High resolution physical mapping of single gene fragments on pachytene chromosome 4 and 7 of Rosa.
Kirov, Ilya V; Van Laere, Katrijn; Khrustaleva, Ludmila I
2015-07-02
Rosaceae is a family containing many economically important fruit and ornamental species. Although fluorescence in situ hybridization (FISH)-based physical mapping of plant genomes is a valuable tool for map-based cloning, comparative genomics and evolutionary studies, no studies using high resolution physical mapping have been performed in this family. Previously we proved that physical mapping of single-copy genes as small as 1.1 kb is possible on mitotic metaphase chromosomes of Rosa wichurana using Tyramide-FISH. In this study we aimed to further improve the physical map of Rosa wichurana by applying high resolution FISH to pachytene chromosomes. Using high resolution Tyramide-FISH and multicolor Tyramide-FISH, 7 genes (1.7-3 kb) were successfully mapped on pachytene chromosomes 4 and 7 of Rosa wichurana. Additionally, by using multicolor Tyramide-FISH three closely located genes were simultaneously visualized on chromosome 7. A detailed map of heterochromatine/euchromatine patterns of chromosome 4 and 7 was developed with indication of the physical position of these 7 genes. Comparison of the gene order between Rosa wichurana and Fragaria vesca revealed a poor collinearity for chromosome 7, but a perfect collinearity for chromosome 4. High resolution physical mapping of short probes on pachytene chromosomes of Rosa wichurana was successfully performed for the first time. Application of Tyramide-FISH on pachytene chromosomes allowed the mapping resolution to be increased up to 20 times compared to mitotic metaphase chromosomes. High resolution Tyramide-FISH and multicolor Tyramide-FISH might become useful tools for further physical mapping of single-copy genes and for the integration of physical and genetic maps of Rosa wichurana and other members of the Rosaceae.
Exploring physics concepts among novice teachers through CMAP tools
NASA Astrophysics Data System (ADS)
Suprapto, N.; Suliyanah; Prahani, B. K.; Jauhariyah, M. N. R.; Admoko, S.
2018-03-01
Concept maps are graphical tools for organising, elaborating and representing knowledge. Through Cmap tools software, it can be explored the understanding and the hierarchical structuring of physics concepts among novice teachers. The software helps physics teachers indicated a physics context, focus questions, parking lots, cross-links, branching, hierarchy, and propositions. By using an exploratory quantitative study, a total 13-concept maps with different physics topics created by novice physics teachers were analysed. The main differences of scoring between lecturer and peer-teachers’ scoring were also illustrated. The study offered some implications, especially for physics educators to determine the hierarchical structure of the physics concepts, to construct a physics focus question, and to see how a concept in one domain of knowledge represented on the map is related to a concept in another domain shown on the map.
The Effects of Integrating Computer-Based Concept Mapping for Physics Learning in Junior High School
ERIC Educational Resources Information Center
Chang, Cheng-Chieh; Yeh, Ting-Kuang; Shih, Chang-Ming
2016-01-01
It generally is accepted that concept mapping has a noticeable impact on learning. But literatures show the use of concept mapping is not benefit all learners. The present study explored the effects of incorporating computer-based concept mapping in physics instruction. A total of 61 9th-grade students participated in this study. By using a…
Zhou, Gaofeng; Jian, Jianbo; Wang, Penghao; Li, Chengdao; Tao, Ye; Li, Xuan; Renshaw, Daniel; Clements, Jonathan; Sweetingham, Mark; Yang, Huaan
2018-01-01
An ultra-high density genetic map containing 34,574 sequence-defined markers was developed in Lupinus angustifolius. Markers closely linked to nine genes of agronomic traits were identified. A physical map was improved to cover 560.5 Mb genome sequence. Lupin (Lupinus angustifolius L.) is a recently domesticated legume grain crop. In this study, we applied the restriction-site associated DNA sequencing (RADseq) method to genotype an F 9 recombinant inbred line population derived from a wild type × domesticated cultivar (W × D) cross. A high density linkage map was developed based on the W × D population. By integrating sequence-defined DNA markers reported in previous mapping studies, we established an ultra-high density consensus genetic map, which contains 34,574 markers consisting of 3508 loci covering 2399 cM on 20 linkage groups. The largest gap in the entire consensus map was 4.73 cM. The high density W × D map and the consensus map were used to develop an improved physical map, which covered 560.5 Mb of genome sequence data. The ultra-high density consensus linkage map, the improved physical map and the markers linked to genes of breeding interest reported in this study provide a common tool for genome sequence assembly, structural genomics, comparative genomics, functional genomics, QTL mapping, and molecular plant breeding in lupin.
2013-01-01
Background As for other major crops, achieving a complete wheat genome sequence is essential for the application of genomics to breeding new and improved varieties. To overcome the complexities of the large, highly repetitive and hexaploid wheat genome, the International Wheat Genome Sequencing Consortium established a chromosome-based strategy that was validated by the construction of the physical map of chromosome 3B. Here, we present improved strategies for the construction of highly integrated and ordered wheat physical maps, using chromosome 1BL as a template, and illustrate their potential for evolutionary studies and map-based cloning. Results Using a combination of novel high throughput marker assays and an assembly program, we developed a high quality physical map representing 93% of wheat chromosome 1BL, anchored and ordered with 5,489 markers including 1,161 genes. Analysis of the gene space organization and evolution revealed that gene distribution and conservation along the chromosome results from the superimposition of the ancestral grass and recent wheat evolutionary patterns, leading to a peak of synteny in the central part of the chromosome arm and an increased density of non-collinear genes towards the telomere. With a density of about 11 markers per Mb, the 1BL physical map provides 916 markers, including 193 genes, for fine mapping the 40 QTLs mapped on this chromosome. Conclusions Here, we demonstrate that high marker density physical maps can be developed in complex genomes such as wheat to accelerate map-based cloning, gain new insights into genome evolution, and provide a foundation for reference sequencing. PMID:23800011
ERIC Educational Resources Information Center
Martinez, Guadalupe; Perez, Angel Luis; Suero, Maria Isabel; Pardo, Pedro J.
2013-01-01
A study was conducted to quantify the effectiveness of concept maps in learning physics in engineering degrees. The following research question was posed: What was the difference in learning results from the use of concept maps to study a particular topic in an engineering course? The study design was quasi-experimental and used a post-test as a…
ERIC Educational Resources Information Center
Pollard, Elicia L.
2010-01-01
The purposes of this study are to investigate whether the quiz scores of physical therapy students who integrated mind mapping in their learning strategies are significantly different than the quiz scores of students who did not use mind mapping to learn in a lecture-based research course and examine the students' perceptions of mind mapping as a…
Cain, Kelli L; Gavand, Kavita A; Conway, Terry L; Geremia, Carrie M; Millstein, Rachel A; Frank, Lawrence D; Saelens, Brian E; Adams, Marc A; Glanz, Karen; King, Abby C; Sallis, James F
2017-06-01
Macroscale built environment factors (e.g., street connectivity) are correlated with physical activity. Less-studied but more modifiable microscale elements (e.g., sidewalks) may also influence physical activity, but shorter audit measures of microscale elements are needed to promote wider use. This study evaluated the relation of an abbreviated 54-item streetscape audit tool with multiple measures of physical activity in four age groups. We developed a 54-item version from the original 120-item Microscale Audit of Pedestrian Streetscapes (MAPS). Audits were conducted on 0.25-0.45 mile routes from participant residences toward the nearest nonresidential destination for children (N=758), adolescents (N=897), younger adults (N=1,655), and older adults (N=367). Active transport and leisure physical activity were measured with surveys, and objective physical activity was measured with accelerometers. Items to retain from original MAPS were selected primarily by correlations with physical activity. Mixed linear regression analyses were conducted for MAPS-Abbreviated summary scores, adjusting for demographics, participant clustering, and macroscale walkability. MAPS-Abbreviated and original MAPS total scores correlated r=.94 The MAPS-Abbreviated tool was related similarly to physical activity outcomes as the original MAPS. Destinations and land use, streetscape and walking path characteristics, and overall total scores were significantly related to active transport in all age groups. Street crossing characteristics were related to active transport in children and older adults. Aesthetics and social characteristics were related to leisure physical activity in children and younger adults, and cul-de-sacs were related with physical activity in youth. Total scores were related to accelerometer-measured physical activity in children and older adults. MAPS-Abbreviated is a validated observational measure for use in research. The length and related cost of implementation has been cited as a barrier to use of microscale instruments, so availability of this shorter validated measure could lead to more widespread use of streetscape audits in health research.
Cain, Kelli L.; Gavand, Kavita A.; Conway, Terry L.; Geremia, Carrie M.; Millstein, Rachel A.; Frank, Lawrence D.; Saelens, Brian E.; Adams, Marc A.; Glanz, Karen; King, Abby C.; Sallis, James F.
2017-01-01
Purpose Macroscale built environment factors (e.g., street connectivity) are correlated with physical activity. Less-studied but more modifiable microscale elements (e.g., sidewalks) may also influence physical activity, but shorter audit measures of microscale elements are needed to promote wider use. This study evaluated the relation of an abbreviated 54-item streetscape audit tool with multiple measures of physical activity in four age groups. Methods We developed a 54-item version from the original 120-item Microscale Audit of Pedestrian Streetscapes (MAPS). Audits were conducted on 0.25-0.45 mile routes from participant residences toward the nearest nonresidential destination for children (N=758), adolescents (N=897), younger adults (N=1,655), and older adults (N=367). Active transport and leisure physical activity were measured with surveys, and objective physical activity was measured with accelerometers. Items to retain from original MAPS were selected primarily by correlations with physical activity. Mixed linear regression analyses were conducted for MAPS-Abbreviated summary scores, adjusting for demographics, participant clustering, and macroscale walkability. Results MAPS-Abbreviated and original MAPS total scores correlated r=.94 The MAPS-Abbreviated tool was related similarly to physical activity outcomes as the original MAPS. Destinations and land use, streetscape and walking path characteristics, and overall total scores were significantly related to active transport in all age groups. Street crossing characteristics were related to active transport in children and older adults. Aesthetics and social characteristics were related to leisure physical activity in children and younger adults, and cul-de-sacs were related with physical activity in youth. Total scores were related to accelerometer-measured physical activity in children and older adults. Conclusion MAPS-Abbreviated is a validated observational measure for use in research. The length and related cost of implementation has been cited as a barrier to use of microscale instruments, so availability of this shorter validated measure could lead to more widespread use of streetscape audits in health research. PMID:29270361
Tulpová, Zuzana; Luo, Ming-Cheng; Toegelová, Helena; Visendi, Paul; Hayashi, Satomi; Vojta, Petr; Paux, Etienne; Kilian, Andrzej; Abrouk, Michaël; Bartoš, Jan; Hajdúch, Marián; Batley, Jacqueline; Edwards, David; Doležel, Jaroslav; Šimková, Hana
2018-03-08
Bread wheat (Triticum aestivum L.) is a staple food for a significant part of the world's population. The growing demand on its production can be satisfied by improving yield and resistance to biotic and abiotic stress. Knowledge of the genome sequence would aid in discovering genes and QTLs underlying these traits and provide a basis for genomics-assisted breeding. Physical maps and BAC clones associated with them have been valuable resources from which to generate a reference genome of bread wheat and to assist map-based gene cloning. As a part of a joint effort coordinated by the International Wheat Genome Sequencing Consortium, we have constructed a BAC-based physical map of bread wheat chromosome arm 7DS consisting of 895 contigs and covering 94% of its estimated length. By anchoring BAC contigs to one radiation hybrid map and three high resolution genetic maps, we assigned 73% of the assembly to a distinct genomic position. This map integration, interconnecting a total of 1713 markers with ordered and sequenced BAC clones from a minimal tiling path, provides a tool to speed up gene cloning in wheat. The process of physical map assembly included the integration of the 7DS physical map with a whole-genome physical map of Aegilops tauschii and a 7DS Bionano genome map, which together enabled efficient scaffolding of physical-map contigs, even in the non-recombining region of the genetic centromere. Moreover, this approach facilitated a comparison of bread wheat and its ancestor at BAC-contig level and revealed a reconstructed region in the 7DS pericentromere. Copyright © 2018. Published by Elsevier B.V.
ERIC Educational Resources Information Center
Luchembe, Dennis; Chinyama, Kaumba; Jumbe, Jack
2014-01-01
The study was conducted to show the effectiveness of concept mapping as a teaching strategy to undergraduate students taking introductory physics course. A number of researchers have investigated the effectiveness of concept mapping on student academic achievement. The main focus of these studies have been on comparing the effectiveness of concept…
Is Your Neighborhood Designed to Support Physical Activity? A Brief Streetscape Audit Tool.
Sallis, James F; Cain, Kelli L; Conway, Terry L; Gavand, Kavita A; Millstein, Rachel A; Geremia, Carrie M; Frank, Lawrence D; Saelens, Brian E; Glanz, Karen; King, Abby C
2015-09-03
Macro level built environment factors (eg, street connectivity, walkability) are correlated with physical activity. Less studied but more modifiable microscale elements of the environment (eg, crosswalks) may also affect physical activity, but short audit measures of microscale elements are needed to promote wider use. This study evaluated the relation of a 15-item neighborhood environment audit tool with a full version of the tool to assess neighborhood design on physical activity in 4 age groups. From the 120-item Microscale Audit of Pedestrian Streetscapes (MAPS) measure of street design, sidewalks, and street crossings, we developed the 15-item version (MAPS-Mini) on the basis of associations with physical activity and attribute modifiability. As a sample of a likely walking route, MAPS-Mini was conducted on a 0.25-mile route from participant residences toward the nearest nonresidential destination for children (n = 758), adolescents (n = 897), younger adults (n = 1,655), and older adults (n = 367). Active transportation and leisure physical activity were measured with age-appropriate surveys, and accelerometers provided objective physical activity measures. Mixed-model regressions were conducted for each MAPS item and a total environment score, adjusted for demographics, participant clustering, and macrolevel walkability. Total scores of MAPS-Mini and the 120-item MAPS correlated at r = .85. Total microscale environment scores were significantly related to active transportation in all age groups. Items related to active transport in 3 age groups were presence of sidewalks, curb cuts, street lights, benches, and buffer between street and sidewalk. The total score was related to leisure physical activity and accelerometer measures only in children. The MAPS-Mini environment measure is short enough to be practical for use by community groups and planning agencies and is a valid substitute for the full version that is 8 times longer.
Predicting protein contact map using evolutionary and physical constraints by integer programming.
Wang, Zhiyong; Xu, Jinbo
2013-07-01
Protein contact map describes the pairwise spatial and functional relationship of residues in a protein and contains key information for protein 3D structure prediction. Although studied extensively, it remains challenging to predict contact map using only sequence information. Most existing methods predict the contact map matrix element-by-element, ignoring correlation among contacts and physical feasibility of the whole-contact map. A couple of recent methods predict contact map by using mutual information, taking into consideration contact correlation and enforcing a sparsity restraint, but these methods demand for a very large number of sequence homologs for the protein under consideration and the resultant contact map may be still physically infeasible. This article presents a novel method PhyCMAP for contact map prediction, integrating both evolutionary and physical restraints by machine learning and integer linear programming. The evolutionary restraints are much more informative than mutual information, and the physical restraints specify more concrete relationship among contacts than the sparsity restraint. As such, our method greatly reduces the solution space of the contact map matrix and, thus, significantly improves prediction accuracy. Experimental results confirm that PhyCMAP outperforms currently popular methods no matter how many sequence homologs are available for the protein under consideration. http://raptorx.uchicago.edu.
Global Genomic Diversity of Oryza sativa Varieties Revealed by Comparative Physical Mapping
Wang, Xiaoming; Kudrna, David A.; Pan, Yonglong; Wang, Hao; Liu, Lin; Lin, Haiyan; Zhang, Jianwei; Song, Xiang; Goicoechea, Jose Luis; Wing, Rod A.; Zhang, Qifa; Luo, Meizhong
2014-01-01
Bacterial artificial chromosome (BAC) physical maps embedding a large number of BAC end sequences (BESs) were generated for Oryza sativa ssp. indica varieties Minghui 63 (MH63) and Zhenshan 97 (ZS97) and were compared with the genome sequences of O. sativa spp. japonica cv. Nipponbare and O. sativa ssp. indica cv. 93-11. The comparisons exhibited substantial diversities in terms of large structural variations and small substitutions and indels. Genome-wide BAC-sized and contig-sized structural variations were detected, and the shared variations were analyzed. In the expansion regions of the Nipponbare reference sequence, in comparison to the MH63 and ZS97 physical maps, as well as to the previously constructed 93-11 physical map, the amounts and types of the repeat contents, and the outputs of gene ontology analysis, were significantly different from those of the whole genome. Using the physical maps of four wild Oryza species from OMAP (http://www.omap.org) as a control, we detected many conserved and divergent regions related to the evolution process of O. sativa. Between the BESs of MH63 and ZS97 and the two reference sequences, a total of 1532 polymorphic simple sequence repeats (SSRs), 71,383 SNPs, 1767 multiple nucleotide polymorphisms, 6340 insertions, and 9137 deletions were identified. This study provides independent whole-genome resources for intra- and intersubspecies comparisons and functional genomics studies in O. sativa. Both the comparative physical maps and the GBrowse, which integrated the QTL and molecular markers from GRAMENE (http://www.gramene.org) with our physical maps and analysis results, are open to the public through our Web site (http://gresource.hzau.edu.cn/resource/resource.html). PMID:24424778
2010-01-01
Background Physical maps employing libraries of bacterial artificial chromosome (BAC) clones are essential for comparative genomics and sequencing of large and repetitive genomes such as those of the hexaploid bread wheat. The diploid ancestor of the D-genome of hexaploid wheat (Triticum aestivum), Aegilops tauschii, is used as a resource for wheat genomics. The barley diploid genome also provides a good model for the Triticeae and T. aestivum since it is only slightly larger than the ancestor wheat D genome. Gene co-linearity between the grasses can be exploited by extrapolating from rice and Brachypodium distachyon to Ae. tauschii or barley, and then to wheat. Results We report the use of Ae. tauschii for the construction of the physical map of a large distal region of chromosome arm 3DS. A physical map of 25.4 Mb was constructed by anchoring BAC clones of Ae. tauschii with 85 EST on the Ae. tauschii and barley genetic maps. The 24 contigs were aligned to the rice and B. distachyon genomic sequences and a high density SNP genetic map of barley. As expected, the mapped region is highly collinear to the orthologous chromosome 1 in rice, chromosome 2 in B. distachyon and chromosome 3H in barley. However, the chromosome scale of the comparative maps presented provides new insights into grass genome organization. The disruptions of the Ae. tauschii-rice and Ae. tauschii-Brachypodium syntenies were identical. We observed chromosomal rearrangements between Ae. tauschii and barley. The comparison of Ae. tauschii physical and genetic maps showed that the recombination rate across the region dropped from 2.19 cM/Mb in the distal region to 0.09 cM/Mb in the proximal region. The size of the gaps between contigs was evaluated by comparing the recombination rate along the map with the local recombination rates calculated on single contigs. Conclusions The physical map reported here is the first physical map using fingerprinting of a complete Triticeae genome. This study demonstrates that global fingerprinting of the large plant genomes is a viable strategy for generating physical maps. Physical maps allow the description of the co-linearity between wheat and grass genomes and provide a powerful tool for positional cloning of new genes. PMID:20553621
A hybrid BAC physical map of potato: a framework for sequencing a heterozygous genome
2011-01-01
Background Potato is the world's third most important food crop, yet cultivar improvement and genomic research in general remain difficult because of the heterozygous and tetraploid nature of its genome. The development of physical map resources that can facilitate genomic analyses in potato has so far been very limited. Here we present the methods of construction and the general statistics of the first two genome-wide BAC physical maps of potato, which were made from the heterozygous diploid clone RH89-039-16 (RH). Results First, a gel electrophoresis-based physical map was made by AFLP fingerprinting of 64478 BAC clones, which were aligned into 4150 contigs with an estimated total length of 1361 Mb. Screening of BAC pools, followed by the KeyMaps in silico anchoring procedure, identified 1725 AFLP markers in the physical map, and 1252 BAC contigs were anchored the ultradense potato genetic map. A second, sequence-tag-based physical map was constructed from 65919 whole genome profiling (WGP) BAC fingerprints and these were aligned into 3601 BAC contigs spanning 1396 Mb. The 39733 BAC clones that overlap between both physical maps provided anchors to 1127 contigs in the WGP physical map, and reduced the number of contigs to around 2800 in each map separately. Both physical maps were 1.64 times longer than the 850 Mb potato genome. Genome heterozygosity and incomplete merging of BAC contigs are two factors that can explain this map inflation. The contig information of both physical maps was united in a single table that describes hybrid potato physical map. Conclusions The AFLP physical map has already been used by the Potato Genome Sequencing Consortium for sequencing 10% of the heterozygous genome of clone RH on a BAC-by-BAC basis. By layering a new WGP physical map on top of the AFLP physical map, a genetically anchored genome-wide framework of 322434 sequence tags has been created. This reference framework can be used for anchoring and ordering of genomic sequences of clone RH (and other potato genotypes), and opens the possibility to finish sequencing of the RH genome in a more efficient way via high throughput next generation approaches. PMID:22142254
Langøien, Lars Jørun; Terragni, Laura; Rugseth, Gro; Nicolaou, Mary; Holdsworth, Michelle; Stronks, Karien; Lien, Nanna; Roos, Gun
2017-07-24
Physical activity and sedentary behaviour are associated with health and wellbeing. Studies indicate that ethnic minority groups are both less active and more sedentary than the majority population and that factors influencing these behaviours may differ. Mapping the factors influencing physical activity and sedentary behaviour among ethnic minority groups living in Europe can help to identify determinants of physical activity and sedentary behaviour, research gaps and guide future research. A systematic mapping review was conducted to map the factors associated with physical activity and sedentary behaviour among ethnic minority groups living in Europe (protocol PROSPERO ID = CRD42014014575). Six databases were searched for quantitative and qualitative research published between 1999 and 2014. In synthesizing the findings, all factors were sorted and structured into clusters following a data driven approach and concept mapping. Sixty-three articles were identified out of 7794 returned by the systematic search. These included 41 quantitative and 22 qualitative studies. Of these 58 focused on physical activity, 5 on both physical activity and sedentary behaviour and none focused on sedentary behaviour. The factors associated with physical activity and sedentary behaviour were grouped into eight clusters. Social & cultural environment (n = 55) and Psychosocial (39) were the clusters containing most factors, followed by Physical environment & accessibility (33), Migration context (15), Institutional environment (14), Social & material resources (12), Health and health communication (12), Political environment (3). An important finding was that cultural and religious issues, in particular those related to gender issues, were recurring factors across the clusters. Physical activity and sedentary behaviour among ethnic minority groups living in Europe are influenced by a wide variety of factors, especially informed by qualitative studies. More comparative studies are needed as well as inclusion of a wider spectrum of the diverse ethnic minority groups resettled in different European countries. Few studies have investigated factors influencing sedentary behaviour. It is important in the future to address specific factors influencing physical activity and sedentary behaviour among different ethnic minority groups in order to plan and implement effective interventions.
What Do Pre-Service Physics Teachers Know and Think about Concept Mapping?
ERIC Educational Resources Information Center
Didis, Nilüfer; Özcan, Özgür; Azar, Ali
2014-01-01
In order to use concept maps in physics classes effectively, teachers' knowledge and ideas about concept mapping are as important as the physics knowledge used in mapping. For this reason, we aimed to examine pre-service physics teachers' knowledge on concept mapping, their ideas about the implementation of concept mapping in physics…
Han, Yuepeng; Chagné, David; Gasic, Ksenija; Rikkerink, Erik H A; Beever, Jonathan E; Gardiner, Susan E; Korban, Schuyler S
2009-03-01
A genome-wide BAC physical map of the apple, Malus x domestica Borkh., has been recently developed. Here, we report on integrating the physical and genetic maps of the apple using a SNP-based approach in conjunction with bin mapping. Briefly, BAC clones located at ends of BAC contigs were selected, and sequenced at both ends. The BAC end sequences (BESs) were used to identify candidate SNPs. Subsequently, these candidate SNPs were genetically mapped using a bin mapping strategy for the purpose of mapping the physical onto the genetic map. Using this approach, 52 (23%) out of 228 BESs tested were successfully exploited to develop SNPs. These SNPs anchored 51 contigs, spanning approximately 37 Mb in cumulative physical length, onto 14 linkage groups. The reliability of the integration of the physical and genetic maps using this SNP-based strategy is described, and the results confirm the feasibility of this approach to construct an integrated physical and genetic maps for apple.
Li, Yun; Liu, Shikai; Qin, Zhenkui; Waldbieser, Geoff; Wang, Ruijia; Sun, Luyang; Bao, Lisui; Danzmann, Roy G.; Dunham, Rex; Liu, Zhanjiang
2015-01-01
Construction of genetic linkage map is essential for genetic and genomic studies. Recent advances in sequencing and genotyping technologies made it possible to generate high-density and high-resolution genetic linkage maps, especially for the organisms lacking extensive genomic resources. In the present work, we constructed a high-density and high-resolution genetic map for channel catfish with three large resource families genotyped using the catfish 250K single-nucleotide polymorphism (SNP) array. A total of 54,342 SNPs were placed on the linkage map, which to our knowledge had the highest marker density among aquaculture species. The estimated genetic size was 3,505.4 cM with a resolution of 0.22 cM for sex-averaged genetic map. The sex-specific linkage maps spanned a total of 4,495.1 cM in females and 2,593.7 cM in males, presenting a ratio of 1.7 : 1 between female and male in recombination fraction. After integration with the previously established physical map, over 87% of physical map contigs were anchored to the linkage groups that covered a physical length of 867 Mb, accounting for ∼90% of the catfish genome. The integrated map provides a valuable tool for validating and improving the catfish whole-genome assembly and facilitates fine-scale QTL mapping and positional cloning of genes responsible for economically important traits. PMID:25428894
Febrer, Melanie; Goicoechea, Jose Luis; Wright, Jonathan; McKenzie, Neil; Song, Xiang; Lin, Jinke; Collura, Kristi; Wissotski, Marina; Yu, Yeisoo; Ammiraju, Jetty S. S.; Wolny, Elzbieta; Idziak, Dominika; Betekhtin, Alexander; Kudrna, Dave; Hasterok, Robert; Wing, Rod A.; Bevan, Michael W.
2010-01-01
The pooid subfamily of grasses includes some of the most important crop, forage and turf species, such as wheat, barley and Lolium. Developing genomic resources, such as whole-genome physical maps, for analysing the large and complex genomes of these crops and for facilitating biological research in grasses is an important goal in plant biology. We describe a bacterial artificial chromosome (BAC)-based physical map of the wild pooid grass Brachypodium distachyon and integrate this with whole genome shotgun sequence (WGS) assemblies using BAC end sequences (BES). The resulting physical map contains 26 contigs spanning the 272 Mb genome. BES from the physical map were also used to integrate a genetic map. This provides an independent vaildation and confirmation of the published WGS assembly. Mapped BACs were used in Fluorescence In Situ Hybridisation (FISH) experiments to align the integrated physical map and sequence assemblies to chromosomes with high resolution. The physical, genetic and cytogenetic maps, integrated with whole genome shotgun sequence assemblies, enhance the accuracy and durability of this important genome sequence and will directly facilitate gene isolation. PMID:20976139
NASA Astrophysics Data System (ADS)
Heglund, Brian
Educators recognize the importance of reasoning ability for development of critical thinking skills, conceptual change, metacognition, and participation in 21st century society. There is a recognized need for students to improve their skills of argumentation, however, argumentation is not explicitly taught outside logic and philosophy---subjects that are not part of the K-12 curriculum. One potential way of supporting the development of argumentation skills in the K-12 context is through incorporating Computer-Assisted Argument Mapping to evaluate arguments. This quasi-experimental study tested the effects of such argument mapping software and was informed by the following two research questions: 1. To what extent does the collaborative use of Computer-Assisted Argumentation Mapping to evaluate competing theories influence the critical thinking skill of argument evaluation, metacognitive awareness, and conceptual knowledge acquisition in high school Advanced Placement physics, compared to the more traditional method of text tables that does not employ Computer-Assisted Argumentation Mapping? 2. What are the student perceptions of the pros and cons of argument evaluation in the high school Advanced Placement physics environment? This study examined changes in critical thinking skills, including argumentation evaluation skills, as well as metacognitive awareness and conceptual knowledge, in two groups: a treatment group using Computer-Assisted Argumentation Mapping to evaluate physics arguments, and a comparison group using text tables to evaluate physics arguments. Quantitative and qualitative methods for collecting and analyzing data were used to answer the research questions. Quantitative data indicated no significant difference between the experimental groups, and qualitative data suggested students perceived pros and cons of argument evaluation in the high school Advanced Placement physics environment, such as self-reported sense of improvement in argument evaluation and low perceived value of the learning task, respectively. The discussion presents implications for practice and research, such as introducing motivation scaffolds to support appreciation of task value, and addressing major differences between the design of this study and similar published studies, respectively. This work provides contributions in that it tested the effect of Computer-Assisted Argumentation Mapping on the critical thinking skills of twelfth-grade students within the context of evaluating physics arguments, a previously unexplored age group and domain.
Using Content Maps to Measure Content Development in Physical Education: Validation and Application
ERIC Educational Resources Information Center
Ward, Phillip; Dervent, Fatih; Lee, Yun Soo; Ko, Bomna; Kim, Insook; Tao, Wang
2017-01-01
Purpose: This study reports on our efforts toward extending the conceptual understanding of content development in physical education by validating content maps as a measurement tool, examining new categories of instructional tasks to describe content development and validating formulae that can be used to evaluate depth of content development.…
Covington, Kyle; Barcinas, Susan J
2017-06-01
Physical therapists improve the functional ability of patients after injury and disease. A unique component of their practice is the ability to use the movement of their own bodies to effect change in their patients. This ability has been recognized as a distinctive attribute of expert physical therapists. The purpose of this qualitative situational analysis study was to examine how physical therapist clinical instructors perceive and facilitate their students' emerging integration of movement in practice. Data collection and analysis were guided by a theoretical framework for understanding "professional ways of being." Data were analyzed using coding and mapping strategies consistent with situational analysis techniques. The study included 5 physical therapist clinical instructors and their respective 5 physical therapist students. Data were collected during beginning, midterm, and final weeks of the students' clinical internships using participant interviews, observation, and document analysis. Coded data were summarized using situational analysis mapping strategies, resulting in 11 maps. These maps were further analyzed and reduced to 5 thematic behaviors enacted by a clinical instructor as he or she helps facilitate students' use of movement in practice. These behaviors are adapt, prepare, enhance, connect , and develop . The limited number of participants and the relative homogeneity of the student sample may have limited the diversity of data collected. The 5 behaviors are useful when considered as a trajectory of development. To our knowledge, this study marks the first description of how physical therapist clinical instructors develop students' use of movement in practice and how to enact behaviors important in students' continued professional development. The findings are important for clinical instructors and academic programs considering how best to prepare students to use movement and develop their skills early in practice. © 2017 American Physical Therapy Association
USDA-ARS?s Scientific Manuscript database
Genetic and physical maps are the valuable resources for peanut research community in understanding genome organization and serving as the basis for map-based cloning and marker-assisted selection. Physical maps of two diploid wild peanut progenitor species, Arachis duranensis (A genome) and A. ipae...
USDA-ARS?s Scientific Manuscript database
Construction of genetic linkage map is essential for genetic and genomic studies. Recent advances in sequencing and genotyping technologies made it possible to generate high-density and high-resolution genetic linkage maps, especially for the organisms lacking extensive genomic resources. In the pre...
NASA Astrophysics Data System (ADS)
Hidayati, H.; Ramli, R.
2018-04-01
This paper aims to provide a description of the implementation of Physic Problem Solving strategy combined with concept maps in General Physics learning at Department of Physics, Universitas Negeri Padang. Action research has been conducted in two cycles where each end of the cycle is reflected and improved for the next cycle. Implementation of Physics Problem Solving strategy combined with concept map can increase student activity in solving general physics problem with an average increase of 15% and can improve student learning outcomes from 42,7 in the cycle I become 62,7 in cycle II in general physics at the Universitas Negeri Padang. In the future, the implementation of Physic Problem Solving strategy combined with concept maps will need to be considered in Physics courses.
Ollitrault, Frédérique; Terol, Javier; Pina, Jose Antonio; Navarro, Luis; Talon, Manuel; Ollitrault, Patrick
2010-11-01
Microsatellite primers were developed from bacterial artificial chromosome (BAC) end sequences of Citrus clementina and their transferability and polymorphism tested in the genus Citrus for future anchorage of physical and genetic maps and comparative interspecific genetic mapping. • Using PAGE and DNA silver staining, 79 primer pairs were selected for their transferability and polymorphism among 526 microsatellites mined in BES. A preliminary diversity study in Citrus was conducted with 18 of them, in C. reticulata, C. maxima, C. medica, C. sinensis, C. aurantium, C. paradisi, C. lemon, C. aurantifolia, and some papedas (wild citrus), using a capillary electrophoresis fragment analyzer. Intra- and interspecific polymorphism was observed, and heterozygous markers were identified for the different genotypes to be used for genetic mapping. • These results indicate the utility of the developed primers for comparative mapping studies and the integration of physical and genetic maps.
ERIC Educational Resources Information Center
Shin, Shin-Shing
2016-01-01
Students attending object-oriented analysis and design (OOAD) courses typically encounter difficulties transitioning from requirements analysis to logical design and then to physical design. Concept maps have been widely used in studies of user learning. The study reported here, based on the relationship of concept maps to learning theory and…
Fosness, Ryan L.
2014-01-01
This report presents the methods used to develop georeferenced portable document format maps and geospatial data that describe spawning locations and physical habitat characteristics (including egg mat locations, bathymetry, surficial sediment facies, and streamflow velocity) within the substrate enhancement pilot project study area. The results are presented as two maps illustrating the physical habitat characteristics along with proposed habitat enhancement areas, aerial imagery, and hydrography. The results of this study will assist researchers, policy makers, and management agencies in deciding the spatial location and extent of the substrate enhancement pilot project.
An integrated molecular cytogenetic map of Cucumis sativus L. chromosome 2.
Han, Yonghua; Zhang, Zhonghua; Huang, Sanwen; Jin, Weiwei
2011-01-27
Integration of molecular, genetic and cytological maps is still a challenge for most plant species. Recent progress in molecular and cytogenetic studies created a basis for developing integrated maps in cucumber (Cucumis sativus L.). In this study, eleven fosmid clones and three plasmids containing 45S rDNA, the centromeric satellite repeat Type III and the pericentriomeric repeat CsRP1 sequences respectively were hybridized to cucumber metaphase chromosomes to assign their cytological location on chromosome 2. Moreover, an integrated molecular cytogenetic map of cucumber chromosomes 2 was constructed by fluorescence in situ hybridization (FISH) mapping of 11 fosmid clones together with the cucumber centromere-specific Type III sequence on meiotic pachytene chromosomes. The cytogenetic map was fully integrated with genetic linkage map since each fosmid clone was anchored by a genetically mapped simple sequence repeat marker (SSR). The relationship between the genetic and physical distances along chromosome was analyzed. Recombination was not evenly distributed along the physical length of chromosome 2. Suppression of recombination was found in centromeric and pericentromeric regions. Our results also indicated that the molecular markers composing the linkage map for chromosome 2 provided excellent coverage of the chromosome.
a Model Study of Small-Scale World Map Generalization
NASA Astrophysics Data System (ADS)
Cheng, Y.; Yin, Y.; Li, C. M.; Wu, W.; Guo, P. P.; Ma, X. L.; Hu, F. M.
2018-04-01
With the globalization and rapid development every filed is taking an increasing interest in physical geography and human economics. There is a surging demand for small scale world map in large formats all over the world. Further study of automated mapping technology, especially the realization of small scale production on a large scale global map, is the key of the cartographic field need to solve. In light of this, this paper adopts the improved model (with the map and data separated) in the field of the mapmaking generalization, which can separate geographic data from mapping data from maps, mainly including cross-platform symbols and automatic map-making knowledge engine. With respect to the cross-platform symbol library, the symbol and the physical symbol in the geographic information are configured at all scale levels. With respect to automatic map-making knowledge engine consists 97 types, 1086 subtypes, 21845 basic algorithm and over 2500 relevant functional modules.In order to evaluate the accuracy and visual effect of our model towards topographic maps and thematic maps, we take the world map generalization in small scale as an example. After mapping generalization process, combining and simplifying the scattered islands make the map more explicit at 1 : 2.1 billion scale, and the map features more complete and accurate. Not only it enhance the map generalization of various scales significantly, but achieve the integration among map-makings of various scales, suggesting that this model provide a reference in cartographic generalization for various scales.
The need for sustained and integrated high-resolution mapping of dynamic coastal environments
Stockdon, Hilary F.; Lillycrop, Jeff W.; Howd, Peter A.; Wozencraft, Jennifer M.
2007-01-01
The evolution of the United States' coastal zone response to both human activities and natural processes is dynamic. Coastal resource and population protection requires understanding, in detail, the processes needed for change as well as the physical setting. Sustained coastal area mapping allows change to be documented and baseline conditions to be established, as well as future behavior to be predicted in conjunction with physical process models. Hyperspectral imagers and airborne lidars, as well as other recent mapping technology advances, allow rapid national scale land use information and high-resolution elevation data collection. Coastal hazard risk evaluation has critical dependence on these rich data sets. A fundamental storm surge model parameter in predicting flooding location, for example, is coastal elevation data, and a foundation in identifying the most vulnerable populations and resources is land use maps. A wealth of information for physical change process study, coastal resource and community management and protection, and coastal area hazard vulnerability determination, is available in a comprehensive national coastal mapping plan designed to take advantage of recent mapping technology progress and data distribution, management, and collection.
Mapping the literature of physical therapy.
Wakiji, E M
1997-01-01
Physical therapy is a fast growing profession because of the aging population, medical advances, and the public's interest in health promotion. This study is part of the Medical Library Association (MLA) Nursing and Allied Health Resources Section's project to map the allied health literature. It identifies the core journals in physical therapy by analyzing the cited references of articles in two established physical therapy journals, Physical Therapy and Archives of Physical Medicine and Rehabilitation, during the period 1991 through 1993. This bibliometric analysis also determines the extent to which these journals are covered by the primary indexing sources, Allied and Alternative Medicine (AMED), the Cumulative Index to Nursing and Allied Health Literature, EMBASE, and MEDLINE. In this study, fourteen journals were found to supply one-third of all references studied. Ninety-five journals provided an additional third of the references. MEDLINE rated the highest as the indexing tool of choice for these 109 journals. The study results can assist in collection development decisions, advise physical therapists as to the best access to their core literature, and influence database producers to increase their coverage of the literature important to physical therapy. PMID:9285129
Hume, C; Salmon, J; Ball, K
2005-02-01
Environmental factors may have an important influence on children's physical activity, yet children's perspectives of their home and neighborhood environments have not been widely assessed. The aim of this study was to investigate children's perceptions of their environments, and to examine associations between these perceptions and objectively measured physical activity. The sample consisted of 147, 10-year-old Australian children, who drew maps of their home and neighborhood environments. A subsample of children photographed places and things in these environments that were important to them. The maps were analyzed for themes, and for the frequency with which particular objects and locations appeared. Physical activity was objectively measured using accelerometers. Six themes emerged from the qualitative analysis of the maps and photographs: the family home; opportunities for physical activity and sedentary pursuits; food items and locations; green space and outside areas; the school and opportunities for social interaction. Of the 11 variables established from these themes, one home and two neighborhood factors were associated with children's physical activity. These findings contribute to a broader understanding of children's perceptions of their environment, and highlight the potential importance of the home and neighborhood environments for promoting physical activity behavior.
ERIC Educational Resources Information Center
Lin, Yu-Tzu; Chang, Chia-Hu; Hou, Huei-Tse; Wu, Ke-Chou
2016-01-01
This study investigated the effectiveness of using Google Docs in collaborative concept mapping (CCM) by comparing it with a paper-and-pencil approach. A quasi-experimental study was conducted in a physics course. The control group drew concept maps using the paper-and-pencil method and face-to-face discussion, whereas the experimental group…
A first generation BAC-based physical map of the rainbow trout genome
Palti, Yniv; Luo, Ming-Cheng; Hu, Yuqin; Genet, Carine; You, Frank M; Vallejo, Roger L; Thorgaard, Gary H; Wheeler, Paul A; Rexroad, Caird E
2009-01-01
Background Rainbow trout (Oncorhynchus mykiss) are the most-widely cultivated cold freshwater fish in the world and an important model species for many research areas. Coupling great interest in this species as a research model with the need for genetic improvement of aquaculture production efficiency traits justifies the continued development of genomics research resources. Many quantitative trait loci (QTL) have been identified for production and life-history traits in rainbow trout. A bacterial artificial chromosome (BAC) physical map is needed to facilitate fine mapping of QTL and the selection of positional candidate genes for incorporation in marker-assisted selection (MAS) for improving rainbow trout aquaculture production. This resource will also facilitate efforts to obtain and assemble a whole-genome reference sequence for this species. Results The physical map was constructed from DNA fingerprinting of 192,096 BAC clones using the 4-color high-information content fingerprinting (HICF) method. The clones were assembled into physical map contigs using the finger-printing contig (FPC) program. The map is composed of 4,173 contigs and 9,379 singletons. The total number of unique fingerprinting fragments (consensus bands) in contigs is 1,185,157, which corresponds to an estimated physical length of 2.0 Gb. The map assembly was validated by 1) comparison with probe hybridization results and agarose gel fingerprinting contigs; and 2) anchoring large contigs to the microsatellite-based genetic linkage map. Conclusion The production and validation of the first BAC physical map of the rainbow trout genome is described in this paper. We are currently integrating this map with the NCCCWA genetic map using more than 200 microsatellites isolated from BAC end sequences and by identifying BACs that harbor more than 300 previously mapped markers. The availability of an integrated physical and genetic map will enable detailed comparative genome analyses, fine mapping of QTL, positional cloning, selection of positional candidate genes for economically important traits and the incorporation of MAS into rainbow trout breeding programs. PMID:19814815
Playing Linear Number Board Games Improves Children's Mathematical Knowledge
ERIC Educational Resources Information Center
Siegler, Robert S.; Ramani, Geetha
2009-01-01
The present study focused on two main goals. One was to test the "representational mapping hypothesis": The greater the transparency of the mapping between physical materials and desired internal representations, the greater the learning of the desired internal representation. The implication of the representational mapping hypothesis in the…
Draye, Xavier; Lin, Yann-Rong; Qian, Xiao-yin; Bowers, John E.; Burow, Gloria B.; Morrell, Peter L.; Peterson, Daniel G.; Presting, Gernot G.; Ren, Shu-xin; Wing, Rod A.; Paterson, Andrew H.
2001-01-01
The small genome of sorghum (Sorghum bicolor L. Moench.) provides an important template for study of closely related large-genome crops such as maize (Zea mays) and sugarcane (Saccharum spp.), and is a logical complement to distantly related rice (Oryza sativa) as a “grass genome model.” Using a high-density RFLP map as a framework, a robust physical map of sorghum is being assembled by integrating hybridization and fingerprint data with comparative data from related taxa such as rice and using new methods to resolve genomic duplications into locus-specific groups. By taking advantage of allelic variation revealed by heterologous probes, the positions of corresponding loci on the wheat (Triticum aestivum), rice, maize, sugarcane, and Arabidopsis genomes are being interpolated on the sorghum physical map. Bacterial artificial chromosomes for the small genome of rice are shown to close several gaps in the sorghum contigs; the emerging rice physical map and assembled sequence will further accelerate progress. An important motivation for developing genomic tools is to relate molecular level variation to phenotypic diversity. “Diversity maps,” which depict the levels and patterns of variation in different gene pools, shed light on relationships of allelic diversity with chromosome organization, and suggest possible locations of genomic regions that are under selection due to major gene effects (some of which may be revealed by quantitative trait locus mapping). Both physical maps and diversity maps suggest interesting features that may be integrally related to the chromosomal context of DNA—progress in cytology promises to provide a means to elucidate such relationships. We seek to provide a detailed picture of the structure, function, and evolution of the genome of sorghum and its relatives, together with molecular tools such as locus-specific sequence-tagged site DNA markers and bacterial artificial chromosome contigs that will have enduring value for many aspects of genome analysis. PMID:11244113
Localization of Allotetraploid Gossypium SNPs Using Physical Mapping Resources
USDA-ARS?s Scientific Manuscript database
Recent efforts in Gossypium SNP development have produced thousands of putative SNPs for G. barbadense, G. mustelinum, and G. tomentosum relative to G. hirsutum. Here we report on current efforts to localize putative SNPs using physical mapping resources. Recent advances in physical mapping resour...
Learning about a Level Physics Students' Understandings of Particle Physics Using Concept Mapping
ERIC Educational Resources Information Center
Gourlay, H.
2017-01-01
This paper describes a small-scale piece of research using concept mapping to elicit A level students' understandings of particle physics. Fifty-nine year 12 (16- and 17 year-old) students from two London schools participated. The exercise took place during school physics lessons. Students were instructed how to make a concept map and were…
Shors, Tracey J; Olson, Ryan L; Bates, Marsha E; Selby, Edward A; Alderman, Brandon L
2014-11-01
New neurons are generated in the hippocampus each day and their survival is greatly enhanced through effortful learning (Shors, 2014). The numbers of cells produced can be increased by physical exercise (van Praag, Kempermann, & Gage, 1999). These findings inspired us to develop a clinical intervention for humans known as Mental and Physical Training, or MAP Training. Each session consists of 30min of mental training with focused attention meditation (20min sitting and 10min walking). Meditation is an effortful training practice that involves learning about the transient nature of thoughts and thought patterns, and acquiring skills to recognize them without necessarily attaching meaning and/or emotions to them. The mental training component is followed by physical training with 30min of aerobic exercise performed at moderate intensity. During this component, participants learn choreographed dance routines while engaging in aerobic exercise. In a pilot "proof-of-concept" study, we provided supervised MAP Training (2 sessions per week for 8weeks) to a group of young mothers in the local community who were recently homeless, most of them having previously suffered from physical and sexual abuse, addiction, and depression. Preliminary data suggest that MAP Training improves dependent measures of aerobic fitness (as assessed by maximal rate of oxygen consumed) while decreasing symptoms of depression and anxiety. Similar changes were not observed in a group of recently homeless women who did not participate in MAP Training. It is not currently possible to determine whether new neurons in the human brain increase in number as a result of MAP Training. Rather these preliminary results of MAP Training illustrate how neuroscientific research can be translated into novel clinical interventions that benefit human health and wellness. Copyright © 2014 Elsevier Inc. All rights reserved.
Petroli, César D.; Sansaloni, Carolina P.; Carling, Jason; Steane, Dorothy A.; Vaillancourt, René E.; Myburg, Alexander A.; da Silva, Orzenil Bonfim; Pappas, Georgios Joannis; Kilian, Andrzej; Grattapaglia, Dario
2012-01-01
Diversity Arrays Technology (DArT) provides a robust, high throughput, cost-effective method to query thousands of sequence polymorphisms in a single assay. Despite the extensive use of this genotyping platform for numerous plant species, little is known regarding the sequence attributes and genome-wide distribution of DArT markers. We investigated the genomic properties of the 7,680 DArT marker probes of a Eucalyptus array, by sequencing them, constructing a high density linkage map and carrying out detailed physical mapping analyses to the Eucalyptus grandis reference genome. A consensus linkage map with 2,274 DArT markers anchored to 210 microsatellites and a framework map, with improved support for ordering, displayed extensive collinearity with the genome sequence. Only 1.4 Mbp of the 75 Mbp of still unplaced scaffold sequence was captured by 45 linkage mapped but physically unaligned markers to the 11 main Eucalyptus pseudochromosomes, providing compelling evidence for the quality and completeness of the current Eucalyptus genome assembly. A highly significant correspondence was found between the locations of DArT markers and predicted gene models, while most of the 89 DArT probes unaligned to the genome correspond to sequences likely absent in E. grandis, consistent with the pan-genomic feature of this multi-Eucalyptus species DArT array. These comprehensive linkage-to-physical mapping analyses provide novel data regarding the genomic attributes of DArT markers in plant genomes in general and for Eucalyptus in particular. DArT markers preferentially target the gene space and display a largely homogeneous distribution across the genome, thereby providing superb coverage for mapping and genome-wide applications in breeding and diversity studies. Data reported on these ubiquitous properties of DArT markers will be particularly valuable to researchers working on less-studied crop species who already count on DArT genotyping arrays but for which no reference genome is yet available to allow such detailed characterization. PMID:22984541
Mapping the Prevalence of Physical Inactivity in U.S. States, 1984-2015.
An, Ruopeng; Xiang, Xiaoling; Yang, Yan; Yan, Hai
2016-01-01
Physical inactivity is a leading cause of morbidity, disability and premature mortality in the U.S. and worldwide. This study aimed to map the prevalence of physical inactivity across U.S. states over the past three decades, and estimate the over-time adjusted changes in the prevalence of physical inactivity in each state. Individual-level data (N = 6,701,954) were taken from the 1984-2015 Behavioral Risk Factor Surveillance System (BRFSS), an annually repeated cross-sectional survey of state-representative adult population. Prevalence of self-reported leisure-time physical inactivity was estimated by state and survey year, accounting for the BRFSS sampling design. Logistic regressions were performed to estimate the changes in the prevalence of physical inactivity over the study period for each state, adjusting for individual characteristics including sex, age, race/ethnicity, education, marital status, and employment status. The prevalence of leisure-time physical inactivity varied substantially across states and survey years. In general, the adjusted prevalence of physical inactivity gradually declined over the past three decades in a majority of states. However, a substantial proportion of American adults remain physically inactive. Among the 50 states and District of Columbia, 45 had over a fifth of their adult population without any leisure-time physical activity, and 8 had over 30% without physical activity in 2015. Moreover, the adjusted prevalence of physical inactivity in several states (Arizona, North Carolina, North Dakota, Utah, West Virginia, and Wyoming) remained largely unchanged or even increased (Minnesota and Ohio) over the study period. Although the prevalence of physical inactivity declined over the past three decades in a majority of states, the rates remain substantially high and vary considerably across states. Closely monitoring and tracking physical activity level using the state physical activity maps can help guide policy and program development to promote physical activity and reduce the burden of chronic disease.
Mapping the Prevalence of Physical Inactivity in U.S. States, 1984-2015
Xiang, Xiaoling; Yang, Yan; Yan, Hai
2016-01-01
Background Physical inactivity is a leading cause of morbidity, disability and premature mortality in the U.S. and worldwide. This study aimed to map the prevalence of physical inactivity across U.S. states over the past three decades, and estimate the over-time adjusted changes in the prevalence of physical inactivity in each state. Methods Individual-level data (N = 6,701,954) were taken from the 1984–2015 Behavioral Risk Factor Surveillance System (BRFSS), an annually repeated cross-sectional survey of state-representative adult population. Prevalence of self-reported leisure-time physical inactivity was estimated by state and survey year, accounting for the BRFSS sampling design. Logistic regressions were performed to estimate the changes in the prevalence of physical inactivity over the study period for each state, adjusting for individual characteristics including sex, age, race/ethnicity, education, marital status, and employment status. Results The prevalence of leisure-time physical inactivity varied substantially across states and survey years. In general, the adjusted prevalence of physical inactivity gradually declined over the past three decades in a majority of states. However, a substantial proportion of American adults remain physically inactive. Among the 50 states and District of Columbia, 45 had over a fifth of their adult population without any leisure-time physical activity, and 8 had over 30% without physical activity in 2015. Moreover, the adjusted prevalence of physical inactivity in several states (Arizona, North Carolina, North Dakota, Utah, West Virginia, and Wyoming) remained largely unchanged or even increased (Minnesota and Ohio) over the study period. Conclusions Although the prevalence of physical inactivity declined over the past three decades in a majority of states, the rates remain substantially high and vary considerably across states. Closely monitoring and tracking physical activity level using the state physical activity maps can help guide policy and program development to promote physical activity and reduce the burden of chronic disease. PMID:27959906
Integrating physical and genetic maps: from genomes to interaction networks
Beyer, Andreas; Bandyopadhyay, Sourav; Ideker, Trey
2009-01-01
Physical and genetic mapping data have become as important to network biology as they once were to the Human Genome Project. Integrating physical and genetic networks currently faces several challenges: increasing the coverage of each type of network; establishing methods to assemble individual interaction measurements into contiguous pathway models; and annotating these pathways with detailed functional information. A particular challenge involves reconciling the wide variety of interaction types that are currently available. For this purpose, recent studies have sought to classify genetic and physical interactions along several complementary dimensions, such as ordered versus unordered, alleviating versus aggravating, and first versus second degree. PMID:17703239
Physical Webbing: Collaborative Kinesthetic Three-Dimensional Mind Maps[R
ERIC Educational Resources Information Center
Williams, Marian H.
2012-01-01
Mind Mapping has predominantly been used by individuals or collaboratively in groups as a paper-based or computer-generated learning strategy. In an effort to make Mind Mapping kinesthetic, collaborative, and three-dimensional, an innovative pedagogical strategy, termed Physical Webbing, was devised. In the Physical Web activity, groups…
Comparative physical mapping between wheat chromosome arm 2BL and rice chromosome 4.
Lee, Tong Geon; Lee, Yong Jin; Kim, Dae Yeon; Seo, Yong Weon
2010-12-01
Physical maps of chromosomes provide a framework for organizing and integrating diverse genetic information. DNA microarrays are a valuable technique for physical mapping and can also be used to facilitate the discovery of single feature polymorphisms (SFPs). Wheat chromosome arm 2BL was physically mapped using a Wheat Genome Array onto near-isogenic lines (NILs) with the aid of wheat-rice synteny and mapped wheat EST information. Using high variance probe set (HVP) analysis, 314 HVPs constituting genes present on 2BL were identified. The 314 HVPs were grouped into 3 categories: HVPs that match only rice chromosome 4 (298 HVPs), those that match only wheat ESTs mapped on 2BL (1), and those that match both rice chromosome 4 and wheat ESTs mapped on 2BL (15). All HVPs were converted into gene sets, which represented either unique rice gene models or mapped wheat ESTs that matched identified HVPs. Comparative physical maps were constructed for 16 wheat gene sets and 271 rice gene sets. Of the 271 rice gene sets, 257 were mapped to the 18-35 Mb regions on rice chromosome 4. Based on HVP analysis and sequence similarity between the gene models in the rice chromosomes and mapped wheat ESTs, the outermost rice gene model that limits the translocation breakpoint to orthologous regions was identified.
2012-01-01
Background The ovine Major Histocompatibility Complex (MHC) harbors genes involved in overall resistance/susceptibility of the host to infectious diseases. Compared to human and mouse, the ovine MHC is interrupted by a large piece of autosome insertion via a hypothetical chromosome inversion that constitutes ~25% of ovine chromosome 20. The evolutionary consequence of such an inversion and an insertion (inversion/insertion) in relation to MHC function remains unknown. We previously constructed a BAC clone physical map for the ovine MHC exclusive of the insertion region. Here we report the construction of a high-density physical map covering the autosome insertion in order to address the question of what the inversion/insertion had to do with ruminants during the MHC evolution. Results A total of 119 pairs of comparative bovine oligo primers were utilized to screen an ovine BAC library for positive clones and the orders and overlapping relationships of the identified clones were determined by DNA fingerprinting, BAC-end sequencing, and sequence-specific PCR. A total of 368 positive BAC clones were identified and 108 of the effective clones were ordered into an overlapping BAC contig to cover the consensus region between ovine MHC class IIa and IIb. Therefore, a continuous physical map covering the entire ovine autosome inversion/insertion region was successfully constructed. The map confirmed the bovine sequence assembly for the same homologous region. The DNA sequences of 185 BAC-ends have been deposited into NCBI database with the access numbers HR309252 through HR309068, corresponding to dbGSS ID 30164010 through 30163826. Conclusions We have constructed a high-density BAC clone physical map for the ovine autosome inversion/insertion between the MHC class IIa and IIb. The entire ovine MHC region is now fully covered by a continuous BAC clone contig. The physical map we generated will facilitate MHC functional studies in the ovine, as well as the comparative MHC evolution in ruminants. PMID:22897909
2013-01-01
Background The wheat genome sequence is an essential tool for advanced genomic research and improvements. The generation of a high-quality wheat genome sequence is challenging due to its complex 17 Gb polyploid genome. To overcome these difficulties, sequencing through the construction of BAC-based physical maps of individual chromosomes is employed by the wheat genomics community. Here, we present the construction of the first comprehensive physical map of chromosome 1BS, and illustrate its unique gene space organization and evolution. Results Fingerprinted BAC clones were assembled into 57 long scaffolds, anchored and ordered with 2,438 markers, covering 83% of chromosome 1BS. The BAC-based chromosome 1BS physical map and gene order of the orthologous regions of model grass species were consistent, providing strong support for the reliability of the chromosome 1BS assembly. The gene space for chromosome 1BS spans the entire length of the chromosome arm, with 76% of the genes organized in small gene islands, accompanied by a two-fold increase in gene density from the centromere to the telomere. Conclusions This study provides new evidence on common and chromosome-specific features in the organization and evolution of the wheat genome, including a non-uniform distribution of gene density along the centromere-telomere axis, abundance of non-syntenic genes, the degree of colinearity with other grass genomes and a non-uniform size expansion along the centromere-telomere axis compared with other model cereal genomes. The high-quality physical map constructed in this study provides a solid basis for the assembly of a reference sequence of chromosome 1BS and for breeding applications. PMID:24359668
Social Distance Evaluation in Human Parietal Cortex
Yamakawa, Yoshinori; Kanai, Ryota; Matsumura, Michikazu; Naito, Eiichi
2009-01-01
Across cultures, social relationships are often thought of, described, and acted out in terms of physical space (e.g. “close friends” “high lord”). Does this cognitive mapping of social concepts arise from shared brain resources for processing social and physical relationships? Using fMRI, we found that the tasks of evaluating social compatibility and of evaluating physical distances engage a common brain substrate in the parietal cortex. The present study shows the possibility of an analytic brain mechanism to process and represent complex networks of social relationships. Given parietal cortex's known role in constructing egocentric maps of physical space, our present findings may help to explain the linguistic, psychological and behavioural links between social and physical space. PMID:19204791
Integrated consensus genetic and physical maps of flax (Linum usitatissimum L.).
Cloutier, Sylvie; Ragupathy, Raja; Miranda, Evelyn; Radovanovic, Natasa; Reimer, Elsa; Walichnowski, Andrzej; Ward, Kerry; Rowland, Gordon; Duguid, Scott; Banik, Mitali
2012-12-01
Three linkage maps of flax (Linum usitatissimum L.) were constructed from populations CDC Bethune/Macbeth, E1747/Viking and SP2047/UGG5-5 containing between 385 and 469 mapped markers each. The first consensus map of flax was constructed incorporating 770 markers based on 371 shared markers including 114 that were shared by all three populations and 257 shared between any two populations. The 15 linkage group map corresponds to the haploid number of chromosomes of this species. The marker order of the consensus map was largely collinear in all three individual maps but a few local inversions and marker rearrangements spanning short intervals were observed. Segregation distortion was present in all linkage groups which contained 1-52 markers displaying non-Mendelian segregation. The total length of the consensus genetic map is 1,551 cM with a mean marker density of 2.0 cM. A total of 670 markers were anchored to 204 of the 416 fingerprinted contigs of the physical map corresponding to ~274 Mb or 74 % of the estimated flax genome size of 370 Mb. This high resolution consensus map will be a resource for comparative genomics, genome organization, evolution studies and anchoring of the whole genome shotgun sequence.
2D and 3D virtual interactive laboratories of physics on Unity platform
NASA Astrophysics Data System (ADS)
González, J. D.; Escobar, J. H.; Sánchez, H.; De la Hoz, J.; Beltrán, J. R.
2017-12-01
Using the cross-platform game engine Unity, we develop virtual laboratories for PC, consoles, mobile devices and website as an innovative tool to study physics. There is extensive uptake of ICT in the teaching of science and its impact on the learning, and considering the limited availability of laboratories for physics teaching and the difficulties this causes in the learning of school students, we design the virtual laboratories to enhance studentâĂŹs knowledge of concepts in physics. To achieve this goal, we use Unity due to provide support bump mapping, reflection mapping, parallax mapping, dynamics shadows using shadows maps, full-screen post-processing effects and render-to-texture. Unity can use the best variant for the current video hardware and, if none are compatible, to use an alternative shader that may sacrifice features for performance. The control over delivery to mobile devices, web browsers, consoles and desktops is the main reason Unity is the best option among the same kind cross-platform. Supported platforms include Android, Apple TV, Linux, iOS, Nintendo 3DS line, macOS, PlayStation 4, Windows Phone 8, Wii but also an asset server and Nvidia’s PhysX physics engine which is the most relevant tool on Unity for our PhysLab.
Hass-Jacobus, Barbara L; Futrell-Griggs, Montona; Abernathy, Brian; Westerman, Rick; Goicoechea, Jose-Luis; Stein, Joshua; Klein, Patricia; Hurwitz, Bonnie; Zhou, Bin; Rakhshan, Fariborz; Sanyal, Abhijit; Gill, Navdeep; Lin, Jer-Young; Walling, Jason G; Luo, Mei Zhong; Ammiraju, Jetty Siva S; Kudrna, Dave; Kim, Hye Ran; Ware, Doreen; Wing, Rod A; Miguel, Phillip San; Jackson, Scott A
2006-01-01
Background With the completion of the genome sequence for rice (Oryza sativa L.), the focus of rice genomics research has shifted to the comparison of the rice genome with genomes of other species for gene cloning, breeding, and evolutionary studies. The genus Oryza includes 23 species that shared a common ancestor 8–10 million years ago making this an ideal model for investigations into the processes underlying domestication, as many of the Oryza species are still undergoing domestication. This study integrates high-throughput, hybridization-based markers with BAC end sequence and fingerprint data to construct physical maps of rice chromosome 1 orthologues in two wild Oryza species. Similar studies were undertaken in Sorghum bicolor, a species which diverged from cultivated rice 40–50 million years ago. Results Overgo markers, in conjunction with fingerprint and BAC end sequence data, were used to build sequence-ready BAC contigs for two wild Oryza species. The markers drove contig merges to construct physical maps syntenic to rice chromosome 1 in the wild species and provided evidence for at least one rearrangement on chromosome 1 of the O. sativa versus Oryza officinalis comparative map. When rice overgos were aligned to available S. bicolor sequence, 29% of the overgos aligned with three or fewer mismatches; of these, 41% gave positive hybridization signals. Overgo hybridization patterns supported colinearity of loci in regions of sorghum chromosome 3 and rice chromosome 1 and suggested that a possible genomic inversion occurred in this syntenic region in one of the two genomes after the divergence of S. bicolor and O. sativa. Conclusion The results of this study emphasize the importance of identifying conserved sequences in the reference sequence when designing overgo probes in order for those probes to hybridize successfully in distantly related species. As interspecific markers, overgos can be used successfully to construct physical maps in species which diverged less than 8 million years ago, and can be used in a more limited fashion to examine colinearity among species which diverged as much as 40 million years ago. Additionally, overgos are able to provide evidence of genomic rearrangements in comparative physical mapping studies. PMID:16895597
Westergren, Thomas; Berntsen, Sveinung; Ludvigsen, Mette Spliid; Aagaard, Hanne; Hall, Elisabeth O C; Ommundsen, Yngvar; Uhrenfeldt, Lisbeth; Fegran, Liv
2017-08-01
Asthma is a heterogeneous chronic airway disease which may reduce capability for physical activity. In healthy peers, physical activity is influenced by psychosocial and socioeconomic factors. Knowledge about the role of these factors has not been mapped in children and adolescents with asthma. The main objective of this scoping review was to identify psychosocial and socioeconomic factors associated with physical activity level in children and adolescents with asthma in the literature. The specific objectives were to map the instruments used to measure these factors, report on the construction and validation of these instruments, map psychosocial and socioeconomic issues related to physical activity level reported in qualitative studies, and identify gaps in knowledge about the relationship between psychosocial and socioeconomic factors and physical activity level in children and adolescents with asthma. Children and adolescents with asthma aged six to 18 years. Psychosocial and socioeconomic factors related to physical activity level and participation. All physical activity contexts. Quantitative and qualitative primary studies in English, with no date limit. The databases searched included nine major databases for health and sports science, and five databases for unpublished studies. After screening and identification of studies, the reference lists of all identified reports were searched, and forward citation searches were conducted using four databases. The following data were extracted: (a) relevant study characteristics and assessment of physical activity level, (b) instruments used to assess psychosocial and socioeconomic factors, (c) association between physical activity level and these factors, (d) construction and validation of instruments, and (e) psychosocial and socioeconomic issues related to physical activity participation. Twenty-one quantitative and 13 qualitative studies were included. In cross-sectional studies, enjoyment, physical self-concept, self-efficacy, attitudes and beliefs about physical activity and health, psychological distress, health-related quality of life, and social support were more often reported as being correlated with physical activity level. In three studies, the construct validity was assessed by factor analysis and construct reliability tests for the study population. Qualitative studies reported 10 issues related to physical activity participation, and capability and being like peers were most commonly reported. There was no direct evidence that qualitative research informed the development or adjustment of instruments in quantitative studies. Seven psychosocial factors correlated with physical activity level; capability and being like peers were the most commonly reported issues. Reports of the construction and validation of instruments were sparse.
ERIC Educational Resources Information Center
Pellicer-Chenoll, Maite; Garcia-Massó, Xavier; Morales, Jose; Serra-Añó, Pilar; Solana-Tramunt, Mònica; González, Luis-Millán; Toca-Herrera, José-Luis
2015-01-01
The relationship among physical activity, physical fitness and academic achievement in adolescents has been widely studied; however, controversy concerning this topic persists. The methods used thus far to analyse the relationship between these variables have included mostly traditional lineal analysis according to the available literature. The…
NASA Astrophysics Data System (ADS)
Kazama, Yusuke; Ishii, Kotaro; Aonuma, Wataru; Ikeda, Tokihiro; Kawamoto, Hiroki; Koizumi, Ayako; Filatov, Dmitry A.; Chibalina, Margarita; Bergero, Roberta; Charlesworth, Deborah; Abe, Tomoko; Kawano, Shigeyuki
2016-01-01
Sex chromosomes are particularly interesting regions of the genome for both molecular genetics and evolutionary studies; yet, for most species, we lack basic information, such as the gene order along the chromosome. Because they lack recombination, Y-linked genes cannot be mapped genetically, leaving physical mapping as the only option for establishing the extent of synteny and homology with the X chromosome. Here, we developed a novel and general method for deletion mapping of non-recombining regions by solving “the travelling salesman problem”, and evaluate its accuracy using simulated datasets. Unlike the existing radiation hybrid approach, this method allows us to combine deletion mutants from different experiments and sources. We applied our method to a set of newly generated deletion mutants in the dioecious plant Silene latifolia and refined the locations of the sex-determining loci on its Y chromosome map.
Preliminary surficial geologic map database of the Amboy 30 x 60 minute quadrangle, California
Bedford, David R.; Miller, David M.; Phelps, Geoffrey A.
2006-01-01
The surficial geologic map database of the Amboy 30x60 minute quadrangle presents characteristics of surficial materials for an area approximately 5,000 km2 in the eastern Mojave Desert of California. This map consists of new surficial mapping conducted between 2000 and 2005, as well as compilations of previous surficial mapping. Surficial geology units are mapped and described based on depositional process and age categories that reflect the mode of deposition, pedogenic effects occurring post-deposition, and, where appropriate, the lithologic nature of the material. The physical properties recorded in the database focus on those that drive hydrologic, biologic, and physical processes such as particle size distribution (PSD) and bulk density. This version of the database is distributed with point data representing locations of samples for both laboratory determined physical properties and semi-quantitative field-based information. Future publications will include the field and laboratory data as well as maps of distributed physical properties across the landscape tied to physical process models where appropriate. The database is distributed in three parts: documentation, spatial map-based data, and printable map graphics of the database. Documentation includes this file, which provides a discussion of the surficial geology and describes the format and content of the map data, a database 'readme' file, which describes the database contents, and FGDC metadata for the spatial map information. Spatial data are distributed as Arc/Info coverage in ESRI interchange (e00) format, or as tabular data in the form of DBF3-file (.DBF) file formats. Map graphics files are distributed as Postscript and Adobe Portable Document Format (PDF) files, and are appropriate for representing a view of the spatial database at the mapped scale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDermid, H.E.; Budarf, M.L.; Emanuel, B.S.
1993-11-01
A long-range restriction map of the region between the immunoglobulin lambda locus and the Ewing sarcoma breakpoint has been constructed using the rare-cutting enzymes NotI, NruI, AscI, and BsiWI. The map spans approximately 11,000 kb and represents about one-fifth of the long arm of chromosome 22. Thirty-nine markers, including seven NotI junction clones as well as numerous genes and anonymous sequences, were mapped to the region with a somatic cell hybrid panel. These probes were then used to produce the map. The seven NotI junction clones each identified a possible CpG island. The breakpoints of the RAJ5 hybrid and themore » Ewing sarcoma t(11;22) were also localized in the resulting map. This physical map will be useful in studying chromosomal rearrangements in the region, as well as providing the details to examine the fidelity of the YAC and cosmid contigs currently under construction. Comparisons of this physical map to genetic and radiation hybrid maps are discussed. 52 refs., 7 figs., 3 tabs.« less
Using Playground Maps for Movement
ERIC Educational Resources Information Center
Colvin, A. Vonnie
2016-01-01
Many schools now decorate their outside hard surface areas with maps. These maps provide color and excitement to a playground and are a terrific teaching tool for geography. But these maps can easily be integrated into physical education as well to promote both physical activity as well as knowledge of geography. The purpose of this article is to…
Krenner, Wolfgang; Kühne, Dirk; Klappenberger, Florian; Barth, Johannes V.
2013-01-01
Scanning tunneling spectroscopy (STS) enables the local, energy-resolved investigation of a samples surface density of states (DOS) by measuring the differential conductance (dI/dV) being approximately proportional to the DOS. It is popular to examine the electronic structure of elementary samples by acquiring dI/dV maps under constant current conditions. Here we demonstrate the intricacy of STS mapping of samples exhibiting a strong corrugation originating from electronic density and local work function changes. The confinement of the Ag(111) surface state by a porous organic network is studied with maps obtained under constant-current (CC) as well as open-feedback-loop (OFL) conditions. We show how the CC maps deviate markedly from the physically more meaningful OFL maps. By applying a renormalization procedure to the OFL data we can mimic the spurious effects of the CC mode and thereby rationalize the physical effects evoking the artefacts in the CC maps. PMID:23503526
NASA Astrophysics Data System (ADS)
Flinchum, B. A.; Holbrook, W. S.; Grana, D.; Parsekian, A.; Carr, B.; Jiao, J.
2017-12-01
Porosity is generated by chemical, physical and biological processes that work to transform bedrock into soil. The resulting porosity structure can provide specifics about these processes and can improve understanding groundwater storage in the deep critical zone. Near-surface geophysical methods, when combined with rock physics and drilling, can be a tool used to map porosity over large spatial scales. In this study, we estimate porosity in three-dimensions (3D) across a 58 Ha granite catchment. Observations focus on seismic refraction, downhole nuclear magnetic resonance logs, downhole sonic logs, and samples of core acquired by push coring. We use a novel petrophysical approach integrating two rock physics models, a porous medium for the saprolite and a differential effective medium for the fractured rock, that drive a Bayesian inversion to calculate porosity from seismic velocities. The inverted geophysical porosities are within about 0.05 m3/m3 of lab measured values. We extrapolate the porosity estimates below seismic refraction lines to a 3D volume using ordinary kriging to map the distribution of porosity in 3D up to depths of 80 m. This study provides a unique map of porosity on scale never-before-seen in critical zone science. Estimating porosity on these large spatial scales opens the door for improving and understanding the processes that shape the deep critical zone.
A Systematic Review of Mapping Strategies for the Sonification of Physical Quantities
Dubus, Gaël; Bresin, Roberto
2013-01-01
The field of sonification has progressed greatly over the past twenty years and currently constitutes an established area of research. This article aims at exploiting and organizing the knowledge accumulated in previous experimental studies to build a foundation for future sonification works. A systematic review of these studies may reveal trends in sonification design, and therefore support the development of design guidelines. To this end, we have reviewed and analyzed 179 scientific publications related to sonification of physical quantities. Using a bottom-up approach, we set up a list of conceptual dimensions belonging to both physical and auditory domains. Mappings used in the reviewed works were identified, forming a database of 495 entries. Frequency of use was analyzed among these conceptual dimensions as well as higher-level categories. Results confirm two hypotheses formulated in a preliminary study: pitch is by far the most used auditory dimension in sonification applications, and spatial auditory dimensions are almost exclusively used to sonify kinematic quantities. To detect successful as well as unsuccessful sonification strategies, assessment of mapping efficiency conducted in the reviewed works was considered. Results show that a proper evaluation of sonification mappings is performed only in a marginal proportion of publications. Additional aspects of the publication database were investigated: historical distribution of sonification works is presented, projects are classified according to their primary function, and the sonic material used in the auditory display is discussed. Finally, a mapping-based approach for characterizing sonification is proposed. PMID:24358192
Li, Gang; Hillier, LaDeana W; Grahn, Robert A; Zimin, Aleksey V; David, Victor A; Menotti-Raymond, Marilyn; Middleton, Rondo; Hannah, Steven; Hendrickson, Sher; Makunin, Alex; O'Brien, Stephen J; Minx, Pat; Wilson, Richard K; Lyons, Leslie A; Warren, Wesley C; Murphy, William J
2016-06-01
High-resolution genetic and physical maps are invaluable tools for building accurate genome assemblies, and interpreting results of genome-wide association studies (GWAS). Previous genetic and physical maps anchored good quality draft assemblies of the domestic cat genome, enabling the discovery of numerous genes underlying hereditary disease and phenotypes of interest to the biomedical science and breeding communities. However, these maps lacked sufficient marker density to order thousands of shorter scaffolds in earlier assemblies, which instead relied heavily on comparative mapping with related species. A high-resolution map would aid in validating and ordering chromosome scaffolds from existing and new genome assemblies. Here, we describe a high-resolution genetic linkage map of the domestic cat genome based on genotyping 453 domestic cats from several multi-generational pedigrees on the Illumina 63K SNP array. The final maps include 58,055 SNP markers placed relative to 6637 markers with unique positions, distributed across all autosomes and the X chromosome. Our final sex-averaged maps span a total autosomal length of 4464 cM, the longest described linkage map for any mammal, confirming length estimates from a previous microsatellite-based map. The linkage map was used to order and orient the scaffolds from a substantially more contiguous domestic cat genome assembly (Felis catus v8.0), which incorporated ∼20 × coverage of Illumina fragment reads. The new genome assembly shows substantial improvements in contiguity, with a nearly fourfold increase in N50 scaffold size to 18 Mb. We use this map to report probable structural errors in previous maps and assemblies, and to describe features of the recombination landscape, including a massive (∼50 Mb) recombination desert (of virtually zero recombination) on the X chromosome that parallels a similar desert on the porcine X chromosome in both size and physical location. Copyright © 2016 Li et al.
