Physical-chemical property based sequence motifs and methods regarding same
Braun, Werner [Friendswood, TX; Mathura, Venkatarajan S [Sarasota, FL; Schein, Catherine H [Friendswood, TX
2008-09-09
A data analysis system, program, and/or method, e.g., a data mining/data exploration method, using physical-chemical property motifs. For example, a sequence database may be searched for identifying segments thereof having physical-chemical properties similar to the physical-chemical property motifs.
NASA Astrophysics Data System (ADS)
Shang, De-Yi; Zhong, Liang-Cai
2017-01-01
Our novel models for fluid's variable physical properties are improved and reported systematically in this work for enhancement of theoretical and practical value on study of convection heat and mass transfer. It consists of three models, namely (1) temperature parameter model, (2) polynomial model, and (3) weighted-sum model, respectively for treatment of temperature-dependent physical properties of gases, temperature-dependent physical properties of liquids, and concentration- and temperature-dependent physical properties of vapour-gas mixture. Two related components are proposed, and involved in each model for fluid's variable physical properties. They are basic physic property equations and theoretical similarity equations on physical property factors. The former, as the foundation of the latter, is based on the typical experimental data and physical analysis. The latter is built up by similarity analysis and mathematical derivation based on the former basic physical properties equations. These models are available for smooth simulation and treatment of fluid's variable physical properties for assurance of theoretical and practical value of study on convection of heat and mass transfer. Especially, so far, there has been lack of available study on heat and mass transfer of film condensation convection of vapour-gas mixture, and the wrong heat transfer results existed in widespread studies on the related research topics, due to ignorance of proper consideration of the concentration- and temperature-dependent physical properties of vapour-gas mixture. For resolving such difficult issues, the present novel physical property models have their special advantages.
Modelling of the Thermo-Physical and Physical Properties for Solidification of Al-Alloys
NASA Astrophysics Data System (ADS)
Saunders, N.; Li, X.; Miodownik, A. P.; Schillé, J.-P.
The thermo-physical and physical properties of the liquid and solid phases are critical components in casting simulations. Such properties include the fraction solid transformed, enthalpy release, thermal conductivity, volume and density, all as a function of temperature. Due to the difficulty in experimentally determining such properties at solidification temperatures, little information exists for multi-component alloys. As part of the development of a new computer program for modelling of materials properties (JMatPro) extensive work has been carried out on the development of sound, physically based models for these properties. Wide ranging results will presented for Al-based alloys, which will include more detailed information concerning the density change of the liquid that intrinsically occurs during solidification due to its change in composition.
Zhu, JiangLing; Shi, Yue; Fang, LeQi; Liu, XingE; Ji, ChengJun
2015-06-01
The physical and mechanical properties of wood affect the growth and development of trees, and also act as the main criteria when determining wood usage. Our understanding on patterns and controls of wood physical and mechanical properties could provide benefits for forestry management and bases for wood application and forest tree breeding. However, current studies on wood properties mainly focus on wood density and ignore other wood physical properties. In this study, we established a comprehensive database of wood physical properties across major tree species in China. Based on this database, we explored spatial patterns and driving factors of wood properties across major tree species in China. Our results showed that (i) compared with wood density, air-dried density, tangential shrinkage coefficient and resilience provide more accuracy and higher explanation power when used as the evaluation index of wood physical properties. (ii) Among life form, climatic and edaphic variables, life form is the dominant factor shaping spatial patterns of wood physical properties, climatic factors the next, and edaphic factors have the least effects, suggesting that the effects of climatic factors on spatial variations of wood properties are indirectly induced by their effects on species distribution.
Mechanical and physical properties of agro-based fiberboard
S. Lee; T.F. Shupe; C.Y. Hse
2006-01-01
In order to better utilize agricultural fibers as an alternative resource for composite panels, several variables were investigated to improve mechanical and physical properties of agm-based fiberboard. This study focused on the effect of fiber morphology, slenderness ratios (UD), and fiber mixing combinations on panel properties. The panel construction types were also...
Computational studies of physical properties of Nb-Si based alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ouyang, Lizhi
2015-04-16
The overall goal is to provide physical properties data supplementing experiments for thermodynamic modeling and other simulations such as phase filed simulation for microstructure and continuum simulations for mechanical properties. These predictive computational modeling and simulations may yield insights that can be used to guide materials design, processing, and manufacture. Ultimately, they may lead to usable Nb-Si based alloy which could play an important role in current plight towards greener energy. The main objectives of the proposed projects are: (1) developing a first principles method based supercell approach for calculating thermodynamic and mechanic properties of ordered crystals and disordered latticesmore » including solid solution; (2) application of the supercell approach to Nb-Si base alloy to compute physical properties data that can be used for thermodynamic modeling and other simulations to guide the optimal design of Nb-Si based alloy.« less
NASA Astrophysics Data System (ADS)
Sehlke, A.; Kobs Nawotniak, S. E.; Hughes, S. S.; Sears, D. W.; Downs, M. T.; Whittington, A. G.; Lim, D. S. S.; Heldmann, J. L.
2017-10-01
We present the relationship of lava flow morphology and the physical properties of the rocks based on terrestrial field work, and how this can be applied to infer physical properties of lunar lava flows.
Ground-based forest harvesting effects on soil physical properties and Douglas-fir growth.
Adrian Ares; Thomas A. Terry; Richard E. Miller; Harry W. Anderson; Barry L. Flaming
2005-01-01
Soil properties and forest productivity can be affected by heavy equipment used for harvest and site preparation but these impacts vary greatly with site conditions and operational practices. We assessed the effects of ground-based logging on soil physical properties and subsequent Douglas-fir [Pseudotsuga menziesii (Mirb) Franco] growth on a highly...
Monitoring of the Physical and Chemical Properties of a Gasoline Engine Oil during Its Usage
Rahimi, Behnam; Semnani, Abolfazl; Nezamzadeh-Ejhieh, Alireza; Shakoori Langeroodi, Hamid; Hakim Davood, Massoud
2012-01-01
Physicochemical properties of a mineral-based gasoline engine oil have been monitored at 0, 500, 1000, 2000, 3500, 6000, 8500, and 11500 kilometer of operation. Tracing has been performed by inductively coupled plasma and some other techniques. At each series of measurements, the concentrations of twenty four elements as well as physical properties such as: viscosity at 40 and 100°C; viscosity index; flash point; pour point; specific gravity; color; total acid and base numbers; water content have been determined. The results are indicative of the decreasing trend in concentration of additive elements and increasing in concentration for wear elements. Different trends have been observed for various physical properties. The possible reasons for variations in physical and chemical properties have been discussed. PMID:22567569
Physical approaches to biomaterial design
Mitragotri, Samir; Lahann, Joerg
2009-01-01
The development of biomaterials for drug delivery, tissue engineering and medical diagnostics has traditionally been based on new chemistries. However, there is growing recognition that the physical as well as the chemical properties of materials can regulate biological responses. Here, we review this transition with regard to selected physical properties including size, shape, mechanical properties, surface texture and compartmentalization. In each case, we present examples demonstrating the significance of these properties in biology. We also discuss synthesis methods and biological applications for designer biomaterials, which offer unique physical properties. PMID:19096389
NASA Astrophysics Data System (ADS)
Sakovich, G. V.; Vorozhtsov, S. A.; Vorozhtsov, A. B.; Potekaev, A. I.; Kulkov, S. N.
2016-07-01
The influence of introduction of particles of detonation-synthesized nanodiamonds into composites and aluminum-base light alloys on their physical and mechanical properties is analyzed. The data on microstructure and physical and mechanical properties of composites and cast aluminum alloys reinforced with diamond nanoparticles are presented. The introduction of nanoparticles is shown to result in a significant improvement of the material properties.
1989-01-01
survey for the southern part of Washoe Ccunty provides data on sane physical and chemical properties of soils . The data deteied to be pertinent to on...base soils is presented in Table 3, Physical and Chemical Properties of Soils Occrring on the NVANG Base in Reno, Nevada. Analyses of surface water and...NVANG Base . . . ...... .. . .. . . 111-6 3. Physical and Chemical Prperties of Soils Occrring on the NVANG Base in Reno, Nevada
NASA Astrophysics Data System (ADS)
Babaie, Hassan; Davarpanah, Armita
2016-04-01
We are semantically modeling the structural and dynamic process components of the plastic deformation of minerals and rocks in the Plastic Deformation Ontology (PDO). Applying the Ontology of Physics in Biology, the PDO classifies the spatial entities that participate in the diverse processes of plastic deformation into the Physical_Plastic_Deformation_Entity and Nonphysical_Plastic_Deformation_Entity classes. The Material_Physical_Plastic_Deformation_Entity class includes things such as microstructures, lattice defects, atoms, liquid, and grain boundaries, and the Immaterial_Physical_Plastic_Deformation_Entity class includes vacancies in crystals and voids along mineral grain boundaries. The objects under the many subclasses of these classes (e.g., crystal, lattice defect, layering) have spatial parts that are related to each other through taxonomic (e.g., Line_Defect isA Lattice_Defect), structural (mereological, e.g., Twin_Plane partOf Twin), spatial-topological (e.g., Vacancy adjacentTo Atom, Fluid locatedAlong Grain_Boundary), and domain specific (e.g., displaces, Fluid crystallizes Dissolved_Ion, Void existsAlong Grain_Boundary) relationships. The dynamic aspect of the plastic deformation is modeled under the dynamical Process_Entity class that subsumes classes such as Recrystallization and Pressure_Solution that define the flow of energy amongst the physical entities. The values of the dynamical state properties of the physical entities (e.g., Chemical_Potential, Temperature, Particle_Velocity) change while they take part in the deformational processes such as Diffusion and Dislocation_Glide. The process entities have temporal parts (phases) that are related to each other through temporal relations such as precedes, isSubprocessOf, and overlaps. The properties of the physical entities, defined under the Physical_Property class, change as they participate in the plastic deformational processes. The properties are categorized into dynamical, constitutive, spatial, temporal, statistical, and thermodynamical. The dynamical properties, categorized under the Dynamical_Rate_Property and Dynamical_State_Property classes, subsume different classes of properties (e.g., Fluid_Flow_Rate, Temperature, Chemical_Potential, Displacement, Electrical_Charge) based on the physical domain (e.g., fluid, heat, chemical, solid, electrical). The properties are related to the objects under the Physical_Entity class through diverse object type (e.g., physicalPropertyOf) and data type (e.g., Fluid_Pressure unit 'MPa') properties. The changes of the dynamical properties of the physical entities, described by the empirical laws (equations) modeled by experimental structural geologists, are modeled through the Physical_Property_Dependency class that subsumes the more specialized constitutive, kinetic, and thermodynamic expressions of the relationships among the dynamic properties. Annotation based on the PDO will make it possible to integrate and reuse experimental plastic deformation data, knowledge, and simulation models, and conduct semantic-based search of the source data originating from different rock testing laboratories.
Properties of pressure sensitive adhesives found in paper recycling operations
Ryan F. Verhulst; Steven J. Severtson; Jihui Guo; Carl J. Houtman
2006-01-01
Hot melt and water-based adhesives are very different materials with similar physical properties. Their ability to act as adhesives is due to physical bonds and mechanical interlocks which form as adhesive flows into topographical features on the substrate surface. Hot-melt adhesives are based on soft, rubbery polymers while water-based adhesives are usually acrylic...
NASA Astrophysics Data System (ADS)
Ibragimov, Aleksandr; Vasilkin, Andrey; Fedotov, Aleksandr
2017-10-01
Use film of LDPE as thermoplastic binder for production of plywood is proposed. Results of physic-mechanical properties of plywood based on the LDPE film of different thicknesses in comparison with conventional thermosetting synthetic binder are presented.
Increasing precision of turbidity-based suspended sediment concentration and load estimates.
Jastram, John D; Zipper, Carl E; Zelazny, Lucian W; Hyer, Kenneth E
2010-01-01
Turbidity is an effective tool for estimating and monitoring suspended sediments in aquatic systems. Turbidity can be measured in situ remotely and at fine temporal scales as a surrogate for suspended sediment concentration (SSC), providing opportunity for a more complete record of SSC than is possible with physical sampling approaches. However, there is variability in turbidity-based SSC estimates and in sediment loadings calculated from those estimates. This study investigated the potential to improve turbidity-based SSC, and by extension the resulting sediment loading estimates, by incorporating hydrologic variables that can be monitored remotely and continuously (typically 15-min intervals) into the SSC estimation procedure. On the Roanoke River in southwestern Virginia, hydrologic stage, turbidity, and other water-quality parameters were monitored with in situ instrumentation; suspended sediments were sampled manually during elevated turbidity events; samples were analyzed for SSC and physical properties including particle-size distribution and organic C content; and rainfall was quantified by geologic source area. The study identified physical properties of the suspended-sediment samples that contribute to SSC estimation variance and hydrologic variables that explained variability of those physical properties. Results indicated that the inclusion of any of the measured physical properties in turbidity-based SSC estimation models reduces unexplained variance. Further, the use of hydrologic variables to represent these physical properties, along with turbidity, resulted in a model, relying solely on data collected remotely and continuously, that estimated SSC with less variance than a conventional turbidity-based univariate model, allowing a more precise estimate of sediment loading, Modeling results are consistent with known mechanisms governing sediment transport in hydrologic systems.
Properties of bio-based medium density fiberboard
Sangyeob Lee; Todd F. Shupe; Chung Y. Hse
2006-01-01
In order to utilize agricultural waste fibers as an alternative resource for composites, a number of variables were investigated to determine whether the mechanical and physical properties of agro-based fiberboard could be improved. Fibers were classified into four different mesh sizes and used to evaluated the effect of fiber size on the mechanical and physical...
Learning Activity Package, Physical Science. LAP Numbers 5, 6, and 7.
ERIC Educational Resources Information Center
Williams, G. J.
These three units of the Learning Activity Packages (LAPs) for individualized instruction in physical science cover the physical and chemical properties of water, dehydration of crystals, solutions, acidity, strong and weak bases, neutral properties of salts, amorphous forms of carbon, hydrocarbons, and petroleum products. Each unit contains a…
Lubrication studies of some type III deep eutectic solvents (DESs)
NASA Astrophysics Data System (ADS)
Ahmed, Essa. I.; Abbott, Andrew. P.; Ryder, Karl S.
