of a more abstract timed automata model. We show that the relationship between the two models preserves the crucial aspect of the timing behavior that ensures the conservativeness of the safety analysis. We also describe system design that can provide open-loop safety under network failure.

  13. Evolutionary game theory for physical and biological scientists. I. Training and validating population dynamics equations.

    PubMed

    Liao, David; Tlsty, Thea D

    2014-08-06

    Failure to understand evolutionary dynamics has been hypothesized as limiting our ability to control biological systems. An increasing awareness of similarities between macroscopic ecosystems and cellular tissues has inspired optimism that game theory will provide insights into the progression and control of cancer. To realize this potential, the ability to compare game theoretic models and experimental measurements of population dynamics should be broadly disseminated. In this tutorial, we present an analysis method that can be used to train parameters in game theoretic dynamics equations, used to validate the resulting equations, and used to make predictions to challenge these equations and to design treatment strategies. The data analysis techniques in this tutorial are adapted from the analysis of reaction kinetics using the method of initial rates taught in undergraduate general chemistry courses. Reliance on computer programming is avoided to encourage the adoption of these methods as routine bench activities.

  14. [Actuarial analysis of time-failure data and its rrelevance for interpretation of results. Audit of the journal "Strahlentherapie und Onkologie" (Radiotherapy and Oncology)].

    PubMed

    Dubben, H H; Beck-Bornholdt, H P

    2000-12-01

    The statistical quality of the contributions to "Strahlentherapie und Onkologie" is assessed, aiming for improvement of the journal and consequently its impact factor. All 181 articles published during 1998 and 1999 in the categories "review", "original contribution", and "short communication" were analyzed concerning actuarial analysis of time-failure data. One hundred and twenty-three publications without time-failure data were excluded from analysis. Forty-five of the remaining 58 publications with time-failure data were evaluated actuarially. This corresponds to 78% (95% confidence interval: 64 to 88%) of papers, in which data were adequately analyzed. Complications were reported in 16 of 58 papers, but in only 3 cases actuarially. The number of patients at risk during the course of follow-up was documented adequately in 22 of the 45 publications with actuarial analysis. Authors, peer reviewers, and editors could contribute to improve the quality of the journal by setting value on acturial analysis of time-failure data.

  15. Space Shuttle Main Engine structural analysis and data reduction/evaluation. Volume 1: Aft Skirt analysis

    NASA Technical Reports Server (NTRS)

    Berry, David M.; Stansberry, Mark

    1989-01-01

    Using the ANSYS finite element program, a global model of the aft skirt and a detailed nonlinear model of the failure region was made. The analysis confirmed the area of failure in both STA-2B and STA-3 tests as the forging heat affected zone (HAZ) at the aft ring centerline. The highest hoop strain in the HAZ occurs in this area. However, the analysis does not predict failure as defined by ultimate elongation of the material equal to 3.5 percent total strain. The analysis correlates well with the strain gage data from both the Wyle influence test of the original design aft sjirt and the STA-3 test of the redesigned aft skirt. it is suggested that the sensitivity of the failure area material strength and stress/strain state to material properties and therefore to small manufacturing or processing variables is the most likely cause of failure below the expected material ultimate properties.

  16. Fibre Break Failure Processes in Unidirectional Composites. Part 2: Failure and Critical Damage State Induced by Sustained Tensile Loading

    NASA Astrophysics Data System (ADS)

    Thionnet, A.; Chou, H. Y.; Bunsell, A.

    2015-04-01

    The purpose of these three papers is not to just revisit the modelling of unidirectional composites. It is to provide a robust framework based on physical processes that can be used to optimise the design and long term reliability of internally pressurised filament wound structures. The model presented in Part 1 for the case of monotonically loaded unidirectional composites is further developed to consider the effects of the viscoelastic nature of the matrix in determining the kinetics of fibre breaks under slow or sustained loading. It is shown that the relaxation of the matrix around fibre breaks leads to locally increasing loads on neighbouring fibres and in some cases their delayed failure. Although ultimate failure is similar to the elastic case in that clusters of fibre breaks ultimately control composite failure the kinetics of their development varies significantly from the elastic case. Failure loads have been shown to reduce when loading rates are lowered.

  17. Sizing up the Threat: The Envisioned Physical Formidability of Terrorists Tracks Their Leaders' Failures and Successes

    ERIC Educational Resources Information Center

    Holbrook, Colin; Fessler, Daniel M. T.

    2013-01-01

    Victory in modern intergroup conflict derives from complex factors, including weaponry, economic resources, tactical outcomes, and leadership. We hypothesize that the mind summarizes such factors into simple metaphorical representations of physical size and strength, concrete dimensions that have determined the outcome of combat throughout both…

  18. Succeed Together or Fail Alone: Going from Good to Great in Physical Education

    ERIC Educational Resources Information Center

    Pennington, Todd R.; Prusak, Keven A.; Wilkinson, Carol

    2014-01-01

    "What we have is a systemic failure--one that involves the relationship of physical education programs in public schools with teacher preparation in higher education." (Siedentop & Locke, 1997). This assessment led Prusak, Pennington, Vincent-Graser, Beighle, and Morgan (2010) to an examination of a school district that seemed to…

  19. The Conceptual Foundations of Quantum Mechanics.

    ERIC Educational Resources Information Center

    Eisenbud, Leonard

    This monograph was written for the Conference on the New Instructional Materials in Physics, held at the University of Washington in summer, 1965. It is intended for use by college students at the Junior and Senior levels. There are nine chapters in this monograph. The failure of classical theory in dealing with elementary particles physics is…

  20. Failure, Remediation, and Success in Physical Therapy Clinical Education: Is Mindfulness Present?

    ERIC Educational Resources Information Center

    Willgens, Annette

    2013-01-01

    Mindfulness, a purposeful and nonjudgmental awareness of internal affective states, is emerging rapidly in the field of occupational therapy and medicine, but has not yet gained credibility in the education of the physical therapy profession. Some students lack the self-awareness needed to act on professional values, which prevents them from…

Top