Strain screen and haplotype association mapping of wheel running in inbred mouse strains.
Lightfoot, J Timothy; Leamy, Larry; Pomp, Daniel; Turner, Michael J; Fodor, Anthony A; Knab, Amy; Bowen, Robert S; Ferguson, David; Moore-Harrison, Trudy; Hamilton, Alicia
2010-09-01
Previous genetic association studies of physical activity, in both animal and human models, have been limited in number of subjects and genetically homozygous strains used as well as number of genomic markers available for analysis. Expansion of the available mouse physical activity strain screens and the recently published dense single-nucleotide polymorphism (SNP) map of the mouse genome (approximately 8.3 million SNPs) and associated statistical methods allowed us to construct a more generalizable map of the quantitative trait loci (QTL) associated with physical activity. Specifically, we measured wheel running activity in male and female mice (average age 9 wk) in 41 inbred strains and used activity data from 38 of these strains in a haplotype association mapping analysis to determine QTL associated with activity. As seen previously, there was a large range of activity patterns among the strains, with the highest and lowest strains differing significantly in daily distance run (27.4-fold), duration of activity (23.6-fold), and speed (2.9-fold). On a daily basis, female mice ran further (24%), longer (13%), and faster (11%). Twelve QTL were identified, with three (on Chr. 12, 18, and 19) in both male and female mice, five specific to males, and four specific to females. Eight of the 12 QTL, including the 3 general QTL found for both sexes, fell into intergenic areas. The results of this study further support the findings of a moderate to high heritability of physical activity and add general genomic areas applicable to a large number of mouse strains that can be further mined for candidate genes associated with regulation of physical activity. Additionally, results suggest that potential genetic mechanisms arising from traditional noncoding regions of the genome may be involved in regulation of physical activity.
HEALTHY BOUTS OF ACTIVITY: INTEGRATING GPS AND ACCELEROMETRY FOR MAP-PROMPTED BOUT RECALLS
Brown, Barbara B.; Wilson, Laura; Tribby, Calvin P.; Werner, Carol M.; Wolf, Jean; Miller, Harvey J.; Smith, Ken R.
2015-01-01
Objective Obtaining the “when, where, and why” of healthy bouts of moderate-to-vigorous physical activity (MVPA) provides insights into natural physical activity Design In Salt Lake City, Utah, adults wore accelerometer and GPS loggers for a week in a cross-sectional study to establish baseline travel and activity patterns near a planned Complete Street intervention involving a new rail line, new sidewalks, and a bike path. Results At the end of the week research assistants met with the 918 participants who had at least three 10-hour days of good accelerometer readings. Accelerometer and GPS data were uploaded and integrated within a custom application, and participants were provided with maps and time information for past MVPA bouts of ≥ 3 minutes to help them recall bout details. Participants said that ‘getting someplace” was, on average, a more important motivation for their bouts than leisure or exercise. A series of recall tests showed that participants recalled most bouts they were asked about, regardless of duration of the bout, suggesting that participant perceptions of their shorter lifestyle bouts can be studied with this methodology. Visual prompting with a map depicting where each bout took place yielded more accurate recall than prompting with time cues alone. Conclusion These techniques provide a novel way to understand participant memories of the context and subjective assessments associated with healthy bouts of physical activity. Prompts with time-stamped maps that illustrate places of moderate-to-vigorous physical activity offer an effective method to improve understanding of activity and its supportive socio-physical contexts. PMID:24815545
NASA Astrophysics Data System (ADS)
Gao, Hong
The tunable vacuum ultraviolet (VUV) laser generated through the two-photon resonance-enhanced four-wave mixing scheme is combined with the newly developed time-slice velocity map imaging photoion method to study the photodissociation of small molecules in the VUV region, and with the velocity map imaging photoelectron method to study the photoionization of free radicals. The photodissociation dynamics of NO in the energy region around 13.5 eV has been investigated. Branching ratios of the three lowest dissociation channels of 12C 16O that produce C(3P) + O(3P), C( 1D) + O(3P) and C(3P) + O(1D) are measured for the first time in the VUV region from 102,500 cm-1 to 110,500 cm-1, valuable information of the dissociation dynamics for this prototype system has been deduced. We demonstrated an experiment that has two independently tunable VUV lasers and a time-slice velocity map imaging setup, this provides us a global way to perform systematic state-selected photodissociation of small molecules via state-selected detection of the atomic products in the VUV region. The velocity map imaging photoelectron method was successfully used to obtain the photoelectron spectrum of the propargyl radical (C3H3) via a single VUV photoionization process. The propargyl radical is generated by the 193 nm laser photodissociation of the precursor C3H3Cl. This is the first time that the velocity map imaging photoelectron method is used to get the photoelectron spectra of free radicals, indicating that it is a powerful technique for studying the photoionization of free radicals which are always hard to be produced with high enough number densities for spectroscopic studies. This dissertation is mainly based on the following peer-reviewed journal articles: 1. Hong Gao, Yang Pan, Lei Yang, Jingang Zhou, C. Y. Ng and William M. Jackson. "Time-slice velocity-map ion imaging studies of the Photodissociation of NO in the vacuum ultraviolet region", the Journal of Chemical Physics, 136, 134302 (2012). (Chapter 2) 2. Hong Gao, Yu Song, Lei Yang, Xiaoyu Shi, Qing-Zhu Yin, C. Y. Ng and William M. Jackson. "Branching ratio measurements of the predissociation of 12C16O by time-slice velocity-map ion imaging in the energy region from 108,000 to 110,500 cm-1", the Journal of Chemical Physics, 137, 034305 (2012). (Chapter 3) 3. Hong Gao, Yu Song, Yih-Chung Chang, Xiaoyu Shi, Qing-Zhu Yin, Roger C. Wiens, William M. Jackson, C. Y. Ng, "Branching Ratio Measurements for Vacuum Ultraviolet Photodissociation of 12C16O", the Journal of Physical Chemistry A. (article online ASAP). (Chapter 4) 4. Hong Gao, Yu Song, C. Y. Ng, William M. Jackson, " Communication: State-to-state photodissociation study by the two-color VUV-VUV laser pump-probe time-slice velocity-map-imaging-photoion method", the Journal of Chemical Physics, 138, 191102(2013). (Chapter 5) 5. Hong Gao, Zhou Lu, Lei Yang, Jingang Zhou, C. Y. Ng, "Communication: A vibrational study of propargyl cation using the vacuum ultraviolet laser velocity-map imaging photoelectron method", the Journal of Chemical Physics, 137, 161101(2012). (Chapter 6)
Conceptualizing physical activity parenting practices using expert informed concept mapping analysis
USDA-ARS?s Scientific Manuscript database
Parents are widely recognized as playing a central role in the development of child behaviors such as physical activity. As there is little agreement as to the dimensions of physical activity-related parenting practices that should be measured or how they should be operationalized, this study engage...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willard, H.F.; Cremers, F.; Mandel, J.L.
A high-quality integrated genetic and physical map of the X chromosome from telomere to telomere, based primarily on YACs formatted with probes and STSs, is increasingly close to reality. At the Fifth International X Chromosome Workshop, organized by A.M. Poustka and D. Schlessinger in Heidelberg, Germany, April 24--27, 1994, substantial progress was recorded on extension and refinement of the physical map, on the integration of genetic and cytogenetic data, on attempts to use the map to direct gene searches, and on nascent large-scale sequencing efforts. This report summarizes physical and genetic mapping information presented at the workshop and/or published sincemore » the reports of the fourth International X Chromosome Workshop. The principle aim of the workshop was to derive a consensus map of the chromosome, in terms of physical contigs emphasizing the location of genes and microsatellite markers. The resulting map is presented and updates previous versions. This report also updates the list of highly informative microsatellites. The text highlights the working state of the map, the genes known to reside on the X, and the progress toward integration of various types of data.« less
ERIC Educational Resources Information Center
Partington, Elizabeth; Partington, Sarah; Fishwick, Lesley; Allin, Linda
2005-01-01
This paper adopts a narrative perspective on the study of mid-life experiences in sport. Different types of stories about sporting mid-life are identified and discussed. Drawing upon the concept of narrative mapping, the potential of these stories to serve as narrative maps for those approaching mid-life is considered. Data from an interview study…
Correlation of physical and genetic maps of human chromosome 16
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutherland, G.R.
1991-01-01
This project aimed to divide chromosome 16 into approximately 50 intervals of {approximately}2Mb in size by constructing a series of mouse/human somatic cell hybrids each containing a rearranged chromosome 16. Using these hybrids, DNA probes would be regionally mapped by Southern blot or PCR analysis. Preference would be given to mapping probes which demonstrated polymorphisms for which the CEPH panel of families had been typed. This would allow a correlation of the physical and linkage maps of this chromosome. The aims have been substantially achieved. 49 somatic cell hybrids have been constructed which have allowed definition of 46, and potentiallymore » 57, different physical intervals on the chromosome. 164 loci have been fully mapped into these intervals. A correlation of the physical and genetic maps of the chromosome is in an advanced stage of preparation. The somatic cell hybrids constructed have been widely distributed to groups working on chromosome 16 and other genome projects.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutherland, G.R.
1991-12-31
This project aimed to divide chromosome 16 into approximately 50 intervals of {approximately}2Mb in size by constructing a series of mouse/human somatic cell hybrids each containing a rearranged chromosome 16. Using these hybrids, DNA probes would be regionally mapped by Southern blot or PCR analysis. Preference would be given to mapping probes which demonstrated polymorphisms for which the CEPH panel of families had been typed. This would allow a correlation of the physical and linkage maps of this chromosome. The aims have been substantially achieved. 49 somatic cell hybrids have been constructed which have allowed definition of 46, and potentiallymore » 57, different physical intervals on the chromosome. 164 loci have been fully mapped into these intervals. A correlation of the physical and genetic maps of the chromosome is in an advanced stage of preparation. The somatic cell hybrids constructed have been widely distributed to groups working on chromosome 16 and other genome projects.« less
Figueroa, Debbie M; Bass, Hank W
2012-05-01
Integrated cytogenetic pachytene fluorescence in situ hybridization (FISH) maps were developed for chromosomes 1, 3, 4, 5, 6, and 8 of maize using restriction fragment length polymorphism marker-selected Sorghum propinquum bacterial artificial chromosomes (BACs) for 19 core bin markers and 4 additional genetic framework loci. Using transgenomic BAC FISH mapping on maize chromosome addition lines of oats, we found that the relative locus position along the pachytene chromosome did not change as a function of total arm length, indicative of uniform axial contraction along the fibers during mid-prophase for tested loci on chromosomes 4 and 5. Additionally, we cytogenetically FISH mapped six loci from chromosome 9 onto their duplicated syntenic regions on chromosomes 1 and 6, which have varying amounts of sequence divergence, using sorghum BACs homologous to the chromosome 9 loci. We found that successful FISH mapping was possible even when the chromosome 9 selective marker had no counterpart in the syntenic block. In total, these 29 FISH-mapped loci were used to create the most extensive pachytene FISH maps to date for these six maize chromosomes. The FISH-mapped loci were then merged into one composite karyotype for direct comparative analysis with the recombination nodule-predicted cytogenetic, genetic linkage, and genomic physical maps using the relative marker positions of the loci on all the maps. Marker colinearity was observed between all pair-wise map comparisons, although marker distribution patterns varied widely in some cases. As expected, we found that the recombination nodule-based predictions most closely resembled the cytogenetic map positions overall. Cytogenetic and linkage map comparisons agreed with previous studies showing a decrease in marker spacing in the peri-centromeric heterochromatin region on the genetic linkage maps. In fact, there was a general trend with most loci mapping closer towards the telomere on the linkage maps than on the cytogenetic maps, regardless of chromosome number or maize inbred line source, with just some of the telomeric loci exempted. Finally and somewhat surprisingly, we observed considerable variation between the relative arm positions of loci when comparing our cytogenetic FISH map to the B73 genomic physical maps, even where comparisons were to a B73-derived cytogenetic map. This variation is more evident between different chromosome arms, but less so within a given arm, ruling out any type of inbred-line dependent global features of linear deoxyribonucleic acid compared with the meiotic fiber organization. This study provides a means for analyzing the maize genome structure by producing new connections for integrating the cytogenetic, linkage, and physical maps of maize.
Dulin-Keita, Akilah; Clay, Olivio; Whittaker, Shannon; Hannon, Lonnie; Adams, Ingrid K; Rogers, Michelle; Gans, Kim
2015-08-01
This study uses a mixed methods approach to 1) identify surrounding residents' perceived expectations for Housing Opportunities for People Everywhere (HOPE VI) policy on physical activity outcomes and to 2) quantitatively examine the odds of neighborhood-based physical activity pre-/post-HOPE VI in a low socioeconomic status, predominantly African American community in Birmingham, Alabama. To address aim one, we used group concept mapping which is a structured approach for data collection and analyses that produces pictures/maps of ideas. Fifty-eight residents developed statements about potential influences of HOPE VI on neighborhood-based physical activity. In the quantitative study, we examined whether these potential influences increased the odds of neighborhood walking/jogging. We computed block entry logistic regression models with a larger cohort of residents at baseline (n = 184) and six-months (n = 142, 77% retention; n = 120 for all informative variables). We examined perceived neighborhood disorder (perceived neighborhood disorder scale), walkability and aesthetics (Neighborhood Environment Walkability Scale) and HOPE VI-related community safety and safety for physical activity as predictors. During concept mapping, residents generated statements that clustered into three distinct concepts, "Increased Leisure Physical Activity," "Safe Play Areas," and "Generating Health Promoting Resources." The quantitative analyses indicated that changes in neighborhood walkability increased the odds of neighborhood-based physical activity (p = 0.04). When HOPE VI-related safety for physical activity was entered into the model, it was associated with increased odds of physical activity (p = 0.04). Walkability was no longer statistically significant. These results suggest that housing policies that create walkable neighborhoods and that improve perceptions of safety for physical activity may increase neighborhood-based physical activity. However, the longer term impacts of neighborhood-level policies on physical activity require more longitudinal evidence to determine whether increased participation in physical activity is sustained. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lebo, R.V.; Lynch, E.D.; Golbus, M.S.
1992-01-01
This study demonstrates a clear and current role for multicolor in situ hybridization in expediting positional cloning studies of unknown disease genes. Nine polymorphic DNA cosmids have been mapped to eight ordered locations spanning the Charcot-Marie-Tooth type 1 (CMT1A) disease gene region in distal band 17p11.2, by multicolor in situ hybridization. When used with linkage analysis, these methods have generated a fine physical map and have firmly assigned the CMT1A gene to distal band 17p11.2. Linkage analysis with four CMT1A pedigrees mapped the CMT1A gene with respect to two flanking markers. Additional loci were physically mapped and ordered by inmore » situ hybridization and analysis of phase-known recombinants in CMT1A pedigrees. These data demonstrate the ability of in situ hybridization to resolve loci within 0.5 Mb on early-metaphase chromosomes. Multicolor in situ hybridization also excluded the possibility of pericentric inversions in two unrelated patients with CMT1 and neurofibromatosis type 1. When used with pulsed-field gel electrophoresis, multicolor in situ hybridization can establish physical location, order, and distance in closely spaced chromosome loci.« less
NASA Astrophysics Data System (ADS)
Yeo, I. Y.
2015-12-01
We report the recent progress on our effort to improve the mapping of wetland dynamics and the modelling of its functioning and hydrological connection to the downstream waters. Our study focused on the Coastal Plain of the Chesapeake Bay Watershed (CBW), the Delmarva Peninsula, where the most of wetlands in CBW are densely distributed. The wetland ecosystem plays crucial roles in improving water quality and ecological integrity for the downstream waters and the Chesapeake Bay, and headwater wetlands in the region, such as Delmarva Bay, are now subject to the legal protection under the Clean Water Rules. We developed new wetland maps using time series Landsat images and a highly accurate LiDAR map over last 30 years. These maps show the changes in surface water fraction at a 30-m grid cell at annual time scale. Using GIS, we analyse these maps to characterize changing dynamics of wetland inundation due to the physical environmental factors (e.g., weather variability, tide) and assessed the hydrological connection of wetlands to the downstream water at the watershed scale. Focusing on the two adjacent watersheds in the upper region of the Choptank River Basin, we study how wetland inundation dynamics and the hydrologic linkage of wetlands to downstream water would vary by the local hydrogeological setting and attempt to identify the key landscape factors affecting the wetland ecosystems and functioning. We then discuss the potential of using remote sensing products to improve the physical modelling of wetlands from our experience with SWAT (Soil and Water Assessment Tool).
Pope, Zachary; Lee, Jung Eun; Zeng, Nan; Lee, Hee Yun; Gao, Zan
2018-02-17
Breast cancer survivors are at risk for poor health, with physical activity a possible treatment. Little research has examined how technology might promote breast cancer survivor physical activity or health. The aim of this study is to investigate the feasibility of employing a commercially available mobile health application- and social media-based health education intervention to improve breast cancer survivor physical activity or health.Ten breast cancer survivors (X̅ age = 45.80 ± 10.23 years; X̅ weight = 79.51 ± 20.85 kg) participated in this 10-week single-group pilot study from 2015 to 2016. Participants downloaded the MapMyFitness application, documented all physical activity with MapMyFitness, and were enrolled in a Social Cognitive Theory-based, Facebook-delivered health education intervention. Objectively measured physical activity, weight or body composition, cardiovascular fitness, psychosocial constructs, and quality of life indices were measured at baseline and 10 weeks. Intervention use and acceptability was evaluated during and following the intervention. Descriptive statistics were calculated for all study outcomes, with qualitative analyses performed regarding use and acceptability. At postintervention, average daily moderate-to-vigorous physical activity and steps increased by 2.6 min and 1,657, respectively, with notable decreases in weight (2.4 kg) and body fat percentage (2.3%). Physical activity-related social support and ability to engage in social roles or activity demonstrated the greatest improvements among all psychosocial and quality of life indices, respectively. Participants enjoyed the feedback and tracking features of MapMyFitness, with most finding the Facebook component helpful. All participants recommended the intervention for future use.Physical activity interventions combining commercially available mobile health applications and theoretically based social media-delivered health interventions may promote certain physiological, psychosocial, and quality of life outcomes among breast cancer survivors. Larger samples and randomized studies are warranted.
Artemov, Gleb N; Gordeev, Mikhail I; Kokhanenko, Alina A; Moskaev, Anton V; Velichevskaya, Alena I; Stegniy, Vladimir N; Sharakhov, Igor V; Sharakhova, Maria V
2018-03-27
Anopheles beklemishevi is a member of the Maculipennis group of malaria mosquitoes that has the most northern distribution among other members of the group. Although a cytogenetic map for the larval salivary gland chromosomes of this species has been developed, a high-quality standard cytogenetic photomap that enables genomics and population genetics studies of this mosquito at the adult stage is still lacking. In this study, a cytogenetic map for the polytene chromosomes of An. beklemishevi from ovarian nurse cells was developed using high-resolution digital imaging from field collected mosquitoes. PCR-amplified DNA probes for fluorescence in situ hybridization (FISH) were designed based on the genome of An. atroparvus. The DNA probe obtained by microdissection procedures from the breakpoint region was labelled in a DOP-PCR reaction. Population analysis was performed on 371 specimens collected in 18 locations. We report the development of a high-quality standard photomap for the polytene chromosomes from ovarian nurse cells of An. beklemishevi. To confirm the suitability of the map for physical mapping, several PCR-amplified probes were mapped to the chromosomes of An. beklemishevi using FISH. In addition, we identified and mapped DNA probes to flanking regions of the breakpoints of two inversions on chromosome X of this species. Inversion polymorphism was determined in 13 geographically distant populations of An. beklemishevi. Four polymorphic inversions were detected. The positions of common chromosomal inversions were indicated on the map. The study constructed a standard photomap for ovarian nurse cell chromosomes of An. beklemishevi and tested its suitability for physical genome mapping and population studies. Cytogenetic analysis determined inversion polymorphism in natural populations of An. beklemishevi related to this species' adaptation.
A simple landslide susceptibility analysis for hazard and risk assessment in developing countries
NASA Astrophysics Data System (ADS)
Guinau, M.; Vilaplana, J. M.
2003-04-01
In recent years, a number of techniques and methodologies have been developed for mitigating natural disasters. The complexity of these methodologies and the scarcity of material and data series justify the need for simple methodologies to obtain the necessary information for minimising the effects of catastrophic natural phenomena. The work with polygonal maps using a GIS allowed us to develop a simple methodology, which was developed in an area of 473 Km2 in the Departamento de Chinandega (NW Nicaragua). This area was severely affected by a large number of landslides (mainly debris flows), triggered by the Hurricane Mitch rainfalls in October 1998. With the aid of aerial photography interpretation at 1:40.000 scale, amplified to 1:20.000, and detailed field work, a landslide map at 1:10.000 scale was constructed. The failure zones of landslides were digitized in order to obtain a failure zone digital map. A terrain unit digital map, in which a series of physical-environmental terrain factors are represented, was also used. Dividing the studied area into two zones (A and B) with homogeneous physical and environmental characteristics, allows us to develop the proposed methodology and to validate it. In zone A, the failure zone digital map is superimposed onto the terrain unit digital map to establish the relationship between the different terrain factors and the failure zones. The numerical expression of this relationship enables us to classify the terrain by its landslide susceptibility. In zone B, this numerical relationship was employed to obtain a landslide susceptibility map, obviating the need for a failure zone map. The validity of the methodology can be tested in this area by using the degree of superposition of the susceptibility map and the failure zone map. The implementation of the methodology in tropical countries with physical and environmental characteristics similar to those of the study area allows us to carry out a landslide susceptibility analysis in areas where landslide records do not exist. This analysis is essential to landslide hazard and risk assessment, which is necessary to determine the actions for mitigating landslide effects, e.g. land planning, emergency aid actions, etc.
Liu, Gang; Jayathilake, Pahala G; Khoo, Boo Cheong; Han, Feng; Liu, Dian Kui
2012-02-01
The complex variables method with mapping function was extended to solve the linear acoustic wave scattering by an inclusion with sharp/smooth corners in an infinite ideal fluid domain. The improved solutions of Helmholtz equation, shown as Bessel function with mapping function as the argument and fractional order Bessel function, were analytically obtained. Based on the mapping function, the initial geometry as well as the original physical vector can be transformed into the corresponding expressions inside the mapping plane. As all the physical vectors are calculated in the mapping plane (η,η), this method can lead to potential vast savings of computational resources and memory. In this work, the results are validated against several published works in the literature. The different geometries of the inclusion with sharp corners based on the proposed mapping functions for irregular polygons are studied and discussed. The findings show that the variation of angles and frequencies of the incident waves have significant influence on the bistatic scattering pattern and the far-field form factor for the pressure in the fluid. © 2012 Acoustical Society of America
Methods commonly used to delineate protection zones for water-supply wells are often not directly applicable for springs. This investigation focuses on the use of hydrogeologic mapping methods to identify physical and hydrologic features that control ground-water flow to springs...
NASA Astrophysics Data System (ADS)
2008-10-01
Based on bibliometric data from information-services provider Thomson Reuters, this map reveals "core areas" of physics, shown as coloured circular nodes, and the relationship between these subdisciplines, shown as lines.
NASA Astrophysics Data System (ADS)
Oliveira, Sérgio C.; Zêzere, José L.; Lajas, Sara; Melo, Raquel
2017-07-01
Approaches used to assess shallow slide susceptibility at the basin scale are conceptually different depending on the use of statistical or physically based methods. The former are based on the assumption that the same causes are more likely to produce the same effects, whereas the latter are based on the comparison between forces which tend to promote movement along the slope and the counteracting forces that are resistant to motion. Within this general framework, this work tests two hypotheses: (i) although conceptually and methodologically distinct, the statistical and deterministic methods generate similar shallow slide susceptibility results regarding the model's predictive capacity and spatial agreement; and (ii) the combination of shallow slide susceptibility maps obtained with statistical and physically based methods, for the same study area, generate a more reliable susceptibility model for shallow slide occurrence. These hypotheses were tested at a small test site (13.9 km2) located north of Lisbon (Portugal), using a statistical method (the information value method, IV) and a physically based method (the infinite slope method, IS). The landslide susceptibility maps produced with the statistical and deterministic methods were combined into a new landslide susceptibility map. The latter was based on a set of integration rules defined by the cross tabulation of the susceptibility classes of both maps and analysis of the corresponding contingency tables. The results demonstrate a higher predictive capacity of the new shallow slide susceptibility map, which combines the independent results obtained with statistical and physically based models. Moreover, the combination of the two models allowed the identification of areas where the results of the information value and the infinite slope methods are contradictory. Thus, these areas were classified as uncertain and deserve additional investigation at a more detailed scale.
NASA Astrophysics Data System (ADS)
Purwaningsih, E.; Sutoyo, S.; Wasis; Prahani, B. K.
2018-03-01
This research is aimed to analyse the effectiveness of ComCoReLS (Concept Mapping Content Representation Lesson Study) model towards the improvement skills of Creating Physics Lesson Plan (CPLP) for pre-service physics teacher. This research used one group pre-test and post-test design on 12 pre-service physics teacher at University of Malang State (Indonesia) in academic year 2016/2017. Data collection was conducted through test and interview. Skills of creating physics lesson plan for pre-service physics teacher measurement were conducted through Physics Lesson Plan Evaluation Sheet (PLPES). The data analysis technique was done by using paired t-test and n-gain. The CoMCoReLS model consists of 5 phases, including (1) Preparation, (2) Coaching, (3) Guided Practice, (4) Independent Practice, and (5) Evaluation. In the first, second, third and fifth phases are done at University of Malang State, while the fourth phase (Independent Practice) is done in SMAN 1 Singosari, SMAN 2 Malang, SMA Lab UM, MAN 3 Malang. The results showed that there was a significant increase in skills of creating physics lesson plan for pre-service physics teacher at α = 5% and n-gain average of high category. Thus, the ComCoReLS model is effective for improving skills of creating physics lesson plan for pre-service physics teacher.
Bed texture mapping in large rivers using recreational-grade sidescan sonar
Hamill, Daniel; Wheaton, Joseph M.; Buscombe, Daniel D.; Grams, Paul E.; Melis, Theodore S.
2017-01-01
The size-distribution and spatial organization of bed sediment, or bed ‘texture’, is a fundamental attribute of natural channels and is one important component of the physical habitat of aquatic ecosystems. ‘Recreational-grade’ sidescan sonar systems now offer the possibility of imaging, and subsequently quantifying bed texture at high resolution with minimal cost, or logistical effort. We are investigating the possibility of using sidescan sonar sensors on commercially available ‘fishfinders’ for within-channel bed-sediment characterization of mixed sand-gravel riverbeds in a debris-fan dominated canyon river. We analyzed repeat substrate mapping of data collected before and after the November 2014 High Flow Experiment on the Colorado River in lower Marble Canyon, Arizona. The mapping analysis resulted in sufficient spatial coverage (e.g. reach) and resolutions (e.g. centrimetric) to inform studies of the effects of changing bed substrates on salmonid spawning on large rivers. From this preliminary study, we argue that the approach could become a tractable and cost-effective tool for aquatic scientists to rapidly obtain bed texture maps without specialized knowledge of hydroacoustics. Bed texture maps can be used as a physical input for models relating ecosystem responses to hydrologic management.
Kawase, Junya; Aoki, Jun-ya; Araki, Kazuo
2018-01-01
To investigate chromosome evolution in fish species, we newly mapped 181 markers that allowed us to construct a yellowtail (Seriola quinqueradiata) radiation hybrid (RH) physical map with 1,713 DNA markers, which was far denser than a previous map, and we anchored the de novo assembled sequences onto the RH physical map. Finally, we mapped a total of 13,977 expressed sequence tags (ESTs) on a genome sequence assembly aligned with the physical map. Using the high-density physical map and anchored genome sequences, we accurately compared the yellowtail genome structure with the genome structures of five model fishes to identify characteristics of the yellowtail genome. Between yellowtail and Japanese medaka (Oryzias latipes), almost all regions of the chromosomes were conserved and some blocks comprising several markers were translocated. Using the genome information of the spotted gar (Lepisosteus oculatus) as a reference, we further documented syntenic relationships and chromosomal rearrangements that occurred during evolution in four other acanthopterygian species (Japanese medaka, zebrafish, spotted green pufferfish and three-spined stickleback). The evolutionary chromosome translocation frequency was 1.5-2-times higher in yellowtail than in medaka, pufferfish, and stickleback. PMID:29290830
Surficial geologic map of the Amboy 30' x 60' quadrangle, San Bernardino County, California
Bedford, David R.; Miller, David M.; Phelps, Geoffrey A.
2010-01-01
The surficial geologic map of the Amboy 30' x 60' quadrangle presents characteristics of surficial materials for an area of approximately 5,000 km2 in the eastern Mojave Desert of southern California. This map consists of new surficial mapping conducted between 2000 and 2007, as well as compilations from previous surficial mapping. Surficial geologic units are mapped and described based on depositional process and age categories that reflect the mode of deposition, pedogenic effects following deposition, and, where appropriate, the lithologic nature of the material. Many physical properties were noted and measured during the geologic mapping. This information was used to classify surficial deposits and to understand their ecological importance. We focus on physical properties that drive hydrologic, biologic, and physical processes such as particle-size distribution (PSD) and bulk density. The database contains point data representing locations of samples for both laboratory determined physical properties and semiquantitative field-based information in the database. We include the locations of all field observations and note the type of information collected in the field to help assist in assessing the quality of the mapping. The publication is separated into three parts: documentation, spatial data, and printable map graphics of the database. Documentation includes this pamphlet, which provides a discussion of the surficial geology and units and the map. Spatial data are distributed as ArcGIS Geodatabase in Microsoft Access format and are accompanied by a readme file, which describes the database contents, and FGDC metadata for the spatial map information. Map graphics files are distributed as Postscript and Adobe Portable Document Format (PDF) files that provide a view of the spatial database at the mapped scale.
Chen, J W; Wang, L; Pang, X F; Pan, Q H
2006-04-01
Genetic analysis and fine mapping of a resistance gene against brown planthopper (BPH) biotype 2 in rice was performed using two F(2) populations derived from two crosses between a resistant indica cultivar (cv.), AS20-1, and two susceptible japonica cvs., Aichi Asahi and Lijiangxintuanheigu. Insect resistance was evaluated using F(1) plants and the two F(2) populations. The results showed that a single recessive gene, tentatively designated as bph19(t), conditioned the resistance in AS20-1. A linkage analysis, mainly employing microsatellite markers, was carried out in the two F(2) populations through bulked segregant analysis and recessive class analysis (RCA), in combination with bioinformatics analysis (BIA). The resistance gene locus bph19(t) was finely mapped to a region of about 1.0 cM on the short arm of chromosome 3, flanked by markers RM6308 and RM3134, where one known marker RM1022, and four new markers, b1, b2, b3 and b4, developed in the present study were co-segregating with the locus. To physically map this locus, the bph19(t)-linked markers were landed on bacterial artificial chromosome or P1 artificial chromosome clones of the reference cv., Nipponbare, released by the International Rice Genome Sequencing Project. Sequence information of these clones was used to construct a physical map of the bph19(t) locus, in silico, by BIA. The bph19(t) locus was physically defined to an interval of about 60 kb. The detailed genetic and physical maps of the bph19(t) locus will facilitate marker-assisted gene pyramiding and cloning.
Grattapaglia, Dario; Mamani, Eva M C; Silva-Junior, Orzenil B; Faria, Danielle A
2015-03-01
Keystone species in their native ranges, eucalypts, are ecologically and genetically very diverse, growing naturally along extensive latitudinal and altitudinal ranges and variable environments. Besides their ecological importance, eucalypts are also the most widely planted trees for sustainable forestry in the world. We report the development of a novel collection of 535 microsatellites for species of Eucalyptus, 494 designed from ESTs and 41 from genomic libraries. A selected subset of 223 was evaluated for individual identification, parentage testing, and ancestral information content in the two most extensively studied species, Eucalyptus grandis and Eucalyptus globulus. Microsatellites showed high transferability and overlapping allele size range, suggesting they have arisen still in their common ancestor and confirming the extensive genome conservation between these two species. A consensus linkage map with 437 microsatellites, the most comprehensive microsatellite-only genetic map for Eucalyptus, was built by assembling segregation data from three mapping populations and anchored to the Eucalyptus genome. An overall colinearity between recombination-based and physical positioning of 84% of the mapped microsatellites was observed, with some ordering discrepancies and sporadic locus duplications, consistent with the recently described whole genome duplication events in Eucalyptus. The linkage map covered 95.2% of the 605.8-Mbp assembled genome sequence, placing one microsatellite every 1.55 Mbp on average, and an overall estimate of physical to recombination distance of 618 kbp/cM. The genetic parameters estimates together with linkage and physical position data for this large set of microsatellites should assist marker choice for genome-wide population genetics and comparative mapping in Eucalyptus. © 2014 John Wiley & Sons Ltd.
Canonical Representations of the Simple Map
NASA Astrophysics Data System (ADS)
Kerwin, Olivia; Punjabi, Alkesh; Ali, Halima; Boozer, Allen
2007-11-01
The simple map is the simplest map that has the topology of a divertor tokamak. The simple map has three canonical representations: (i) toroidal flux and poloidal angle (ψ,θ) as canonical coordinates, (ii) the physical variables (R,Z) or (X,Y) as canonical coordinates, and (iii) the action-angle (J,ζ) or magnetic variables (ψ,θ) as canonical coordinates. We give the derivation of the simple map in the (X,Y) representation. The simple map in this representation has been studied extensively (Ref. 1 and references therein). We calculate the magnetic coordinates for the simple map, construct the simple map in magnetic coordinates, and calculate generic topological effects of magnetic perturbations in divertor tokamaks using the map. We also construct the simple map in (ψ,θ) representation. Preliminary results of these studies will be presented. This work is supported by US DOE OFES DE-FG02-01ER54624 and DE-FG02-04ER54793. [1] A. Punjabi, H. Ali, T. Evans, and A. Boozer, Phys Lett A 364 140--145 (2007).
Siberchicot, Aurélie; Bessy, Adrien; Guéguen, Laurent; Marais, Gabriel A B
2017-10-01
Given the importance of meiotic recombination in biology, there is a need to develop robust methods to estimate meiotic recombination rates. A popular approach, called the Marey map approach, relies on comparing genetic and physical maps of a chromosome to estimate local recombination rates. In the past, we have implemented this approach in an R package called MareyMap, which includes many functionalities useful to get reliable recombination rate estimates in a semi-automated way. MareyMap has been used repeatedly in studies looking at the effect of recombination on genome evolution. Here, we propose a simpler user-friendly web service version of MareyMap, called MareyMap Online, which allows a user to get recombination rates from her/his own data or from a publicly available database that we offer in a few clicks. When the analysis is done, the user is asked whether her/his curated data can be placed in the database and shared with other users, which we hope will make meta-analysis on recombination rates including many species easy in the future. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Physical efficiency of Bengali farmers in response to change in environmental factors.
Chandra, A M; Mahanta, S; Sadhu, N
1994-06-01
The present study was conducted on young farmers, selected randomly from a village of West Bengal. Their pre-exercise heart rate (HR), blood pressure (BP), mean arterial pressure (MAP), and other physical parameters were recorded. They were asked to perform standard step test at four different times of a day when environmental factors were recorded. Recorded environmental factors were maximum ambient temperature (Tmax), and minimum ambient temperature (Tmin) for the whole day, ambient temperature (Ta), relative humidity (RH), air velocity (AV), and globe temperature (Tg). The barometric pressure (P) was noted to be constant throughout the experiment. Post-exercise HR and MAP were also recorded. Our observations showed that environmental factors changed as the day progressed from the morning to noon and from noon to night; the physiological parameters of the farmers also changed. HR was lowest in the morning and night but highest in the evening while MAP was highest at midday and gradually returned to the pre-exercise level by the evening. The determined Physical Fitness Index (PFI) of the farmers was noted to be lowest at midday but highest at night. Our studies indicate that environmental factors have a role on the physical efficiency of farmers. Ta, RH and Tg appear to be primarily responsible for the alterations in the physiological functions and PFI.
Schein, Jacqueline E.; Tangen, Kristin L.; Chiu, Readman; Shin, Heesun; Lengeler, Klaus B.; MacDonald, William Kim; Bosdet, Ian; Heitman, Joseph; Jones, Steven J.M.; Marra, Marco A.; Kronstad, James W.
2002-01-01
The basidiomycete fungus Cryptococcus neoformans is an important opportunistic pathogen of humans that poses a significant threat to immunocompromised individuals. Isolates of C. neoformans are classified into serotypes (A, B, C, D, and AD) based on antigenic differences in the polysaccharide capsule that surrounds the fungal cells. Genomic and EST sequencing projects are underway for the serotype D strain JEC21 and the serotype A strain H99. As part of a genomics program for C. neoformans, we have constructed fingerprinted bacterial artificial chromosome (BAC) clone physical maps for strains H99 and JEC21 to support the genomic sequencing efforts and to provide an initial comparison of the two genomes. The BAC clones represented an estimated 10-fold redundant coverage of the genomes of each serotype and allowed the assembly of 20 contigs each for H99 and JEC21. We found that the genomes of the two strains are sufficiently distinct to prevent coassembly of the two maps when combined fingerprint data are used to construct contigs. Hybridization experiments placed 82 markers on the JEC21 map and 102 markers on the H99 map, enabling contigs to be linked with specific chromosomes identified by electrophoretic karyotyping. These markers revealed both extensive similarity in gene order (conservation of synteny) between JEC21 and H99 as well as examples of chromosomal rearrangements including inversions and translocations. Sequencing reads were generated from the ends of the BAC clones to allow correlation of genomic shotgun sequence data with physical map contigs. The BAC maps therefore represent a valuable resource for the generation, assembly, and finishing of the genomic sequence of both JEC21 and H99. The physical maps also serve as a link between map-based and sequence-based data, providing a powerful resource for continued genomic studies. [This paper is dedicated to the memory of Michael Smith, Founding Director of the Biotechnology Laboratory and the BC Cancer Agency Genome Sciences Centre. Supplemental material is available online at http://www.genome.org.] PMID:12213782
Asset Mapping: A Tool to Enhance Your CSPAP Efforts
ERIC Educational Resources Information Center
Allar, Ishonté; Bulger, Sean
2018-01-01
Comprehensive school physical activity programs (CSPAPs) are one way to help students achieve most, if not all, of the recommended 60 minutes of daily moderate-to-vigorous physical activity (MVPA). Early in the process, one can use asset mapping to help enhance CSPAP efforts. Asset maps provide a valuable opportunity to identify potential partners…
Solignac, Michel; Mougel, Florence; Vautrin, Dominique; Monnerot, Monique; Cornuet, Jean-Marie
2007-01-01
The honey bee is a key model for social behavior and this feature led to the selection of the species for genome sequencing. A genetic map is a necessary companion to the sequence. In addition, because there was originally no physical map for the honey bee genome project, a meiotic map was the only resource for organizing the sequence assembly on the chromosomes. We present the genetic (meiotic) map here and describe the main features that emerged from comparison with the sequence-based physical map. The genetic map of the honey bee is saturated and the chromosomes are oriented from the centromeric to the telomeric regions. The map is based on 2,008 markers and is about 40 Morgans (M) long, resulting in a marker density of one every 2.05 centiMorgans (cM). For the 186 megabases (Mb) of the genome mapped and assembled, this corresponds to a very high average recombination rate of 22.04 cM/Mb. Honey bee meiosis shows a relatively homogeneous recombination rate along and across chromosomes, as well as within and between individuals. Interference is higher than inferred from the Kosambi function of distance. In addition, numerous recombination hotspots are dispersed over the genome. The very large genetic length of the honey bee genome, its small physical size and an almost complete genome sequence with a relatively low number of genes suggest a very promising future for association mapping in the honey bee, particularly as the existence of haploid males allows easy bulk segregant analysis.
Features of the organization of bread wheat chromosome 5BS based on physical mapping.
Salina, Elena A; Nesterov, Mikhail A; Frenkel, Zeev; Kiseleva, Antonina A; Timonova, Ekaterina M; Magni, Federica; Vrána, Jan; Šafář, Jan; Šimková, Hana; Doležel, Jaroslav; Korol, Abraham; Sergeeva, Ekaterina M
2018-02-09
The IWGSC strategy for construction of the reference sequence of the bread wheat genome is based on first obtaining physical maps of the individual chromosomes. Our aim is to develop and use the physical map for analysis of the organization of the short arm of wheat chromosome 5B (5BS) which bears a number of agronomically important genes, including genes conferring resistance to fungal diseases. A physical map of the 5BS arm (290 Mbp) was constructed using restriction fingerprinting and LTC software for contig assembly of 43,776 BAC clones. The resulting physical map covered ~ 99% of the 5BS chromosome arm (111 scaffolds, N50 = 3.078 Mb). SSR, ISBP and zipper markers were employed for anchoring the BAC clones, and from these 722 novel markers were developed based on previously obtained data from partial sequencing of 5BS. The markers were mapped using a set of Chinese Spring (CS) deletion lines, and F2 and RICL populations from a cross of CS and CS-5B dicoccoides. Three approaches have been used for anchoring BAC contigs on the 5BS chromosome, including clone-by-clone screening of BACs, GenomeZipper analysis, and comparison of BAC-fingerprints with in silico fingerprinting of 5B pseudomolecules of T. dicoccoides. These approaches allowed us to reach a high level of BAC contig anchoring: 96% of 5BS BAC contigs were located on 5BS. An interesting pattern was revealed in the distribution of contigs along the chromosome. Short contigs (200-999 kb) containing markers for the regions interrupted by tandem repeats, were mainly localized to the 5BS subtelomeric block; whereas the distribution of larger 1000-3500 kb contigs along the chromosome better correlated with the distribution of the regions syntenic to rice, Brachypodium, and sorghum, as detected by the Zipper approach. The high fingerprinting quality, LTC software and large number of BAC clones selected by the informative markers in screening of the 43,776 clones allowed us to significantly increase the BAC scaffold length when compared with the published physical maps for other wheat chromosomes. The genetic and bioinformatics resources developed in this study provide new possibilities for exploring chromosome organization and for breeding applications.
Shaikh, Wasim A; Patel, Minal C; Singh, S K
2011-01-01
The current study was conducted to determine how physical activity level and physical fitness affects the blood pressure profile of Gujarati Indian adolescents so as to help in developing preventive strategies for the local population as ethnic differences exist in the aetiopathogenesis of hypertension. A cross-sectional study was conducted on 485 Gujarati Indian adolescent boys and girls of age group 16-19 years. Physical activity level was assessed using Johnson Space Center/NASA Physical Activity Rating Scale and VO2 max was used to assess the physical fitness. Body composition was assessed in terms of Body Mass Index, Fat Mass Index and Waist Circumference. Blood Pressure was measured by oscillometry. One-way ANOVA was used to study if any significant differences (P<0.05) existed in the blood pressure profile between the high, moderate and low physical activity groups. Pearson's correlation coefficient was determined to assess the relationship between VO2 max and blood pressure profile. In girls, physical activity level was not found to have a significant effect on the blood pressure profile. In boys, systolic blood pressure and mean arterial pressure were found to be significantly higher in Moderate Physical Activity Group as compared to Low Physical Activity Group. PVO2 max was found to have a significant negative correlationship with SBP, DBP and MAP in girls and a significant negative correlationship with SBP, PP and MAP in boys. It could thus be concluded that a better physical fitness rather than a higher physical activity level could keep the blood pressure in check in the Gujarati Indian adolescents.
Pellicer-Chenoll, Maite; Garcia-Massó, Xavier; Morales, Jose; Serra-Añó, Pilar; Solana-Tramunt, Mònica; González, Luis-Millán; Toca-Herrera, José-Luis
2015-06-01
The relationship among physical activity, physical fitness and academic achievement in adolescents has been widely studied; however, controversy concerning this topic persists. The methods used thus far to analyse the relationship between these variables have included mostly traditional lineal analysis according to the available literature. The aim of this study was to perform a visual analysis of this relationship with self-organizing maps and to monitor the subject's evolution during the 4 years of secondary school. Four hundred and forty-four students participated in the study. The physical activity and physical fitness of the participants were measured, and the participants' grade point averages were obtained from the five participant institutions. Four main clusters representing two primary student profiles with few differences between boys and girls were observed. The clustering demonstrated that students with higher energy expenditure and better physical fitness exhibited lower body mass index (BMI) and higher academic performance, whereas those adolescents with lower energy expenditure exhibited worse physical fitness, higher BMI and lower academic performance. With respect to the evolution of the students during the 4 years, ∼25% of the students originally clustered in a negative profile moved to a positive profile, and there was no movement in the opposite direction. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Simple Map in Action-Angle Coordinates.
NASA Astrophysics Data System (ADS)
Kerwin, Olivia; Punjabi, Alkesh; Ali, Halima
2008-04-01
The simple map is the simplest map that has the topology of a divertor tokamak. The simple map has three canonical representations: (i) the natural coordinates - toroidal magnetic flux and poloidal angle (ψ,θ), (ii) the physical coordinates - the physical variables (R,Z) or (X,Y), and (iii) the action-angle coordinates - (J,θ) or magnetic coordinates (ψ, θ). All three are canonical coordinates for field lines. The simple map in the (X,Y) representation has been studied extensively ^1, 2. Here we analytically calculate the action-angle coordinates and safety factor q for the simple map. We construct the equilibrium generating function for the simple map in action-angle coordinates. We derive the simple map in action-angle representation, and calculate the stochastic broadening of the ideal separatrix due to topological noise in action-angle representation. We also show how the geometric effects such as elongation, the height, and width of the ideal separatrix surface can be investigated using a slight modification of the simple map in action-angle representation. This work is supported by the following grants US Department of Energy - OFES DE-FG02-01ER54624 and DE-FG02-04ER54793 and National Science Foundation - HRD-0630372 and 0411394. [1] A. Punjabi, H. Ali, T. Evans, and A. Boozer, Phys Lett A, 364 140-145 (2007). [2] A. Punjabi, A. Verma, and A. Boozer, Phys.Rev. Lett. 69, 3322 (1992).
SfiI genomic cleavage map of Escherichia coli K-12 strain MG1655.
Perkins, J D; Heath, J D; Sharma, B R; Weinstock, G M
1992-01-01
An SfiI restriction map of Escherichia coli K-12 strain MG1655 is presented. The map contains thirty-one cleavage sites separating fragments ranging in size from 407 kb to 3.7 kb. Several techniques were used in the construction of this map, including CHEF pulsed field gel electrophoresis; physical analysis of a set of twenty-six auxotrophic transposon insertions; correlation with the restriction map of Kohara and coworkers using the commercially available E. coli Gene Mapping Membranes; analysis of publicly available sequence information; and correlation of the above data with the combined genetic and physical map developed by Rudd, et al. The combination of these techniques has yielded a map in which all but one site can be localized within a range of +/- 2 kb, and over half the sites can be localized precisely by sequence data. Two sites present in the EcoSeq5 sequence database are not cleaved in MG1655 and four sites are noted to be sensitive to methylation by the dcm methylase. This map, combined with the NotI physical map of MG1655, can aid in the rapid, precise mapping of several different types of genetic alterations, including transposon mediated mutations and other insertions, inversions, deletions and duplications. Images PMID:1312707
Genomic analysis reveals candidate genes for PPV resistance in apricot (Prunus armeniaca L.)
USDA-ARS?s Scientific Manuscript database
Sharka disease, caused by Plum pox virus (PPV), is the most important disease affecting Prunus species. A major PPV resistance locus (PPVres) was previously mapped to the upper part of apricot (Prunus armeniaca) linkage group 1. In this study, a physical map of the PPVres locus in the PPV resistan...
ERIC Educational Resources Information Center
Jena, Ananta Kumar
2012-01-01
This study deals with the application of constructivist approach through individual and cooperative modes of spider and hierarchical concept maps to achieve meaningful learning on science concepts (e.g. acids, bases & salts, physical and chemical changes). The main research questions were: Q (1): is there any difference in individual and…
ERIC Educational Resources Information Center
Seiler, Roland
1989-01-01
Investigates kinds of map information selected and supplementary information desired by experienced orienteers. Reports that, based on lab and field studies, that contour lines were the most important map information, followed by information reducing physical or technical requirements. Concludes action theory is applicable to decision-making…
Participatory GIS for Soil Conservation in Phewa Watershed of Nepal
NASA Astrophysics Data System (ADS)
Bhandari, K. P.
2012-07-01
Participatory Geographic Information Systems (PGIS) can integrate participatory methodologies with geo-spatial technologies for the representation of characteristic of particular place. Over the last decade, researchers use this method to integrate the local knowledge of community within a GIS and Society conceptual framework. Participatory GIS are tailored to answer specific geographic questions at the local level and their modes of implementation vary considerably across space, ranging from field-based, qualitative approaches to more complex web-based applications. These broad ranges of techniques, PGIS are becoming an effective methodology for incorporating community local knowledge into complex spatial decision-making processes. The objective of this study is to reduce the soil erosion by formulating the general rule for the soil conservation by participation of the stakeholders. The poster was prepared by satellite image, topographic map and Arc GIS software including the local knowledge. The data were collected from the focus group discussion and the individual questionnaire for incorporate the local knowledge and use it to find the risk map on the basis of economic, social and manageable physical factors for the sensitivity analysis. The soil erosion risk map is prepared by the physical factors Rainfall-runoff erosivity, Soil erodibility, Slope length, Slope steepness, Cover-management, Conservation practice using RUSLE model. After the comparison and discussion among stakeholders, researcher and export group, and the soil erosion risk map showed that socioeconomic, social and manageable physical factors management can reduce the soil erosion. The study showed that the preparation of the poster GIS map and implement this in the watershed area could reduce the soil erosion in the study area compared to the existing national policy.
Mind map learning for advanced engineering study: case study in system dynamics
NASA Astrophysics Data System (ADS)
Woradechjumroen, Denchai
2018-01-01
System Dynamics (SD) is one of the subjects that were use in learning Automatic Control Systems in dynamic and control field. Mathematical modelling and solving skills of students for engineering systems are expecting outcomes of the course which can be further used to efficiently study control systems and mechanical vibration; however, the fundamental of the SD includes strong backgrounds in Dynamics and Differential Equations, which are appropriate to the students in governmental universities that have strong skills in Mathematics and Scientifics. For private universities, students are weak in the above subjects since they obtained high vocational certificate from Technical College or Polytechnic School, which emphasize the learning contents in practice. To enhance their learning for improving their backgrounds, this paper applies mind maps based problem based learning to relate the essential relations of mathematical and physical equations. With the advantages of mind maps, each student is assigned to design individual mind maps for self-leaning development after they attend the class and learn overall picture of each chapter from the class instructor. Four problems based mind maps learning are assigned to each student. Each assignment is evaluated via mid-term and final examinations, which are issued in terms of learning concepts and applications. In the method testing, thirty students are tested and evaluated via student learning backgrounds in the past. The result shows that well-design mind maps can improve learning performance based on outcome evaluation. Especially, mind maps can reduce time-consuming and reviewing for Mathematics and Physics in SD significantly.
USDA-ARS?s Scientific Manuscript database
In this paper we generated DNA fingerprints and end sequences from bacterial artificial chromosomes (BACs) from two new libraries to improve the first generation integrated physical and genetic map of the rainbow trout (Oncorhynchus mykiss) genome. The current version of the physical map is compose...
Mâsse, Louise C; O'Connor, Teresia M; Tu, Andrew W; Hughes, Sheryl O; Beauchamp, Mark R; Baranowski, Tom
2017-06-14
Parents are widely recognized as playing a central role in the development of child behaviors such as physical activity. As there is little agreement as to the dimensions of physical activity-related parenting practices that should be measured or how they should be operationalized, this study engaged experts to develop an integrated conceptual framework for assessing parenting practices that influence multiple aspects of 5 to 12 year old children's participation in physical activity. The ultimate goal of this study is to inform the development of an item bank (repository of calibrated items) aimed at measuring physical activity parenting practices. Twenty four experts from 6 countries (Australia, Canada, England, Scotland, the Netherlands, & United States (US)) sorted 77 physical activity parenting practice concepts identified from our previously published synthesis of the literature (74 measures) and survey of Canadian and US parents. Concept Mapping software was used to conduct the multi-dimensional scaling (MDS) analysis and a cluster analysis of the MDS solution of the Expert's sorting which was qualitatively reviewed and commented on by the Experts. The conceptual framework includes 12 constructs which are presented using three main domains of parenting practices (neglect/control, autonomy support, and structure). The neglect/control domain includes two constructs: permissive and pressuring parenting practices. The autonomy supportive domain includes four constructs: encouragement, guided choice, involvement in child physical activities, and praises/rewards for their child's physical activity. Finally, the structure domain includes six constructs: co-participation, expectations, facilitation, modeling, monitoring, and restricting physical activity for safety or academic concerns. The concept mapping analysis provided a useful process to engage experts in re-conceptualizing physical activity parenting practices and identified key constructs to include in measures of physical activity parenting. While the constructs identified ought to be included in measures of physical activity parenting practices, it will be important to collect data among parents to further validate the content of these constructs. In conclusion, the method provided a roadmap for developing an item bank that captures key facets of physical activity parenting and ultimately serves to standardize how we operationalize measures of physical activity parenting.
Physical map of the Brucella melitensis 16 M chromosome.
Allardet-Servent, A; Carles-Nurit, M J; Bourg, G; Michaux, S; Ramuz, M
1991-01-01
We present the first restriction map of the Brucella melitensis 16 M chromosome obtained by Southern blot hybridization of SpeI, XhoI, and XbaI fragments separated by pulsed-field gel electrophoresis. All restriction fragments (a total of 113) were mapped into an open circle. The main difficulty in mapping involved the exceedingly high number of restriction fragments, as was expected considering the 59% G + C content of the Brucella genome. Several cloned genes were placed on this map, especially rRNA operons which are repeated three times. The size of the B. melitensis chromosome, estimated as 2,600 kb long in a previous study, appeared longer (3,130 kb) by restriction mapping. This restriction map is an initial approach to achieve a genetic map of the Brucella chromosome. Images PMID:2007548
De Craemer, M; De Decker, E; De Bourdeaudhuij, I; Verloigne, M; Duvinage, K; Koletzko, B; Ibrügger, S; Kreichauf, S; Grammatikaki, E; Moreno, L; Iotova, V; Socha, P; Szott, K; Manios, Y; Cardon, G
2014-08-01
Although sufficient physical activity is beneficial for preschoolers' health, activity levels in most preschoolers are low. As preschoolers spend a considerable amount of time at home and at kindergarten, interventions should target both environments to increase their activity levels. The aim of the current paper was to describe the six different steps of the Intervention Mapping protocol towards the systematic development and implementation of the physical activity component of the ToyBox-intervention. This intervention is a kindergarten-based, family-involved intervention implemented across six European countries. Based on the results of literature reviews and focus groups with parents/caregivers and kindergarten teachers, matrices of change objectives were created. Then, theory-based methods and practical strategies were selected to develop intervention materials at three different levels: (i) individual level (preschoolers); (ii) interpersonal level (parents/caregivers) and (iii) organizational level (teachers). This resulted in a standardized intervention with room for local and cultural adaptations in each participating country. Although the Intervention Mapping protocol is a time-consuming process, using this systematic approach may lead to an increase in intervention effectiveness. The presented matrices of change objectives are useful for future programme planners to develop and implement an intervention based on the Intervention Mapping protocol to increase physical activity levels in preschoolers. © 2014 World Obesity.
Application of Intervention Mapping to the Development of a Complex Physical Therapist Intervention.
Jones, Taryn M; Dear, Blake F; Hush, Julia M; Titov, Nickolai; Dean, Catherine M
2016-12-01
Physical therapist interventions, such as those designed to change physical activity behavior, are often complex and multifaceted. In order to facilitate rigorous evaluation and implementation of these complex interventions into clinical practice, the development process must be comprehensive, systematic, and transparent, with a sound theoretical basis. Intervention Mapping is designed to guide an iterative and problem-focused approach to the development of complex interventions. The purpose of this case report is to demonstrate the application of an Intervention Mapping approach to the development of a complex physical therapist intervention, a remote self-management program aimed at increasing physical activity after acquired brain injury. Intervention Mapping consists of 6 steps to guide the development of complex interventions: (1) needs assessment; (2) identification of outcomes, performance objectives, and change objectives; (3) selection of theory-based intervention methods and practical applications; (4) organization of methods and applications into an intervention program; (5) creation of an implementation plan; and (6) generation of an evaluation plan. The rationale and detailed description of this process are presented using an example of the development of a novel and complex physical therapist intervention, myMoves-a program designed to help individuals with an acquired brain injury to change their physical activity behavior. The Intervention Mapping framework may be useful in the development of complex physical therapist interventions, ensuring the development is comprehensive, systematic, and thorough, with a sound theoretical basis. This process facilitates translation into clinical practice and allows for greater confidence and transparency when the program efficacy is investigated. © 2016 American Physical Therapy Association.
Clément, D; Lanaud, C; Sabau, X; Fouet, O; Le Cunff, L; Ruiz, E; Risterucci, A M; Glaszmann, J C; Piffanelli, P
2004-05-01
We have constructed and validated the first cocoa ( Theobroma cacao L.) BAC library, with the aim of developing molecular resources to study the structure and evolution of the genome of this perennial crop. This library contains 36,864 clones with an average insert size of 120 kb, representing approximately ten haploid genome equivalents. It was constructed from the genotype Scavina-6 (Sca-6), a Forastero clone highly resistant to cocoa pathogens and a parent of existing mapping populations. Validation of the BAC library was carried out with a set of 13 genetically-anchored single copy and one duplicated markers. An average of nine BAC clones per probe was identified, giving an initial experimental estimation of the genome coverage represented in the library. Screening of the library with a set of resistance gene analogues (RGAs), previously mapped in cocoa and co-localizing with QTL for resistance to Phytophthora traits, confirmed at the physical level the tight clustering of RGAs in the cocoa genome and provided the first insights into the relationships between genetic and physical distances in the cocoa genome. This library represents an available BAC resource for structural genomic studies or map-based cloning of genes corresponding to important QTLs for agronomic traits such as resistance genes to major cocoa pathogens like Phytophthora spp ( palmivora and megakarya), Crinipellis perniciosa and Moniliophthora roreri.
A Fine Physical Map of the Rice Chromosome 4
Zhao, Qiang; Zhang, Yu; Cheng, Zhukuan; Chen, Mingsheng; Wang, Shengyue; Feng, Qi; Huang, Yucheng; Li, Ying; Tang, Yesheng; Zhou, Bo; Chen, Zhehua; Yu, Shuliang; Zhu, Jingjie; Hu, Xin; Mu, Jie; Ying, Kai; Hao, Pei; Zhang, Lei; Lu, Yiqi; Zhang, Lei S.; Liu, Yilei; Yu, Zhen; Fan, Danlin; Weng, Qijun; Chen, Ling; Lu, Tingting; Liu, Xiaohui; Jia, Peixin; Sun, Tongguo; Wu, Yongrui; Zhang, Yujun; Lu, Ying; Li, Can; Wang, Rong; Lei, Haiyan; Li, Tao; Hu, Hao; Wu, Mei; Zhang, Runquan; Guan, Jianping; Zhu, Jia; Fu, Gang; Gu, Minghong; Hong, Guofan; Xue, Yongbiao; Wing, Rod; Jiang, Jiming; Han, Bin
2002-01-01
As part of an international effort to completely sequence the rice genome, we have produced a fine bacterial artificial chromosome (BAC)-based physical map of the Oryza sativa japonica Nipponbare chromosome 4 through an integration of 114 sequenced BAC clones from a taxonomically related subspecies O. sativa indica Guangluai 4 and 182 RFLP and 407 expressed sequence tag (EST) markers with the fingerprinted data of the Nipponbare genome. The map consists of 11 contigs with a total length of 34.5 Mb covering 94% of the estimated chromosome size (36.8 Mb). BAC clones corresponding to telomeres, as well as to the centromere position, were determined by BAC-pachytene chromosome fluorescence in situ hybridization (FISH). This gave rise to an estimated length ratio of 5.13 for the long arm and 2.9 for the short arm (on the basis of the physical map), which indicates that the short arm is a highly condensed one. The FISH analysis and physical mapping also showed that the short arm and the pericentromeric region of the long arm are rich in heterochromatin, which occupied 45% of the chromosome, indicating that this chromosome is likely very difficult to sequence. To our knowledge, this map provides the first example of a rapid and reliable physical mapping on the basis of the integration of the data from two taxonomically related subspecies. [The following individuals and institutions kindly provided reagents, samples, or unpublished information as indicated in the paper: S. McCouch, T. Sasaki, and Monsanto.] PMID:11997348
Physical-enhanced secure strategy in an OFDM-PON.
Zhang, Lijia; Xin, Xiangjun; Liu, Bo; Yu, Jianjun
2012-01-30
The physical layer of optical access network is vulnerable to various attacks. As the dramatic increase of users and network capacity, the issue of physical-layer security becomes more and more important. This paper proposes a physical-enhanced secure strategy for orthogonal frequency division multiplexing passive optical network (OFDM-PON) by employing frequency domain chaos scrambling. The Logistic map is adopted for the chaos mapping. The chaos scrambling strategy can dynamically allocate the scrambling matrices for different OFDM frames according to the initial condition, which enhance the confidentiality of the physical layer. A mathematical model of this secure system is derived firstly, which achieves a secure transmission at physical layer in OFDM-PON. The results from experimental implementation using Logistic mapped chaos scrambling are also given to further demonstrate the efficiency of this secure strategy. An 10.125 Gb/s 64QAM-OFDM data with Logistic mapped chaos scrambling are successfully transmitted over 25-km single mode fiber (SMF), and the experimental results show that proposed security scheme can protect the system from eavesdropper and attacker, while keep a good performance for the legal ONU.
Oude Hengel, Karen M; Joling, Catelijne I; Proper, Karin I; van der Molen, Henk F; Bongers, Paulien M
2011-01-01
The purpose of this study was to apply the Intervention Mapping approach as a framework in the development of a worksite intervention to improve the work ability of construction workers. Development of an intervention by using the Intervention Mapping approach. Construction worksite. Construction workers aged 45 years and older. According to the principles of Intervention Mapping, evidence from the literature was combined with data collected from stakeholders (e.g., construction workers, managers, providers). The Intervention Mapping approach resulted in an intervention with the following components: (1) two individual visits of a physical therapist to lower the physical workload, (2) a Rest-Break tool to improve the balance between work and recovery, and (3) two empowerment training sessions to increase the range of influence at the worksite. Application of Intervention Mapping in the development of a worksite prevention program was useful in the construction industry to obtain a positive attitude and commitment. Stakeholders could give input regarding the program components as well as provide specific leads for the practical intervention strategy. Moreover, it also gives insight in the current theoretical and empirical knowledge in the field of improving the work ability of older workers in the construction industry.
Molecular mapping of chromosomes 17 and X
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barker, D.F.
1991-01-15
Progress toward the construction of high density genetic maps of chromosomes 17 and X has been made by isolating and characterizing a relatively large set of polymorphic probes for each chromosome and using these probes to construct genetic maps. We have mapped the same polymorphic probes against a series of chromosome breakpoints on X and 17. The probes could be assigned to over 30 physical intervals on the X chromosome and 7 intervals on 17. In many cases, this process resulted in improved characterization of the relative locations of the breakpoints with respect to each other and the definition ofmore » new physical intervals. The strategy for isolation of the polymorphic clones utilized chromosome specific libraries of 1--15 kb segments from each of the two chromosomes. From these libraries, clones were screened for those detecting restriction fragment length polymorphisms. The markers were further characterized, the chromosomal assignments confirmed and in most cases segments of the original probes were subcloned into plasmids to produce probes with improved signal to noise ratios for use in the genetic marker studies. The linkage studies utilize the CEPH reference families and other well-characterized families in our collection which have been used for genetic disease linkage work. Preliminary maps and maps of portions of specific regions of 17 and X are provided. We have nearly completed a map of the 1 megabase Mycoplasma arthritidis genome by applying these techniques to a lambda phage library of its genome. We have found bit mapping to be an efficient means to organize a contiguous set of overlapping clones from a larger genome.« less
Molecular mapping of chromosomes 17 and X. Progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barker, D.F.
1991-01-15
Progress toward the construction of high density genetic maps of chromosomes 17 and X has been made by isolating and characterizing a relatively large set of polymorphic probes for each chromosome and using these probes to construct genetic maps. We have mapped the same polymorphic probes against a series of chromosome breakpoints on X and 17. The probes could be assigned to over 30 physical intervals on the X chromosome and 7 intervals on 17. In many cases, this process resulted in improved characterization of the relative locations of the breakpoints with respect to each other and the definition ofmore » new physical intervals. The strategy for isolation of the polymorphic clones utilized chromosome specific libraries of 1--15 kb segments from each of the two chromosomes. From these libraries, clones were screened for those detecting restriction fragment length polymorphisms. The markers were further characterized, the chromosomal assignments confirmed and in most cases segments of the original probes were subcloned into plasmids to produce probes with improved signal to noise ratios for use in the genetic marker studies. The linkage studies utilize the CEPH reference families and other well-characterized families in our collection which have been used for genetic disease linkage work. Preliminary maps and maps of portions of specific regions of 17 and X are provided. We have nearly completed a map of the 1 megabase Mycoplasma arthritidis genome by applying these techniques to a lambda phage library of its genome. We have found bit mapping to be an efficient means to organize a contiguous set of overlapping@ clones from a larger genome.« less
Staňková, Helena; Hastie, Alex R; Chan, Saki; Vrána, Jan; Tulpová, Zuzana; Kubaláková, Marie; Visendi, Paul; Hayashi, Satomi; Luo, Mingcheng; Batley, Jacqueline; Edwards, David; Doležel, Jaroslav; Šimková, Hana
2016-07-01
The assembly of a reference genome sequence of bread wheat is challenging due to its specific features such as the genome size of 17 Gbp, polyploid nature and prevalence of repetitive sequences. BAC-by-BAC sequencing based on chromosomal physical maps, adopted by the International Wheat Genome Sequencing Consortium as the key strategy, reduces problems caused by the genome complexity and polyploidy, but the repeat content still hampers the sequence assembly. Availability of a high-resolution genomic map to guide sequence scaffolding and validate physical map and sequence assemblies would be highly beneficial to obtaining an accurate and complete genome sequence. Here, we chose the short arm of chromosome 7D (7DS) as a model to demonstrate for the first time that it is possible to couple chromosome flow sorting with genome mapping in nanochannel arrays and create a de novo genome map of a wheat chromosome. We constructed a high-resolution chromosome map composed of 371 contigs with an N50 of 1.3 Mb. Long DNA molecules achieved by our approach facilitated chromosome-scale analysis of repetitive sequences and revealed a ~800-kb array of tandem repeats intractable to current DNA sequencing technologies. Anchoring 7DS sequence assemblies obtained by clone-by-clone sequencing to the 7DS genome map provided a valuable tool to improve the BAC-contig physical map and validate sequence assembly on a chromosome-arm scale. Our results indicate that creating genome maps for the whole wheat genome in a chromosome-by-chromosome manner is feasible and that they will be an affordable tool to support the production of improved pseudomolecules. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
2011-01-01
Background A robust bacterial artificial chromosome (BAC)-based physical map is essential for many aspects of genomics research, including an understanding of chromosome evolution, high-resolution genome mapping, marker-assisted breeding, positional cloning of genes, and quantitative trait analysis. To facilitate turkey genetics research and better understand avian genome evolution, a BAC-based integrated physical, genetic, and comparative map was developed for this important agricultural species. Results The turkey genome physical map was constructed based on 74,013 BAC fingerprints (11.9 × coverage) from two independent libraries, and it was integrated with the turkey genetic map and chicken genome sequence using over 41,400 BAC assignments identified by 3,499 overgo hybridization probes along with > 43,000 BAC end sequences. The physical-comparative map consists of 74 BAC contigs, with an average contig size of 13.6 Mb. All but four of the turkey chromosomes were spanned on this map by three or fewer contigs, with 14 chromosomes spanned by a single contig and nine chromosomes spanned by two contigs. This map predicts 20 to 27 major rearrangements distinguishing turkey and chicken chromosomes, despite up to 40 million years of separate evolution between the two species. These data elucidate the chromosomal evolutionary pattern within the Phasianidae that led to the modern turkey and chicken karyotypes. The predominant rearrangement mode involves intra-chromosomal inversions, and there is a clear bias for these to result in centromere locations at or near telomeres in turkey chromosomes, in comparison to interstitial centromeres in the orthologous chicken chromosomes. Conclusion The BAC-based turkey-chicken comparative map provides novel insights into the evolution of avian genomes, a framework for assembly of turkey whole genome shotgun sequencing data, and tools for enhanced genetic improvement of these important agricultural and model species. PMID:21906286
Casjens, S.; Eppler, K.; Sampson, L.; Parr, R.; Wyckoff, E.
1991-01-01
The mechanism by which dsDNA is packaged by viruses is not yet understood in any system. Bacteriophage P22 has been a productive system in which to study the molecular genetics of virus particle assembly and DNA packaging. Only five phage encoded proteins, the products of genes 3, 2, 1, 8 and 5, are required for packaging the virus chromosome inside the coat protein shell. We report here the construction of a detailed genetic and physical map of these genes, the neighboring gene 4 and a portion of gene 10, in which 289 conditional lethal amber, opal, temperature sensitive and cold sensitive mutations are mapped into 44 small (several hundred base pair) intervals of known sequence. Knowledge of missense mutant phenotypes and information on the location of these mutations allows us to begin the assignment of partial protein functions to portions of these genes. The map and mapping strains will be of use in the further genetic dissection of the P22 DNA packaging and prohead assembly processes. PMID:2029965
NASA Astrophysics Data System (ADS)
Herrera, A.; Ali, H.; Punjabi, A.
2004-11-01
The unperturbed magnetic topology of DIII-D USN shot 115467 in the absence of ELMs and C-coils is described by the symmetric simple map (SSM) with the map parameter k=0.2623. For this k, the last good surface passes through x=0 and y=0.9995, q_edge=6.48 if six iterations of the SSM are taken to be equivalent to a single toroidal circuit of DIII-D, and the q_edge equals the q_edge in the DIII-D for shot 115467 [1]. The map parameter k represents the effects of the toroidal asymmetries. We study the changes in the last good surface and its destruction as the map parameter k is increased. This work is supported by NASA SHARP program and DE-FG02-02ER54673. [1] H. Ali, A. Punjabi, A. Boozer, and T. Evans, presented at the 31st European Physical Society Plasma Physics Meeting, London, UK, June 29, 2004, paper P2-172.
Sensational Studies in Marine Science.
ERIC Educational Resources Information Center
Keller, E. C., Jr.; Schroyer, Fred C.
1981-01-01
Presents a description of a five-week summer course in marine biology and oceanography offered to college-bound, secondary students with varied physical handicaps. Summarizes insights gained after four summer sessions related to communication problems, physical arrangements for the wheelchair-bound, and handicap-proof maps; evaluates the course's…
Holdsworth, Michelle; Nicolaou, Mary; Langøien, Lars Jørun; Osei-Kwasi, Hibbah Araba; Chastin, Sebastien F M; Stok, F Marijn; Capranica, Laura; Lien, Nanna; Terragni, Laura; Monsivais, Pablo; Mazzocchi, Mario; Maes, Lea; Roos, Gun; Mejean, Caroline; Powell, Katie; Stronks, Karien
2017-11-07
Some ethnic minority populations have a higher risk of non-communicable diseases than the majority European population. Diet and physical activity behaviours contribute to this risk, shaped by a system of inter-related factors. This study mapped a systems-based framework of the factors influencing dietary and physical activity behaviours in ethnic minority populations living in Europe, to inform research prioritisation and intervention development. A concept mapping approach guided by systems thinking was used: i. Preparation (protocol and terminology); ii. Generating a list of factors influencing dietary and physical activity behaviours in ethnic minority populations living in Europe from evidence (systematic mapping reviews) and 'eminence' (89 participants from 24 academic disciplines via brainstorming, an international symposium and expert review) and; iii. Seeking consensus on structuring, rating and clustering factors, based on how they relate to each other; and iv. Interpreting/utilising the framework for research and interventions. Similar steps were undertaken for frameworks developed for the majority European population. Seven distinct clusters emerged for dietary behaviour (containing 85 factors) and 8 for physical activity behaviours (containing 183 factors). Four clusters were similar across behaviours: Social and cultural environment; Social and material resources; Psychosocial; and Migration context. Similar clusters of factors emerged in the frameworks for diet and physical activity behaviours of the majority European population, except for 'migration context'. The importance of factors across all clusters was acknowledged, but their relative importance differed for ethnic minority populations compared with the majority population. This systems-based framework integrates evidence from both expert opinion and published literature, to map the factors influencing dietary and physical activity behaviours in ethnic minority groups. Our findings illustrate that innovative research and complex interventions need to be developed that are sensitive to the needs of ethnic minority populations. A systems approach that encompasses the complexity of the inter-related factors that drive behaviours may inform a more holistic public health paradigm to more effectively reach ethnic minorities living in Europe, as well as the majority host population.
Subsystem functional and the missing ingredient of confinement physics in density functionals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armiento, Rickard Roberto; Mattsson, Ann Elisabet; Hao, Feng
2010-08-01
The subsystem functional scheme is a promising approach recently proposed for constructing exchange-correlation density functionals. In this scheme, the physics in each part of real materials is described by mapping to a characteristic model system. The 'confinement physics,' an essential physical ingredient that has been left out in present functionals, is studied by employing the harmonic-oscillator (HO) gas model. By performing the potential {yields} density and the density {yields} exchange energy per particle mappings based on two model systems characterizing the physics in the interior (uniform electron-gas model) and surface regions (Airy gas model) of materials for the HO gases,more » we show that the confinement physics emerges when only the lowest subband of the HO gas is occupied by electrons. We examine the approximations of the exchange energy by several state-of-the-art functionals for the HO gas, and none of them produces adequate accuracy in the confinement dominated cases. A generic functional that incorporates the description of the confinement physics is needed.« less
Mental Maps: A new instrument for teaching-learning-evaluation of engineering students
NASA Astrophysics Data System (ADS)
Oleschko, K.