2017-09-01
It has previously been shown that eutectic mixtures of quaternary ammonium salts and hydrogen bond donors form liquids with properties similar to ionic liquids [1; 2]. These so-called deep eutectic solvents (DESs) have been shown to have physical properties which would make them useful as base lubricants. The base lubricant needs to show specific properties, including high viscosity index (VI), low friction coefficient (μ), low pour point and corrosivity. To determine the applicability of DESs as base lubricants, physical properties, corrosion and lubrication properties for four type III DESs have been studied and the results have been compared with mineral base oil. The data show that the lubrication properties of DESs are superior to mineral base oil for short distances. All DESs assessed here have higher VI (191, 147, 121 for Ethaline, Glyceline and Reline respectively compared with 100 for mineral base oil), lower pour points than mineral base oil and most of the liquids studied have shown very low corrosion rates (< 3 µm year-1 for mild steel).
NASA Astrophysics Data System (ADS)
Kavcar, Nevzat; Korkmaz, Cihan
2017-02-01
Purpose of this work is to determine the physics teacher candidates' views on Physics 10 textbook' content and general properties suitable to the 2013 Secondary School Physics Curriculum. 23 teacher candidates at 2014-2015 school year constituted the sampling of the study in which scanning model based on qualitative research technique was used by performing document analysis. Data collection tool of the research was the files prepared with 51 and nine open ended questions including the subject content and general properties of the textbook. It was concluded that the textbook was sufficient for being life context -based, language, activity-based and student-centered approximation, development of social and inquiry skills, and was insufficient for referring educational gains of the Curriculum, involving activities, projects and homework about application. Activities and applications about affective area, such tools for assessment and evaluation practices as concept map, concept network and semantic analysis table may be involved in the textbook.
NASA Technical Reports Server (NTRS)
Distefano, S.; Rameshan, R.; Fitzgerald, D. J.
1991-01-01
Amorphous iron and titanium-based alloys containing various amounts of chromium, phosphorus, and boron exhibit high corrosion resistance. Some physical properties of Fe and Ti-based metallic alloy films deposited on a glass substrate by a dc-magnetron sputtering technique are reported. The films were characterized using differential scanning calorimetry, stress analysis, SEM, XRD, SIMS, electron microprobe, and potentiodynamic polarization techniques.
Review of alternative fuels data bases
NASA Technical Reports Server (NTRS)
Harsha, P. T.; Edelman, R. B.
1983-01-01
Based on an analysis of the interaction of fuel physical and chemical properties with combustion characteristics and indicators, a ranking of the importance of various fuel properties with respect to the combustion process was established. This ranking was used to define a suite of specific experiments whose objective is the development of an alternative fuels design data base. Combustion characteristics and indicators examined include droplet and spray formation, droplet vaporization and burning, ignition and flame stabilization, flame temperature, laminar flame speed, combustion completion, soot emissions, NOx and SOx emissions, and the fuels' thermal and oxidative stability and fouling and corrosion characteristics. Key fuel property data is found to include composition, thermochemical data, chemical kinetic rate information, and certain physical properties.
Plasmonics of 2D Nanomaterials: Properties and Applications
Li, Yu; Li, Ziwei; Chi, Cheng; Shan, Hangyong; Zheng, Liheng
2017-01-01
Plasmonics has developed for decades in the field of condensed matter physics and optics. Based on the classical Maxwell theory, collective excitations exhibit profound light‐matter interaction properties beyond classical physics in lots of material systems. With the development of nanofabrication and characterization technology, ultra‐thin two‐dimensional (2D) nanomaterials attract tremendous interest and show exceptional plasmonic properties. Here, we elaborate the advanced optical properties of 2D materials especially graphene and monolayer molybdenum disulfide (MoS2), review the plasmonic properties of graphene, and discuss the coupling effect in hybrid 2D nanomaterials. Then, the plasmonic tuning methods of 2D nanomaterials are presented from theoretical models to experimental investigations. Furthermore, we reveal the potential applications in photocatalysis, photovoltaics and photodetections, based on the development of 2D nanomaterials, we make a prospect for the future theoretical physics and practical applications. PMID:28852608
ERIC Educational Resources Information Center
Tosun, Cemal; Taskesenligil, Yavuz
2013-01-01
The aim of this study was to investigate the effect of Problem-Based Learning (PBL) on undergraduate students' learning about solutions and their physical properties, and on their scientific processing skills. The quasi experimental study was carried out through non-equivalent control and comparison groups pre-post test design. The data were…
Properties of potential eco-friendly gas replacements for particle detectors in high-energy physics
NASA Astrophysics Data System (ADS)
Saviano, G.; Ferrini, M.; Benussi, L.; Bianco, S.; Piccolo, D.; Colafranceschi, S.; KjØlbro, J.; Sharma, A.; Yang, D.; Chen, G.; Ban, Y.; Li, Q.; Grassini, S.; Parvis, M.
2018-03-01
Gas detectors for elementary particles require F-based gases for optimal performance. Recent regulations demand the use of environmentally unfriendly F-based gases to be limited or banned. This work studies properties of potential eco-friendly gas replacements by computing the physical and chemical parameters relevant for use as detector media, and suggests candidates to be considered for experimental investigation.
ERIC Educational Resources Information Center
Fuller, Robert G., Ed.; And Others
This is Part of a series of 41 Calculus Based Physics (CBP) modules totaling about 1,000 Pages. The modules include study guides, practice tests, and mastery tests for a full-year individualized courses in calculus-based physics based on the Personalized System of Instruction (PSI). The units are not intended to be used without outside materials;…
Learning physical descriptors for materials science by compressed sensing
NASA Astrophysics Data System (ADS)
Ghiringhelli, Luca M.; Vybiral, Jan; Ahmetcik, Emre; Ouyang, Runhai; Levchenko, Sergey V.; Draxl, Claudia; Scheffler, Matthias
2017-02-01
The availability of big data in materials science offers new routes for analyzing materials properties and functions and achieving scientific understanding. Finding structure in these data that is not directly visible by standard tools and exploitation of the scientific information requires new and dedicated methodology based on approaches from statistical learning, compressed sensing, and other recent methods from applied mathematics, computer science, statistics, signal processing, and information science. In this paper, we explain and demonstrate a compressed-sensing based methodology for feature selection, specifically for discovering physical descriptors, i.e., physical parameters that describe the material and its properties of interest, and associated equations that explicitly and quantitatively describe those relevant properties. As showcase application and proof of concept, we describe how to build a physical model for the quantitative prediction of the crystal structure of binary compound semiconductors.
Lu, Zhonghua; Arikatla, Venkata S; Han, Zhongqing; Allen, Brian F; De, Suvranu
2014-12-01
High-frequency electricity is used in the majority of surgical interventions. However, modern computer-based training and simulation systems rely on physically unrealistic models that fail to capture the interplay of the electrical, mechanical and thermal properties of biological tissue. We present a real-time and physically realistic simulation of electrosurgery by modelling the electrical, thermal and mechanical properties as three iteratively solved finite element models. To provide subfinite-element graphical rendering of vaporized tissue, a dual-mesh dynamic triangulation algorithm based on isotherms is proposed. The block compressed row storage (BCRS) structure is shown to be critical in allowing computationally efficient changes in the tissue topology due to vaporization. We have demonstrated our physics-based electrosurgery cutting algorithm through various examples. Our matrix manipulation algorithms designed for topology changes have shown low computational cost. Our simulator offers substantially greater physical fidelity compared to previous simulators that use simple geometry-based heat characterization. Copyright © 2013 John Wiley & Sons, Ltd.
Sosa-Moguel, Odri; Ruiz-Ruiz, Jorge; Martínez-Ayala, Alma; González, Rolando; Drago, Silvina; Betancur-Ancona, David; Chel-Guerrero, Luis
2009-01-01
The influence of lipoxygenase inactivation and extrusion cooking on the physical and nutritional properties of corn/cowpea (Vigna unguiculata) blends was studied. Corn was blended in an 80:15 proportion with cowpea flour treated to inactivate lipoxygenase (CI) or non-inactivated cowpea flour (CNI). Extrusion variables were temperature (150 degrees C, 165 degrees C and 180 degrees C) and moisture (15%, 17% and 19%). Based on their physical properties, the 165 degrees C/15% corn:CNI, and 165 degrees C/15% corn:CI, and 150 degrees C/15% corn:CI blends were chosen for nutritional quality analysis. Extrudate chemical composition indicated high crude protein levels compared with standard corn-based products. With the exception of lysine, essential amino acids content in the three treatments met FAO requirements. Extrusion and lipoxygenase inactivation are promising options for developing corn/cowpea extruded snack products with good physical properties and nutritional quality.
Tunable particles alter macrophage uptake based on combinatorial effects of physical properties
Garapaty, Anusha
2017-01-01
Abstract The ability to tune phagocytosis of particle‐based therapeutics by macrophages can enhance their delivery to macrophages or reduce their phagocytic susceptibility for delivery to non‐phagocytic cells. Since phagocytosis is affected by the physical and chemical properties of particles, it is crucial to identify any interplay between physical properties of particles in altering phagocytic interactions. The combinatorial effect of physical properties size, shape and stiffness was investigated on Fc receptor mediated macrophage interactions by fabrication of layer‐by‐layer tunable particles of constant surface chemistry. Our results highlight how changing particle stiffness affects phagocytic interaction intricately when combined with varying size or shape. Increase in size plays a dominant role over reduction in stiffness in reducing internalization by macrophages for spherical particles. Internalization of rod‐shaped, but not spherical particles, was highly dependent on stiffness. These particles demonstrate the interplay between size, shape and stiffness in interactions of Fc‐functionalized particles with macrophages during phagocytosis. PMID:29313025
Transversality of Electromagnetic Waves in the Calculus-Based Introductory Physics Course
ERIC Educational Resources Information Center
Burko, Lior M.
2008-01-01
Introductory calculus-based physics textbooks state that electromagnetic waves are transverse and list many of their properties, but most such textbooks do not bring forth arguments why this is so. Both physical and theoretical arguments are at a level appropriate for students of courses based on such books, and could be readily used by…
NASA Astrophysics Data System (ADS)
Ferreira, F. V.; Franceschi, W.; Menezes, B. R. C.; Brito, F. S.; Lozano, K.; Coutinho, A. R.; Cividanes, L. S.; Thim, G. P.
2017-07-01
This study presents the effect of dodecylamine (DDA) functionalization of carbon nanotubes (CNTs) on the thermo-physical and mechanical properties of high-density polyethylene (HDPE) based composites. Here, we showed that the functionalization with DDA improved the dispersion of the CNTs as well as the interfacial adhesion with the HDPE matrix via non-covalent interactions. The better dispersion and interaction of CNT in the HDPE matrix as a function of the surface chemistry was correlated with the improved thermo-physical and mechanical properties.
Synthesis and physical properties of pennycress estolides and esters
USDA-ARS?s Scientific Manuscript database
A new series of pennycress (Thlasphi arvense L.) based free-acid estolides was synthesized by an acid-catalyzed condensation reaction, followed by an esterification reaction to produce the 2-ethylhexyl (2-EH) esters of the initial estolides. The physical properties of the estolides are highly affect...
NASA Astrophysics Data System (ADS)
Hou, Zhengyu; Chen, Zhong; Wang, Jingqiang; Zheng, Xufeng; Yan, Wen; Tian, Yuhang; Luo, Yun
2018-04-01
Geoacoustic parameters are essential inputs to sediment wave propagation theories and are vital to underwater acoustic environment and explorations of the sea bottom. In this study, 21 seafloor sediment samples were collected off the coast of southeastern Hainan in the South China Sea. The sound speed was measured using a portable WSD-3 digital sonic instrument and the coaxial differential distance measurement method. Based on the measured sound speed and physical properties, the acoustic impedance and the pore-water-independent index of impedance (IOI) were calculated in this study. Similar to the sound speed, the IOI values are closely related to the sediment physical properties and change gradually from the northwest to the southeast. The relations between IOI and physical properties were studied and compared to the relations between the sound speed and physical properties. IOI is better correlated to physical properties than sound speed. This study also uses an error norm method to analyze the sensitivity of IOI to the physical parameters in the double-parameter equations and finds that the most influential physical parameters are as follows: wet bulk density > porosity > clay content > mean particle size.
Constraining the Physical Properties of Near-Earth Object 2009 BD
NASA Astrophysics Data System (ADS)
Mommert, M.; Hora, J. L.; Farnocchia, D.; Chesley, S. R.; Vokrouhlický, D.; Trilling, D. E.; Mueller, M.; Harris, A. W.; Smith, H. A.; Fazio, G. G.
2014-05-01
We report on Spitzer Space Telescope Infrared Array Camera observations of near-Earth object 2009 BD that were carried out in support of the NASA Asteroid Robotic Retrieval Mission concept. We did not detect 2009 BD in 25 hr of integration at 4.5 μm. Based on an upper-limit flux density determination from our data, we present a probabilistic derivation of the physical properties of this object. The analysis is based on the combination of a thermophysical model with an orbital model accounting for the non-gravitational forces acting upon the body. We find two physically possible solutions. The first solution shows 2009 BD as a 2.9 ± 0.3 m diameter rocky body (ρ = 2.9 ± 0.5 g cm-3) with an extremely high albedo of 0.85_{-0.10}^{+0.20} that is covered with regolith-like material, causing it to exhibit a low thermal inertia (\\Gamma =30_{-10}^{+20} SI units). The second solution suggests 2009 BD to be a 4 ± 1 m diameter asteroid with p_V=0.45_{-0.15}^{+0.35} that consists of a collection of individual bare rock slabs (Γ = 2000 ± 1000 SI units, \\rho = 1.7_{-0.4}^{+0.7} g cm-3). We are unable to rule out either solution based on physical reasoning. 2009 BD is the smallest asteroid for which physical properties have been constrained, in this case using an indirect method and based on a detection limit, providing unique information on the physical properties of objects in the size range smaller than 10 m.
On physical property tensors invariant under line groups.
Litvin, Daniel B
2014-03-01
The form of physical property tensors of a quasi-one-dimensional material such as a nanotube or a polymer can be determined from the point group of its symmetry group, one of an infinite number of line groups. Such forms are calculated using a method based on the use of trigonometric summations. With this method, it is shown that materials invariant under infinite subsets of line groups have physical property tensors of the same form. For line group types of a family of line groups characterized by an index n and a physical property tensor of rank m, the form of the tensor for all line group types indexed with n > m is the same, leaving only a finite number of tensor forms to be determined.
Faye, Alexandrine; Jacquin-Courtois, Sophie; Osiurak, François
2018-03-01
The purpose of this study was to deepen our understanding of the cognitive bases of human tool use based on the technical reasoning hypothesis (i.e., the reasoning-based approach). This approach assumes that tool use is supported by the ability to reason about an object's physical properties (e.g., length, weight, strength, etc.) to perform mechanical actions (e.g., lever). In this framework, an important issue is to understand whether left-brain-damaged (LBD) individuals with tool-use deficits are still able to estimate the physical object's properties necessary to use the tool. Eleven LBD patients and 12 control participants performed 3 original experimental tasks: Use-Length (visual evaluation of the length of a stick to bring down a target), Visual-Length (to visually compare objects of different lengths) and Addition-Length (to visually compare added lengths). Participants were also tested on conventional tasks: Familiar Tool Use and Mechanical Problem-Solving (novel tools). LBD patients had more difficulties than controls on both conventional tasks. No significant differences were observed for the 3 experimental tasks. These results extend the reasoning-based approach, stressing that it might not be the representation of length that is impaired in LBD patients, but rather the ability to generate mechanical actions based on physical object properties. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Bioinspired peptide nanotubes: deposition technology, basic physics and nanotechnology applications.
Rosenman, G; Beker, P; Koren, I; Yevnin, M; Bank-Srour, B; Mishina, E; Semin, S
2011-02-01
Synthetic peptide monomers can self-assemble into PNM such as nanotubes, nanospheres, hydrogels, etc. which represent a novel class of nanomaterials. Molecular recognition processes lead to the formation of supramolecular PNM ensembles containing crystalline building blocks. Such low-dimensional highly ordered regions create a new physical situation and provide unique physical properties based on electron-hole QC phenomena. In the case of asymmetrical crystalline structure, basic physical phenomena such as linear electro-optic, piezoelectric, and nonlinear optical effects, described by tensors of the odd rank, should be explored. Some of the PNM crystalline structures permit the existence of spontaneous electrical polarization and observation of ferroelectricity. The PNM crystalline arrangement creates highly porous nanotubes when various residues are packed into structural network with specific wettability and electrochemical properties. We report in this review on a wide research of PNM intrinsic physical properties, their electronic and optical properties related to QC effect, unique SHG, piezoelectricity and ferroelectric spontaneous polarization observed in PNT due to their asymmetric structure. We also describe PNM wettability phenomenon based on their nanoporous structure and its influence on electrochemical properties in PNM. The new bottom-up large scale technology of PNT physical vapor deposition and patterning combined with found physical effects at nanoscale, developed by us, opens the avenue for emerging nanotechnology applications of PNM in novel fields of nanophotonics, nanopiezotronics and energy storage devices. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Syarifuddin, A.; Hasmiyani; Dirpan, A.; Mahendradatta, M.
2017-12-01
The development of mixed emulsion-based films formed by sodium alginate/gelatin incorporated with canola oil can offer particular properties such as water vapor barrier properties. The different ratios of sodium alginate/gelatin and sodium alginate/gelatin emulsion-based films incorporated with canola oil were developed and their effects on films’ physical, mechanical and barrier properties were assessed. Here we set out to examine whether canola oil addition and different ratio of sodium alginate/gelatin modified physical, mechanical, and barrier properties of films. To do so, the films were prepared by vary the ratio of sodium alginate/gelatin (2.5, 1, 0.5). Canola oil addition induced changes in moisture content, thickness, solubility, water vapor transmission rate (WVTR), percent elongation at break (p<0.05). In addition, it is apparent that varying ratio of sodium alginate to gelatin induced change the mechanical properties of films. The reduction of sodium alginate to gelatin decreased the tensile strength of both films. Improved values of WVTR, tensile strength and solubility at break were observed when the ratio of sodium alginate/gelatin emulsion film incorporated with canola oil was 2.5. Therefore, different ratio of sodium alginate/gelatin incorporated with canola oil can be used to tailor emulsion films with enhanced water vapor barrier and mechanical properties.
USDA-ARS?s Scientific Manuscript database
Biosolids are several forms of treated sewage sludge that are intended for use as soil conditioners for horticultural, agricultural and industrial crops. The objectives of this research were to determine the chemical and physical properties of biosolids pyrolyzed at several different temperatures, a...
Sensitivity analysis of non-cohesive sediment transport formulae
NASA Astrophysics Data System (ADS)
Pinto, Lígia; Fortunato, André B.; Freire, Paula
2006-10-01
Sand transport models are often based on semi-empirical equilibrium transport formulae that relate sediment fluxes to physical properties such as velocity, depth and characteristic sediment grain sizes. In engineering applications, errors in these physical properties affect the accuracy of the sediment fluxes. The present analysis quantifies error propagation from the input physical properties to the sediment fluxes, determines which ones control the final errors, and provides insight into the relative strengths, weaknesses and limitations of four total load formulae (Ackers and White, Engelund and Hansen, van Rijn, and Karim and Kennedy) and one bed load formulation (van Rijn). The various sources of uncertainty are first investigated individually, in order to pinpoint the key physical properties that control the errors. Since the strong non-linearity of most sand transport formulae precludes analytical approaches, a Monte Carlo method is validated and used in the analysis. Results show that the accuracy in total sediment transport evaluations is mainly determined by errors in the current velocity and in the sediment median grain size. For the bed load transport using the van Rijn formula, errors in the current velocity alone control the final accuracy. In a final set of tests, all physical properties are allowed to vary simultaneously in order to analyze the combined effect of errors. The combined effect of errors in all the physical properties is then compared to an estimate of the errors due to the intrinsic limitations of the formulae. Results show that errors in the physical properties can be dominant for typical uncertainties associated with these properties, particularly for small depths. A comparison between the various formulae reveals that the van Rijn formula is more sensitive to basic physical properties. Hence, it should only be used when physical properties are known with precision.
Basic concepts of MR imaging, diffusion MR imaging, and diffusion tensor imaging.
de Figueiredo, Eduardo H M S G; Borgonovi, Arthur F N G; Doring, Thomas M
2011-02-01
MR image contrast is based on intrinsic tissue properties and specific pulse sequences and parameter adjustments. A growing number of MRI imaging applications are based on diffusion properties of water. To better understand MRI diffusion-weighted imaging, a brief overview of MR physics is presented in this article followed by physics of the evolving techniques of diffusion MR imaging and diffusion tensor imaging. Copyright © 2011. Published by Elsevier Inc.
Structure and physical properties of silkworm cocoons
Chen, Fujia; Porter, David; Vollrath, Fritz
2012-01-01
Silkworm cocoons have evolved a wide range of different structures and combinations of physical and chemical properties in order to cope with different threats and environmental conditions. We present our observations and measurements on 25 diverse types of cocoons in a first attempt to correlate physical properties with the structure and morphology of the cocoons. These two architectural parameters appear to be far more important than the material properties of the silk fibres themselves. We consider tensile and compressive mechanical properties and gas permeation of the cocoon walls, and in each case identify mechanisms or models that relate these properties to cocoon structure, usually based upon non-woven fibre composites. These properties are of relevance also for synthetic non-woven composite materials and our studies will help formulate bio-inspired design principles for new materials. PMID:22552916
NASA Astrophysics Data System (ADS)
Milawarni; Nurlaili; Ernayusnianti
2018-03-01
This research focuses on introducing a coffee husk as viable and efficient filler for enhancing physical and mechanical properties of Styrofoam based particleboard. Heat treatment method was adopted to produce the particleboard from the mixture of coffee husk (CH) with Styrofoam (PS). Styrofoam is material derived from polystyrene. The aim of this research is to get the appropriate weight composition between coffee husks with PS and to identify the physical and mechanical properties of the produced particleboard. The composition of coffee husk varies between 0-90%wt. The manufacture of particleboard i.e. coffee husk milled with size 20/10 mesh then soak with 10% NaOH for 2 hours, rinsed with clean water and dried and weight according to the composition. The mixture of CH and PS is inserted into mold and put into hot-press. The result shows from physical properties that density, water absorption and thick development test corresponding with SNI 03-2105-2006 standard, the mechanical properties shows MOR test meets the standard on the addition of CH 10-50%, while the MOE test has not meet the standard.
Sustainable hemp-based composites for the building industry application
NASA Astrophysics Data System (ADS)
Schwarzova, Ivana; Stevulova, Nadezda; Junak, Jozef; Hospodarova, Viola
2017-07-01
Sustainability goals are essential driving principles for the development of innovative materials in the building industry. Natural plant (e.g. hemp) fibers represent an attractive alternative as reinforcing material due to its good properties and sustainability prerequisites. In this study, hemp-based composite materials, designed for building application as non-load bearing material, providing both thermal insulation and physico-mechanical properties, are presented. Composite materials were produced by bonding hemp hurds with a novel inorganic binder (MgO-based cement) and then were characterized in terms of physical properties (bulk density, water absorption), thermal properties (thermal conductivity) and mechanical properties (compressive and tensile strength). The composites exhibited promising physical, thermal and mechanical characteristics, generally comparable to commercially available products. In addition, the hemp-based composites have the advantage of a significantly low environmental impact (thanks to the nature of both the dispersed and the binding phase) and no negative effects on human health. All things considered, the composite materials seem like very promising materials for the building industry application.
NASA Technical Reports Server (NTRS)
Gayda, John
2003-01-01
As part of NASA s Advanced Subsonic Technology Program, a study of stabilization heat treatment options for an advanced nickel-base disk alloy, ME 209, was performed. Using a simple, physically based approach, the effect of stabilization heat treatments on tensile and creep properties was analyzed in this paper. Solutions temperature, solution cooling rate, and stabilization temperature/time were found to have a significant impact on tensile and creep properties. These effects were readily quantified using the following methodology. First, the effect of solution cooling rate was assessed to determine its impact on a given property. The as-cooled property was then modified by using two multiplicative factors which assess the impact of solution temperature and stabilization parameters. Comparison of experimental data with predicted values showed this physically based analysis produced good results that rivaled the statistical analysis employed, which required numerous changes in the form of the regression equation depending on the property and temperature in question. As this physically based analysis uses the data for input, it should be noted that predictions which attempt to extrapolate beyond the bounds of the data must be viewed with skepticism. Future work aimed at expanding the range of the stabilization/aging parameters explored in this study would be highly desirable, especially at the higher solution cooling rates.
The vertical structure of aerosol optical and physical properties was measured by Lidar in Eastern Kyrgyzstan, Central Asia, from June 2008 to May 2009. Lidar measurements were supplemented with surface-based measurements of PM2.5 and PM10 mass and chemical ...
Dobson, F; Hinman, R S; Hall, M; Terwee, C B; Roos, E M; Bennell, K L
2012-12-01
To systematically review the measurement properties of performance-based measures to assess physical function in people with hip and/or knee osteoarthritis (OA). Electronic searches were performed in MEDLINE, CINAHL, Embase, and PsycINFO up to the end of June 2012. Two reviewers independently rated measurement properties using the consensus-based standards for the selection of health status measurement instrument (COSMIN). "Best evidence synthesis" was made using COSMIN outcomes and the quality of findings. Twenty-four out of 1792 publications were eligible for inclusion. Twenty-one performance-based measures were evaluated including 15 single-activity measures and six multi-activity measures. Measurement properties evaluated included internal consistency (three measures), reliability (16 measures), measurement error (14 measures), validity (nine measures), responsiveness (12 measures) and interpretability (three measures). A positive rating was given to only 16% of possible measurement ratings. Evidence for the majority of measurement properties of tests reported in the review has yet to be determined. On balance of the limited evidence, the 40 m self-paced test was the best rated walk test, the 30 s-chair stand test and timed up and go test were the best rated sit to stand tests, and the Stratford battery, Physical Activity Restrictions and Functional Assessment System were the best rated multi-activity measures. Further good quality research investigating measurement properties of performance measures, including responsiveness and interpretability in people with hip and/or knee OA, is needed. Consensus on which combination of measures will best assess physical function in people with hip/and or knee OA is urgently required. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.
Physical and rheological properties of Titanium Dioxide modified asphalt
NASA Astrophysics Data System (ADS)
Buhari, Rosnawati; Ezree Abdullah, Mohd; Khairul Ahmad, Mohd; Chong, Ai Ling; Haini, Rosli; Khatijah Abu Bakar, Siti
2018-03-01
Titanium Dioxide (TiO2) has been known as a useful photocatalytic material that is attributed to the several characteristics includes high photocatalytic activity compared with other metal oxide photocatalysts, compatible with traditional construction materials without changing any original performance. This study investigates the physical and rheological properties of modified asphalt with TiO2. Five samples of asphalt with different concentration of TiO2 were studied, namely asphalt 2%, 4%, 6% 8% and 10% TiO2. The tests includes are penetration, softening point, ductility, rotational viscosity and dynamic shear rheometer (DSR) test. From the results of this study, it is noted that addition of TiO2 has significant effect on the physical properties of asphalt. The viscosity tests revealed that asphalt 10% TiO2 has good workability among with reducing approximately 15°C compared to base asphalt. Based on the results from DSR measurements, asphalt 10% TiO2 has reduced temperature susceptibility and increase stiffness and elastic behaviour in comparison to base asphalt. As a result, TiO2 can be considered to be an additive to modify the properties of asphalt.
Arbabi, Vahid; Pouran, Behdad; Campoli, Gianni; Weinans, Harrie; Zadpoor, Amir A
2016-03-21
One of the most widely used techniques to determine the mechanical properties of cartilage is based on indentation tests and interpretation of the obtained force-time or displacement-time data. In the current computational approaches, one needs to simulate the indentation test with finite element models and use an optimization algorithm to estimate the mechanical properties of cartilage. The modeling procedure is cumbersome, and the simulations need to be repeated for every new experiment. For the first time, we propose a method for fast and accurate estimation of the mechanical and physical properties of cartilage as a poroelastic material with the aid of artificial neural networks. In our study, we used finite element models to simulate the indentation for poroelastic materials with wide combinations of mechanical and physical properties. The obtained force-time curves are then divided into three parts: the first two parts of the data is used for training and validation of an artificial neural network, while the third part is used for testing the trained network. The trained neural network receives the force-time curves as the input and provides the properties of cartilage as the output. We observed that the trained network could accurately predict the properties of cartilage within the range of properties for which it was trained. The mechanical and physical properties of cartilage could therefore be estimated very fast, since no additional finite element modeling is required once the neural network is trained. The robustness of the trained artificial neural network in determining the properties of cartilage based on noisy force-time data was assessed by introducing noise to the simulated force-time data. We found that the training procedure could be optimized so as to maximize the robustness of the neural network against noisy force-time data. Copyright © 2016 Elsevier Ltd. All rights reserved.