2009-04-01
The use of interactive mind maps for teaching-learning-evaluation of postgraduate students is still not very common in Geosciences. Notwithstanding, these maps allow students to organize the huge volumes of information and data they are faced with (www.spinscape.com) for efficient research project elaboration and for understanding of basic anzatz and conjectures (Singer, 2009). The elaboration of mind maps is introduced as a principle teaching-learning-evaluation instrument (Cruza and Fierros, 2006) in my Research Methodology Seminar. Each student should to construct three types of multiscale mind maps before to write the formal proposal (Curiel and Radvansky, 2004; Zimmer, 2004). The main goal is to show how useful is to manage the physical, mathematical and linguistic information on the same structured way (Montibeller and Belton, 2009; Chu et al., 2009). The mental representation of the spatially and time organized physical world (physical map) is combined with the design of hierarchical tree of mathematical models used to describe it in mathematical terms (the map composed only by mathematical symbols), visualizing this tree branches by corresponding images inside the third map consisting on images. This three-faced representation of each research project helps the participant to perceive the complex nature of studied systems and visualize their features of universality and scale invariance. The maṕs elaboration is considered to be finished when any student of other specialties become able to present it in acceptable scientific way. Some examples of recent mental maps elaborated by the master degree students of Queretaro University, Mexico will be presented and discussed. Based on my experience I recommend this education technique in order to pass from sustainable engineer teaching to educate the engineers of Sustainability. References 1. Chu, H.-Ch., Chen, M.-Y., Chen, Y.-M., 2009. A semantic-based approach to content abstraction and annotation for content management. Expert Systems and Applications, 36: 2360-2376. 2. Cruza, N.S. and Fierros, L.E., 2006. Utility of conceptual schemes and mental maps on the teaching-learning process of residents in pediatrics. Gac. Med. Mex., 146 (6):457-465. 3. Curiel, J.M. and Radvansky, G.A., 2004. The accuracy of spatial information from temporally and spatially organized mental maps. Psychon. Bull. Rev., 11 (2):314-319. 4. Montibeller, G. and Belton, V. , 2009. Qualitative operators for reasoning maps: Evaluating multi-criteria options with networks of reasons. European J. of Operational Res., 195: 829-840. 5. Singer, F.M., 2009. The dynamic infrastructure of mind - A hypothesis and some of its applications. New ideas in Psychology, 27: 48-74. 6. http://www.spinscape.com 7. Zimmer, H.D. The construction of mental maps based on a fragmented view of physical maps. J. of Educational Psychology, 96 (3): 603-610.
A cytological-physical map of 22q11
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindsay, E.A.; Rizzu, P.; Gaddini, L.
Our laboratory is involved in the construction of a cytological-physical map of 22q11 and isolation of expressed sequences from the region involved in DiGeorge syndrome (DGS) and Velo-Cardio-Facial syndrome (VCFS). One of the goals of the mapping is an understanding of the molecular mechanisms which generate the 22q11 microdeletions observed with high frequency in DGS and VCFS. Our of over 60 deleted patients studied in our laboratory, all but one were deleted for two loci approximately 1-2 Mb apart. There is evidence from patients with balanced and unbalanced translocations that deletion of the whole region is not necessary for determinationmore » of the clinical phenotype. Therefore, it is possible that deletion breakpoints occur as a consequence of structural characteristics of the DNA that predispose to rearrangements. A striking characteristic of the 22q11 region is the abundance of low copy repeat sequences. It is reasonable to think that recombination between these repeats may lead to microdeletions. However, a direct demonstration of such mechanism is not available yet. The presence of repeats makes standard physical mapping techniques based on hybridization or STS mapping often difficult to interpret. For example, we have found clones positive for the same STS that are located in different positions within 22q11. For this reason we have used high resolution cytological mapping as a supporting technique for map validation. We present the current status map which includes known polymorphic and non-polymorphic loci, newly isolated clones and chromosomal deletion breakpoints. The map extends from the loci D22S9/D22S24 to TOP1P2. Extended chromatin hybridization experiments visually demonstrate the presence of at least two repeat islands flanking (or at) the region where chromosomal breakpoints of the commonly deleted region occur.« less
Evaluation of using digital gravity field models for zoning map creation
NASA Astrophysics Data System (ADS)
Loginov, Dmitry
2018-05-01
At the present time the digital cartographic models of geophysical fields are taking a special significance into geo-physical mapping. One of the important directions to their application is the creation of zoning maps, which allow taking into account the morphology of geophysical field in the implementation automated choice of contour intervals. The purpose of this work is the comparative evaluation of various digital models in the creation of integrated gravity field zoning map. For comparison were chosen the digital model of gravity field of Russia, created by the analog map with scale of 1 : 2 500 000, and the open global model of gravity field of the Earth - WGM2012. As a result of experimental works the four integrated gravity field zoning maps were obtained with using raw and processed data on each gravity field model. The study demonstrates the possibility of open data use to create integrated zoning maps with the condition to eliminate noise component of model by processing in specialized software systems. In this case, for solving problem of contour intervals automated choice the open digital models aren't inferior to regional models of gravity field, created for individual countries. This fact allows asserting about universality and independence of integrated zoning maps creation regardless of detail of a digital cartographic model of geo-physical fields.
Kirov, Ilya; Van Laere, Katrijn; De Riek, Jan; De Keyser, Ellen; Van Roy, Nadine; Khrustaleva, Ludmila
2014-01-01
In order to anchor Rosa linkage groups to physical chromosomes, a combination of the Tyramide-FISH technology and the modern molecular marker system based on High Resolution Melting (HRM) is an efficient approach. Although, Tyramide-FISH is a very promising technique for the visualization of short DNA probes, it is very challenging for plant species with small chromosomes such as Rosa. In this study, we successfully applied the Tyramide-FISH technique for Rosa and compared different detection systems. An indirect detection system exploiting biotinylated tyramides was shown to be the most suitable technique for reliable signal detection. Three gene fragments with a size of 1100 pb–1700 bp (Phenylalanine Ammonia Lyase, Pyrroline-5-Carboxylate Synthase and Orcinol O-Methyl Transferase) have been physically mapped on chromosomes 7, 4 and 1, respectively, of Rosa wichurana. The signal frequency was between 25% and 40%. HRM markers of these 3 gene fragments were used to include the gene fragments on the existing genetic linkage map of Rosa wichurana. As a result, three linkage groups could be anchored to their physical chromosomes. The information was used to check for synteny between the Rosa chromosomes and Fragaria. PMID:24755945
NASA Technical Reports Server (NTRS)
Hall, Forrest G. (Editor); Nelson, Elizabeth; Newcomer, Jeffrey A.
2000-01-01
Boreal Ecosystem-Atmospheric Study (BOREAS) hardcopy maps are a collection of approximately 1,000 hardcopy maps representing the physical, climatological, and historical attributes of areas covering primarily the Manitoba and Saskatchewan provinces of Canada. These maps were collected by BOREAS Information System (BORIS) and Canada for Remote Sensing (CCRS) staff to provide basic information about site positions, manmade features, topography, geology, hydrology, land cover types, fire history, climate, and soils of the BOREAS study region. These maps are not available for distribution through the BOREAS project but may be used as an on-site resource. Information is provided within this document for individuals who want to order copies of these maps from the original map source. Note that the maps are not contained on the BOREAS CD-ROM set. An inventory listing file is supplied on the CD-ROM to inform users of the maps that are available. This inventory listing is available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). For hardcopies of the individual maps, contact the sources provided.
Prevalence of Mind Mapping as a Teaching and Learning Strategy in Physical Therapy Curricula
ERIC Educational Resources Information Center
Zipp, Genevieve; Maher, Catherine
2013-01-01
Background and Purpose: Regardless of our discipline educators seek to create environments that actively engage students in their learning journey. One teaching and learning strategy that has emerged in higher education is mind mapping (MM). The purpose of this exploratory study was to determine the prevalence of MM usage in a health science…
NASA Astrophysics Data System (ADS)
Denli, H. H.; Durmus, B.
2016-12-01
The purpose of this study is to examine the factors which may affect the apartment prices with multiple linear regression analysis models and visualize the results by value maps. The study is focused on a county of Istanbul - Turkey. Totally 390 apartments around the county Umraniye are evaluated due to their physical and locational conditions. The identification of factors affecting the price of apartments in the county with a population of approximately 600k is expected to provide a significant contribution to the apartment market.Physical factors are selected as the age, number of rooms, size, floor numbers of the building and the floor that the apartment is positioned in. Positional factors are selected as the distances to the nearest hospital, school, park and police station. Totally ten physical and locational parameters are examined by regression analysis.After the regression analysis has been performed, value maps are composed from the parameters age, price and price per square meters. The most significant of the composed maps is the price per square meters map. Results show that the location of the apartment has the most influence to the square meter price information of the apartment. A different practice is developed from the composed maps by searching the ability of using price per square meters map in urban transformation practices. By marking the buildings older than 15 years in the price per square meters map, a different and new interpretation has been made to determine the buildings, to which should be given priority during an urban transformation in the county.This county is very close to the North Anatolian Fault zone and is under the threat of earthquakes. By marking the apartments older than 15 years on the price per square meters map, both older and expensive square meters apartments list can be gathered. By the help of this list, the priority could be given to the selected higher valued old apartments to support the economy of the country during an earthquake loss. We may call this urban transformation as earthquake-based urban transformation.
Briassoulis, Demetres; Babou, Epifania; Hiskakis, Miltiadis; Scarascia, Giacomo; Picuno, Pietro; Guarde, Dorleta; Dejean, Cyril
2013-12-01
A review of agricultural plastic waste generation and consolidation in Europe is presented. A detailed geographical mapping of the agricultural plastic use and waste generation in Europe was conducted focusing on areas of high concentration of agricultural plastics. Quantitative data and analysis of the agricultural plastic waste generation by category, geographical distribution and compositional range, and physical characteristics of the agricultural plastic waste per use and the temporal distribution of the waste generation are presented. Data were collected and cross-checked from a variety of sources, including European, national and regional services and organizations, local agronomists, retailers and farmers, importers and converters. Missing data were estimated indirectly based on the recorded cultivated areas and the characteristics of the agricultural plastics commonly used in the particular regions. The temporal distribution, the composition and physical characteristics of the agricultural plastic waste streams were mapped by category and by application. This study represents the first systematic effort to map and analyse agricultural plastic waste generation and consolidation in Europe.
A clone-free, single molecule map of the domestic cow (Bos taurus) genome.
Zhou, Shiguo; Goldstein, Steve; Place, Michael; Bechner, Michael; Patino, Diego; Potamousis, Konstantinos; Ravindran, Prabu; Pape, Louise; Rincon, Gonzalo; Hernandez-Ortiz, Juan; Medrano, Juan F; Schwartz, David C
2015-08-28
The cattle (Bos taurus) genome was originally selected for sequencing due to its economic importance and unique biology as a model organism for understanding other ruminants, or mammals. Currently, there are two cattle genome sequence assemblies (UMD3.1 and Btau4.6) from groups using dissimilar assembly algorithms, which were complemented by genetic and physical map resources. However, past comparisons between these assemblies revealed substantial differences. Consequently, such discordances have engendered ambiguities when using reference sequence data, impacting genomic studies in cattle and motivating construction of a new optical map resource--BtOM1.0--to guide comparisons and improvements to the current sequence builds. Accordingly, our comprehensive comparisons of BtOM1.0 against the UMD3.1 and Btau4.6 sequence builds tabulate large-to-immediate scale discordances requiring mediation. The optical map, BtOM1.0, spanning the B. taurus genome (Hereford breed, L1 Dominette 01449) was assembled from an optical map dataset consisting of 2,973,315 (439 X; raw dataset size before assembly) single molecule optical maps (Rmaps; 1 Rmap = 1 restriction mapped DNA molecule) generated by the Optical Mapping System. The BamHI map spans 2,575.30 Mb and comprises 78 optical contigs assembled by a combination of iterative (using the reference sequence: UMD3.1) and de novo assembly techniques. BtOM1.0 is a high-resolution physical map featuring an average restriction fragment size of 8.91 Kb. Comparisons of BtOM1.0 vs. UMD3.1, or Btau4.6, revealed that Btau4.6 presented far more discordances (7,463) vs. UMD3.1 (4,754). Overall, we found that Btau4.6 presented almost double the number of discordances than UMD3.1 across most of the 6 categories of sequence vs. map discrepancies, which are: COMPLEX (misassembly), DELs (extraneous sequences), INSs (missing sequences), ITs (Inverted/Translocated sequences), ECs (extra restriction cuts) and MCs (missing restriction cuts). Alignments of UMD3.1 and Btau4.6 to BtOM1.0 reveal discordances commensurate with previous reports, and affirm the NCBI's current designation of UMD3.1 sequence assembly as the "reference assembly" and the Btau4.6 as the "alternate assembly." The cattle genome optical map, BtOM1.0, when used as a comprehensive and largely independent guide, will greatly assist improvements to existing sequence builds, and later serve as an accurate physical scaffold for studies concerning the comparative genomics of cattle breeds.
Crowdsourcing Physical Network Topology Mapping With Net.Tagger
2016-03-01
backend server infrastructure . This in- cludes a full security audit, better web services handling, and integration with the OSM stack and dataset to...a novel approach to network infrastructure mapping that combines smartphone apps with crowdsourced collection to gather data for offline aggregation...and analysis. The project aims to build a map of physical network infrastructure such as fiber-optic cables, facilities, and access points. The
Algebra and topology for applications to physics
NASA Technical Reports Server (NTRS)
Rozhkov, S. S.
1987-01-01
The principal concepts of algebra and topology are examined with emphasis on applications to physics. In particular, attention is given to sets and mapping; topological spaces and continuous mapping; manifolds; and topological groups and Lie groups. The discussion also covers the tangential spaces of the differential manifolds, including Lie algebras, vector fields, and differential forms, properties of differential forms, mapping of tangential spaces, and integration of differential forms.
A scheme of pedagogical problems solving in kinematic to observe toulmin argumentation feasibility
NASA Astrophysics Data System (ADS)
Manurung, Sondang R.; Rustaman, Nuryani Y.; Siregar, Nelson
2013-09-01
The purpose of this study is to determine the students' ability to map out the problem solving. This paper would show a schematic template map used to analyze the students' tasks in performing problem solving pedagogically. Scheme of problem solving map of student was undertaken based on Toulmin Argumentation Pattern (TAP) argumentative discourse. The samples of this study were three work-sheets of physics education students who represented the upper, middle and lower levels of class in one LPTK in Medan. The instrument of this study was an essay test in kinematics topic. The data analyses were performed with schematic template map in order to know the students' ability in mapping the problem solving. The results showed that the student in the Upper level of class followed the appropriate direction pattern, while two others students could not followed the pattern exactly.
GDR (Genome Database for Rosaceae): integrated web-database for Rosaceae genomics and genetics data
Jung, Sook; Staton, Margaret; Lee, Taein; Blenda, Anna; Svancara, Randall; Abbott, Albert; Main, Dorrie
2008-01-01
The Genome Database for Rosaceae (GDR) is a central repository of curated and integrated genetics and genomics data of Rosaceae, an economically important family which includes apple, cherry, peach, pear, raspberry, rose and strawberry. GDR contains annotated databases of all publicly available Rosaceae ESTs, the genetically anchored peach physical map, Rosaceae genetic maps and comprehensively annotated markers and traits. The ESTs are assembled to produce unigene sets of each genus and the entire Rosaceae. Other annotations include putative function, microsatellites, open reading frames, single nucleotide polymorphisms, gene ontology terms and anchored map position where applicable. Most of the published Rosaceae genetic maps can be viewed and compared through CMap, the comparative map viewer. The peach physical map can be viewed using WebFPC/WebChrom, and also through our integrated GDR map viewer, which serves as a portal to the combined genetic, transcriptome and physical mapping information. ESTs, BACs, markers and traits can be queried by various categories and the search result sites are linked to the mapping visualization tools. GDR also provides online analysis tools such as a batch BLAST/FASTA server for the GDR datasets, a sequence assembly server and microsatellite and primer detection tools. GDR is available at http://www.rosaceae.org. PMID:17932055
NASA Astrophysics Data System (ADS)
Henderson, Charles; Yerushalmi, Edit; Kuo, Vince H.; Heller, Kenneth; Heller, Patricia
2007-12-01
To identify and describe the basis upon which instructors make curricular and pedagogical decisions, we have developed an artifact-based interview and an analysis technique based on multilayered concept maps. The policy capturing technique used in the interview asks instructors to make judgments about concrete instructional artifacts similar to those they likely encounter in their teaching environment. The analysis procedure alternatively employs both an a priori systems view analysis and an emergent categorization to construct a multilayered concept map, which is a hierarchically arranged set of concept maps where child maps include more details than parent maps. Although our goal was to develop a model of physics faculty beliefs about the teaching and learning of problem solving in the context of an introductory calculus-based physics course, the techniques described here are applicable to a variety of situations in which instructors make decisions that influence teaching and learning.
NASA Astrophysics Data System (ADS)
Calla, O. P. N.; Mathur, Shubhra; Gadri, Kishan Lal; Jangid, Monika
2016-12-01
In the present paper, permittivity maps of equatorial lunar surface are generated using brightness temperature (TB) data obtained from Microwave Radiometer (MRM) of Chang'e-1 and physical temperature (TP) data obtained from Diviner of Lunar Reconnaissance Orbiter (LRO). Here, permittivity mapping is not carried out above 60° latitudes towards the lunar poles due to large anomaly in the physical temperature obtained from the Diviner. Microwave frequencies, which are used to generate these maps are 3 GHz, 7.8 GHz, 19.35 GHz and 37 GHz. Permittivity values are simulated using TB values at these four frequencies. Here, weighted average of physical temperature obtained from Diviner are used to compute permittivity at each microwave frequencies. Longer wavelengths of microwave signals give information of more deeper layers of the lunar surface as compared to smaller wavelength. Initially, microwave emissivity is estimated using TB values from MRM and physical temperature (TP) from Diviner. From estimated emissivity the real part of permittivity (ε), is calculated using Fresnel equations. The permittivity maps of equatorial lunar surface is generated. The simulated permittivity values are normalized with respect to density for easy comparison of simulated permittivity values with the permittivity values of Apollo samples as well as with the permittivity values of Terrestrial Analogue of Lunar Soil (TALS) JSC-1A. Lower value of dielectric constant (ε‧) indicates that the corresponding lunar surface is smooth and doesn't have rough rocky terrain. Thus a future lunar astronaut can use these data to decide proper landing site for future lunar missions. The results of this paper will serve as input to future exploration of lunar surface.
Mat Said, Normawati; Musa, Kamarul Imran; Mohamed Daud, Mohamed Ashraf; Haron, Juhara
2016-07-01
We compared the patency and the suitability of arteriovenous fistula (AVF) created for vascular access by two approaches: (a) physical examination with preoperative vascular mapping and (b) physical examination alone. We compared the patency and the suitability of AVF created in patients for dialysis. There were two cohorts of patients of 79 patients each: (a) patients with AVF created based on the combination of physical examination and preoperative vascular mapping (PE+VM) and (b) patients with AVF created based on physical examination (PE) alone. Fistula patency is defined as clinical detection of thrill (or auscultation) of murmur over the fistula and coded as having thrills (patent) versus not having thrills (not patent). Suitability of fistula is defined as functioning AVF (AVF can be adequately used via 2-needle cannulation for dialysis) and coded as suitable versus not suitable. AVF created after the preoperative vascular mapping (PE+VM) has 5.70 (at six weeks) and 3.76 (at three months) times higher chance for patency, and 3.08 times higher chance for suitable AVF for dialysis than AVF created after the physical examination (PE) alone. Physical examination with preoperative ultrasound mapping (PE+VM) significantly improves the short term patency and the suitability of AVF for dialysis.
Knott, V; Rees, D J; Cheng, Z; Brownlee, G G
1988-01-01
Sets of overlapping cosmid clones generated by random sampling and fingerprinting methods complement data at pyrB (96.5') and oriC (84') in the published physical map of E. coli. A new cloning strategy using sheared DNA, and a low copy, inducible cosmid vector were used in order to reduce bias in libraries, in conjunction with micro-methods for preparing cosmid DNA from a large number of clones. Our results are relevant to the design of the best approach to the physical mapping of large genomes. PMID:2834694
NASA Astrophysics Data System (ADS)
Saprudin, S.; Liliasari, L.; Prihatmanto, A. S.
2017-09-01
This study is a survey that aims to describe pre-service physics teachers’ concept mastery at a university in Ternate. Data were collected through test standard instrument for physics which used in the teacher certification program. Data were analyzed by using quantitative descriptive technique. Based on the results of data analysis, it was concluded that generally pre-service physics teachers’ concept mastery can be categorized on low category (25.4%). The map of concept mastery will be used as a reference to developing game design in the physics learning context for pre-service physics teachers.
Development of a YAC contig covering the minimal region of a CSNB1 locus in Xp11
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boycott, K.M.; Gratton, K.J.; Moore, B.J.
1994-09-01
X-linked congenital stationary night blindness (CSNB1) is an eye disorder that includes impairment of night vision, reduced visual acuity and, in some cases, myopia and congenital nystagmus. Electroretinography reveals a marked reduction of the b-wave in affected individuals suggesting that X-linked CSNB is due to a molecular defect in the bipolar layer of the retina. Based on our studies of a large four generation family with X-linked CSNB, a CSNB1 locus was mapped to a 4-5 cM region at Xp11.23-Xp11.22 bounded telomerically by DXS426 and centromerically by DXS988. Using a panel of radiation and conventional somatic cell hybrids, a detailedmore » map of new and published STSs has been generated for the minimal region of CSNB1. PCR primer pairs for STSs has been generated for the minimal region of CSNB1. PCR primer pairs for twenty-five STSs, including eleven end-clones, were used to isolate YAC clones from CEPH, mega-CEPH, and X chromosome-specific YAC libraries. In total, fifty-two YACs were characterized for STS overlaps and assembled to provide a minimum of 3 Mb of physical coverage in the region between DXS426 and DXS988. Five gaps proximal to SYP are still to be closed. Our physical map suggests the following gene order: Xpter-OTAL1-GF1-DXS1011E-MG81-HUMCRAS2P-SYP-Xcen. STS analysis of the YACs revealed three subregions of the physical map which appear to be particularly susceptible to internal deletions and end-clone analysis demonstrated chimerism in six of seventeen YACs. A physical map of Xp11.23-Xp11.22 will provide a resource for the isolation of candidate genes for the X-linked CSNB gene which maps to this region.« less
Mapping of single-copy genes by TSA-FISH in the codling moth, Cydia pomonella.
Carabajal Paladino, Leonela Z; Nguyen, Petr; Síchová, Jindra; Marec, František
2014-01-01
We work on the development of transgenic sexing strains in the codling moth, Cydia pomonella (Tortricidae), which would enable to produce male-only progeny for the population control of this pest using sterile insect technique (SIT). To facilitate this research, we have developed a number of cytogenetic and molecular tools, including a physical map of the codling moth Z chromosome using BAC-FISH (fluorescence in situ hybridization with bacterial artificial chromosome probes). However, chromosomal localization of unique, single-copy sequences such as a transgene cassette by conventional FISH remains challenging. In this study, we adapted a FISH protocol with tyramide signal amplification (TSA-FISH) for detection of single-copy genes in Lepidoptera. We tested the protocol with probes prepared from partial sequences of Z-linked genes in the codling moth. Using a modified TSA-FISH protocol we successfully mapped a partial sequence of the Acetylcholinesterase 1 (Ace-1) gene to the Z chromosome and confirmed thus its Z-linkage. A subsequent combination of BAC-FISH with BAC probes containing anticipated neighbouring Z-linked genes and TSA-FISH with the Ace-1 probe allowed the integration of Ace-1 in the physical map of the codling moth Z chromosome. We also developed a two-colour TSA-FISH protocol which enabled us simultaneous localization of two Z-linked genes, Ace-1 and Notch, to the expected regions of the Z chromosome. We showed that TSA-FISH represents a reliable technique for physical mapping of genes on chromosomes of moths and butterflies. Our results suggest that this technique can be combined with BAC-FISH and in the future used for physical localization of transgene cassettes on chromosomes of transgenic lines in the codling moth or other lepidopteran species. Furthermore, the developed protocol for two-colour TSA-FISH might become a powerful tool for synteny mapping in non-model organisms.
Mapping of single-copy genes by TSA-FISH in the codling moth, Cydia pomonella
2014-01-01
Background We work on the development of transgenic sexing strains in the codling moth, Cydia pomonella (Tortricidae), which would enable to produce male-only progeny for the population control of this pest using sterile insect technique (SIT). To facilitate this research, we have developed a number of cytogenetic and molecular tools, including a physical map of the codling moth Z chromosome using BAC-FISH (fluorescence in situ hybridization with bacterial artificial chromosome probes). However, chromosomal localization of unique, single-copy sequences such as a transgene cassette by conventional FISH remains challenging. In this study, we adapted a FISH protocol with tyramide signal amplification (TSA-FISH) for detection of single-copy genes in Lepidoptera. We tested the protocol with probes prepared from partial sequences of Z-linked genes in the codling moth. Results Using a modified TSA-FISH protocol we successfully mapped a partial sequence of the Acetylcholinesterase 1 (Ace-1) gene to the Z chromosome and confirmed thus its Z-linkage. A subsequent combination of BAC-FISH with BAC probes containing anticipated neighbouring Z-linked genes and TSA-FISH with the Ace-1 probe allowed the integration of Ace-1 in the physical map of the codling moth Z chromosome. We also developed a two-colour TSA-FISH protocol which enabled us simultaneous localization of two Z-linked genes, Ace-1 and Notch, to the expected regions of the Z chromosome. Conclusions We showed that TSA-FISH represents a reliable technique for physical mapping of genes on chromosomes of moths and butterflies. Our results suggest that this technique can be combined with BAC-FISH and in the future used for physical localization of transgene cassettes on chromosomes of transgenic lines in the codling moth or other lepidopteran species. Furthermore, the developed protocol for two-colour TSA-FISH might become a powerful tool for synteny mapping in non-model organisms. PMID:25471491
Mapping alpha-Particle X-Ray Fluorescence Spectrometer (Map-X)
NASA Technical Reports Server (NTRS)
Blake, D. F.; Sarrazin, P.; Bristow, T.
2014-01-01
Many planetary surface processes (like physical and chemical weathering, water activity, diagenesis, low-temperature or impact metamorphism, and biogenic activity) leave traces of their actions as features in the size range 10s to 100s of micron. The Mapping alpha-particle X-ray Spectrometer ("Map-X") is intended to provide chemical imaging at 2 orders of magnitude higher spatial resolution than previously flown instruments, yielding elemental chemistry at or below the scale length where many relict physical, chemical, and biological features can be imaged and interpreted in ancient rocks.
Sharma, Sanjeev Kumar; Bolser, Daniel; de Boer, Jan; Sønderkær, Mads; Amoros, Walter; Carboni, Martin Federico; D’Ambrosio, Juan Martín; de la Cruz, German; Di Genova, Alex; Douches, David S.; Eguiluz, Maria; Guo, Xiao; Guzman, Frank; Hackett, Christine A.; Hamilton, John P.; Li, Guangcun; Li, Ying; Lozano, Roberto; Maass, Alejandro; Marshall, David; Martinez, Diana; McLean, Karen; Mejía, Nilo; Milne, Linda; Munive, Susan; Nagy, Istvan; Ponce, Olga; Ramirez, Manuel; Simon, Reinhard; Thomson, Susan J.; Torres, Yerisf; Waugh, Robbie; Zhang, Zhonghua; Huang, Sanwen; Visser, Richard G. F.; Bachem, Christian W. B.; Sagredo, Boris; Feingold, Sergio E.; Orjeda, Gisella; Veilleux, Richard E.; Bonierbale, Merideth; Jacobs, Jeanne M. E.; Milbourne, Dan; Martin, David Michael Alan; Bryan, Glenn J.
2013-01-01
The genome of potato, a major global food crop, was recently sequenced. The work presented here details the integration of the potato reference genome (DM) with a new sequence-tagged site marker−based linkage map and other physical and genetic maps of potato and the closely related species tomato. Primary anchoring of the DM genome assembly was accomplished by the use of a diploid segregating population, which was genotyped with several types of molecular genetic markers to construct a new ~936 cM linkage map comprising 2469 marker loci. In silico anchoring approaches used genetic and physical maps from the diploid potato genotype RH89-039-16 (RH) and tomato. This combined approach has allowed 951 superscaffolds to be ordered into pseudomolecules corresponding to the 12 potato chromosomes. These pseudomolecules represent 674 Mb (~93%) of the 723 Mb genome assembly and 37,482 (~96%) of the 39,031 predicted genes. The superscaffold order and orientation within the pseudomolecules are closely collinear with independently constructed high density linkage maps. Comparisons between marker distribution and physical location reveal regions of greater and lesser recombination, as well as regions exhibiting significant segregation distortion. The work presented here has led to a greatly improved ordering of the potato reference genome superscaffolds into chromosomal “pseudomolecules”. PMID:24062527
Connected components of irreducible maps and 1D quantum phases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szehr, Oleg, E-mail: oleg.szehr@posteo.de; Wolf, Michael M., E-mail: wolf@ma.tum.de
We investigate elementary topological properties of sets of completely positive (CP) maps that arise in quantum Perron-Frobenius theory. We prove that the set of primitive CP maps of fixed Kraus rank is path-connected and we provide a complete classification of the connected components of irreducible CP maps at given Kraus rank and fixed peripheral spectrum in terms of a multiplicity index. These findings are then applied to analyse 1D quantum phases by studying equivalence classes of translational invariant matrix product states that correspond to the connected components of the respective CP maps. Our results extend the previously obtained picture inmore » that they do not require blocking of physical sites, they lead to analytic paths, and they allow us to decompose into ergodic components and to study the breaking of translational symmetry.« less
GRAD-MAP: A Joint Physics and Astronomy Diversity Initiative at the University of Maryland
NASA Astrophysics Data System (ADS)
Steele, Amy; Smith, Robyn; Wilkins, Ashlee; Jameson, Katie
2018-01-01
Graduate Resources for Advancing Diversity with Maryland’s Astronomy and Physics (GRAD-MAP), builds connections between UMD and mid-Atlantic HBCUs, Minority-Serving Institutions (MSIs), and community colleges. We use seminars, forums, and workshops to foster a diverse community of undergraduates prepared to succeed in graduate school, inclusion-minded graduate student mentors, and faculty versed in the experiences of students at MSIs and the need for changes in the fields of physics and astronomy. Now in its fifth year, GRAD-MAP remains a graduate-student-powered initiative with a three-pronged approach: 1) Fall Collaborative Seminars, 2) A Winter Workshop, and 3) A Summer Scholars Program. This coherent set of programming allows GRAD-MAP to do more than just increase the numbers of minority students participating in astronomy and physics research (or worse, simply shuffle around students who already are or would be active in research). GRAD-MAP is committed to identifying students who are otherwise underserved or overlooked by the traditional academic pipeline, not only to get them on the path to be successful undergraduate researchers and eventual graduate applicants, but also to make substantial, sustainable efforts toward making the climate of academic physics and astronomy more inclusive to them and all other underrepresented minority students. We will describe the key elements of our program, highlight successes and lessons learned, and describe future directions for program elements. GRAD-MAP can serve as a model for other universities committed to diversity and inclusion.
McCafferty, Anne E.; Cordell, Lindrith E.
1992-01-01
This report is an analysis of regional gravity and aeromagnetic data that was carried out as part of a Conterminuous United States Mineral Assessment Program (CUSMAP) study of the Joplin 1° X 2° quadrangle, Kansas and Missouri. It is one in a series of reports representing a cooperative effort between the U.S. Geological Survey, Kansas Geological Survey, and Missouri Department of Natural Resources, Division of Geology and Land Survey. The work presented here is part of a larger project whose goal is to assess the mineral resource potential of the Paleozoic sedimentary section and crystalline basement within the quadrangle. Reports discussing geochemical, geological, and various other aspects of the study area are included in this Miscellaneous Field Studies Map series as MF-2125-A through MF-2125-E. Geophysical interpretation of Precambrian crystalline basement lithology and structure is the focus of this report. The study of the crystalline basement is complicated by the lack of exposures due to the presence of a thick sequence of Phanerozoic sedimentary cover. In areas where there are no outcrops, the geologist must turn to other indirect methods to assist in an understanding of the basement. Previous investigations of the buried basement in this region used available drill hole data, isotope age information, and regional geophysical data (Sims, 1990; Denison and others, 1984; Bickford and others, 1986). These studies were regional in scope and were presented at state and multistate scales. The work documented here used recently collected detailed gravity and aeromagnetic data to enhance the regional geologic knowledge of the area. Terrace-density and terrace-magnetization maps were calculated from the gravity and aeromagnetic data, leading directly to inferred physical-property (density and magnetization) maps. Once these maps were produced, the known geology and drill-hole data were reconciled with the physical-property maps to form a refined structural and lithologic map of the crystalline basement.
Large-scale De Novo Prediction of Physical Protein-Protein Association*
Elefsinioti, Antigoni; Saraç, Ömer Sinan; Hegele, Anna; Plake, Conrad; Hubner, Nina C.; Poser, Ina; Sarov, Mihail; Hyman, Anthony; Mann, Matthias; Schroeder, Michael; Stelzl, Ulrich; Beyer, Andreas
2011-01-01
Information about the physical association of proteins is extensively used for studying cellular processes and disease mechanisms. However, complete experimental mapping of the human interactome will remain prohibitively difficult in the near future. Here we present a map of predicted human protein interactions that distinguishes functional association from physical binding. Our network classifies more than 5 million protein pairs predicting 94,009 new interactions with high confidence. We experimentally tested a subset of these predictions using yeast two-hybrid analysis and affinity purification followed by quantitative mass spectrometry. Thus we identified 462 new protein-protein interactions and confirmed the predictive power of the network. These independent experiments address potential issues of circular reasoning and are a distinctive feature of this work. Analysis of the physical interactome unravels subnetworks mediating between different functional and physical subunits of the cell. Finally, we demonstrate the utility of the network for the analysis of molecular mechanisms of complex diseases by applying it to genome-wide association studies of neurodegenerative diseases. This analysis provides new evidence implying TOMM40 as a factor involved in Alzheimer's disease. The network provides a high-quality resource for the analysis of genomic data sets and genetic association studies in particular. Our interactome is available via the hPRINT web server at: www.print-db.org. PMID:21836163
NASA Astrophysics Data System (ADS)
Butcher, L.; Ali, H.; Punjabi, A.
2004-11-01
The unperturbed magnetic topology of DIII-D USN shot 115467 in the absence of ELMs and C-coils is described by the symmetric simple map (SSM) with the map parameter k=0.2623 [1]. For this k, the last good surface passes through x=0 and y=0.9995, q_edge=6.48 if six iterations of the SSM are taken to be equivalent to a single toroidal circuit of DIII-D, and the q_edge equals the q_edge in the DIII-D for shot 115467. The low mn map calculates the effects of the m=1, n=+1,-1 internal magnetic perturbation on the trajectories of field lines. We use the low mn map to represent the effects of the ELMs in the DIII-D. We study the changes in the last good surface and its destruction as the amplitude ɛ in the low mn map is increased. This work is supported by NASA SHARP program and DE-FG02-02ER54673. [1] H. Ali, A. Punjabi, A. Boozer, and T. Evans, presented at the 31st European Physical Society Plasma Physics Meeting, London, UK, June 29, 2004, paper P2-172.
DNA nanomapping using CRISPR-Cas9 as a programmable nanoparticle.
Mikheikin, Andrey; Olsen, Anita; Leslie, Kevin; Russell-Pavier, Freddie; Yacoot, Andrew; Picco, Loren; Payton, Oliver; Toor, Amir; Chesney, Alden; Gimzewski, James K; Mishra, Bud; Reed, Jason
2017-11-21
Progress in whole-genome sequencing using short-read (e.g., <150 bp), next-generation sequencing technologies has reinvigorated interest in high-resolution physical mapping to fill technical gaps that are not well addressed by sequencing. Here, we report two technical advances in DNA nanotechnology and single-molecule genomics: (1) we describe a labeling technique (CRISPR-Cas9 nanoparticles) for high-speed AFM-based physical mapping of DNA and (2) the first successful demonstration of using DVD optics to image DNA molecules with high-speed AFM. As a proof of principle, we used this new "nanomapping" method to detect and map precisely BCL2-IGH translocations present in lymph node biopsies of follicular lymphoma patents. This HS-AFM "nanomapping" technique can be complementary to both sequencing and other physical mapping approaches.
Hansen, Cristi V.; Spinazola, Joseph M.; Underwood, E.J.; Wolf, R.J.
1992-01-01
The purpose of this Hydrologic Investigations Atlas is to provide a description of the principal geohydrologic systems in Upper Cambrian through Lower Cretaceous rocks in Kansas. This investigation was made as part of the Central Midwest Regional Aquifer-System Analysis (CMRASA). The CMRASA is one of several major investigations by the U.S. Geological Survey of regional aquifer systems in the United States. These regional investigations are designed to increase knowledge of the flow regime and hydrologic properties of major aquifer systems and to provide quantitative information for the assessment, development, and management water supplies. The CMRASA study area includes all or parts of 10 Central Midwestern States (Jorgensen and Signor, 1981), as shown on the envelope cover.This Hydrologic Investigations Atlas, which consists of a series of nine chapters, presents a description of the physical framework and the geohydrology of principal aquifers and confining systems in Kansas. Chapter D presents maps that show the areal extent, altitude and configuration of the top, and thickness of Mississippian rocks that compose the upper aquifer unit of the Western Interior Plains aquifer system in Kansas, The chapter is limited to the presentation of the physical framework of the upper aquifer unit. The interpretation of the physical framework of the upper aquifer unit is based on selected geophysical and lithologic logs and published maps of stratigraphically equivalent units. Maps indicating the thickness and the altitude and configuration of the top of the upper aquifer unit in the Western Interior Plains aquifer system have been prepared as part of a series of interrelated maps that describe the stratigraphic interval from the Precambrian basement through Lower Cretaceous rocks. A concerted effort was made to ensure that maps of each geohydrologic unit are consistent with the maps of underlying and overlying units. Chapter A of this atlas series (Wolf and others, 1990) describes the relation of principal geohydrologic systems in Kansas and presents a more detailed discussion of the methods and data used to prepare and ensure consistency among the sets of maps.
Ott, Alina; Trautschold, Brian; Sandhu, Devinder
2011-01-01
Soybean is a major crop that is an important source of oil and proteins. A number of genetic linkage maps have been developed in soybean. Specifically, hundreds of simple sequence repeat (SSR) markers have been developed and mapped. Recent sequencing of the soybean genome resulted in the generation of vast amounts of genetic information. The objectives of this investigation were to use SSR markers in developing a connection between genetic and physical maps and to determine the physical distribution of recombination on soybean chromosomes. A total of 2,188 SSRs were used for sequence-based physical localization on soybean chromosomes. Linkage information was used from different maps to create an integrated genetic map. Comparison of the integrated genetic linkage maps and sequence based physical maps revealed that the distal 25% of each chromosome was the most marker-dense, containing an average of 47.4% of the SSR markers and 50.2% of the genes. The proximal 25% of each chromosome contained only 7.4% of the markers and 6.7% of the genes. At the whole genome level, the marker density and gene density showed a high correlation (R(2)) of 0.64 and 0.83, respectively with the physical distance from the centromere. Recombination followed a similar pattern with comparisons indicating that recombination is high in telomeric regions, though the correlation between crossover frequency and distance from the centromeres is low (R(2) = 0.21). Most of the centromeric regions were low in recombination. The crossover frequency for the entire soybean genome was 7.2%, with extremes much higher and lower than average. The number of recombination hotspots varied from 1 to 12 per chromosome. A high correlation of 0.83 between the distribution of SSR markers and genes suggested close association of SSRs with genes. The knowledge of distribution of recombination on chromosomes may be applied in characterizing and targeting genes.
2013-01-01
Background Cucumber is an important vegetable crop that is susceptible to many pathogens, but no disease resistance (R) genes have been cloned. The availability of whole genome sequences provides an excellent opportunity for systematic identification and characterization of the nucleotide binding and leucine-rich repeat (NB-LRR) type R gene homolog (RGH) sequences in the genome. Cucumber has a very narrow genetic base making it difficult to construct high-density genetic maps. Development of a consensus map by synthesizing information from multiple segregating populations is a method of choice to increase marker density. As such, the objectives of the present study were to identify and characterize NB-LRR type RGHs, and to develop a high-density, integrated cucumber genetic-physical map anchored with RGH loci. Results From the Gy14 draft genome, 70 NB-containing RGHs were identified and characterized. Most RGHs were in clusters with uneven distribution across seven chromosomes. In silico analysis indicated that all 70 RGHs had EST support for gene expression. Phylogenetic analysis classified 58 RGHs into two clades: CNL and TNL. Comparative analysis revealed high-degree sequence homology and synteny in chromosomal locations of these RGH members between the cucumber and melon genomes. Fifty-four molecular markers were developed to delimit 67 of the 70 RGHs, which were integrated into a genetic map through linkage analysis. A 1,681-locus cucumber consensus map including 10 gene loci and spanning 730.0 cM in seven linkage groups was developed by integrating three component maps with a bin-mapping strategy. Physically, 308 scaffolds with 193.2 Mbp total DNA sequences were anchored onto this consensus map that covered 52.6% of the 367 Mbp cucumber genome. Conclusions Cucumber contains relatively few NB-LRR RGHs that are clustered and unevenly distributed in the genome. All RGHs seem to be transcribed and shared significant sequence homology and synteny with the melon genome suggesting conservation of these RGHs in the Cucumis lineage. The 1,681-locus consensus genetic-physical map developed and the RGHs identified and characterized herein are valuable genomics resources that may have many applications such as quantitative trait loci identification, map-based gene cloning, association mapping, marker-assisted selection, as well as assembly of a more complete cucumber genome. PMID:23531125
NASA Astrophysics Data System (ADS)
McCray, A.; Punjabi, A.; Ali, H.
2004-11-01
Unperturbed magnetic topology of DIII-D shot 115467 is described by the symmetric simple map (SSM) with map parameter k=0.2623 [1], then last good surface passes through x=0 and y=0.9995, q_edge=6.48 (same as in shot 115467) if six iterations of SSM are taken to be equivalent to single toroidal circuit of DIII-D. The dipole map (DM) calculates the effects of localized, external high mode numbers magnetic perturbations on motion of field lines. We use dipole map to describe effects of C-coils on field line trajectories in DIII-D. We apply DM after each iteration of SSM, with s=1.0021, x_dipole=1.5617, y_dipole= 0 [1] for shot 115467. We study the changes in the last good surface and its destruction as a function of I_C-coil. This work is supported by NASA SHARP program and DE-FG02-02ER54673. [1] H. Ali, A. Punjabi, A. Boozer, and T. Evans, presented at the 31st European Physical Society Plasma Physics Meeting, London, UK, June 29, 2004, paper P2-172.
Locating Sequence on FPC Maps and Selecting a Minimal Tiling Path
Engler, Friedrich W.; Hatfield, James; Nelson, William; Soderlund, Carol A.
2003-01-01
This study discusses three software tools, the first two aid in integrating sequence with an FPC physical map and the third automatically selects a minimal tiling path given genomic draft sequence and BAC end sequences. The first tool, FSD (FPC Simulated Digest), takes a sequenced clone and adds it back to the map based on a fingerprint generated by an in silico digest of the clone. This allows verification of sequenced clone positions and the integration of sequenced clones that were not originally part of the FPC map. The second tool, BSS (Blast Some Sequence), takes a query sequence and positions it on the map based on sequence associated with the clones in the map. BSS has multiple uses as follows: (1) When the query is a file of marker sequences, they can be added as electronic markers. (2) When the query is draft sequence, the results of BSS can be used to close gaps in a sequenced clone or the physical map. (3) When the query is a sequenced clone and the target is BAC end sequences, one may select the next clone for sequencing using both sequence comparison results and map location. (4) When the query is whole-genome draft sequence and the target is BAC end sequences, the results can be used to select many clones for a minimal tiling path at once. The third tool, pickMTP, automates the majority of this last usage of BSS. Results are presented using the rice FPC map, BAC end sequences, and whole-genome shotgun from Syngenta. PMID:12915486
Construction of physical maps for the sex-specific regions of papaya sex chromosomes.
Na, Jong-Kuk; Wang, Jianping; Murray, Jan E; Gschwend, Andrea R; Zhang, Wenli; Yu, Qingyi; Navajas-Pérez, Rafael; Feltus, F Alex; Chen, Cuixia; Kubat, Zdenek; Moore, Paul H; Jiang, Jiming; Paterson, Andrew H; Ming, Ray
2012-05-08
Papaya is a major fruit crop in tropical and subtropical regions worldwide. It is trioecious with three sex forms: male, female, and hermaphrodite. Sex determination is controlled by a pair of nascent sex chromosomes with two slightly different Y chromosomes, Y for male and Yh for hermaphrodite. The sex chromosome genotypes are XY (male), XYh (hermaphrodite), and XX (female). The papaya hermaphrodite-specific Yh chromosome region (HSY) is pericentromeric and heterochromatic. Physical mapping of HSY and its X counterpart is essential for sequencing these regions and uncovering the early events of sex chromosome evolution and to identify the sex determination genes for crop improvement. A reiterate chromosome walking strategy was applied to construct the two physical maps with three bacterial artificial chromosome (BAC) libraries. The HSY physical map consists of 68 overlapped BACs on the minimum tiling path, and covers all four HSY-specific Knobs. One gap remained in the region of Knob 1, the only knob structure shared between HSY and X, due to the lack of HSY-specific sequences. This gap was filled on the physical map of the HSY corresponding region in the X chromosome. The X physical map consists of 44 BACs on the minimum tiling path with one gap remaining in the middle, due to the nature of highly repetitive sequences. This gap was filled on the HSY physical map. The borders of the non-recombining HSY were defined genetically by fine mapping using 1460 F2 individuals. The genetically defined HSY spanned approximately 8.5 Mb, whereas its X counterpart extended about 5.4 Mb including a 900 Kb region containing the Knob 1 shared by the HSY and X. The 8.5 Mb HSY corresponds to 4.5 Mb of its X counterpart, showing 4 Mb (89%) DNA sequence expansion. The 89% increase of DNA sequence in HSY indicates rapid expansion of the Yh chromosome after genetic recombination was suppressed 2-3 million years ago. The genetically defined borders coincide with the common BACs on the minimum tiling paths of HSY and X. The minimum tiling paths of HSY and its X counterpart are being used for sequencing these X and Yh-specific regions.
GRAD-MAP: A Joint Physics and Astronomy Diversity Initiative at the University of Maryland
NASA Astrophysics Data System (ADS)
Wilkins, Ashlee N.; Jameson, Katherine; Taylor, Corbin James; Anderson, Neil; Megson, Peter; Roberg-Clark, Gareth; Sheppard, Kyle; Uher, Tim; Hammer, Donna; Vogel, Stuart N.
2016-01-01
Graduate Resources for Advancing Diversity with Maryland's Astronomy and Physics (GRAD-MAP), builds connections between UMD and mid-Atlantic HBCUs, Minority-Serving Institutions, and community colleges, and uses seminars, forums, and workshops to foster a diverse community of undergraduates prepared to succeed in graduate school, and is now in its third year. GRAD-MAP launched with a three-pronged approach: 1) Collaborative Seminars, 2) A Winter Workshop, and 3) A Spring Symposium. This program allows GRAD-MAP to do more than just increase the numbers of minority students participating in astronomy and physics research (or, worse, simply shuffle around students who already are or would be); it is committed to identifying students who are otherwise underserved or overlooked by the traditional academic pipeline, not only to get them on the path to be successful undergraduate researchers and eventual graduate applicants, but also to make the climate of academic physics and astronomy more inclusive to them and all other underrepresented minority students. Our poster describes the key elements of our program, and highlights successes and lessons learned; GRAD-MAP can serve as a model for other universities committed to diversity and inclusion.
NASA Astrophysics Data System (ADS)
Barros, A. P.; Wilson, A. M.; Miller, D. K.; Tao, J.; Genereux, D. P.; Prat, O.; Petersen, W. A.; Brunsell, N. A.; Petters, M. D.; Duan, Y.
2015-12-01
Using the planet as a study domain and collecting observations over unprecedented ranges of spatial and temporal scales, NASA's EOS (Earth Observing System) program was an agent of transformational change in Earth Sciences over the last thirty years. The remarkable space-time organization and variability of atmospheric and terrestrial moist processes that emerged from the analysis of comprehensive satellite observations provided much impetus to expand the scope of land-atmosphere interaction studies in Hydrology and Hydrometeorology. Consequently, input and output terms in the mass and energy balance equations evolved from being treated as fluxes that can be used as boundary conditions, or forcing, to being viewed as dynamic processes of a coupled system interacting at multiple scales. Measurements of states or fluxes are most useful if together they map, reveal and/or constrain the underlying physical processes and their interactions. This can only be accomplished through an integrated observing system designed to capture the coupled physics, including nonlinear feedbacks and tipping points. Here, we first review and synthesize lessons learned from hydrometeorology studies in the Southern Appalachians and in the Southern Great Plains using both ground-based and satellite observations, physical models and data-assimilation systems. We will specifically focus on mapping and understanding nonlinearity and multiscale memory of rainfall-runoff processes in mountainous regions. It will be shown that beyond technical rigor, variety, quantity and duration of measurements, the utility of observing systems is determined by their interpretive value in the context of physical models to describe the linkages among different observations. Second, we propose a framework for designing science-grade and science-minded process-oriented integrated observing and modeling platforms for hydrometeorological studies.
Mapping quantum-classical Liouville equation: projectors and trajectories.
Kelly, Aaron; van Zon, Ramses; Schofield, Jeremy; Kapral, Raymond
2012-02-28
The evolution of a mixed quantum-classical system is expressed in the mapping formalism where discrete quantum states are mapped onto oscillator states, resulting in a phase space description of the quantum degrees of freedom. By defining projection operators onto the mapping states corresponding to the physical quantum states, it is shown that the mapping quantum-classical Liouville operator commutes with the projection operator so that the dynamics is confined to the physical space. It is also shown that a trajectory-based solution of this equation can be constructed that requires the simulation of an ensemble of entangled trajectories. An approximation to this evolution equation which retains only the Poisson bracket contribution to the evolution operator does admit a solution in an ensemble of independent trajectories but it is shown that this operator does not commute with the projection operators and the dynamics may take the system outside the physical space. The dynamical instabilities, utility, and domain of validity of this approximate dynamics are discussed. The effects are illustrated by simulations on several quantum systems.
Designing quantum information processing via structural physical approximation.
Bae, Joonwoo
2017-10-01
In quantum information processing it may be possible to have efficient computation and secure communication beyond the limitations of classical systems. In a fundamental point of view, however, evolution of quantum systems by the laws of quantum mechanics is more restrictive than classical systems, identified to a specific form of dynamics, that is, unitary transformations and, consequently, positive and completely positive maps to subsystems. This also characterizes classes of disallowed transformations on quantum systems, among which positive but not completely maps are of particular interest as they characterize entangled states, a general resource in quantum information processing. Structural physical approximation offers a systematic way of approximating those non-physical maps, positive but not completely positive maps, with quantum channels. Since it has been proposed as a method of detecting entangled states, it has stimulated fundamental problems on classifications of positive maps and the structure of Hermitian operators and quantum states, as well as on quantum measurement such as quantum design in quantum information theory. It has developed efficient and feasible methods of directly detecting entangled states in practice, for which proof-of-principle experimental demonstrations have also been performed with photonic qubit states. Here, we present a comprehensive review on quantum information processing with structural physical approximations and the related progress. The review mainly focuses on properties of structural physical approximations and their applications toward practical information applications.
Designing quantum information processing via structural physical approximation
NASA Astrophysics Data System (ADS)
Bae, Joonwoo
2017-10-01
In quantum information processing it may be possible to have efficient computation and secure communication beyond the limitations of classical systems. In a fundamental point of view, however, evolution of quantum systems by the laws of quantum mechanics is more restrictive than classical systems, identified to a specific form of dynamics, that is, unitary transformations and, consequently, positive and completely positive maps to subsystems. This also characterizes classes of disallowed transformations on quantum systems, among which positive but not completely maps are of particular interest as they characterize entangled states, a general resource in quantum information processing. Structural physical approximation offers a systematic way of approximating those non-physical maps, positive but not completely positive maps, with quantum channels. Since it has been proposed as a method of detecting entangled states, it has stimulated fundamental problems on classifications of positive maps and the structure of Hermitian operators and quantum states, as well as on quantum measurement such as quantum design in quantum information theory. It has developed efficient and feasible methods of directly detecting entangled states in practice, for which proof-of-principle experimental demonstrations have also been performed with photonic qubit states. Here, we present a comprehensive review on quantum information processing with structural physical approximations and the related progress. The review mainly focuses on properties of structural physical approximations and their applications toward practical information applications.
Live cell refractometry using Hilbert phase microscopy and confocal reflectance microscopy.
Lue, Niyom; Choi, Wonshik; Popescu, Gabriel; Yaqoob, Zahid; Badizadegan, Kamran; Dasari, Ramachandra R; Feld, Michael S
2009-11-26
Quantitative chemical analysis has served as a useful tool for understanding cellular metabolisms in biology. Among many physical properties used in chemical analysis, refractive index in particular has provided molecular concentration that is an important indicator for biological activities. In this report, we present a method of extracting full-field refractive index maps of live cells in their native states. We first record full-field optical thickness maps of living cells by Hilbert phase microscopy and then acquire physical thickness maps of the same cells using a custom-built confocal reflectance microscope. Full-field and axially averaged refractive index maps are acquired from the ratio of optical thickness to physical thickness. The accuracy of the axially averaged index measurement is 0.002. This approach can provide novel biological assays of label-free living cells in situ.
Live Cell Refractometry Using Hilbert Phase Microscopy and Confocal Reflectance Microscopy†
Lue, Niyom; Choi, Wonshik; Popescu, Gabriel; Yaqoob, Zahid; Badizadegan, Kamran; Dasari, Ramachandra R.; Feld, Michael S.
2010-01-01
Quantitative chemical analysis has served as a useful tool for understanding cellular metabolisms in biology. Among many physical properties used in chemical analysis, refractive index in particular has provided molecular concentration that is an important indicator for biological activities. In this report, we present a method of extracting full-field refractive index maps of live cells in their native states. We first record full-field optical thickness maps of living cells by Hilbert phase microscopy and then acquire physical thickness maps of the same cells using a custom-built confocal reflectance microscope. Full-field and axially averaged refractive index maps are acquired from the ratio of optical thickness to physical thickness. The accuracy of the axially averaged index measurement is 0.002. This approach can provide novel biological assays of label-free living cells in situ. PMID:19803506
Brown, Barbara B; Wilson, Laura; Tribby, Calvin P; Werner, Carol M; Wolf, Jean; Miller, Harvey J; Smith, Ken R
2014-07-01
Obtaining the 'when, where and why' of healthy bouts of moderate-to-vigorous physical activity (MVPA) provides insights into natural PA. In Salt Lake City, Utah, adults wore accelerometer and Global Positioning System (GPS) loggers for a week in a cross-sectional study to establish baseline travel and activity patterns near a planned Complete Street intervention involving a new rail line, new sidewalks and a bike path. At the end of the week, research assistants met with the 918 participants who had at least three 10 h days of good accelerometer readings. Accelerometer and GPS data were uploaded and integrated within a custom application, and participants were provided with maps and time information for past MVPA bouts of ≥3 min to help them recall bout details. Participants said that 'getting someplace' was, on average, a more important motivation for their bouts than leisure or exercise. A series of recall tests showed that participants recalled most bouts they were asked about, regardless of the duration of the bout, suggesting that participant perceptions of their shorter lifestyle bouts can be studied with this methodology. Visual prompting with a map depicting where each bout took place yielded more accurate recall than prompting with time cues alone. These techniques provide a novel way to understand participant memories of the context and subjective assessments associated with healthy bouts of PA. Prompts with time-stamped maps that illustrate places of MVPA offer an effective method to improve understanding of activity and its supportive sociophysical contexts. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
ERIC Educational Resources Information Center
Parker, Melissa; Patton, Kevin; Tannehill, Deborah
2012-01-01
Numerous primary and post-primary communities of practice (CoP) are used as educational change mechanisms to support teachers improving physical education (PE) practice in Irish schools. This study's purpose was to examine perspectives of program facilitators and participants of Irish PE CoP created to address teachers' interests. Specifically…
Mapping Physical Sciences Teachers' Concerns Regarding the New Curriculum in South Africa
ERIC Educational Resources Information Center
Gudyanga, Remeredzayi; Jita, Loyiso C.
2018-01-01
This article reports on a study investigating physical sciences teachers' stages of concern (SoC) profiles during the implementation of the curriculum and assessment policy statement (CAPS) in South Africa. Throughout reform implementation, it is conceivable that teachers go through different SoC, ranging from giving low priority to the reform…
Misra, Gopal; Gupta, Sarika; Subramanian, Alagesan; Parida, Swarup Kumar; Chattopadhyay, Debasis; Prasad, Manoj
2013-01-01
Foxtail millet ( Setaria italica L.) is a tractable experimental model crop for studying functional genomics of millets and bioenergy grasses. But the limited availability of genomic resources, particularly expressed sequence-based genic markers is significantly impeding its genetic improvement. Considering this, we attempted to develop EST-derived-SSR (eSSR) markers and utilize them in germplasm characterization, cross-genera transferability and in silico comparative mapping. From 66,027 foxtail millet EST sequences 24,828 non-redundant ESTs were deduced, representing ~16 Mb, which revealed 534 (~2%) eSSRs in 495 SSR containing ESTs at a frequency of 1/30 kb. A total of 447 pp were successfully designed, of which 327 were mapped physically onto nine chromosomes. About 106 selected primer pairs representing the foxtail millet genome showed high-level of cross-genera amplification at an average of ~88% in eight millets and four non-millet species. Broad range of genetic diversity (0.02–0.65) obtained in constructed phylogenetic tree using 40 eSSR markers demonstrated its utility in germplasm characterizations and phylogenetics. Comparative mapping of physically mapped eSSR markers showed considerable proportion of sequence-based orthology and syntenic relationship between foxtail millet chromosomes and sorghum (~68%), maize (~61%) and rice (~42%) chromosomes. Synteny analysis of eSSRs of foxtail millet, rice, maize and sorghum suggested the nested chromosome fusion frequently observed in grass genomes. Thus, for the first time we had generated large-scale eSSR markers in foxtail millet and demonstrated their utility in germplasm characterization, transferability, phylogenetics and comparative mapping studies in millets and bioenergy grass species. PMID:23805325
Kumari, Kajal; Muthamilarasan, Mehanathan; Misra, Gopal; Gupta, Sarika; Subramanian, Alagesan; Parida, Swarup Kumar; Chattopadhyay, Debasis; Prasad, Manoj
2013-01-01
Foxtail millet (Setariaitalica L.) is a tractable experimental model crop for studying functional genomics of millets and bioenergy grasses. But the limited availability of genomic resources, particularly expressed sequence-based genic markers is significantly impeding its genetic improvement. Considering this, we attempted to develop EST-derived-SSR (eSSR) markers and utilize them in germplasm characterization, cross-genera transferability and in silico comparative mapping. From 66,027 foxtail millet EST sequences 24,828 non-redundant ESTs were deduced, representing ~16 Mb, which revealed 534 (~2%) eSSRs in 495 SSR containing ESTs at a frequency of 1/30 kb. A total of 447 pp were successfully designed, of which 327 were mapped physically onto nine chromosomes. About 106 selected primer pairs representing the foxtail millet genome showed high-level of cross-genera amplification at an average of ~88% in eight millets and four non-millet species. Broad range of genetic diversity (0.02-0.65) obtained in constructed phylogenetic tree using 40 eSSR markers demonstrated its utility in germplasm characterizations and phylogenetics. Comparative mapping of physically mapped eSSR markers showed considerable proportion of sequence-based orthology and syntenic relationship between foxtail millet chromosomes and sorghum (~68%), maize (~61%) and rice (~42%) chromosomes. Synteny analysis of eSSRs of foxtail millet, rice, maize and sorghum suggested the nested chromosome fusion frequently observed in grass genomes. Thus, for the first time we had generated large-scale eSSR markers in foxtail millet and demonstrated their utility in germplasm characterization, transferability, phylogenetics and comparative mapping studies in millets and bioenergy grass species.
Perry, Cynthia K; McCalmont, Jean C; Ward, Judy P; Menelas, Hannah-Dulya K; Jackson, Christie; De Witz, Jazmyne R; Solanki, Emma; Seguin, Rebecca A
2017-12-28
To describe our use of intervention mapping as a systematic method to adapt an evidence-based physical activity and nutrition program to reflect the needs of rural Latinas. An intervention mapping process involving six steps guided the adaptation of an evidence based physical activity and nutrition program, using a community-based participatory research approach. We partnered with a community advisory board of rural Latinas throughout the adaptation process. A needs assessment and logic models were used to ascertain which program was the best fit for adaptation. Once identified, we collaborated with one of the developers of the original program (StrongWomen - Healthy Hearts) during the adaptation process. First, essential theoretical methods and program elements were identified, and additional elements were added or adapted. Next, we reviewed and made changes to reflect the community and cultural context of the practical applications, intervention strategies, program curriculum, materials, and participant information. Finally, we planned for the implementation and evaluation of the adapted program, Mujeres Fuertes y Corazones Saludables, within the context of the rural community. A pilot study will be conducted with overweight, sedentary, middle-aged, Spanish-speaking Latinas. Outcome measures will assess change in weight, physical fitness, physical activity, and nutrition behavior. The intervention mapping process was feasible and provided a systematic approach to balance fit and fidelity in the adaptation of an evidence-based program. Collaboration with community members ensured that the components of the curriculum that were adapted were culturally appropriate and relevant within the local community context.
Theobroma cacao: A genetically integrated physical map and genome-scale comparative synteny analysis
USDA-ARS?s Scientific Manuscript database
A comprehensive integrated genomic framework is considered a centerpiece of genomic research. In collaboration with the USDA-ARS (SHRS) and Mars Inc., the Clemson University Genomics Institute (CUGI) has developed a genetically anchored physical map of the T. cacao genome. Three BAC libraries contai...
Link Maps and Map Meetings: Scaffolding Student Learning
ERIC Educational Resources Information Center
Lindstrom, Christine; Sharma, Manjula D.
2009-01-01
With student numbers decreasing and traditional teaching methods having been found inefficient, it is widely accepted that alternative teaching methods need to be explored in tertiary physics education. In 2006 a different teaching environment was offered to 244 first year students with little or no prior formal instruction in physics. Students…
Surficial geologic map of the Gates of the Arctic National Park and Preserve, Alaska
Hamilton, Thomas D.; Labay, Keith A.
2011-01-01
The surfical geologic map incorporates parts of ten surficial geologic maps previously published at 1:250,000 scale. In addition, a small part of the buffer zone mapped in the southwest corner of the map area was compiled from unpublished surficial geologic mapping of the Shungnak 1:250,000-scale quadrangle. Each of those individual maps was developed from (1) aerial and surface observations of morphology and composition of unconsolidated deposits, (2) tracing the distribution and interrelation of terraces, abandoned meltwater channels, moraines, abandoned lake beds, and other landforms, (3) stratigraphic study of exposures along lake shores and river bluffs, (4) examination of sediments and soil profiles in auger borings and test pits, and exposed in roadcuts and placer workings, and (5) analysis of previously published geologic maps and reports. The map units used for those maps and employed in the present compilation are defined on the basis of their physical character, genesis, and age. Relative and absolute ages of the map units were determined from their geographic locations and from their stratigraphic positions and radiocarbon ages.
Nagle, D L; Martin-DeLeon, P; Hough, R B; Bućan, M
1994-01-01
We are studying the chromosomal structure of three developmental mutations, dominant spotting (W), patch (Ph), and rump white (Rw) on mouse chromosome 5. These mutations are clustered in a region containing three genes encoding tyrosine kinase receptors (Kit, Pdgfra, and Flk1). Using probes for these genes and for a closely linked locus, D5Mn125, we established a high-resolution physical map covering approximately 2.8 Mb. The entire chromosomal segment mapped in this study is deleted in the W19H mutation. The map indicates the position of the Ph deletion, which encompasses not more than 400 kb around and including the Pdgfra gene. The map also places the distal breakpoint of the Rw inversion to a limited chromosomal segment between Kit and Pdgfra. In light of the structure of the Ph-W-Rw region, we interpret the previously published complementation analyses as indicating that the pigmentation defect in Rw/+ heterozygotes could be due to the disruption of Kit and/or Pdgfra regulatory sequences, whereas the gene(s) responsible for the recessive lethality of Rw/Rw embryos is not closely linked to the Ph and W loci and maps proximally to the W19H deletion. The structural analysis of chromosomal rearrangements associated with W19H, Ph, and Rw combined with the high-resolution physical mapping points the way toward the definition of these mutations in molecular terms and isolation of homologous genes on human chromosome 4. Images PMID:8041773
Planck 2015 results. XXII. A map of the thermal Sunyaev-Zeldovich effect
NASA Astrophysics Data System (ADS)
Planck Collaboration; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Battye, R.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chiang, H. C.; Christensen, P. R.; Churazov, E.; Clements, D. L.; Colombo, L. P. L.; Combet, C.; Comis, B.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Génova-Santos, R. T.; Giard, M.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Harrison, D. L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Holmes, W. A.; Hornstrup, A.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lacasa, F.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Macías-Pérez, J. F.; Maffei, B.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Melchiorri, A.; Melin, J.-B.; Migliaccio, M.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Noviello, F.; Novikov, D.; Novikov, I.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Sauvé, A.; Savelainen, M.; Savini, G.; Scott, D.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tramonte, D.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.
2016-09-01
We have constructed all-sky Compton parameters maps, y-maps, of the thermal Sunyaev-Zeldovich (tSZ) effect by applying specifically tailored component separation algorithms to the 30 to 857 GHz frequency channel maps from the Planck satellite. These reconstructed y-maps are delivered as part of the Planck 2015 release. The y-maps are characterized in terms of noise properties and residual foreground contamination, mainly thermal dust emission at large angular scales, and cosmic infrared background and extragalactic point sources at small angular scales. Specific masks are defined to minimize foreground residuals and systematics. Using these masks, we compute the y-map angular power spectrum and higher order statistics. From these we conclude that the y-map is dominated by tSZ signal in the multipole range, 20 <ℓ< 600. We compare the measured tSZ power spectrum and higher order statistics to various physically motivated models and discuss the implications of our results in terms of cluster physics and cosmology.
High-throughput physical mapping of chromosomes using automated in situ hybridization.
George, Phillip; Sharakhova, Maria V; Sharakhov, Igor V
2012-06-28
Projects to obtain whole-genome sequences for 10,000 vertebrate species and for 5,000 insect and related arthropod species are expected to take place over the next 5 years. For example, the sequencing of the genomes for 15 malaria mosquitospecies is currently being done using an Illumina platform. This Anopheles species cluster includes both vectors and non-vectors of malaria. When the genome assemblies become available, researchers will have the unique opportunity to perform comparative analysis for inferring evolutionary changes relevant to vector ability. However, it has proven difficult to use next-generation sequencing reads to generate high-quality de novo genome assemblies. Moreover, the existing genome assemblies for Anopheles gambiae, although obtained using the Sanger method, are gapped or fragmented. Success of comparative genomic analyses will be limited if researchers deal with numerous sequencing contigs, rather than with chromosome-based genome assemblies. Fragmented, unmapped sequences create problems for genomic analyses because: (i) unidentified gaps cause incorrect or incomplete annotation of genomic sequences; (ii) unmapped sequences lead to confusion between paralogous genes and genes from different haplotypes; and (iii) the lack of chromosome assignment and orientation of the sequencing contigs does not allow for reconstructing rearrangement phylogeny and studying chromosome evolution. Developing high-resolution physical maps for species with newly sequenced genomes is a timely and cost-effective investment that will facilitate genome annotation, evolutionary analysis, and re-sequencing of individual genomes from natural populations. Here, we present innovative approaches to chromosome preparation, fluorescent in situ hybridization (FISH), and imaging that facilitate rapid development of physical maps. Using An. gambiae as an example, we demonstrate that the development of physical chromosome maps can potentially improve genome assemblies and, thus, the quality of genomic analyses. First, we use a high-pressure method to prepare polytene chromosome spreads. This method, originally developed for Drosophila, allows the user to visualize more details on chromosomes than the regular squashing technique. Second, a fully automated, front-end system for FISH is used for high-throughput physical genome mapping. The automated slide staining system runs multiple assays simultaneously and dramatically reduces hands-on time. Third, an automatic fluorescent imaging system, which includes a motorized slide stage, automatically scans and photographs labeled chromosomes after FISH. This system is especially useful for identifying and visualizing multiple chromosomal plates on the same slide. In addition, the scanning process captures a more uniform FISH result. Overall, the automated high-throughput physical mapping protocol is more efficient than a standard manual protocol.
Pouw, Wim T. J. L.; van Gog, Tamara; Zwaan, Rolf A.; Paas, Fred
2016-01-01
We investigated whether augmenting instructional animations with a body analogy (BA) would improve 10- to 13-year-old children’s learning about class-1 levers. Children with a lower level of general math skill who learned with an instructional animation that provided a BA of the physical system, showed higher accuracy on a lever problem-solving reaction time task than children studying the instructional animation without this BA. Additionally, learning with a BA led to a higher speed–accuracy trade-off during the transfer task for children with a lower math skill, which provided additional evidence that especially this group is likely to be affected by learning with a BA. However, overall accuracy and solving speed on the transfer task was not affected by learning with or without this BA. These results suggest that providing children with a BA during animation study provides a stepping-stone for understanding mechanical principles of a physical system, which may prove useful for instructional designers. Yet, because the BA does not seem effective for all children, nor for all tasks, the degree of effectiveness of body analogies should be studied further. Future research, we conclude, should be more sensitive to the necessary degree of analogous mapping between the body and physical systems, and whether this mapping is effective for reasoning about more complex instantiations of such physical systems. PMID:27375538
Building perceptual color maps for visualizing interval data
NASA Astrophysics Data System (ADS)
Kalvin, Alan D.; Rogowitz, Bernice E.; Pelah, Adar; Cohen, Aron
2000-06-01
In visualization, a 'color map' maps a range of data values onto a scale of colors. However, unless a color map is e carefully constructed, visual artifacts can be produced. This problem has stimulated considerable interest in creating perceptually based color maps, that is, color maps where equal steps in data value are perceived as equal steps in the color map [Robertson (1988); Pizer (1981); Green (1992); Lefkowitz and Herman, 1992)]. In Rogowitz and Treinish, (1996, 1998) and in Bergman, Treinish and Rogowitz, (1995), we demonstrated that color maps based on luminance or saturation could be good candidates for satisfying this requirement. This work is based on the seminal work of S.S. Stevens (1966), who measured the perceived magnitude of different magnitudes of physical stimuli. He found that for many physical scales, including luminance (cd/m2) and saturation (the 'redness' of a long-wavelength light source), equal ratios in stimulus value produced equal ratios in perceptual magnitude. He interpreted this as indicating that there exists in human cognition a common scale for representing magnitude, and we scale the effects of different physical stimuli to this internal scale. In Rogowitz, Kalvin, Pelahb and Cohen (1999), we used a psychophysical technique to test this hypothesis as it applies to the creation of perceptually uniform color maps. We constructed color maps as trajectories through three-color spaces, a common computer graphics standard (uncalibrated HSV), a common perceptually-based engineering standard for creating visual stimuli (L*a*b*), and a space commonly used in the graphic arts (Munsell). For each space, we created color scales that varied linearly in hue, saturation, or luminance and measured the detectability of increments in hue, saturation or luminance for each of these color scales. We measured the amplitude of the just-detectable Gaussian increments at 20 different values along the range of each color map. For all three color spaces, we found that luminance-based color maps provided the most perceptually- uniform representations of the data. The just-detectable increment was constant at all points in the color map, with the exception of the lowest-luminance values, where a larger increment was required. The saturation-based color maps provided less sensitivity than the luminance-based color maps, requiring much larger increments for detection. For the hue- based color maps, the size of the increment required for detection varied across the range. For example, for the standard 'rainbow' color map (uncalibrated HSV, hue-varying map), a step in the 'green' region required an increment 16 times the size of the increment required in the 'cyan' part of the range. That is, the rainbow color map would not successfully represent changes in the data in the 'green' region of this color map. In this paper, we extend this research by studying the detectability of spatially-modulated Gabor targets based on these hue, saturation and luminance scales. Since, in visualization, the user is called upon to detect and identify patterns that vary in their spatial characteristics, it is important to study how different types of color maps represent data with varying spatial properties. To do so, we measured modulation thresholds for low-(0.2 c/deg) and high-spatial frequency (4.0 c/deg) Gabor patches and compared them with the Gaussian results. As before, we measured increment thresholds for hue, saturation, and luminance modulations. These color scales were constructed as trajectories along the three perceptual dimensions of color (hue, saturation, and luminance) in two color spaces, uncalibrated HSV and calibrated L*a*b. This allowed us to study how the three perceptual dimensions represent magnitude information for test patterns varying in spatial frequency. This design also allowed us to test the hypothesis that the luminance channel best carries high-spatial frequency information while the saturation channel best represents low spatial-frequency information (Mullen 1985; DeValois and DeValois 1988).
Wang, De-Cai; Zhang, Gan-Lin; Zhao, Ming-Song; Pan, Xian-Zhang; Zhao, Yu-Guo; Li, De-Cheng; Macmillan, Bob
2015-01-01
Numerous studies have investigated the direct retrieval of soil properties, including soil texture, using remotely sensed images. However, few have considered how soil properties influence dynamic changes in remote images or how soil processes affect the characteristics of the spectrum. This study investigated a new method for mapping regional soil texture based on the hypothesis that the rate of change of land surface temperature is related to soil texture, given the assumption of similar starting soil moisture conditions. The study area was a typical flat area in the Yangtze-Huai River Plain, East China. We used the widely available land surface temperature product of MODIS as the main data source. We analyzed the relationships between the content of different particle soil size fractions at the soil surface and land surface day temperature, night temperature and diurnal temperature range (DTR) during three selected time periods. These periods occurred after rainfalls and between the previous harvest and the subsequent autumn sowing in 2004, 2007 and 2008. Then, linear regression models were developed between the land surface DTR and sand (> 0.05 mm), clay (< 0.001 mm) and physical clay (< 0.01 mm) contents. The models for each day were used to estimate soil texture. The spatial distribution of soil texture from the studied area was mapped based on the model with the minimum RMSE. A validation dataset produced error estimates for the predicted maps of sand, clay and physical clay, expressed as RMSE of 10.69%, 4.57%, and 12.99%, respectively. The absolute error of the predictions is largely influenced by variations in land cover. Additionally, the maps produced by the models illustrate the natural spatial continuity of soil texture. This study demonstrates the potential for digitally mapping regional soil texture variations in flat areas using readily available MODIS data. PMID:26090852
Wang, De-Cai; Zhang, Gan-Lin; Zhao, Ming-Song; Pan, Xian-Zhang; Zhao, Yu-Guo; Li, De-Cheng; Macmillan, Bob
2015-01-01
Numerous studies have investigated the direct retrieval of soil properties, including soil texture, using remotely sensed images. However, few have considered how soil properties influence dynamic changes in remote images or how soil processes affect the characteristics of the spectrum. This study investigated a new method for mapping regional soil texture based on the hypothesis that the rate of change of land surface temperature is related to soil texture, given the assumption of similar starting soil moisture conditions. The study area was a typical flat area in the Yangtze-Huai River Plain, East China. We used the widely available land surface temperature product of MODIS as the main data source. We analyzed the relationships between the content of different particle soil size fractions at the soil surface and land surface day temperature, night temperature and diurnal temperature range (DTR) during three selected time periods. These periods occurred after rainfalls and between the previous harvest and the subsequent autumn sowing in 2004, 2007 and 2008. Then, linear regression models were developed between the land surface DTR and sand (> 0.05 mm), clay (< 0.001 mm) and physical clay (< 0.01 mm) contents. The models for each day were used to estimate soil texture. The spatial distribution of soil texture from the studied area was mapped based on the model with the minimum RMSE. A validation dataset produced error estimates for the predicted maps of sand, clay and physical clay, expressed as RMSE of 10.69%, 4.57%, and 12.99%, respectively. The absolute error of the predictions is largely influenced by variations in land cover. Additionally, the maps produced by the models illustrate the natural spatial continuity of soil texture. This study demonstrates the potential for digitally mapping regional soil texture variations in flat areas using readily available MODIS data.