Preparation and properties of polytetrafluoroethylene impregnated with rhenium oxides
NASA Technical Reports Server (NTRS)
Leibecki, H. F.; Easter, R. W.
1973-01-01
The results of tests carried out to determine the properties of polytetrafluorethylene (PTFE) impregnated with rhenium oxides are presented. The tests included measurement of physical properties of the impregnated material and investigation of the effects of preparation process variables. Based on the latter tests a mechanism to describe the permeation process is postulated which identifies the rate controlling step to be diffusion of ReF6 molecules into the solid during the initial ReF6 soak. Physical property tests indicated that the electronic conductance is increased by many orders of magnitude while the desirable properties of the PTFE remain virtually unchanged.
USDA-ARS?s Scientific Manuscript database
Douglas fir [Pseudotsuga menziesii Mirb.(Franco)] bark (DFB), sphagnum peat moss, and pumice are the most common substrate components used in the Oregon nursery industry. The objective of this study was to document the effect of peat and pumice addition on the physical and hydrological properties o...
2013-01-01
U.S. Army Research Laboratory, Adelphi, MD 20783, USA The synthesis and physical properties of difluoro(oxalato) borate (DFOB-)-based ionic...have a melting point (Tm) of -5°C and 31°C, respectively, whereas the PY15DFOB salt does not crystallize. Instead, this salt has a glass transition
Thomas, Matthew A.; Mirus, Benjamin B.; Collins, Brian D.; Lu, Ning; Godt, Jonathan W.
2018-01-01
Rainfall-induced shallow landsliding is a persistent hazard to human life and property. Despite the observed connection between infiltration through the unsaturated zone and shallow landslide initiation, there is considerable uncertainty in how estimates of unsaturated soil-water retention properties affect slope stability assessment. This source of uncertainty is critical to evaluating the utility of physics-based hydrologic modeling as a tool for landslide early warning. We employ a numerical model of variably saturated groundwater flow parameterized with an ensemble of texture-, laboratory-, and field-based estimates of soil-water retention properties for an extensively monitored landslide-prone site in the San Francisco Bay Area, CA, USA. Simulations of soil-water content, pore-water pressure, and the resultant factor of safety show considerable variability across and within these different parameter estimation techniques. In particular, we demonstrate that with the same permeability structure imposed across all simulations, the variability in soil-water retention properties strongly influences predictions of positive pore-water pressure coincident with widespread shallow landsliding. We also find that the ensemble of soil-water retention properties imposes an order-of-magnitude and nearly two-fold variability in seasonal and event-scale landslide susceptibility, respectively. Despite the reduced factor of safety uncertainty during wet conditions, parameters that control the dry end of the soil-water retention function markedly impact the ability of a hydrologic model to capture soil-water content dynamics observed in the field. These results suggest that variability in soil-water retention properties should be considered for objective physics-based simulation of landslide early warning criteria.
Segmentation-less Digital Rock Physics
NASA Astrophysics Data System (ADS)
Tisato, N.; Ikeda, K.; Goldfarb, E. J.; Spikes, K. T.
2017-12-01
In the last decade, Digital Rock Physics (DRP) has become an avenue to investigate physical and mechanical properties of geomaterials. DRP offers the advantage of simulating laboratory experiments on numerical samples that are obtained from analytical methods. Potentially, DRP could allow sparing part of the time and resources that are allocated to perform complicated laboratory tests. Like classic laboratory tests, the goal of DRP is to estimate accurately physical properties of rocks like hydraulic permeability or elastic moduli. Nevertheless, the physical properties of samples imaged using micro-computed tomography (μCT) are estimated through segmentation of the μCT dataset. Segmentation proves to be a challenging and arbitrary procedure that typically leads to inaccurate estimates of physical properties. Here we present a novel technique to extract physical properties from a μCT dataset without the use of segmentation. We show examples in which we use segmentation-less method to simulate elastic wave propagation and pressure wave diffusion to estimate elastic properties and permeability, respectively. The proposed method takes advantage of effective medium theories and uses the density and the porosity that are measured in the laboratory to constrain the results. We discuss the results and highlight that segmentation-less DRP is more accurate than segmentation based DRP approaches and theoretical modeling for the studied rock. In conclusion, the segmentation-less approach here presented seems to be a promising method to improve accuracy and to ease the overall workflow of DRP.
NASA Astrophysics Data System (ADS)
Chen, Fei; Zhou, Dequan; Bai, Xiaoyong; zeng, Cheng; Xiao, Jianyong; Qian, Qinghuan; Luo, Guangjie
2018-01-01
In order to reveal the differences of soil physical and chemical properties and their response mechanism to the evolution of KRD. The characteristics of soil physical and chemical properties of different grades of KRD were studied by field sampling method to research different types of KRD in the typical karst valley of southern China. Instead of using space of time, to explore the response and the mechanisms of the soil physical and chemical properties at the different evolution process. The results showed that: (1) There were significant differences in organic matter, pH, total nitrogen, total phosphorus, total potassium, sediment concentration, clay content and AWHC in different levels of KRD environment. However, these indicators are not with increasing desertification degree has been degraded, but improved after a first degradation trends; (2) The correlation analysis showed that soil organic matter, acid, alkali, total nitrogen, total phosphorus, total potassium and clay contents were significantly correlated with other physical and chemical factors. They are the key factors of soil physical and chemical properties, play a key role in improving soil physical and chemical properties and promoting nutrient cycling; (3) The principal component analysis showed that the cumulative contribution rate of organic matter, pH, total nitrogen, total phosphorus, total potassium and sediment concentration was 80.26%, which was the key index to evaluate rocky desertification degree based on soil physical and chemical properties. The results have important theoretical and practical significance for the protection and restoration of rocky desertification ecosystem in southwest China.
NASA Astrophysics Data System (ADS)
Ramsey, Gordon P.
2015-10-01
The uniting of two seemingly disparate subjects in the classroom provides an interesting motivation for learning. Students are interested in how these subjects can possibly be integrated into related ideas. Such is the mixture of physics and music. Both are based upon mathematics, which becomes the interlocking theme. The connecting physical properties of sound and music are waves and harmonics. The introduction of instruments, including the voice, to the musical discussion allows the introduction of more advanced physical concepts such as energy, force, pressure, fluid dynamics, and properties of materials. Suggestions on how to teach physics concepts in the context of music at many levels are presented in this paper.
NASA Astrophysics Data System (ADS)
Zunino, Andrea; Mosegaard, Klaus
2017-04-01
Sought-after reservoir properties of interest are linked only indirectly to the observable geophysical data which are recorded at the earth's surface. In this framework, seismic data represent one of the most reliable tool to study the structure and properties of the subsurface for natural resources. Nonetheless, seismic analysis is not an end in itself, as physical properties such as porosity are often of more interest for reservoir characterization. As such, inference of those properties implies taking into account also rock physics models linking porosity and other physical properties to elastic parameters. In the framework of seismic reflection data, we address this challenge for a reservoir target zone employing a probabilistic method characterized by a multi-step complex nonlinear forward modeling that combines: 1) a rock physics model with 2) the solution of full Zoeppritz equations and 3) a convolutional seismic forward modeling. The target property of this work is porosity, which is inferred using a Monte Carlo approach where porosity models, i.e., solutions to the inverse problem, are directly sampled from the posterior distribution. From a theoretical point of view, the Monte Carlo strategy can be particularly useful in the presence of nonlinear forward models, which is often the case when employing sophisticated rock physics models and full Zoeppritz equations and to estimate related uncertainty. However, the resulting computational challenge is huge. We propose to alleviate this computational burden by assuming some smoothness of the subsurface parameters and consequently parameterizing the model in terms of spline bases. This allows us a certain flexibility in that the number of spline bases and hence the resolution in each spatial direction can be controlled. The method is tested on a 3-D synthetic case and on a 2-D real data set.
Effects of recycled fiber on the properties of fiberboard panels
Chin-yin Hwang; Chung-yun Hse; Todd F. Shupe
2005-01-01
This study examined the effects of recycled and virgin wood fiber on the properties of fiberboard. Replacing virgin fiber with recycled fiber adversely affected physical and mechanical properties of fiberboard. Bending properties and dimensional stability were linearly dependent on virgin fiber ratios. Based on strength properties, panels with 20 and 40 percent...
SiC/SiC Cladding Materials Properties Handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snead, Mary A.; Katoh, Yutai; Koyanagi, Takaaki
When a new class of material is considered for a nuclear core structure, the in-pile performance is usually assessed based on multi-physics modeling in coordination with experiments. This report aims to provide data for the mechanical and physical properties and environmental resistance of silicon carbide (SiC) fiber–reinforced SiC matrix (SiC/SiC) composites for use in modeling for their application as accidenttolerant fuel cladding for light water reactors (LWRs). The properties are specific for tube geometry, although many properties can be predicted from planar specimen data. This report presents various properties, including mechanical properties, thermal properties, chemical stability under normal and offnormalmore » operation conditions, hermeticity, and irradiation resistance. Table S.1 summarizes those properties mainly for nuclear-grade SiC/SiC composites fabricated via chemical vapor infiltration (CVI). While most of the important properties are available, this work found that data for the in-pile hydrothermal corrosion resistance of SiC materials and for thermal properties of tube materials are lacking for evaluation of SiC-based cladding for LWR applications.« less
Study of physical and tribology properties of soybean oil-based grease formulated with polysoap
USDA-ARS?s Scientific Manuscript database
Soybean oil-based grease formulated with polysoaps, which was synthesized from polymeric epoxdized soybean oil, was investigated. Greases were prepared using a mixture of lithium soap and triethanolammonium polysoap. Grease properties investigated were: hardness, using cone penetration procedure (AS...
Physically Based Modeling and Simulation with Dynamic Spherical Volumetric Simplex Splines
Tan, Yunhao; Hua, Jing; Qin, Hong
2009-01-01
In this paper, we present a novel computational modeling and simulation framework based on dynamic spherical volumetric simplex splines. The framework can handle the modeling and simulation of genus-zero objects with real physical properties. In this framework, we first develop an accurate and efficient algorithm to reconstruct the high-fidelity digital model of a real-world object with spherical volumetric simplex splines which can represent with accuracy geometric, material, and other properties of the object simultaneously. With the tight coupling of Lagrangian mechanics, the dynamic volumetric simplex splines representing the object can accurately simulate its physical behavior because it can unify the geometric and material properties in the simulation. The visualization can be directly computed from the object’s geometric or physical representation based on the dynamic spherical volumetric simplex splines during simulation without interpolation or resampling. We have applied the framework for biomechanic simulation of brain deformations, such as brain shifting during the surgery and brain injury under blunt impact. We have compared our simulation results with the ground truth obtained through intra-operative magnetic resonance imaging and the real biomechanic experiments. The evaluations demonstrate the excellent performance of our new technique. PMID:20161636
Zhang, Ming; Xu, Yan; Li, Lei; Liu, Zi; Yang, Xibei; Yu, Dong-Jun
2018-06-01
RNA 5-methylcytosine (m 5 C) is an important post-transcriptional modification that plays an indispensable role in biological processes. The accurate identification of m 5 C sites from primary RNA sequences is especially useful for deeply understanding the mechanisms and functions of m 5 C. Due to the difficulty and expensive costs of identifying m 5 C sites with wet-lab techniques, developing fast and accurate machine-learning-based prediction methods is urgently needed. In this study, we proposed a new m 5 C site predictor, called M5C-HPCR, by introducing a novel heuristic nucleotide physicochemical property reduction (HPCR) algorithm and classifier ensemble. HPCR extracts multiple reducts of physical-chemical properties for encoding discriminative features, while the classifier ensemble is applied to integrate multiple base predictors, each of which is trained based on a separate reduct of the physical-chemical properties obtained from HPCR. Rigorous jackknife tests on two benchmark datasets demonstrate that M5C-HPCR outperforms state-of-the-art m 5 C site predictors, with the highest values of MCC (0.859) and AUC (0.962). We also implemented the webserver of M5C-HPCR, which is freely available at http://cslab.just.edu.cn:8080/M5C-HPCR/. Copyright © 2018 Elsevier Inc. All rights reserved.
Microstructure and physical properties of bismuth-lead-tin ternary eutectic alloy
NASA Astrophysics Data System (ADS)
Kamal, M.; Moharram, B. M.; Farag, H.; El-Bediwi, A.; Abosheiasha, H. F.
2006-07-01
Using different experimental techniques, microstructure, electrical resistivity, attenuation coefficient, and mechanical and thermal properties of the quenched Bi-Pb-Sn ternary eutectic alloy have been investigated. From the X-ray analysis, Bi3Pb7 and Bi-Sn meta-stable phases are detected, in addition to rhombohedral bismuth and Sn body-centered tetragonal phases. This study also compared the physical properties of the Bi-Sn-Pb ternary eutectic alloys with the base binary Bi-Sn and Bi-Pb eutectic alloys.
Dyekjaer, Jane Dannow; Jónsdóttir, Svava Osk
2004-01-22
Quantitative Structure-Property Relationships (QSPR) have been developed for a series of monosaccharides, including the physical properties of partial molar heat capacity, heat of solution, melting point, heat of fusion, glass-transition temperature, and solid state density. The models were based on molecular descriptors obtained from molecular mechanics and quantum chemical calculations, combined with other types of descriptors. Saccharides exhibit a large degree of conformational flexibility, therefore a methodology for selecting the energetically most favorable conformers has been developed, and was used for the development of the QSPR models. In most cases good correlations were obtained for monosaccharides. For five of the properties predictions were made for disaccharides, and the predicted values for the partial molar heat capacities were in excellent agreement with experimental values.
The evolution of cyclopropenium ions into functional polyelectrolytes
Jiang, Yivan; Freyer, Jessica L.; Cotanda, Pepa; Brucks, Spencer D.; Killops, Kato L.; Bandar, Jeffrey S.; Torsitano, Christopher; Balsara, Nitash P.; Lambert, Tristan H.; Campos, Luis M.
2015-01-01
Versatile polyelectrolytes with tunable physical properties have the potential to be transformative in applications such as energy storage, fuel cells and various electronic devices. Among the types of materials available for these applications, nanostructured cationic block copolyelectrolytes offer mechanical integrity and well-defined conducting paths for ionic transport. To date, most cationic polyelectrolytes bear charge formally localized on heteroatoms and lack broad modularity to tune their physical properties. To overcome these challenges, we describe herein the development of a new class of functional polyelectrolytes based on the aromatic cyclopropenium ion. We demonstrate the facile synthesis of a series of polymers and nanoparticles based on monomeric cyclopropenium building blocks incorporating various functional groups that affect physical properties. The materials exhibit high ionic conductivity and thermal stability due to the nature of the cationic moieties, thus rendering this class of new materials as an attractive alternative to develop ion-conducting membranes. PMID:25575214
The evolution of cyclopropenium ions into functional polyelectrolytes
Jiang, Yivan; Freyer, Jessica L.; Cotanda, Pepa; ...
2015-01-09
We report that versatile polyelectrolytes with tunable physical properties have the potential to be transformative in applications such as energy storage, fuel cells and various electronic devices. Among the types of materials available for these applications, nanostructured cationic block copolyelectrolytes offer mechanical integrity and well-defined conducting paths for ionic transport. To date, most cationic polyelectrolytes bear charge formally localized on heteroatoms and lack broad modularity to tune their physical properties. To overcome these challenges, we describe herein the development of a new class of functional polyelectrolytes based on the aromatic cyclopropenium ion.We demonstrate the facile synthesis of a series ofmore » polymers and nanoparticles based on monomeric cyclopropenium building blocks incorporating various functional groups that affect physical properties. In conclusion, the materials exhibit high ionic conductivity and thermal stability due to the nature of the cationic moieties, thus rendering this class of new materials as an attractive alternative to develop ion-conducting membranes.« less
Del Frari, D; Bour, J; Bardon, J; Buchheit, O; Arnoult, C; Ruch, D
2010-04-01
Finding alternative treatments to reproduce anticorrosion properties of chromated coatings is challenging since both physical barrier and self-healing effects are needed. Siloxane based treatments are known to be a promising way to achieve physical barrier coatings, mainly plasma polymerized hexamethyldisiloxane (ppHMDSO). In addition, it is known that cerium-based coatings can also provide corrosion protection of metals by means of self-healing effect. In this frame, innovative nanoAlCeO3/ppHMDSO layers have thus been deposited and studied. These combinations allow to afford a good physical barrier effect and active properties. Liquid siloxane and cerium-based particles mixture is atomized and introduced as precursors into a carrier gas. Gas mixture is then injected into an atmospheric pressure dielectric barrier discharge (DBD) where plasma polymerization of the siloxane precursor occurs. The influence of cerium concentration on the coating properties is investigated: coating structure and topography have been studied by scanning electron microscopy (SEM) and interferometry, and corrosion resistance of these different coatings is compared by electrochemistry techniques: polarization curves and electrochemical impedance spectroscopy (EIS). Potential self-healing property afforded by cerium in the layer was studied by associating EIS measurements and nanoscratch controlled damaging. Among the different combinations investigated, mixing of plasma polymerized HMDSO and AICeO3 nanoparticles seems to give promising results with a good physical barrier and interesting electroactive properties. Indeed, corrosion currents measured on such coatings are almost as low as those measured with the chromated film. Combination of nanoscratch damaging of layers with EIS experiments to investigate self-healing also allow to measure the active protection property of such layers.
Improved coating for silica fiber based ceramic Reusable Surface Insulation (CRSI)
NASA Technical Reports Server (NTRS)
Ormiston, T. J.
1974-01-01
A series of coatings was developed for the space shuttle type silica fiber insulation system and characterized for optical and physical properties. Reentry simulation tests were run using a radiant panel and also using a hypersonic plasma arc. The coatings produced had improved physical and optical properties as well as greater reuse capability over the GE version of the JSC-0042 coating.
Liagkouridis, Ioannis; Cousins, Anna Palm; Cousins, Ian T
2015-08-15
Several groups of flame retardants (FRs) have entered the market in recent years as replacements for polybrominated diphenyl ethers (PBDEs), but little is known about their physical-chemical properties or their environmental transport and fate. Here we make best estimates of the physical-chemical properties and undertake evaluative modelling assessments (indoors and outdoors) for 35 so-called 'novel' and 'emerging' brominated flame retardants (BFRs) and 22 organophosphorus flame retardants (OPFRs). A QSPR (Quantitative Structure-Property Relationship) based technique is used to reduce uncertainty in physical-chemical properties and to aid property selection for modelling, but it is evident that more, high quality property data are required for improving future assessments. Evaluative modelling results show that many of the alternative FRs, mainly alternative BFRs and some of the halogenated OPFRs, behave similarly to the PBDEs both indoors and outdoors. These alternative FRs exhibit high overall persistence (Pov), long-range transport potential (LRTP) and POP-like behaviour and on that basis cannot be regarded as suitable replacements to PBDEs. A group of low molecular weight alternative BFRs and non-halogenated OPFRs show a potentially better environmental performance based on Pov and LRTP metrics. Results must be interpreted with caution though since there are significant uncertainties and limited data to allow for thorough model evaluation. Additional environmental parameters such as toxicity and bioaccumulative potential as well as functionality issues should be considered in an industrial substitution strategy. Copyright © 2015 Elsevier B.V. All rights reserved.
Correlations Between Optical, Chemical and Physical Properties of Biomass Burn Aerosols
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hopkins, Rebecca J.; Lewis, Keith M.; Dessiaterik, Yury
2007-09-20
Single scattering albedo (ω) and Angstrom absorption coefficient (αap) values are measured at 405, 532 and 870 nm for aerosols generated during controlled laboratory combustion of twelve wildland fuels. Considerable fuel dependent variation in these optical properties is observed at these wavelengths. Complementary microspectroscopy techniques are used to elucidate spatially resolved local chemical bonding, carbon-to-oxygen atomic ratios, percent of sp2 hybridization (graphitic nature), elemental composition, particle size and morphology. These parameters are compared directly with the corresponding optical properties for each combustion product, facilitating an understanding of the fuel dependent variability observed. Results indicate that combustion products can be dividedmore » into three categories based on chemical, physical and optical properties. Only materials displaying a high degree of sp2 hybridization, with chemical and physical properties characteristic of ‘soot’ or black carbon, exhibit ω and αap values that indicate a high light absorbing capacity.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-23
... PHA to four key areas of a PHA's operations: (1) The physical condition of the PHA's properties; (2... and to require PHAs to be scored on performance based on evaluation of four indicators: physical... changes proposed to each of the four current PHAS indicators are as follows: Physical. The physical...
Concentration Dependent Speciation and Mass Transport Properties of Switchable Polarity Solvents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aaron D. Wilson; Christopher J. Orme
2014-12-01
Tertiary amine switchable polarity solvents (SPS) consisting of predominantly water, tertiary amine, and tertiary ammonium and bicarbonate ions were produced at various concentrations for three different amines: N,N-dimethylcyclohexylamine, N,N-dimethyloctylamine, and 1 cyclohexylpiperidine. For all concentrations, physical properties were measured including viscosity, molecular diffusion coefficients, freezing point depression, and density. Based on these measurements a variation on the Mark Houwink equation was developed to predict the viscosity of any tertiary amine SPS as a function of concentration using the amine’s molecular mass. The observed physical properties allowed the identification of solution state speciation of non-osmotic SPS, where the amine to carbonicmore » acid ratio is significantly greater than one. These results indicate that at most concentrations the stoichiometric excess amine is involved in solvating a proton with two amines. The physical properties of osmotic SPS have consistent concentration dependence behavior over a wide range of concentrations; this consistence suggests osmotic pressures based on low concentrations freezing point studies can be reliably extrapolated to higher concentrations.« less
1980-09-01
Research Conseil national Council Canada de recherches Canada LEY EL < PROPERTIES OF BASE STOCKS OBTAINED FROM USED ENGINE OILS BY ACID /CLAY RE-REFINING DTIC...MECHANICAL ENGINEERING REPORT Canad NC MP75 NRC NO. 18719 PROPERTIES OF BASE STOCKS OBTAINED FROM USED ENGINE OILS BY ACID /CLAY RE-REFINING (PROPRIETES...refined Base Stock ..................................... 10 3 Physical Test Data of Acid /Clay Process - Re-refined Base Stock Oils ............ 11 4
ERIC Educational Resources Information Center
Carson, Valerie; Hesketh, Kylie D.; Rhodes, Ryan E.; Rinaldi, Christina; Rodgers, Wendy; Spence, John C.
2017-01-01
This study examined the psychometric properties of a questionnaire developed with the guidance of the socialization model of child behaviour to understand modifiable correlates of toddlers' physical activity and sedentary behaviour. Findings are based on 118 parents (33.7 ± 4.9 years; 86% female) of toddlers (19.3 ± 2.7 months; 48% female) from…
Preformulation considerations for controlled release dosage forms. Part I. Selecting candidates.
Chrzanowski, Frank
2008-01-01
The physical-chemical properties of interest for controlled release (CR) dosage form development presented are based on the author's experience. Part I addresses selection of the final form based on a logical progression of physical-chemical properties evaluation of candidate forms and elimination of forms with undesirable properties from further evaluation in order to simplify final form selection. Several candidate forms which could include salt, free base or acid, polymorphic and amorphic forms of a new chemical entity (NCE) or existing drug substance (DS) are prepared and evaluated for critical properties in a scheme relevant to manufacturing processes, predictive of problems, requiring small amounts of test materials and simple analytical tools. A stability indicating assay is not needed to initiate the evaluation. This process is applicable to CR and immediate release (IR) dosage form development. The critical properties evaluated are melting, crystallinity, solubilities in water, 0.1 N HCl, and SIF, hygrodymamics, i.e., moisture sorption and loss at extremes of RH, and LOD at typical wet granulation drying conditions, and processability, i.e., corrosivity, and filming and/or sticking upon compression.
Han, Lei; Shi, Lu; Yang, Yiling; Song, Dalei
2014-01-01
Geostationary meteorological satellite infrared (IR) channel data contain important spectral information for meteorological research and applications, but their spatial resolution is relatively low. The objective of this study is to obtain higher-resolution IR images. One common method of increasing resolution fuses the IR data with high-resolution visible (VIS) channel data. However, most existing image fusion methods focus only on visual performance, and often fail to take into account the thermal physical properties of the IR images. As a result, spectral distortion occurs frequently. To tackle this problem, we propose a thermal physical properties-based correction method for fusing geostationary meteorological satellite IR and VIS images. In our two-step process, the high-resolution structural features of the VIS image are first extracted and incorporated into the IR image using regular multi-resolution fusion approach, such as the multiwavelet analysis. This step significantly increases the visual details in the IR image, but fake thermal information may be included. Next, the Stefan-Boltzmann Law is applied to correct the distortion, to retain or recover the thermal infrared nature of the fused image. The results of both the qualitative and quantitative evaluation demonstrate that the proposed physical correction method both improves the spatial resolution and preserves the infrared thermal properties. PMID:24919017
Han, Lei; Shi, Lu; Yang, Yiling; Song, Dalei
2014-06-10
Geostationary meteorological satellite infrared (IR) channel data contain important spectral information for meteorological research and applications, but their spatial resolution is relatively low. The objective of this study is to obtain higher-resolution IR images. One common method of increasing resolution fuses the IR data with high-resolution visible (VIS) channel data. However, most existing image fusion methods focus only on visual performance, and often fail to take into account the thermal physical properties of the IR images. As a result, spectral distortion occurs frequently. To tackle this problem, we propose a thermal physical properties-based correction method for fusing geostationary meteorological satellite IR and VIS images. In our two-step process, the high-resolution structural features of the VIS image are first extracted and incorporated into the IR image using regular multi-resolution fusion approach, such as the multiwavelet analysis. This step significantly increases the visual details in the IR image, but fake thermal information may be included. Next, the Stefan-Boltzmann Law is applied to correct the distortion, to retain or recover the thermal infrared nature of the fused image. The results of both the qualitative and quantitative evaluation demonstrate that the proposed physical correction method both improves the spatial resolution and preserves the infrared thermal properties.
Carbon-Based Nanomaterials: Multi-Functional Materials for Biomedical Engineering
Cha, Chaenyung; Shin, Su Ryon; Annabi, Nasim; Dokmeci, Mehmet R.; Khademhosseini, Ali
2013-01-01
Functional carbon-based nanomaterials (CBNs) have become important due to their unique combinations of chemical and physical properties (i.e., thermal and electrical conductivity, high mechanical strength, and optical properties), extensive research efforts are being made to utilize these materials for various industrial applications, such as high-strength materials and electronics. These advantageous properties of CBNs are also actively investigated in several areas of biomedical engineering. This Perspective highlights different types of carbon-based nanomaterials currently used in biomedical applications. PMID:23560817
Carbon-based nanomaterials: multifunctional materials for biomedical engineering.
Cha, Chaenyung; Shin, Su Ryon; Annabi, Nasim; Dokmeci, Mehmet R; Khademhosseini, Ali
2013-04-23
Functional carbon-based nanomaterials (CBNs) have become important due to their unique combinations of chemical and physical properties (i.e., thermal and electrical conductivity, high mechanical strength, and optical properties), and extensive research efforts are being made to utilize these materials for various industrial applications, such as high-strength materials and electronics. These advantageous properties of CBNs are also actively investigated in several areas of biomedical engineering. This Perspective highlights different types of carbon-based nanomaterials currently used in biomedical applications.
Protein based Block Copolymers
Rabotyagova, Olena S.; Cebe, Peggy; Kaplan, David L.
2011-01-01
Advances in genetic engineering have led to the synthesis of protein-based block copolymers with control of chemistry and molecular weight, resulting in unique physical and biological properties. The benefits from incorporating peptide blocks into copolymer designs arise from the fundamental properties of proteins to adopt ordered conformations and to undergo self-assembly, providing control over structure formation at various length scales when compared to conventional block copolymers. This review covers the synthesis, structure, assembly, properties, and applications of protein-based block copolymers. PMID:21235251
Biobased polyalphaolefin base oil: Chemical, physical and tribological properties
USDA-ARS?s Scientific Manuscript database
The properties of a biobased polyalphaolefin with a viscosity of 40 cSt at 100°C (BPAO-40) was investigated relative to a commercial petroleum based polyalphaolefin of similar viscosity at 100°C (PAO-40). BPAO-40 was synthesized by oligomerization of a mixture of alpha olefins, with and without term...
Tunable Physical Properties of Ethylcellulose/Gelatin Composite Nanofibers by Electrospinning.