Protecting water quality in the watershed
DOE Office of Scientific and Technical Information (OSTI.GOV)
James, C.R.; Johnson, K.E.; Stewart, E.H.
1994-08-01
This article highlights the water quality component of a watershed management plan being developed for the San Francisco (CA) Water Department. The physical characteristics of the 63,000-acre watersheds were analyzed for source and transport vulnerability for five groups of water quality parameters--particulates, THM precursors, microorganisms (Giardia and cryptosporidium), nutrients (nitrogen and phosphorus), and synthetic organic chemicals--and vulnerability zones were mapped. Mapping was achieved through the use of an extensive geographic information system (GIS) database. Each water quality vulnerability zone map was developed based on five watershed physical characteristics--soils, slope, vegetation, wildlife concentration, and proximity to water bodies--and their relationships tomore » each of the five groups of water quality parameters. An approach to incorporate the watershed physical characteristics information into the five water quality vulnerability zone maps was defined and verified. The composite approach was based in part on information gathered from existing watershed management plans.« less
Mapping repulsive to attractive interaction in driven-dissipative quantum systems
NASA Astrophysics Data System (ADS)
Li, Andy C. Y.; Koch, Jens
2017-11-01
Repulsive and attractive interactions usually lead to very different physics. Striking exceptions exist in the dynamics of driven-dissipative quantum systems. For the example of a photonic Bose-Hubbard dimer, we establish a one-to-one mapping relating cases of onsite repulsion and attraction. We prove that the mapping is valid for an entire class of Markovian open quantum systems with a time-reversal-invariant Hamiltonian and physically meaningful inverse-sign Hamiltonian. To underline the broad applicability of the mapping, we illustrate the one-to-one correspondence between the nonequilibrium dynamics in a geometrically frustrated spin lattice and those in a non-frustrated partner lattice.
Partnering with Youth to Map Their Neighborhood Environments: A Multi-Layered GIS Approach
Topmiller, Michael; Jacquez, Farrah; Vissman, Aaron T.; Raleigh, Kevin; Miller-Francis, Jenni
2014-01-01
Mapping approaches offer great potential for community-based participatory researchers interested in displaying youth perceptions and advocating for change. We describe a multi-layered approach for gaining local knowledge of neighborhood environments that engages youth as co-researchers and active knowledge producers. By integrating geographic information systems (GIS) with environmental audits, an interactive focus group, and sketch mapping, the approach provides a place-based understanding of physical activity resources from the situated experience of youth. Youth report safety and a lack of recreational resources as inhibiting physical activity. Maps reflecting youth perceptions aid policy-makers in making place-based improvements for youth neighborhood environments. PMID:25423245
Application of Physically based landslide susceptibility models in Brazil
NASA Astrophysics Data System (ADS)
Carvalho Vieira, Bianca; Martins, Tiago D.
2017-04-01
Shallow landslides and floods are the processes responsible for most material and environmental damages in Brazil. In the last decades, some landslides events induce a high number of deaths (e.g. Over 1000 deaths in one event) and incalculable social and economic losses. Therefore, the prediction of those processes is considered an important tool for land use planning tools. Among different methods the physically based landslide susceptibility models having been widely used in many countries, but in Brazil it is still incipient when compared to other ones, like statistical tools and frequency analyses. Thus, the main objective of this research was to assess the application of some Physically based landslide susceptibility models in Brazil, identifying their main results, the efficiency of susceptibility mapping, parameters used and limitations of the tropical humid environment. In order to achieve that, it was evaluated SHALSTAB, SINMAP and TRIGRS models in some studies in Brazil along with the Geotechnical values, scales, DEM grid resolution and the results based on the analysis of the agreement between predicted susceptibility and the landslide scar's map. Most of the studies in Brazil applied SHALSTAB, SINMAP and to a lesser extent the TRIGRS model. The majority researches are concentrated in the Serra do Mar mountain range, that is a system of escarpments and rugged mountains that extends more than 1,500 km along the southern and southeastern Brazilian coast, and regularly affected by heavy rainfall that generates widespread mass movements. Most part of these studies used conventional topographic maps with scales ranging from 1:2000 to 1:50000 and DEM-grid resolution between 2 and 20m. Regarding the Geotechnical and hydrological values, a few studies use field collected data which could produce more efficient results, as indicated by international literature. Therefore, even though they have enormous potential in the susceptibility mapping, even for comparison purposes between different areas, the studies in Brazil require more detailed consideration on the input of topographic and Geotechnical parameters.
Involving Families and Communities in CSPAP Development Using Asset Mapping
ERIC Educational Resources Information Center
Allar, Ishonté; Elliott, Eloise; Jones, Emily; Kristjansson, Alfgeir L.; Taliaferro, Andrea; Bulger, Sean M.
2017-01-01
The purpose of this article is to provide an introduction to asset mapping as a systematic approach to facilitating increased family and community involvement in comprehensive school physical activity programs (CSPAP). It includes a brief summary of the literature related to the importance of family and community in children's physical activity…
Visualization of Discontinuous Galerkin Based High-Order Methods
2015-08-19
function and the reference- to physical- space mapping functions. This formulation can be used to measure the quality of a high-order element and also for...to physical- space mapping functions. This formulation can be used to measure the quality of a high-order element and also for AMR. We find that the
ERIC Educational Resources Information Center
Missouri State Dept. of Elementary and Secondary Education, Jefferson City.
This document presents 10 released items from the Health/Physical Education Missouri Assessment Program (MAP) test given in the spring of 2000 to fifth graders. Items from the test sessions include: selected-response (multiple choice), constructed-response, and a performance event. The selected-response items consist of individual questions…
McNeill, Lorna H; Emmons, Karen
2012-01-01
Walking is the most commonly reported leisure-time activity. Members of racial/ethnic minority groups and people of low socioeconomic status disproportionately live in urban environments that are perceived to be unsafe, thereby reducing opportunities for engaging in walking. We examined the use of walking maps for increasing physical activity (PA) among low-income residents of public housing sites in Boston, Massachusetts. PA facilities, local businesses, and destinations in a walkable half-mile radius of the housing community were identified and plotted on maps by using geographic information systems technology. Four focus groups (n = 24) were conducted to learn how the walking maps were used by the residents and to understand map features that promoted use. Maps were used by participants to increase their PA, and use of the maps increased participants' awareness of community resources. Maps changed participants' perception of distances and were discussed as a means of fostering a sense of community. Use of the maps also increased participants' awareness of neighborhood incivilities. Barriers to map use were difficulty in interpreting the maps and lack of access to the maps. Walking maps that display PA opportunities and resources may be useful in increasing walking among residents of public housing sites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Punjabi, Alkesh; Ali, Halima
A new approach to integration of magnetic field lines in divertor tokamaks is proposed. In this approach, an analytic equilibrium generating function (EGF) is constructed in natural canonical coordinates ({psi},{theta}) from experimental data from a Grad-Shafranov equilibrium solver for a tokamak. {psi} is the toroidal magnetic flux and {theta} is the poloidal angle. Natural canonical coordinates ({psi},{theta},{phi}) can be transformed to physical position (R,Z,{phi}) using a canonical transformation. (R,Z,{phi}) are cylindrical coordinates. Another canonical transformation is used to construct a symplectic map for integration of magnetic field lines. Trajectories of field lines calculated from this symplectic map in natural canonicalmore » coordinates can be transformed to trajectories in real physical space. Unlike in magnetic coordinates [O. Kerwin, A. Punjabi, and H. Ali, Phys. Plasmas 15, 072504 (2008)], the symplectic map in natural canonical coordinates can integrate trajectories across the separatrix surface, and at the same time, give trajectories in physical space. Unlike symplectic maps in physical coordinates (x,y) or (R,Z), the continuous analog of a symplectic map in natural canonical coordinates does not distort trajectories in toroidal planes intervening the discrete map. This approach is applied to the DIII-D tokamak [J. L. Luxon and L. E. Davis, Fusion Technol. 8, 441 (1985)]. The EGF for the DIII-D gives quite an accurate representation of equilibrium magnetic surfaces close to the separatrix surface. This new approach is applied to demonstrate the sensitivity of stochastic broadening using a set of perturbations that generically approximate the size of the field errors and statistical topological noise expected in a poloidally diverted tokamak. Plans for future application of this approach are discussed.« less
NASA Astrophysics Data System (ADS)
Punjabi, Alkesh; Ali, Halima
2008-12-01
A new approach to integration of magnetic field lines in divertor tokamaks is proposed. In this approach, an analytic equilibrium generating function (EGF) is constructed in natural canonical coordinates (ψ,θ) from experimental data from a Grad-Shafranov equilibrium solver for a tokamak. ψ is the toroidal magnetic flux and θ is the poloidal angle. Natural canonical coordinates (ψ,θ,φ) can be transformed to physical position (R,Z,φ) using a canonical transformation. (R,Z,φ) are cylindrical coordinates. Another canonical transformation is used to construct a symplectic map for integration of magnetic field lines. Trajectories of field lines calculated from this symplectic map in natural canonical coordinates can be transformed to trajectories in real physical space. Unlike in magnetic coordinates [O. Kerwin, A. Punjabi, and H. Ali, Phys. Plasmas 15, 072504 (2008)], the symplectic map in natural canonical coordinates can integrate trajectories across the separatrix surface, and at the same time, give trajectories in physical space. Unlike symplectic maps in physical coordinates (x,y) or (R,Z), the continuous analog of a symplectic map in natural canonical coordinates does not distort trajectories in toroidal planes intervening the discrete map. This approach is applied to the DIII-D tokamak [J. L. Luxon and L. E. Davis, Fusion Technol. 8, 441 (1985)]. The EGF for the DIII-D gives quite an accurate representation of equilibrium magnetic surfaces close to the separatrix surface. This new approach is applied to demonstrate the sensitivity of stochastic broadening using a set of perturbations that generically approximate the size of the field errors and statistical topological noise expected in a poloidally diverted tokamak. Plans for future application of this approach are discussed.
ERIC Educational Resources Information Center
Purwandari, Ristiana Dyah
2015-01-01
The investigation aims in this study were to uncover the observations of infrastructures and physics laboratory in vocational high school for Stone and Concrete Construction Techniques Expertise Field or Teknik Konstruksi Batu dan Beton (TKBB)'s in Purwokerto Central Java Province, mapping the Vocational High School or Sekolah Menengah Kejuruan…
Preduction of Vehicle Mobility on Large-Scale Soft-Soil Terrain Maps Using Physics-Based Simulation
2016-08-02
PREDICTION OF VEHICLE MOBILITY ON LARGE-SCALE SOFT- SOIL TERRAIN MAPS USING PHYSICS-BASED SIMULATION Tamer M. Wasfy, Paramsothy Jayakumar, Dave...NRMM • Objectives • Soft Soils • Review of Physics-Based Soil Models • MBD/DEM Modeling Formulation – Joint & Contact Constraints – DEM Cohesive... Soil Model • Cone Penetrometer Experiment • Vehicle- Soil Model • Vehicle Mobility DOE Procedure • Simulation Results • Concluding Remarks 2UNCLASSIFIED
NASA Technical Reports Server (NTRS)
Kruse, Fred A.; Dwyer, John L.
1993-01-01
The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) measures reflected light in 224 contiguous spectra bands in the 0.4 to 2.45 micron region of the electromagnetic spectrum. Numerous studies have used these data for mineralogic identification and mapping based on the presence of diagnostic spectral features. Quantitative mapping requires conversion of the AVIRIS data to physical units (usually reflectance) so that analysis results can be compared and validated with field and laboratory measurements. This study evaluated two different AVIRIS calibration techniques to ground reflectance: an empirically-based method and an atmospheric model based method to determine their effects on quantitative scientific analyses. Expert system analysis and linear spectral unmixing were applied to both calibrated data sets to determine the effect of the calibration on the mineral identification and quantitative mapping results. Comparison of the image-map results and image reflectance spectra indicate that the model-based calibrated data can be used with automated mapping techniques to produce accurate maps showing the spatial distribution and abundance of surface mineralogy. This has positive implications for future operational mapping using AVIRIS or similar imaging spectrometer data sets without requiring a priori knowledge.
NASA Astrophysics Data System (ADS)
Cashman, K. V.; Rust, A.; Stibbon, E.; Harris, R.
2016-12-01
Earth materials are fundamental to art. They are pigments, they are clay, they provide form and color. Earth scientists, however, rarely attempt to make the physical properties of Earth materials visible through art, and similarly many artists use Earth materials without fully understanding their physical and chemical properties. Here we explore the intersection between art and science through study of the physical properties of Earth materials as characterized in the laboratory, and as transferred to paper using different techniques and suspending media. One focus of this collaboration is volcanic ash. Ash is interesting scientifically because its form provides information on the fundamental processes that drive volcanic eruptions, and determines its transport properties, and thus its potential to affect populations far downwind of the volcano. Ash properties also affect its behavior as an art material. From an aesthetic point of view, ash lends a granular surface to the image; it is also uncontrollable, and thus requires engagement between artist and medium. More fundamentally, using ash in art creates an exchange between the medium and the subject matter, and imparts something of the physical, visceral experience of volcanic landscapes to the viewer. Another component of this work uses powdered rock as a printing medium for geologic maps. Because different types of rock create powders with different properties (grain size distributions and shapes), the geology is communicated not only as color, but also by the physical characteristics of the material as it interacts with the paper. More importantly, the use of actual rocks samples as printing material for geologic maps not only makes a direct connection between the map and the material it represents, but also provides an emotional connection between the map, the viewer and the landscape, its colors, textures and geological juxtapositions. Both case studies provide examples not only of ways in which artists can help scientists to visualize materials, but also how artists and scientists can work together to learn from each other. To illustrate this point, our poster will provide opportunities for hands on experimentation with earth materials as artistic media.
Quantitative DNA fiber mapping
Gray, Joe W.; Weier, Heinz-Ulrich G.
1998-01-01
The present invention relates generally to the DNA mapping and sequencing technologies. In particular, the present invention provides enhanced methods and compositions for the physical mapping and positional cloning of genomic DNA. The present invention also provides a useful analytical technique to directly map cloned DNA sequences onto individual stretched DNA molecules.
Dynamics of Galaxy Clusters and Expectations from Astro-H
NASA Technical Reports Server (NTRS)
Markevitch, Maxim
2012-01-01
Galaxy clusters span a range of dynamical states, from violent mergers -- the most energetic events in the Universe -- to systems near hydrostatic equilibrium that allow us to map their dark matter distribution using X-ray observations of the intracluster gas. Accurate knowledge of the cluster physics, and in particular, the physics of the hot intracluster gas, is required to realize the full potential of clusters as cosmological probes. So far, we have been studying the cluster dynamics indirectly, deducing merger geometries, cluster masses, etc., using X-ray brightness and gas temperature mapping. For the first time, the calorimeter onboard Astro-H will provide direct measurements of line-of-sight velocities and turbulent broadening in the intracluster gas, testing many of our key assumptions about clusters. This talk will summarize expectations for cluster dynamic studies with this new instrument.
Bayesian analysis of anisotropic cosmologies: Bianchi VIIh and WMAP
NASA Astrophysics Data System (ADS)
McEwen, J. D.; Josset, T.; Feeney, S. M.; Peiris, H. V.; Lasenby, A. N.
2013-12-01
We perform a definitive analysis of Bianchi VIIh cosmologies with Wilkinson Microwave Anisotropy Probe (WMAP) observations of the cosmic microwave background (CMB) temperature anisotropies. Bayesian analysis techniques are developed to study anisotropic cosmologies using full-sky and partial-sky masked CMB temperature data. We apply these techniques to analyse the full-sky internal linear combination (ILC) map and a partial-sky masked W-band map of WMAP 9 yr observations. In addition to the physically motivated Bianchi VIIh model, we examine phenomenological models considered in previous studies, in which the Bianchi VIIh parameters are decoupled from the standard cosmological parameters. In the two phenomenological models considered, Bayes factors of 1.7 and 1.1 units of log-evidence favouring a Bianchi component are found in full-sky ILC data. The corresponding best-fitting Bianchi maps recovered are similar for both phenomenological models and are very close to those found in previous studies using earlier WMAP data releases. However, no evidence for a phenomenological Bianchi component is found in the partial-sky W-band data. In the physical Bianchi VIIh model, we find no evidence for a Bianchi component: WMAP data thus do not favour Bianchi VIIh cosmologies over the standard Λ cold dark matter (ΛCDM) cosmology. It is not possible to discount Bianchi VIIh cosmologies in favour of ΛCDM completely, but we are able to constrain the vorticity of physical Bianchi VIIh cosmologies at (ω/H)0 < 8.6 × 10-10 with 95 per cent confidence.
Integrated genome sequence and linkage map of physic nut (Jatropha curcas L.), a biodiesel plant.
Wu, Pingzhi; Zhou, Changpin; Cheng, Shifeng; Wu, Zhenying; Lu, Wenjia; Han, Jinli; Chen, Yanbo; Chen, Yan; Ni, Peixiang; Wang, Ying; Xu, Xun; Huang, Ying; Song, Chi; Wang, Zhiwen; Shi, Nan; Zhang, Xudong; Fang, Xiaohua; Yang, Qing; Jiang, Huawu; Chen, Yaping; Li, Meiru; Wang, Ying; Chen, Fan; Wang, Jun; Wu, Guojiang
2015-03-01
The family Euphorbiaceae includes some of the most efficient biomass accumulators. Whole genome sequencing and the development of genetic maps of these species are important components in molecular breeding and genetic improvement. Here we report the draft genome of physic nut (Jatropha curcas L.), a biodiesel plant. The assembled genome has a total length of 320.5 Mbp and contains 27,172 putative protein-coding genes. We established a linkage map containing 1208 markers and anchored the genome assembly (81.7%) to this map to produce 11 pseudochromosomes. After gene family clustering, 15,268 families were identified, of which 13,887 existed in the castor bean genome. Analysis of the genome highlighted specific expansion and contraction of a number of gene families during the evolution of this species, including the ribosome-inactivating proteins and oil biosynthesis pathway enzymes. The genomic sequence and linkage map provide a valuable resource not only for fundamental and applied research on physic nut but also for evolutionary and comparative genomics analysis, particularly in the Euphorbiaceae. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Xuan, Hejun; Wang, Yuping; Xu, Zhanqi; Hao, Shanshan; Wang, Xiaoli
2017-11-01
Virtualization technology can greatly improve the efficiency of the networks by allowing the virtual optical networks to share the resources of the physical networks. However, it will face some challenges, such as finding the efficient strategies for virtual nodes mapping, virtual links mapping and spectrum assignment. It is even more complex and challenging when the physical elastic optical networks using multi-core fibers. To tackle these challenges, we establish a constrained optimization model to determine the optimal schemes of optical network mapping, core allocation and spectrum assignment. To solve the model efficiently, tailor-made encoding scheme, crossover and mutation operators are designed. Based on these, an efficient genetic algorithm is proposed to obtain the optimal schemes of the virtual nodes mapping, virtual links mapping, core allocation. The simulation experiments are conducted on three widely used networks, and the experimental results show the effectiveness of the proposed model and algorithm.
Mapping of the 3q27 region involved in Dup(3q) syndrome
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rizzu, P.; Baldini, A.; Overhauser, J.
1994-09-01
The duplication 3q syndrome is characterized by partial trisomy of a segment of the long arm of chromosome 3. We have previously found that 3q26.3-3q27 is the minimal region of trisomy overlap. This critical region (CR) is delimited by two patient chromosome breakpoints, approximately 10 cM apart. In order to identify the gene(s) responsible for the Dup(3q) phenotype, we are generating a physical map of the region and identifying expressed sequences. First, we have generated a cytological map using two- and three-color fluorescence in situ hybridization on metaphase and interphase chromosomes. Results allowed us to determine the centromere-telomere orientation, ordermore » and relative distances of six cosmid clones mapped to the CR. Because some of the markers used are part of the consensus chromosome 3 map, our data were easily integrated with existing mapping information. Subsequently, we have included in the map YAC clones positive for polymorphic PCR markers identified by CEPH-Genethon, as well as newly isolated YACs. We have assigned them to the critical region 7 of the Genethon polymorphic markers and linked them to three YAC contigs. Currently our map includes two of the five genes known to map in this region. Interestingly, we found that these two functionally related genes (kininogen and histidin-rich glycoprotein) map to the same 1 Mb genomic fragment. As the physical map is being constructed we are searching for expressed sequences. Positive cDNAs have been found and their characterization is in progress. In conclusion, we will present an integrated map of 3q27 that includes genetic, physical and cytological information as well as gene annotation. As Dup(3q) syndrome is likely to be a contiguous gene syndrome, such a map will be necessary for our understanding of this multiple congenital anomaly.« less
Teaching Physics Novices at University: A Case for Stronger Scaffolding
ERIC Educational Resources Information Center
Lindstrom, Christine; Sharma, Manjula D.
2011-01-01
In 2006 a new type of tutorial, called Map Meeting, was successfully trialled with novice first year physics students at the University of Sydney, Australia. Subsequently, in first semester 2007 a large-scale experiment was carried out with 262 students who were allocated either to the strongly scaffolding Map Meetings or to the less scaffolding…
ERIC Educational Resources Information Center
Missouri State Dept. of Elementary and Secondary Education, Jefferson City.
This document presents 10 released items from the Health/Physical Education Missouri Assessment Program (MAP) test given in the spring of 2000 to ninth graders. Items from the test sessions include: selected-response (multiple choice), constructed-response, and a performance event. The selected-response items consist of individual questions…
2015-03-01
unlimited 13. ABSTRACT (maximum 200 words) Physical network maps are important to critical infrastructure defense and planning. Current state-of...the-art network infrastructure geolocation relies on Domain Name System (DNS) inferences. However, not only is using the DNS relatively inaccurate for...INTENTIONALLY LEFT BLANK iv ABSTRACT Physical network maps are important to critical infrastructure defense and planning. Cur- rent state-of-the-art
Simulation of seagrass bed mapping by satellite images based on the radiative transfer model
NASA Astrophysics Data System (ADS)
Sagawa, Tatsuyuki; Komatsu, Teruhisa
2015-06-01
Seagrass and seaweed beds play important roles in coastal marine ecosystems. They are food sources and habitats for many marine organisms, and influence the physical, chemical, and biological environment. They are sensitive to human impacts such as reclamation and pollution. Therefore, their management and preservation are necessary for a healthy coastal environment. Satellite remote sensing is a useful tool for mapping and monitoring seagrass beds. The efficiency of seagrass mapping, seagrass bed classification in particular, has been evaluated by mapping accuracy using an error matrix. However, mapping accuracies are influenced by coastal environments such as seawater transparency, bathymetry, and substrate type. Coastal management requires sufficient accuracy and an understanding of mapping limitations for monitoring coastal habitats including seagrass beds. Previous studies are mainly based on case studies in specific regions and seasons. Extensive data are required to generalise assessments of classification accuracy from case studies, which has proven difficult. This study aims to build a simulator based on a radiative transfer model to produce modelled satellite images and assess the visual detectability of seagrass beds under different transparencies and seagrass coverages, as well as to examine mapping limitations and classification accuracy. Our simulations led to the development of a model of water transparency and the mapping of depth limits and indicated the possibility for seagrass density mapping under certain ideal conditions. The results show that modelling satellite images is useful in evaluating the accuracy of classification and that establishing seagrass bed monitoring by remote sensing is a reliable tool.
First-generation physical map of the Culicoides variipennis (Diptera: Ceratopogonidae) genome.
Nunamaker, R A; Brown, S E; McHolland, L E; Tabachnick, W J; Knudson, D L
1999-11-01
Recombinant cosmids labeled with biotin-11-dUTP or digoxigenin by nick translation were used as in situ hybridization probes to metaphase chromosomes of Culicoides variipennis (Coquillett). Paired fluorescent signals were detected on each arm of sister chromatids and were ordered along the 3 chromosomes. Thirty-three unique probes were mapped to the 3 chromosomes of C. variipennis (2n = 6): 7 to chromosome 1, 20 to chromosome 2, and 6 to chromosome 3. This work represents the first stage in generating a physical map of the genome of C. variipennis.
NASA Technical Reports Server (NTRS)
Skinner, J. A., Jr.; Eppler, D. B.; Bleacher, J. E.; Evans, C. A.; Feng, W.; Gruener, J.; Hurwitz, D. M.; Janoiko, B.; Whitson, P.
2014-01-01
Cartographic products and - specifically - geologic maps provide critical assistance for establishing physical and temporal frameworks of planetary surfaces. The technical methods that result in the creation of geologic maps vary depending on how observations are made as well as the overall intent of the final products [1-3]. These methods tend to follow a common linear work flow, including the identification and delineation of spatially and temporally discrete materials (units), the documentation of their primary (emplacement) and secondary (erosional) characteristics, analysis of the relative and absolute age relationships between these materials, and the collation of observations and interpretations into an objective map product. The "objectivity" of a map is critical cross comparison with overlapping maps and topical studies as well as its relevance to scientific posterity. However, the "accuracy" and "correctness" of a geologic map is very subject to debate. This can be evidenced by comparison of existing geologic maps at various scales, particularly those compiled through field- and remote-based mapped efforts. Our study focuses on comparing the fidelity of (1) "Apollo-style" geologic investigations, where typically non-geologist crew members follow static traverse routes established through pre-mission planning, and (2) "traditional" field-based investigations, where geologists are given free rein to observe without preplanned routes. This abstract summarizes the regional geology wherein our study was conducted, presents the geologic map created from traditional field mapping techniques, and offers basic insights into how geologic maps created from different tactics can be reconciled in support of exploratory missions. Additional abstracts [4-6] from this study discuss various exploration and science results of these efforts.
Physical Model of the Genotype-to-Phenotype Map of Proteins
NASA Astrophysics Data System (ADS)
Tlusty, Tsvi; Libchaber, Albert; Eckmann, Jean-Pierre
2017-04-01
How DNA is mapped to functional proteins is a basic question of living matter. We introduce and study a physical model of protein evolution which suggests a mechanical basis for this map. Many proteins rely on large-scale motion to function. We therefore treat protein as learning amorphous matter that evolves towards such a mechanical function: Genes are binary sequences that encode the connectivity of the amino acid network that makes a protein. The gene is evolved until the network forms a shear band across the protein, which allows for long-range, soft modes required for protein function. The evolution reduces the high-dimensional sequence space to a low-dimensional space of mechanical modes, in accord with the observed dimensional reduction between genotype and phenotype of proteins. Spectral analysis of the space of 1 06 solutions shows a strong correspondence between localization around the shear band of both mechanical modes and the sequence structure. Specifically, our model shows how mutations are correlated among amino acids whose interactions determine the functional mode.
Hyperbolic Harmonic Mapping for Surface Registration
Shi, Rui; Zeng, Wei; Su, Zhengyu; Jiang, Jian; Damasio, Hanna; Lu, Zhonglin; Wang, Yalin; Yau, Shing-Tung; Gu, Xianfeng
2016-01-01
Automatic computation of surface correspondence via harmonic map is an active research field in computer vision, computer graphics and computational geometry. It may help document and understand physical and biological phenomena and also has broad applications in biometrics, medical imaging and motion capture inducstries. Although numerous studies have been devoted to harmonic map research, limited progress has been made to compute a diffeomorphic harmonic map on general topology surfaces with landmark constraints. This work conquers this problem by changing the Riemannian metric on the target surface to a hyperbolic metric so that the harmonic mapping is guaranteed to be a diffeomorphism under landmark constraints. The computational algorithms are based on Ricci flow and nonlinear heat diffusion methods. The approach is general and robust. We employ our algorithm to study the constrained surface registration problem which applies to both computer vision and medical imaging applications. Experimental results demonstrate that, by changing the Riemannian metric, the registrations are always diffeomorphic and achieve relatively high performance when evaluated with some popular surface registration evaluation standards. PMID:27187948
NASA Technical Reports Server (NTRS)
Merrill, R. B.
1975-01-01
Recent investigations of the moon are reported. Topics discussed include the Apollo 17 site, selenography, craters, remote sensing, selenophysics, lunar surface fields and particles, magnetic properties of lunar samples, physical property measurements, surface-correlated properties, micrometeoroids, solar-system regoliths, and cosmic rays. Lunar orbital data maps are presented, and the evolution of lunar features is examined.
Linking the potato genome to the conserved ortholog set (COS) markers
2013-01-01
Background Conserved ortholog set (COS) markers are an important functional genomics resource that has greatly improved orthology detection in Asterid species. A comprehensive list of these markers is available at Sol Genomics Network (http://solgenomics.net/) and many of these have been placed on the genetic maps of a number of solanaceous species. Results We amplified over 300 COS markers from eight potato accessions involving two diploid landraces of Solanum tuberosum Andigenum group (formerly classified as S. goniocalyx, S. phureja), and a dihaploid clone derived from a modern tetraploid cultivar of S. tuberosum and the wild species S. berthaultii, S. chomatophilum, and S. paucissectum. By BLASTn (Basic Local Alignment Search Tool of the NCBI, National Center for Biotechnology Information) algorithm we mapped the DNA sequences of these markers into the potato genome sequence. Additionally, we mapped a subset of these markers genetically in potato and present a comparison between the physical and genetic locations of these markers in potato and in comparison with the genetic location in tomato. We found that most of the COS markers are single-copy in the reference genome of potato and that the genetic location in tomato and physical location in potato sequence are mostly in agreement. However, we did find some COS markers that are present in multiple copies and those that map in unexpected locations. Sequence comparisons between species show that some of these markers may be paralogs. Conclusions The sequence-based physical map becomes helpful in identification of markers for traits of interest thereby reducing the number of markers to be tested for applications like marker assisted selection, diversity, and phylogenetic studies. PMID:23758607
Cain, Kelli L.; Millstein, Rachel A.; Sallis, James F.; Conway, Terry L.; Gavand, Kavita A.; Frank, Lawrence D.; Saelens, Brian E.; Geremia, Carrie M.; Chapman, James; Adams, Marc A.; Glanz, Karen; King, Abby C.
2014-01-01
Ecological models of physical activity emphasize the effects of environmental influences. “Microscale” streetscape features that may affect pedestrian experience have received less research attention than macroscale walkability (e.g., residential density). The Microscale Audit of Pedestrian Streetscapes (MAPS) measures street design, transit stops, sidewalk qualities, street crossing amenities, and features impacting aesthetics. The present study examined associations of microscale attributes with multiple physical activity (PA) measures across four age groups. Areas in the San Diego, Seattle, and the Baltimore metropolitan areas, USA, were selected that varied on macro-level walkability and neighborhood income. Participants (n=3677) represented four age groups (children, adolescents, adults, older adults). MAPS audits were conducted along a 0.25 mile route along the street network from participant residences toward the nearest non-residential destination. MAPS data were collected in 2009–2010. Subscale and overall summary scores were created. Walking/biking for transportation and leisure/neighborhood PA were measured with age-appropriate surveys. Objective PA was measured with accelerometers. Mixed linear regression analyses were adjusted for macro-level walkability. Across all age groups 51.2%, 22.1%, and 15.7% of all MAPS scores were significantly associated with walking/biking for transport, leisure/neighborhood PA, and objectively-measured PA, respectively. Supporting the ecological model principle of behavioral specificity, destinations and land use, streetscape, street segment, and intersection variables were more related to transport walking/biking, while aesthetic variables were related to leisure/neighborhood PA. The overall score was related to objective PA in children and older adults. Present findings provide strong evidence that microscale environment attributes are related to PA across the lifespan. Improving microscale features may be a feasible approach to creating activity-friendly environments. PMID:24983701
The Organization of Repetitive DNA in the Genomes of Amazonian Lizard Species in the Family Teiidae.
Carvalho, Natalia D M; Pinheiro, Vanessa S S; Carmo, Edson J; Goll, Leonardo G; Schneider, Carlos H; Gross, Maria C
2015-01-01
Repetitive DNA is the largest fraction of the eukaryote genome and comprises tandem and dispersed sequences. It presents variations in relation to its composition, number of copies, distribution, dynamics, and genome organization, and participates in the evolutionary diversification of different vertebrate species. Repetitive sequences are usually located in the heterochromatin of centromeric and telomeric regions of chromosomes, contributing to chromosomal structures. Therefore, the aim of this study was to physically map repetitive DNA sequences (5S rDNA, telomeric sequences, tropomyosin gene 1, and retroelements Rex1 and SINE) of mitotic chromosomes of Amazonian species of teiids (Ameiva ameiva, Cnemidophorus sp. 1, Kentropyx calcarata, Kentropyx pelviceps, and Tupinambis teguixin) to understand their genome organization and karyotype evolution. The mapping of repetitive sequences revealed a distinct pattern in Cnemidophorus sp. 1, whereas the other species showed all sequences interspersed in the heterochromatic region. Physical mapping of the tropomyosin 1 gene was performed for the first time in lizards and showed that in addition to being functional, this gene has a structural function similar to the mapped repetitive elements as it is located preferentially in centromeric regions and termini of chromosomes. © 2016 S. Karger AG, Basel.
Ohmido, Nobuko; Fukui, Kiichi; Kinoshita, Toshiro
2010-01-01
Fluorescence in situ hybridization (FISH) is an effective method for the physical mapping of genes and repetitive DNA sequences on chromosomes. Physical mapping of unique nucleotide sequences on specific rice chromosome regions was performed using a combination of chromosome identification and highly sensitive FISH. Increases in the detection sensitivity of smaller DNA sequences and improvements in spatial resolution have ushered in a new phase in FISH technology. Thus, it is now possible to perform in situ hybridization on somatic chromosomes, pachytene chromosomes, and even on extended DNA fibers (EDFs). Pachytene-FISH allows the integration of genetic linkage maps and quantitative chromosome maps. Visualization methods using FISH can reveal the spatial organization of the centromere, heterochromatin/euchromatin, and the terminal structures of rice chromosomes. Furthermore, EDF-FISH and the DNA combing technique can resolve a spatial distance of 1 kb between adjacent DNA sequences, and the detection of even a 300-bp target is now feasible. The copy numbers of various repetitive sequences and the sizes of various DNA molecules were quantitatively measured using the molecular combing technique. This review describes the significance of these advances in molecular cytology in rice and discusses future applications in plant studies using visualization techniques.
GRAD-MAP: A Physics and Astronomy Diversity Initiative at the University of Maryland
NASA Astrophysics Data System (ADS)
Smith, Robyn; Rogoszinski, Zeeve; Sheppard, Kyle; Taylor, Corbin; Wilkins, Ashlee; Vogel, Stuart; Rolston, Steve; Hammer, Donna; Gezari, Suvi; Williams, Jimmy
2017-01-01
Graduate Resources for Advancing Diversity with Maryland's Astronomy and Physics (GRAD-MAP) builds connections with mid-Atlantic HBCUs, Minority-Serving Institutions (MSIs), and community colleges using seminars, forums, and workshops to foster a diverse community: undergraduates prepared to succeed in graduate school, inclusion-minded graduate student mentors, and faculty versed in the experiences of students at MSIs. In its fourth year, GRAD-MAP remains a graduate-student-powered initiative with a four-pronged approach: 1) Fall Collaborative Seminars, 2) Winter Workshop, 3) Spring Symposium, and 4) Summer Scholars Program. This coherent programming allows GRAD-MAP to do more than just increase the number of minority students or simply shuffle around students who already are, or would be, active in research. GRAD-MAP is committed to identifying students who are underserved or overlooked by the traditional academic pipeline. Our goal is not only to get them on the path to be successful undergraduate researchers and eventual graduate applicants, but also to make substantial, sustainable efforts toward a more inclusive climate in physics and astronomy. We will describe the key elements of our program, highlight successes and lessons learned, and describe formal evaluation currently underway with the intent that GRAD-MAP could serve as a model for other universities committed to diversity and inclusion.
ERIC Educational Resources Information Center
Kurfman, Dana G.; And Others
A 3-part test measures the geography knowledge, skills, and understanding of secondary level students. Part 1, map skills and location, contains 20 questions involving the use of three maps: an imaginary sketch map, a contour map, and a political map of the world. Part 2 consists of 20 questions covering physical geography. Students analyze…
A study of kindergarten children's spatial representation in a mapping project
NASA Astrophysics Data System (ADS)
Davis, Genevieve A.; Hyun, Eunsook
2005-02-01
This phenomenological study examined kindergarten children's development of spatial representation in a year long mapping project. Findings and discussion relative to how children conceptualised and represented physical space are presented in light of theoretical notions advanced by Piaget, van Hiele, and cognitive science researchers Battista and Clements. Analyses of the processes the children used and their finished products indicate that children can negotiate meaning for complex systems of geometric concepts when given opportunities to debate, negotiate, reflect, evaluate and seek meaning for representing space. The complexity and "holistic" nature of spatial representation of young children emerged in this study.
Mapping Soil Surface Macropores Using Infrared Thermography: An Exploratory Laboratory Study
de Lima, João L. M. P.; Abrantes, João R. C. B.; Silva, Valdemir P.; de Lima, M. Isabel P.; Montenegro, Abelardo A. A.
2014-01-01
Macropores and water flow in soils and substrates are complex and are related to topics like preferential flow, nonequilibrium flow, and dual-continuum. Hence, the quantification of the number of macropores and the determination of their geometry are expected to provide a better understanding on the effects of pores on the soil's physical and hydraulic properties. This exploratory study aimed at evaluating the potential of using infrared thermography for mapping macroporosity at the soil surface and estimating the number and size of such macropores. The presented technique was applied to a small scale study (laboratory soil flume). PMID:25371915
2014-01-01
Background Systematic planning could improve the generally moderate effectiveness of interventions to enhance adherence to clinical practice guidelines. The aim of our study was to demonstrate how the process of Intervention Mapping was used to develop an intervention to address the lack of adherence to the national CPG for low back pain by Dutch physical therapists. Methods We systematically developed a program to improve adherence to the Dutch physical therapy guidelines for low back pain. Based on multi-method formative research, we formulated program and change objectives. Selected theory-based methods of change and practical applications were combined into an intervention program. Implementation and evaluation plans were developed. Results Formative research revealed influential determinants for physical therapists and practice quality managers. Self-regulation was appropriate because both the physical therapists and the practice managers needed to monitor current practice and make and implement plans for change. The program stimulated interaction between practice levels by emphasizing collective goal setting. It combined practical applications, such as knowledge transfer and discussion-and-feedback, based on theory-based methods, such as consciousness raising and active learning. The implementation plan incorporated the wider environment. The evaluation plan included an effect and process evaluation. Conclusions Intervention Mapping is a useful framework for formative data in program planning in the field of clinical guideline implementation. However, a decision aid to select determinants of guideline adherence identified in the formative research to analyse the problem may increase the efficiency of the application of the Intervention Mapping process. PMID:24428945
Rutten, Geert M; Harting, Janneke; Bartholomew, Leona K; Braspenning, Jozé C; van Dolder, Rob; Heijmans, Marcel Fgj; Hendriks, Erik Jm; Kremers, Stef Pj; van Peppen, Roland Ps; Rutten, Steven Tj; Schlief, Angelique; de Vries, Nanne K; Oostendorp, Rob Ab
2014-01-15
Systematic planning could improve the generally moderate effectiveness of interventions to enhance adherence to clinical practice guidelines. The aim of our study was to demonstrate how the process of Intervention Mapping was used to develop an intervention to address the lack of adherence to the national CPG for low back pain by Dutch physical therapists. We systematically developed a program to improve adherence to the Dutch physical therapy guidelines for low back pain. Based on multi-method formative research, we formulated program and change objectives. Selected theory-based methods of change and practical applications were combined into an intervention program. Implementation and evaluation plans were developed. Formative research revealed influential determinants for physical therapists and practice quality managers. Self-regulation was appropriate because both the physical therapists and the practice managers needed to monitor current practice and make and implement plans for change. The program stimulated interaction between practice levels by emphasizing collective goal setting. It combined practical applications, such as knowledge transfer and discussion-and-feedback, based on theory-based methods, such as consciousness raising and active learning. The implementation plan incorporated the wider environment. The evaluation plan included an effect and process evaluation. Intervention Mapping is a useful framework for formative data in program planning in the field of clinical guideline implementation. However, a decision aid to select determinants of guideline adherence identified in the formative research to analyse the problem may increase the efficiency of the application of the Intervention Mapping process.
A draft physical map of a D-genome cotton species (Gossypium raimondii)
2010-01-01
Background Genetically anchored physical maps of large eukaryotic genomes have proven useful both for their intrinsic merit and as an adjunct to genome sequencing. Cultivated tetraploid cottons, Gossypium hirsutum and G. barbadense, share a common ancestor formed by a merger of the A and D genomes about 1-2 million years ago. Toward the long-term goal of characterizing the spectrum of diversity among cotton genomes, the worldwide cotton community has prioritized the D genome progenitor Gossypium raimondii for complete sequencing. Results A whole genome physical map of G. raimondii, the putative D genome ancestral species of tetraploid cottons was assembled, integrating genetically-anchored overgo hybridization probes, agarose based fingerprints and 'high information content fingerprinting' (HICF). A total of 13,662 BAC-end sequences and 2,828 DNA probes were used in genetically anchoring 1585 contigs to a cotton consensus genetic map, and 370 and 438 contigs, respectively to Arabidopsis thaliana (AT) and Vitis vinifera (VV) whole genome sequences. Conclusion Several lines of evidence suggest that the G. raimondii genome is comprised of two qualitatively different components. Much of the gene rich component is aligned to the Arabidopsis and Vitis vinifera genomes and shows promise for utilizing translational genomic approaches in understanding this important genome and its resident genes. The integrated genetic-physical map is of value both in assembling and validating a planned reference sequence. PMID:20569427
ERIC Educational Resources Information Center
Belansky, Elaine S.; Cutforth, Nick; Chavez, Robert; Crane, Lori A.; Waters, Emily; Marshall, Julie A.
2013-01-01
Background: School environment and policy changes have increased healthy eating and physical activity; however, there has been modest success in translating research ?ndings to practice. The School Environment Project tested whether an adapted version of Intervention Mapping (AIM) resulted in school change. Methods: Using a pair randomized design,…
Activities in planetary geology for the physical and earth sciences
NASA Technical Reports Server (NTRS)
Dalli, R.; Greeley, R.
1982-01-01
A users guide for teaching activities in planetary geology, and for physical and earth sciences is presented. The following topics are discussed: cratering; aeolian processes; planetary atmospheres, in particular the Coriolis Effect and storm systems; photogeologic mapping of other planets, Moon provinces and stratigraphy, planets in stereo, land form mapping of Moon, Mercury and Mars, and geologic features of Mars.
Prediction of AL and Dst Indices from ACE Measurements Using Hybrid Physics/Black-Box Techniques
NASA Astrophysics Data System (ADS)
Spencer, E.; Rao, A.; Horton, W.; Mays, L.
2008-12-01
ACE measurements of the solar wind velocity, IMF and proton density is used to drive a hybrid Physics/Black- Box model of the nightside magnetosphere. The core physics is contained in a low order nonlinear dynamical model of the nightside magnetosphere called WINDMI. The model is augmented by wavelet based nonlinear mappings between the solar wind quantities and the input into the physics model, followed by further wavelet based mappings of the model output field aligned currents onto the ground based magnetometer measurements of the AL index and Dst index. The black box mappings are introduced at the input stage to account for uncertainties in the way the solar wind quantities are transported from the ACE spacecraft at L1 to the magnetopause. Similar mappings are introduced at the output stage to account for a spatially and temporally varying westward auroral electrojet geometry. The parameters of the model are tuned using a genetic algorithm, and trained using the large geomagnetic storm dataset of October 3-7 2000. It's predictive performance is then evaluated on subsequent storm datasets, in particular the April 15-24 2002 storm. This work is supported by grant NSF 7020201
Metaphorical mapping between raw-cooked food and strangeness-familiarity in Chinese culture.
Deng, Xiaohong; Qu, Yuan; Zheng, Huihui; Lu, Yang; Zhong, Xin; Ward, Anne; Li, Zijun
2017-02-01
Previous research has demonstrated metaphorical mappings between physical coldness-warmth and social distance-closeness. Since the concepts of interpersonal warmth are frequently expressed in terms of food-related words in Chinese, the present study sought to explore whether the concept of raw-cooked food could be unconsciously and automatically mapped onto strangeness-familiarity. After rating the nutritive value of raw or cooked foods, participants were presented with morphing movies in which their acquaintances gradually transformed into strangers or strangers gradually morphed into acquaintances, and were asked to stop the movies when the combined images became predominantly target faces. The results demonstrated that unconscious and automatic metaphorical mappings between raw-cooked food and strangeness-familiarity exist. This study provides a foundation for testing whether Chinese people can think about interpersonal familiarity using mental representations of raw-cooked food and supports cognitive metaphor theory from a crosslinguistic perspective.
The development and characterisation of a bacterial artificial chromosome library for Fragaria vesca
Bonet, Julio; Girona, Elena Lopez; Sargent, Daniel J; Muñoz-Torres, Monica C; Monfort, Amparo; Abbott, Albert G; Arús, Pere; Simpson, David W; Davik, Jahn
2009-01-01
Background The cultivated strawberry Fragaria ×ananassa is one of the most economically-important soft-fruit species. Few structural genomic resources have been reported for Fragaria and there exists an urgent need for the development of physical mapping resources for the genus. The first stage in the development of a physical map for Fragaria is the construction and characterisation of a high molecular weight bacterial artificial chromosome (BAC) library. Methods A BAC library, consisting of 18,432 clones was constructed from Fragaria vesca f. semperflorens accession 'Ali Baba'. BAC DNA from individual library clones was pooled to create a PCR-based screening assay for the library, whereby individual clones could be identified with just 34 PCR reactions. These pools were used to screen the BAC library and anchor individual clones to the diploid Fragaria reference map (FV×FN). Findings Clones from the BAC library developed contained an average insert size of 85 kb, representing over seven genome equivalents. The pools and superpools developed were used to identify a set of BAC clones containing 70 molecular markers previously mapped to the diploid Fragaria FV×FN reference map. The number of positive colonies identified for each marker suggests the library represents between 4× and 10× coverage of the diploid Fragaria genome, which is in accordance with the estimate of library coverage based on average insert size. Conclusion This BAC library will be used for the construction of a physical map for F. vesca and the superpools will permit physical anchoring of molecular markers using PCR. PMID:19772672
Higgins, M J; Turmel, C; Noolandi, J; Neumann, P E; Lalande, M
1990-01-01
Pulsed-field gel electrophoresis (PFGE) and deletion mapping are being used to construct a physical map of the long arm of human chromosome 13. The present study reports a 2700-kilobase (kb) Not I long-range restriction map encompassing the 13q14-specific loci D13S10, D13S21, and D13S22, which are detected by the cloned DNA markers p7D2, pG24E2.4, and pG14E1.9, respectively. Analysis of a panel of seven cell lines that showed differential methylation at a Not I site between D13S10 and D13S21 proved physical linkage of the two loci to the same 875-kb Not I fragment. D13S22 mapped to a different Not I fragment, precluding the possibility that D13S22 is located between D13S10 and D13S21. PFGE analysis of Not I partial digests placed the 1850-kb Not I fragment containing D13S22 immediately adjacent to the 875-kb fragment containing the other two loci. The proximal rearrangement breakpoint in a cell line carrying a del13(q14.1q21.2) was detected by D13S21 but not by D13S10, demonstrating that D13S21 lies proximal to D13S10. Quantitative analysis of hybridization signals of the three DNA probes to DNA from the same cell line indicated that only D13S10 was deleted, establishing the order of these loci to be cen-D13S22-D13S21-D13S10-tel. Surprisingly, this order was estimated to be 35,000 times less likely than that favored by genetic linkage analysis. Images PMID:1970636
Muthamilarasan, Mehanathan; Venkata Suresh, B.; Pandey, Garima; Kumari, Kajal; Parida, Swarup Kumar; Prasad, Manoj
2014-01-01
Generating genomic resources in terms of molecular markers is imperative in molecular breeding for crop improvement. Though development and application of microsatellite markers in large-scale was reported in the model crop foxtail millet, no such large-scale study was conducted for intron-length polymorphic (ILP) markers. Considering this, we developed 5123 ILP markers, of which 4049 were physically mapped onto 9 chromosomes of foxtail millet. BLAST analysis of 5123 expressed sequence tags (ESTs) suggested the function for ∼71.5% ESTs and grouped them into 5 different functional categories. About 440 selected primer pairs representing the foxtail millet genome and the different functional groups showed high-level of cross-genera amplification at an average of ∼85% in eight millets and five non-millet species. The efficacy of the ILP markers for distinguishing the foxtail millet is demonstrated by observed heterozygosity (0.20) and Nei's average gene diversity (0.22). In silico comparative mapping of physically mapped ILP markers demonstrated substantial percentage of sequence-based orthology and syntenic relationship between foxtail millet chromosomes and sorghum (∼50%), maize (∼46%), rice (∼21%) and Brachypodium (∼21%) chromosomes. Hence, for the first time, we developed large-scale ILP markers in foxtail millet and demonstrated their utility in germplasm characterization, transferability, phylogenetics and comparative mapping studies in millets and bioenergy grass species. PMID:24086082
Cao, Hieu Xuan; Vu, Giang Thi Ha; Wang, Wenqin; Appenroth, Klaus J; Messing, Joachim; Schubert, Ingo
2016-01-01
Duckweeds are aquatic monocotyledonous plants of potential economic interest with fast vegetative propagation, comprising 37 species with variable genome sizes (0.158-1.88 Gbp). The genomic sequence of Spirodela polyrhiza, the smallest and the most ancient duckweed genome, needs to be aligned to its chromosomes as a reference and prerequisite to study the genome and karyotype evolution of other duckweed species. We selected physically mapped bacterial artificial chromosomes (BACs) containing Spirodela DNA inserts with little or no repetitive elements as probes for multicolor fluorescence in situ hybridization (mcFISH), using an optimized BAC pooling strategy, to validate its physical map and correlate it with its chromosome complement. By consecutive mcFISH analyses, we assigned the originally assembled 32 pseudomolecules (supercontigs) of the genomic sequences to the 20 chromosomes of S. polyrhiza. A Spirodela cytogenetic map containing 96 BAC markers with an average distance of 0.89 Mbp was constructed. Using a cocktail of 41 BACs in three colors, all chromosome pairs could be individualized simultaneously. Seven ancestral blocks emerged from duplicated chromosome segments of 19 Spirodela chromosomes. The chromosomally integrated genome of S. polyrhiza and the established prerequisites for comparative chromosome painting enable future studies on the chromosome homoeology and karyotype evolution of duckweed species. © 2015 IPK Gatersleben. New Phytologist © 2015 New Phytologist Trust.
NASA Astrophysics Data System (ADS)
Grenier, P.
2017-12-01
Statistical post-processing techniques aim at generating plausible climate scenarios from climate simulations and observation-based reference products. These techniques are generally not physically-based, and consequently they remedy the problem of simulation biases at the risk of generating physical inconsistency (PI). Although this concern is often emphasized, it is rarely addressed quantitatively. Here, PI generated by quantile mapping (QM), a technique widely used in climatological and hydrological applications, is investigated using relative humidity (RH) and its parent variables, namely specific humidity (SH), temperature and pressure. PI is classified into two types: 1) inadequate value for an individual variable (e.g. RH > 100 %), and 2) breaking of an inter-variable relationship. Scenarios built for this study correspond to twelve sites representing a variety of climate types over North America. Data used are an ensemble of ten 3-hourly global (CMIP5) and regional (CORDEX-NAM) simulations, as well as the CFSR reanalysis. PI of type 1 is discussed in terms of frequency of occurrence and amplitude of unphysical cases for RH and SH variables. PI of type 2 is investigated with heuristic proxies designed to directly compare the physical inconsistency problem with the initial bias problem. Finally, recommendations are provided for an appropriate use of QM given the potential to generate physical inconsistency of types 1 and 2.
Attention Priority Map of Face Images in Human Early Visual Cortex.
Mo, Ce; He, Dongjun; Fang, Fang
2018-01-03
Attention priority maps are topographic representations that are used for attention selection and guidance of task-related behavior during visual processing. Previous studies have identified attention priority maps of simple artificial stimuli in multiple cortical and subcortical areas, but investigating neural correlates of priority maps of natural stimuli is complicated by the complexity of their spatial structure and the difficulty of behaviorally characterizing their priority map. To overcome these challenges, we reconstructed the topographic representations of upright/inverted face images from fMRI BOLD signals in human early visual areas primary visual cortex (V1) and the extrastriate cortex (V2 and V3) based on a voxelwise population receptive field model. We characterized the priority map behaviorally as the first saccadic eye movement pattern when subjects performed a face-matching task relative to the condition in which subjects performed a phase-scrambled face-matching task. We found that the differential first saccadic eye movement pattern between upright/inverted and scrambled faces could be predicted from the reconstructed topographic representations in V1-V3 in humans of either sex. The coupling between the reconstructed representation and the eye movement pattern increased from V1 to V2/3 for the upright faces, whereas no such effect was found for the inverted faces. Moreover, face inversion modulated the coupling in V2/3, but not in V1. Our findings provide new evidence for priority maps of natural stimuli in early visual areas and extend traditional attention priority map theories by revealing another critical factor that affects priority maps in extrastriate cortex in addition to physical salience and task goal relevance: image configuration. SIGNIFICANCE STATEMENT Prominent theories of attention posit that attention sampling of visual information is mediated by a series of interacting topographic representations of visual space known as attention priority maps. Until now, neural evidence of attention priority maps has been limited to studies involving simple artificial stimuli and much remains unknown about the neural correlates of priority maps of natural stimuli. Here, we show that attention priority maps of face stimuli could be found in primary visual cortex (V1) and the extrastriate cortex (V2 and V3). Moreover, representations in extrastriate visual areas are strongly modulated by image configuration. These findings extend our understanding of attention priority maps significantly by showing that they are modulated, not only by physical salience and task-goal relevance, but also by the configuration of stimuli images. Copyright © 2018 the authors 0270-6474/18/380149-09$15.00/0.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schoenmakers, E.F.P.M.; Kools, P.F.J.; Mols, R.
1994-03-15
The authors report here the physical mapping of recurrent chromosome 12q13-q15 breakpoints in cell lines derived from primary myxoid liposarcoma, lipoma, uterine leiomyoma, and pleomorphic adenoma of the salivary glands. In fluorescence in situ hybridization (FISH) experiments, they first mapped the position of the chromosome 12 translocation breakpoint in uterine leiomyoma cell line LM-30.1/SV40 relative to loci COL2A1, D12S4, D12S17, D12S6, D12S19, D12S8, and D12S7. It mapped between linkage probes CRI-C86 (D12S19) and p7G11 (D12S8). They then isolated YAC clones using CRI-C86- and p7G11-derived sequence-tagged sites, constructed corresponding YAC contigs of 310 and 800 kb, respectively, and a mixture ofmore » them was used to routinely study the various tumor cell lines by FISH analysis. The chromosome 12 breakpoints of all tumor cell lines tested mapped between cosmids LLNL12NCO1-98C10 and LLNL12NCO1-113D12. None of the breakpoints appeared to map within any of the isolated YAC clones. Furthermore, FISH analysis using cosmid LLNL12-NCO1-144G3, which maps at the CHOP locus, revealed that the chromosome 12 breakpoints in all cell lines of the three benign solid tumors that were tested were located distal to the chromosome 12 translocation breakpoint with the CHOP gene in myxoid liposarcoma cells with t(12;16). In conclusion, the studies seem to indicate that the chromosome 12 breakpoints of myxoid liposarcoma, lipoma, uterine leiomyoma, and pleomorphic adenoma of the salivary glands are all clustered within the 7-cM interval between D12S19 and D12S8, with those of the benign solid tumors distal to CHOP. Finally, the MYF5 gene mapped telomeric to LLNL12NCO1-113D12, and the MIP gene mapped centromeric to the chromosome 12 translocation breakpoint in myxoid liposarcoma cells. 56 refs., 5 figs., 3 tabs.« less
Magician Simulator. A Realistic Simulator for Heterogenous Teams of Autonomous Robots
2011-01-18
IMU, and LIDAR systems for identifying and tracking mobile OOI at long range (>20m), providing early warnings and allowing neutralization from a... LIDAR and Computer Vision template-based feature tracking approaches. Mapping was solved through Multi-Agent particle-filter based Simultaneous...Locali- zation and Mapping ( SLAM ). Our system contains two maps, a physical map and an influence map (location of hostile OOI, explored and unexplored
Optical mapping and its potential for large-scale sequencing projects.
Aston, C; Mishra, B; Schwartz, D C
1999-07-01
Physical mapping has been rediscovered as an important component of large-scale sequencing projects. Restriction maps provide landmark sequences at defined intervals, and high-resolution restriction maps can be assembled from ensembles of single molecules by optical means. Such optical maps can be constructed from both large-insert clones and genomic DNA, and are used as a scaffold for accurately aligning sequence contigs generated by shotgun sequencing.
ASCA Temperature Maps for Merging and Relaxed Clusters and Physics of the Cluster Gas
NASA Technical Reports Server (NTRS)
Markevitch, M.; Sarazin, C.; Nevalainen, J.; Vikhlinin, A.; Forman, W.
1999-01-01
ASCA temperature maps for several galaxy clusters undergoing strong mergers will be presented. From these maps, it is possible to estimate velocities of the colliding subclusters. I will discuss several interesting implications of these estimates for the physics of the cluster gas and the shape of the gravitational potential. I will also present temperature maps and profiles for several relaxed clusters selected for X-ray mass determination, and present the mass values derived without the assumption of isothermality. The accurate mass-temperature and luminosity-temperature relations will be discussed. This talk will review how AXAF will revolutionize X-ray astronomy through its radically better imaging and spectroscopic resolution. Examples from many fields of astrophysics will be given.
The Atlas of Vesta Spectral Parameters derived from Dawn/VIR data
NASA Astrophysics Data System (ADS)
Frigeri, A.; De Sanctis, M. C.; Ammannito, E.; Tosi, F.; Zambon, F.; Capaccioni, F.; Capria, M. T.; Palomba, E.; Longobardo, A.; Fonte, S.; Giardino, M.; Magni, G.; Jaumann, R.; Raymond, C. A.; Russell, C. T.
2013-09-01
The Dawn mission mapped Vesta from three different orbital heights during Survey orbit (2700 km altitude), HAMO (High Altitude Mapping Orbit, 700 km altitude), and LAMO (Low Altitude Mapping Orbit, 210 km altitude) [1]. From these orbits the Dawn's Visible and Infrared Mapping Spectrometer (VIR) acquired infrared and visible spectra from 0.2 to 5 microns, sampled in 864 channels with a spatial resolution reaching about 150 m/pixel. Studies of the comparison of spectra from remote sensed data and spectra from laboratory allows to synthesize spectral parameters, which can be combined to identify specific physical and compositional states. VIR spectra of Vesta, stored in about 4300 Planetary Data System (PDS) cubes, have been analyzed to derive spectral parameters, each of which is diagnostic of the associated mineralogy on the surface of the asteroid being observed [2]. Maps of spectral parameters show terrain units compositions in their stratigraphic context. Band centers and band depths are among the most important diagnostic parameters of the mineralogy in a spectrum. In most pyroxenes and in the basaltic achondrites there is a strong correlation between the position of BI center and BII center and the associated mineralogy. For example, orthopyroxene bands shift towards longer wavelengths with increasing amounts of iron, whereas clinopyroxene bands shift towards longer wavelengths with increasing calcium content. Band depth is related to scattering effects, thus can be related to the physical state of the material.
2011-01-01
Background Flax (Linum usitatissimum L.) is an important source of oil rich in omega-3 fatty acids, which have proven health benefits and utility as an industrial raw material. Flax seeds also contain lignans which are associated with reducing the risk of certain types of cancer. Its bast fibres have broad industrial applications. However, genomic tools needed for molecular breeding were non existent. Hence a project, Total Utilization Flax GENomics (TUFGEN) was initiated. We report here the first genome-wide physical map of flax and the generation and analysis of BAC-end sequences (BES) from 43,776 clones, providing initial insights into the genome. Results The physical map consists of 416 contigs spanning ~368 Mb, assembled from 32,025 fingerprints, representing roughly 54.5% to 99.4% of the estimated haploid genome (370-675 Mb). The N50 size of the contigs was estimated to be ~1,494 kb. The longest contig was ~5,562 kb comprising 437 clones. There were 96 contigs containing more than 100 clones. Approximately 54.6 Mb representing 8-14.8% of the genome was obtained from 80,337 BES. Annotation revealed that a large part of the genome consists of ribosomal DNA (~13.8%), followed by known transposable elements at 6.1%. Furthermore, ~7.4% of sequence was identified to harbour novel repeat elements. Homology searches against flax-ESTs and NCBI-ESTs suggested that ~5.6% of the transcriptome is unique to flax. A total of 4064 putative genomic SSRs were identified and are being developed as novel markers for their use in molecular breeding. Conclusion The first genome-wide physical map of flax constructed with BAC clones provides a framework for accessing target loci with economic importance for marker development and positional cloning. Analysis of the BES has provided insights into the uniqueness of the flax genome. Compared to other plant genomes, the proportion of rDNA was found to be very high whereas the proportion of known transposable elements was low. The SSRs identified from BES will be valuable in saturating existing linkage maps and for anchoring physical and genetic maps. The physical map and paired-end reads from BAC clones will also serve as scaffolds to build and validate the whole genome shotgun assembly. PMID:21554714
Ragupathy, Raja; Rathinavelu, Rajkumar; Cloutier, Sylvie
2011-05-09
Flax (Linum usitatissimum L.) is an important source of oil rich in omega-3 fatty acids, which have proven health benefits and utility as an industrial raw material. Flax seeds also contain lignans which are associated with reducing the risk of certain types of cancer. Its bast fibres have broad industrial applications. However, genomic tools needed for molecular breeding were non existent. Hence a project, Total Utilization Flax GENomics (TUFGEN) was initiated. We report here the first genome-wide physical map of flax and the generation and analysis of BAC-end sequences (BES) from 43,776 clones, providing initial insights into the genome. The physical map consists of 416 contigs spanning ~368 Mb, assembled from 32,025 fingerprints, representing roughly 54.5% to 99.4% of the estimated haploid genome (370-675 Mb). The N50 size of the contigs was estimated to be ~1,494 kb. The longest contig was ~5,562 kb comprising 437 clones. There were 96 contigs containing more than 100 clones. Approximately 54.6 Mb representing 8-14.8% of the genome was obtained from 80,337 BES. Annotation revealed that a large part of the genome consists of ribosomal DNA (~13.8%), followed by known transposable elements at 6.1%. Furthermore, ~7.4% of sequence was identified to harbour novel repeat elements. Homology searches against flax-ESTs and NCBI-ESTs suggested that ~5.6% of the transcriptome is unique to flax. A total of 4064 putative genomic SSRs were identified and are being developed as novel markers for their use in molecular breeding. The first genome-wide physical map of flax constructed with BAC clones provides a framework for accessing target loci with economic importance for marker development and positional cloning. Analysis of the BES has provided insights into the uniqueness of the flax genome. Compared to other plant genomes, the proportion of rDNA was found to be very high whereas the proportion of known transposable elements was low. The SSRs identified from BES will be valuable in saturating existing linkage maps and for anchoring physical and genetic maps. The physical map and paired-end reads from BAC clones will also serve as scaffolds to build and validate the whole genome shotgun assembly.
Cartagena, Alexander; Hernando-Pérez, Mercedes; Carrascosa, José L; de Pablo, Pedro J; Raman, Arvind
2013-06-07
Understanding the relationships between viral material properties (stiffness, strength, charge density, adhesion, hydration, viscosity, etc.), structure (protein sub-units, genome, surface receptors, appendages), and functions (self-assembly, stability, disassembly, infection) is of significant importance in physical virology and nanomedicine. Conventional Atomic Force Microscopy (AFM) methods have measured a single physical property such as the stiffness of the entire virus from nano-indentation at a few points which severely limits the study of structure-property-function relationships. We present an in vitro dynamic AFM technique operating in the intermittent contact regime which synthesizes anharmonic Lorentz-force excited AFM cantilevers to map quantitatively at nanometer resolution the local electro-mechanical force gradient, adhesion, and hydration layer viscosity within individual φ29 virions. Furthermore, the changes in material properties over the entire φ29 virion provoked by the local disruption of its shell are studied, providing evidence of bacteriophage depressurization. The technique significantly generalizes recent multi-harmonic theory (A. Raman, et al., Nat. Nanotechnol., 2011, 6, 809-814) and enables high-resolution in vitro quantitative mapping of multiple material properties within weakly bonded viruses and nanoparticles with complex structure that otherwise cannot be observed using standard AFM techniques.
Valencia-Peris, Alexandra; Devís-Devís, José; García-Massó, Xavier; Lizandra, Jorge; Pérez-Gimeno, Esther; Peiró-Velert, Carmen
2016-06-01
Previous research shows contradictory findings on potential competing effects between sedentary screen media usage (SMU) and physical activity (PA). This study examined these effects on adolescent girls via self-organizing maps analysis focusing on 3 target profiles. A sample of 1,516 girls aged 12 to 18 years self-reported daily time engagement in PA (moderate and vigorous intensity) and in screen media activities (TV/video/DVD, computer, and videogames), separately and combined. Topological interrelationships from the 13 emerging maps indicated a moderate competing effect between physically active and sedentary SMU patterns. Higher SES and overweight status were linked to either active or inactive behaviors. Three target clusters were explored in more detail. Cluster 1, named temperate-media actives, showed capabilities of being active while engaging in a moderate level of SMU (TV/video/DVD mainly). In Cluster 2, named prudent-media inactives, and Cluster 3, compulsive-media inactives, a competing effect between SMU and PA emerged, being sedentary SMU behaviors responsible for a low involvement in active pursuits. SMU and PA emerge as both related and independent behaviors in girls, resulting in a moderate competing effect. Findings support the case for recommending the timing of PA and SMU for recreational purposes considering different profiles, sociodemographic factors and types of SMU.
Ning, S B; Wang, L; Song, Y C
2000-01-01
Peroxidase plays a key role in plant disease resistance, cold stress and some developmental processes, and cold-regulated protein functions necessarily in reaction of plants on cold or heat stress. Recent studies showed that these processes in plant cells were involved in programmed cell death (PCD). Using a biotin-labelled in situ hybridization (ISH) technique, we physically mapped the genes px and cld coding peroxidase and cold-regulated protein respectively onto maize chromosomes. Both DAB and fluorescence detection systems gave the identical results, the probe uaz235 corresponding to gene px was localized onto the long arm of chromosome 2 (2L) and 7L, and csu19 corresponding to gene cld was hybridized onto 4L and 5L. The percentage distances (from the hybridization sites to centromeres) of uaz235 in 2L and 7L were 45.4 +/- 1.3 and 67.4 +/- 3.7 respectively, and those of csu19 in 4L and 5L were 68.6 +/- 2.6 and 58.2 +/- 1.6 respectively. The physical positions of px in 2L and cld in 4L coincide with those in their genetic map pattern. The results also show that both of these genes have duplicated sites in maize genome.
Direction of Translation and Size of Bacteriophage φX174 Cistrons
Benbow, Robert M.; Mayol, Robert F.; Picchi, Joanna C.; Sinsheimer, Robert L.
1972-01-01
Translation of the bacteriophage φX174 genome follows cistron order D-E-F-G-H-A-B-C. To establish this, the position of a nonsense mutation on the genetic map was compared with the physical size (molecular weight) of the appropriate protein fragment generated in nonpermissive cells. Distances on the φX174 genetic map and distances on a physical map constructed from the molecular weights of φX174 proteins and protein fragments are proportional over most of the genome with the exception of the high recombination region within cistron A. Images PMID:16789133
Complete physical mapping of IL6 reveals a new marker associated with chronic periodontitis.
Farhat, S B; de Souza, C M; Braosi, A P R; Kim, S H; Tramontina, V A; Papalexiou, V; Olandoski, M; Mira, M T; Luczyszyn, S M; Trevilatto, P C
2017-04-01
Interleukin-6 (IL-6) is a powerful stimulator of osteoclast differentiation and bone resorption. Production of IL-6 is modulated by polymorphisms, and higher levels of this cytokine are found locally in patients with chronic periodontitis. In this study we performed a modern approach - Complete physical mapping of the IL6 gene - to identify the polymorphisms associated with chronic periodontitis in a southern Brazilian population sample. One-hundred and nine individuals of both genders (mean age: 41.5 ± 8.5 years) were divided into a study group (56 participants with periodontitis) and a control group (53 individuals without periodontitis). After collection and purification of DNA, nine tag single nucleotide polymorphisms (SNPs; rs1524107, rs2069835, rs2069837, rs2069838, rs2069840, rs2069842, rs2069843, rs2069845 and rs2069849) covering the entire gene were selected according to the information available on the International HapMap Project website and evaluated using real-time PCR. Differences in the distribution of the following parameters were statistically significant between study and control groups: number of teeth (p = 0.030); probing depth (p < 0.001); clinical attachment level (p < 0.001); gingival index (p < 0.001); plaque index (p = 0.003); calculus index (p < 0.001); and dental mobility (p < 0.001). It was found that marker rs2069837 (located in intron 2 of IL6) under G dominant was associated with protection against chronic periodontitis in a Brazilian population in the presence of clinical variables, such as visible plaque, dentist visit frequency and dental floss use, and was suggested for the first time as a marker of susceptibility to chronic periodontitis. Complete physical mapping of IL6 (using tag SNPs) was carried out for the first time, unveiling allele G of polymorphism rs2069837 (located in the second intron of IL6) as a suggestive marker of protection against chronic periodontitis in a Brazilian population. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Dualities of fields and strings
NASA Astrophysics Data System (ADS)
Polchinski, Joseph
2017-08-01
Duality, the equivalence between seemingly distinct quantum systems, is a curious property that has been known for at least three quarters of a century. In the past two decades it has played a central role in mapping out the structure of theoretical physics. I discuss the unexpected connections that have been revealed among quantum field theories and string theories. Written for a special issue of Studies in History and Philosophy of Modern Physics.
Wang, Chun Ming; Lo, Loong Chueng; Feng, Felicia; Gong, Ping; Li, Jian; Zhu, Ze Yuan; Lin, Grace; Yue, Gen Hua
2008-03-25
Barramundi (Lates calcarifer) is an important farmed marine food fish species. Its first generation linkage map has been applied to map QTL for growth traits. To identify genes located in QTL responsible for specific traits, genomic large insert libraries are of crucial importance. We reported herein a bacterial artificial chromosome (BAC) library and the mapping of BAC clones to the linkage map. This BAC library consisted of 49,152 clones with an average insert size of 98 kb, representing 6.9-fold haploid genome coverage. Screening the library with 24 microsatellites and 15 ESTs/genes demonstrated that the library had good genome coverage. In addition, 62 novel microsatellites each isolated from 62 BAC clones were mapped onto the first generation linkage map. A total of 86 BAC clones were anchored on the linkage map with at least one BAC clone on each linkage group. We have constructed the first BAC library for L. calcarifer and mapped 86 BAC clones to the first generation linkage map. This BAC library and the improved linkage map with 302 DNA markers not only supply an indispensable tool to the integration of physical and linkage maps, the fine mapping of QTL and map based cloning genes located in QTL of commercial importance, but also contribute to comparative genomic studies and eventually whole genome sequencing.
Staton, Margaret; Zhebentyayeva, Tetyana; Olukolu, Bode; Fang, Guang Chen; Nelson, Dana; Carlson, John E; Abbott, Albert G
2015-10-05
Chinese chestnut (Castanea mollissima) has emerged as a model species for the Fagaceae family with extensive genomic resources including a physical map, a dense genetic map and quantitative trait loci (QTLs) for chestnut blight resistance. These resources enable comparative genomics analyses relative to model plants. We assessed the degree of conservation between the chestnut genome and other well annotated and assembled plant genomic sequences, focusing on the QTL regions of most interest to the chestnut breeding community. The integrated physical and genetic map of Chinese chestnut has been improved to now include 858 shared sequence-based markers. The utility of the integrated map has also been improved through the addition of 42,970 BAC (bacterial artificial chromosome) end sequences spanning over 26 million bases of the estimated 800 Mb chestnut genome. Synteny between chestnut and ten model plant species was conducted on a macro-syntenic scale using sequences from both individual probes and BAC end sequences across the chestnut physical map. Blocks of synteny with chestnut were found in all ten reference species, with the percent of the chestnut physical map that could be aligned ranging from 10 to 39 %. The integrated genetic and physical map was utilized to identify BACs that spanned the three previously identified QTL regions conferring blight resistance. The clones were pooled and sequenced, yielding 396 sequence scaffolds covering 13.9 Mbp. Comparative genomic analysis on a microsytenic scale, using the QTL-associated genomic sequence, identified synteny from chestnut to other plant genomes ranging from 5.4 to 12.9 % of the genome sequences aligning. On both the macro- and micro-synteny levels, the peach, grape and poplar genomes were found to be the most structurally conserved with chestnut. Interestingly, these results did not strictly follow the expectation that decreased phylogenetic distance would correspond to increased levels of genome preservation, but rather suggest the additional influence of life-history traits on preservation of synteny. The regions of synteny that were detected provide an important tool for defining and cataloging genes in the QTL regions for advancing chestnut blight resistance research.
Chromosomal localization of actin genes in the malaria mosquito Anopheles darlingi
BRIDI, L. C.; SHARAKHOVA, M. V.; SHARAKHOV, I. V.; CORDEIRO, J.; AZEVEDO, G. M.; TADEI, W. P.; RAFAEL, M. S.