Liu, Yuyu; Deng, Lingli; Zhang, Cen; Feng, Fengqin; Zhang, Hui
2018-02-28
In this work, the ethylcellulose/gelatin blends at various weight ratios in water/ethanol/acetic acid solution were electrospun to fabricate nanofibers with tunable physical properties. The solution compatibility was predicted based on Hansen solubility parameters and evaluated by rheological measurements. The physical properties were characterized by scanning electron microscopy, porosity, differential scanning calorimetry, thermogravimetry, Fourier transform infrared spectroscopy, and water contact angle. Results showed that the entangled structures among ethylcellulose and gelatin chains through hydrogen bonds gave rise to a fine morphology of the composite fibers with improved thermal stability. The fibers with higher gelatin ratio (75%), possessed hydrophilic surface (water contact angle of 53.5°), and adequate water uptake ability (1234.14%), while the fibers with higher ethylcellulose proportion (75%) tended to be highly water stable with a hydrophobic surface (water contact angle of 129.7°). This work suggested that the composite ethylcellulose/gelatin nanofibers with tunable physical properties have potentials as materials for bioactive encapsulation, food packaging, and filtration applications.
Cheng, Lixin; Bandarra Filho, Enio P; Thome, John R
2008-07-01
Nanofluids are a new class of fluids engineered by dispersing nanometer-size solid particles in base fluids. As a new research frontier, nanofluid two-phase flow and thermal physics have the potential to improve heat transfer and energy efficiency in thermal management systems for many applications, such as microelectronics, power electronics, transportation, nuclear engineering, heat pipes, refrigeration, air-conditioning and heat pump systems. So far, the study of nanofluid two-phase flow and thermal physics is still in its infancy. This field of research provides many opportunities to study new frontiers but also poses great challenges. To summarize the current status of research in this newly developing interdisciplinary field and to identify the future research needs as well, this paper focuses on presenting a comprehensive review of nucleate pool boiling, flow boiling, critical heat flux, condensation and two-phase flow of nanofluids. Even for the limited studies done so far, there are some controversies. Conclusions and contradictions on the available nanofluid studies on physical properties, two-phase flow, heat transfer and critical heat flux (CHF) are presented. Based on a comprehensive analysis, it has been realized that the physical properties of nanofluids such as surface tension, liquid thermal conductivity, viscosity and density have significant effects on the nanofluid two-phase flow and heat transfer characteristics but the lack of the accurate knowledge of these physical properties has greatly limited the study in this interdisciplinary field. Therefore, effort should be made to contribute to the physical property database of nanofluids as a first priority. Secondly, in particular, research on nanofluid two-phase flow and heat transfer in microchannels should be emphasized in the future.
NASA Astrophysics Data System (ADS)
Silvis, Maurits H.; Remmerswaal, Ronald A.; Verstappen, Roel
2017-01-01
We study the construction of subgrid-scale models for large-eddy simulation of incompressible turbulent flows. In particular, we aim to consolidate a systematic approach of constructing subgrid-scale models, based on the idea that it is desirable that subgrid-scale models are consistent with the mathematical and physical properties of the Navier-Stokes equations and the turbulent stresses. To that end, we first discuss in detail the symmetries of the Navier-Stokes equations, and the near-wall scaling behavior, realizability and dissipation properties of the turbulent stresses. We furthermore summarize the requirements that subgrid-scale models have to satisfy in order to preserve these important mathematical and physical properties. In this fashion, a framework of model constraints arises that we apply to analyze the behavior of a number of existing subgrid-scale models that are based on the local velocity gradient. We show that these subgrid-scale models do not satisfy all the desired properties, after which we explain that this is partly due to incompatibilities between model constraints and limitations of velocity-gradient-based subgrid-scale models. However, we also reason that the current framework shows that there is room for improvement in the properties and, hence, the behavior of existing subgrid-scale models. We furthermore show how compatible model constraints can be combined to construct new subgrid-scale models that have desirable properties built into them. We provide a few examples of such new models, of which a new model of eddy viscosity type, that is based on the vortex stretching magnitude, is successfully tested in large-eddy simulations of decaying homogeneous isotropic turbulence and turbulent plane-channel flow.
NASA Astrophysics Data System (ADS)
Ulmer, S.; Mooser, A.; Nagahama, H.; Sellner, S.; Smorra, C.
2018-03-01
The BASE collaboration investigates the fundamental properties of protons and antiprotons, such as charge-to-mass ratios and magnetic moments, using advanced cryogenic Penning trap systems. In recent years, we performed the most precise measurement of the magnetic moments of both the proton and the antiproton, and conducted the most precise comparison of the proton-to-antiproton charge-to-mass ratio. In addition, we have set the most stringent constraint on directly measured antiproton lifetime, based on a unique reservoir trap technique. Our matter/antimatter comparison experiments provide stringent tests of the fundamental charge-parity-time invariance, which is one of the fundamental symmetries of the standard model of particle physics. This article reviews the recent achievements of BASE and gives an outlook to our physics programme in the ELENA era. This article is part of the Theo Murphy meeting issue `Antiproton physics in the ELENA era'.
Ulmer, S; Mooser, A; Nagahama, H; Sellner, S; Smorra, C
2018-03-28
The BASE collaboration investigates the fundamental properties of protons and antiprotons, such as charge-to-mass ratios and magnetic moments, using advanced cryogenic Penning trap systems. In recent years, we performed the most precise measurement of the magnetic moments of both the proton and the antiproton, and conducted the most precise comparison of the proton-to-antiproton charge-to-mass ratio. In addition, we have set the most stringent constraint on directly measured antiproton lifetime, based on a unique reservoir trap technique. Our matter/antimatter comparison experiments provide stringent tests of the fundamental charge-parity-time invariance, which is one of the fundamental symmetries of the standard model of particle physics. This article reviews the recent achievements of BASE and gives an outlook to our physics programme in the ELENA era.This article is part of the Theo Murphy meeting issue 'Antiproton physics in the ELENA era'. © 2018 The Authors.
Mooser, A.; Nagahama, H.; Sellner, S.; Smorra, C.
2018-01-01
The BASE collaboration investigates the fundamental properties of protons and antiprotons, such as charge-to-mass ratios and magnetic moments, using advanced cryogenic Penning trap systems. In recent years, we performed the most precise measurement of the magnetic moments of both the proton and the antiproton, and conducted the most precise comparison of the proton-to-antiproton charge-to-mass ratio. In addition, we have set the most stringent constraint on directly measured antiproton lifetime, based on a unique reservoir trap technique. Our matter/antimatter comparison experiments provide stringent tests of the fundamental charge–parity–time invariance, which is one of the fundamental symmetries of the standard model of particle physics. This article reviews the recent achievements of BASE and gives an outlook to our physics programme in the ELENA era. This article is part of the Theo Murphy meeting issue ‘Antiproton physics in the ELENA era’. PMID:29459414
NASA Astrophysics Data System (ADS)
Dandang, Nur Aidah Nabihah; Harun, Wan Sharuzi Wan; Khalil, Nur Zalikha; Ismail, Muhammad Hussain; Ibrahim, Rosdi
2017-12-01
Metal injection moulding (MIM) has been practised to process alloy powders to become components with significant physical and mechanical properties. Dissimilar than other methods, MIM focuses on the production of high volume, a small, and complex shape of products. The performance of the compacts depends on the suitable sintering parameters that governs their strengths in the final phase which determines the excellent properties of the sintered compacts. Three different sintering temperatures were utilised; 1100, 1200, and 1300 °C with two different soaking times; 1 and 3 hours at 10 °C/min heating rate to study their effect on the physical properties and microstructure analysis of 316L SS alloy compacts. The shrinkage measurement, surface roughness, and density measurement had been conducted for physical properties study. Different sintering temperatures give an effect to the physical properties of the sintered compacts. The shrinkage measurement at 1300 °C and 3-hour sintering condition demonstrated the highest percentage reading which was 10.1 % compared to the lowest percentage reading of 6.4 % at 1100 °C and 1-hour sintering conditions. Whereas, the minimum percentage of density measurement can be found at sintering conditions of 1100 °C and 1-hour which is 83.9 % and the highest percentage is at 1300 °C and 3-hour sintering condition which is about 89.51 %. Therefore, it has been determined that there could be a significant relationship between sintering temperature and physical properties in which it can be found from the porosity of the compact based on the microstructure studies.
Effects of physical aging on long-term behavior of composites
NASA Technical Reports Server (NTRS)
Brinson, L. Catherine
1993-01-01
The HSCT plane, envisioned to have a lifetime of over 60,000 flight hours and to travel at speeds in excess of Mach 2, is the source of intensive study at NASA. In particular, polymer matrix composites are being strongly considered for use in primary and secondary structures due to their high strength to weight ratio and the options of property tailoring. However, an added difficulty in the use of polymer based materials is that their properties change significantly over time, especially at the elevated temperatures that will be experienced during flight, and prediction of properties based on irregular thermal and mechanical loading is extremely difficult. This study focused on one aspect of long-term polymer composite behavior: physical aging. When a polymer is cooled to below its glass transition temperature, the material is not in thermodynamic equilibrium and the free volume and enthalpy evolve over time to approach their equilibrium values. During this time, the mechanical properties change significantly and this change is termed physical aging. This work begins with a review of the concepts of physical aging on a pure polymer system. The effective time theory, which can be used to predict long term behavior based on short term data, is mathematically formalized. The effects of aging to equilibrium are proven and discussed. The theory developed for polymers is then applied first to a unidirectional composite, then to a general laminate. Comparison to experimental data is excellent. It is shown that the effects of aging on the long-term properties of composites can be counter-intuitive, stressing the importance of the development and use of a predictive theory to analyze structures.
Method And Apparatus For Two Dimensional Surface Property Analysis Based On Boundary Measurement
Richardson, John G.
2005-11-15
An apparatus and method for determining properties of a conductive film is disclosed. A plurality of probe locations selected around a periphery of the conductive film define a plurality of measurement lines between each probe location and all other probe locations. Electrical resistance may be measured along each of the measurement lines. A lumped parameter model may be developed based on the measured values of electrical resistance. The lumped parameter model may be used to estimate resistivity at one or more selected locations encompassed by the plurality of probe locations. The resistivity may be extrapolated to other physical properties if the conductive film includes a correlation between resistivity and the other physical properties. A profile of the conductive film may be developed by determining resistivity at a plurality of locations. The conductive film may be applied to a structure such that resistivity may be estimated and profiled for the structure's surface.
Properties of lightweight cement-based composites containing waste polypropylene
NASA Astrophysics Data System (ADS)
Záleská, Martina; Pavlíková, Milena; Pavlík, Zbyšek
2016-07-01
Improvement of buildings thermal stability represents an increasingly important trend of the construction industry. This work aims to study the possible use of two types of waste polypropylene (PP) for the development of lightweight cement-based composites with enhanced thermal insulation function. Crushed PP waste originating from the PP tubes production is used for the partial replacement of silica sand by 10, 20, 30, 40 and 50 mass%, whereas a reference mixture without plastic waste is studied as well. First, basic physical and thermal properties of granular PP random copolymer (PPR) and glass fiber reinforced PP (PPGF) aggregate are studied. For the developed composite mixtures, basic physical, mechanical, heat transport and storage properties are accessed. The obtained results show that the composites with incorporated PP aggregate exhibit an improved thermal insulation properties and acceptable mechanical resistivity. This new composite materials with enhanced thermal insulation function are found to be promising materials for buildings subsoil or floor structures.
Physical properties and depth of cure of a new short fiber reinforced composite.
Garoushi, Sufyan; Säilynoja, Eija; Vallittu, Pekka K; Lassila, Lippo
2013-08-01
To determine the physical properties and curing depth of a new short fiber composite intended for posterior large restorations (everX Posterior) in comparison to different commercial posterior composites (Alert, TetricEvoCeram Bulk Fill, Voco X-tra base, SDR, Venus Bulk Fill, SonicFill, Filtek Bulk Fill, Filtek Superme, and Filtek Z250). In addition, length of fiber fillers of composite XENIUS base compared to the previously introduced composite Alert has been measured. The following properties were examined according to ISO standard 4049: flexural strength, flexural modulus, fracture toughness, polymerization shrinkage and depth of cure. The mean and standard deviation were determined and all results were statistically analyzed with analysis of variance ANOVA (a=0.05). XENIUS base composite exhibited the highest fracture toughness (4.6MPam(1/2)) and flexural strength (124.3MPa) values and the lower shrinkage strain (0.17%) among the materials tested. Alert composite revealed the highest flexural modulus value (9.9GPa), which was not significantly different from XENIUS base composite (9.5GPa). Depth of cure of XENIUS base (4.6mm) was similar than those of bulk fill composites and higher than other hybrid composites. The length of fiber fillers in XENIUS base was longer (1.3-2mm) than in Alert (20-60μm). The new short fiber composite differed significantly in its physical properties compared to other materials tested. This suggests that the latter could be used in high-stress bearing areas. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Phillips, Jeffrey
2014-01-01
A physical property inversion approach based on the use of 3D (or 2D) Fourier transforms to calculate the potential-field within a 3D (or 2D) volume from a known physical property distribution within the volume is described. Topographic surfaces and observations at arbitrary locations are easily accommodated. The limitations of the approach and applications to real data are considered.
Transversality of electromagnetic waves in the calculus-based introductory physics course
NASA Astrophysics Data System (ADS)
Burko, Lior M.
2008-11-01
Introductory calculus-based physics textbooks state that electromagnetic waves are transverse and list many of their properties, but most such textbooks do not bring forth arguments why this is so. Both physical and theoretical arguments are at a level appropriate for students of courses based on such books, and could be readily used by instructors of such courses. Here, we discuss two physical arguments (based on polarization experiments and on lack of monopole electromagnetic radiation) and the full argument for the transversality of (plane) electromagnetic waves based on the integral Maxwell equations. We also show, at a level appropriate for the introductory course, why the electric and magnetic fields in a wave are in phase and the relation of their magnitudes.