2012-01-01
Physical and genetic maps have been used for chromosomal localization of genes in vectors of infectious diseases. The availability of polytene chromosomes in malaria mosquitoes provides a unique opportunity to precisely map genes of interest. We report physical mapping of two actin genes on polytene chromosomes of the major malaria vector in Amazon Anopheles darlingi. The clones with the actin genes sequences were obtained from a cDNA library constructed from RNA isolated from adult females and males of An. darlingi. Each of the two clones was mapped to a unique site on the chromosomal arm 2L in subdivisions 21A (clone pl05-A04) and 23B (clone pl17-G06). The obtained results together with previous mapping data provide a suitable basis for comparative genomics and for establishing chromosomal homologies among major malaria vectors. PMID:22804344
Basin boundaries and focal points in a map coming from Bairstow's method.
Gardini, Laura; Bischi, Gian-Italo; Fournier-Prunaret, Daniele
1999-06-01
This paper is devoted to the study of the global dynamical properties of a two-dimensional noninvertible map, with a denominator which can vanish, obtained by applying Bairstow's method to a cubic polynomial. It is shown that the complicated structure of the basins of attraction of the fixed points is due to the existence of singularities such as sets of nondefinition, focal points, and prefocal curves, which are specific to maps with a vanishing denominator, and have been recently introduced in the literature. Some global bifurcations that change the qualitative structure of the basin boundaries, are explained in terms of contacts among these singularities. The techniques used in this paper put in evidence some new dynamic behaviors and bifurcations, which are peculiar of maps with denominator; hence they can be applied to the analysis of other classes of maps coming from iterative algorithms (based on Newton's method, or others). (c) 1999 American Institute of Physics.
Sanguinetti, A M; Del Caro, A; Mangia, N P; Secchi, N; Catzeddu, P; Piga, A
2011-02-01
This study evaluated the shelf life of fresh pasta filled with cheese subjected to modified atmosphere packaging (MAP) or air packaging (AP). After a pasteurization treatment, fresh pasta was packaged under a 50/50 N(2)/CO(2) ratio or in air (air batch). Changes in microbial growth, in-package gas composition, chemical-physical parameters and sensory attributes were monitored for 42 days at 4 (°)C. The pasteurization treatment resulted in suitable microbiological reduction. MAP allowed a mold-free shelf life of the fresh filled pasta of 42 days, whereas air-packaged samples got spoilt between 7 and 14 days. The hurdle approach used (MAP and low storage temperature) prevented the growth of pathogens and alterative microorganisms. MAP samples maintained a high microbiological standard throughout the storage period. The panel judged MAP fresh pasta above the acceptability threshold throughout the shelf life.
ERIC Educational Resources Information Center
Gislason, Neil
2009-01-01
The author conducted a 3-week qualitative case study at the School of Environmental Studies (SES), a senior public school with an environmental studies focus. He argues that SES's physical design facilitates collaborative, multidisciplinary teaching practices especially suited to the school's environmental studies curriculum. He also shows that…
NASA Astrophysics Data System (ADS)
Sutikno, Madnasri; Susilo; Arya Wijayanti, Riza
2016-08-01
A study about X-ray radiation impact on the white mice through radiation dose mapping in Medical Physic Laboratory is already done. The purpose of this research is to determine the minimum distance of radiologist to X-ray instrument through treatment on the white mice. The radiation exposure doses are measured on the some points in the distance from radiation source between 30 cm up to 80 with interval of 30 cm. The impact of radiation exposure on the white mice and the effects of radiation measurement in different directions are investigated. It is founded that minimum distance of radiation worker to radiation source is 180 cm and X-ray has decreased leukocyte number and haemoglobin and has increased thrombocyte number in the blood of white mice.
NASA Astrophysics Data System (ADS)
Bressler, Matthew; Goodwin, Lydia; Kryemadhi, Abaz
2017-11-01
Cosmic ray muons are produced when high energy particles interact with nuclei in Earth's atmosphere. Muons make up the majority of charged particles that reach sea level and are the only particles (apart from neutrinos) that can penetrate to significant depths underground. The muon flux underground decreases approximately exponentially as a function of depth. We use a cosmic ray detector developed by the QuarkNet Program at Fermi National Laboratory to map the topography of the mountain above an abandoned Pennsylvania Turnpike tunnel by analyzing muon flux at different rock overburdens. Cosmic ray muons have been used in this capacity before to search for hidden chambers in pyramids and for mapping volcanoes. This study provides a unique field experience to learn about particle physics and particle detectors, which could be of interest to students and teachers in physics.
Sharpe, Patricia A; Burroughs, Ericka L; Granner, Michelle L; Wilcox, Sara; Hutto, Brent E; Bryant, Carol A; Peck, Lara; Pekuri, Linda
2010-06-01
A physical activity intervention applied principles of community-based participatory research, the community-based prevention marketing framework, and social cognitive theory. A nonrandomized design included women ages 35 to 54 in the southeastern United States. Women (n = 430 preprogram, n = 217 postprogram) enrolled in a 24-week behavioral intervention and were exposed to a media campaign. They were compared to cross-sectional survey samples at pre- (n = 245) and postprogram (n = 820) from the media exposed county and a no-intervention county (n = 234 pre, n = 822 post). Women in the behavioral intervention had statistically significant positive changes on physical activity minutes, walking, park and trail use, knowledge of mapped routes and exercise partner, and negative change on exercise self-efficacy. Media exposed women had statistically significant pre- to postprogram differences on knowledge of mapped routes. No-intervention women had significant pre- to postprogram differences on physical activity minutes, walking, and knowledge of mapped routes.
2011-01-01
Background Evolution of the Brassica species has been recursively affected by polyploidy events, and comparison to their relative, Arabidopsis thaliana, provides means to explore their genomic complexity. Results A genome-wide physical map of a rapid-cycling strain of B. oleracea was constructed by integrating high-information-content fingerprinting (HICF) of Bacterial Artificial Chromosome (BAC) clones with hybridization to sequence-tagged probes. Using 2907 contigs of two or more BACs, we performed several lines of comparative genomic analysis. Interspecific DNA synteny is much better preserved in euchromatin than heterochromatin, showing the qualitative difference in evolution of these respective genomic domains. About 67% of contigs can be aligned to the Arabidopsis genome, with 96.5% corresponding to euchromatic regions, and 3.5% (shown to contain repetitive sequences) to pericentromeric regions. Overgo probe hybridization data showed that contigs aligned to Arabidopsis euchromatin contain ~80% of low-copy-number genes, while genes with high copy number are much more frequently associated with pericentromeric regions. We identified 39 interchromosomal breakpoints during the diversification of B. oleracea and Arabidopsis thaliana, a relatively high level of genomic change since their divergence. Comparison of the B. oleracea physical map with Arabidopsis and other available eudicot genomes showed appreciable 'shadowing' produced by more ancient polyploidies, resulting in a web of relatedness among contigs which increased genomic complexity. Conclusions A high-resolution genetically-anchored physical map sheds light on Brassica genome organization and advances positional cloning of specific genes, and may help to validate genome sequence assembly and alignment to chromosomes. All the physical mapping data is freely shared at a WebFPC site (http://lulu.pgml.uga.edu/fpc/WebAGCoL/brassica/WebFPC/; Temporarily password-protected: account: pgml; password: 123qwe123. PMID:21955929
Radiation hybrid map of barley chromosome 3H
USDA-ARS?s Scientific Manuscript database
Assembly of the barley genome is complicated by its large size (5.1 Gb) and proportion of repetitive elements (84%). This process is facilitated by high resolution maps for aligning BAC contigs along chromosomes. Available genetic maps; however, do not provide accurate information on the physical po...
Fine genetic mapping of spot blotch resistance gene Sb3 in wheat (Triticum aestivum).
Lu, Ping; Liang, Yong; Li, Delin; Wang, Zhengzhong; Li, Wenbin; Wang, Guoxin; Wang, Yong; Zhou, Shenghui; Wu, Qiuhong; Xie, Jingzhong; Zhang, Deyun; Chen, Yongxing; Li, Miaomiao; Zhang, Yan; Sun, Qixin; Han, Chenggui; Liu, Zhiyong
2016-03-01
Spot blotch disease resistance gene Sb3 was mapped to a 0.15 centimorgan (cM) genetic interval spanning a 602 kb physical genomic region on chromosome 3BS. Wheat spot blotch disease, caused by B. sorokiniana, is a devastating disease that can cause severe yield losses. Although inoculum levels can be reduced by planting disease-free seed, treatment of plants with fungicides and crop rotation, genetic resistance is likely to be a robust, economical and environmentally friendly tool in the control of spot blotch. The winter wheat line 621-7-1 confers immune resistance against B. sorokiniana. Genetic analysis indicates that the spot blotch resistance of 621-7-1 is controlled by a single dominant gene, provisionally designated Sb3. Bulked segregant analysis (BSA) and simple sequence repeat (SSR) mapping showed that Sb3 is located on chromosome arm 3BS linked with markers Xbarc133 and Xbarc147. Seven and twelve new polymorphic markers were developed from the Chinese Spring 3BS shotgun survey sequence contigs and 3BS reference sequences, respectively. Finally, Sb3 was mapped in a 0.15 cM genetic interval spanning a 602 kb physical genomic region of Chinese Spring chromosome 3BS. The genetic and physical maps of Sb3 provide a framework for map-based cloning and marker-assisted selection (MAS) of the spot blotch resistance.
Yurkevich, Olga Y; Kirov, Ilya V; Bolsheva, Nadezhda L; Rachinskaya, Olga A; Grushetskaya, Zoya E; Zoschuk, Svyatoslav A; Samatadze, Tatiana E; Bogdanova, Marina V; Lemesh, Valentina A; Amosova, Alexandra V; Muravenko, Olga V
2017-01-01
Flax, Linum usitatissimum L., is a valuable multi-purpose plant, and currently, its genome is being extensively investigated. Nevertheless, mapping of genes in flax genome is still remaining a challenging task. The cellulose synthase ( CesA ) multigene family involving in the process of cellulose synthesis is especially important for metabolism of this fiber crop. For the first time, fluorescent in situ hybridization (FISH)-based chromosomal localization of the CesA conserved fragment (KF011584.1), 5S, and 26S rRNA genes was performed in landrace, oilseed, and fiber varieties of L. usitatissimum . Intraspecific polymorphism in chromosomal distribution of KF011584.1 and 5S DNA loci was revealed, and the generalized chromosome ideogram was constructed. Using BLAST analysis, available data on physical/genetic mapping and also whole-genome sequencing of flax, localization of KF011584.1, 45S, and 5S rRNA sequences on genomic scaffolds, and their anchoring to the genetic map were conducted. The alignment of the results of FISH and BLAST analyses indicated that KF011584.1 fragment revealed on chromosome 3 could be anchored to linkage group (LG) 11. The common LG for 45S and 5S rDNA was not found probably due to the polymorphic localization of 5S rDNA on chromosome 1. Our findings indicate the complexity of integration of physical, genetic, and cytogenetic mapping data for multicopy gene families in plants. Nevertheless, the obtained results can be useful for future progress in constructing of integrated physical/genetic/cytological maps in L. usitatissimum which are essential for flax breeding.
Yurkevich, Olga Y.; Kirov, Ilya V.; Bolsheva, Nadezhda L.; Rachinskaya, Olga A.; Grushetskaya, Zoya E.; Zoschuk, Svyatoslav A.; Samatadze, Tatiana E.; Bogdanova, Marina V.; Lemesh, Valentina A.; Amosova, Alexandra V.; Muravenko, Olga V.
2017-01-01
Flax, Linum usitatissimum L., is a valuable multi-purpose plant, and currently, its genome is being extensively investigated. Nevertheless, mapping of genes in flax genome is still remaining a challenging task. The cellulose synthase (CesA) multigene family involving in the process of cellulose synthesis is especially important for metabolism of this fiber crop. For the first time, fluorescent in situ hybridization (FISH)-based chromosomal localization of the CesA conserved fragment (KF011584.1), 5S, and 26S rRNA genes was performed in landrace, oilseed, and fiber varieties of L. usitatissimum. Intraspecific polymorphism in chromosomal distribution of KF011584.1 and 5S DNA loci was revealed, and the generalized chromosome ideogram was constructed. Using BLAST analysis, available data on physical/genetic mapping and also whole-genome sequencing of flax, localization of KF011584.1, 45S, and 5S rRNA sequences on genomic scaffolds, and their anchoring to the genetic map were conducted. The alignment of the results of FISH and BLAST analyses indicated that KF011584.1 fragment revealed on chromosome 3 could be anchored to linkage group (LG) 11. The common LG for 45S and 5S rDNA was not found probably due to the polymorphic localization of 5S rDNA on chromosome 1. Our findings indicate the complexity of integration of physical, genetic, and cytogenetic mapping data for multicopy gene families in plants. Nevertheless, the obtained results can be useful for future progress in constructing of integrated physical/genetic/cytological maps in L. usitatissimum which are essential for flax breeding. PMID:28878799
Pearson, Daniel K.; Braun, Christopher L.; Moring, J. Bruce
2016-01-21
This report documents differences in the mapped spatial extents and physical characteristics of in-channel fish habitat evaluated at the mesohabitat scale during winter 2011–12 (moderate streamflow) and summer 2012 (low streamflow) at 15 sites on the Middle Rio Grande in New Mexico starting about 3 kilometers downstream from Cochiti Dam and ending about 40 kilometers upstream from Elephant Butte Reservoir. The results of mesohabitat mapping, physical characterization, and fish assemblage surveys are summarized from the data that were collected. The report also presents general comparisons of physical mesohabitat data, such as wetted area and substrate type, and biological mesohabitat data, which included fish assemblage composition, species richness, Rio Grande silvery minnow relative abundance, and Rio Grande silvery minnow catch per unit effort.
Li, Xianran; Tian, Feng; Huang, Haiyan; Tan, Lubin; Zhu, Zuofeng; Hu, Songnian; Sun, Chuanqing
2008-06-01
To facilitate cloning gene(s) underlying gpa7, a deep-coverage BAC library was constructed for an isolate of common wild rice (Oryza rufipogon Griff.) collected from Dongxiang, Jiangxi Province, China (DXCWR). gpa7, a quantitative trait locus corresponding to grain number per panicle, is positioned in the short arm of chromosome 7. The BAC library containing 96,768 clones represents approximate 18 haploid genome equivalents. The contig spanning DXCWR gpa7 was constructed with a series of ordered markers. The putative physical map near the gpa7 locus of another accession of O. rufipogon (Accession: IRGC 105491) was also isolated in silico. Analysis of the physical maps of gpa7 indicated that a segment of about 150 kb was deleted during domestication of common wild rice.
NASA Astrophysics Data System (ADS)
McKean, J.; Isaak, D.; Tonina, D.; Wright, W.; Kinzel, P.
2007-12-01
Basic description of channel and floodplain topography remains a fundamental challenge for modeling flow and sediment transport or even simply mapping habitat. Standard field wading and boat surveys of stream topography are limited by costs and logistics to relatively small sample reaches and floodplain maps are seldom well- integrated with channel bathymetry. We used the NASA Experimental Advanced Airborne Research Lidar (EAARL) to map channel and floodplain topography and investigate geomorphic controls on physical habitat in two diverse channels in the watershed of the Middle Fork Salmon River, Idaho. Bear Valley Creek is a small low-gradient gravel-bed stream flowing across an unconfined valley filled with glacial outwash materials. A hierarchy of nested geomorphic features is evident in this channel with the broadest fluvial domains a legacy of ~15,000 years of post-glacial valley evolution. Contemporary hydraulics operate on this broad template and control two smaller scales of pool-riffle morphology. Salmon spawning patterns closely reflect these nested physical domains, demonstrating how geomorphic history can influence modern distributions of aquatic habitat and organisms. In contrast, Big Creek is a higher-gradient stream predominately confined by steep side slopes in a deep valley. Here, the distribution of geomorphic domains and physical habitat is controlled by modern erosion processes and rock quality. Tributaries and valley walls contribute coarse debris, up to large boulders, to the channel, resulting in very rough and poorly organized bed topography. Tributary fans also function as local grade control with sediment deposition in lower-gradient reaches upstream of fans. A GIS toolkit is under development to extract at-a-station channel metrics from EAARL data, including for example, cross section and longitudinal profile characteristics. A new investigation has also begun to further investigate the quality of EAARL data. This study will explore the question of how well we must describe channel topography to adequately: i) map the spatial distribution of physical habitat for management purposes and in support of organism population growth models, and ii) define boundary conditions for flow and sediment transport predictions using the USGS model MD SWMS.
Extended theory of harmonic maps connects general relativity to chaos and quantum mechanism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Gang; Duan, Yi-Shi
General relativity and quantum mechanism are two separate rules of modern physics explaining how nature works. Both theories are accurate, but the direct connection between two theories was not yet clarified. Recently, researchers blur the line between classical and quantum physics by connecting chaos and entanglement equation. Here in this paper, we showed the Duan's extended HM theory, which has the solution of the general relativity, can also have the solutions of the classic chaos equations and even the solution of Schrödinger equation in quantum physics, suggesting the extended theory of harmonic maps may act as a universal theory ofmore » physics.« less
Extended theory of harmonic maps connects general relativity to chaos and quantum mechanism
Ren, Gang; Duan, Yi-Shi
2017-07-20
General relativity and quantum mechanism are two separate rules of modern physics explaining how nature works. Both theories are accurate, but the direct connection between two theories was not yet clarified. Recently, researchers blur the line between classical and quantum physics by connecting chaos and entanglement equation. Here in this paper, we showed the Duan's extended HM theory, which has the solution of the general relativity, can also have the solutions of the classic chaos equations and even the solution of Schrödinger equation in quantum physics, suggesting the extended theory of harmonic maps may act as a universal theory ofmore » physics.« less
Adiabatic quantum simulation of quantum chemistry.
Babbush, Ryan; Love, Peter J; Aspuru-Guzik, Alán
2014-10-13
We show how to apply the quantum adiabatic algorithm directly to the quantum computation of molecular properties. We describe a procedure to map electronic structure Hamiltonians to 2-body qubit Hamiltonians with a small set of physically realizable couplings. By combining the Bravyi-Kitaev construction to map fermions to qubits with perturbative gadgets to reduce the Hamiltonian to 2-body, we obtain precision requirements on the coupling strengths and a number of ancilla qubits that scale polynomially in the problem size. Hence our mapping is efficient. The required set of controllable interactions includes only two types of interaction beyond the Ising interactions required to apply the quantum adiabatic algorithm to combinatorial optimization problems. Our mapping may also be of interest to chemists directly as it defines a dictionary from electronic structure to spin Hamiltonians with physical interactions.
Herrero-Herrero, María; García-Massó, Xavier; Martínez-Corralo, Carlos; Prades-Piñón, Josep; Sanchis-Alfonso, Vicente
2017-09-01
The aim of this study was to determine whether the most physically active adolescents have better lower limb control. 31 high school students (12 males and 19 females) participated in this study. The Anterior Knee Pain Scale was used to find any cases of knee pain. Only subjects with high scores were selected, to exclude those with knee pain or lower limb injuries. Single Leg Squat and Tuck Jump Assessment were used to evaluate movements with two cameras in a two-dimensional assessment. The IPAQ Questionnaire was used to score the physical activity and to classify it into MET total, MET moderate activity, MET vigorous activity and MET walking. These scores were related to knee angle at landing, age and body mass index by self-organizing maps analysis. The subjects were classified into 4 clusters and the descriptive statistics of the different clusters were determined to find any differences. The subjects in cluster 3 were classified as those with the highest risk factors of suffering lower limb musculoskeletal disorders or knee pain, even though injuries do not only depend on quality of movement. Physical activity was not related to healthy movements during jump and single leg squat. Physical activity alone cannot be an indicator of good quality lower limb movement, as the knee valgus angle plays a determining role, as it could also depend on neuromuscular control and anatomical characteristics. The analytical method described in the study could be used by physical education teachers to detect potential risk factors for musculoskeletal problems in the lower limbs, especially in the knees.
Composite boson mapping for lattice boson systems.
Huerga, Daniel; Dukelsky, Jorge; Scuseria, Gustavo E
2013-07-26
We present a canonical mapping transforming physical boson operators into quadratic products of cluster composite bosons that preserves matrix elements of operators when a physical constraint is enforced. We map the 2D lattice Bose-Hubbard Hamiltonian into 2×2 composite bosons and solve it within a generalized Hartree-Bogoliubov approximation. The resulting Mott insulator-superfluid phase diagram reproduces well quantum Monte Carlo results. The Higgs boson behavior in the superfluid phase along the unit density line is unraveled and in remarkable agreement with experiments. Results for the properties of the ground and excited states are competitive with other state-of-the-art approaches, but at a fraction of their computational cost. The composite boson mapping here introduced can be readily applied to frustrated many-body systems where most methodologies face significant hurdles.
Physical and genetic mapping of the CMT4A locus and exclusion of PMP-2 as the defect in CMT4A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Othmane, K.B.; Loeb, D.; Roses, A.D.
1995-07-20
We have previously localized one form of the autosomal recessive Charcot-Marie-Tooth disease type 4 (CMT4A) to a 5-cM region of chromosome 8q13-q21. We now report the formation of a 7-Bp YAC contig spanning the region. This contig was used to map nine additional microsatellites and six STSs to this region, and subsequent haplotype analysis has narrowed the CMT4A flanking interval to less than 1 cM. In addition, using SSCP and our physical map, we have demonstrated that the myelin protein PMP-2, mapped by FISH to this region, is not the defect in CMT4A. 27 refs., 3 figs., 1 tab.
A hierarchical framework of aquatic ecological units in North America (Nearctic Zone).
James R. Maxwell; Clayton J. Edwards; Mark E. Jensen; Steven J. Paustian; Harry Parrott; Donley M. Hill
1995-01-01
Proposes a framework for classifying and mapping aquatic systems at various scales using ecologically significant physical and biological criteria. Classification and mapping concepts follow tenets of hierarchical theory, pattern recognition, and driving variables. Criteria are provided for the hierarchical classification and mapping of aquatic ecological units of...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suchanecki, Z.; Antoniou, I.; Tasaki, S.
We consider the problem of rigging for the Koopman operators of the Renyi and the baker maps. We show that the rigged Hilbert space for the Renyi maps has some of the properties of a strict inductive limit and give a detailed description of the rigged Hilbert space for the baker maps. {copyright} {ital 1996 American Institute of Physics.}
Microbial genome sequencing using optical mapping and Illumina sequencing
USDA-ARS?s Scientific Manuscript database
Introduction Optical mapping is a technique in which strands of genomic DNA are digested with one or more restriction enzymes, and a physical map of the genome constructed from the resulting image. In outline, genomic DNA is extracted from a pure culture, linearly arrayed on a specialized glass sli...
Investigate feasibility of using ground penetrating radar in QC/QA of rubblization projects.
DOT National Transportation Integrated Search
2011-07-01
This study investigated if Ground Penetrating Radar can offer a suitable technology for mapping the physical condition of fractured slab rapidly, particularly under the steel reinforcement, without disturbing the fractured layer. A 4000 long compo...
NASA Astrophysics Data System (ADS)
Li, Long; Solana, Carmen; Canters, Frank; Kervyn, Matthieu
2017-10-01
Mapping lava flows using satellite images is an important application of remote sensing in volcanology. Several volcanoes have been mapped through remote sensing using a wide range of data, from optical to thermal infrared and radar images, using techniques such as manual mapping, supervised/unsupervised classification, and elevation subtraction. So far, spectral-based mapping applications mainly focus on the use of traditional pixel-based classifiers, without much investigation into the added value of object-based approaches and into advantages of using machine learning algorithms. In this study, Nyamuragira, characterized by a series of > 20 overlapping lava flows erupted over the last century, was used as a case study. The random forest classifier was tested to map lava flows based on pixels and objects. Image classification was conducted for the 20 individual flows and for 8 groups of flows of similar age using a Landsat 8 image and a DEM of the volcano, both at 30-meter spatial resolution. Results show that object-based classification produces maps with continuous and homogeneous lava surfaces, in agreement with the physical characteristics of lava flows, while lava flows mapped through the pixel-based classification are heterogeneous and fragmented including much "salt and pepper noise". In terms of accuracy, both pixel-based and object-based classification performs well but the former results in higher accuracies than the latter except for mapping lava flow age groups without using topographic features. It is concluded that despite spectral similarity, lava flows of contrasting age can be well discriminated and mapped by means of image classification. The classification approach demonstrated in this study only requires easily accessible image data and can be applied to other volcanoes as well if there is sufficient information to calibrate the mapping.
A New Map of Standardized Terrestrial Ecosystems of the Conterminous United States
Sayre, Roger G.; Comer, Patrick; Warner, Harumi; Cress, Jill
2009-01-01
A new map of standardized, mesoscale (tens to thousands of hectares) terrestrial ecosystems for the conterminous United States was developed by using a biophysical stratification approach. The ecosystems delineated in this top-down, deductive modeling effort are described in NatureServe's classification of terrestrial ecological systems of the United States. The ecosystems were mapped as physically distinct areas and were associated with known distributions of vegetation assemblages by using a standardized methodology first developed for South America. This approach follows the geoecosystems concept of R.J. Huggett and the ecosystem geography approach of R.G. Bailey. Unique physical environments were delineated through a geospatial combination of national data layers for biogeography, bioclimate, surficial materials lithology, land surface forms, and topographic moisture potential. Combining these layers resulted in a comprehensive biophysical stratification of the conterminous United States, which produced 13,482 unique biophysical areas. These were considered as fundamental units of ecosystem structure and were aggregated into 419 potential terrestrial ecosystems. The ecosystems classification effort preceded the mapping effort and involved the independent development of diagnostic criteria, descriptions, and nomenclature for describing expert-derived ecological systems. The aggregation and labeling of the mapped ecosystem structure units into the ecological systems classification was accomplished in an iterative, expert-knowledge-based process using automated rulesets for identifying ecosystems on the basis of their biophysical and biogeographic attributes. The mapped ecosystems, at a 30-meter base resolution, represent an improvement in spatial and thematic (class) resolution over existing ecoregionalizations and are useful for a variety of applications, including ecosystem services assessments, climate change impact studies, biodiversity conservation, and resource management.
Coleman, M P; Németh, A H; Campbell, L; Raut, C P; Weissenbach, J; Davies, K E
1994-05-15
The genes ARAF1, SYN1, TIMP, and PFC are clustered within 70 kb of one another, and, as reported in the accompanying paper (J. Knight et al., 1994, Genomics 21: 180-187), at least four more genes map within 400 kb: a cluster of Krüppel-type zinc finger genes (including ZNF21, ZNF41, and ZNF81) and ELK-1, a member of the ets oncogene superfamily. This gene-rich region is of particular interest because of the large number of disease genes mapping to Xp11.23: at least three eye diseases (retinitis pigmentosa type 2, congenital stationary night blindness CSNB1, and Aland Island eye disease), Wiskott-Aldrich syndrome, X-linked nephrolithiasis, and a translocation breakpoint associated with synovial sarcoma. We have constructed a 1.8-Mb YAC contig in this region, confirming the link between TIMP and OATL1 reported by Knight et al. (1994) and extending the map in the distal direction. To investigate the likelihood that more genes are located within this region, we have carried out detailed mapping of rare-cutter restriction sites in these YACs and identified seven CpG islands. At least six of these islands are located over 50 kb from any known gene locations, suggesting that the region contains at least this many as yet unidentified genes. We have also mapped the physical locations of six highly polymorphic CA repeats within the contig, thus integrating the physical, genetic, and transcriptional maps of the region and facilitating the mapping and identification of disease genes.(ABSTRACT TRUNCATED AT 250 WORDS)
Preliminary Results on the Heat Deposition on Divertor Plate using Low MN Map
NASA Astrophysics Data System (ADS)
Ali, Halima; Punjabi, Alkesh; Boozer, Allen
2003-10-01
The study of magnetic field line behavior and the closely related plasma behavior are important not only for their tokamak application but also for their application to other Hamiltonian, or near-Hamiltonian, systems. The behavior of field lines near a tokamak separatrix has been studied extensively using various approaches. Our approach is called method of maps. In this paper, we introduce an area-preserving map called Low MN map. We first derive the map from the general theory of maps /1/, and then use it to calculate the effects of m = 1, n = 1 perturbations on the stochastic layer and magnetic footprint in single-null divertor tokamaks. We show that there are self-similarities, singularities, and topological equivalences in the pattern of physical parameters that characterize the stochastic layer and the magnetic footprint. Preliminary results in the investigation on the heat distribution on the divertor plate indicate multiple peaked in heat flux profile distributed radially across the divertor target when the amplitude is 10-3. This, and other features, are in good agreement with experimental observations. This work is done under the DOE grant number DE-FG02-01ER54624. 1. A. Punjabi et al, J. Plasma Phys. 52, 91 (1994).
Alderman, B L; Olson, R L; Brush, C J; Shors, T J
2016-01-01
Mental and physical (MAP) training is a novel clinical intervention that combines mental training through meditation and physical training through aerobic exercise. The intervention was translated from neuroscientific studies indicating that MAP training increases neurogenesis in the adult brain. Each session consisted of 30 min of focused-attention (FA) meditation and 30 min of moderate-intensity aerobic exercise. Fifty-two participants completed the 8-week intervention, which consisted of two sessions per week. Following the intervention, individuals with major depressive disorder (MDD; n=22) reported significantly less depressive symptoms and ruminative thoughts. Typical healthy individuals (n=30) also reported less depressive symptoms at follow-up. Behavioral and event-related potential indices of cognitive control were collected at baseline and follow-up during a modified flanker task. Following MAP training, N2 and P3 component amplitudes increased relative to baseline, especially among individuals with MDD. These data indicate enhanced neural responses during the detection and resolution of conflicting stimuli. Although previous research has supported the individual beneficial effects of aerobic exercise and meditation for depression, these findings indicate that a combination of the two may be particularly effective in increasing cognitive control processes and decreasing ruminative thought patterns. PMID:26836414
Critical fluctuations near the pitchfork bifurcations of period-doubling maps
NASA Astrophysics Data System (ADS)
Noble, Andrew; Karimeddiny, Saba; Hastings, Alan; Machta, Jonathan
2015-03-01
Period-doubling maps, such as the logistic map, have been a subject of intense study in both physics and biology. The period-doubling route to chaos proceeds through a sequence of supercritical pitchfork bifurcations. Here, motivated by applications to population ecology, we investigate the asymptotic behavior of period-doubling bifurcations subject to environmental or demographic noise. We demonstrate, analytically, that fluctuations in the vicinity of each noisy pitchfork bifurcation are described by finite-size mean-field theory. Our results establish an exact correspondence between the bifurcations of far-from-equilibrium systems and the mean-field critical phenomena of equilibrium systems. This material is based upon work supported by the National Science Foundation under INSPIRE Grant No. 1344187.
NASA Astrophysics Data System (ADS)
Rapoport, B. I.; Pavlenko, I.; Weyssow, B.; Carati, D.
2002-11-01
Recent studies of ion and electron transport indicate that the safety factor profile, q(r), affects internal transport barrier (ITB) formation in magnetic confinement devices [1, 2]. These studies are consistent with experimental observations that low shear suppresses magnetic island interaction and associated stochasticity when the ITB is formed [3]. In this sense the position and quality of the ITB depend on the stochasticity of the magnetic field, and can be controlled by q(r). This study explores effects of the q-profile on magnetic field stochasticity using two-dimensional mapping techniques. Q-profiles typical of ITB experiments are incorporated into Hamiltonian maps to investigate the relation between magnetic field stochasticity and ITB parameters predicted by other models. It is shown that the mapping technique generates results consistent with these predictions, and suggested that Hamiltonian mappings can be useful as simple and computationally inexpensive approximation methods for describing the magnetic field in ITB experiments. 1. I. Voitsekhovitch et al. 29th EPS Conference on Plasma Physics and Controlled Fusion (2002). O-4.04. 2. G.M.D. Hogeweij et al. Nucl. Fusion. 38 (1998): 1881. 3. K.A. Razumova et al. Plasma Phys. Contr. Fusion. 42 (2000): 973.
Comparing the performance of various digital soil mapping approaches to map physical soil properties
NASA Astrophysics Data System (ADS)
Laborczi, Annamária; Takács, Katalin; Pásztor, László
2015-04-01
Spatial information on physical soil properties is intensely expected, in order to support environmental related and land use management decisions. One of the most widely used properties to characterize soils physically is particle size distribution (PSD), which determines soil water management and cultivability. According to their size, different particles can be categorized as clay, silt, or sand. The size intervals are defined by national or international textural classification systems. The relative percentage of sand, silt, and clay in the soil constitutes textural classes, which are also specified miscellaneously in various national and/or specialty systems. The most commonly used is the classification system of the United States Department of Agriculture (USDA). Soil texture information is essential input data in meteorological, hydrological and agricultural prediction modelling. Although Hungary has a great deal of legacy soil maps and other relevant soil information, it often occurs, that maps do not exist on a certain characteristic with the required thematic and/or spatial representation. The recent developments in digital soil mapping (DSM), however, provide wide opportunities for the elaboration of object specific soil maps (OSSM) with predefined parameters (resolution, accuracy, reliability etc.). Due to the simultaneous richness of available Hungarian legacy soil data, spatial inference methods and auxiliary environmental information, there is a high versatility of possible approaches for the compilation of a given soil map. This suggests the opportunity of optimization. For the creation of an OSSM one might intend to identify the optimum set of soil data, method and auxiliary co-variables optimized for the resources (data costs, computation requirements etc.). We started comprehensive analysis of the effects of the various DSM components on the accuracy of the output maps on pilot areas. The aim of this study is to compare and evaluate different digital soil mapping methods and sets of ancillary variables for producing the most accurate spatial prediction of texture classes in a given area of interest. Both legacy and recently collected data on PSD were used as reference information. The predictor variable data set consisted of digital elevation model and its derivatives, lithology, land use maps as well as various bands and indices of satellite images. Two conceptionally different approaches can be applied in the mapping process. Textural classification can be realized after particle size data were spatially extended by proper geostatistical method. Alternatively, the textural classification is carried out first, followed by the spatial extension through suitable data mining method. According to the first approach, maps of sand, silt and clay percentage have been computed through regression kriging (RK). Since the three maps are compositional (their sum must be 100%), we applied Additive Log-Ratio (alr) transformation, instead of kriging them independently. Finally, the texture class map has been compiled according to the USDA categories from the three maps. Different combinations of reference and training soil data and auxiliary covariables resulted several different maps. On the basis of the other way, the PSD were classified firstly into the USDA categories, then the texture class maps were compiled directly by data mining methods (classification trees and random forests). The various results were compared to each other as well as to the RK maps. The performance of the different methods and data sets has been examined by testing the accuracy of the geostatistically computed and the directly classified results to assess the most predictive and accurate method. Acknowledgement: Our work was supported by the Hungarian National Scientific Research Foundation (OTKA, Grant No. K105167).
Xiao, Shijun; Li, Jiongtang; Ma, Fengshou; Fang, Lujing; Xu, Shuangbin; Chen, Wei; Wang, Zhi Yong
2015-09-03
Large yellow croaker (Larimichthys crocea) is an important commercial fish in China and East-Asia. The annual product of the species from the aqua-farming industry is about 90 thousand tons. In spite of its economic importance, genetic studies of economic traits and genomic selections of the species are hindered by the lack of genomic resources. Specifically, a whole-genome physical map of large yellow croaker is still missing. The traditional BAC-based fingerprint method is extremely time- and labour-consuming. Here we report the first genome map construction using the high-throughput whole-genome mapping technique by nanochannel arrays in BioNano Genomics Irys system. For an optimal marker density of ~10 per 100 kb, the nicking endonuclease Nt.BspQ1 was chosen for the genome map generation. 645,305 DNA molecules with a total length of ~112 Gb were labelled and detected, covering more than 160X of the large yellow croaker genome. Employing IrysView package and signature patterns in raw DNA molecules, a whole-genome map of large yellow croaker was assembled into 686 maps with a total length of 727 Mb, which was consistent with the estimated genome size. The N50 length of the whole-genome map, including 126 maps, was up to 1.7 Mb. The excellent hybrid alignment with large yellow croaker draft genome validated the consensus genome map assembly and highlighted a promising application of whole-genome mapping on draft genome sequence super-scaffolding. The genome map data of large yellow croaker are accessible on lycgenomics.jmu.edu.cn/pm. Using the state-of-the-art whole-genome mapping technique in Irys system, the first whole-genome map for large yellow croaker has been constructed and thus highly facilitates the ongoing genomic and evolutionary studies for the species. To our knowledge, this is the first public report on genome map construction by the whole-genome mapping for aquatic-organisms. Our study demonstrates a promising application of the whole-genome mapping on genome maps construction for other non-model organisms in a fast and reliable manner.
Standard map in magnetized relativistic systems: fixed points and regular acceleration.
de Sousa, M C; Steffens, F M; Pakter, R; Rizzato, F B
2010-08-01
We investigate the concept of a standard map for the interaction of relativistic particles and electrostatic waves of arbitrary amplitudes, under the action of external magnetic fields. The map is adequate for physical settings where waves and particles interact impulsively, and allows for a series of analytical result to be exactly obtained. Unlike the traditional form of the standard map, the present map is nonlinear in the wave amplitude and displays a series of peculiar properties. Among these properties we discuss the relation involving fixed points of the maps and accelerator regimes.
Graymer, R.W.; Ponce, D.A.; Jachens, R.C.; Simpson, R.W.; Phelps, G.A.; Wentworth, C.M.
2005-01-01
In order to better understand mechanisms of active faults, we studied relationships between fault behavior and rock units along the Hayward fault using a three-dimensional geologic map. The three-dimensional map-constructed from hypocenters, potential field data, and surface map data-provided a geologic map of each fault surface, showing rock units on either side of the fault truncated by the fault. The two fault-surface maps were superimposed to create a rock-rock juxtaposition map. The three maps were compared with seismicity, including aseismic patches, surface creep, and fault dip along the fault, by using visuallization software to explore three-dimensional relationships. Fault behavior appears to be correlated to the fault-surface maps, but not to the rock-rock juxtaposition map, suggesting that properties of individual wall-rock units, including rock strength, play an important role in fault behavior. Although preliminary, these results suggest that any attempt to understand the detailed distribution of earthquakes or creep along a fault should include consideration of the rock types that abut the fault surface, including the incorporation of observations of physical properties of the rock bodies that intersect the fault at depth. ?? 2005 Geological Society of America.
Childhood physical abuse predicts stressor-evoked activity within central visceral control regions
Sheu, Lei K.; Midei, Aimee J.; Gianaros, Peter J.
2015-01-01
Early life experience differentially shapes later stress reactivity, as evidenced by both animal and human studies. However, early experience-related changes in the function of central visceral neural circuits that control stress responses have not been well characterized, particularly in humans. The paraventricular nucleus of the hypothalamus (PVN), bed nucleus of the stria terminalis (BNST), amygdala (Amyg) and subgenual anterior cingulate cortex (sgACC) form a core visceral stress-responsive circuit. The goal of this study is to examine how childhood emotional and physical abuse relates to adulthood stressor-evoked activity within these visceral brain regions. To evoke acute states of mental stress, participants (n = 155) performed functional magnetic resonance imaging (fMRI)-adapted versions of the multi-source interference task (MSIT) and the Stroop task with simultaneous monitoring of mean arterial pressure (MAP) and heart rate. Regression analyses revealed that childhood physical abuse correlated positively with stressor-evoked changes in MAP, and negatively with unbiased, a priori extractions of fMRI blood-oxygen level-dependent signal change values within the sgACC, BNST, PVN and Amyg (n = 138). Abuse-related changes in the function of visceral neural circuits may reflect neurobiological vulnerability to adverse health outcomes conferred by early adversity. PMID:24847113
NASA Astrophysics Data System (ADS)
Vuori, Tero; Olkkonen, Maria
2006-01-01
The aim of the study is to test both customer image quality rating (subjective image quality) and physical measurement of user behavior (eye movements tracking) to find customer satisfaction differences in imaging technologies. Methodological aim is to find out whether eye movements could be quantitatively used in image quality preference studies. In general, we want to map objective or physically measurable image quality to subjective evaluations and eye movement data. We conducted a series of image quality tests, in which the test subjects evaluated image quality while we recorded their eye movements. Results show that eye movement parameters consistently change according to the instructions given to the user, and according to physical image quality, e.g. saccade duration increased with increasing blur. Results indicate that eye movement tracking could be used to differentiate image quality evaluation strategies that the users have. Results also show that eye movements would help mapping between technological and subjective image quality. Furthermore, these results give some empirical emphasis to top-down perception processes in image quality perception and evaluation by showing differences between perceptual processes in situations when cognitive task varies.
He, Huagang; Zhu, Shanying; Jiang, Zhengning; Ji, Yaoyong; Wang, Feng; Zhao, Renhui; Bie, Tongde
2016-04-01
The powdery mildew resistance gene Pm21 was physically and comparatively mapped by newly developed markers. Seven candidate genes were verified to be required for Pm21 -mediated resistance to wheat powdery mildew. Pm21, a gene derived from wheat wild relative Dasypyrum villosum, has been transferred into common wheat and widely utilized in wheat resistance breeding for powdery mildew. Previously, Pm21 has been located to the bin FL0.45-0.58 of 6VS by using deletion stocks. However, its fine mapping is still a hard work. In the present study, 30 gene-derived 6VS-specific markers were obtained based on the collinearity among genomes of Brachypodium distachyon, Oryza and Triticeae, and then physically and comparatively mapped in the bin FL0.45-0.58 and its nearby chromosome region. According to the maps, the bin FL0.45-0.58 carrying Pm21 was closely flanked by the markers 6VS-03 and 6VS-23, which further narrowed the orthologous regions to 1.06 Mb in Brachypodium and 1.38 Mb in rice, respectively. Among the conserved genes shared by Brachypodium and rice, four serine/threonine protein kinase genes (DvMPK1, DvMLPK, DvUPK and DvPSYR1), one protein phosphatase gene (DvPP2C) and two transcription factor genes (DvGATA and DvWHY) were confirmed to be required for Pm21-mediated resistance to wheat powdery mildew by barley stripe mosaic virus-induced gene silencing (BSMV-VIGS) and transcriptional pattern analyses. In summary, this study gives new insights into the genetic basis of the Pm21 locus and the disease resistance pathways mediated by Pm21.
NASA Astrophysics Data System (ADS)
Kattoula, Ehsan Habib
Recent reform efforts in science education have culminated in National Science Education Standards (NSES), which include the nature of science and science inquiry themes across all grade levels. Consideration must be given to pre-service science teachers' nature of science conceptions and their perceived roles in implementing the nature of science in the science classroom. This qualitative study investigates how pre-service science teachers' views about the nature of science develop and change when learning a college physics unit on waves in an urban university. The study uses case study methodology with four pre-service science teachers as individual units of analysis. Data regarding the participants' views about the nature of science were collected before and after the instruction on the physics of waves unit. The research design used 'The Views of Nature of Science/Views of Scientific Inquiry-Physics Questionnaire' followed by structured interviews throughout the wave unit. In addition, the participants responded to daily questions that incorporated nature of science themes and constructed concept maps regarding the physics content and their nature of science understanding. After completing the VNOS/VOSI-PHYS questionnaire the pre-service science teachers' views of the nature of science were found to be mainly naive and transitional before the instruction. At the end of the wave unit instruction, the data indicated that conceptual change occurred in participants' nature of science views, shifting toward informed views. The findings of this study provide evidence that using explicit instruction with specific activities, such as experiments and concept mapping, shifted the pre-service science teachers' views away from naive and toward informed.
Cloning and characterization of XiR1, a locus responsible for dagger nematode resistance in grape.
Hwang, Chin-Feng; Xu, Kenong; Hu, Rong; Zhou, Rita; Riaz, Summaira; Walker, M Andrew
2010-08-01
The dagger nematode, Xiphinema index, feeds aggressively on grape roots and in the process, vectors grapevine fanleaf virus (GFLV) leading to the severe viral disease known as fanleaf degeneration. Resistance to X. index and GFLV has been the key objective of grape rootstock breeding programs. A previous study found that resistance to X. index derived from Vitis arizonica was largely controlled by a major quantitative trait locus, XiR1 (X. index Resistance 1), located on chromosome 19. The study presented here develops high-resolution genetic and physical maps in an effort to identify the XiR1 gene(s). The mapping was carried out with 1,375 genotypes in three populations derived from D8909-15, a resistant selection from a cross of V. rupestris A. de Serres (susceptible) x V. arizonica b42-26 (resistant). Resistance to X. index was evaluated on 99 informative recombinants that were identified by screening the three populations with two markers flanking the XiR1 locus. The high-resolution genetic map of XiR1 was primarily constructed with seven DNA markers developed in this study. Physical mapping of XiR1 was accomplished by screening three bacterial artificial chromosome (BAC) libraries constructed from D8909-15, V. vinifera Cabernet Sauvignon and V. arizonica b42-26. A total of 32 BAC clones were identified and the XiR1 locus was delineated within a 115 kb region. Sequence analysis of three BAC clones identified putative nucleotide binding/leucine-rich repeat (NB-LRR) genes. This is the first report of a closely linked major gene locus responsible for ectoparasitic nematode resistance. The markers developed from this study are being used to expedite the breeding of resistant grape rootstocks.
Cloning and characterization of XiR1, a locus responsible for dagger nematode resistance in grape
Hwang, Chin-Feng; Xu, Kenong; Hu, Rong; Zhou, Rita; Riaz, Summaira
2010-01-01
The dagger nematode, Xiphinemaindex, feeds aggressively on grape roots and in the process, vectors grapevine fanleaf virus (GFLV) leading to the severe viral disease known as fanleaf degeneration. Resistance to X. index and GFLV has been the key objective of grape rootstock breeding programs. A previous study found that resistance to X. index derived from Vitis arizonica was largely controlled by a major quantitative trait locus, XiR1 (X. index Resistance 1), located on chromosome 19. The study presented here develops high-resolution genetic and physical maps in an effort to identify the XiR1 gene(s). The mapping was carried out with 1,375 genotypes in three populations derived from D8909-15, a resistant selection from a cross of V. rupestris A. de Serres (susceptible) × V. arizonica b42-26 (resistant). Resistance to X. index was evaluated on 99 informative recombinants that were identified by screening the three populations with two markers flanking the XiR1 locus. The high-resolution genetic map of XiR1 was primarily constructed with seven DNA markers developed in this study. Physical mapping of XiR1 was accomplished by screening three bacterial artificial chromosome (BAC) libraries constructed from D8909-15, V. vinifera Cabernet Sauvignon and V. arizonica b42-26. A total of 32 BAC clones were identified and the XiR1 locus was delineated within a 115 kb region. Sequence analysis of three BAC clones identified putative nucleotide binding/leucine-rich repeat (NB-LRR) genes. This is the first report of a closely linked major gene locus responsible for ectoparasitic nematode resistance. The markers developed from this study are being used to expedite the breeding of resistant grape rootstocks. PMID:20490447
Middle Atmosphere Program. Handbook for MAP, volume 25
NASA Technical Reports Server (NTRS)
Roper, R. G. (Editor)
1987-01-01
GLOBMET (the Global Meteor Observation System) was first proposed by the Soviet Geophysical Committee and was accepted by the Middle Atmosphere Program Steering Committee in 1982. While the atmospheric dynamics data from the system are of primary interest to MAP, GLOBMET also encompasses the astronomical radio and optical observations of meteoroids, and the physics of their interaction with the Earth's atmosphere. These astronomical observations and interactional physics with the Earth's atmosphere are discussed in detail.
Physical and genetic mapping of the dipeptidase gene DPEP1 to 16q24. 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Austruy, E.; Jeanpierre, C.; Junien, C.
1993-03-01
The authors report the subregional physical and genetic mapping on chromosome 16q of a cDNA clone selected as a potential tumor/growth suppressor sequence. By DNA sequencing and RNA expression pattern, this clone was identified as part of the renal dipeptidase gene (DPEP1). Using somatic cell hybrids carrying either different human chromosomes or chromosome 16 segments, they confirm and refine the physical mapping of DPEP1 to the chromosome 16 subregion q24.3. Two RFLPs, a biallelic polymorphism detected by TaqI and a VNTR detected by BamHI, EcoRI, and BglII, are described. Using the VNTR polymorphism, DPEP1 was shown to be linked tomore » D16S7 with a maximum lod score of 5.8 at a recombination fraction of 0.03. 14 refs., 2 figs., 2 tabs.« less
European Marine Observation Data Network - EMODnet Physics
NASA Astrophysics Data System (ADS)
Manzella, Giuseppe M. R.; Novellino, Antonio; D'Angelo, Paolo; Gorringe, Patrick; Schaap, Dick; Pouliquen, Sylvie; Loubrieu, Thomas; Rickards, Lesley
2015-04-01
The EMODnet-Physics portal (www.emodnet-physics.eu) makes layers of physical data and their metadata available for use and contributes towards the definition of an operational European Marine Observation and Data Network (EMODnet). It is based on a strong collaboration between EuroGOOS associates and its regional operational systems (ROOSs), and it is bringing together two very different marine communities: the "real time" ocean observing institute/centers and the National Oceanographic Data Centres (NODCs) that are in charge of ocean data validation, quality check and update for marine environmental monitoring. The EMODnet-Physics is a Marine Observation and Data Information System that provides a single point of access to near real time and historical achieved data (www.emodnet-physics.eu/map) it is built on existing infrastructure by adding value and avoiding any unless complexity, it provides data access to users, it is aimed at attracting new data holders, better and more data. With a long-term vision for a pan European Ocean Observation System sustainability, the EMODnet-Physics is supporting the coordination of the EuroGOOS Regional components and the empowerment and improvement of their data management infrastructure. In turn, EMODnet-Physics already implemented high-level interoperability features (WMS, Web catalogue, web services, etc…) to facilitate connection and data exchange with the ROOS and the Institutes within the ROOSs (www.emodnet-physics.eu/services). The on-going EMODnet-Physics structure delivers environmental marine physical data from the whole Europe (wave height and period, temperature of the water column, wind speed and direction, salinity of the water column, horizontal velocity of the water column, light attenuation, and sea level) as monitored by fixed stations, ARGO floats, drifting buoys, gliders, and ferry-boxes. It does provide discovering of data sets (both NRT - near real time - and Historical data sets), visualization and free download of data from more than 1500 platforms. The portal is composed mainly of three sections: the Map, the Selection List and the Station Info Panel. The Map is the core of the EMODnet-Physics system: here the user can access all available data, customize the map visualization and set different display layers. It is also possible to interact with all the information on the map using the filters provided by the service that can be used to select the stations of interest depending on the type, physical parameters measured, the time period of the observations in the database of the system, country of origin, the water basin of reference. It is also possible to browse the data in time by means of the slider in the lower part of the page that allows the user to view the stations that recorded data in a particular time period. Finally, it is possible to change the standard map view with different layers that provide additional visual information on the status of the waters. The Station Info panel available from the main map by clicking on a single platform provides information on the measurements carried out by the station. Moreover, the system provides full interoperability with third-party software through WMS service, Web Service and Web catalogue in order to exchange data and products according to the most recent interop standards. Further developments will ensure the compatibility to the OGS-SWE (Sensor Web Enablement) standard for the description of sensors and related observations using OpenGIS specifications (SensorML, O&M, SOS). The full list of services is available at www.emodnet-physics.eu/services. The result is an excellent example of innovative technologies for providing open and free access to geo-referenced data for the creation of new advanced (operational) oceanography services.
An optimization method of VON mapping for energy efficiency and routing in elastic optical networks
NASA Astrophysics Data System (ADS)
Liu, Huanlin; Xiong, Cuilian; Chen, Yong; Li, Changping; Chen, Derun
2018-03-01
To improve resources utilization efficiency, network virtualization in elastic optical networks has been developed by sharing the same physical network for difference users and applications. In the process of virtual nodes mapping, longer paths between physical nodes will consume more spectrum resources and energy. To address the problem, we propose a virtual optical network mapping algorithm called genetic multi-objective optimize virtual optical network mapping algorithm (GM-OVONM-AL), which jointly optimizes the energy consumption and spectrum resources consumption in the process of virtual optical network mapping. Firstly, a vector function is proposed to balance the energy consumption and spectrum resources by optimizing population classification and crowding distance sorting. Then, an adaptive crossover operator based on hierarchical comparison is proposed to improve search ability and convergence speed. In addition, the principle of the survival of the fittest is introduced to select better individual according to the relationship of domination rank. Compared with the spectrum consecutiveness-opaque virtual optical network mapping-algorithm and baseline-opaque virtual optical network mapping algorithm, simulation results show the proposed GM-OVONM-AL can achieve the lowest bandwidth blocking probability and save the energy consumption.
Uneven distribution of expressed sequence tag loci on maize pachytene chromosomes
Anderson, Lorinda K.; Lai, Ann; Stack, Stephen M.; Rizzon, Carene; Gaut, Brandon S.
2006-01-01
Examining the relationships among DNA sequence, meiotic recombination, and chromosome structure at a genome-wide scale has been difficult because only a few markers connect genetic linkage maps with physical maps. Here, we have positioned 1195 genetically mapped expressed sequence tag (EST) markers onto the 10 pachytene chromosomes of maize by using a newly developed resource, the RN-cM map. The RN-cM map charts the distribution of crossing over in the form of recombination nodules (RNs) along synaptonemal complexes (SCs, pachytene chromosomes) and allows genetic cM distances to be converted into physical micrometer distances on chromosomes. When this conversion is made, most of the EST markers used in the study are located distally on the chromosomes in euchromatin. ESTs are significantly clustered on chromosomes, even when only euchromatic chromosomal segments are considered. Gene density and recombination rate (as measured by EST and RN frequencies, respectively) are strongly correlated. However, crossover frequencies for telomeric intervals are much higher than was expected from their EST frequencies. For pachytene chromosomes, EST density is about fourfold higher in euchromatin compared with heterochromatin, while DNA density is 1.4 times higher in heterochromatin than in euchromatin. Based on DNA density values and the fraction of pachytene chromosome length that is euchromatic, we estimate that ∼1500 Mbp of the maize genome is in euchromatin. This overview of the organization of the maize genome will be useful in examining genome and chromosome evolution in plants. PMID:16339046
Appendix A: Ecoprovinces of the Central North American Cordillera and adjacent plains
Dennis A. Demarchi
1994-01-01
The fundamental difference between the map presented here and other regional ecosystem classifications is that this map's ecological units are based on climatic processes rather than vegetation communities (map appears at the end of this appendix). Macroclimatic processes are the physical and thermodynamic interaction between climatic controls, or the relatively...
ERIC Educational Resources Information Center
Beatty, Ian D.
There is a growing consensus among educational researchers that traditional problem-based assessments are not effective tools for diagnosing a student's knowledge state and for guiding pedagogical intervention, and that new tools grounded in the results of cognitive science research are needed. The ConMap ("Conceptual Mapping") project, described…
On-the-go mapping of soil mechanical resistance using a linear depth effect model.
USDA-ARS?s Scientific Manuscript database
An instrumented blade sensor was developed to map soil mechanical resistance as well as its change with depth. The sensor has become a part of the Integrated Soil Physical Properties Mapping System (ISPPMS), which also includes an optical and a capacitor-based sensor. The instrumented blade of the...
A Control Algorithm for Chaotic Physical Systems
1991-10-01
revision expands the grid to cover the entire area of any attractor that is present. 5 Map Selection The final choices of the state- space mapping process...interval h?; overrange R0 ; control parameter interval AkO and range [kbro, khigh]; iteration depth. "* State- space mapping : 1. Set up grid by expanding
Collaborative Embodied Learning in Mixed Reality Motion-Capture Environments: Two Science Studies
ERIC Educational Resources Information Center
Johnson-Glenberg, Mina C.; Birchfield, David A.; Tolentino, Lisa; Koziupa, Tatyana
2014-01-01
These 2 studies investigate the extent to which an Embodied Mixed Reality Learning Environment (EMRELE) can enhance science learning compared to regular classroom instruction. Mixed reality means that physical tangible and digital components were present. The content for the EMRELE required that students map abstract concepts and relations onto…
Mapping the Evolution of Scientific Fields
Herrera, Mark; Roberts, David C.; Gulbahce, Natali
2010-01-01
Despite the apparent cross-disciplinary interactions among scientific fields, a formal description of their evolution is lacking. Here we describe a novel approach to study the dynamics and evolution of scientific fields using a network-based analysis. We build an idea network consisting of American Physical Society Physics and Astronomy Classification Scheme (PACS) numbers as nodes representing scientific concepts. Two PACS numbers are linked if there exist publications that reference them simultaneously. We locate scientific fields using a community finding algorithm, and describe the time evolution of these fields over the course of 1985–2006. The communities we identify map to known scientific fields, and their age depends on their size and activity. We expect our approach to quantifying the evolution of ideas to be relevant for making predictions about the future of science and thus help to guide its development. PMID:20463949
Mapping the evolution of scientific fields.
Herrera, Mark; Roberts, David C; Gulbahce, Natali
2010-05-04
Despite the apparent cross-disciplinary interactions among scientific fields, a formal description of their evolution is lacking. Here we describe a novel approach to study the dynamics and evolution of scientific fields using a network-based analysis. We build an idea network consisting of American Physical Society Physics and Astronomy Classification Scheme (PACS) numbers as nodes representing scientific concepts. Two PACS numbers are linked if there exist publications that reference them simultaneously. We locate scientific fields using a community finding algorithm, and describe the time evolution of these fields over the course of 1985-2006. The communities we identify map to known scientific fields, and their age depends on their size and activity. We expect our approach to quantifying the evolution of ideas to be relevant for making predictions about the future of science and thus help to guide its development.
A Tangible Approach to Concept Mapping
NASA Astrophysics Data System (ADS)
Tanenbaum, Karen; Antle, Alissa N.
2009-05-01
The Tangible Concept Mapping project investigates using a tangible user interface to engage learners in concept map creation. This paper describes a prototype implementation of the system, presents some preliminary analysis of its ease of use and effectiveness, and discusses how elements of tangible interaction support concept mapping by helping users organize and structure their knowledge about a domain. The role of physical engagement and embodiment in supporting the mental activity of creating the concept map is explored as one of the benefits of a tangible approach to learning.
Improved mapping of the travelling salesman problem for quantum annealing
NASA Astrophysics Data System (ADS)
Troyer, Matthias; Heim, Bettina; Brown, Ethan; Wecker, David
2015-03-01
We consider the quantum adiabatic algorithm as applied to the travelling salesman problem (TSP). We introduce a novel mapping of TSP to an Ising spin glass Hamiltonian and compare it to previous known mappings. Through direct perturbative analysis, unitary evolution, and simulated quantum annealing, we show this new mapping to be significantly superior. We discuss how this advantage can translate to actual physical implementations of TSP on quantum annealers.
A method to map errors in the deformable registration of 4DCT images1
Vaman, Constantin; Staub, David; Williamson, Jeffrey; Murphy, Martin J.
2010-01-01
Purpose: To present a new approach to the problem of estimating errors in deformable image registration (DIR) applied to sequential phases of a 4DCT data set. Methods: A set of displacement vector fields (DVFs) are made by registering a sequence of 4DCT phases. The DVFs are assumed to display anatomical movement, with the addition of errors due to the imaging and registration processes. The positions of physical landmarks in each CT phase are measured as ground truth for the physical movement in the DVF. Principal component analysis of the DVFs and the landmarks is used to identify and separate the eigenmodes of physical movement from the error eigenmodes. By subtracting the physical modes from the principal components of the DVFs, the registration errors are exposed and reconstructed as DIR error maps. The method is demonstrated via a simple numerical model of 4DCT DVFs that combines breathing movement with simulated maps of spatially correlated DIR errors. Results: The principal components of the simulated DVFs were observed to share the basic properties of principal components for actual 4DCT data. The simulated error maps were accurately recovered by the estimation method. Conclusions: Deformable image registration errors can have complex spatial distributions. Consequently, point-by-point landmark validation can give unrepresentative results that do not accurately reflect the registration uncertainties away from the landmarks. The authors are developing a method for mapping the complete spatial distribution of DIR errors using only a small number of ground truth validation landmarks. PMID:21158288
Adiabatic Quantum Simulation of Quantum Chemistry
Babbush, Ryan; Love, Peter J.; Aspuru-Guzik, Alán
2014-01-01
We show how to apply the quantum adiabatic algorithm directly to the quantum computation of molecular properties. We describe a procedure to map electronic structure Hamiltonians to 2-body qubit Hamiltonians with a small set of physically realizable couplings. By combining the Bravyi-Kitaev construction to map fermions to qubits with perturbative gadgets to reduce the Hamiltonian to 2-body, we obtain precision requirements on the coupling strengths and a number of ancilla qubits that scale polynomially in the problem size. Hence our mapping is efficient. The required set of controllable interactions includes only two types of interaction beyond the Ising interactions required to apply the quantum adiabatic algorithm to combinatorial optimization problems. Our mapping may also be of interest to chemists directly as it defines a dictionary from electronic structure to spin Hamiltonians with physical interactions. PMID:25308187
An embodied perspective on expertise in solving the problem of making a geologic map
NASA Astrophysics Data System (ADS)
Callahan, Caitlin Norah
The task of constructing a geologic map is a cognitively and physically demanding field-based problem. The map produced is understood to be an individual's two-dimensional interpretation or mental model of the three-dimensional underlying geology. A popular view within the geoscience community is that teaching students how to make a geologic map is valuable for preparing them to deal with disparate and incomplete data sets, for helping them develop problem-solving skills, and for acquiring expertise in geology. Few previous studies have focused specifically on expertise in geologic mapping. Drawing from literature related to expertise, to problem solving, and to mental models, two overarching research questions were identified: How do geologists of different levels of expertise constrain and solve an ill-structured problem such as making a geologic map? How do geologists address the uncertainties inherent to the processes and interpretations involved in solving a geologic mapping problem? These questions were answered using a methodology that captured the physical actions, expressed thoughts, and navigation paths of geologists as they made a geologic map. Eight geologists, from novice to expert, wore a head-mounted video camera with an attached microphone to record those actions and thoughts, creating "video logs" while in the field. The video logs were also time-stamped, which allowed the visual and audio data to be synchronized with the GPS data that tracked participants' movements in the field. Analysis of the video logs yielded evidence that all eight participants expressed thoughts that reflected the process of becoming mentally situated in the mapping task (e.g. relating between distance on a map and distance in three-dimensional space); the prominence of several of these early thoughts waned in the expressed thoughts later in the day. All participants collected several types of data while in the field; novices, however, did so more continuously throughout the day whereas the experts collected more of their data earlier in the day. Experts and novices also differed in that experts focused more on evaluating certainty in their interpretations; the novices focused more on evaluating the certainty of their observations and sense of location.
Serin, Elise A. R.; Snoek, L. B.; Nijveen, Harm; Willems, Leo A. J.; Jiménez-Gómez, Jose M.; Hilhorst, Henk W. M.; Ligterink, Wilco
2017-01-01
High-density genetic maps are essential for high resolution mapping of quantitative traits. Here, we present a new genetic map for an Arabidopsis Bayreuth × Shahdara recombinant inbred line (RIL) population, built on RNA-seq data. RNA-seq analysis on 160 RILs of this population identified 30,049 single-nucleotide polymorphisms (SNPs) covering the whole genome. Based on a 100-kbp window SNP binning method, 1059 bin-markers were identified, physically anchored on the genome. The total length of the RNA-seq genetic map spans 471.70 centimorgans (cM) with an average marker distance of 0.45 cM and a maximum marker distance of 4.81 cM. This high resolution genotyping revealed new recombination breakpoints in the population. To highlight the advantages of such high-density map, we compared it to two publicly available genetic maps for the same population, comprising 69 PCR-based markers and 497 gene expression markers derived from microarray data, respectively. In this study, we show that SNP markers can effectively be derived from RNA-seq data. The new RNA-seq map closes many existing gaps in marker coverage, saturating the previously available genetic maps. Quantitative trait locus (QTL) analysis for published phenotypes using the available genetic maps showed increased QTL mapping resolution and reduced QTL confidence interval using the RNA-seq map. The new high-density map is a valuable resource that facilitates the identification of candidate genes and map-based cloning approaches. PMID:29259624
Satellite freeze forecast system: Executive summary
NASA Technical Reports Server (NTRS)
Martsolf, J. D. (Principal Investigator)
1983-01-01
A satellite-based temperature monitoring and prediction system consisting of a computer controlled acquisition, processing, and display system and the ten automated weather stations called by that computer was developed and transferred to the national weather service. This satellite freeze forecasting system (SFFS) acquires satellite data from either one of two sources, surface data from 10 sites, displays the observed data in the form of color-coded thermal maps and in tables of automated weather station temperatures, computes predicted thermal maps when requested and displays such maps either automatically or manually, archives the data acquired, and makes comparisons with historical data. Except for the last function, SFFS handles these tasks in a highly automated fashion if the user so directs. The predicted thermal maps are the result of two models, one a physical energy budget of the soil and atmosphere interface and the other a statistical relationship between the sites at which the physical model predicts temperatures and each of the pixels of the satellite thermal map.
Reconstruction of an SSR-based Magnaporthe oryzae physical map to locate avirulence gene AvrPi12.
Li, Tonghui; Wen, Jianqiang; Zhang, Yaling; Correll, James; Wang, Ling; Pan, Qinghua
2018-05-31
Pathogen avirulence (Avr) genes can evolve rapidly when challenged by the widespread deployment of host genes for resistance. They can be effectively isolated by positional cloning provided a robust and well-populated genetic map is available. An updated, SSR-based physical map of the rice blast pathogen Magnaporthe oryzae (Mo) has been constructed based on 116 of the 120 SSRs used to assemble the last map, along with 18 newly developed ones. A comparison between the two versions of the map has revealed an altered marker content and order within most of the Mo chromosomes. The avirulence gene AvrPi12 was mapped in a population of 219 progeny derived from a cross between the two Mo isolates CHL42 and CHL357. A bulked segregant analysis indicated that the gene was located on chromosome 6, a conclusion borne out by an analysis of the pattern of segregation shown by individual isolates. Six additional PCR-based markers were developed to improve the map resolution in the key region. AvrPi12 was finally located within the sub-telomeric region of chromosome 6, distal to the SSR locus LSM6-5. The improved SSR-based linkage map should be useful as a platform for gene mapping and isolation in Mo. It was used to establish the location of AvrPi12, thereby providing a starting point for its positional cloning.
Carlier, Jorge D.; Alabaça, Claudia S.; Sousa, Nelson H.; Coelho, Paula S.; Monteiro, António A.; Paterson, Andrew H.; Leitão, José M.
2011-01-01
We describe the construction of a BAC contig and identification of a minimal tiling path that encompass the dominant and monogenically inherited downy mildew resistance locus Pp523 of Brassica oleracea L. The selection of BAC clones for construction of the physical map was carried out by screening gridded BAC libraries with DNA overgo probes derived from both genetically mapped DNA markers flanking the locus of interest and BAC-end sequences that align to Arabidopsis thaliana sequences within the previously identified syntenic region. The selected BAC clones consistently mapped to three different genomic regions of B. oleracea. Although 83 BAC clones were accurately mapped within a ∼4.6 cM region surrounding the downy mildew resistance locus Pp523, a subset of 33 BAC clones mapped to another region on chromosome C8 that was ∼60 cM away from the resistance gene, and a subset of 63 BAC clones mapped to chromosome C5. These results reflect the triplication of the Brassica genomes since their divergence from a common ancestor shared with A. thaliana, and they are consonant with recent analyses of the C genome of Brassica napus. The assembly of a minimal tiling path constituted by 13 (BoT01) BAC clones that span the Pp523 locus sets the stage for map-based cloning of this resistance gene. PMID:22384370
Cain, Kelli L; Millstein, Rachel A; Sallis, James F; Conway, Terry L; Gavand, Kavita A; Frank, Lawrence D; Saelens, Brian E; Geremia, Carrie M; Chapman, James; Adams, Marc A; Glanz, Karen; King, Abby C
2014-09-01
Ecological models of physical activity emphasize the effects of environmental influences. "Microscale" streetscape features that may affect pedestrian experience have received less research attention than macroscale walkability (e.g., residential density). The Microscale Audit of Pedestrian Streetscapes (MAPS) measures street design, transit stops, sidewalk qualities, street crossing amenities, and features impacting aesthetics. The present study examined associations of microscale attributes with multiple physical activity (PA) measures across four age groups. Areas in the San Diego, Seattle, and the Baltimore metropolitan areas, USA, were selected that varied on macro-level walkability and neighborhood income. Participants (n = 3677) represented four age groups (children, adolescents, adults, older adults). MAPS audits were conducted along a 0.25 mile route along the street network from participant residences toward the nearest non-residential destination. MAPS data were collected in 2009-2010. Subscale and overall summary scores were created. Walking/biking for transportation and leisure/neighborhood PA were measured with age-appropriate surveys. Objective PA was measured with accelerometers. Mixed linear regression analyses were adjusted for macro-level walkability. Across all age groups 51.2%, 22.1%, and 15.7% of all MAPS scores were significantly associated with walking/biking for transport, leisure/neighborhood PA, and objectively-measured PA, respectively. Supporting the ecological model principle of behavioral specificity, destinations and land use, streetscape, street segment, and intersection variables were more related to transport walking/biking, while aesthetic variables were related to leisure/neighborhood PA. The overall score was related to objective PA in children and older adults. Present findings provide strong evidence that microscale environment attributes are related to PA across the lifespan. Improving microscale features may be a feasible approach to creating activity-friendly environments. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Mapping University Students' Epistemic Framing of Computational Physics Using Network Analysis
ERIC Educational Resources Information Center
Bodin, Madelen
2012-01-01
Solving physics problem in university physics education using a computational approach requires knowledge and skills in several domains, for example, physics, mathematics, programming, and modeling. These competences are in turn related to students' beliefs about the domains as well as about learning. These knowledge and beliefs components are…
Enhanced Resolution Maps of Energetic Neutral Atoms from IBEX
NASA Astrophysics Data System (ADS)
Teodoro, L. A.; Elphic, R. C.; Janzen, P.; Reisenfeld, D.; Wilson, J. T.
2017-12-01
The discovery by the Interstellar Boundary Explorer (IBEX) of a "Ribbon" in the measurements of Energetic Neutral Particles (ENA) was a major surprise that lead to the re-thinking of the Physics underpinning the heliosphere-intergalactic medium boundary dynamics. Several physical models have been proposed and tested in their ability to mimic the IBEX observations. Some of the ENA IBEX's include the following features: 1) The presence of fine structure within the ribbon suggests that the physical properties of it exhibit small-scale spacial structure and possibly rapid small-scale variations. 2) The ribbon is a fairly narrow feature at low energies and broadens with increasing energy;The IBEX detectors were designed to maximize count rate by incorporating wide angular and broad energy acceptance. Thus far, the existing mapping software used by the IBEX Science Operation Center has not been design with the "Ribbon" ( 20o wide) in mind: the current generation of maps are binned in 6o longitude pixels by 6o latitude pixels (so the pixels are all of the same size in angle and are quite "blocky"). Furthermore, the instrumental point spread function has not been deconvolved, making any potential narrow features broader than they are. An improvement in the spatial resolution of the IBEX maps would foster a better understanding of the Ribbon and its substructure, and thus reply to some of the basic and profound questions related to its origin, the nature of the outer boundaries of the our solar system and the surrounding interstellar Galactic medium.Here we report on the application of the Bayesian image reconstruction algorithm "Speedy Pixons" to the ENA data with the aim to sharpen the ENA IBEX maps. A preliminary application allow us to conclude that: The peaks in the count rate do appear to be more enhanced in the reconstruction; The reconstruction is clearly denoised; The "Ribbon" is better defined in the reconstruction. We are currently studying the implications of our preliminary results in the current generation of models. Potentially, our results can also be used in the design and planning of future missions whose aim is to produce higher resolution maps of the interstellar medium (e.g. IMAP).
Comparative visualization of genetic and physical maps with Strudel.
Bayer, Micha; Milne, Iain; Stephen, Gordon; Shaw, Paul; Cardle, Linda; Wright, Frank; Marshall, David
2011-05-01
Data visualization can play a key role in comparative genomics, for example, underpinning the investigation of conserved synteny patterns. Strudel is a desktop application that allows users to easily compare both genetic and physical maps interactively and efficiently. It can handle large datasets from several genomes simultaneously, and allows all-by-all comparisons between these. Installers for Strudel are available for Windows, Linux, Solaris and Mac OS X at http://bioinf.scri.ac.uk/strudel/.
Mapping urban revitalization: using GIS spatial analysis to evaluate a new housing policy.
Perkins, Douglas D; Larsen, Courtney; Brown, Barbara B
2009-01-01
This longitudinal, multimethod study uses geographical information system (GIS) software to evaluate the community-wide impact of a neighborhood revitalization project. Unsystematic visual examination and analysis of GIS maps are offered as a complementary tool to quantitative analysis and one that is much more compelling, meaningful, and effective in presentation to community and nonscientific professional audiences. The centerpiece of the intervention was the development of a new, middle-class housing subdivision in an area that was declining physically and economically. This represents three major urban/housing policy directions: (1) the emphasis on home ownership for working-class families, (2) the deconcentration of poverty through development of mixed-income neighborhoods, and (3) the clean up and redevelopment of contaminated, former industrial brownfields. Resident survey responses, objective environmental assessment observations, and building permit data were collected, geocoded at the address level, and aggregated to the block level on 60 street blocks in the older neighborhoods surrounding the new housing in two waves: during site clearing and housing construction (Time 1: 1993-95) and three years post-completion (Time 2: 1998-99). Variables mapped include (a) Time 1-2 change in self-reported home repairs and improvements, (b) change in the assessed physical condition of yards and exteriors of 925 individual residential properties, (c) change in residents' home pride, and (d) a city archive of building permits at Time 2. Physical conditions improved overall in the neighborhood, but spatial analysis of the maps suggest that the spillover effects, if any, of the new housing were geographically limited and included unintended negative psychological consequences. Results argue for greater use of GIS and the street block level in community research and of psychological and behavioral variables in planning research and decisions.
Tile-Based Two-Dimensional Phase Unwrapping for Digital Holography Using a Modular Framework
Antonopoulos, Georgios C.; Steltner, Benjamin; Heisterkamp, Alexander; Ripken, Tammo; Meyer, Heiko
2015-01-01
A variety of physical and biomedical imaging techniques, such as digital holography, interferometric synthetic aperture radar (InSAR), or magnetic resonance imaging (MRI) enable measurement of the phase of a physical quantity additionally to its amplitude. However, the phase can commonly only be measured modulo 2π, as a so called wrapped phase map. Phase unwrapping is the process of obtaining the underlying physical phase map from the wrapped phase. Tile-based phase unwrapping algorithms operate by first tessellating the phase map, then unwrapping individual tiles, and finally merging them to a continuous phase map. They can be implemented computationally efficiently and are robust to noise. However, they are prone to failure in the presence of phase residues or erroneous unwraps of single tiles. We tried to overcome these shortcomings by creating novel tile unwrapping and merging algorithms as well as creating a framework that allows to combine them in modular fashion. To increase the robustness of the tile unwrapping step, we implemented a model-based algorithm that makes efficient use of linear algebra to unwrap individual tiles. Furthermore, we adapted an established pixel-based unwrapping algorithm to create a quality guided tile merger. These original algorithms as well as previously existing ones were implemented in a modular phase unwrapping C++ framework. By examining different combinations of unwrapping and merging algorithms we compared our method to existing approaches. We could show that the appropriate choice of unwrapping and merging algorithms can significantly improve the unwrapped result in the presence of phase residues and noise. Beyond that, our modular framework allows for efficient design and test of new tile-based phase unwrapping algorithms. The software developed in this study is freely available. PMID:26599984
Tile-Based Two-Dimensional Phase Unwrapping for Digital Holography Using a Modular Framework.
Antonopoulos, Georgios C; Steltner, Benjamin; Heisterkamp, Alexander; Ripken, Tammo; Meyer, Heiko
2015-01-01
A variety of physical and biomedical imaging techniques, such as digital holography, interferometric synthetic aperture radar (InSAR), or magnetic resonance imaging (MRI) enable measurement of the phase of a physical quantity additionally to its amplitude. However, the phase can commonly only be measured modulo 2π, as a so called wrapped phase map. Phase unwrapping is the process of obtaining the underlying physical phase map from the wrapped phase. Tile-based phase unwrapping algorithms operate by first tessellating the phase map, then unwrapping individual tiles, and finally merging them to a continuous phase map. They can be implemented computationally efficiently and are robust to noise. However, they are prone to failure in the presence of phase residues or erroneous unwraps of single tiles. We tried to overcome these shortcomings by creating novel tile unwrapping and merging algorithms as well as creating a framework that allows to combine them in modular fashion. To increase the robustness of the tile unwrapping step, we implemented a model-based algorithm that makes efficient use of linear algebra to unwrap individual tiles. Furthermore, we adapted an established pixel-based unwrapping algorithm to create a quality guided tile merger. These original algorithms as well as previously existing ones were implemented in a modular phase unwrapping C++ framework. By examining different combinations of unwrapping and merging algorithms we compared our method to existing approaches. We could show that the appropriate choice of unwrapping and merging algorithms can significantly improve the unwrapped result in the presence of phase residues and noise. Beyond that, our modular framework allows for efficient design and test of new tile-based phase unwrapping algorithms. The software developed in this study is freely available.
Direct access inter-process shared memory
Brightwell, Ronald B; Pedretti, Kevin; Hudson, Trammell B
2013-10-22
A technique for directly sharing physical memory between processes executing on processor cores is described. The technique includes loading a plurality of processes into the physical memory for execution on a corresponding plurality of processor cores sharing the physical memory. An address space is mapped to each of the processes by populating a first entry in a top level virtual address table for each of the processes. The address space of each of the processes is cross-mapped into each of the processes by populating one or more subsequent entries of the top level virtual address table with the first entry in the top level virtual address table from other processes.
Geomorphic Unit Tool (GUT): Applications of Fluvial Mapping
NASA Astrophysics Data System (ADS)
Kramer, N.; Bangen, S. G.; Wheaton, J. M.; Bouwes, N.; Wall, E.; Saunders, C.; Bennett, S.; Fortney, S.
2017-12-01
Geomorphic units are the building blocks of rivers and represent distinct habitat patches for many fluvial organisms. We present the Geomorphic Unit Toolkit (GUT), a flexible GIS geomorphic unit mapping tool, to generate maps of fluvial landforms from topography. GUT applies attributes to landforms based on flow stage (Tier 1), topographic signatures (Tier 2), geomorphic characteristics (Tier 3) and patch characteristics (Tier 4) to derive attributed maps at the level of detail required by analysts. We hypothesize that if more rigorous and consistent geomorphic mapping is conducted, better correlations between physical habitat units and ecohydraulic model results will be obtained compared to past work. Using output from GUT for coarse bed tributary streams in the Columbia River Basin, we explore relationships between salmonid habitat and geomorphic spatial metrics. We also highlight case studies of how GUT can be used to showcase geomorphic impact from large wood restoration efforts. Provided high resolution topography exists, this tool can be used to quickly assess changes in fluvial geomorphology in watersheds impacted by human activities.
Page, William R.; Berry, Margaret E.; VanSistine, D. Paco; Snyders, Scott R.
2009-01-01
The purpose of this map is to provide an integrated, bi-national geologic map dataset for display and analyses on an Arc Internet Map Service (IMS) dedicated to environmental health studies in the United States-Mexico border region. The IMS web site was designed by the US-Mexico Border Environmental Health Initiative project and collaborators, and the IMS and project web site address is http://borderhealth.cr.usgs.gov/. The objective of the project is to acquire, evaluate, analyze, and provide earth, biologic, and human health resources data within a GIS framework (IMS) to further our understanding of possible linkages between the physical environment and public health issues. The geologic map dataset is just one of many datasets included in the web site; other datasets include biologic, hydrologic, geographic, and human health themes.
NASA Astrophysics Data System (ADS)
Alptekin, Orkun
2017-10-01
University campuses have a small city view containing basic city functions such as work, accommodation, rest and transportation. They are spaces of social life that occupy large areas, have population density and different activities, change and grow with the cities they live in, and memorize the past accumulations. In this context, it is necessary for campuses to form and protect their own memories like cities. Campus memory is the ability of individuals to keep, maintain and - when necessary- reveal the experiences, sensations, comprehensions gathered from physical environment. "Cognitive mapping" is used to reveal the physical and emotional relationship that individuals make with the city and the individual-city interaction. Cognitive maps are created graphically using verbal and geometric items on paper by remembering these coded urban images. In this study, to determine the urban images belonging to Eskisehir Osmangazi University Meselik Campus, architecture students who have a short period experience of the campus were asked to note the areas they interact with the campus on the cognitive map. Campus memory items are identified by analysing the cognitive maps of the individuals who experienced the campus. In the direction of the obtained data, the campus area was re-read with five basic elements of Lynch: paths, districts, edges, nodes, and landmarks. As a result of these analyses, it is seen that religious structure, which is a large symbolic structure, located next to the main entrance in the settlement and health care facilities defined as landmarks are located in the memory of most of the individuals. Then, paths, nodes, districts, edges and educational buildings are listed respectively in cognitive maps.
Resultant as the determinant of a Koszul complex
NASA Astrophysics Data System (ADS)
Anokhina, A. S.; Morozov, A. Yu.; Shakirov, Sh. R.
2009-09-01
The determinant is a very important characteristic of a linear map between vector spaces. Two generalizations of linear maps are intensively used in modern theory: linear complexes (nilpotent chains of linear maps) and nonlinear maps. The determinant of a complex and the resultant are then the corresponding generalizations of the determinant of a linear map. It turns out that these two quantities are related: the resultant of a nonlinear map is the determinant of the corresponding Koszul complex. We give an elementary introduction into these notions and relations, which will definitely play a role in the future development of theoretical physics.
Rotation number of integrable symplectic mappings of the plane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zolkin, Timofey; Nagaitsev, Sergei; Danilov, Viatcheslav
2017-04-11
Symplectic mappings are discrete-time analogs of Hamiltonian systems. They appear in many areas of physics, including, for example, accelerators, plasma, and fluids. Integrable mappings, a subclass of symplectic mappings, are equivalent to a Twist map, with a rotation number, constant along the phase trajectory. In this letter, we propose a succinct expression to determine the rotation number and present two examples. Similar to the period of the bounded motion in Hamiltonian systems, the rotation number is the most fundamental property of integrable maps and it provides a way to analyze the phase-space dynamics.
NASA Astrophysics Data System (ADS)
Haggerty, Dennis Charles
Community college students need to be abstract thinkers in order to be successful in the introductory Physics curriculum. The purpose of this dissertation is to map the abstract thinking of community college Physics students. The laboratory environment was used as a vehicle for the mapping. Three laboratory experiments were encountered. One laboratory was based on the classic Piagetian task, the centripetal motion (CM) problem. The other two laboratories were introductory electrostatic Physics experiments, Resistance (RES) and Capacitance (CAP). The students performed all laboratories using the thinking-aloud technique. The researcher collected their verbal protocols using audiotapes. The audiotaped data was quantified by comparing it to a scoring matrix based on the Piagetian logical operators (Inhelder & Piaget, 1958) for abstract thinking. The students received scores for each laboratory experiment. These scores were compared to a reliable test of intellectual functioning, the Shipley Institute of Living Scale (SILS). Spearman rank correlation coefficients (SRCC) were obtained for SILS versus CM; SILS versus RES; and SILS versus CAP. Statistically significant results were obtained for SILS versus CM and SILS versus RES at the p < 0.05 level. When an outlier to the data was considered and suppressed, the SILS versus CAP was also statistically significant at the p < 0.05 level. The scoring matrix permits a bridge from the qualitative Piagetian level of cognitive development to a quantified, mapped level of cognitive development. The ability to quantify student abstract thinking in Physics education provides a means to adjust an instructional approach. This approach could lead to a proper state of Physics education.
Conformal mapping for multiple terminals
Wang, Weimin; Ma, Wenying; Wang, Qiang; Ren, Hao
2016-01-01
Conformal mapping is an important mathematical tool that can be used to solve various physical and engineering problems in many fields, including electrostatics, fluid mechanics, classical mechanics, and transformation optics. It is an accurate and convenient way to solve problems involving two terminals. However, when faced with problems involving three or more terminals, which are more common in practical applications, existing conformal mapping methods apply assumptions or approximations. A general exact method does not exist for a structure with an arbitrary number of terminals. This study presents a conformal mapping method for multiple terminals. Through an accurate analysis of boundary conditions, additional terminals or boundaries are folded into the inner part of a mapped region. The method is applied to several typical situations, and the calculation process is described for two examples of an electrostatic actuator with three electrodes and of a light beam splitter with three ports. Compared with previously reported results, the solutions for the two examples based on our method are more precise and general. The proposed method is helpful in promoting the application of conformal mapping in analysis of practical problems. PMID:27830746
Contribution of radiation hybrids to genome mapping in domestic animals.
Faraut, T; de Givry, S; Hitte, C; Lahbib-Mansais, Y; Morisson, M; Milan, D; Schiex, T; Servin, B; Vignal, A; Galibert, F; Yerle, M
2009-01-01
Radiation hybrid mapping has emerged in the end of the 1990 s as a successful and complementary approach to map genomes, essentially because of its ability to bridge the gaps between genetic and clone-based physical maps, but also using comparative mapping approaches, between 'gene-rich' and 'gene-poor' maps. Since its early development in human, radiation hybrid mapping played a pivotal role in the process of mapping animal genomes, especially mammalian ones. We review here all the different steps involved in radiation hybrid mapping from the constitution of panels to the construction of maps. A description of its contribution to whole genome maps with a special emphasis on domestic animals will also be presented. Finally, current applications of radiation hybrid mapping in the context of whole genome assemblies will be described. (c) 2009 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
DeGregorio, P.; Lawlor, A.; Dawson, K. A.
2006-04-01
We introduce a new method to describe systems in the vicinity of dynamical arrest. This involves a map that transforms mobile systems at one length scale to mobile systems at a longer length. This map is capable of capturing the singular behavior accrued across very large length scales, and provides a direct route to the dynamical correlation length and other related quantities. The ideas are immediately applicable in two spatial dimensions, and have been applied to a modified Kob-Andersen type model. For such systems the map may be derived in an exact form, and readily solved numerically. We obtain the asymptotic behavior across the whole physical domain of interest in dynamical arrest.
A random matrix approach to language acquisition
NASA Astrophysics Data System (ADS)
Nicolaidis, A.; Kosmidis, Kosmas; Argyrakis, Panos
2009-12-01
Since language is tied to cognition, we expect the linguistic structures to reflect patterns that we encounter in nature and are analyzed by physics. Within this realm we investigate the process of lexicon acquisition, using analytical and tractable methods developed within physics. A lexicon is a mapping between sounds and referents of the perceived world. This mapping is represented by a matrix and the linguistic interaction among individuals is described by a random matrix model. There are two essential parameters in our approach. The strength of the linguistic interaction β, which is considered as a genetically determined ability, and the number N of sounds employed (the lexicon size). Our model of linguistic interaction is analytically studied using methods of statistical physics and simulated by Monte Carlo techniques. The analysis reveals an intricate relationship between the innate propensity for language acquisition β and the lexicon size N, N~exp(β). Thus a small increase of the genetically determined β may lead to an incredible lexical explosion. Our approximate scheme offers an explanation for the biological affinity of different species and their simultaneous linguistic disparity.
NASA Astrophysics Data System (ADS)
Tilch, Nils; Römer, Alexander; Jochum, Birgit; Schattauer, Ingrid
2014-05-01
In the past years, several times large-scale disasters occurred in Austria, which were characterized not only by flooding, but also by numerous shallow landslides and debris flows. Therefore, for the purpose of risk prevention, national and regional authorities also require more objective and realistic maps with information about spatially variable susceptibility of the geosphere for hazard-relevant gravitational mass movements. There are many and various proven methods and models (e.g. neural networks, logistic regression, heuristic methods) available to create such process-related (e.g. flat gravitational mass movements in soil) suszeptibility maps. But numerous national and international studies show a dependence of the suitability of a method on the quality of process data and parameter maps (f.e. Tilch & Schwarz 2011, Schwarz & Tilch 2011). In this case, it is important that also maps with detailed and process-oriented information on the process-relevant geosphere will be considered. One major disadvantage is that only occasionally area-wide process-relevant information exists. Similarly, in Austria often only soil maps for treeless areas are available. However, in almost all previous studies, randomly existing geological and geotechnical maps were used, which often have been specially adapted to the issues and objectives. This is one reason why very often conceptual soil maps must be derived from geological maps with only hard rock information, which often have a rather low quality. Based on these maps, for example, adjacent areas of different geological composition and process-relevant physical properties are razor sharp delineated, which in nature appears quite rarly. In order to obtain more realistic information about the spatial variability of the process-relevant geosphere (soil cover) and its physical properties, aerogeophysical measurements (electromagnetic, radiometric), carried out by helicopter, from different regions of Austria were interpreted. Previous studies show that, especially with radiometric measurements, the two-dimensional spatial variability of the nature of the process-relevant soil, close to the surface can be determined. In addition, the electromagnetic measurements are more important to obtain three-dimensional information of the deeper geological conditions and to improve the area-specific geological knowledge and understanding. The validation of these measurements is done with terrestrial geoelectrical measurements. So both aspects, radiometric and electromagnetic measurements, are important and subsequently, interpretation of the geophysical results can be used as the parameter maps in the modeling of more realistic susceptibility maps with respect to various processes. Within this presentation, results of geophysical measurements, the outcome and the derived parameter maps, as well as first process-oriented susceptibility maps in terms of gravitational soil mass movements will be presented. As an example results which were obtained with a heuristic method in an area in Vorarlberg (Western Austria) will be shown. References: Schwarz, L. & Tilch, N. (2011): Why are good process data so important for the modelling of landslide susceptibility maps?- EGU-Postersession "Landslide hazard and risk assessment, and landslide management" (NH 3.6), Vienna. [http://www.geologie.ac.at/fileadmin/user_upload/dokumente/pdf/poster/poster_2011_egu_schwarz_tilch_1.pdf] Tilch, N. & Schwarz, L. (2011): Spatial and scale-dependent variability in data quality and their influence on susceptibility maps for gravitational mass movements in soil, modelled by heuristic method.- EGU-Postersession "Landslide hazard and risk assessment, and landslide management" (NH 3.6); Vienna. [http://www.geologie.ac.at/fileadmin/user_upload/dokumente/pdf/poster/poster_2011_egu_tilch_schwarz.pdf
NASA Technical Reports Server (NTRS)
Abrams, Michael; Abbott, Elsa; Kahle, Anne
1991-01-01
The weathering of Hawaiian basalts is accompanied by chemical and physical changes of the surfaces. These changes have been mapped using remote sensing data from the visible and reflected infrared and thermal infrared wavelength regions. They are related to the physical breakdown of surface chill coats, the development and erosion of silica coatings, the oxidation of mafic minerals, and the development of vegetation cover. These effects show systematic behavior with age and can be mapped using the image data and related to relative ages of pahoehoe and aa flows. The thermal data are sensitive to silica rind development and fine structure of the scene; the reflectance data show the degree of oxidation and differentiate vegetation from aa and cinders. Together, data from the two wavelength regions show more than either separately. The combined data potentially provide a powerful tool for mapping basalt flows in arid to semiarid volcanic environments.
Bartels, Daniela; Kespohl, Sebastian; Albaum, Stefan; Drüke, Tanja; Goesmann, Alexander; Herold, Julia; Kaiser, Olaf; Pühler, Alfred; Pfeiffer, Friedhelm; Raddatz, Günter; Stoye, Jens; Meyer, Folker; Schuster, Stephan C
2005-04-01
We provide the graphical tool BACCardI for the construction of virtual clone maps from standard assembler output files or BLAST based sequence comparisons. This new tool has been applied to numerous genome projects to solve various problems including (a) validation of whole genome shotgun assemblies, (b) support for contig ordering in the finishing phase of a genome project, and (c) intergenome comparison between related strains when only one of the strains has been sequenced and a large insert library is available for the other. The BACCardI software can seamlessly interact with various sequence assembly packages. Genomic assemblies generated from sequence information need to be validated by independent methods such as physical maps. The time-consuming task of building physical maps can be circumvented by virtual clone maps derived from read pair information of large insert libraries.
FISH-mapping of the 5S rDNA locus in chili peppers (Capsicum-Solanaceae).
Aguilera, Patricia M; Debat, Humberto J; Scaldaferro, Marisel A; Martí, Dardo A; Grabiele, Mauro
2016-03-01
We present here the physical mapping of the 5S rDNA locus in six wild and five cultivated taxa of Capsicum by means of a genus-specific FISH probe. In all taxa, a single 5S locus per haploid genome that persistently mapped onto the short arm of a unique metacentric chromosome pair at intercalar position, was found. 5S FISH signals of almost the same size and brightness intensity were observed in all the analyzed taxa. This is the first cytological characterization of the 5S in wild taxa of Capsicum by using a genus-derived probe, and the most exhaustive and comprehensive in the chili peppers up to now. The information provided here will aid the cytomolecular characterization of pepper germplasm to evaluate variability and can be instrumental to integrate physical, genetic and genomic maps already generated in the genus.
Time-dependent landslide probability mapping
Campbell, Russell H.; Bernknopf, Richard L.; ,
1993-01-01
Case studies where time of failure is known for rainfall-triggered debris flows can be used to estimate the parameters of a hazard model in which the probability of failure is a function of time. As an example, a time-dependent function for the conditional probability of a soil slip is estimated from independent variables representing hillside morphology, approximations of material properties, and the duration and rate of rainfall. If probabilities are calculated in a GIS (geomorphic information system ) environment, the spatial distribution of the result for any given hour can be displayed on a map. Although the probability levels in this example are uncalibrated, the method offers a potential for evaluating different physical models and different earth-science variables by comparing the map distribution of predicted probabilities with inventory maps for different areas and different storms. If linked with spatial and temporal socio-economic variables, this method could be used for short-term risk assessment.
Electron energy-loss spectroscopy of single nanocrystals: mapping of tin allotropes.
Roesgaard, Søren; Ramasse, Quentin; Chevallier, Jacques; Fyhn, Mogens; Julsgaard, Brian
2018-05-25
Using monochromated electron energy-loss spectroscopy (EELS), we are able to map different allotropes in Sn-nanocrystals embedded in Si. It is demonstrated that α-Sn and β-Sn, as well as an interface related plasmon, can be distinguished in embedded Sn-nanostructures. The EELS data is interpreted by standard non-negative matrix factorization followed by a manual Lorentzian decomposition. The decomposition allows for a more physical understanding of the EELS mapping without reducing the level of information. Extending the analysis from a reference system to smaller nanocrystals demonstrates that allotrope determination in nanoscale systems down below 5 nm is possible. Such local information proves the use of monochromated EELS mapping as a powerful technique to study nanoscale systems. This possibility enables investigation of small nanostructures that cannot be investigated through other means, allowing for a better understanding and thus leading to realizations that can result in nanomaterials with improved properties.
Electron energy-loss spectroscopy of single nanocrystals: mapping of tin allotropes
NASA Astrophysics Data System (ADS)
Roesgaard, Søren; Ramasse, Quentin; Chevallier, Jacques; Fyhn, Mogens; Julsgaard, Brian
2018-05-01
Using monochromated electron energy-loss spectroscopy (EELS), we are able to map different allotropes in Sn-nanocrystals embedded in Si. It is demonstrated that α-Sn and β-Sn, as well as an interface related plasmon, can be distinguished in embedded Sn-nanostructures. The EELS data is interpreted by standard non-negative matrix factorization followed by a manual Lorentzian decomposition. The decomposition allows for a more physical understanding of the EELS mapping without reducing the level of information. Extending the analysis from a reference system to smaller nanocrystals demonstrates that allotrope determination in nanoscale systems down below 5 nm is possible. Such local information proves the use of monochromated EELS mapping as a powerful technique to study nanoscale systems. This possibility enables investigation of small nanostructures that cannot be investigated through other means, allowing for a better understanding and thus leading to realizations that can result in nanomaterials with improved properties.
Collider Physics Cosmic Frontier Cosmic Frontier Theory & Computing Detector R&D Electronic Design Theory Seminar Argonne >High Energy Physics Cosmic Frontier Theory & Computing Homepage General Cosmic Frontier Theory & Computing Group led the analysis to begin mapping dark matter. There have
Development of Probabilistic Flood Inundation Mapping For Flooding Induced by Dam Failure
NASA Astrophysics Data System (ADS)
Tsai, C.; Yeh, J. J. J.
2017-12-01
A primary function of flood inundation mapping is to forecast flood hazards and assess potential losses. However, uncertainties limit the reliability of inundation hazard assessments. Major sources of uncertainty should be taken into consideration by an optimal flood management strategy. This study focuses on the 20km reach downstream of the Shihmen Reservoir in Taiwan. A dam failure induced flood herein provides the upstream boundary conditions of flood routing. The two major sources of uncertainty that are considered in the hydraulic model and the flood inundation mapping herein are uncertainties in the dam break model and uncertainty of the roughness coefficient. The perturbance moment method is applied to a dam break model and the hydro system model to develop probabilistic flood inundation mapping. Various numbers of uncertain variables can be considered in these models and the variability of outputs can be quantified. The probabilistic flood inundation mapping for dam break induced floods can be developed with consideration of the variability of output using a commonly used HEC-RAS model. Different probabilistic flood inundation mappings are discussed and compared. Probabilistic flood inundation mappings are hoped to provide new physical insights in support of the evaluation of concerning reservoir flooded areas.
Integration of data-driven and physically-based methods to assess shallow landslides susceptibility
NASA Astrophysics Data System (ADS)
Lajas, Sara; Oliveira, Sérgio C.; Zêzere, José Luis
2016-04-01
Approaches used to assess shallow landslides susceptibility at the basin scale are conceptually different depending on the use of statistic or deterministic methods. The data-driven methods are sustained in the assumption that the same causes are likely to produce the same effects and for that reason a present/past landslide inventory and a dataset of factors assumed as predisposing factors are crucial for the landslide susceptibility assessment. The physically-based methods are based on a system controlled by physical laws and soil mechanics, where the forces which tend to promote movement are compared with forces that tend to promote resistance to movement. In this case, the evaluation of susceptibility is supported by the calculation of the Factor of safety (FoS), and dependent of the availability of detailed data related with the slope geometry and hydrological and geotechnical properties of the soils and rocks. Within this framework, this work aims to test two hypothesis: (i) although conceptually distinct and based on contrasting procedures, statistic and deterministic methods generate similar shallow landslides susceptibility results regarding the predictive capacity and spatial agreement; and (ii) the integration of the shallow landslides susceptibility maps obtained with data-driven and physically-based methods, for the same study area, generate a more reliable susceptibility model for shallow landslides occurrence. To evaluate these two hypotheses, we select the Information Value data-driven method and the physically-based Infinite Slope model to evaluate shallow landslides in the study area of Monfalim and Louriceira basins (13.9 km2), which is located in the north of Lisbon region (Portugal). The landslide inventory is composed by 111 shallow landslides and was divide in two independent groups based on temporal criteria (age ≤ 1983 and age > 1983): (i) the modelling group (51 cases) was used to define the weights for each predisposing factor (lithology, land use, slope, aspect, curvature, topographic position index and the slope over area ratio) with the Information Value method and was used also to calibrate the strength parameters (cohesion and friction angle) of the different lithological units considered in the Infinity Slope model; and (ii) the validation group (60 cases) was used to independent validate and define the predictive capacity of the shallow landslides susceptibility maps produced with the Information Value method and the Infinite Slope method. The comparison of both landslide susceptibility maps was supported by: (i) the computation of the Receiver Operator Characteristic (ROC) curves; (ii) the calculation of the Area Under the Curve (AUC); and (iii) the evaluation of the spatial agreement between the landslide susceptibility classes. Finally, the susceptibility maps produced with the Information Value and the Infinite Slope methods are integrated into a single landslide susceptibility map based on a set of integration rules define by cross-validation of the susceptibility classes of both maps and analysis of the corresponding contingency table. This work was supported by the FCT - Portuguese Foundation for Science and Technology and is within the framework of the FORLAND Project. Sérgio Oliveira was funded by a postdoctoral grant (SFRH/BPD/85827/2012) from the Portuguese Foundation for Science and Technology (FCT).
The Microtubule-Associated Protein MAP18 Affects ROP2 GTPase Activity during Root Hair Growth1[OPEN
Kang, Erfang; Zheng, Mingzhi; Zhang, Yan; Yuan, Ming; Fu, Ying
2017-01-01
Establishment and maintenance of the polar site are important for root hair tip growth. We previously reported that Arabidopsis (Arabidopsis thaliana) MICROTUBULE-ASSOCIATED PROTEIN18 (MAP18) functions in controlling the direction of pollen tube growth and root hair elongation. Additionally, the Rop GTPase ROP2 was reported as a positive regulator of both root hair initiation and tip growth in Arabidopsis. Both loss of function of ROP2 and knockdown of MAP18 lead to a decrease in root hair length, whereas overexpression of either MAP18 or ROP2 causes multiple tips or a branching hair phenotype. However, it is unclear whether MAP18 and ROP2 coordinately regulate root hair growth. In this study, we demonstrate that MAP18 and ROP2 interact genetically and functionally. MAP18 interacts physically with ROP2 in vitro and in vivo and preferentially binds to the inactive form of the ROP2 protein. MAP18 promotes ROP2 activity during root hair tip growth. Further investigation revealed that MAP18 competes with RhoGTPase GDP DISSOCIATION INHIBITOR1/SUPERCENTIPEDE1 for binding to ROP2, in turn affecting the localization of active ROP2 in the plasma membrane of the root hair tip. These results reveal a novel function of MAP18 in the regulation of ROP2 activation during root hair growth. PMID:28314794
Zhou, Xiang-Fa; Wu, Congjun; Guo, Guang-Can; Wang, Ruquan; Pu, Han; Zhou, Zheng-Wei
2018-03-30
We present a flexible scheme to realize exact flat Landau levels on curved spherical geometry in a system of spinful cold atoms. This is achieved by applying the Floquet engineering of a magnetic quadrupole field to create a synthetic monopole field in real space. The system can be exactly mapped to the electron-monopole system on a sphere, thus realizing Haldane's spherical geometry for fractional quantum Hall physics. This method works for either bosons or fermions. We investigate the ground-state vortex pattern for an s-wave interacting atomic condensate by mapping this system to the classical Thompson's problem. The distortion and stability of the vortex pattern are further studied in the presence of dipolar interaction. Our scheme is compatible with the current experimental setup, and may serve as a promising route of investigating quantum Hall physics and exotic spinor vortex matter on curved space.
Dalzell, P; Miles, L G; Isberg, S R; Glenn, T C; King, C; Murtagh, V; Moran, C
2009-01-01
Basic cytogenetic data, such as diploid number and general chromosome morphology, are available for many reptilian species. Here we present a detailed cytogenetic examination of the saltwater crocodile (Crocodylus porosus) karyotype, including the creation of the first fully annotated G-band standard ideogram for any crocodilian species. The C. porosus karyotype contains macrochromosomes and has a diploid number of 34. This study presents a detailed description of each chromosome, permitting unambiguous chromosome identification. The fully annotated standardized C. porosus ideogram provides the backbone to a standard nomenclature system which can be used to accurately identify specific band locations. Seven microsatellite containing fosmid clones were fluorescently labeled and used as fluorescent in situ hybridization (FISH) probes for physical localization. Chromosome locations for each of these FISH probes were successfully assigned, demonstrating the utility of the fully annotated ideogram for genome mapping. Copyright 2010 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Zhou, Xiang-Fa; Wu, Congjun; Guo, Guang-Can; Wang, Ruquan; Pu, Han; Zhou, Zheng-Wei
2018-03-01
We present a flexible scheme to realize exact flat Landau levels on curved spherical geometry in a system of spinful cold atoms. This is achieved by applying the Floquet engineering of a magnetic quadrupole field to create a synthetic monopole field in real space. The system can be exactly mapped to the electron-monopole system on a sphere, thus realizing Haldane's spherical geometry for fractional quantum Hall physics. This method works for either bosons or fermions. We investigate the ground-state vortex pattern for an s -wave interacting atomic condensate by mapping this system to the classical Thompson's problem. The distortion and stability of the vortex pattern are further studied in the presence of dipolar interaction. Our scheme is compatible with the current experimental setup, and may serve as a promising route of investigating quantum Hall physics and exotic spinor vortex matter on curved space.
Nested Association Mapping of Stem Rust Resistance in Wheat Using Genotyping by Sequencing
Rouse, Matthew N.; Tsilo, Toi J.; Macharia, Godwin K.; Bhavani, Sridhar; Jin, Yue; Anderson, James A.
2016-01-01
We combined the recently developed genotyping by sequencing (GBS) method with joint mapping (also known as nested association mapping) to dissect and understand the genetic architecture controlling stem rust resistance in wheat (Triticum aestivum). Ten stem rust resistant wheat varieties were crossed to the susceptible line LMPG-6 to generate F6 recombinant inbred lines. The recombinant inbred line populations were phenotyped in Kenya, South Africa, and St. Paul, Minnesota, USA. By joint mapping of the 10 populations, we identified 59 minor and medium-effect QTL (explained phenotypic variance range of 1% – 20%) on 20 chromosomes that contributed towards adult plant resistance to North American Pgt races as well as the highly virulent Ug99 race group. Fifteen of the 59 QTL were detected in multiple environments. No epistatic relationship was detected among the QTL. While these numerous small- to medium-effect QTL are shared among the families, the founder parents were found to have different allelic effects for the QTL. Fourteen QTL identified by joint mapping were also detected in single-population mapping. As these QTL were mapped using SNP markers with known locations on the physical chromosomes, the genomic regions identified with QTL could be explored more in depth to discover candidate genes for stem rust resistance. The use of GBS-derived de novo SNPs in mapping resistance to stem rust shown in this study could be used as a model to conduct similar marker-trait association studies in other plant species. PMID:27186883
Generalized exact holographic mapping with wavelets
NASA Astrophysics Data System (ADS)
Lee, Ching Hua
2017-12-01
The idea of renormalization and scale invariance is pervasive across disciplines. It has not only drawn numerous surprising connections between physical systems under the guise of holographic duality, but has also inspired the development of wavelet theory now widely used in signal processing. Synergizing on these two developments, we describe in this paper a generalized exact holographic mapping that maps a generic N -dimensional lattice system to a (N +1 )-dimensional holographic dual, with the emergent dimension representing scale. In previous works, this was achieved via the iterations of the simplest of all unitary mappings, the Haar mapping, which fails to preserve the form of most Hamiltonians. By taking advantage of the full generality of biorthogonal wavelets, our new generalized holographic mapping framework is able to preserve the form of a large class of lattice Hamiltonians. By explicitly separating features that are fundamentally associated with the physical system from those that are basis specific, we also obtain a clearer understanding of how the resultant bulk geometry arises. For instance, the number of nonvanishing moments of the high-pass wavelet filter is revealed to be proportional to the radius of the dual anti-de Sitter space geometry. We conclude by proposing modifications to the mapping for systems with generic Fermi pockets.
A Systematic Scoping Review of Engagement in Physical Activity Among LGBTQ+ Adults.
Herrick, Shannon S C; Duncan, Lindsay R
2018-03-01
LGBTQ+ (lesbian, gay, bisexual, transgender, queer, etc) persons are subject to elevated rates of chronic diseases and health concerns that can be addressed through regular participation in physical activity. However, LGBTQ+ adults experience unique challenges to engaging in physical activity. Subsequently, the aim of this study is to describe the dominant narratives related to the complex intersection of sexual orientation, gender identity, and physical activity. A systematic search and scoping review of existing literature was conducted in June 2016. Studies were identified by searching 9 electronic databases. Data were then extracted, summarized, and organized by LGBTQ+ subgroups. Conceptual maps of prominent narratives were created. Separate narratives were identified for sexual minority men and women. The dominant trend for sexual minority men was increased physical activity levels, often motivated by a perceived body ideal of being thin and/or muscular. The dominant trend for sexual minority women was decreased physical activity levels, predicated on a social norm that emphasizes bodily acceptance. Sexual orientation affects engagement in physical activity differentially by gender. Our findings suggest that physical activity interventions should be targeted to unique subgroups of the LGBTQ+ population.
Chromosome-specific physical localisation of expressed sequence tag loci in Corchorus olitorius L.
Joshi, A; Das, S K; Samanta, P; Paria, P; Sen, S K; Basu, A
2014-11-01
Jute (Corchorus spp.), as a natural fibre-producing species, ranks next only to cotton. Inadequate understanding of its genetic architecture is a major lacuna for genetic improvement of this crop in terms of yield and quality. Establishment of a physical map provides a genomic tool that helps in positional cloning of valuable genes. In this report, an attempt was initiated to study association and localisation of single copy expressed sequence tag (EST) loci in the genome of Corchorus olitorius. The chromosome-specific association of EST was determined based on the appearance of an extra signal for a single copy cDNA probe in mitotic interphase nuclei of specific trisomic(s) for fluorescence in situ hybridisation, and validated using a cDNA fragment of the 26S rRNA gene (600 bp) as molecular probe. The probe exhibited three signals in meiotic interphase nuclei of trisomic 5, instead of two as observed in diploids and other trisomics, indicating its association with chromosome 5. Subsequent hybridisation of the same probe on the pachytene chromosomes of diploids confirmed that 26S rRNA occupies the terminal end of the short arm of chromosome 5 in C. olitorius. Subsequently, chromosome-specific association of 63 single copy EST and their physical localisation were determined on chromosomes 2, 4, 5 and 7. The study describes chromosome-specific physical localisation of genes in jute. The approach used here could be a step towards construction of genome-wide physical maps for any recalcitrant plant species like jute. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.
Regional landslide-hazard assessment for Seattle, Washington, USA
Baum, R.L.; Coe, J.A.; Godt, J.W.; Harp, E.L.; Reid, M.E.; Savage, W.Z.; Schulz, W.H.; Brien, D.L.; Chleborad, A.F.; McKenna, J.P.; Michael, J.A.
2005-01-01
Landslides are a widespread, frequent, and costly hazard in Seattle and the Puget Sound area of Washington State, USA. Shallow earth slides triggered by heavy rainfall are the most common type of landslide in the area; many transform into debris flows and cause significant property damage or disrupt transportation. Large rotational and translational slides, though less common, also cause serious property damage. The hundreds of landslides that occurred during the winters of 1995-96 and 1996-97 stimulated renewed interest by Puget Sound communities in identifying landslide-prone areas and taking actions to reduce future landslide losses. Informal partnerships between the U.S. Geological Survey (USGS), the City of Seattle, and private consultants are focusing on the problem of identifying and mapping areas of landslide hazard as well as characterizing temporal aspects of the hazard. We have developed GIS-based methods to map the probability of landslide occurrence as well as empirical rainfall thresholds and physically based methods to forecast times of landslide occurrence. Our methods for mapping landslide hazard zones began with field studies and physically based models to assess relative slope stability, including the effects of material properties, seasonal groundwater levels, and rainfall infiltration. We have analyzed the correlation between historic landslide occurrence and relative slope stability to map the degree of landslide hazard. The City of Seattle is using results of the USGS studies in storm preparedness planning for emergency access and response, planning for development or redevelopment of hillsides, and municipal facility planning and prioritization. Methods we have developed could be applied elsewhere to suit local needs and available data.
NASA Astrophysics Data System (ADS)
Frasinski, Leszek J.
2016-08-01
Recent technological advances in the generation of intense femtosecond pulses have made covariance mapping an attractive analytical technique. The laser pulses available are so intense that often thousands of ionisation and Coulomb explosion events will occur within each pulse. To understand the physics of these processes the photoelectrons and photoions need to be correlated, and covariance mapping is well suited for operating at the high counting rates of these laser sources. Partial covariance is particularly useful in experiments with x-ray free electron lasers, because it is capable of suppressing pulse fluctuation effects. A variety of covariance mapping methods is described: simple, partial (single- and multi-parameter), sliced, contingent and multi-dimensional. The relationship to coincidence techniques is discussed. Covariance mapping has been used in many areas of science and technology: inner-shell excitation and Auger decay, multiphoton and multielectron ionisation, time-of-flight and angle-resolved spectrometry, infrared spectroscopy, nuclear magnetic resonance imaging, stimulated Raman scattering, directional gamma ray sensing, welding diagnostics and brain connectivity studies (connectomics). This review gives practical advice for implementing the technique and interpreting the results, including its limitations and instrumental constraints. It also summarises recent theoretical studies, highlights unsolved problems and outlines a personal view on the most promising research directions.
PREFACE: 3rd International Workshop on Materials Analysis and Processing in Magnetic Fields (MAP3)
NASA Astrophysics Data System (ADS)
Sakka, Yoshio; Hirota, Noriyuki; Horii, Shigeru; Ando, Tsutomu
2009-07-01
The 3rd International Workshop on Materials Analysis and Processing in Materials Fields (MAP3) was held on 14-16 May 2008 at the University of Tokyo, Japan. The first was held in March 2004 at the National High Magnetic Field Laboratory in Tallahassee, USA. Two years later the second took place in Grenoble, France. MAP3 was held at The University of Tokyo International Symposium, and jointly with MANA Workshop on Materials Processing by External Stimulation, and JSPS CORE Program of Construction of the World Center on Electromagnetic Processing of Materials. At the end of MAP3 it was decided that the next MAP4 will be held in Atlanta, USA in 2010. Processing in magnetic fields is a rapidly expanding research area with a wide range of promising applications in materials science. MAP3 focused on the magnetic field interactions involved in the study and processing of materials in all disciplines ranging from physics to chemistry and biology: Magnetic field effects on chemical, physical, and biological phenomena Magnetic field effects on electrochemical phenomena Magnetic field effects on thermodynamic phenomena Magnetic field effects on hydrodynamic phenomena Magnetic field effects on crystal growth Magnetic processing of materials Diamagnetic levitation Magneto-Archimedes effect Spin chemistry Application of magnetic fields to analytical chemistry Magnetic orientation Control of structure by magnetic fields Magnetic separation and purification Magnetic field-induced phase transitions Materials properties in high magnetic fields Development of NMR and MRI Medical application of magnetic fields Novel magnetic phenomena Physical property measurement by Magnetic fields High magnetic field generation> MAP3 consisted of 84 presentations including 16 invited talks. This volume of Journal of Physics: Conference Series contains the proceeding of MAP3 with 34 papers that provide a scientific record of the topics covered by the conference with the special topics (13 papers) in the journal Science and Technology of Advanced Materials. All articles have been refereed by experts in the field. Both of these journals are fully accessible electronically and can be cited and referenced in the usual way. It is our hope that the reader will enjoy and profit from the MAP3 Proceedings. Hitoshi Wada (Kashiwa, Japan) Chair Eric Beaugon (Grenoble, France) Hans J Schneider-Muntau (Tallahassee, USA) Co-chair Advisory Board Shigeo Asai (Nagoya, Japan) Koichi Kitazawa (Tokyo, Japan) Mitsuhiro Motokawa (Sendai, Japan) Shoogo Ueno (Fukuoka, Japan) Robert Tournier (Grenoble, France) Justin Schwartz (Tallahassee, USA) J C Maan (Nijmegen, Netherland) Scientific Committee Yoshifumi Tanimoto (Hiroshima, Japan) Masuhiro Yamaguchi (Yokohama, Japan) Tsunehisa Kimura (Kyoto, Japan) Yoshio Sakka (Tsukuba Japan) Ryoichi Aogaki (Tokyo, Japan) Jyunji Miyakoshi (Hirosaki, Japan) Kazuo Watanabe (Sendai, Japan) James M Valles Jr. (Providence, USA) Joon Pyo Park (Pohang, Korea) Qiang Wang (Shenyang, China) Nicole Pamme (Hull, UK) Sophie Rivoirard (Grenoble, France) P C M Christianen (Nijmegen, Netherland) Local Organizing Committee Isao Yamamoto Masafumi Yamato Shigeru Horii Norihito Sogoshi Masateru Ikehata Noriyuki Hirota Tsutomu Ando Proceedings Editorial Board Yoshio Sakka Noriyuki Hirota Shigeru Horii Tsutomu Ando Conference photograph
9. international mouse genome conference
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This conference was held November 12--16, 1995 in Ann Arbor, Michigan. The purpose of this conference was to provide a multidisciplinary forum for exchange of state-of-the-art information on genetic mapping in mice. This report contains abstracts of presentations, focusing on the following areas: mutation identification; comparative mapping; informatics and complex traits; mutagenesis; gene identification and new technology; and genetic and physical mapping.
A Single Molecule Scaffold for the Maize Genome
Zhou, Shiguo; Wei, Fusheng; Nguyen, John; Bechner, Mike; Potamousis, Konstantinos; Goldstein, Steve; Pape, Louise; Mehan, Michael R.; Churas, Chris; Pasternak, Shiran; Forrest, Dan K.; Wise, Roger; Ware, Doreen; Wing, Rod A.; Waterman, Michael S.; Livny, Miron; Schwartz, David C.
2009-01-01
About 85% of the maize genome consists of highly repetitive sequences that are interspersed by low-copy, gene-coding sequences. The maize community has dealt with this genomic complexity by the construction of an integrated genetic and physical map (iMap), but this resource alone was not sufficient for ensuring the quality of the current sequence build. For this purpose, we constructed a genome-wide, high-resolution optical map of the maize inbred line B73 genome containing >91,000 restriction sites (averaging 1 site/∼23 kb) accrued from mapping genomic DNA molecules. Our optical map comprises 66 contigs, averaging 31.88 Mb in size and spanning 91.5% (2,103.93 Mb/∼2,300 Mb) of the maize genome. A new algorithm was created that considered both optical map and unfinished BAC sequence data for placing 60/66 (2,032.42 Mb) optical map contigs onto the maize iMap. The alignment of optical maps against numerous data sources yielded comprehensive results that proved revealing and productive. For example, gaps were uncovered and characterized within the iMap, the FPC (fingerprinted contigs) map, and the chromosome-wide pseudomolecules. Such alignments also suggested amended placements of FPC contigs on the maize genetic map and proactively guided the assembly of chromosome-wide pseudomolecules, especially within complex genomic regions. Lastly, we think that the full integration of B73 optical maps with the maize iMap would greatly facilitate maize sequence finishing efforts that would make it a valuable reference for comparative studies among cereals, or other maize inbred lines and cultivars. PMID:19936062
Berg, Richard C.; Brown, Steven E.; Thomason, Jason F.; Hasenmueller, Nancy R.; Letsinger, Sally L.; Kincare, Kevin A.; Esch, John M.; Kehew, Alan E.; Thorleifson, L. Harvey; Kozlowski, Andrew L.; Bird, Brian C.; Pavey, Richard R.; Bajc, Andy F.; Burt, Abigail K.; Fleeger, Gary M.; Carson, Eric C.
2016-01-01
The Great Lakes Geologic Mapping Coalition (GLGMC), consisting of state geological surveys from all eight Great Lakes states, the Ontario Geological Survey, and the U.S. Geological Survey, was conceived out of a societal need for unbiased and scientifically defensible geologic information on the shallow subsurface, particularly the delineation, interpretation, and viability of groundwater resources. Only a small percentage (<10%) of the region had been mapped in the subsurface, and there was recognition that no single agency had the financial, intellectual, or physical resources to conduct such a massive geologic mapping effort at a detailed scale over a wide jurisdiction. The GLGMC provides a strategy for generating financial and stakeholder support for three-dimensional (3-D) geologic mapping, pooling of physical and personnel resources, and sharing of mapping and technological expertise to characterize the thick cover of glacial sediments. Since its inception in 1997, the GLGMC partners have conducted detailed surficial and 3-D geologic mapping within all jurisdictions, and concurrent significant scientific advancements have been made to increase understanding of the history and framework of geologic processes. More importantly, scientific information has been provided to public policymakers in understandable formats, emphasis has been placed on training early-career scientists in new mapping techniques and emerging technologies, and a successful model has been developed of state/provincial and federal collaboration focused on geologic mapping, as evidenced by this program's unprecedented and long-term successful experiment of 10 geological surveys working together to address common issues.
Advances in Exercise, Fitness, and Performance Genomics in 2011
Roth, Stephen M.; Rankinen, Tuomo; Hagberg, James M.; Loos, Ruth J. F.; Pérusse, Louis; Sarzynski, Mark A.; Wolfarth, Bernd; Bouchard, Claude
2014-01-01
This review of the exercise genomics literature emphasizes the highest quality papers published in 2011. Given this emphasis on the best publications, only a small number of published papers are reviewed. One study found that physical activity levels were significantly lower in patients with mitochondrial DNA mutations compared to controls. A two-stage fine mapping follow-up of a previous linkage peak found strong associations between sequence variation in the activin A receptor, type-1B (ACVR1B) gene and knee extensor strength, with rs2854464 emerging as the most promising candidate polymorphism. The association of higher muscular strength with the rs2854464 A-allele was confirmed in two separate cohorts. A study using a combination of transcriptomic and genomic data identified a comprehensive map of the transcriptomic features important for aerobic exercise training-induced improvements in maximal oxygen consumption, but no genetic variants derived from candidate transcripts were associated with trainability. A large-scale de novo meta-analysis confirmed that the effect of sequence variation in the fat mass and obesity-associated (FTO) gene on the risk of obesity differs between sedentary and physically active adults. Evidence for gene-physical activity interactions on type 2 diabetes risk was found in two separate studies. A large study of women found that physical activity modified the effect of polymorphisms in the lipoprotein lipase (LPL), hepatic lipase (LIPC), and cholesteryl ester transfer protein (CETP) genes, identified in previous genome-wide association study (GWAS) reports, on HDL-C. We conclude that a strong exercise genomics corpus of evidence would not only translate into powerful genomic predictors but would also have a major impact on exercise biology and exercise behavior research. PMID:22330029
Holtz, Yan; Ardisson, Morgane; Ranwez, Vincent; Besnard, Alban; Leroy, Philippe; Poux, Gérard; Roumet, Pierre; Viader, Véronique; Santoni, Sylvain; David, Jacques
2016-01-01
Targeted sequence capture is a promising technology which helps reduce costs for sequencing and genotyping numerous genomic regions in large sets of individuals. Bait sequences are designed to capture specific alleles previously discovered in parents or reference populations. We studied a set of 135 RILs originating from a cross between an emmer cultivar (Dic2) and a recent durum elite cultivar (Silur). Six thousand sequence baits were designed to target Dic2 vs. Silur polymorphisms discovered in a previous RNAseq study. These baits were exposed to genomic DNA of the RIL population. Eighty percent of the targeted SNPs were recovered, 65% of which were of high quality and coverage. The final high density genetic map consisted of more than 3,000 markers, whose genetic and physical mapping were consistent with those obtained with large arrays. PMID:27171472
Genetic linkage maps are valuable tools in evolutionary biology; however, their availability for wild populations is extremely limited. Fundulus heteroclitus (Atlantic killifish) is a non-migratory estuarine fish that exhibits high allelic and phenotypic diversity partitioned among subpopulations that reside in disparate environmental conditions. An ideal candidate model organism for studying gene-environment interactions, the molecular toolbox for F. heteroclitus is limited. We identified hundreds of novel microsatellites which, when combined with existing microsatellites and single nucleotide polymorphisms (SNPs), were used to construct the first genetic linkage map for this species. By integrating independent linkage maps from three genetic crosses, we developed a consensus map containing 24 linkage groups, consistent with the number of chromosomes reported for this species. These linkage groups span 2300 centimorgans (cM) of recombinant genomic space, intermediate in size relative to the current linkage maps for the teleosts, medaka and zebrafish. Comparisons between fish genomes support a high degree of synteny between the consensus F. heteroclitus linkage map and the medaka and (to a lesser extent) zebrafish physical genome assemblies.This dataset is associated with the following publication:Waits , E., J. Martinson , B. Rinner, S. Morris, D. Proestou, D. Champlin , and D. Nacci. Genetic linkage map and comparative genome analysis for the estuarine Atlanti
Arvanitoyannis, Ioannis S; Bouletis, Achilleas D; Papa, Eirini A; Gkagtzis, Dimitrios C; Hadjichristodoulou, Christos; Papaloucas, C
2011-12-01
Fresh rocket "Eruca Sativa" and lettuce "Lollo Verde" leaves were stored with the addition of olive oil and wine vinegar "Aceto balsamico di Modena" under modified atmosphere packaging (MAP) (5% O(2)/10% CO(2)/85% N(2) for MAP A and 2% O(2)/5% CO(2)/93% N(2) for MAP B). The microbial (mesophilic, psychrotrophic bacteria and Enterobacteriacae), physical (color and firmness) and sensory parameters of samples were studied in relation to storage time (up to 10 days at 5 ± 1 °C). The effect of wine vinegar and the application of both MAP treatments reduced the growth of all bacteria populations (p < 0.05). Samples with olive oil stored under MAP A gave the best score for overall impression (3 and 2.1 for MAP A and B respectively at the 9th day of storage) while the addition of vinegar limited sensory shelf-life to 3 days (p < 0.05). Firmness was negatively affected by wine vinegar while samples with olive oil stored under MAP A maintained firmness close to normal. Color attributes were maintained better under both MAP treatments (p < 0.05). Copyright © 2011 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Gao, Zan; Podlog, Leslie W.; Harrison, Louis
2012-01-01
The purpose of this study was to examine relationships among college students' 2 x 2 goal orientations (mastery-approach [MAp], mastery-avoidance [MAv], performance-approach [PAp], performance-avoidance [PAv]), situational motivation (intrinsic motivation, identified regulation, external regulation and amotivation) and effort/persistence in…
Transitional Spaces: Mapping Physical Change
ERIC Educational Resources Information Center
Sprake, Juliet; Thomas, Helen
2007-01-01
Museums and buildings are both considered immutable by the majority of people who use them. A small team from Goldsmiths College, the V&A + RIBA Architecture Partnership and Pimlico School set out to challenge this preconception. The Victoria & Albert museum was taken as a case study to investigate how buildings are a physical…
A comparison of two conformal mapping techniques applied to an aerobrake body
NASA Technical Reports Server (NTRS)
Hommel, Mark J.
1987-01-01
Conformal mapping is a classical technique which has been utilized for solving problems in aerodynamics and hydrodynamics. Conformal mapping has been successfully applied in the construction of grids around airfoils, engine inlets and other aircraft configurations. Conformal mapping techniques were applied to an aerobrake body having an axis of symmetry. Two different approaches were utilized: (1) Karman-Trefftz transformation; and (2) Point Wise Schwarz Christoffel transformation. In both cases, the aerobrake body was mapped onto a near circle, and a grid was generated in the mapped plane. The mapped body and grid were then mapped back into physical space and the properties of the associated grids were examined. Advantages and disadvantages of both approaches are discussed.
Shors, Tracey J.; Chang, Han Y. M.; Millon, Emma M.
2018-01-01
Sexual violence against women often leads to post-traumatic stress disorder (PTSD), a mental illness characterized by intrusive thoughts and memories about the traumatic event (Shors and Millon, 2016). These mental processes are obviously generated by the brain but often felt in the body. MAP Training My Brain™ is a novel clinical intervention that combines mental training of the brain with physical training of the body (Curlik and Shors, 2013; Shors et al., 2014). Each training session begins with 20-min of sitting meditation, followed by 10-min of slow-walking meditation, and ending with 30-min of aerobic exercise at 60–80% of the maximum heart rate (see maptrainmybrain.com). In previous studies, the combination of mental and physical (MAP) training together significantly reduced symptoms of depression and ruminative thoughts, while reducing anxiety (Shors et al., 2014, 2017; Alderman et al., 2016). We also documented positive changes in brain activity during cognitive control and whole-body oxygen consumption in various populations. In the present pilot study, we asked whether the combination of meditation and aerobic exercise during MAP Training would reduce trauma-related thoughts, ruminations, and memories in women and if so, whether the combination would be more effective than either activity alone. To test this hypothesis, interventions were provided to a group of women (n = 105), many of whom had a history of sexual violence (n = 32). Groups were trained with (1) MAP Training, (2) meditation alone, (3) aerobic exercise alone, or (4) not trained. Individuals in training groups completed two sessions a week for at least 6 weeks. MAP Training My Brain™ significantly reduced post-traumatic cognitions and ruminative thoughts in women with a history of sexual violence, whereas meditation alone, and exercise alone did not. MAP Training significantly enhanced a measure of self-worth, whereas meditation and exercise alone did not. Similar positive effects were observed for all participants, although meditation alone was also effective in reducing trauma-related thoughts. Overall, these data indicate the combination of meditation and exercise is synergistic. As a consequence, MAP Training is preferable and especially so for women who have experienced sexual violence in their past. Simply put, the whole is greater than the sum of its parts. PMID:29740264
Shors, Tracey J; Chang, Han Y M; Millon, Emma M
2018-01-01
Sexual violence against women often leads to post-traumatic stress disorder (PTSD), a mental illness characterized by intrusive thoughts and memories about the traumatic event (Shors and Millon, 2016). These mental processes are obviously generated by the brain but often felt in the body. MAP Training My Brain ™ is a novel clinical intervention that combines mental training of the brain with physical training of the body (Curlik and Shors, 2013; Shors et al., 2014). Each training session begins with 20-min of sitting meditation, followed by 10-min of slow-walking meditation, and ending with 30-min of aerobic exercise at 60-80% of the maximum heart rate (see maptrainmybrain.com). In previous studies, the combination of mental and physical (MAP) training together significantly reduced symptoms of depression and ruminative thoughts, while reducing anxiety (Shors et al., 2014, 2017; Alderman et al., 2016). We also documented positive changes in brain activity during cognitive control and whole-body oxygen consumption in various populations. In the present pilot study, we asked whether the combination of meditation and aerobic exercise during MAP Training would reduce trauma-related thoughts, ruminations, and memories in women and if so, whether the combination would be more effective than either activity alone. To test this hypothesis, interventions were provided to a group of women ( n = 105), many of whom had a history of sexual violence ( n = 32). Groups were trained with (1) MAP Training, (2) meditation alone, (3) aerobic exercise alone, or (4) not trained. Individuals in training groups completed two sessions a week for at least 6 weeks. MAP Training My Brain ™ significantly reduced post-traumatic cognitions and ruminative thoughts in women with a history of sexual violence, whereas meditation alone, and exercise alone did not. MAP Training significantly enhanced a measure of self-worth, whereas meditation and exercise alone did not. Similar positive effects were observed for all participants, although meditation alone was also effective in reducing trauma-related thoughts. Overall, these data indicate the combination of meditation and exercise is synergistic. As a consequence, MAP Training is preferable and especially so for women who have experienced sexual violence in their past. Simply put, the whole is greater than the sum of its parts.
A simple physical model for deep moonquake occurrence times
Weber, R.C.; Bills, B.G.; Johnson, C.L.
2010-01-01
The physical process that results in moonquakes is not yet fully understood. The periodic occurrence times of events from individual clusters are clearly related to tidal stress, but also exhibit departures from the temporal regularity this relationship would seem to imply. Even simplified models that capture some of the relevant physics require a large number of variables. However, a single, easily accessible variable - the time interval I(n) between events - can be used to reveal behavior not readily observed using typical periodicity analyses (e.g., Fourier analyses). The delay-coordinate (DC) map, a particularly revealing way to display data from a time series, is a map of successive intervals: I(n+. 1) plotted vs. I(n). We use a DC approach to characterize the dynamics of moonquake occurrence. Moonquake-like DC maps can be reproduced by combining sequences of synthetic events that occur with variable probability at tidal periods. Though this model gives a good description of what happens, it has little physical content, thus providing only little insight into why moonquakes occur. We investigate a more mechanistic model. In this study, we present a series of simple models of deep moonquake occurrence, with consideration of both tidal stress and stress drop during events. We first examine the behavior of inter-event times in a delay-coordinate context, and then examine the output, in that context, of a sequence of simple models of tidal forcing and stress relief. We find, as might be expected, that the stress relieved by moonquakes influences their occurrence times. Our models may also provide an explanation for the opposite-polarity events observed at some clusters. ?? 2010.
Gravitons as Embroidery on the Weave
NASA Astrophysics Data System (ADS)
Iwasaki, Junichi; Rovelli, Carlo
We investigate the physical interpretation of the loop states that appear in the loop representation of quantum gravity. By utilizing the “weave” state, which has been recently introduced as a quantum description of the microstructure of flat space, we analyze the relation between loop states and graviton states. This relation determines a linear map M from the state-space of the nonperturbative theory (loop space) into the state-space of the linearized theory (Fock space). We present an explicit form of this map, and a preliminary investigation of its properties. The existence of such a map indicates that the full nonperturbative quantum theory includes a sector that describes the same physics as (the low energy regimes of) the linearized theory, namely gravitons on flat space.
Tsai, Hsin Y; Robledo, Diego; Lowe, Natalie R; Bekaert, Michael; Taggart, John B; Bron, James E; Houston, Ross D
2016-07-07
High density linkage maps are useful tools for fine-scale mapping of quantitative trait loci, and characterization of the recombination landscape of a species' genome. Genomic resources for Atlantic salmon (Salmo salar) include a well-assembled reference genome, and high density single nucleotide polymorphism (SNP) arrays. Our aim was to create a high density linkage map, and to align it with the reference genome assembly. Over 96,000 SNPs were mapped and ordered on the 29 salmon linkage groups using a pedigreed population comprising 622 fish from 60 nuclear families, all genotyped with the 'ssalar01' high density SNP array. The number of SNPs per group showed a high positive correlation with physical chromosome length (r = 0.95). While the order of markers on the genetic and physical maps was generally consistent, areas of discrepancy were identified. Approximately 6.5% of the previously unmapped reference genome sequence was assigned to chromosomes using the linkage map. Male recombination rate was lower than females across the vast majority of the genome, but with a notable peak in subtelomeric regions. Finally, using RNA-Seq data to annotate the reference genome, the mapped SNPs were categorized according to their predicted function, including annotation of ∼2500 putative nonsynonymous variants. The highest density SNP linkage map for any salmonid species has been created, annotated, and integrated with the Atlantic salmon reference genome assembly. This map highlights the marked heterochiasmy of salmon, and provides a useful resource for salmonid genetics and genomics research. Copyright © 2016 Tsai et al.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, B.H.F.; Vogt, G.; Stoehr, H.
1994-12-01
Best vitelliform macular dystrophy (VMD2) has previously been linked to several microsatellite markers from chromosome 11. Subsequently, additional genetic studies have refined the Best disease region to a 3.7-cM interval flanked by markers at D11S903 and PYGM. To further narrow the interval containing the Best disease gene and to obtain an estimate of the physical size of the minimal candidate region, we used a combination of high-resolution PCR hybrid mapping and analysis of recombinant Best disease chromosomes. We identified six markers from within the D11S903-PYGM interval that show no recombination with the defective gene in three multigeneration Best disease pedigrees.more » Our hybrid panel localizes these markers on either side of the centromere on chromosome 11. The closest markers flanking the disease gene are at D11S986 in band p12-11.22 on the short arm and at D11S480 in band q13.2-13.3 on the proximal long arm. This study demonstrates that the physical size of the Best disease region is exceedingly larger than previously estimated from the genetic data, because of the proximity of the defective gene to the centromere of chromosome 11.« less
NASA Astrophysics Data System (ADS)
Suryoputro, M. R.; Sari, A. D.; Burhanudin, R.; Sugarindra, M.
2017-12-01
This study discussed the implementation of ergonomics and value stream mapping issues to reduce the existing waste in the process of buffing upright panel in the XYZ music manufacturing company. Aimed to identify the 9 waste based on the identification in terms of production processes and ergonomic factors, namely environmental health and safety, defects, overproduction, waiting, not utilizing employee knowledge skill and ability, transportation, inventory, motion, and excess process. In addition, ergonomics factors were identified, for example posture using REBA, job safety analysis, and physical workload. This study results indicated that the process is having 21.4% of the potential dangers that could not be accepted and thus potentially lead to lost time. Continued with the physical workload, the score of % cardiovascular load value is still below 30%, which means that the physical workload is normal and allows the addition of work. Meanwhile, in the calculation of posture investigation, the REBA resulted that there was a motion waste identified on the edge buff machine and ryoto with the score of 10 and 8. In conclusion, the results shown that there were 20 overall waste produced, then thus waste were reduced based on the identification and discussion of proposed improvements.
Physical-mechanical image of the cell surface on the base of AFM data in contact mode
NASA Astrophysics Data System (ADS)
Starodubtseva, M. N.; Starodubtsev, I. E.; Yegorenkov, N. I.; Kuzhel, N. S.; Konstantinova, E. E.; Chizhik, S. A.
2017-10-01
Physical and mechanical properties of the cell surface are well-known markers of a cell state. The complex of the parameters characterizing the cell surface properties, such as the elastic modulus (E), the parameters of adhesive (Fa), and friction (Ff) forces can be measured using atomic force microscope (AFM) in a contact mode and form namely the physical-mechanical image of the cell surface that is a fundamental element of the cell mechanical phenotype. The paper aims at forming the physical-mechanical images of the surface of two types of glutaraldehyde-fixed cancerous cells (human epithelial cells of larynx carcinoma, HEp-2c cells, and breast adenocarcinoma, MCF-7 cells) based on the data obtained by AFM in air and revealing the basic difference between them. The average values of friction, elastic and adhesive forces, and the roughness of lateral force maps, as well as dependence of the fractal dimension of lateral force maps on Z-scale factor have been studied. We have revealed that the response of microscale areas of the HEp-2c cell surface having numerous microvilli to external mechanical forces is less expressed and more homogeneous in comparison with the response of MCF-7 cell surface.
Ahadnezhad Reveshty, Mohsen; Kamelifar, Mohammad Javad; Ranjbarnia, Behzad; Pashaiifar, Alireza
2014-01-01
Estimation of urban vulnerability to earthquakes can be consid-ered as an Ill-structured problem in urban in both unplanned and planned areas. Multi-criteria evaluation (MCE) provides a way to integrate different spatial data layers in a geographic information system to create composite maps representing risk. We utilized MCE in a raster Geographic Information System (GIS) to evaluate risk in vulnerable tissues of Tabriz, Iran zone. In this MCE physical risk factors and sub-factors were included and were weighted by experts. Afterward data entered to GIS and then the layers of the criteria were exported. The obtained results were entered to IDRISI and fuzzified. Ultimately the final map of physical vulnerability was outputted by overlaying order. Vulnerable tissues are highly consistent to non-official areas. However, the planned area which is called Valiasr is in low risky condition and this condition is desirable in crisis times. Here, we observe the preference of physical pre-planning operations. The links between urban planning and health are many and varied. Environmental, social and economic conditions in cities can have both positive and negative influences on human health and centre. Urban planning and related professions play an important role in shaping those conditions.
Ahadnezhad Reveshty, Mohsen; Kamelifar, Mohammad Javad; Ranjbarnia, Behzad; Pashaiifar, Alireza
2014-01-01
Background: Estimation of urban vulnerability to earthquakes can be considered as an Ill-structured problem in urban in both unplanned and planned areas. Multi-criteria evaluation (MCE) provides a way to integrate different spatial data layers in a geographic information system to create composite maps representing risk. We utilized MCE in a raster Geographic Information System (GIS) to evaluate risk in vulnerable tissues of Tabriz, Iran zone. Methods: In this MCE physical risk factors and sub-factors were included and were weighted by experts. Afterward data entered to GIS and then the layers of the criteria were exported. The obtained results were entered to IDRISI and fuzzified. Ultimately the final map of physical vulnerability was outputted by overlaying order. Results: Vulnerable tissues are highly consistent to non-official areas. However, the planned area which is called Valiasr is in low risky condition and this condition is desirable in crisis times. Here, we observe the preference of physical pre-planning operations. Conclusion: The links between urban planning and health are many and varied. Environmental, social and economic conditions in cities can have both positive and negative influences on human health and centre. Urban planning and related professions play an important role in shaping those conditions. PMID:25097846
Echo Mapping of Active Galactic Nuclei
NASA Technical Reports Server (NTRS)
Peterson, B. M.; Horne, K.
2004-01-01
Echo mapping makes use of the intrinsic variability of the continuum source in active galactic nuclei to map out the distribution and kinematics of line-emitting gas from its light travel time-delayed response to continuum changes. Echo mapping experiments have yielded sizes for the broad line-emitting region in about three dozen AGNs. The dynamics of the line-emitting gas seem to be dominated by the gravity of the central black hole, enabling measurement of the black-hole masses in AGNs. We discuss requirements for future echo-mapping experiments that will yield the high quality velocity-delay maps of the broad-line region that are needed to determine its physical nature.
Hans Bethe, Powering the Stars, and Nuclear Physics
dropdown arrow Site Map A-Z Index Menu Synopsis Hans Bethe, Energy Production in Stars, and Nuclear Physics physics, built atomic weapons, and called for a halt to their proliferation. Bethe's dual legacy is one of Laboratory] from 1943 to 1946. Prior to joining the Manhattan Project, Bethe taught physics at Cornell
Castro, Yessenia; Basen-Engquist, Karen; Fernandez, Maria E; Strong, Larkin L; Eakin, Elizabeth G; Resnicow, Ken; Li, Yisheng; Wetter, David W
2013-03-18
Smoking, poor diet, and physical inactivity account for as much as 60% of cancer risk. Latinos experience profound disparities in health behaviors, as well as the cancers associated with them. Currently, there is a dearth of controlled trials addressing these health behaviors among Latinos. Further, to the best of our knowledge, no studies address all three behaviors simultaneously, are culturally sensitive, and are guided by formative work with the target population. Latinos represent 14% of the U.S. population and are the fastest growing minority group in the country. Efforts to intervene on these important lifestyle factors among Latinos may accelerate the elimination of cancer-related health disparities. The proposed study will evaluate the efficacy of an evidence-based and theoretically-driven Motivation And Problem Solving (MAPS) intervention, adapted and culturally-tailored for reducing cancer risk related to smoking, poor diet, and physical inactivity among high-risk Mexican-origin smokers who are overweight/obese (n = 400). Participants will be randomly assigned to one of two groups: Health Education (HE) or MAPS (HE + up to 18 MAPS counseling calls over 18 months). Primary outcomes are smoking status, servings of fruits and vegetables, and both self-reported and objectively measured physical activity. Outcome assessments will occur at baseline, 6 months, 12 months, and 18 months. The current study will contribute to a very limited evidence base on multiple risk factor intervention studies on Mexican-origin individuals and has the potential to inform both future research and practice related to reducing cancer risk disparities. An effective program targeting multiple cancer risk behaviors modeled after chronic care programs has the potential to make a large public health impact because of the dearth of evidence-based interventions for Latinos and the extended period of support that is provided in such a program. National Institutes of Health Clinical Trials Registry # NCT01504919.
NASA Astrophysics Data System (ADS)
Lai, Chia-Lin; Lee, Jhih-Shian; Chen, Jyh-Cheng
2015-02-01
Energy-mapping, the conversion of linear attenuation coefficients (μ) calculated at the effective computed tomography (CT) energy to those corresponding to 511 keV, is an important step in CT-based attenuation correction (CTAC) for positron emission tomography (PET) quantification. The aim of this study was to implement energy-mapping step by using curve fitting ability of artificial neural network (ANN). Eleven digital phantoms simulated by Geant4 application for tomographic emission (GATE) and 12 physical phantoms composed of various volume concentrations of iodine contrast were used in this study to generate energy-mapping curves by acquiring average CT values and linear attenuation coefficients at 511 keV of these phantoms. The curves were built with ANN toolbox in MATLAB. To evaluate the effectiveness of the proposed method, another two digital phantoms (liver and spine-bone) and three physical phantoms (volume concentrations of 3%, 10% and 20%) were used to compare the energy-mapping curves built by ANN and bilinear transformation, and a semi-quantitative analysis was proceeded by injecting 0.5 mCi FDG into a SD rat for micro-PET scanning. The results showed that the percentage relative difference (PRD) values of digital liver and spine-bone phantom are 5.46% and 1.28% based on ANN, and 19.21% and 1.87% based on bilinear transformation. For 3%, 10% and 20% physical phantoms, the PRD values of ANN curve are 0.91%, 0.70% and 3.70%, and the PRD values of bilinear transformation are 3.80%, 1.44% and 4.30%, respectively. Both digital and physical phantoms indicated that the ANN curve can achieve better performance than bilinear transformation. The semi-quantitative analysis of rat PET images showed that the ANN curve can reduce the inaccuracy caused by attenuation effect from 13.75% to 4.43% in brain tissue, and 23.26% to 9.41% in heart tissue. On the other hand, the inaccuracy remained 6.47% and 11.51% in brain and heart tissue when the bilinear transformation was used. Overall, it can be concluded that the bilinear transformation method resulted in considerable bias and the newly proposed calibration curve built by ANN could achieve better results with acceptable accuracy.
Classifying galaxy spectra at 0.5 < z < 1 with self-organizing maps
NASA Astrophysics Data System (ADS)
Rahmani, S.; Teimoorinia, H.; Barmby, P.
2018-05-01
The spectrum of a galaxy contains information about its physical properties. Classifying spectra using templates helps elucidate the nature of a galaxy's energy sources. In this paper, we investigate the use of self-organizing maps in classifying galaxy spectra against templates. We trained semi-supervised self-organizing map networks using a set of templates covering the wavelength range from far ultraviolet to near infrared. The trained networks were used to classify the spectra of a sample of 142 galaxies with 0.5 < z < 1 and the results compared to classifications performed using K-means clustering, a supervised neural network, and chi-squared minimization. Spectra corresponding to quiescent galaxies were more likely to be classified similarly by all methods while starburst spectra showed more variability. Compared to classification using chi-squared minimization or the supervised neural network, the galaxies classed together by the self-organizing map had more similar spectra. The class ordering provided by the one-dimensional self-organizing maps corresponds to an ordering in physical properties, a potentially important feature for the exploration of large datasets.
Keyes, S D; Gillard, F; Soper, N; Mavrogordato, M N; Sinclair, I; Roose, T
2016-06-14
The mechanical impedance of soils inhibits the growth of plant roots, often being the most significant physical limitation to root system development. Non-invasive imaging techniques have recently been used to investigate the development of root system architecture over time, but the relationship with soil deformation is usually neglected. Correlative mapping approaches parameterised using 2D and 3D image data have recently gained prominence for quantifying physical deformation in composite materials including fibre-reinforced polymers and trabecular bone. Digital Image Correlation (DIC) and Digital Volume Correlation (DVC) are computational techniques which use the inherent material texture of surfaces and volumes, captured using imaging techniques, to map full-field deformation components in samples during physical loading. Here we develop an experimental assay and methodology for four-dimensional, in vivo X-ray Computed Tomography (XCT) and apply a Digital Volume Correlation (DVC) approach to the data to quantify deformation. The method is validated for a field-derived soil under conditions of uniaxial compression, and a calibration study is used to quantify thresholds of displacement and strain measurement. The validated and calibrated approach is then demonstrated for an in vivo test case in which an extending maize root in field-derived soil was imaged hourly using XCT over a growth period of 19h. This allowed full-field soil deformation data and 3D root tip dynamics to be quantified in parallel for the first time. This fusion of methods paves the way for comparative studies of contrasting soils and plant genotypes, improving our understanding of the fundamental mechanical processes which influence root system development. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Barnouin, O. S.; Ernst, C. M.; Daly, R. T.
2018-04-01
The free, publicly available Small Body Mapping Tool (SBMT) developed at the Johns Hopkins University Applied Physics Laboratory is a powerful, easy-to-use tool for accessing and analyzing data from small bodies.
Krops, Leonie A; Dekker, Rienk; Geertzen, Jan H B; Dijkstra, Pieter U
2018-03-16
Physically disabled people are less physically active compared with healthy people. Existing physical activity (PA) interventions are limited in reach, since they are primarily rehabilitation or school based. The current study aims to develop a community-based intervention for stimulating PA in hard-to-reach physically disabled people. To systematically develop a PA-stimulating intervention, intervention mapping (six steps) was applied. PA level and health-related quality of life of patients after rehabilitation was determined using questionnaires (step 1). Qualitative research was performed to study professionals' and physically disabled people's ideas about intervention objectives, determinants and design (steps 2 and 3). Since experts expressed no need for a new intervention, the existing intervention 'Activity coach' was adapted to the specific target population. The adapted intervention 'Activity coach+' composes a network of intermediate organisations that refers participants to an activity coach, who coaches participants during 1 year. After a preintervention physical assessment by a physiotherapist, participants will be individually guided to existing organised or non-organised activities. An activity tracker will be used to monitor and stimulate PA in daily life (step 4). To support adoption and implementation, meetings between involved parties are organised (step 5). 'Activity coach+' is implemented in community in March 2017, and will be evaluated using a mixed-method analysis. Quantitative evaluation of intervention effects on PA, health and social participation takes place after 0, 2, 4, 6 and 12 months. The implementation process and experiences with the intervention will be determined using qualitative research (step 6). Insights from this study will be used for dissemination and further development of the intervention. The Medical Ethical Committee of the University Medical Center Groningen confirmed that formal ethical approval was not required (METc 2016/630). NTR6858. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Integrating hydrodynamic models and COSMO-SkyMed derived products for flood damage assessment
NASA Astrophysics Data System (ADS)
Giuffra, Flavio; Boni, Giorgio; Pulvirenti, Luca; Pierdicca, Nazzareno; Rudari, Roberto; Fiorini, Mattia
2015-04-01
Floods are the most frequent weather disasters in the world and probably the most costly in terms of social and economic losses. They may have a strong impact on infrastructures and health because the range of possible damages includes casualties, loss of housing and destruction of crops. Presently, the most common approach for remotely sensing floods is the use of synthetic aperture radar (SAR) images. Key features of SAR data for inundation mapping are the synoptic view, the capability to operate even in cloudy conditions and during both day and night time and the sensitivity of the microwave radiation to water. The launch of a new generation of instruments, such as TerraSAR-X and COSMO-SkyMed (CSK) allows producing near real time flood maps having a spatial resolution in the order of 1-5 m. Moreover, the present (CSK) and upcoming (Sentinel-1) constellations permit the acquisition of radar data characterized by a short revisit time (in the order of some hours for CSK), so that the production of frequent inundation maps can be envisaged. Nonetheless, gaps might be present in the SAR-derived flood maps because of the limited area imaged by SAR; moreover, the detection of floodwater may be complicated by the presence of very dense vegetation or urban settlements. Hence the need to complement SAR-derived flood maps with the outputs of physical models. Physical models allow delivering to end users very useful information for a complete flood damage assessment, such as data on water depths and flow directions, which cannot be directly derived from satellite remote sensing images. In addition, the flood extent predictions of hydraulic models can be compared to SAR-derived inundation maps to calibrate the models, or to fill the aforementioned gaps that can be present in the SAR-derived maps. Finally, physical models enable the construction of risk scenarios useful for emergency managers to take their decisions and for programming additional SAR acquisitions in order to observe the temporal evolution of the event (e.g. the water receding). In this paper, the first outcomes of a study aiming at combining COSMO-SkyMed derived flood maps with hydrodynamic models are presented. The study is carried out within the framework of the EO-based CHange detection for Operational Flood Management (ECHO-FM) project, funded by the Italian Space Agency (ASI) as part of the research activities agreed in the cooperation between ASI and the Japan Aerospace Exploration Agency (JAXA). The flood that hit the region of Shkodër, in Albania, on January 2010, is considered as test case. The work focuses on the utility of a dense temporal series of SAR data, such as that available through CSK for this case study, used in combination with a hydrodynamic model to monitor over a long time (in the order of 3 weeks) the natural drainage of the Shkodër floodplain. It is shown that by matching the outputs of the model to SAR observations, the hydrodynamic inconsistencies in CSK estimates can be corrected.