Guzha, Alphonce C.; Torres, Gilmar N.; Kovacs, Kristof; Lamparter, Gabriele; Amorim, Ricardo S. S.; Couto, Eduardo; Gerold, Gerhard
2017-01-01
Understanding the impacts of land-use change on landscape-hydrological dynamics is one of the main challenges in the Northern Brazilian Cerrado biome, where the Amazon agricultural frontier is located. Motivated by the gap in literature assessing these impacts, we characterized the soil hydro-physical properties and quantified surface water fluxes from catchments under contrasting land-use in this region. We used data from field measurements in two headwater micro-catchments with similar physical characteristics and different land use, i.e. cerrado sensu stricto vegetation and pasture for extensive cattle ranching. We determined hydraulic and physical properties of the soils, applied ground-based remote sensing techniques to estimate evapotranspiration, and monitored streamflow from October 2012 to September 2014. Our results show significant differences in soil hydro-physical properties between the catchments, with greater bulk density and smaller total porosity in the pasture catchment. We found that evapotranspiration is smaller in the pasture (639 ± 31% mm yr-1) than in the cerrado catchment (1,004 ± 24% mm yr-1), and that streamflow from the pasture catchment is greater with runoff coefficients of 0.40 for the pasture and 0.27 for the cerrado catchment. Overall, our results confirm that conversion of cerrado vegetation to pasture causes soil hydro-physical properties deterioration, reduction in evapotranspiration reduction, and increased streamflow. PMID:28609462
Nóbrega, Rodolfo L B; Guzha, Alphonce C; Torres, Gilmar N; Kovacs, Kristof; Lamparter, Gabriele; Amorim, Ricardo S S; Couto, Eduardo; Gerold, Gerhard
2017-01-01
Understanding the impacts of land-use change on landscape-hydrological dynamics is one of the main challenges in the Northern Brazilian Cerrado biome, where the Amazon agricultural frontier is located. Motivated by the gap in literature assessing these impacts, we characterized the soil hydro-physical properties and quantified surface water fluxes from catchments under contrasting land-use in this region. We used data from field measurements in two headwater micro-catchments with similar physical characteristics and different land use, i.e. cerrado sensu stricto vegetation and pasture for extensive cattle ranching. We determined hydraulic and physical properties of the soils, applied ground-based remote sensing techniques to estimate evapotranspiration, and monitored streamflow from October 2012 to September 2014. Our results show significant differences in soil hydro-physical properties between the catchments, with greater bulk density and smaller total porosity in the pasture catchment. We found that evapotranspiration is smaller in the pasture (639 ± 31% mm yr-1) than in the cerrado catchment (1,004 ± 24% mm yr-1), and that streamflow from the pasture catchment is greater with runoff coefficients of 0.40 for the pasture and 0.27 for the cerrado catchment. Overall, our results confirm that conversion of cerrado vegetation to pasture causes soil hydro-physical properties deterioration, reduction in evapotranspiration reduction, and increased streamflow.
NASA Astrophysics Data System (ADS)
Ubaidillah; Imaduddin, Fitrian; Li, Yancheng; Amri Mazlan, Saiful; Sutrisno, Joko; Koga, Tsuyoshi; Yahya, Iwan; Choi, Seung-Bok
2016-11-01
This paper proposes a new type of magnetorheological elastomer (MRE) using rubber from waste tires and describes its performance characteristics. In this work, scrap tires were utilized as a primary matrix for the MRE without incorporation of virgin elastomers. The synthesis of the scrap tire based MRE adopted a high-temperature high-pressure sintering technique to achieve the reclaiming of vulcanized rubber. The material properties of the MRE samples were investigated through physical and viscoelastic examinations. The physical tests confirmed several material characteristics—microstructure, magnetic, and thermal properties-while the viscoelastic examination was conducted with a laboratory-made dynamic compression apparatus. It was observed from the viscoelastic examination that the proposed MRE has magnetic-field-dependent properties of the storage modulus, loss modulus, and loss tangent at different excitation frequencies and strain amplitudes. Specifically, the synthesized MRE showed a high zero field modulus, a reasonable MR effect under maximum applied current, and remarkable damping properties.
Crins, Martine H P; Terwee, Caroline B; Klausch, Thomas; Smits, Niels; de Vet, Henrica C W; Westhovens, Rene; Cella, David; Cook, Karon F; Revicki, Dennis A; van Leeuwen, Jaap; Boers, Maarten; Dekker, Joost; Roorda, Leo D
2017-07-01
The objective of this study was to assess the psychometric properties of the Dutch-Flemish Patient-Reported Outcomes Measurement Information System (PROMIS) Physical Function item bank in Dutch patients with chronic pain. A bank of 121 items was administered to 1,247 Dutch patients with chronic pain. Unidimensionality was assessed by fitting a one-factor confirmatory factor analysis and evaluating resulting fit statistics. Items were calibrated with the graded response model and its fit was evaluated. Cross-cultural validity was assessed by testing items for differential item functioning (DIF) based on language (Dutch vs. English). Construct validity was evaluated by calculation correlations between scores on the Dutch-Flemish PROMIS Physical Function measure and scores on generic and disease-specific measures. Results supported the Dutch-Flemish PROMIS Physical Function item bank's unidimensionality (Comparative Fit Index = 0.976, Tucker Lewis Index = 0.976) and model fit. Item thresholds targeted a wide range of physical function construct (threshold-parameters range: -4.2 to 5.6). Cross-cultural validity was good as four items only showed DIF for language and their impact on item scores was minimal. Physical Function scores were strongly associated with scores on all other measures (all correlations ≤ -0.60 as expected). The Dutch-Flemish PROMIS Physical Function item bank exhibited good psychometric properties. Development of a computer adaptive test based on the large bank is warranted. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Omura, K.
2014-12-01
In recent years, many examples of physical logging have been carried out in deep boreholes. The loggings are direct in-situ measurements of rock physical properties under the ground. They provide significant basic data for the geological, geophysical and geotechnical investigations, e.g., tectonic history, seismic wave propagation, and ground motion prediction. Since about 1980's, Natl. Res. Inst. for Earth Sci. and Disast. Prev. (NIED) dug deep boreholes (from 200m to 3000m depth) in sedimentary basin of Kanto distinct, Japan, for purposes of installing seismographs and hydrological instruments, and in-situ stress and pore pressure measurements. At that time, downhole physical loggings were conducted in the boreholes: spontaneous potential, electrical resistance, elastic wave velocity, formation density, neutron porosity, total gamma ray, caliper, temperature loggings. In many cases, digital data values were provided every 2m or 1m or 0.1m. In other cases, we read printed graphs of logging plots and got digital data values. Data from about 30 boreholes are compiled. Especially, particular change of logging data at the depth of an interface between a shallow part (soft sedimentary rock) and a base rock (equivalent to hard pre-Neogene rock) is examined. In this presentation, the correlations among physical properties of rock (especially, formation density, elastic wave velocity and electrical resistance) are introduced and the relation to the lithology is discussed. Formation density, elastic wave velocity and electric resistance data indicate the data are divide in two groups that are higher or lower than 2.5g/cm3: the one correspond to a shallow part and the other correspond to a base rock part. In each group, the elastic wave velocity and electric resistance increase with increase of formation density. However the rates of increases in the shallow part are smaller than in the base rock part. The shallow part has lower degree of solidification and higher porosity than that in the base rock part. It appears differences in the degree of solidification and/or porosity are related to differences in the increasing rates. The present data show that the physical logging data are effective information to explore where the base rock is and what properties of the base rock are different from those in the shallow part.
On the physical properties of volcanic rock masses
NASA Astrophysics Data System (ADS)
Heap, M. J.; Villeneuve, M.; Ball, J. L.; Got, J. L.
2017-12-01
The physical properties (e.g., elastic properties, porosity, permeability, cohesion, strength, amongst others) of volcanic rocks are crucial input parameters for modelling volcanic processes. These parameters, however, are often poorly constrained and there is an apparent disconnect between modellers and those who measure/determine rock and rock mass properties. Although it is well known that laboratory measurements are scale dependent, experimentalists, field volcanologists, and modellers should work together to provide the most appropriate model input parameters. Our pluridisciplinary approach consists of (1) discussing with modellers to better understand their needs, (2) using experimental know-how to build an extensive database of volcanic rock properties, and (3) using geotechnical and field-based volcanological know-how to address scaling issues. For instance, increasing the lengthscale of interest from the laboratory-scale to the volcano-scale will reduce the elastic modulus and strength and increase permeability, but to what extent? How variable are the physical properties of volcanic rocks, and is it appropriate to assume constant, isotropic, and/or homogeneous values for volcanoes? How do alteration, depth, and temperature influence rock physical and mechanical properties? Is rock type important, or do rock properties such as porosity exert a greater control on such parameters? How do we upscale these laboratory-measured properties to rock mass properties using the "fracturedness" of a volcano or volcanic outcrop, and how do we quantify fracturedness? We hope to discuss and, where possible, address some of these issues through active discussion between two (or more) scientific communities.
NASA Astrophysics Data System (ADS)
Kavcar, Nevzat; Özen, Ali Ihsan
2017-02-01
Purpose of this work is to determine the physics teacher candidates' views on Physics 11 textbook' content and general properties suitable to the 2013 Secondary School Physics Curriculum. 24 teacher candidates at 2015-2016 school year constituted the sampling of the study in which scanning model based on qualitative research technique was used by performing document analysis. Data collection tool of the research was the files prepared with 51 and 28 open ended questions including the subject content and general properties of the textbook. It was concluded that the textbook was sufficient in terms of discussion, investigation, daily life context, visual elements, permanent learning traces; but was insufficient for design elements and being only one project in Electricity and Magnetism unit. Affective area activities may be involved in the textbook, there may be teacher guide book and book' teaching packet, and underline issues and qualification of the textbook may be improved.
Quantitative Appearance Inspection for Film Coated Tablets.
Yoshino, Hiroyuki; Yamashita, Kazunari; Iwao, Yasunori; Noguchi, Shuji; Itai, Shigeru
2016-01-01
The decision criteria for the physical appearance of pharmaceutical products are subjective and qualitative means of evaluation that are based entirely on human interpretation. In this study, we have developed a comprehensive method for the quantitative analysis of the physical appearance of film coated tablets. Three different kinds of film coated tablets with considerable differences in their physical appearances were manufactured as models, and their surface roughness, contact angle, color measurements and physicochemical properties were investigated as potential characteristics for the quantitative analysis of their physical appearance. All of these characteristics were useful for the quantitative evaluation of the physical appearances of the tablets, and could potentially be used to establish decision criteria to assess the quality of tablets. In particular, the analysis of the surface roughness and film coating properties of the tablets by terahertz spectroscopy allowed for an effective evaluation of the tablets' properties. These results indicated the possibility of inspecting the appearance of tablets during the film coating process.
Materials used to simulate physical properties of human skin.
Dąbrowska, A K; Rotaru, G-M; Derler, S; Spano, F; Camenzind, M; Annaheim, S; Stämpfli, R; Schmid, M; Rossi, R M
2016-02-01
For many applications in research, material development and testing, physical skin models are preferable to the use of human skin, because more reliable and reproducible results can be obtained. This article gives an overview of materials applied to model physical properties of human skin to encourage multidisciplinary approaches for more realistic testing and improved understanding of skin-material interactions. The literature databases Web of Science, PubMed and Google Scholar were searched using the terms 'skin model', 'skin phantom', 'skin equivalent', 'synthetic skin', 'skin substitute', 'artificial skin', 'skin replica', and 'skin model substrate.' Articles addressing material developments or measurements that include the replication of skin properties or behaviour were analysed. It was found that the most common materials used to simulate skin are liquid suspensions, gelatinous substances, elastomers, epoxy resins, metals and textiles. Nano- and micro-fillers can be incorporated in the skin models to tune their physical properties. While numerous physical skin models have been reported, most developments are research field-specific and based on trial-and-error methods. As the complexity of advanced measurement techniques increases, new interdisciplinary approaches are needed in future to achieve refined models which realistically simulate multiple properties of human skin. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Carbon nanotube thin film strain sensor models assembled using nano- and micro-scale imaging
NASA Astrophysics Data System (ADS)
Lee, Bo Mi; Loh, Kenneth J.; Yang, Yuan-Sen
2017-07-01
Nanomaterial-based thin films, particularly those based on carbon nanotubes (CNT), have brought forth tremendous opportunities for designing next-generation strain sensors. However, their strain sensing properties can vary depending on fabrication method, post-processing treatment, and types of CNTs and polymers employed. The objective of this study was to derive a CNT-based thin film strain sensor model using inputs from nano-/micro-scale experimental measurements of nanotube physical properties. This study began with fabricating ultra-low-concentration CNT-polymer thin films, followed by imaging them using atomic force microscopy. Image processing was employed for characterizing CNT dispersed shapes, lengths, and other physical attributes, and results were used for building five different types of thin film percolation-based models. Numerical simulations were conducted to assess how the morphology of dispersed CNTs in its 2D matrix affected bulk film electrical and electromechanical (strain sensing) properties. The simulation results showed that CNT morphology had a significant impact on strain sensing performance.
Perez-Cruz, Angel; Stiharu, Ion; Dominguez-Gonzalez, Aurelio
2017-07-20
In recent years paper-based microfluidic systems have emerged as versatile tools for developing sensors in different areas. In this work; we report a novel physical sensing principle for the characterization of liquids using a paper-based hygro-mechanical system (PB-HMS). The PB-HMS is formed by the interaction of liquid droplets and paper-based mini-structures such as cantilever beams. The proposed principle takes advantage of the hygroscopic properties of paper to produce hygro-mechanical motion. The dynamic response of the PB-HMS reveals information about the tested liquid that can be applied to characterize certain properties of liquids. A suggested method to characterize liquids by means of the proposed principle is introduced. The experimental results show the feasibility of such a method. It is expected that the proposed principle may be applied to sense properties of liquids in different applications where both disposability and portability are of extreme importance.
Transversality of Electromagnetic Waves in the Calculus--Based Introductory Physics Course
NASA Astrophysics Data System (ADS)
Burko, Lior M.
2009-05-01
Introductory calculus--based physics textbooks state that electromagnetic waves are transverse and list many of their properties, but most such textbooks do not bring forth arguments why this is so. Both physical and theoretical arguments are at a level appropriate for students of courses based on such books, and could be readily used by instructors of such courses. Here, we discuss two physical arguments (based on polarization experiments and on lack of monopole electromagnetic radiation), and the full argument for the transversality of (plane) electromagnetic waves based on the integral Maxwell equations. We also show, at a level appropriate for the introductory course, why the electric and magnetic fields in a wave are in phase and the relation of their magnitudes. We have successfully integrated this approach in the calculus--based introductory physics course at the University of Alabama in Huntsville.