Thayer, Edward C.; Olson, Maynard V.; Karp, Richard M.
1999-01-01
Genetic and physical maps display the relative positions of objects or markers occurring within a target DNA molecule. In constructing maps, the primary objective is to determine the ordering of these objects. A further objective is to assign a coordinate to each object, indicating its distance from a reference end of the target molecule. This paper describes a computational method and a body of software for assigning coordinates to map objects, given a solution or partial solution to the ordering problem. We describe our method in the context of multiple–complete–digest (MCD) mapping, but it should be applicable to a variety of other mapping problems. Because of errors in the data or insufficient clone coverage to uniquely identify the true ordering of the map objects, a partial ordering is typically the best one can hope for. Once a partial ordering has been established, one often seeks to overlay a metric along the map to assess the distances between the map objects. This problem often proves intractable because of data errors such as erroneous local length measurements (e.g., large clone lengths on low-resolution physical maps). We present a solution to the coordinate assignment problem for MCD restriction-fragment mapping, in which a coordinated set of single-enzyme restriction maps are simultaneously constructed. We show that the coordinate assignment problem can be expressed as the solution of a system of linear constraints. If the linear system is free of inconsistencies, it can be solved using the standard Bellman–Ford algorithm. In the more typical case where the system is inconsistent, our program perturbs it to find a new consistent system of linear constraints, close to those of the given inconsistent system, using a modified Bellman–Ford algorithm. Examples are provided of simple map inconsistencies and the methods by which our program detects candidate data errors and directs the user to potential suspect regions of the map. PMID:9927487
Hanson, Josh; Lam, Sophia W K; Alam, Shamsul; Pattnaik, Rajyabardhan; Mahanta, Kishore C; Uddin Hasan, Mahatab; Mohanty, Sanjib; Mishra, Saroj; Cohen, Sophie; Day, Nicholas; White, Nicholas; Dondorp, Arjen
2013-10-01
Adults with severe malaria frequently require intravenous fluid therapy to restore their circulating volume. However, fluid must be delivered judiciously as both under- and over-hydration increase the risk of complications and, potentially, death. As most patients will be cared for in a resource-poor setting, management guidelines necessarily recommend that physical examination should guide fluid resuscitation. However, the reliability of this strategy is uncertain. To determine the ability of physical examination to identify hypovolaemia, volume responsiveness, and pulmonary oedema, clinical signs and invasive measures of volume status were collected independently during an observational study of 28 adults with severe malaria. The physical examination defined volume status poorly. Jugular venous pressure (JVP) did not correlate with intravascular volume as determined by global end diastolic volume index (GEDVI; r(s) = 0.07, p = 0.19), neither did dry mucous membranes (p = 0.85), or dry axillae (p = 0.09). GEDVI was actually higher in patients with decreased tissue turgor (p < 0.001). Poor capillary return correlated with GEDVI, but was present infrequently (7% of observations) and, therefore, insensitive. Mean arterial pressure (MAP) correlated with GEDVI (rs = 0.16, p = 0.002), but even before resuscitation patients with a low GEDVI had a preserved MAP. Anuria on admission was unrelated to GEDVI and although liberal fluid resuscitation led to a median hourly urine output of 100 ml in 19 patients who were not anuric on admission, four (21%) developed clinical pulmonary oedema subsequently. MAP was unrelated to volume responsiveness (p = 0.71), while a low JVP, dry mucous membranes, dry axillae, increased tissue turgor, prolonged capillary refill, and tachycardia all had a positive predictive value for volume responsiveness of ≤50%. Extravascular lung water ≥11 ml/kg indicating pulmonary oedema was present on 99 of the 353 times that it was assessed during the study, but was identified on less than half these occasions by tachypnoea, chest auscultation, or an elevated JVP. A clear chest on auscultation and a respiratory rate <30 breaths/minute could exclude pulmonary oedema on 82% and 72% of occasions respectively. Findings on physical examination correlate poorly with true volume status in adults with severe malaria and must be used with caution to guide fluid therapy. Clinicaltrials.gov identifier: NCT00692627.
At least eighty percent of brain grey matter is modifiable by physical activity: A review study.
Batouli, Seyed Amir Hossein; Saba, Valiallah
2017-08-14
The human brain is plastic, i.e. it can show structural changes in response to the altered environment. Physical activity (PA) is a lifestyle factor which has significant associations with the structural and functional aspects of the human brain, as well as with the mind and body health. Many studies have reported regional/global brain volume increments due to exercising; however, a map which shows the overall extent of the influences of PAs on brain structure is not available. In this study, we collected all the reports on brain structural alterations in association with PA in healthy humans, and next, a brain map of the extent of these effects is provided. The results of this study showed that a large network of brain areas, equal to 82% of the total grey matter volume, were associated with PA. This finding has important implications in utilizing PA as a mediator factor for educational purposes in children, rehabilitation applications in patients, improving the cognitive abilities of the human brain such as in learning or memory, and preventing age-related brain deteriorations. Copyright © 2017 Elsevier B.V. All rights reserved.
Kamel, Katarzyna A; Kroc, Magdalena; Święcicki, Wojciech
2015-01-01
Sequence tagged site (STS) markers are valuable tools for genetic and physical mapping that can be successfully used in comparative analyses among related species. Current challenges for molecular markers genotyping in plants include the lack of fast, sensitive and inexpensive methods suitable for sequence variant detection. In contrast, high resolution melting (HRM) is a simple and high-throughput assay, which has been widely applied in sequence polymorphism identification as well as in the studies of genetic variability and genotyping. The present study is the first attempt to use the HRM analysis to genotype STS markers in narrow-leafed lupin (Lupinus angustifolius L.). The sensitivity and utility of this method was confirmed by the sequence polymorphism detection based on melting curve profiles in the parental genotypes and progeny of the narrow-leafed lupin mapping population. Application of different approaches, including amplicon size and a simulated heterozygote analysis, has allowed for successful genetic mapping of 16 new STS markers in the narrow-leafed lupin genome.
Lifetime maps for orbits around Callisto using a double-averaged model
NASA Astrophysics Data System (ADS)
Cardoso dos Santos, Josué; Carvalho, Jean P. S.; Prado, Antônio F. B. A.; Vilhena de Moraes, Rodolpho
2017-12-01
The present paper studies the lifetime of orbits around a moon that is in orbit around its mother planet. In the context of the inner restricted three-body problem, the dynamical model considered in the present study uses the double-averaged dynamics of a spacecraft moving around a moon under the gravitational pulling of a disturbing third body in an elliptical orbit. The non-uniform distribution of the mass of the moon is also considered. Applications are performed using numerical experiments for the Callisto-spacecraft-Jupiter system, and lifetime maps for different values of the eccentricity of the disturbing body (Jupiter) are presented, in order to investigate the role of this parameter in these maps. The idea is to simulate a system with the same physical parameters as the Jupiter-Callisto system, but with larger eccentricities. These maps are also useful for validation and improvements in the results available in the literature, such as to find conditions to extend the available time for a massless orbiting body to be in highly inclined orbits under gravitational disturbances coming from the other bodies of the system.
NON-HOMOGENEOUS POISSON PROCESS MODEL FOR GENETIC CROSSOVER INTERFERENCE.
Leu, Szu-Yun; Sen, Pranab K
2014-01-01
The genetic crossover interference is usually modeled with a stationary renewal process to construct the genetic map. We propose two non-homogeneous, also dependent, Poisson process models applied to the known physical map. The crossover process is assumed to start from an origin and to occur sequentially along the chromosome. The increment rate depends on the position of the markers and the number of crossover events occurring between the origin and the markers. We show how to obtain parameter estimates for the process and use simulation studies and real Drosophila data to examine the performance of the proposed models.
Rashotte, Judy; Varpio, Lara; Day, Kathy; Kuziemsky, Craig; Parush, Avi; Elliott-Miller, Pat; King, James W; Roffey, Tyson
2016-09-01
Members of the healthcare team must access and share patient information to coordinate interprofessional collaborative practice (ICP). Although some evidence suggests that electronic health records (EHRs) contribute to in-team communication breakdowns, EHRs are still widely hailed as tools that support ICP. If EHRs are expected to promote ICP, researchers must be able to longitudinally study the impact of EHRs on ICP across communication types, users, and physical locations. This paper presents a data collection and analysis tool, named the Map of the Clinical Interprofessional Communication Spaces (MCICS), which supports examining how EHRs impact ICP over time, and across communication types, users, and physical locations. The tool's development evolved during a large prospective longitudinal study conducted at a Canadian pediatric academic tertiary-care hospital. This two-phased study [i.e., pre-implementation (phase 1) and post implementation (phase 2)] of an EHR employed a constructivist grounded theory approach and triangulated data collection strategies (i.e., non-participant observations, interviews, think-alouds, and document analysis). The MCICS was created through a five-step process: (i) preliminary structural development based on the use of the paper-based chart (phase 1); (ii) confirmatory review and modification process (phase 1); (iii) ongoing data collection and analysis facilitated by the map (phase 1); (iv) data collection and modification of map based on impact of EHR (phase 2); and (v) confirmatory review and modification process (phase 2). Creating and using the MCICS enabled our research team to locate, observe, and analyze the impact of the EHR on ICP, (a) across oral, electronic, and paper communications, (b) through a patient's passage across different units in the hospital, (c) across the duration of the patient's stay in hospital, and (d) across multiple healthcare providers. By using the MCICS, we captured a comprehensive, detailed picture of the clinical milieu in which the EHR was implemented, and of the intended and unintended consequences of the EHR's deployment. The map supported our observations and analysis of ICP communication spaces, and of the role of the patient chart in these spaces. If EHRs are expected to help resolve ICP challenges, it is important that researchers be able to longitudinally assess the impact of EHRs on ICP across multiple modes of communication, users, and physical locations. Mapping the clinical communication spaces can help EHR designers, clinicians, educators and researchers understand these spaces, appreciate their complexity, and navigate their way towards effective use of EHRs as means for supporting ICP. We propose that the MCICS can be used "as is" in other academic tertiary-care pediatric hospitals, and can be tailored for use in other healthcare institutions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Jackson, F. C.
1984-01-01
The NASA K sub u band Radar Ocean Wave Spectrometer (ROWS) is an experimental prototype of a possible future satellite instrument for low data rate global waves measurements. The ROWS technique, which utilizes short pulse radar altimeters in a conical scan mode near vertical incidence to map the directional slope spectrum in wave number and azimuth, is briefly described. The potential of the technique is illustrated by some specific case studies of wave physical processes utilizing the aircraft ROWS data. These include: (1) an evaluation of numerical hindcast model performance in storm sea conditions, (2) a study of fetch limited wave growth, and (3) a study of the fully developed sea state. Results of these studies, which are briefly summarized, show how directional wave spectral observations from a mobile platform can contribute enormously to our understanding of wave physical processes.
NASA Astrophysics Data System (ADS)
Richardson, Ryan T.
This study builds upon recent research in the field of fluvial remote sensing by applying techniques for mapping physical attributes of rivers. Depth, velocity, and grain size are primary controls on the types of habitat present in fluvial ecosystems. This thesis focuses on expanding fluvial remote sensing to larger spatial extents and sub-meter resolutions, which will increase our ability to capture the spatial heterogeneity of habitat at a resolution relevant to individual salmonids and an extent relevant to species. This thesis consists of two chapters, one focusing on expanding the spatial extent over which depth can be mapped using Optimal Band Ratio Analysis (OBRA) and the other developing general relations for mapping grain size from three-dimensional topographic point clouds. The two chapters are independent but connected by the overarching goal of providing scientists and managers more useful tools for quantifying the amount and quality of salmonid habitat via remote sensing. The OBRA chapter highlights the true power of remote sensing to map depths from hyperspectral images as a central component of watershed scale analysis, while also acknowledging the great challenges involved with increasing spatial extent. The grain size mapping chapter establishes the first general relations for mapping grain size from roughness using point clouds. These relations will significantly reduce the time needed in the field by eliminating the need for independent measurements of grain size for calibrating the roughness-grain size relationship and thus making grain size mapping with SFM more cost effective for river restoration and monitoring. More data from future studies are needed to refine these relations and establish their validity and generality. In conclusion, this study adds to the rapidly growing field of fluvial remote sensing and could facilitate river research and restoration.
Klein, Patricia E.; Klein, Robert R.; Cartinhour, Samuel W.; Ulanch, Paul E.; Dong, Jianmin; Obert, Jacque A.; Morishige, Daryl T.; Schlueter, Shannon D.; Childs, Kevin L.; Ale, Melissa; Mullet, John E.
2000-01-01
Sorghum is an important target for plant genomic mapping because of its adaptation to harsh environments, diverse germplasm collection, and value for comparing the genomes of grass species such as corn and rice. The construction of an integrated genetic and physical map of the sorghum genome (750 Mbp) is a primary goal of our sorghum genome project. To help accomplish this task, we have developed a new high-throughput PCR-based method for building BAC contigs and locating BAC clones on the sorghum genetic map. This task involved pooling 24,576 sorghum BAC clones (∼4× genome equivalents) in six different matrices to create 184 pools of BAC DNA. DNA fragments from each pool were amplified using amplified fragment length polymorphism (AFLP) technology, resolved on a LI-COR dual-dye DNA sequencing system, and analyzed using Bionumerics software. On average, each set of AFLP primers amplified 28 single-copy DNA markers that were useful for identifying overlapping BAC clones. Data from 32 different AFLP primer combinations identified ∼2400 BACs and ordered ∼700 BAC contigs. Analysis of a sorghum RIL mapping population using the same primer pairs located ∼200 of the BAC contigs on the sorghum genetic map. Restriction endonuclease fingerprinting of the entire collection of sorghum BAC clones was applied to test and extend the contigs constructed using this PCR-based methodology. Analysis of the fingerprint data allowed for the identification of 3366 contigs each containing an average of 5 BACs. BACs in ∼65% of the contigs aligned by AFLP analysis had sufficient overlap to be confirmed by DNA fingerprint analysis. In addition, 30% of the overlapping BACs aligned by AFLP analysis provided information for merging contigs and singletons that could not be joined using fingerprint data alone. Thus, the combination of fingerprinting and AFLP-based contig assembly and mapping provides a reliable, high-throughput method for building an integrated genetic and physical map of the sorghum genome. [The sequence data described in this paper have been submitted to the GenBank data library under accession no. AF218263.] PMID:10854411
The Orion Nebula in the Far-Infrared: High-J CO and fine-structure lines mapped by FIFI-LS/SOFIA
NASA Astrophysics Data System (ADS)
Klein, Randolf; Looney, Leslie W.; Cox, Erin; Fischer, Christian; Iserlohe, Christof; Krabbe, Alfred
2017-03-01
The Orion Nebula is the closest massive star forming region allowing us to study the physical conditions in such a region with high spatial resolution. We used the far infrared integral-field spectrometer, FIFI-LS, on-board the airborne observatory SOFIA to study the atomic and molecular gas in the Orion Nebula at medium spectral resolution. The large maps obtained with FIFI-LS cover the nebula from the BN/KL-object to the bar in several fine structure lines. They allow us to study the conditions of the photon-dominated region and the interface to the molecular cloud with unprecedented detail. Another investigation targeted the molecular gas in the BN/KL region of the Orion Nebula, which is stirred up by a violent explosion about 500 years ago. The explosion drives a wide angled molecular outflow. We present maps of several high-J CO observations, allowing us to analyze the heated molecular gas.
Physical Activity Patterns of Acute Stroke Patients Managed in a Rehabilitation Focused Stroke Unit
2013-01-01
Background. Comprehensive stroke unit care, incorporating acute care and rehabilitation, may promote early physical activity after stroke. However, previous information regarding physical activity specific to the acute phase of stroke and the comprehensive stroke unit setting is limited to one stroke unit. This study describes the physical activity undertaken by patients within 14 days after stroke admitted to a comprehensive stroke unit. Methods. This study was a prospective observational study. Behavioural mapping was used to determine the proportion of the day spent in different activities. Therapist reports were used to determine the amount of formal therapy received on the day of observation. The timing of commencement of activity out of bed was obtained from the medical records. Results. On average, patients spent 45% (SD 25) of the day in some form of physical activity and received 58 (SD 34) minutes per day of physiotherapy and occupational therapy combined. Mean time to first mobilisation out of bed was 46 (SD 32) hours post-stroke. Conclusions. This study suggests that commencement of physical activity occurs earlier and physical activity is at a higher level early after stroke in this comprehensive stroke unit, when compared to studies of other acute stroke models of care. PMID:24024192
Aelterman, Nathalie; Vansteenkiste, Maarten; Van Keer, Hilde; Van den Berghe, Lynn; De Meyer, Jotie; Haerens, Leen
2012-08-01
Despite evidence for the utility of self-determination theory in physical education, few studies used objective indicators of physical activity and mapped out between-class, relative to between-student, differences in physical activity. This study investigated whether moderate-to-vigorous physical activity (MVPA) and rated collective engagement in physical education were associated with autonomous motivation, controlled motivation, and amotivation at the between-class and between-student levels. Participants were 739 pupils (46.3% boys, Mage = 14.36 ±1.94) from 46 secondary school classes in Flanders (Belgium). Multilevel analyses indicated that 37% and 63% of the variance in MVPA was explained by between-student and between-class differences, respectively. Students' personal autonomous motivation related positively to MVPA. Average autonomous class motivation was positively related to between-class variation in MVPA and collective engagement. Average controlled class motivation and average class amotivation were negatively associated with collective engagement. The findings are discussed in light of self-determination theory's emphasis on quality of motivation.
Genetic mapping and predictive testing for multiple endocrine neoplasia type 1 (MEN1)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pandit, S.D.; Read, C.; Liu, L.
1994-09-01
Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant disorder with an estimated prevalance of 20-200 per million persons. It is characterized by the combined occurence of tumors involving two or more endocrine glands, namely the parathyroid glands, the endocrine pancreas and the anterior pituitary. This disorder affects virtually all age groups with an average range of 20-60 years. Linkage analysis mapped the MEN1 locus to 11q13 near the human muscle glycogen phosphorylase (PYGM) locus. Additional genetic mapping and deletion analysis studies have refined the region containing the MEN1 locus to a 3 cM interval flanked by markers PYGMmore » and D11S146/D11S97, a physical distance of approximately 1.5 Mb. We have identified 8 large families segregating MEN1 (71 affected from a population of 389 individuals). A high resolution reference map for the 11q13 region has been constructed using four new microsatellite markers, the CEPH reference (40 family) pedigree resource, and the CRI-MAP program package. Subsequent analyses using the LINKAGE program package and 8 MEN 1 families placed the MEN1 locus within the context of the microsatellite map. This map was used to develop a linkage-based predictive test. These markers have also been used to further refine the interval containing the MEN1 locus from the study of chromosome deletions (loss of heterozygosity, LOH studies) in paired sets of tumor and germline DNA from 87 MEN 1 affected individuals.« less
Dukić, Marinela; Berner, Daniel; Roesti, Marius; Haag, Christoph R; Ebert, Dieter
2016-10-13
Recombination rate is an essential parameter for many genetic analyses. Recombination rates are highly variable across species, populations, individuals and different genomic regions. Due to the profound influence that recombination can have on intraspecific diversity and interspecific divergence, characterization of recombination rate variation emerges as a key resource for population genomic studies and emphasises the importance of high-density genetic maps as tools for studying genome biology. Here we present such a high-density genetic map for Daphnia magna, and analyse patterns of recombination rate across the genome. A F2 intercross panel was genotyped by Restriction-site Associated DNA sequencing to construct the third-generation linkage map of D. magna. The resulting high-density map included 4037 markers covering 813 scaffolds and contigs that sum up to 77 % of the currently available genome draft sequence (v2.4) and 55 % of the estimated genome size (238 Mb). Total genetic length of the map presented here is 1614.5 cM and the genome-wide recombination rate is estimated to 6.78 cM/Mb. Merging genetic and physical information we consistently found that recombination rate estimates are high towards the peripheral parts of the chromosomes, while chromosome centres, harbouring centromeres in D. magna, show very low recombination rate estimates. Due to its high-density, the third-generation linkage map for D. magna can be coupled with the draft genome assembly, providing an essential tool for genome investigation in this model organism. Thus, our linkage map can be used for the on-going improvements of the genome assembly, but more importantly, it has enabled us to characterize variation in recombination rate across the genome of D. magna for the first time. These new insights can provide a valuable assistance in future studies of the genome evolution, mapping of quantitative traits and population genetic studies.
Yim, Young-Sun; Davis, Georgia L.; Duru, Ngozi A.; Musket, Theresa A.; Linton, Eric W.; Messing, Joachim W.; McMullen, Michael D.; Soderlund, Carol A.; Polacco, Mary L.; Gardiner, Jack M.; Coe, Edward H.
2002-01-01
Three maize (Zea mays) bacterial artificial chromosome (BAC) libraries were constructed from inbred line B73. High-density filter sets from all three libraries, made using different restriction enzymes (HindIII, EcoRI, and MboI, respectively), were evaluated with a set of complex probes including the185-bp knob repeat, ribosomal DNA, two telomere-associated repeat sequences, four centromere repeats, the mitochondrial genome, a multifragment chloroplast DNA probe, and bacteriophage λ. The results indicate that the libraries are of high quality with low contamination by organellar and λ-sequences. The use of libraries from multiple enzymes increased the chance of recovering each region of the genome. Ninety maize restriction fragment-length polymorphism core markers were hybridized to filters of the HindIII library, representing 6× coverage of the genome, to initiate development of a framework for anchoring BAC contigs to the intermated B73 × Mo17 genetic map and to mark the bin boundaries on the physical map. All of the clones used as hybridization probes detected at least three BACs. Twenty-two single-copy number core markers identified an average of 7.4 ± 3.3 positive clones, consistent with the expectation of six clones. This information is integrated into fingerprinting data generated by the Arizona Genomics Institute to assemble the BAC contigs using fingerprint contig and contributed to the process of physical map construction. PMID:12481051
Self-optimizing Monte Carlo method for nuclear well logging simulation
NASA Astrophysics Data System (ADS)
Liu, Lianyan
1997-09-01
In order to increase the efficiency of Monte Carlo simulation for nuclear well logging problems, a new method has been developed for variance reduction. With this method, an importance map is generated in the regular Monte Carlo calculation as a by-product, and the importance map is later used to conduct the splitting and Russian roulette for particle population control. By adopting a spatial mesh system, which is independent of physical geometrical configuration, the method allows superior user-friendliness. This new method is incorporated into the general purpose Monte Carlo code MCNP4A through a patch file. Two nuclear well logging problems, a neutron porosity tool and a gamma-ray lithology density tool are used to test the performance of this new method. The calculations are sped up over analog simulation by 120 and 2600 times, for the neutron porosity tool and for the gamma-ray lithology density log, respectively. The new method enjoys better performance by a factor of 4~6 times than that of MCNP's cell-based weight window, as per the converged figure-of-merits. An indirect comparison indicates that the new method also outperforms the AVATAR process for gamma-ray density tool problems. Even though it takes quite some time to generate a reasonable importance map from an analog run, a good initial map can create significant CPU time savings. This makes the method especially suitable for nuclear well logging problems, since one or several reference importance maps are usually available for a given tool. Study shows that the spatial mesh sizes should be chosen according to the mean-free-path. The overhead of the importance map generator is 6% and 14% for neutron and gamma-ray cases. The learning ability towards a correct importance map is also demonstrated. Although false-learning may happen, physical judgement can help diagnose with contributon maps. Calibration and analysis are performed for the neutron tool and the gamma-ray tool. Due to the fact that a very good initial importance map is always available after the first point has been calculated, high computing efficiency is maintained. The availability of contributon maps provides an easy way of understanding the logging measurement and analyzing for the depth of investigation.
Forrest, Jamie I; Stevenson, Benjamin; Rich, Ashleigh; Michelow, Warren; Pai, Jayaram; Jollimore, Jody; Raymond, H. Fisher; Moore, David; Hogg, Robert S; Roth, Eric A
2014-01-01
Literature suggests formative research is vital for those using respondent-driven sampling (RDS) to study hidden populations of interest. However, few authors have described in detail how different qualitative methodologies can address the objectives of formative research for understanding the social network properties of the study population, selecting seeds, and adapting survey logistics to best fit the population. In this paper we describe the use of community mapping exercises as a tool within focus groups to collect data on social and sexual network characteristics of gay and bisexual men in the metropolitan area of Vancouver, Canada. Three key themes emerged from analyzing community maps along with other formative research data: (a) connections between physical spaces and social networks of gay and bisexual men, (b) diversity in communities, and (c) substance use connected with formation of sub-communities. We discuss how these themes informed the planning and operations of a longitudinal epidemiological cohort study recruited by RDS. We argue that using community mapping within formative research is a valuable qualitative tool for characterizing network structures of a diverse and differentiated population of gay and bisexual men in a highly developed urban setting. PMID:24512070
Griffin, Darren K; Robertson, Lindsay B; Tempest, Helen G; Vignal, Alain; Fillon, Valérie; Crooijmans, Richard PMA; Groenen, Martien AM; Deryusheva, Svetlana; Gaginskaya, Elena; Carré, Wilfrid; Waddington, David; Talbot, Richard; Völker, Martin; Masabanda, Julio S; Burt, Dave W
2008-01-01
Background Comparative genomics is a powerful means of establishing inter-specific relationships between gene function/location and allows insight into genomic rearrangements, conservation and evolutionary phylogeny. The availability of the complete sequence of the chicken genome has initiated the development of detailed genomic information in other birds including turkey, an agriculturally important species where mapping has hitherto focused on linkage with limited physical information. No molecular study has yet examined conservation of avian microchromosomes, nor differences in copy number variants (CNVs) between birds. Results We present a detailed comparative cytogenetic map between chicken and turkey based on reciprocal chromosome painting and mapping of 338 chicken BACs to turkey metaphases. Two inter-chromosomal changes (both involving centromeres) and three pericentric inversions have been identified between chicken and turkey; and array CGH identified 16 inter-specific CNVs. Conclusion This is the first study to combine the modalities of zoo-FISH and array CGH between different avian species. The first insight into the conservation of microchromosomes, the first comparative cytogenetic map of any bird and the first appraisal of CNVs between birds is provided. Results suggest that avian genomes have remained relatively stable during evolution compared to mammalian equivalents. PMID:18410676
Concept Maps as Tools for Teaching.
ERIC Educational Resources Information Center
Moreira, Marco A.
1979-01-01
Discusses how concept maps with two dimensional diagrams which show hierarchical relationships among concepts of a discipline can be used in teaching physics. An example for teaching a course in electromagnetism at the Federal University of Rio Grande do Sul, Brazil is presented. (HM)
Characterization and solvability of quasipolynomial symplectic mappings
NASA Astrophysics Data System (ADS)
Hernández-Bermejo, Benito; Brenig, Léon
2004-02-01
Quasipolynomial (or QP) mappings constitute a wide generalization of the well-known Lotka-Volterra mappings, of importance in different fields such as population dynamics, physics, chemistry or economy. In addition, QP mappings are a natural discrete-time analogue of the continuous QP systems, which have been extensively used in different pure and applied domains. After presenting the basic definitions and properties of QP mappings in a previous paper [1], the purpose of this work is to focus on their characterization by considering the existence of symplectic QP mappings. In what follows such QP symplectic maps are completely characterized. Moreover, use of the QP formalism can be made in order to demonstrate that all QP symplectic mappings have an analytical solution that is explicitly and generally constructed. Examples are given.
Fracture mechanism maps in unirradiated and irradiated metals and alloys
NASA Astrophysics Data System (ADS)
Li, Meimei; Zinkle, S. J.
2007-04-01
This paper presents a methodology for computing a fracture mechanism map in two-dimensional space of tensile stress and temperature using physically-based constitutive equations. Four principal fracture mechanisms were considered: cleavage fracture, low temperature ductile fracture, transgranular creep fracture, and intergranular creep fracture. The methodology was applied to calculate fracture mechanism maps for several selected reactor materials, CuCrZr, 316 type stainless steel, F82H ferritic-martensitic steel, V4Cr4Ti and Mo. The calculated fracture maps are in good agreement with empirical maps obtained from experimental observations. The fracture mechanism maps of unirradiated metals and alloys were modified to include radiation hardening effects on cleavage fracture and high temperature helium embrittlement. Future refinement of fracture mechanism maps is discussed.
Peoples, R; Franke, Y; Wang, Y K; Pérez-Jurado, L; Paperna, T; Cisco, M; Francke, U
2000-01-01
Williams-Beuren syndrome (WBS) is a developmental disorder caused by haploinsufficiency for genes in a 2-cM region of chromosome band 7q11.23. With the exception of vascular stenoses due to deletion of the elastin gene, the various features of WBS have not yet been attributed to specific genes. Although >/=16 genes have been identified within the WBS deletion, completion of a physical map of the region has been difficult because of the large duplicated regions flanking the deletion. We present a physical map of the WBS deletion and flanking regions, based on assembly of a bacterial artificial chromosome/P1-derived artificial chromosome contig, analysis of high-throughput genome-sequence data, and long-range restriction mapping of genomic and cloned DNA by pulsed-field gel electrophoresis. Our map encompasses 3 Mb, including 1.6 Mb within the deletion. Two large duplicons, flanking the deletion, of >/=320 kb contain unique sequence elements from the internal border regions of the deletion, such as sequences from GTF2I (telomeric) and FKBP6 (centromeric). A third copy of this duplicon exists in inverted orientation distal to the telomeric flanking one. These duplicons show stronger sequence conservation with regard to each other than to the presumptive ancestral loci within the common deletion region. Sequence elements originating from beyond 7q11.23 are also present in these duplicons. Although the duplicons are not present in mice, the order of the single-copy genes in the conserved syntenic region of mouse chromosome 5 is inverted relative to the human map. A model is presented for a mechanism of WBS-deletion formation, based on the orientation of duplicons' components relative to each other and to the ancestral elements within the deletion region.
Gudys, Kornelia; Guzy-Wrobelska, Justyna; Janiak, Agnieszka; Dziurka, Michał A.; Ostrowska, Agnieszka; Hura, Katarzyna; Jurczyk, Barbara; Żmuda, Katarzyna; Grzybkowska, Daria; Śróbka, Joanna; Urban, Wojciech; Biesaga-Koscielniak, Jolanta; Filek, Maria; Koscielniak, Janusz; Mikołajczak, Krzysztof; Ogrodowicz, Piotr; Krystkowiak, Karolina; Kuczyńska, Anetta; Krajewski, Paweł; Szarejko, Iwona
2018-01-01
Drought is one of the most adverse abiotic factors limiting growth and productivity of crops. Among them is barley, ranked fourth cereal worldwide in terms of harvested acreage and production. Plants have evolved various mechanisms to cope with water deficit at different biological levels, but there is an enormous challenge to decipher genes responsible for particular complex phenotypic traits, in order to develop drought tolerant crops. This work presents a comprehensive approach for elucidation of molecular mechanisms of drought tolerance in barley at the seedling stage of development. The study includes mapping of QTLs for physiological and biochemical traits associated with drought tolerance on a high-density function map, projection of QTL confidence intervals on barley physical map, and the retrievement of positional candidate genes (CGs), followed by their prioritization based on Gene Ontology (GO) enrichment analysis. A total of 64 QTLs for 25 physiological and biochemical traits that describe plant water status, photosynthetic efficiency, osmoprotectant and hormone content, as well as antioxidant activity, were positioned on a consensus map, constructed using RIL populations developed from the crosses between European and Syrian genotypes. The map contained a total of 875 SNP, SSR and CGs, spanning 941.86 cM with resolution of 1.1 cM. For the first time, QTLs for ethylene, glucose, sucrose, maltose, raffinose, α-tocopherol, γ-tocotrienol content, and catalase activity, have been mapped in barley. Based on overlapping confidence intervals of QTLs, 11 hotspots were identified that enclosed more than 60% of mapped QTLs. Genetic and physical map integration allowed the identification of 1,101 positional CGs within the confidence intervals of drought response-specific QTLs. Prioritization resulted in the designation of 143 CGs, among them were genes encoding antioxidants, carboxylic acid biosynthesis enzymes, heat shock proteins, small auxin up-regulated RNAs, nitric oxide synthase, ATP sulfurylases, and proteins involved in regulation of flowering time. This global approach may be proposed for identification of new CGs that underlies QTLs responsible for complex traits. PMID:29946328
Lu, Wei; Liu, Jun; Xin, Qiang; Wan, Lili; Hong, Dengfeng; Yang, Guangsheng
2013-01-01
Background and Aims Spontaneous male sterility is an advantageous trait for both constructing efficient pollination control systems and for understanding the developmental process of the male reproductive unit in many crops. A triallelic genetic male-sterile locus (BnMs5) has been identified in Brassica napus; however, its complicated genome structure has greatly hampered the isolation of this locus. The aim of this study was to physically map BnMs5 through an integrated map-based cloning strategy and analyse the local chromosomal evolution around BnMs5. Methods A large F2 population was used to integrate the existing genetic maps around BnMs5. A map-based cloning strategy in combination with comparative mapping among B. napus, Arabidopsis, Brassica rapa and Brassica oleracea was employed to facilitate the identification of a target bacterial artificial chromosome (BAC) clone covering the BnMs5 locus. The genomic sequences from the Brassica species were analysed to reveal the regional chromosomal evolution around BnMs5. Key Results BnMs5 was finally delimited to a 0·3-cM genetic fragment from an integrated local genetic map, and was anchored on the B. napus A8 chromosome. Screening of a B. napus BAC clone library and identification of the positive clones validated that JBnB034L06 was the target BAC clone. The closest flanking markers restrict BnMs5 to a 21-kb region on JBnB034L06 containing six predicted functional genes. Good collinearity relationship around BnMs5 between several Brassica species was observed, while violent chromosomal evolutionary events including insertions/deletions, duplications and single nucleotide mutations were also found to have extensively occurred during their divergence. Conclusions This work represents major progress towards the molecular cloning of BnMs5, as well as presenting a powerful, integrative method to mapping loci in plants with complex genomic architecture, such as the amphidiploid B. napus. PMID:23243189
NASA Astrophysics Data System (ADS)
Hinton, Courtney; Punjabi, Alkesh; Ali, Halima
2008-11-01
The simple map is the simplest map that has topology of divertor tokamaks [1]. Recently, the action-angle coordinates for simple map are analytically calculated, and simple map is constructed in action-angle coordinates [2]. Action-angle coordinates for simple map can not be inverted to real space coordinates (R,Z). Because there is logarithmic singularity on the ideal separatrix, trajectories can not cross separatrix [2]. Simple map in action-angle coordinates is applied to calculate stochastic broadening due to magnetic noise and field errors. Mode numbers for noise + field errors from the DIII-D tokamak are used. Mode numbers are (m,n)=(3,1), (4,1), (6,2), (7,2), (8,2), (9,3), (10,3), (11,3), (12,3) [3]. The common amplitude δ is varied from 0.8X10-5 to 2.0X10-5. For this noise and field errors, the width of stochastic layer in simple map is calculated. This work is supported by US Department of Energy grants DE-FG02-07ER54937, DE-FG02-01ER54624 and DE-FG02-04ER54793 1. A. Punjabi, H. Ali, T. Evans, and A. Boozer, Phys. Let. A 364, 140--145 (2007). 2. O. Kerwin, A. Punjabi, and H. Ali, to appear in Physics of Plasmas. 3. A. Punjabi and H. Ali, P1.012, 35^th EPS Conference on Plasma Physics, June 9-13, 2008, Hersonissos, Crete, Greece.
1988-06-01
extraction nets. TerrainMaps: Tools for physical and pseudo-physical molding and growing of features on terrain and thematic maps. 5-13 + ,m , mmmmmm mmmmm...ok 1) the student neem confused, and 2) the teot for wroag-answerstshold is met Recognizing a confused tudent is admittedly a mabjective and imprecise...you know that GRADE in iine 9 is a control variable? Student: Yes 2. Tutor: OIL What i the value of GRADE at anytime during loop execution? Studam
Comparative visualization of genetic and physical maps with Strudel
Bayer, Micha; Milne, Iain; Stephen, Gordon; Shaw, Paul; Cardle, Linda; Wright, Frank; Marshall, David
2011-01-01
Summary: Data visualization can play a key role in comparative genomics, for example, underpinning the investigation of conserved synteny patterns. Strudel is a desktop application that allows users to easily compare both genetic and physical maps interactively and efficiently. It can handle large datasets from several genomes simultaneously, and allows all-by-all comparisons between these. Availability and implementation: Installers for Strudel are available for Windows, Linux, Solaris and Mac OS X at http://bioinf.scri.ac.uk/strudel/. Contact: strudel@scri.ac.uk; micha.bayer@scri.ac.uk PMID:21372085
The crystallography of correlated disorder.
Keen, David A; Goodwin, Andrew L
2015-05-21
Classical crystallography can determine structures as complicated as multi-component ribosomal assemblies with atomic resolution, but is inadequate for disordered systems--even those as simple as water ice--that occupy the complex middle ground between liquid-like randomness and crystalline periodic order. Correlated disorder nevertheless has clear crystallographic signatures that map to the type of disorder, irrespective of the underlying physical or chemical interactions and material involved. This mapping hints at a common language for disordered states that will help us to understand, control and exploit the disorder responsible for many interesting physical properties.
NASA Astrophysics Data System (ADS)
Kropivnitskaya, Y. Y.; Tiampo, K. F.; Qin, J.; Bauer, M.
2015-12-01
Intensity is one of the most useful measures of earthquake hazard, as it quantifies the strength of shaking produced at a given distance from the epicenter. Today, there are several data sources that could be used to determine intensity level which can be divided into two main categories. The first category is represented by social data sources, in which the intensity values are collected by interviewing people who experienced the earthquake-induced shaking. In this case, specially developed questionnaires can be used in addition to personal observations published on social networks such as Twitter. These observations are assigned to the appropriate intensity level by correlating specific details and descriptions to the Modified Mercalli Scale. The second category of data sources is represented by observations from different physical sensors installed with the specific purpose of obtaining an instrumentally-derived intensity level. These are usually based on a regression of recorded peak acceleration and/or velocity amplitudes. This approach relates the recorded ground motions to the expected felt and damage distribution through empirical relationships. The goal of this work is to implement and evaluate streaming data processing separately and jointly from both social and physical sensors in order to produce near real-time intensity maps and compare and analyze their quality and evolution through 10-minute time intervals immediately following an earthquake. Results are shown for the case study of the M6.0 2014 South Napa, CA earthquake that occurred on August 24, 2014. The using of innovative streaming and pipelining computing paradigms through IBM InfoSphere Streams platform made it possible to read input data in real-time for low-latency computing of combined intensity level and production of combined intensity maps in near-real time. The results compare three types of intensity maps created based on physical, social and combined data sources. Here we correlate the count and density of Tweets with intensity level and show the importance of processing combined data sources at the earliest time stages after earthquake happens. This method can supplement existing approaches of intensity level detection, especially in the regions with high number of Twitter users and low density of seismic networks.
The Dunhuang Chinese sky: A comprehensive study of the oldest known star atlas
NASA Astrophysics Data System (ADS)
Bonnet-Bidaud, Jean-Marc; Praderie, Françoise; Whitfield, Susan
2009-03-01
This paper presents an analysis of the star atlas included in the medieval Chinese manuscript Or.8210/S.3326 discovered in 1907 by the archaeologist Aurel Stein at the Silk Road town of Dunhuang and now housed in the British Library. Although partially studied by a few Chinese scholars, it has never been fully displayed and discussed in the Western world. This set of sky maps (12 hour-angle maps in quasi-cylindrical projection and a circumpolar map in azimuthal projection), displaying the full sky visible from the Northern Hemisphere, is up to now the oldest complete preserved star atlas known from any civilisation. It is also the earliest known pictorial representation of the quasi-totality of Chinese constellations. This paper describes the history of the physical object - a roll of thin paper drawn with ink. We analyse the stellar content of each map (1,339 stars, 257 asterisms) and the texts associated with the maps. We establish the precision with which the maps were drawn (1.5-4° for the brightest stars) and examine the type of projections used. We conclude that precise mathematical methods were used to produce the Atlas. We also discuss the dating of the manuscript and its possible author, and we confirm the date +649-684 (early Tang Dynasty) as most probable based on the available evidence. This is at variance with a prior estimate of around +940. Finally, we present a brief comparison with later sky maps, both from China and Europe.
A consensus linkage map of lentil based on DArT markers from three RIL mapping populations.
Ates, Duygu; Aldemir, Secil; Alsaleh, Ahmad; Erdogmus, Semih; Nemli, Seda; Kahriman, Abdullah; Ozkan, Hakan; Vandenberg, Albert; Tanyolac, Bahattin
2018-01-01
Lentil (Lens culinaris ssp. culinaris Medikus) is a diploid (2n = 2x = 14), self-pollinating grain legume with a haploid genome size of about 4 Gbp and is grown throughout the world with current annual production of 4.9 million tonnes. A consensus map of lentil (Lens culinaris ssp. culinaris Medikus) was constructed using three different lentils recombinant inbred line (RIL) populations, including "CDC Redberry" x "ILL7502" (LR8), "ILL8006" x "CDC Milestone" (LR11) and "PI320937" x "Eston" (LR39). The lentil consensus map was composed of 9,793 DArT markers, covered a total of 977.47 cM with an average distance of 0.10 cM between adjacent markers and constructed 7 linkage groups representing 7 chromosomes of the lentil genome. The consensus map had no gap larger than 12.67 cM and only 5 gaps were found to be between 12.67 cM and 6.0 cM (on LG3 and LG4). The localization of the SNP markers on the lentil consensus map were in general consistent with their localization on the three individual genetic linkage maps and the lentil consensus map has longer map length, higher marker density and shorter average distance between the adjacent markers compared to the component linkage maps. This high-density consensus map could provide insight into the lentil genome. The consensus map could also help to construct a physical map using a Bacterial Artificial Chromosome library and map based cloning studies. Sequence information of DArT may help localization of orientation scaffolds from Next Generation Sequencing data.
A consensus linkage map of lentil based on DArT markers from three RIL mapping populations
Ates, Duygu; Aldemir, Secil; Alsaleh, Ahmad; Erdogmus, Semih; Nemli, Seda; Kahriman, Abdullah; Ozkan, Hakan; Vandenberg, Albert
2018-01-01
Background Lentil (Lens culinaris ssp. culinaris Medikus) is a diploid (2n = 2x = 14), self-pollinating grain legume with a haploid genome size of about 4 Gbp and is grown throughout the world with current annual production of 4.9 million tonnes. Materials and methods A consensus map of lentil (Lens culinaris ssp. culinaris Medikus) was constructed using three different lentils recombinant inbred line (RIL) populations, including “CDC Redberry” x “ILL7502” (LR8), “ILL8006” x “CDC Milestone” (LR11) and “PI320937” x “Eston” (LR39). Results The lentil consensus map was composed of 9,793 DArT markers, covered a total of 977.47 cM with an average distance of 0.10 cM between adjacent markers and constructed 7 linkage groups representing 7 chromosomes of the lentil genome. The consensus map had no gap larger than 12.67 cM and only 5 gaps were found to be between 12.67 cM and 6.0 cM (on LG3 and LG4). The localization of the SNP markers on the lentil consensus map were in general consistent with their localization on the three individual genetic linkage maps and the lentil consensus map has longer map length, higher marker density and shorter average distance between the adjacent markers compared to the component linkage maps. Conclusion This high-density consensus map could provide insight into the lentil genome. The consensus map could also help to construct a physical map using a Bacterial Artificial Chromosome library and map based cloning studies. Sequence information of DArT may help localization of orientation scaffolds from Next Generation Sequencing data. PMID:29351563
A Digital Tectonic Activity Map of the Earth
NASA Technical Reports Server (NTRS)
Lowman, Paul; Masuoka, Penny; Montgomery, Brian; OLeary, Jay; Salisbury, Demetra; Yates, Jacob
1999-01-01
The subject of neotectonics, covering the structures and structural activity of the last 5 million years (i.e., post-Miocene) is a well-recognized field, including "active tectonics," focussed on the last 500,000 years in a 1986 National Research Council report of that title. However, there is a cartographic gap between tectonic maps, generally showing all features regardless of age, and maps of current seismic or volcanic activity. We have compiled a map intended to bridge this gap, using modern data bases and computer-aided cartographic techniques. The maps presented here are conceptually descended from an earlier map showing tectonic and volcanic activity of the last one million years. Drawn by hand with the National Geographic Society's 1975 "The Physical World" map as a base, the 1981 map in various revisions has been widely reproduced in textbooks and various technical publications. However, two decades of progress call for a completely new map that can take advantage of new knowledge and cartographic techniques. The digital tectonic activity map (DTM), presented in shaded relief (Fig. 1) and schematic (Fig. 2) versions, is the result. The DTM is intended to show tectonism and volcanism of the last one million years, a period long enough to be representative of global activity, but short enough that features such as fault scarps and volcanos are still geomorphically recognizable. Data Sources and Cartographic Methods The DTM is based on a wide range of sources, summarized in Table 1. The most important is the digital elevation model, used to construct a shaded relief map. The bathymetry is largely from satellite altimetry, specifically the marine gravity compilations by Smith and Sandwell (1996). The shaded relief map was designed to match the new National Geographic Society world physical map (1992), although drawn independently, from the digital elevation model. The Robinson Projection is used instead of the earlier Van der Grinten one. Although neither conformal nor equal-area, the Robinson Projection provides a reasonable compromise and retains useful detail at high latitudes.
High-Resolution Underwater Mapping Using Side-Scan Sonar
2016-01-01
The goal of this study is to generate high-resolution sea floor maps using a Side-Scan Sonar(SSS). This is achieved by explicitly taking into account the SSS operation as follows. First, the raw sensor data is corrected by means of a physics-based SSS model. Second, the data is projected to the sea-floor. The errors involved in this projection are thoroughfully analysed. Third, a probabilistic SSS model is defined and used to estimate the probability of each sea-floor region to be observed. This probabilistic information is then used to weight the contribution of each SSS measurement to the map. Because of these models, arbitrary map resolutions can be achieved, even beyond the sensor resolution. Finally, a geometric map building method is presented and combined with the probabilistic approach. The resulting map is composed of two layers. The echo intensity layer holds the most likely echo intensities at each point in the sea-floor. The probabilistic layer contains information about how confident can the user or the higher control layers be about the echo intensity layer data. Experimental results have been conducted in a large subsea region. PMID:26821379
A limit-cycle self-organizing map architecture for stable arm control.
Huang, Di-Wei; Gentili, Rodolphe J; Katz, Garrett E; Reggia, James A
2017-01-01
Inspired by the oscillatory nature of cerebral cortex activity, we recently proposed and studied self-organizing maps (SOMs) based on limit cycle neural activity in an attempt to improve the information efficiency and robustness of conventional single-node, single-pattern representations. Here we explore for the first time the use of limit cycle SOMs to build a neural architecture that controls a robotic arm by solving inverse kinematics in reach-and-hold tasks. This multi-map architecture integrates open-loop and closed-loop controls that learn to self-organize oscillatory neural representations and to harness non-fixed-point neural activity even for fixed-point arm reaching tasks. We show through computer simulations that our architecture generalizes well, achieves accurate, fast, and smooth arm movements, and is robust in the face of arm perturbations, map damage, and variations of internal timing parameters controlling the flow of activity. A robotic implementation is evaluated successfully without further training, demonstrating for the first time that limit cycle maps can control a physical robot arm. We conclude that architectures based on limit cycle maps can be organized to function effectively as neural controllers. Copyright © 2016 Elsevier Ltd. All rights reserved.
Measuring spatial variability in soil characteristics
Hoskinson, Reed L.; Svoboda, John M.; Sawyer, J. Wayne; Hess, John R.; Hess, J. Richard
2002-01-01
The present invention provides systems and methods for measuring a load force associated with pulling a farm implement through soil that is used to generate a spatially variable map that represents the spatial variability of the physical characteristics of the soil. An instrumented hitch pin configured to measure a load force is provided that measures the load force generated by a farm implement when the farm implement is connected with a tractor and pulled through or across soil. Each time a load force is measured, a global positioning system identifies the location of the measurement. This data is stored and analyzed to generate a spatially variable map of the soil. This map is representative of the physical characteristics of the soil, which are inferred from the magnitude of the load force.
Toward a framework linkage map of the canine genome.
Langston, A A; Mellersh, C S; Wiegand, N A; Acland, G M; Ray, K; Aguirre, G D; Ostrander, E A
1999-01-01
Selective breeding to maintain specific physical and behavioral traits has made the modern dog one of the most physically diverse species on earth. One unfortunate consequence of the common breeding practices used to develop lines of dogs with the desired traits is amplification and propagation of genetic diseases within distinct breeds. To map disease loci we have constructed a first-generation framework map of the canine genome. We developed large numbers of highly polymorphic markers, constructed a panel of canine-rodent hybrid cell lines, and assigned those markers to chromosome groups using the hybrid cell lines. Finally, we determined the order and spacing of markers on individual canine chromosomes by linkage analysis using a reference panel of 17 outbred pedigrees. This article describes approaches and strategies to accomplish these goals.
USDA-ARS?s Scientific Manuscript database
The Hessian fly (Mayetiola destructor) is an important insect pest of wheat and an experimental organism for studies of plant-insect interactions. It has tractable genetics, polytene chromosomes, a relatively small genome (158 Mb), and shares a gene-for-gene relationship with wheat. To improve its...
NASA Technical Reports Server (NTRS)
Irvine, W. M.; Schloerb, F. P.; Ziurys, L. M.
1986-01-01
The present research includes searches for important new interstellar constituents; observations relevant to differentiating between different models for the chemical processes that are important in the interstellar environment; and coordinated studies of the chemistry, physics, and dynamics of molecular clouds which are the sites or possible future sites of star formation. Recent research has included the detection and study of four new interstellar molecules; searches which have placed upper limits on the abundance of several other potential constituents of interstellar clouds; quantitative studies of comparative molecular abundances in different types of interstellar clouds; investigation of reaction pathways for astrochemistry from a comparison of theory and the observed abundance of related species such as isomers and isotopic variants; studies of possible tracers of energenic events related to star formation, including silicon and sulfur containing molecules; and mapping of physical, chemical, and dynamical properties over extended regions of nearby cold molecular clouds.
Code of Federal Regulations, 2011 CFR
2011-07-01
... fossil content, core analyses, laboratory analyses of physical and chemical properties, logs or charts of... geological information means knowledge, often in the form of schematic cross sections and maps, developed by... geophysical information means knowledge, often in the form of schematic cross sections and maps, developed by...
A high resolution radiation hybrid map of wheat chromosome 4A
USDA-ARS?s Scientific Manuscript database
Bread wheat has a large and complex allohexaploid genome with low recombination level at chromosome centromeric and peri-centromeric regions. This significantly hampers ordering of markers, contigs of physical maps and sequence scaffolds and impedes obtaining of high-quality reference genome sequenc...
Wing, Rod A; Ammiraju, Jetty S S; Luo, Meizhong; Kim, Hyeran; Yu, Yeisoo; Kudrna, Dave; Goicoechea, Jose L; Wang, Wenming; Nelson, Will; Rao, Kiran; Brar, Darshan; Mackill, Dave J; Han, Bin; Soderlund, Cari; Stein, Lincoln; SanMiguel, Phillip; Jackson, Scott
2005-09-01
The wild species of the genus Oryza offer enormous potential to make a significant impact on agricultural productivity of the cultivated rice species Oryza sativa and Oryza glaberrima. To unlock the genetic potential of wild rice we have initiated a project entitled the 'Oryza Map Alignment Project' (OMAP) with the ultimate goal of constructing and aligning BAC/STC based physical maps of 11 wild and one cultivated rice species to the International Rice Genome Sequencing Project's finished reference genome--O. sativa ssp. japonica c. v. Nipponbare. The 11 wild rice species comprise nine different genome types and include six diploid genomes (AA, BB, CC, EE, FF and GG) and four tetrapliod genomes (BBCC, CCDD, HHKK and HHJJ) with broad geographical distribution and ecological adaptation. In this paper we describe our strategy to construct robust physical maps of all 12 rice species with an emphasis on the AA diploid O. nivara--thought to be the progenitor of modern cultivated rice.
A comprehensive map of the porcine genome.
Rohrer, G A; Alexander, L J; Hu, Z; Smith, T P; Keele, J W; Beattie, C W
1996-05-01
We report the highest density genetic linkage map for a livestock species produced to date. Three published maps for Sus scrofa were merged by genotyping virtually every publicly available microsatellite across a single reference population to yield 1042 linked loci, 536 of which are novel assignments, spanning 2286.2 cM (average interval 2.23 cM) in 19 linkage groups (18 autosomal and X chromosomes, n = 19). Linkage groups were constructed de novo and mapped by locus content to avoid propagation of errors in older genotypes. The physical and genetic maps were integrated with 123 informative loci assigned previously by fluorescence in situ hybridization (FISH). Fourteen linkage groups span the entire length of each chromosome. Coverage of chromosomes 11, 12, 15, and 18 will be evaluated as more markers are physically assigned. Marker-deficient regions were identified only on 11q1.7-qter and 14 cen-q1.2. Recombination rates (cM/Mbp) varied between and within chromosomes. Short chromosomal arms recombined at higher rates than long arms, and recombination was more frequent in telomeric regions than in pericentric regions. The high-resolution comprehensive map has the marker density needed to identify quantitative trait loci (QTL), implement marker-assisted selection or introgression and YAC contig construction or chromosomal microdissection.
Hayes, C; Rump, A; Cadman, M R; Harrison, M; Evans, E P; Lyon, M F; Morriss-Kay, G M; Rosenthal, A; Brown, S D
2001-12-01
The mouse doublefoot (Dbf) mutant exhibits preaxial polydactyly in association with craniofacial defects. This mutation has previously been mapped to mouse chromosome 1. We have used a positional cloning strategy, coupled with a comparative sequencing approach using available human draft sequence, to identify putative candidates for the Dbf gene in the mouse and in homologous human region. We have constructed a high-resolution genetic map of the region, localizing the mutation to a 0.4-cM (+/-0.0061) interval on mouse chromosome 1. Furthermore, we have constructed contiguous BAC/PAC clone maps across the mouse and human Dbf region. Using existing markers and additional sequence tagged sites, which we have generated, we have anchored the physical map to the genetic map. Through the comparative sequencing of these clones we have identified 35 genes within this interval, indicating that the region is gene-rich. From this we have identified several genes that are known to be differentially expressed in the developing mid-gestation mouse embryo, some in the developing embryonic limb buds. These genes include those encoding known developmental signaling molecules such as WNT proteins and IHH, and we provide evidence that these genes are candidates for the Dbf mutation.
Qi, L L; Talukder, Z I; Hulke, B S; Foley, M E
2017-06-01
Diagnostic DNA markers are an invaluable resource in breeding programs for successful introgression and pyramiding of disease resistance genes. Resistance to downy mildew (DM) disease in sunflower is mediated by Pl genes which are known to be effective against the causal fungus, Plasmopara halstedii. Two DM resistance genes, Pl Arg and Pl 8 , are highly effective against P. halstedii races in the USA, and have been previously mapped to the sunflower linkage groups (LGs) 1 and 13, respectively, using simple sequence repeat (SSR) markers. In this study, we developed high-density single nucleotide polymorphism (SNP) maps encompassing the Pl arg and Pl 8 genes and identified diagnostic SNP markers closely linked to these genes. The specificity of the diagnostic markers was validated in a highly diverse panel of 548 sunflower lines. Dissection of a large marker cluster co-segregated with Pl Arg revealed that the closest SNP markers NSA_007595 and NSA_001835 delimited Pl Arg to an interval of 2.83 Mb on the LG1 physical map. The SNP markers SFW01497 and SFW06597 delimited Pl 8 to an interval of 2.85 Mb on the LG13 physical map. We also developed sunflower lines with homozygous, three gene pyramids carrying Pl Arg , Pl 8 , and the sunflower rust resistance gene R 12 using the linked SNP markers from a segregating F 2 population of RHA 340 (carrying Pl 8 )/RHA 464 (carrying Pl Arg and R 12 ). The high-throughput diagnostic SNP markers developed in this study will facilitate marker-assisted selection breeding, and the pyramided sunflower lines will provide durable resistance to downy mildew and rust diseases.
Built Environment and Active Transport to School (BEATS) Study: protocol for a cross-sectional study
Mandic, Sandra; Williams, John; Moore, Antoni; Hopkins, Debbie; Flaherty, Charlotte; Wilson, Gordon; García Bengoechea, Enrique; Spence, John C
2016-01-01
Introduction Active transport to school (ATS) is a convenient way to increase physical activity and undertake an environmentally sustainable travel practice. The Built Environment and Active Transport to School (BEATS) Study examines ATS in adolescents in Dunedin, New Zealand, using ecological models for active transport that account for individual, social, environmental and policy factors. The study objectives are to: (1) understand the reasons behind adolescents and their parents' choice of transport mode to school; (2) examine the interaction between the transport choices, built environment, physical activity and weight status in adolescents; and (3) identify policies that promote or hinder ATS in adolescents. Methods and analysis The study will use a mixed-method approach incorporating both quantitative (surveys, anthropometry, accelerometers, Geographic Information System (GIS) analysis, mapping) and qualitative methods (focus groups, interviews) to gather data from students, parents, teachers and school principals. The core data will include accelerometer-measured physical activity, anthropometry, GIS measures of the built environment and the use of maps indicating route to school (students)/work (parents) and perceived safe/unsafe areas along the route. To provide comprehensive data for understanding how to change the infrastructure to support ATS, the study will also examine complementary variables such as individual, family and social factors, including student and parental perceptions of walking and cycling to school, parental perceptions of different modes of transport to school, perceptions of the neighbourhood environment, route to school (students)/work (parents), perceptions of driving, use of information communication technology, reasons for choosing a particular school and student and parental physical activity habits, screen time and weight status. The study has achieved a 100% school recruitment rate (12 secondary schools). Ethics and dissemination The study has been approved by the University of Otago Ethics Committee. The results will be actively disseminated through reports and presentations to stakeholders, symposiums and scientific publications. PMID:27221127
Mapping of novel powdery mildew resistance gene(s) from Agropyron cristatum chromosome 2P.
Li, Huanhuan; Jiang, Bo; Wang, Jingchang; Lu, Yuqing; Zhang, Jinpeng; Pan, Cuili; Yang, Xinming; Li, Xiuquan; Liu, Weihua; Li, Lihui
2017-01-01
A physical map of Agropyron cristatum 2P chromosome was constructed for the first time and the novel powdery mildew resistance gene(s) from chromosome 2P was(were) also mapped. Agropyron cristatum (L.) Gaertn. (2n = 28, PPPP), a wild relative of common wheat, is highly resistant to powdery mildew. Previous studies showed that wheat-A. cristatum 2P disomic addition line II-9-3 displayed high resistance to powdery mildew, and the resistance was attributable to A. cristatum chromosome 2P. To utilize and physically map the powdery mildew resistance gene(s), 15 wheat-A. cristatum 2P translocation lines and three A. cristatum 2P deletion lines with different chromosomal segment sizes, obtained from II-9-3 using 60 Co-γ ray irradiation, were characterized using cytogenetic and molecular marker analysis. A. cristatum 2P chromosomal segments in the translocations were translocated to different wheat chromosomes, including 1A, 4A, 5A, 6A, 7A, 1B, 2B, 3B, 7B, 3D, 4D, and 6D. A physical map of the 2P chromosome was constructed with 82 STS markers, consisting of nine bins with 34 markers on 2PS and eight bins with 48 markers on 2PL. The BC 1 F 2 populations of seven wheat-A. cristatum 2P translocation lines (2PT-3, 2PT-4, 2PT-5, 2PT-6, 2PT-8, 2PT-9, and 2PT-10) were developed by self-pollination, tested with powdery mildew and genotyped with 2P-specific STS markers. From these results, the gene(s) conferring powdery mildew resistance was(were) located on 2PL bin FL 0.66-0.86 and 19 2P-specific markers were identified in this bin. Moreover, two new powdery mildew-resistant translocation lines (2PT-4 and 2PT-5) with small 2PL chromosome segments were obtained. The newly developed wheat lines with powdery mildew resistance and the closely linked molecular markers will be valuable for wheat disease breeding in the future.
Oreskovic, Nicolas M; Blossom, Jeff; Field, Alison E; Chiang, Sylvia R; Winickoff, Jonathan P; Kleinman, Ronald E
2012-05-01
National trends indicate that children and adolescents are not achieving sufficient levels of physical activity. Combining global positioning system (GPS) technology with accelerometers has the potential to provide an objective determination in locations where youth engage in physical activity. The aim of this study was to identify the optimal methods for collecting combined accelerometer and GPS data in youth, to best locate where children spend time and are physically active. A convenience sample of 24 mid-school children in Massachusetts was included. Accelerometers and GPS units were used to quantify and locate childhood physical activity over 5 weekdays and 2 weekend days. Accelerometer and GPS data were joined by time and mapped with a geographical information system (GIS) using ArcGIS software. Data were collected in winter, spring, summer in 2009-2010, collecting a total of 26,406 matched datapoints overall. Matched data yield was low (19.1% total), regardless of season (winter, 12.8%; spring, 30.1%; summer, 14.3%). Teacher-provided, pre-charged equipment yielded the most matched (30.1%; range: 10.1-52.3%) and greatest average days (6.1 days) of data. Across all seasons, children spent most of their time at home. Outdoor use patterns appeared to vary by season, with street use increasing in spring, and park and playground use increasing in summer. Children spent equal amounts of physical activity time at home and walking in the streets. Overall, the various methods for combining GPS and accelerometer data provided similarly low amounts of combined data. No combined GPS and accelerometer data collection method proved superior in every data return category, but use of GIS to map joined accelerometer and GPS data can demarcate childhood physical activity locations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levanat, S.; Gailani, M.; Dean, M.
1994-09-01
Gorlin syndrome is an autosomal dominant disorder characterized by basal cell carcinomas, medulloblastomas, and ovarian fibromas, as well as widespread developmental defects. Linkage and tumor deletion studies localized the gene for this syndrome to the 3 cM region on chromosome 9q22 between D9S196 and D9S180. Several groups have constructed YAC contigs of this region, but many of the YACs are known to contain rearrangements. Mapping by PGE and FISH is useful in further characterization of the relationship between physical distance and genetic distance. We isolated seven cosmids mapping to this region (D9S180, D9S196, D9S287, Col 15A1, XPA and two newmore » anonymous cosmids). FISH gave a distance between D9S196 and D9S180 of at least 2 Mb and showed that Col15A1, previously considered as a candidate gene, mapped a few hundred kb distal to S180. For PFGE, DNA blocks from normal and 20 Gorlin syndrome patients were digested with 5 restriction enzymes and probed with single copy fragments of the seven cosmids. No aberrant bands have been identified in patients. Non-overlapping Not I fragments from these seven markers totalled 2.3 kb. Given an average gene density, a region of this size would contain 50-100 genes.« less
Characterization of a Thermo-Inducible Chlorophyll-Deficient Mutant in Barley.
Wang, Rong; Yang, Fei; Zhang, Xiao-Qi; Wu, Dianxin; Tan, Cong; Westcott, Sharon; Broughton, Sue; Li, Chengdao; Zhang, Wenying; Xu, Yanhao
2017-01-01
Leaf color is an important trait for not only controlling crop yield but also monitoring plant status under temperature stress. In this study, a thermo-inducible chlorophyll-deficient mutant, named V-V-Y, was identified from a gamma-radiated population of the barley variety Vlamingh. The leaves of the mutant were green under normal growing temperature but turned yellowish under high temperature in the glasshouse experiment. The ratio of chlorophyll a and chlorophyll b in the mutant declined much faster in the first 7-9 days under heat treatment. The leaves of V-V-Y turned yellowish but took longer to senesce under heat stress in the field experiment. Genetic analysis indicated that a single nuclear gene controlled the mutant trait. The mutant gene ( vvy ) was mapped to the long arm of chromosome 4H between SNP markers 1_0269 and 1_1531 with a genetic distance of 2.2 cM and a physical interval of 9.85 Mb. A QTL for grain yield was mapped to the same interval and explained 10.4% of the yield variation with a LOD score of 4. This QTL is coincident with the vvy gene interval that is responsible for the thermo-inducible chlorophyll-deficient trait. Fine mapping, based on the barley reference genome sequence, further narrowed the vvy gene to a physical interval of 0.428 Mb with 11 annotated genes. This is the first report of fine mapping a thermo-inducible chlorophyll-deficient gene in barley.
Dittrich, Peter
2018-02-01
The organic code concept and its operationalization by molecular codes have been introduced to study the semiotic nature of living systems. This contribution develops further the idea that the semantic capacity of a physical medium can be measured by assessing its ability to implement a code as a contingent mapping. For demonstration and evaluation, the approach is applied to a formal medium: elementary cellular automata (ECA). The semantic capacity is measured by counting the number of ways codes can be implemented. Additionally, a link to information theory is established by taking multivariate mutual information for quantifying contingency. It is shown how ECAs differ in their semantic capacities, how this is related to various ECA classifications, and how this depends on how a meaning is defined. Interestingly, if the meaning should persist for a certain while, the highest semantic capacity is found in CAs with apparently simple behavior, i.e., the fixed-point and two-cycle class. Synergy as a predictor for a CA's ability to implement codes can only be used if context implementing codes are common. For large context spaces with sparse coding contexts synergy is a weak predictor. Concluding, the approach presented here can distinguish CA-like systems with respect to their ability to implement contingent mappings. Applying this to physical systems appears straight forward and might lead to a novel physical property indicating how suitable a physical medium is to implement a semiotic system. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mandolesi, E.; Jones, A. G.; Roux, E.; Lebedev, S.
2009-12-01
Recently different studies were undertaken on the correlation between diverse geophysical datasets. Magnetotelluric (MT) data are used to map the electrical conductivity structure behind the Earth, but one of the problems in MT method is the lack in resolution in mapping zones beneath a region of high conductivity. Joint inversion of different datasets in which a common structure is recognizable reduces non-uniqueness and may improve the quality of interpretation when different dataset are sensitive to different physical properties with an underlined common structure. A common structure is recognized if the change of physical properties occur at the same spatial locations. Common structure may be recognized in 1D inversion of seismic and MT datasets, and numerous authors show that also 2D common structure may drive to an improvement of inversion quality while dataset are jointly inverted. In this presentation a tool to constrain MT 2D inversion with phase velocity of surface wave seismic data (SW) is proposed and is being developed and tested on synthetic data. Results obtained suggest that a joint inversion scheme could be applied with success along a section profile for which data are compatible with a 2D MT model.
Han, Jun; Zhao, Xiaojie; Cui, Yu; Song, Wei; Huo, Naxin; Liang, Yong; Xie, Jingzhong; Wang, Zhenzhong; Wu, Qiuhong; Chen, Yong-Xing; Lu, Ping; Zhang, De-Yun; Wang, Lili; Sun, Hua; Yang, Tsomin; Keeble-Gagnere, Gabriel; Appels, Rudi; Doležel, Jaroslav; Ling, Hong-Qing; Luo, Mingcheng; Gu, Yongqiang; Sun, Qixin; Liu, Zhiyong
2014-01-01
Powdery mildew, caused by Blumeria graminis f. sp. tritici, is one of the most important wheat diseases in the world. In this study, a single dominant powdery mildew resistance gene MlIW172 was identified in the IW172 wild emmer accession and mapped to the distal region of chromosome arm 7AL (bin7AL-16-0.86-0.90) via molecular marker analysis. MlIW172 was closely linked with the RFLP probe Xpsr680-derived STS marker Xmag2185 and the EST markers BE405531 and BE637476. This suggested that MlIW172 might be allelic to the Pm1 locus or a new locus closely linked to Pm1. By screening genomic BAC library of durum wheat cv. Langdon and 7AL-specific BAC library of hexaploid wheat cv. Chinese Spring, and after analyzing genome scaffolds of Triticum urartu containing the marker sequences, additional markers were developed to construct a fine genetic linkage map on the MlIW172 locus region and to delineate the resistance gene within a 0.48 cM interval. Comparative genetics analyses using ESTs and RFLP probe sequences flanking the MlIW172 region against other grass species revealed a general co-linearity in this region with the orthologous genomic regions of rice chromosome 6, Brachypodium chromosome 1, and sorghum chromosome 10. However, orthologous resistance gene-like RGA sequences were only present in wheat and Brachypodium. The BAC contigs and sequence scaffolds that we have developed provide a framework for the physical mapping and map-based cloning of MlIW172. PMID:24955773
The Africa Yoga Project: A Participant-Driven Concept Map of Kenyan Teachers' Reported Experiences.
Klein, Jessalyn E; Cook-Cottone, Catherine; Giambrone, Carla
2015-01-01
The Africa Yoga Project (AYP) trains and funds Kenyans to teach community yoga classes. Preliminary research with a small sample of AYP teachers suggested the program had a positive impact. This study used concept mapping to explore the experiences of a larger sample. Participants brainstormed statements about how practicing and/or teaching yoga changed them. They sorted statements into self-defined piles and rated them in terms of perceived importance. Multidimensional scaling (MDS) of sort data calculated statement coordinates wherein each statement is placed in proximity to other statements as a function of how frequently statements are sorted together by participants. These results are then and mapped in a two-dimensional space. Hierarchical cluster analysis (HCA) of these data identified clusters (i.e., concepts) among statements. Cluster average importance ratings gave the concept map depth and indicated concept importance. Bridging analysis and researchers' conceptual understanding of yoga literature facilitated HCA interpretive decisions. Of 72 AYP teachers, 52 and 48 teachers participated in brainstorming and sorting/rating activities, respectively. Teachers brainstormed 93 statements about how they had changed. The resultant MDS statement map had adequate validity (stress value = .29). HCA created a 12-cluster solution with the following concepts of perceived change: Identity as a Yoga Teacher; Prosocial Development; Existential Possibility; Genuine Positive Regard; Value and Respect for Others (highest importance); Presence, Acceptance, and Competence; Service and Trust; Non-judgment and Emotion Regulation (lowest importance); Engagement and Connection; Interpersonal Effectiveness; Psychosocial Functioning; and Physical Competence and Security. Teachers perceived the AYP as facilitating change across physical, mental, and spiritual domains. Additional research is needed to quantify and compare this change to other health promotion program outcomes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foster, J.W.; Schafer, A.J.; Critcher, R.
1996-04-15
We have constructed a whole genome radiation hybrid (WG-RH) map across a region of human chromosome 17q, from growth hormone (GH) to thymidine kinase (TK). A panel of 128 WG-RH hybrid cell lines generated by X-irradiation and fusion has been tested for the retention of 39 sequence-tagged site (STS) markers by the polymerase chain reaction. This genome mapping technique has allowed the integration of existing VNTR and microsatellite markers with additional new markers and existing STS markers previously mapped to this region by other means. The WG-RH map includes eight expressed sequence tag (EST) and three anonymous markers developed formore » this study, together with 23 anonymous microsatellites and five existing ESTs. Analysis of these data resulted in a high-density comprehensive map across this region of the genome. A subset of these markers has been used to produce a framework map consisting of 20 loci ordered with odds greater than 1000:1. The markers are of sufficient density to build a YAC contig across this region based on marker content. We have developed sequence tags for both ends of a 2.1-Mb YAC and mapped these using the WG-RH panel, allowing a direct comparison of cRay{sub 6000} to physical distance. 31 refs., 3 figs., 2 tabs.« less
Gender and social geography: impact on Lady Health Workers mobility in Pakistan.
Mumtaz, Zubia
2012-10-16
In Pakistan, where gendered norms restrict women's mobility, female community health workers (CHWs) provide doorstep primary health services to home-bound women. The program has not achieved optimal functioning. One reason, I argue, may be that the CHWs are unable to make home visits because they have to operate within the same gender system that necessitated their appointment in the first place. Ethnographic research shows that women's mobility in Pakistan is determined not so much by physical geography as by social geography (the analysis of social phenomena in space). Irrespective of physical location, the presence of biradaria members (extended family) creates a socially acceptable 'inside space' to which women are limited. The presence of a non-biradari person, especially a man, transforms any space into an 'outside space', forbidden space. This study aims to understand how these cultural norms affect CHWs' home-visit rates and the quality of services delivered. Data will be collected in district Attock, Punjab. Twenty randomly selected CHWs will first be interviewed to explore their experiences of delivering doorstep services in the context of gendered norms that promote women's seclusion. Each CHW will be requested to draw a map of her catchment area using social mapping techniques. These maps will be used to survey women of reproductive age to assess variations in the CHW's home visitation rates and quality of family planning services provided. A sample size of 760 households (38 per CHW) is estimated to have the power to detect, with 95% confidence, households the CHWs do not visit. To explore the role of the larger community in shaping the CHWs mobility experiences, 25 community members will be interviewed and five CHWs observed as they conduct their home visits. The survey data will be merged with the maps to demonstrate if any disjunctures exist between CHWs' social geography and physical geography. Furthermore, the impacts these geographies have on home visitation rates and quality of services delivered will be explored. The study will provide generic and theoretical insights into how the CHW program policies and operations can improve working conditions to facilitate the work of female staff in order to ultimately provide high-quality services.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gala, Alan; Ohmacht, Martin
A multiprocessor system includes nodes. Each node includes a data path that includes a core, a TLB, and a first level cache implementing disambiguation. The system also includes at least one second level cache and a main memory. For thread memory access requests, the core uses an address associated with an instruction format of the core. The first level cache uses an address format related to the size of the main memory plus an offset corresponding to hardware thread meta data. The second level cache uses a physical main memory address plus software thread meta data to store the memorymore » access request. The second level cache accesses the main memory using the physical address with neither the offset nor the thread meta data after resolving speculation. In short, this system includes mapping of a virtual address to a different physical addresses for value disambiguation for different threads.« less
A New Method for Studying the Periodic System Based on a Kohonen Neural Network
ERIC Educational Resources Information Center
Chen, David Zhekai
2010-01-01
A new method for studying the periodic system is described based on the combination of a Kohonen neural network and a set of chemical and physical properties. The classification results are directly shown in a two-dimensional map and easy to interpret. This is one of the major advantages of this approach over other methods reported in the…
Physical Education and Sport at School in Europe
ERIC Educational Resources Information Center
Kerpanova, Viera; Borodankova, Olga
2013-01-01
"Physical Education and Sport at School in Europe" maps the state of play of physical education and sport activities at school in 30 European countries. The report covers primary and lower secondary education and provides an insight into the following topics: national strategies and large-scale initiatives where they exist, the status of…
Why Do Children Engage in Sedentary Behavior? Child- and Parent-Perceived Determinants.
Hidding, Lisan M; Altenburg, Teatske M; van Ekris, Evi; Chinapaw, Mai J M
2017-06-22
Todays children spend a large amount of their time sedentary. There is limited evidence on the determinants of sedentary behavior in children, and qualitative studies are especially lacking. Therefore, this study aimed to explore determinants of children's sedentary behavior from the child- and parent perspective. Qualitative data were collected during concept mapping sessions with four groups of 11-13 years old children ( n = 38) and two online sessions with parents ( n = 21). Children and parents generated sedentary behavior motives, sorted related motives, and rated their importance in influencing children's sedentary time. Next, multidimensional scaling and hierarchical cluster analysis was performed to create clusters of motives resulting in a concept map. Finally, the researchers named the clusters in the concept map. Concept maps of children yielded eight to ten perceived determinants, and concept maps of parents six to seven. Children and parents identified six similar potential determinants, and both rated as important: Sitting because… "it is the norm (I have to)", and "I can work/play better that way". In addition, children rated "there is nobody to play with" as an important potential determinant for engaging in sedentary behavior. The most important child- and parent perceived determinants were related to the social/cultural and physical environment, indicating that these are promising targets for future interventions.
Evaluating Remapped Physical Reach for Hand Interactions with Passive Haptics in Virtual Reality.
Han, Dustin T; Suhail, Mohamed; Ragan, Eric D
2018-04-01
Virtual reality often uses motion tracking to incorporate physical hand movements into interaction techniques for selection and manipulation of virtual objects. To increase realism and allow direct hand interaction, real-world physical objects can be aligned with virtual objects to provide tactile feedback and physical grasping. However, unless a physical space is custom configured to match a specific virtual reality experience, the ability to perfectly match the physical and virtual objects is limited. Our research addresses this challenge by studying methods that allow one physical object to be mapped to multiple virtual objects that can exist at different virtual locations in an egocentric reference frame. We study two such techniques: one that introduces a static translational offset between the virtual and physical hand before a reaching action, and one that dynamically interpolates the position of the virtual hand during a reaching motion. We conducted two experiments to assess how the two methods affect reaching effectiveness, comfort, and ability to adapt to the remapping techniques when reaching for objects with different types of mismatches between physical and virtual locations. We also present a case study to demonstrate how the hand remapping techniques could be used in an immersive game application to support realistic hand interaction while optimizing usability. Overall, the translational technique performed better than the interpolated reach technique and was more robust for situations with larger mismatches between virtual and physical objects.
NASA Astrophysics Data System (ADS)
Baldeschi, Adriano; Elia, D.; Molinari, S.; Pezzuto, S.; Schisano, E.; Gatti, M.; Serra, A.; Merello, M.; Benedettini, M.; Di Giorgio, A. M.; Liu, J. S.
2017-04-01
The degradation of spatial resolution in star-forming regions, observed at large distances (d ≳ 1 kpc) with Herschel, can lead to estimates of the physical parameters of the detected compact sources (clumps), which do not necessarily mirror the properties of the original population of cores. This paper aims at quantifying the bias introduced in the estimation of these parameters by the distance effect. To do so, we consider Herschel maps of nearby star-forming regions taken from the Herschel Gould Belt survey, and simulate the effect of increased distance to understand what amount of information is lost when a distant star-forming region is observed with Herschel resolution. In the maps displaced to different distances we extract compact sources, and we derive their physical parameters as if they were original Herschel infrared Galactic Plane Survey maps of the extracted source samples. In this way, we are able to discuss how the main physical properties change with distance. In particular, we discuss the ability of clumps to form massive stars: we estimate the fraction of distant sources that are classified as high-mass stars-forming objects due to their position in the mass versus radius diagram, that are only 'false positives'. We also give a threshold for high-mass star formation M>1282 (r/ [pc])^{1.42} M_{⊙}. In conclusion, this paper provides the astronomer dealing with Herschel maps of distant star-forming regions with a set of prescriptions to partially recover the character of the core population in unresolved clumps.
Uncertainty loops in travel-time tomography from nonlinear wave physics.
Galetti, Erica; Curtis, Andrew; Meles, Giovanni Angelo; Baptie, Brian
2015-04-10
Estimating image uncertainty is fundamental to guiding the interpretation of geoscientific tomographic maps. We reveal novel uncertainty topologies (loops) which indicate that while the speeds of both low- and high-velocity anomalies may be well constrained, their locations tend to remain uncertain. The effect is widespread: loops dominate around a third of United Kingdom Love wave tomographic uncertainties, changing the nature of interpretation of the observed anomalies. Loops exist due to 2nd and higher order aspects of wave physics; hence, although such structures must exist in many tomographic studies in the physical sciences and medicine, they are unobservable using standard linearized methods. Higher order methods might fruitfully be adopted.
Oosterom-Calo, Rony; Te Velde, Saskia J; Stut, Wim; Brug, Johannes
2015-07-20
It is important that heart failure (HF) patients adhere to their medication regimen and engage in physical activity. Evidence shows that adherence to these HF self-management behaviors can be improved with appropriate interventions. To further promote medication adherence and physical activity among HF patients, we developed an intervention for hospitalized HF patients. The intervention mapping protocol was applied in the development of the intervention. This entailed performing a needs assessment, defining change objectives, selecting determinants and strategies, and developing the materials. The resulting intervention, Motivate4Change, makes use of interactive technology and provides HF patients with personalized feedback and advice. Specific change objectives were defined. The relevant behavioral determinants for the physical activity program were practical knowledge on physical activity performance and self-efficacy for, and perceived benefits of, physical activity. For medication-taking, the selected determinants were practical knowledge on medication-taking, perceived barriers to medication-taking, beliefs about the necessity and harm regarding the medication prescribed, and beliefs about overprescribing and harm of medication in general. The change objectives and behavior change determinants were translated in feedback and advice strategies in an interactive technology program that included tailored feedback and advice, and role models in videos in which the behaviors and overcoming barriers were demonstrated. Relevant stakeholders were involved in the interventions development process. The intervention was pretested among HF patients and adjustments were made accordingly. The interactive technology physical activity and medication adherence promotion program for hospitalized HF patients was systematically developed using the intervention mapping protocol and was based on the available theory and evidence regarding HF self-management behavior change. The intervention's efficacy is yet to be determined in evaluation research.
Mapping the yeast genome by melting in nanofluidic devices
NASA Astrophysics Data System (ADS)
Welch, Robert L.; Czolkos, Ilja; Sladek, Rob; Reisner, Walter
2012-02-01
Optical mapping of DNA provides large-scale genomic information that can be used to assemble contigs from next-generation sequencing, and to detect re-arrangements between single cells. A recent optical mapping technique called denaturation mapping has the unique advantage of using physical principles rather than the action of enzymes to probe genomic structure. The absence of reagents or reaction steps makes denaturation mapping simpler than other protocols. Denaturation mapping uses fluorescence microscopy to image the pattern of partial melting along a DNA molecule extended in a channel of cross-section ˜100nm at the heart of a nanofluidic device. We successfully aligned melting maps from single DNA molecules to a theoretical map of the yeast genome (11.6Mbp) to identify their location. By aligning hundreds of molecules we assembled a consensus melting map of the yeast genome with 95% coverage.
NASA Astrophysics Data System (ADS)
Lerner, Michael G.; Meagher, Kristin L.; Carlson, Heather A.
2008-10-01
Use of solvent mapping, based on multiple-copy minimization (MCM) techniques, is common in structure-based drug discovery. The minima of small-molecule probes define locations for complementary interactions within a binding pocket. Here, we present improved methods for MCM. In particular, a Jarvis-Patrick (JP) method is outlined for grouping the final locations of minimized probes into physical clusters. This algorithm has been tested through a study of protein-protein interfaces, showing the process to be robust, deterministic, and fast in the mapping of protein "hot spots." Improvements in the initial placement of probe molecules are also described. A final application to HIV-1 protease shows how our automated technique can be used to partition data too complicated to analyze by hand. These new automated methods may be easily and quickly extended to other protein systems, and our clustering methodology may be readily incorporated into other clustering packages.
Yilmaz, I; Demirci, M
2010-06-01
The objective of this research was to determine physicochemical changes and microbiological quality of the different packaged meatball samples. Meatball samples in polystyrene tray were closed with polyethylene film (PS packs), vacuumed and modified atmosphere packaged, (MAP) (65% N(2), 35% CO(2)), and held under refrigerated display (4 °C) for 8, 16 and 16 days for PS packs, vacuum and MAP, respectively. Microbial load, free fatty acids and thiobarbituric acid values of the samples tended to increase with storage time. Bacteria counts of the raw meatball samples increased 2 log cycles at the end of storage compared with initial values. Meatball samples can be stored without any microbiological problem for 7 days at 4 °C. Results from this study suggested that shelf-life assigned to modified-MAP and vacuum-packed meatballs may be appropriate. Meatball samples underwent physical deformation when they were packed before vacuum process. With these negative factors considered, MAP is superior to other two packs methods.
Analysis of tsunami disaster map by Geographic Information System (GIS): Aceh Singkil-Indonesia
NASA Astrophysics Data System (ADS)
Farhan, A.; Akhyar, H.
2017-02-01
Tsunami risk map is used by stakeholder as a base to decide evacuation plan and evaluates from disaster. Aceh Singkil district of Aceh- Indonesia’s disaster maps have been developed and analyzed by using GIS tool. Overlay methods through algorithms are used to produce hazard map, vulnerability, capacity and finally created disaster risk map. Spatial maps are used topographic maps, administrative map, SRTM. The parameters are social, economic, physical environmental vulnerability, a level of exposed people, parameters of houses, public building, critical facilities, productive land, population density, sex ratio, poor ratio, disability ratio, age group ratio, the protected forest, natural forest, and mangrove forest. The results show high-risk tsunami disaster at nine villages; moderate levels are seventeen villages, and other villages are shown in the low level of tsunami risk disaster.
Mapping university students' epistemic framing of computational physics using network analysis
NASA Astrophysics Data System (ADS)
Bodin, Madelen
2012-06-01
Solving physics problem in university physics education using a computational approach requires knowledge and skills in several domains, for example, physics, mathematics, programming, and modeling. These competences are in turn related to students’ beliefs about the domains as well as about learning. These knowledge and beliefs components are referred to here as epistemic elements, which together represent the students’ epistemic framing of the situation. The purpose of this study was to investigate university physics students’ epistemic framing when solving and visualizing a physics problem using a particle-spring model system. Students’ epistemic framings are analyzed before and after the task using a network analysis approach on interview transcripts, producing visual representations as epistemic networks. The results show that students change their epistemic framing from a modeling task, with expectancies about learning programming, to a physics task, in which they are challenged to use physics principles and conservation laws in order to troubleshoot and understand their simulations. This implies that the task, even though it is not introducing any new physics, helps the students to develop a more coherent view of the importance of using physics principles in problem solving. The network analysis method used in this study is shown to give intelligible representations of the students’ epistemic framing and is proposed as a useful method of analysis of textual data.
Lin, Yenn-Jiang; Lo, Men-Tzung; Chang, Shih-Lin; Lo, Li-Wei; Hu, Yu-Feng; Chao, Tze-Fan; Chung, Fa-Po; Liao, Jo-Nan; Lin, Chin-Yu; Kuo, Huan-Yu; Chang, Yi-Chung; Lin, Chen; Tuan, Ta-Chuan; Vincent Young, Hsu-Wen; Suenari, Kazuyoshi; Dan Do, Van Buu; Raharjo, Suunu Budhi; Huang, Norden E; Chen, Shih-Ann
2016-11-01
This prospective study compared the efficacy of atrial substrate modification guided by a nonlinear phase mapping technique with that of conventional substrate ablation. The optimal ablation strategy for persistent atrial fibrillation (AF) was unknown. In phase 1 study, we applied a cellular automation technique to simulate the electrical wave propagation to improve the phase mapping algorithm, involving analysis of high-similarity electrogram regions. In addition, we defined rotors and focal AF sources, using the physical parameters of the divergence and curvature forces. In phase 2 study, we enrolled 68 patients with persistent AF undergoing substrate modification into 2 groups, group-1 (n = 34) underwent similarity index (SI) and phase mapping techniques; group-2 (n = 34) received complex fractionated atrial electrogram ablation with commercially available software. Group-1 received real-time waveform similarity measurements in which a phase mapping algorithm was applied to localize the sources. We evaluated the single-procedure freedom from AF. In group-1, we identified an average of 2.6 ± 0.89 SI regions per chamber. These regions involved rotors and focal sources in 65% and 77% of patients in group-1, respectively. Group-1 patients had shorter ablation procedure times, higher termination rates, and significant reduction in AF recurrence compared to group-2 and a trend toward benefit for all atrial arrhythmias. Multivariate analysis showed that substrate mapping using nonlinear similarity and phase mapping was the independent predictor of freedom from AF recurrence (hazard ratio: 0.26; 95% confidence interval: 0.09 to 0.74; p = 0.01). Our study showed that for persistent AF ablation, a specified substrate modification guided by nonlinear phase mapping could eliminate localized re-entry and non-pulmonary focal sources after pulmonary vein isolation. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Hassan, Muhammad Jawad; Santos, Regie Lyn P; Rafiq, Muhammad Arshad; Chahrour, Maria H; Pham, Thanh L; Wajid, Muhammad; Hijab, Nadine; Wambangco, Michael; Lee, Kwanghyuk; Ansar, Muhammad; Yan, Kai; Ahmad, Wasim; Leal, Suzanne M
2006-01-01
Hereditary hearing impairment (HI) displays extensive genetic heterogeneity. Autosomal recessive (AR) forms of prelingual HI account for approximately 75% of cases with a genetic etiology. A novel AR non-syndromic HI locus (DFNB47) was mapped to chromosome 2p25.1-p24.3, in two distantly related Pakistani kindreds. Genome scan and fine mapping were carried out using microsatellite markers. Multipoint linkage analysis resulted in a maximum LOD score of 4.7 at markers D2S1400 and D2S262. The three-unit support interval was bounded by D2S330 and D2S131. The region of homozygosity was found within the three-unit support interval and flanked by markers D2S2952 and D2S131, which corresponds to 13.2 cM according to the Rutgers combined linkage-physical map. This region contains 5.3 Mb according to the sequence-based physical map. Three candidate genes, KCNF1, ID2 and ATP6V1C2 were sequenced, and were found to be negative for functional sequence variants.
Hassan, Muhammad Jawad; Santos, Regie Lyn P.; Rafiq, Muhammad Arshad; Chahrour, Maria H.; Pham, Thanh L.; Wajid, Muhammad; Hijab, Nadine; Wambangco, Michael; Lee, Kwanghyuk; Ansar, Muhammad; Yan, Kai; Ahmad, Wasim; Leal, Suzanne M.
2010-01-01
Hereditary hearing impairment (HI) displays extensive genetic heterogeneity. Autosomal recessive (AR) forms of prelingual HI account for ~75% of cases with a genetic etiology. A novel AR non-syndromic HI locus (DFNB47) was mapped to chromosome 2p25.1-p24.3, in two distantly related Pakistani kindreds. Genome scan and fine mapping were carried out using microsatellite markers. Multipoint linkage analysis resulted in a maximum LOD score of 4.7 at markers D2S1400 and D2S262. The three-unit support interval was bounded by D2S330 and D2S131. The region of homozygosity was found within the three-unit support interval and flanked by markers D2S2952 and D2S131, which corresponds to 13.2 cM according to the Rutgers combined linkage-physical map. This region contains 5.3 Mb according to the sequence-based physical map. Three candidate genes, KCNF1, ID2 and ATP6V1C2 were sequenced, and were found to be negative for functional sequence variants. PMID:16261342
McEachan, Rosemary RC; Lawton, Rebecca J; Jackson, Cath; Conner, Mark; Lunt, Jennifer
2008-01-01
Background The workplace is an ideal setting for health promotion. Helping employees to be more physically active can not only improve their physical and mental health, but can also have economic benefits such as reduced sickness absence. The current paper describes the development of a three month theory-based intervention that aims to increase levels of moderate intensity physical activity amongst employees in sedentary occupations. Methods The intervention was developed using an intervention mapping protocol. The intervention was also informed by previous literature, qualitative focus groups, an expert steering group, and feedback from key contacts within a range of organisations. Results The intervention was designed to target awareness (e.g. provision of information), motivation (e.g. goal setting, social support) and environment (e.g. management support) and to address behavioural (e.g. increasing moderate physical activity in work) and interpersonal outcomes (e.g. encourage colleagues to be more physically active). The intervention can be implemented by local facilitators without the requirement for a large investment of resources. A facilitator manual was developed which listed step by step instructions on how to implement each component along with a suggested timetable. Conclusion Although time consuming, intervention mapping was found to be a useful tool for developing a theory based intervention. The length of this process has implications for the way in which funding bodies allow for the development of interventions as part of their funding policy. The intervention will be evaluated in a cluster randomised trial involving 1350 employees from 5 different organisations, results available September 2009. PMID:18808709
A quantitative analysis of IRAS maps of molecular clouds
NASA Technical Reports Server (NTRS)
Wiseman, Jennifer J.; Adams, Fred C.
1994-01-01
We present an analysis of IRAS maps of five molecular clouds: Orion, Ophiuchus, Perseus, Taurus, and Lupus. For the classification and description of these astrophysical maps, we use a newly developed technique which considers all maps of a given type to be elements of a pseudometric space. For each physical characteristic of interest, this formal system assigns a distance function (a pseudometric) to the space of all maps: this procedure allows us to measure quantitatively the difference between any two maps and to order the space of all maps. We thus obtain a quantitative classification scheme for molecular clouds. In this present study we use the IRAS continuum maps at 100 and 60 micrometer(s) to produce column density (or optical depth) maps for the five molecular cloud regions given above. For this sample of clouds, we compute the 'output' functions which measure the distribution of density, the distribution of topological components, the self-gravity, and the filamentary nature of the clouds. The results of this work provide a quantitative description of the structure in these molecular cloud regions. We then order the clouds according to the overall environmental 'complexity' of these star-forming regions. Finally, we compare our results with the observed populations of young stellar objects in these clouds and discuss the possible environmental effects on the star-formation process. Our results are consistent with the recently stated conjecture that more massive stars tend to form in more 'complex' environments.
NASA Astrophysics Data System (ADS)
Kainulainen, J.; Juvela, M.; Alves, J.
2007-06-01
The giant molecular clouds (GMCs) of external galaxies can be mapped with sub-arcsecond resolution using multiband observations in the near-infrared. However, the interpretation of the observed reddening and attenuation of light, and their transformation into physical quantities, is greatly hampered by the effects arising from the unknown geometry and the scattering of light by dust particles. We examine the relation between the observed near-infrared reddening and the column density of the dust clouds. In this paper we particularly assess the feasibility of deriving the mass function of GMCs from near-infrared color excess data. We perform Monte Carlo radiative transfer simulations with 3D models of stellar radiation and clumpy dust distributions. We include the scattered light in the models and calculate near-infrared color maps from the simulated data. The color maps are compared with the true line-of-sight density distributions of the models. We extract clumps from the color maps and compare the observed mass function to the true mass function. For the physical configuration chosen in this study, essentially a face-on geometry, the observed mass function is a non-trivial function of the true mass function with a large number of parameters affecting its exact form. The dynamical range of the observed mass function is confined to 103.5dots 105.5 M_⊙ regardless of the dynamical range of the true mass function. The color maps are more sensitive in detecting the high-mass end of the mass function, and on average the masses of clouds are underestimated by a factor of ˜ 10 depending on the parameters describing the dust distribution. A significant fraction of clouds is expected to remain undetected at all masses. The simulations show that the cloud mass function derived from JHK color excess data using simple foreground screening geometry cannot be regarded as a one-to-one tracer of the underlying mass function.
Kenny, J.F.; Wolf, R.J.; Hansen, Cristi V.
1993-01-01
The purpose of the investigation is to provide a description of the principal geohydrologic systems in Upper Cambrian through Lower Cretaceous rocks in Kansas. This investigation was made as part of the Central Midwest Regional Aquifer-System Analysis (CMRASA). The CMRASA is one of several major investigations by the U.S. Geological Survey of regional aquifer systems in the United States. These regional investigations are designed to increase knowledge of the flow regime and hydrologic properties of major aquifer systems and to provide quantitative information for the assessment, development, and management of water supplies. The CMRASA study area includes all or parts of 10 Central Midwestern States (Jorgensen and Signor, 1981), as shown of the envelope cover,This Hydrologic Investigations Atlas, which consists of a series of chapters, presents a description of the physical framework and geohydrology of principal aquifers and confining systems in Kansas. Chapter H presents the geohydrology of the upper aquifer unit in the Western Interior Plains aquifer system. The physical framework of the aquifer system in relation to other systems is described by maps and sections showing areal extent and the thickness of rocks that compose the unit. The physical framework of the upper aquifer unit is described in detail in chapter D of the atlas (Hansen and others, in press). The hydrology of the system in relation to that of other systems is described in this chapter by maps showing the altitude of fluid levels and the direction of water movement within the unit. The chemical composition of water in the system is described by maps that show the distribution of dissolved-solids concentrations and the differences in water types on the basis of principal chemical constituents. Chapter A of this atlas series (Wolf and others, 1990) describes the relation of principal geohydrologic systems in Kansas and presents a more detailed discussion of the methods and data used to prepare and ensure consistency among the sets of maps.
Covariate selection with iterative principal component analysis for predicting physical
USDA-ARS?s Scientific Manuscript database
Local and regional soil data can be improved by coupling new digital soil mapping techniques with high resolution remote sensing products to quantify both spatial and absolute variation of soil properties. The objective of this research was to advance data-driven digital soil mapping techniques for ...
A New Perspective on Surface Weather Maps
ERIC Educational Resources Information Center
Meyer, Steve
2006-01-01
A two-dimensional weather map is actually a physical representation of three-dimensional atmospheric conditions at a specific point in time. Abstract thinking is required to visualize this two-dimensional image in three-dimensional form. But once that visualization is accomplished, many of the meteorological concepts and processes conveyed by the…
NASA Astrophysics Data System (ADS)
Borza, Dan N.; Gautrelet, Christophe
2015-01-01
The paper describes a measurement system based on time-resolved speckle interferometry, able to record long series of thermally induced full-field deformation maps of die and wire bonds inside an operating power transistor. The origin of the deformation is the transistor heating during its normal operation. The full-field results consist in completely unwrapped deformation maps for out-of-plane displacements greater than 14 μm, with nanometer resolution, in presence of discontinuities due to structural and material inhomogeneity. These measurements are synchronized with the measurement of heatsink temperature and of base-emitter junction temperature, so as to provide data related to several interacting physical parameters. The temporal histories of the displacement are also accessible for any point. They are correlated with the thermal and electrical time series. Mechanical full-field curvatures may also be estimated, making these measurements useful for inspecting physical origins of thermomechanical stresses and for interacting with numerical models used in reliability-related studies.
NASA Astrophysics Data System (ADS)
Mazzitello, Karina I.; Candia, Julián
2012-12-01
In every country, public and private agencies allocate extensive funding to collect large-scale statistical data, which in turn are studied and analyzed in order to determine local, regional, national, and international policies regarding all aspects relevant to the welfare of society. One important aspect of that process is the visualization of statistical data with embedded geographical information, which most often relies on archaic methods such as maps colored according to graded scales. In this work, we apply nonstandard visualization techniques based on physical principles. We illustrate the method with recent statistics on homicide rates in Brazil and their correlation to other publicly available data. This physics-based approach provides a novel tool that can be used by interdisciplinary teams investigating statistics and model projections in a variety of fields such as economics and gross domestic product research, public health and epidemiology, sociodemographics, political science, business and marketing, and many others.
A Physics-Based Deep Learning Approach to Shadow Invariant Representations of Hyperspectral Images.
Windrim, Lloyd; Ramakrishnan, Rishi; Melkumyan, Arman; Murphy, Richard J
2018-02-01
This paper proposes the Relit Spectral Angle-Stacked Autoencoder, a novel unsupervised feature learning approach for mapping pixel reflectances to illumination invariant encodings. This work extends the Spectral Angle-Stacked Autoencoder so that it can learn a shadow-invariant mapping. The method is inspired by a deep learning technique, Denoising Autoencoders, with the incorporation of a physics-based model for illumination such that the algorithm learns a shadow invariant mapping without the need for any labelled training data, additional sensors, a priori knowledge of the scene or the assumption of Planckian illumination. The method is evaluated using datasets captured from several different cameras, with experiments to demonstrate the illumination invariance of the features and how they can be used practically to improve the performance of high-level perception algorithms that operate on images acquired outdoors.
Registration of 4D time-series of cardiac images with multichannel Diffeomorphic Demons.
Peyrat, Jean-Marc; Delingette, Hervé; Sermesant, Maxime; Pennec, Xavier; Xu, Chenyang; Ayache, Nicholas
2008-01-01
In this paper, we propose a generic framework for intersubject non-linear registration of 4D time-series images. In this framework, spatio-temporal registration is defined by mapping trajectories of physical points as opposed to spatial registration that solely aims at mapping homologous points. First, we determine the trajectories we want to register in each sequence using a motion tracking algorithm based on the Diffeomorphic Demons algorithm. Then, we perform simultaneously pairwise registrations of corresponding time-points with the constraint to map the same physical points over time. We show this trajectory registration can be formulated as a multichannel registration of 3D images. We solve it using the Diffeomorphic Demons algorithm extended to vector-valued 3D images. This framework is applied to the inter-subject non-linear registration of 4D cardiac CT sequences.
Zuriaga, Elena; Molina, Laura; Badenes, María Luisa; Romero, Carlos
2012-06-01
S-locus products (S-RNase and F-box proteins) are essential for the gametophytic self-incompatibility (GSI) specific recognition in Prunus. However, accumulated genetic evidence suggests that other S-locus unlinked factors are also required for GSI. For instance, GSI breakdown was associated with a pollen-part mutation unlinked to the S-locus in the apricot (Prunus armeniaca L.) cv. 'Canino'. Fine-mapping of this mutated modifier gene (M-locus) and the synteny analysis of the M-locus within the Rosaceae are here reported. A segregation distortion loci mapping strategy, based on a selectively genotyped population, was used to map the M-locus. In addition, a bacterial artificial chromosome (BAC) contig was constructed for this region using overlapping oligonucleotides probes, and BAC-end sequences (BES) were blasted against Rosaceae genomes to perform micro-synteny analysis. The M-locus was mapped to the distal part of chr.3 flanked by two SSR markers within an interval of 1.8 cM corresponding to ~364 Kb in the peach (Prunus persica L. Batsch) genome. In the integrated genetic-physical map of this region, BES were mapped against the peach scaffold_3 and BACs were anchored to the apricot map. Micro-syntenic blocks were detected in apple (Malus × domestica Borkh.) LG17/9 and strawberry (Fragaria vesca L.) FG6 chromosomes. The M-locus fine-scale mapping provides a solid basis for self-compatibility marker-assisted selection and for positional cloning of the underlying gene, a necessary goal to elucidate the pollen rejection mechanism in Prunus. In a wider context, the syntenic regions identified in peach, apple and strawberry might be useful to interpret GSI evolution in Rosaceae.
USDA-ARS?s Scientific Manuscript database
Background: Apple tree breeding is slow and difficult due to long generation times, self incompatibility, and complex genetics. The identification of molecular markers linked to traits of interest is a way to expedite the breeding process. In the present study, we aimed to identify genes whose stead...
Remote sensing of Qatar nearshore habitats with perspectives for coastal management.
Warren, Christopher; Dupont, Jennifer; Abdel-Moati, Mohamed; Hobeichi, Sanaa; Palandro, David; Purkis, Sam
2016-04-30
A framework is proposed for utilizing remote sensing and ground-truthing field data to map benthic habitats in the State of Qatar, with potential application across the Arabian Gulf. Ideally the methodology can be applied to optimize the efficiency and effectiveness of mapping the nearshore environment to identify sensitive habitats, monitor for change, and assist in management decisions. The framework is applied to a case study for northeastern Qatar with a key focus on identifying high sensitivity coral habitat. The study helps confirm the presence of known coral and provides detail on a region in the area of interest where corals have not been previously mapped. Challenges for the remote sensing methodology associated with natural heterogeneity of the physical and biological environment are addressed. Recommendations on the application of this approach to coastal environmental risk assessment and management planning are discussed as well as future opportunities for improvement of the framework. Copyright © 2015 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Westbrook, Susan L.
1998-01-01
Compares the conceptual organization of students in an integrated algebra and physical science class (SAM 9) with that of students in a discipline-specific physical science class (PSO). Analysis of students' concept maps indicates that the SAM9 students used a greater number of procedural linkages to connect mathematics and science concepts than…
Relation of Parallel Discrete Event Simulation algorithms with physical models
NASA Astrophysics Data System (ADS)
Shchur, L. N.; Shchur, L. V.
2015-09-01
We extend concept of local simulation times in parallel discrete event simulation (PDES) in order to take into account architecture of the current hardware and software in high-performance computing. We shortly review previous research on the mapping of PDES on physical problems, and emphasise how physical results may help to predict parallel algorithms behaviour.
Learning Movement Culture: Mapping the Landscape between Physical Education and School Sport
ERIC Educational Resources Information Center
Ward, Gavin
2014-01-01
This article examines Movement Culture as an approach to support teachers in exploring the integration of Sport as a medium for learning within Physical Education. By avoiding the need to draw clearly defined lines between Physical Education and Sport, Movement Culture embraces both. It acknowledges the need for subject matter in Physical…
Lu, Fu-Hao; Kwon, Soon-Wook; Yoon, Min-Young; Kim, Ki-Taek; Cho, Myeong-Cheoul; Yoon, Moo-Kyung; Park, Yong-Jin
2012-01-01
Red pepper, Capsicum annuum L., has been attracting geneticists’ and breeders’ attention as one of the important agronomic crops. This study was to integrate 41 SNP markers newly developed from comparative transcriptomes into a previous linkage map, and map 12 agronomic and morphological traits into the integrated map. A total of 39 markers found precise position and were assigned to 13 linkage groups (LGs) as well as the unassigned LGe, leading to total 458 molecular markers present in this genetic map. Linkage mapping was supported by the physical mapping to tomato and potato genomes using BLAST retrieving, revealing at least two-thirds of the markers mapped to the corresponding LGs. A sum of 23 quantitative trait loci from 11 traits was detected using the composite interval mapping algorithm. A consistent interval between a035_1 and a170_1 on LG5 was detected as a main-effect locus among the resistance QTLs to Phytophthora capsici at high-, intermediate- and low-level tests, and interactions between the QTLs for high-level resistance test were found. Considering the epistatic effect, those QTLs could explain up to 98.25% of the phenotype variations of resistance. Moreover, 17 QTLs for another eight traits were found to locate on LG3, 4, and 12 mostly with varying phenotypic contribution. Furthermore, the locus for corolla color was mapped to LG10 as a marker. The integrated map and the QTLs identified would be helpful for current genetics research and crop breeding, especially in the Solanaceae family. PMID:22684870
Gill, Andrew B; Anandappa, Gayathri; Patterson, Andrew J; Priest, Andrew N; Graves, Martin J; Janowitz, Tobias; Jodrell, Duncan I; Eisen, Tim; Lomas, David J
2015-02-01
This study introduces the use of 'error-category mapping' in the interpretation of pharmacokinetic (PK) model parameter results derived from dynamic contrast-enhanced (DCE-) MRI data. Eleven patients with metastatic renal cell carcinoma were enrolled in a multiparametric study of the treatment effects of bevacizumab. For the purposes of the present analysis, DCE-MRI data from two identical pre-treatment examinations were analysed by application of the extended Tofts model (eTM), using in turn a model arterial input function (AIF), an individually-measured AIF and a sample-average AIF. PK model parameter maps were calculated. Errors in the signal-to-gadolinium concentration ([Gd]) conversion process and the model-fitting process itself were assigned to category codes on a voxel-by-voxel basis, thereby forming a colour-coded 'error-category map' for each imaged slice. These maps were found to be repeatable between patient visits and showed that the eTM converged adequately in the majority of voxels in all the tumours studied. However, the maps also clearly indicated sub-regions of low Gd uptake and of non-convergence of the model in nearly all tumours. The non-physical condition ve ≥ 1 was the most frequently indicated error category and appeared sensitive to the form of AIF used. This simple method for visualisation of errors in DCE-MRI could be used as a routine quality-control technique and also has the potential to reveal otherwise hidden patterns of failure in PK model applications. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Crustal modeling of the central part of the Northern Western Desert, Egypt using gravity data
NASA Astrophysics Data System (ADS)
Alrefaee, H. A.
2017-05-01
The Bouguer anomaly map of the central part of the Northern Western Desert, Egypt was used to construct six 2D gravity models to investigate the nature, physical properties and structures of the crust and upper mantle. The crustal models were constrained and constructed by integrating results from different geophysical techniques and available geological information. The depth to the basement surface, from eight wells existed across the study area, and the depth to the Conrad and Moho interfaces as well as physical properties of sediments, basement, crust and upper mantle from previous petrophysical and crustal studies were used to establish the gravity models. Euler deconvolution technique was carried on the Bouguer anomaly map to detect the subsurface fault trends. Edge detection techniques were calculated to outlines the boundaries of subsurface structural features. Basement structural map was interpreted to reveal the subsurface structural setting of the area. The crustal models reveals increasing of gravity field from the south to the north due to northward thinning of the crust. The models reveals also deformed and rugged basement surface with northward depth increasing from 1.6 km to 6 km. In contrast to the basement, the Conrad and Moho interfaces are nearly flat and get shallower northward where the depth to the Conrad or the thickness of the upper crust ranges from 18 km to 21 km while the depth to the Moho (crustal thickness) ranges from 31.5 km to 34 km. The crust beneath the study area is normal continental crust with obvious thinning toward the continental margin at the Mediterranean coast.
Chen, Yongsheng; Liu, Hongjun; Ali, Farhad; Scott, M Paul; Ji, Qing; Frei, Ursula Karoline; Lübberstedt, Thomas
2012-10-01
Brown midrib mutants in maize are known to be associated with reduced lignin content and increased cell wall digestibility, which leads to better forage quality and higher efficiency of cellulosic biomass conversion into ethanol. Four well known brown midrib (bm) mutants, named bm1-4, were identified several decades ago. Additional recessive brown midrib mutants have been identified by allelism tests and designated as bm5 and bm6. In this study, we determined that bm6 increases cell wall digestibility and decreases plant height. bm6 was confirmed onto the short arm of chromosome 2 by a small mapping set with 181 plants from a F(2) segregating population, derived from crossing B73 and a bm6 mutant line. Subsequently, 960 brown midrib individuals were selected from the same but larger F(2) population for genetic and physical mapping. With newly developed markers in the target region, the bm6 gene was assigned to a 180 kb interval flanked by markers SSR_308337 and SSR_488638. In this region, ten gene models are predicted in the maize B73 sequence. Analysis of these ten genes as well as genes in the syntenic rice region revealed that four of them are promising candidate genes for bm6. Our study will facilitate isolation of the underlying gene of bm6 and advance our understanding of brown midrib gene functions.
Elsman, Ellen B M; Leerlooijer, Joanne N; Ter Beek, Josien; Duijzer, Geerke; Jansen, Sophia C; Hiddink, Gerrit J; Feskens, Edith J M; Haveman-Nies, Annemien
2014-10-27
Although lifestyle interventions have shown to be effective in reducing the risk for type 2 diabetes mellitus, maintenance of achieved results is difficult, as participants often experience relapse after the intervention has ended. This paper describes the systematic development of a maintenance programme for the extensive SLIMMER intervention, an existing diabetes prevention intervention for high-risk individuals, implemented in a real-life setting in the Netherlands. The maintenance programme was developed using the Intervention Mapping protocol. Programme development was informed by a literature study supplemented by various focus group discussions and feedback from implementers of the extensive SLIMMER intervention. The maintenance programme was designed to sustain a healthy diet and physical activity pattern by targeting knowledge, attitudes, subjective norms and perceived behavioural control of the SLIMMER participants. Practical applications were clustered into nine programme components, including sports clinics at local sports clubs, a concluding meeting with the physiotherapist and dietician, and a return session with the physiotherapist, dietician and physical activity group. Manuals were developed for the implementers and included a detailed time table and step-by-step instructions on how to implement the maintenance programme. The Intervention Mapping protocol provided a useful framework to systematically plan a maintenance programme for the extensive SLIMMER intervention. The study showed that planning a maintenance programme can build on existing implementation structures of the extensive programme. Future research is needed to determine to what extent the maintenance programme contributes to sustained effects in participants of lifestyle interventions.
Adverse Effects of Electronic Cigarette Use: A Concept Mapping Approach
Nasim, Aashir; Rosas, Scott
2016-01-01
Abstract Introduction: Electronic cigarette (ECIG) use has grown rapidly in popularity within a short period of time. As ECIG products continue to evolve and more individuals begin using ECIGs, it is important to understand the potential adverse effects that are associated with ECIG use. The purpose of this study was to examine and describe the acute adverse effects associated with ECIG use. Methods: This study used an integrated, mixed-method participatory approach called concept mapping (CM). Experienced ECIG users ( n = 85) provided statements that answered the focus prompt “A specific negative or unpleasant effect (ie, physical or psychological) that I have experienced either during or immediately after using an electronic cigarette device is…” in an online program. Participants sorted these statements into piles of common themes and rated each statement. Using multidimensional scaling and hierarchical cluster analysis, a concept map of the adverse effects statements was created. Results: Participants generated 79 statements that completed the focus prompt and were retained by researchers. Analysis generated a map containing five clusters that characterized perceived adverse effects of ECIG use: Stigma, Worry/Guilt, Addiction Signs, Physical Effects, and Device/Vapor Problems. Conclusions: ECIG use is associated with adverse effects that should be monitored as ECIGs continue to grow in popularity. If ECIGs are to be regulated, policies should be created that minimize the likelihood of user identified adverse effects. Implications: This article provides a list of adverse effects reported by experienced ECIG users. This article organizes these effects into a conceptual model that may be useful for better understanding the adverse outcomes associated with ECIG use. These identified adverse effects may be useful for health professionals and policy makers. Health professionals should be aware of potential negative health effects that may be associated with ECIG use and policy makers could design ECIG regulations that minimize the risk of the adverse effects reported by ECIG users in this study. PMID:26563262
Integration of seafloor point data in usSEABED
Reid, Jane A.; Williams, S. Jeffress; Zimmermann, Mark; Jenkins, Chris; Golden, Nadine E.
2007-01-01
Sediments of the beach, nearshore, and continental shelves record a complex interplay of processes including wave energy and direction , currents, beach erosion or accretion, bluff or cliff retreat, fluvial input, sediment longshore and cross-shelf transport processes, contaminant content and transport, sediment sources and sinks, and others. In turn, sediments and rocks modify wave patterns, affect recreation and tourism, and provide habitat for fish, epifauna, and infauna. Character of the surficial seafloor also influences navigation, commercial and recreational fishing and gathering of other food sources, communication, piplines, national defense, and provides geologic resources including sand and gravel aggregates, minerals, and real or potential energy sources. The beaches, nearshore, and continental margins fall under overlapping levels of managerial responsibility between Federal, State, regional, and local government agencies and consortia. In addition, universities and other academic institutions investigate these places for pure or applied scientific reasons. Mapping is usually the first step in understanding any issue and is often comprised of remotely gathered geophysical data such as bathymetry and backscatter imagery, and groundtruthing; that is, the collection of physical and virtual samples to tie the remotely gathered data to reality. The physical samples are described and (or) carefully analyzed for grain-size information -- which records both the site's physical conditions and geologic past -- and commonly, for constituent components such as mineral and rock types (to determine onland sources and in situ chemical processes), carbonate and organic content and microfossils (for biological and oceanographic influences), and structure such as layering and bioturbation (for physical influences). The samples may also be subjected to physical tests such as comp[action analyses, liquefaction or plasticity limits, ans other parameters important when considering construction of offshore structures. In recent years, virtual sampling of the seafloor has become popular, through the use of towed video or photographic equipment and the addition of camera to oceanographic equipment such as corers and tripods. Before about ten years ago, most maps were made by hand. Recently, with the advent of desktop GIS packages, map making and resource analysis can be done nearly "on-the-fly" if geographically located data exist. While the problems of projection, scale, and resolution of digitized paper maps are commonly known amongst GIS-users, access to the original underlying point data allows for maps to be regenerated for digital use using statistically proven methods, provides increasing data density by including multiple studies, as well as allows the point data to be used in other ways than just mapping. These point data may be available in raw or refined or in worded descriptions. Raw data such as granulometric analyses can be manipulated through the use of known equations or empirical relationships to provide information about other parameters of the sediment, such as mean grainsize, sorting, erodability, or rugosity. If refined data are presented such as gravel, sand, and mud percentages, the parameter noted earlier may be estimated. In the case of worded descriptions, values for geologic terms can be assigned, for example, "fine sand" equate to 0.2 mm sized particles, to provide numeric terms for GIS or modeling purposes.
de Paz, José-Miguel; Sánchez, Juan; Visconti, Fernando
2006-04-01
Soil is one of the main non-renewable natural resources in the world. In the Valencian Community (Mediterranean coast of Spain), it is especially important because agriculture and forest biomass exploitation are two of the main economic activities in the region. More than 44% of the total area is under agriculture and 52% is forested. The frequently arid or semi-arid climate with rainfall concentrated in few events, usually in the autumn and spring, scarcity of vegetation cover, and eroded and shallow soils in several areas lead to soil degradation processes. These processes, mainly water erosion and salinization, can be intense in many locations within the Valencian Community. Evaluation of soil degradation on a regional scale is important because degradation is incompatible with sustainable development. Policy makers involved in land use planning require tools to evaluate soil degradation so they can go on to develop measures aimed at protecting and conserving soils. In this study, a methodology to evaluate physical, chemical and biological soil degradation in a GIS-based approach was developed for the Valencian Community on a 1/200,000 scale. The information used in this study was obtained from two different sources: (i) a soil survey with more than 850 soil profiles sampled within the Valencian Community, and (ii) the environmental information implemented in the Geo-scientific map of the Valencian Community digitised on an Arc/Info GIS. Maps of physical, chemical and biological soil degradation in the Valencian Community on a 1/200,000 scale were obtained using the methodology devised. These maps can be used to make a cost-effective evaluation of soil degradation on a regional scale. Around 29% of the area corresponding to the Valencian Community is affected by high to very high physical soil degradation, 36% by high to very high biological degradation, and 6% by high to very high chemical degradation. It is, therefore, necessary to draw up legislation and to establish the policy framework for actions focused on preventing soil degradation and conserving its productive potential.
The Orion Nebula in the Far-Infrared: high-J CO and fine-structure lines mapped by FIFI-LS/SOFIA
NASA Astrophysics Data System (ADS)
Klein, Randolf; Looney, Leslie; Cox, Erin; Fischer, Christian; Iserlohe, Christof; Krabbe, Alfred
2015-08-01
The Orion Nebula is the closest massive star forming region allowing us to study the physical conditions in such a region with high spatial resolution. We used the far infrared integral-field spectrometer, FIFI-LS, on-board the airborne observatory SOFIA to study the atomic and molecular gas in the Orion Nebula at medium spectral resolution.The large maps obtained with FIFI-LS cover the nebula from the BN/KL-object to the bar in several fine structure lines. These spectral maps are the largest and highest spatially resolved to date. They allow us to study the conditions of the photon-dominated region and the interface to the molecular cloud with unprecedented detail.Another investigation targeted the molecular gas in the BN/KL region of the Orion Nebula, which is stirred up by a violent explosion about 500 years ago. The explosion drives a wide angled molecular outflow. We present maps of several high-J CO observations (J in the range of 10 to 30), allowing us to analyse of the heated molecular gas.The observations were taken during the commissioning of FIFI-LS last year and as recent as this March. The results are still preliminary as the data reduction and calibration is still under development.
2000-04-01
Genes, LOH Mapping, Chromosome 17, Physical Mapping, Genetic Mapping, CDNA Screening, Humans, Anatomical 81 Samples, Mutation Detection, Breast Cancer...According to the established model for LOH involving tumor suppressor genes, the allele remaining in the tumor sample would harbor the deleterious mutation ...sequencing on an AB1373A sequencer (Applied Biosystems, Foster City, CA). As none of the samples we have sequenced have revealed any mutations , we have
Beck Exportation: London and Sydney
NASA Astrophysics Data System (ADS)
Cartwright, William; Field, Kenneth
2018-05-01
Henry (Harry) Beck's schematic map of the London Underground is the foundation for most `modern' representations of metropolitan rail systems. From its introduction in the 1930s, it has been the image of the London underground rail transportation system, and, indeed, the image of London itself. Following the launch of the schematic map in 1933 Londoners adopted his representation of the underground as the favoured transportation navigation tool, but also as a physical affirmation that they were citizens of a modern city, a city of electricity and the avant-garde. The London Underground map, as well as being the physical image of the underground rail system, became the signature of the modern city itself. It projected order, systematic transportation and commuter convenience. The map reinforced the general belief that a modern transportation system was at the very heart of what made a city a city. Building upon the success of the map, Beck, and the London Passenger Transport Board, explored how this `take' on the representation of an urban transportation system might be exported to other European, and Antipodean rail networks. This paper provides a dialogue on how Beck's concept for the `metromap' was offered as an alternative navigational diagram to the, then new, Sydney underground system. It then outlines the results of an investigation about how this `Exportation' of Beck's design resulted in the 1939 Sydney metromap that was a clone of the London Underground map.
Molecular cytogenetic map of the central bearded dragon, Pogona vitticeps (Squamata: Agamidae).
Young, M J; O'Meally, D; Sarre, S D; Georges, A; Ezaz, T
2013-07-01
Reptiles, as the sister group to birds and mammals, are particularly valuable for comparative genomic studies among amniotes. The Australian central bearded dragon (Pogona vitticeps) is being developed as a reptilian model for such comparisons, with whole-genome sequencing near completion. The karyotype consists of 6 pairs of macrochromosomes and 10 pairs microchromosomes (2n = 32), including a female heterogametic ZW sex microchromosome pair. Here, we present a molecular cytogenetic map for P. vitticeps comprising 87 anchor bacterial artificial chromosome clones that together span each macro- and microchromosome. It is the first comprehensive cytogenetic map for any non-avian reptile. We identified an active nucleolus organizer region (NOR) on the sub-telomeric region of 2q by mapping 18S rDNA and Ag-NOR staining. We identified interstitial telomeric sequences in two microchromosome pairs and the W chromosome, indicating that microchromosome fusion has been a mechanism of karyotypic evolution in Australian agamids within the last 21 to 19 million years. Orthology searches against the chicken genome revealed an intrachromosomal rearrangement of P. vitticeps 1q, identified regions orthologous to chicken Z on P. vitticeps 2q, snake Z on P. vitticeps 6q and the autosomal microchromosome pair in P. vitticeps orthologous to turtle Pelodiscus sinensis ZW and lizard Anolis carolinensis XY. This cytogenetic map will be a valuable reference tool for future gene mapping studies and will provide the framework for the work currently underway to physically anchor genome sequences to chromosomes for this model Australian squamate.
A Genetic Linkage Map for Cattle
Bishop, M. D.; Kappes, S. M.; Keele, J. W.; Stone, R. T.; Sunden, SLF.; Hawkins, G. A.; Toldo, S. S.; Fries, R.; Grosz, M. D.; Yoo, J.; Beattie, C. W.
1994-01-01
We report the most extensive physically anchored linkage map for cattle produced to date. Three-hundred thirteen genetic markers ordered in 30 linkage groups, anchored to 24 autosomal chromosomes (n = 29), the X and Y chromosomes, four unanchored syntenic groups and two unassigned linkage groups spanning 2464 cM of the bovine genome are summarized. The map also assigns 19 type I loci to specific chromosomes and/or syntenic groups and four cosmid clones containing informative microsatellites to chromosomes 13, 25 and 29 anchoring syntenic groups U11, U7 and U8, respectively. This map provides the skeletal framework prerequisite to development of a comprehensive genetic map for cattle and analysis of economic trait loci (ETL). PMID:7908653
Cycle expansions: From maps to turbulence
NASA Astrophysics Data System (ADS)
Lan, Y.
2010-03-01
We present a derivation, a physical explanation and applications of cycle expansions in different dynamical systems, ranging from simple one-dimensional maps to turbulence in fluids. Cycle expansion is a newly devised powerful tool for computing averages of physical observables in nonlinear chaotic systems which combines many innovative ideas developed in dynamical systems, such as hyperbolicity, invariant manifolds, symbolic dynamics, measure theory and thermodynamic formalism. The concept of cycle expansion has a deep root in theoretical physics, bearing a close analogy to cumulant expansion in statistical physics and effective action functional in quantum field theory, the essence of which is to represent a physical system in a hierarchical way by utilizing certain multiplicative structures such that the dominant parts of physical observables are captured by compact, maneuverable objects while minor detailed variations are described by objects with a larger space and time scale. The technique has been successfully applied to many low-dimensional dynamical systems and much effort has recently been made to extend its use to spatially extended systems. For one-dimensional systems such as the Kuramoto-Sivashinsky equation, the method turns out to be very effective while for more complex real-world systems including the Navier-Stokes equation, the method is only starting to yield its first fruits and much more work is needed to enable practical computations. However, the experience and knowledge accumulated so far is already very useful to a large set of research problems. Several such applications are briefly described in what follows. As more research effort is devoted to the study of complex dynamics of nonlinear systems, cycle expansion will undergo a fast development and find wide applications.
Efficient high-throughput sequencing of a laser microdissected chromosome arm
2013-01-01
Background Genomic sequence assemblies are key tools for a broad range of gene function and evolutionary studies. The diploid amphibian Xenopus tropicalis plays a pivotal role in these fields due to its combination of experimental flexibility, diploid genome, and early-branching tetrapod taxonomic position, having diverged from the amniote lineage ~360 million years ago. A genome assembly and a genetic linkage map have recently been made available. Unfortunately, large gaps in the linkage map attenuate long-range integrity of the genome assembly. Results We laser dissected the short arm of X. tropicalis chromosome 7 for next generation sequencing and computational mapping to the reference genome. This arm is of particular interest as it encodes the sex determination locus, but its genetic map contains large gaps which undermine available genome assemblies. Whole genome amplification of 15 laser-microdissected 7p arms followed by next generation sequencing yielded ~35 million reads, over four million of which uniquely mapped to the X. tropicalis genome. Our analysis placed more than 200 previously unmapped scaffolds on the analyzed chromosome arm, providing valuable low-resolution physical map information for de novo genome assembly. Conclusion We present a new approach for improving and validating genetic maps and sequence assemblies. Whole genome amplification of 15 microdissected chromosome arms provided sufficient high-quality material for localizing previously unmapped scaffolds and genes as well as recognizing mislocalized scaffolds. PMID:23714049
2013-01-01
Background Adults with severe malaria frequently require intravenous fluid therapy to restore their circulating volume. However, fluid must be delivered judiciously as both under- and over-hydration increase the risk of complications and, potentially, death. As most patients will be cared for in a resource-poor setting, management guidelines necessarily recommend that physical examination should guide fluid resuscitation. However, the reliability of this strategy is uncertain. Methods To determine the ability of physical examination to identify hypovolaemia, volume responsiveness, and pulmonary oedema, clinical signs and invasive measures of volume status were collected independently during an observational study of 28 adults with severe malaria. Results The physical examination defined volume status poorly. Jugular venous pressure (JVP) did not correlate with intravascular volume as determined by global end diastolic volume index (GEDVI; rs = 0.07, p = 0.19), neither did dry mucous membranes (p = 0.85), or dry axillae (p = 0.09). GEDVI was actually higher in patients with decreased tissue turgor (p < 0.001). Poor capillary return correlated with GEDVI, but was present infrequently (7% of observations) and, therefore, insensitive. Mean arterial pressure (MAP) correlated with GEDVI (rs = 0.16, p = 0.002), but even before resuscitation patients with a low GEDVI had a preserved MAP. Anuria on admission was unrelated to GEDVI and although liberal fluid resuscitation led to a median hourly urine output of 100 ml in 19 patients who were not anuric on admission, four (21%) developed clinical pulmonary oedema subsequently. MAP was unrelated to volume responsiveness (p = 0.71), while a low JVP, dry mucous membranes, dry axillae, increased tissue turgor, prolonged capillary refill, and tachycardia all had a positive predictive value for volume responsiveness of ≤50%. Extravascular lung water ≥11 ml/kg indicating pulmonary oedema was present on 99 of the 353 times that it was assessed during the study, but was identified on less than half these occasions by tachypnoea, chest auscultation, or an elevated JVP. A clear chest on auscultation and a respiratory rate <30 breaths/minute could exclude pulmonary oedema on 82% and 72% of occasions respectively. Conclusions Findings on physical examination correlate poorly with true volume status in adults with severe malaria and must be used with caution to guide fluid therapy. Trial registration Clinicaltrials.gov identifier: NCT00692627 PMID:24079262
A Basketball Court-Size Global Map of Mars for Education and Public Outreach
NASA Astrophysics Data System (ADS)
Hill, J. R.; Christensen, P. R.
2017-12-01
The Thermal Emission Imaging System (THEMIS) onboard the 2001 Mars Odyssey spacecraft has acquired over 220,000 infrared images of the Martian surface at a resolution of 100 m/pixel since the start of science operations in February 2002. A global map was previously developed by mosaicking together over 24,000 high-quality full-resolution THEMIS daytime infrared images. Although the resulting map has been extremely valuable for scientific and mission operations applications, it has been difficult to communicate this value to students, citizen scientists and the general public, since their interactions with the map have been limited to computer-based geographic information system (GIS) interfaces. We determined that, in order to better communicate the value and importance of mapping the entire Martian surface at this resolution, people need to be able to physically interact with the map and experience its full scale. Therefore, the THEMIS Day IR Global Mosaic with Colorized MOLA Elevation will be printed on a 45ft x 90ft vinyl mat, which will allow observers to walk across and physically experience the map at approximately full resolution (printed at 200 pixels per inch). The size of the map was chosen to fit on a standard high school basketball court, so that a large number of schools will have a sufficiently large indoor surface on which to display the map for education events. The vinyl material and printing process selected for the map have been proven to be wear-resistant in similar applications, as long as everyone who walks on the map wears socks or similarly soft foot coverings. In order to make transportation easier, the map will be printed in two 45ft x 45ft sections, which will be joined together at events to create the full 45ft x 90ft map. The final stages of the map production will take place in early fall 2017, followed by initial education events at Arizona State University and local schools to test the educational activities associated with the map. This project was partially inspired by the National Geographic Society's Giant Traveling Maps Program, was completed with the assistance of the Arizona Geographic Alliance, and was largely funded through the Arizona State University School of Earth and Space Exploration (SESE) Summer Exploration Graduate Fellowship program.
Apparatus for Teaching Physics.
ERIC Educational Resources Information Center
Gottlieb, Herbert H., Ed.
1979-01-01
Six different pieces of physics apparatus are described: Telsa Coil for instant ignition of sodium arc lamps, Timekube, Magnetic Maps of the United States, a slinky with vertical mounting, a wave generator power supply, and a long-period timer power switch. Price and supplier are included. (BT)
Joined up Thinking? Evaluating the Use of Concept-Mapping to Develop Complex System Learning
ERIC Educational Resources Information Center
Stewart, Martyn
2012-01-01
In the physical and natural sciences, the complexity of natural systems and their interactions is becoming better understood. With increased emphasis on learning about complex systems, students will be encountering concepts that are dynamic, ill-structured and interconnected. Concept-mapping is a method considered particularly valuable for…
Trail Orienteering: An Effective Way To Practice Map Interpretation.
ERIC Educational Resources Information Center
Horizons, 1999
1999-01-01
Discusses a type of orienteering developed in Great Britain to allow people with physical disabilities to compete on equal terms. Sites are viewed from a wheelchair-accessible main route. The main skill is interpreting the maps at each site, not finding the sites. Describes differences from standard orienteering, how sites work, and essential…
Physical mapping withing the tuberous sclerosis linkage group in region 9q32-q34
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, R.M.; Carter, N.P.; Griffiths, B.
1993-02-01
Pulsed-field gel electrophoresis and flow dot-blot analysis have been used to construct a physical map of the q32-q34 region of chromosome 9, where one of the loci responsible for tuberous sclerosis (TSC1) has been mapped by genetic linkage. Five linked groups of markers have been defined by pulsed-field gel electrophoresis. The orientation of these groups and the order of markers within them were determined by hybridization to flow-sorted dot blots derived from a panel of cell lines of chromosome 9 translocations to place probes proximal or distal to each breakpoint. The local map order 9q32-q34 derived by application of thismore » combination of techniques is as follows: centromere - ALAD-1.3 Mb-ORM/20 kb/D9S16-GSN-250 kb-C5-HXB-1.9 Mb-D9S21-AK1-1.4 Mb-SPTAN1-ASS-800-kb-ABL-2 Mb-D0S10/350 Kb/DBH-telomere. 48 refs., 6 figs., 4 figs.« less
Permeability of soils in Mississippi
O'Hara, Charles G.
1994-01-01
The permeability of soils in Mississippi was determined and mapped using a geographic information system (GIS). Soil permeabilities in Mississippi were determined to range in value from nearly 0.0 to values exceeding 5.0 inches per hour. The U.S. Soil Conservation Service's State Soil Geographic Data Base (STATSGO) was used as the primary source of data for the determination of area-weighted soil permeability. STATSGO provides soil layer properties that are spatially referenced to mapped areas. These mapped areas are referred to as polygons in the GIS. The polygons arc boundaries of soils mapped as a group and are given unique Map Unit Identifiers (MUIDs). The data describing the physical characteristics of the soils within each polygon are stored in a tabular data base format and are referred to as attributes. The U.S. Soil Conservation Service developed STATSGO to be primarily used as a guide for regional resource planning, management, and monitoring. STATSGO was designed so that soil information could be extracted from properties tables at the layer level, combined by component, and statistically expanded to cover the entire map unit. The results of this study provide a mapped value for permeability which is representative of the vertical permeability of soils in that area. The resultant permeability map provides a representative vertical soil permeability for a given area sufficient for county, multi- county, and area planning, and will be used as the soil permeability data component in the evaluation of the susceptibility of major aquifers to contami- nation in Mississippi.
Towards the isolation of the idiopathic hemochromatosis disease gene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chorney, M.J.; Venditti, C.P.; Harris, J.M.
1994-09-01
Despite the existence of many useful reagents which exist to aid in the positional cloning of the idiopathic hermochromatosis disease gene (HFE), the nature and precise location of this common genetic disease has remained elusive. Our group has pursued an MHC-based positional cloning approach which has centered on the precise physical definition of HLA-A variant chromosomes. Using deletion breakpoint locations in combination with genetic data derived from the Brittany founder population, we have used cDNA selection techniques to isolate new members of distinct multigene families which reside in the HFE critical region (distal to the HLA-A9 breakpoint/proximal to HLA-F). Wemore » have also initiated an independent set of cytogenetic and physical mapping studies to position the marker D6S105 with respect to the telomeric end of the class I subregion. Toward this end, we have performed double labelling FISH experiments which have allowed the localization of D6S105-containing YACs with respect to the HLA-A subregion and to the major G-bands which contain these loci. We have also derived single-copy probes, cosmids and cDNA clones from the region which have been used to create a physical map around D6S105. The combination of the cytogenetic and physical mapping data indicate that D6S105 is at least 2 Mb from HLA-A and that the distal limit of the MHC class I region may extend much further into the the euchromatic region of 6p21.3 than previously expected. A mega-YAC walk is now in progress to link the two loci. Finally, we have identified and characterized a family which is segregating a balanced inversion in phase with HFE. The breakpoint locations of this mutant chromosome may be important in the precise positioning of the HFE gene and attempts to define coding sequences in the proximity of this rearrangement are underway.« less
NASA Astrophysics Data System (ADS)
Tsamis, Y. G.; Walsh, J. R.; Péquignot, D.; Barlow, M. J.; Danziger, I. J.; Liu, X.-W.
2008-05-01
Results from the first dedicated study of Galactic planetary nebulae (PNe) by means of optical integral field spectroscopy with the Very Large Telescope Fibre Large Array Multi Element Spectrograph Argus integral field unit are presented. Three typical Galactic disc PNe have been mapped with the 11.5 × 7.2-arcsec2 Argus array: 2D spectral maps of the main shell of NGC5882 and of large areas of NGC 6153 and NGC 7009 with 297 spatial pixels per target were obtained at subarcsec resolutions. A corresponding number of 297 spectra per target were obtained in the 396.4-507.8nm range. Spatially resolved maps of emission lines and of nebular physical properties such as electron temperatures, densities and ionic abundances were produced. The abundances of helium and of doubly ionized carbon and oxygen, relative to hydrogen, were derived from optical recombination lines (ORLs), while those of O2+ were also derived from the classic collisionally excited lines (CELs). The occurrence of the abundance discrepancy problem, pertaining to oxygen, was investigated by mapping the ratio of ORL/CEL abundances for O2+ [the abundance discrepancy factor (ADF)] across the face of the PNe. The ADF varies between targets and also with position within the targets, attaining values of ~40 in the case of NGC 6153 and ~30 in the case of NGC 7009. Correlations of the ADF with geometric distance from the central star and plasma surface brightness (for NGC 6153), as well as with [OIII] electron temperature, plasma ionization state and other physical properties of the targets are established. Very small values of the temperature fluctuation parameter in the plane of the sky, t2A(O2+), are found in all cases. It is argued that these results provide further evidence for the existence in run-of-the-mill PNe of a distinct nebular component consisting of hydrogen-deficient, super-metal-rich plasma. The zones containing this posited component appear as undulations in the CII and OII ORL abundance diagnostics of about 2 spatial pixels across, and so any associated structures should have physical sizes of less than ~1000 astronomical units. Regarding the origin of the inferred zones, we propose that circumstellar discs, Abell 30-type knots, or Helix-type cometary globules may be involved. Implications for emission-line studies of nebulae are discussed. Based on observations made with ESO telescopes at the Paranal Observatory under programme ID 075.D-0847(A). E-mail: ygt@star.ucl.ac.uk
The generalized Lyapunov theorem and its application to quantum channels
NASA Astrophysics Data System (ADS)
Burgarth, Daniel; Giovannetti, Vittorio
2007-05-01
We give a simple and physically intuitive necessary and sufficient condition for a map acting on a compact metric space to be mixing (i.e. infinitely many applications of the map transfer any input into a fixed convergency point). This is a generalization of the 'Lyapunov direct method'. First we prove this theorem in topological spaces and for arbitrary continuous maps. Finally we apply our theorem to maps which are relevant in open quantum systems and quantum information, namely quantum channels. In this context, we also discuss the relations between mixing and ergodicity (i.e. the property that there exists only a single input state which is left invariant by a single application of the map) showing that the two are equivalent when the invariant point of the ergodic map is pure.
NASA Astrophysics Data System (ADS)
Brady, M.
2015-12-01
A method to produce hazard exposure maps that are developed in collaboration with local coastal communities is the focus of this research. Typically efforts to map community exposure to climate threats over large areas have limited consideration of local perspectives about associated risks, constraining their utility for local management. This problem is especially acute in remote locations such as the Arctic where there are unique vulnerabilities to coastal threats that can be fully understood only through inclusion of community stakeholders. Through collaboration with community members, this study identifies important coastal assets and places and surveys local perspectives of exposure to climate threats along Alaska's vast North Slope coastline spanning multiple municipalities. To model physical exposure, the study adapts the U.S. Geological Survey's (USGS) coastal vulnerability index (CVI) to the Arctic context by incorporating the effects of open water distance determined by sea ice extent, and assigning CVI values to coastal assets and places according to direction and proximity. The study found that in addition to concerns about exposed municipal and industrial assets, North Slope communities viewed exposure of traditional activity sites as presenting a particular risk for communities. Highly exposed legacy Cold War Distant Early Warning Line sites are of particular concern with impacts ranging from financial risk to contamination of sensitive coastal marine environments. This research demonstrates a method to collaboratively map community exposure to coastal climate threats to better understand local risks and produce locally usable exposure maps.
Boscovich: his geodetic and cartographic studies.
NASA Astrophysics Data System (ADS)
Crippa, B.; Forcella, V.; Mussio, L.
The name of Ruggero Giuseppe Boscovich has many spellings: the Croatian Boscovič, linked to his Dalmatian origin, becomes Boscowich in German. Ruggero Giuseppe Boscovich lived and worked in many cities: Rome, Pavia, Venice, Paris, London, Warsaw, Saint Petersburg and Constantinople, where he carried out diplomatic missions. He was a Jesuit and studied mathematics, physics, astronomy, geodesy, and cartography. His studies in geodesy and cartography were developed in Italy: he measured the meridian between Rome and Rimini, he worked on the new map of the Papal State and he designed the Brera Observatory. In the first part of the present work, we present Boscovich's activities from a chronological point of view. In the second part, we focus on two specific arguments, related to geodesy and cartography: the new map of the Papal State and an attempt to rebuild the associated triangulation.
Mehdipanah, Roshanak; Malmusi, Davide; Muntaner, Carles; Borrell, Carme
2013-09-01
Urban renewal programs aim to improve physical and socioeconomic position of neighborhoods. However, due to the intervention's complexity, there is often little evidence of their impact on health and health inequalities. This study aimed to identify the perception of a group of neighborhood residents towards a large-scale urban renewal program in Barcelona and to explore its effects and importance on their wellbeing using concept mapping methodology. Our results indicate that the majority of urban renewal projects within the initiative, including improved walkability, construction of new public spaces and more community programs, have positive and important effects on the overall wellbeing of participants. This study presents an innovative method that diverts from traditional outcome-based evaluations studies often used within this field. Copyright © 2013 Elsevier Ltd. All rights reserved.
Adaptive space warping to enhance passive haptics in an arthroscopy surgical simulator.
Spillmann, Jonas; Tuchschmid, Stefan; Harders, Matthias
2013-04-01
Passive haptics, also known as tactile augmentation, denotes the use of a physical counterpart to a virtual environment to provide tactile feedback. Employing passive haptics can result in more realistic touch sensations than those from active force feedback, especially for rigid contacts. However, changes in the virtual environment would necessitate modifications of the physical counterparts. In recent work space warping has been proposed as one solution to overcome this limitation. In this technique virtual space is distorted such that a variety of virtual models can be mapped onto one single physical object. In this paper, we propose as an extension adaptive space warping; we show how this technique can be employed in a mixed-reality surgical training simulator in order to map different virtual patients onto one physical anatomical model. We developed methods to warp different organ geometries onto one physical mock-up, to handle different mechanical behaviors of the virtual patients, and to allow interactive modifications of the virtual structures, while the physical counterparts remain unchanged. Various practical examples underline the wide applicability of our approach. To the best of our knowledge this is the first practical usage of such a technique in the specific context of interactive medical training.
Nanoscale temperature mapping in operating microelectronic devices
Mecklenburg, Matthew; Hubbard, William A.; White, E. R.; ...
2015-02-05
We report that modern microelectronic devices have nanoscale features that dissipate power nonuniformly, but fundamental physical limits frustrate efforts to detect the resulting temperature gradients. Contact thermometers disturb the temperature of a small system, while radiation thermometers struggle to beat the diffraction limit. Exploiting the same physics as Fahrenheit’s glass-bulb thermometer, we mapped the thermal expansion of Joule-heated, 80-nanometer-thick aluminum wires by precisely measuring changes in density. With a scanning transmission electron microscope (STEM) and electron energy loss spectroscopy (EELS), we quantified the local density via the energy of aluminum’s bulk plasmon. Rescaling density to temperature yields maps with amore » statistical precision of 3 kelvin/hertz ₋1/2, an accuracy of 10%, and nanometer-scale resolution. Lastly, many common metals and semiconductors have sufficiently sharp plasmon resonances to serve as their own thermometers.« less
Salivary Polytene Chromosome Map of Anopheles darlingi, the Main Vector of Neotropical Malaria
Rafael, Míriam S.; Rohde, Cláudia; Bridi, Letícia C.; da Silva Valente Gaiesky, Vera Lúcia; Tadei, Wanderli P.
2010-01-01
New photomap of Anopheles (Nyssorhynchus) darlingi Root, 1926, is described for a population from Guajará-Mirim, State of Rondonia, Brazil. The number of sections in the previous A. darlingi reference map was maintained and new subsections were added to the five chromosome arms. Breakage points of paracentric inversions had been previously incorporated into the photomap of this species. An additional inversion is reported, called 3Lc, totaling 14 inversions in the A. darlingi chromosome arms. The proposed photomap is potentially useful for further evolutionary studies in addition to physical and in silico chromosome mapping using A. darlingi genomic and transcriptome sequences. Furthermore, in our attempt to compare sections of the 2R chromosome arm of A. darlingi with Anopheles funestus, Anopheles stephensi, and Anopheles gambiae, we found great differences in the arrangement of the polytene chromosome bands, which are consistent with the known phylogenetic divergence of these species. PMID:20682862
A LANDSAT study of ephemeral and perennial rangeland vegetation and soils
NASA Technical Reports Server (NTRS)
Bentley, R. G., Jr. (Principal Investigator); Salmon-Drexler, B. C.; Bonner, W. J.; Vincent, R. K.
1976-01-01
The author has identified the following significant results. Several methods of computer processing were applied to LANDSAT data for mapping vegetation characteristics of perennial rangeland in Montana and ephemeral rangeland in Arizona. The choice of optimal processing technique was dependent on prescribed mapping and site condition. Single channel level slicing and ratioing of channels were used for simple enhancement. Predictive models for mapping percent vegetation cover based on data from field spectra and LANDSAT data were generated by multiple linear regression of six unique LANDSAT spectral ratios. Ratio gating logic and maximum likelihood classification were applied successfully to recognize plant communities in Montana. Maximum likelihood classification did little to improve recognition of terrain features when compared to a single channel density slice in sparsely vegetated Arizona. LANDSAT was found to be more sensitive to differences between plant communities based on percentages of vigorous vegetation than to actual physical or spectral differences among plant species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Liqiang; Wu, Di; Li, Yuhua
Purpose : X-ray fluorescence (XRF) is a promising technique with sufficient specificity and sensitivity for identifying and quantifying features in small samples containing high atomic number (Z) materials such as iodine, gadolinium, and gold. In this study, the feasibility of applying XRF to early breast cancer diagnosis and treatment is studied using a novel approach for three-dimensional (3D) x-ray fluorescence mapping (XFM) of gold nanoparticle (GNP)-loaded objects in a physical phantom at the technical level. Methods : All the theoretical analysis and experiments are conducted under the condition of using x-ray pencil beam and a compactly integrated x-ray spectrometer. Themore » penetrability of the fluorescence x-rays from GNPs is first investigated by adopting a combination of BR12 with 70 mm/50 mm in thickness on the excitation/emission path to mimic the possible position of tumor goldin vivo. Then, a physical phantom made of BR12 is designed to translate in 3D space with three precise linear stages and subsequently the step by step XFM scanning is performed. The experimental technique named as background subtraction is applied to isolate the gold fluorescence from each spectrum obtained by the spectrometer. Afterwards, the attenuations of both the incident primary x-ray beam with energies beyond the gold K-edge energy (80.725 keV) and the isolated gold K{sub α} fluorescence x-rays (65.99 –69.80 keV) acquired after background subtraction are well calibrated, and finally the unattenuated K{sub α} fluorescence counts are used to realize mapping reconstruction and to describe the linear relationship between gold fluorescence counts and corresponding concentration of gold solutions. Results : The penetration results show that the goldK{sub α} fluorescence x-rays have sufficient penetrability for this phantom study, and the reconstructed mapping results indicate that both the spatial distribution and relative concentration of GNPs within the designed BR12 phantom can be well identified and quantified. Conclusions : Although the XFM method in this investigation is still studied at the technical level and is not yet practical for routinein vivo mapping tasks with GNPs, the current penetrability measurements and phantom study strongly suggest the feasibility to establish and develop a 3D XFM system.« less
NASA Astrophysics Data System (ADS)
Woo, C.; Kang, M.; Seo, J.; Kim, D.; Lee, C.
2017-12-01
As the mountainous urbanization has increased the concern about landslides in the living area, it is essential to develop the technology to minimize the damage through quick identification and sharing of the disaster occurrence information. In this study, to establish an effective system of alert evacuation that has influence on the residents, we used the debris flow combination degree of risk to predict the risk of the disaster and the level of damage and to select evacuation priorities. Based on the GIS information, the physical strength and social vulnerability were determined by following the debris flow combination of the risk formula. The results classify the physical strength hazard rating of the debris flow combination of the through the normalization process. Debris flow the estimated residential population included in the damage range of the damage prediction map is based on the area and the unit size data. Prediction of occupant formula was calculated by applying different weighting to the resident population and users, and the result was classified into 5 classes as the debris flow physical strength. The debris flow occurrence physical strength and social and psychological vulnerability were classified into the classifications to be reflected in the debris flow integrated risk map using the matrix technique. In addition, to supplement the risk of incorporation of debris flow, we added weight to disaster vulnerable facilities that require a lot of time and manpower to evacuate. The basic model of welfare facilities was supplemented by using basic data, population density, employment density and GDP. First, evacuate areas with high integrated degree of risk level, and evacuate with consideration of physical class differences if classification difficult because of the same or similar grade among the management areas. When the physical hazard class difference is similar, the population difference of the area including the welfare facility is considered first, and the priority is decided in order of age distribution, population density by period, and class difference of residential facility. The results of this study are expected be used as basic data for establishing a safety net for landslide by evacuation systems for disasters. Keyword: Landslide, Debris flow, Early warning system, evacuation