NASA Astrophysics Data System (ADS)
Yan, Wentao; Lin, Stephen; Kafka, Orion L.; Lian, Yanping; Yu, Cheng; Liu, Zeliang; Yan, Jinhui; Wolff, Sarah; Wu, Hao; Ndip-Agbor, Ebot; Mozaffar, Mojtaba; Ehmann, Kornel; Cao, Jian; Wagner, Gregory J.; Liu, Wing Kam
2018-05-01
Additive manufacturing (AM) possesses appealing potential for manipulating material compositions, structures and properties in end-use products with arbitrary shapes without the need for specialized tooling. Since the physical process is difficult to experimentally measure, numerical modeling is a powerful tool to understand the underlying physical mechanisms. This paper presents our latest work in this regard based on comprehensive material modeling of process-structure-property relationships for AM materials. The numerous influencing factors that emerge from the AM process motivate the need for novel rapid design and optimization approaches. For this, we propose data-mining as an effective solution. Such methods—used in the process-structure, structure-properties and the design phase that connects them—would allow for a design loop for AM processing and materials. We hope this article will provide a road map to enable AM fundamental understanding for the monitoring and advanced diagnostics of AM processing.
NASA Astrophysics Data System (ADS)
Yan, Wentao; Lin, Stephen; Kafka, Orion L.; Lian, Yanping; Yu, Cheng; Liu, Zeliang; Yan, Jinhui; Wolff, Sarah; Wu, Hao; Ndip-Agbor, Ebot; Mozaffar, Mojtaba; Ehmann, Kornel; Cao, Jian; Wagner, Gregory J.; Liu, Wing Kam
2018-01-01
Additive manufacturing (AM) possesses appealing potential for manipulating material compositions, structures and properties in end-use products with arbitrary shapes without the need for specialized tooling. Since the physical process is difficult to experimentally measure, numerical modeling is a powerful tool to understand the underlying physical mechanisms. This paper presents our latest work in this regard based on comprehensive material modeling of process-structure-property relationships for AM materials. The numerous influencing factors that emerge from the AM process motivate the need for novel rapid design and optimization approaches. For this, we propose data-mining as an effective solution. Such methods—used in the process-structure, structure-properties and the design phase that connects them—would allow for a design loop for AM processing and materials. We hope this article will provide a road map to enable AM fundamental understanding for the monitoring and advanced diagnostics of AM processing.
Memristive Properties of Thin Film Cuprous Oxide
2011-03-01
Equation Chapter 1 Section 1 MEMRISTIVE PROPERTIES OF THIN FILM CUPROUS OXIDE THESIS Brett C...Force Base, Ohio APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED The views expressed in this thesis are those of the...MEMRISTIVE PROPERTIES OF THIN FILM CUPROUS OXIDE THESIS Presented to the Faculty Department of Engineering Physics Graduate School of
NASA Astrophysics Data System (ADS)
Singh, Gyanender; Terrani, Kurt; Katoh, Yutai
2018-02-01
SiC/SiC composites are considered among leading candidates for accident tolerant fuel cladding in light water reactors. However, when SiC-based materials are exposed to neutron irradiation, they experience significant changes in dimensions and physical properties. Under a large heat flux application (i.e. fuel cladding), the non-uniform changes in the dimensions and physical properties will lead to build-up of stresses in the structure over the course of time. To ensure reliable and safe operation of such a structure it is important to assess its thermo-mechanical performance under in-reactor conditions of irradiation and elevated temperature. In this work, the foundation for 3D thermo-mechanical analysis of SiC/SiC cladding is put in place and a set of analyses with simplified boundary conditions has been performed. The analyses were carried out with two different codes that were benchmarked against one another and prior results in the literature. A constitutive model is constructed and solved numerically to predict the stress distribution and variation in the cladding under normal operating conditions. The dependence of dimensions and physical properties variation with irradiation and temperature has been incorporated. These robust models may now be modified to take into account the axial and circumferential variation in neutron and heat flux to fully account for 3D effects. The results from the simple analyses show the development of high tensile stresses especially in the circumferential and axial directions at the inner region of the cladding. Based on the results obtained, design guidelines are recommended. For lack of certainty in or tailor-ability for the physical and mechanical properties of SiC/SiC composite material a sensitivity analysis is conducted. The analysis results establish a precedence order of the properties based on the extent to which these properties influence the temperature and the stresses.
NASA Technical Reports Server (NTRS)
Christensen, P. R.; Edgett, Kenneth S.
1994-01-01
Critical to the assessment of potential sites for the 1997 Pathfinder landing is estimation of general physical properties of the martian surface. Surface properties have been studied using a variety of spacecraft and earth-based remote sensing observations, plus in situ studies at the Viking lander sites. Because of their value in identifying landing hazards and defining scientific objectives, we focus this discussion on thermal inertia and rock abundance derived from middle-infrared (6 to 30 microns) observations. Used in conjunction with other datasets, particularly albedo and Viking orbiter images, thermal inertia and rock abundance provide clues about the properties of potential Mars landing sites.
Lead Exposure Hazard Management Guide
1993-12-01
that may pose chemical or physical problems . Make this section specific to your base or location. b. Exposure Routes. The potential routes of...Pregnant Mother ........ 14 nstallatio (Base) Lead Te xicity Investigations . Team Makeup and Duties ............ 15 Lead Toxicity Investigation...occurring in tradesmen who used lead in their occupations. The favorable physical and chemical properties of lead accounted for its extensive use. Lead can
An atomistic-based chemophysical environment for evaluating asphalt oxidation and antioxidants.
Pan, Tongyan; Sun, Lu; Yu, Qifeng
2012-12-01
Asphalt binders in service conditions are subject to oxidative aging that involves the reactions between oxygen molecules and the component species of bulk asphalt. As a result, significant alterations can occur to the desired physical and/or mechanical properties of asphalt. A common practice to alleviate asphalt aging has been to employ different chemical additives or modifiers as antioxidants. The current state of knowledge in asphalt oxidation and antioxidant evaluation is centered on determining the degradation of asphalt physical properties, mainly the viscosity and ductility. Such practices, although meeting direct engineering needs, do not contribute to the fundamental understanding of the aging and anti-oxidation mechanisms, and thereby developing anti-aging strategies. From this standpoint, this study was initiated to study the chemical and physical bases of asphalt oxidation, as well as the anti-oxidation mechanisms of bio-based antioxidants using the coniferyl-alcohol lignin as an example. A quantum chemistry (QC) based chemophysical environment is developed, in which the various chemical reactions between asphalt component species and oxygen, as well as the incurred physical changes are studied. X-ray photoelectron spectroscopy (XPS) was used to validate the modified and unmodified asphalt models.
Influence of Cellulosic Fibres on the Physical Properties of Fibre Cement Composites
NASA Astrophysics Data System (ADS)
Hospodarova, V.; Stevulova, N.; Vaclavik, V.; Dvorsky, T.
2017-10-01
Nowadays, there are new approaches directing to processing of non-conventional fibre-cement composites for application in the housing construction. Vegetable cellulosic fibres coming from natural resources used as reinforcement in cost-effective and environmental friendly building products are in the spotlight. The applying of natural fibres in cement based composites is narrowly linked to the ecological building sector, where a choice of materials is based on components including recyclable, renewable raw materials and low-resource manufacture techniques. In this paper, two types of cellulosic fibres coming from wood pulp and recycled waste paper with 0.2%; 0.3% and 0.5% of fibre addition into cement mixtures were used. Differences in the physical characteristics (flowability, density, coefficient of thermal conductivity and water absorbability) of 28 days hardened fibre-cement composites are investigated. Addition of cellulosic fibres to cement mixture caused worsening the workability of fresh mixture as well as absorbability of hardened composites due to hydrophilic nature of biomaterial, whereas density and thermal conductivity of manufactured cement based fibre plaster are enhanced. The physical properties of cement plasters based on cellulosic fibres depend on structural, physical characteristics of cellulosic fibres, their nature and processing.
HAN (Hydroxylammonium Nitrate) Based Liquid Gun Propellants: Physical Properties
1987-11-01
are obsolete UNCLASSIF IED UNCLASS IF IED 18. SUBJECT TERMS (con’t) Triethanolammonium Nitrate TEAN 19. ABSTRACT (con’t) The effect of the molecular...were synthesized and their viscosities and nsi1t9 deter,-ine.0d as a function of temperature. The results clearly show the effects of hydrogen bonding...on the physical properties. Surface tension and vapor pressure have been determined and an equation of state that accurately describes the effect of
Quantification of Soil Pore Structure Based on Minkowski-Functions
NASA Astrophysics Data System (ADS)
Vogel, H.; Weller, U.; Schlüter, S.
2009-05-01
The porous structure in soils and other geologic media is typically a complex 3-dimensional object. Most of the physical material properties including mechanical and hydraulic characteristics are immediately linked to this structure which can be directly observed using non-invasive techniques as e.g. X-ray tomography. It is an old dream and still a formidable challenge to related structural features of porous media to their physical properties. In this contribution we present a scale-invariant concept to quantify pore structure based on a limited set of meaningful morphological functions. They are based on d+1 Minkowski functionals as defined for d-dimensional bodies. These basic quantities are determined as a function of pore size obtained by filter procedures using mathematical morphology. The resulting Minkowski functions provide valuable information on pore size, pore surface area and pore topology having the potential to be linked to physical properties. The theoretical background and the related algorithms are presented and the approach is demonstrated for the structure of an arable topsoil obtained by X-ray micro tomography. We also discuss the fundamental problem of limited resolution which is critical for any attempt to quantify structural features at any scale.
NASA Astrophysics Data System (ADS)
Guzmán, Gema; Giráldez, Juan Vicente; Gómez, José Alfonso
2014-05-01
Numerous studies have attempted to assess the differences in soil properties caused by different management systems in olive cropped farms. Nevertheless the influence of the most frequent management systems on the hydraulic properties of these soils has not been evaluated. Contrarily, there are very few studies that have tried to correlate these results with soil losses due to water erosion. There are complementary approaches to traditional degradation indices, as the S index based on the form of the soil retention curve (Dexter 2004a,b,c). The objectives of this study were (i) to evaluate the methods based on the S index to assess the physical quality of soil in olive orchards, (ii) to assess the short-term changes (2 years) in soil physical and chemical properties in two olive orchards under different managements systems, namely conventional tillage and cover crop, and (iii) to formulate strategies for assessing the quality of soil in olive orchards. For the studied soils, degradation processes (associated to conventional tillage) and the improvement of their properties (linked to cover crops) showed a fast response. Chemical changes were quickly observed. However physical changes are slower than chemical changes for both soils. Water retention curves allowed the evaluation of soil porosity based on depth in the profile and the management practices. The S index was computed for every soil using the conventional soil water retention equations fitted to the experimental data. For the olive cropped soils, higher S index values were obtained in the less degradated areas, in most of the cases. Therefore, the S index could be used as a soil quality indicator although further research should be required to study its evolution at a larger temporal scale. References: Dexter, A. R. 2004. a.- Soil physical quality. PartI. Theory, effects of soil texture, density, and organic matter, and effects on root growth. Geoderma 120 (2004) 201-214. Dexter, A. R. 2004. b.- Soil physical quality. Part II. Friability, tillage, tilth and hardsetting. Geoderma 120 (2004) 215-225. Dexter, A. R. 2004. c.- Soil physical quality. Part III: Unsaturated hydraulic conductivity and general conclusions about S-theory. Geoderma 120 (2004) 227-239.
NASA Astrophysics Data System (ADS)
2014-08-01
A scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS), entitled 'Superconductivity in iron-based compounds', was held on 29 January 2014 at the conference hall of the Lebedev Physical Institute, RAS. The agenda of the session, announced on the website http://www.gpad.ac.ru of the RAS Physical Sciences Division listed the following reports: (1) Eremin I M (Institut für Theoretische Physik III, Ruhr-Universität Bochum, Bochum, Deutschland; Kazan (Volga region) Federal University, Kazan, Russian Federation) "Antiferromagnetism in iron-based superconductors: interaction of the magnetic, orbital, and lattice degrees of freedom"; (2) Korshunov M M (Kirenskii Institute of Physics, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk) "Superconducting state in iron-based materials and spin-fluctuation pairing theory"; (3) Kuzmicheva T E (Lebedev Physical Institute, Russian Academy of Sciences, Moscow; Lomonosov Moscow State University) "Andreev spectroscopy of iron-based superconductors: temperature dependence of the order parameters and scaling of Δ_L, S with T_C"; (4) Eltsev Yu F (Lebedev Physical Institute, Russian Academy of Sciences, Moscow) "Synthesis and study of the magnetic and transport properties of iron-based superconductors of the 122 family". Papers written on the basis of oral presentations 1-4 are published below. • Antiferromagnetism in iron-based superconductors: magnetic order in the model of delocalized electrons, I M Eremin Physics-Uspekhi, 2014, Volume 57, Number 8, Pages 807-813 • Superconducting state in iron-based materials and spin-fluctuation pairing theory, M M Korshunov Physics-Uspekhi, 2014, Volume 57, Number 8, Pages 813-819 • Andreev spectroscopy of iron-based superconductors: temperature dependence of the order parameters and scaling of Δ_L, S with T_C, T E Kuzmicheva, S A Kuzmichev, M G Mikheev, Ya G Ponomarev, S N Tchesnokov, V M Pudalov, E P Khlybov, N D Zhigadlo Physics-Uspekhi, 2014, Volume 57, Number 8, Pages 819-827 • Magnetic and transport properties of single crystals of Fe-based superconductors of the 122 family, Yu F Eltsev, K S Pervakov, V A Vlasenko, S Yu Gavrilkin, E P Khlybov, V M Pudalov Physics-Uspekhi, 2014, Volume 57, Number 8, Pages 827-832
The Physics and Chemistry of Materials
NASA Astrophysics Data System (ADS)
Gersten, Joel I.; Smith, Frederick W.
2001-06-01
A comprehensive introduction to the structure, properties, and applications of materials This title provides the first unified treatment for the broad subject of materials. Authors Gersten and Smith use a fundamental approach to define the structure and properties of a wide range of solids on the basis of the local chemical bonding and atomic order present in the material. Emphasizing the physical and chemical origins of material properties, the book focuses on the most technologically important materials being utilized and developed by scientists and engineers. Appropriate for use in advanced materials courses, The Physics and Chemistry of Materials provides the background information necessary to assimilate the current academic and patent literature on materials and their applications. Problem sets, illustrations, and helpful tables complete this well-rounded new treatment. Five sections cover these important topics: * Structure of materials, including crystal structure, bonding in solids, diffraction and the reciprocal lattice, and order and disorder in solids * Physical properties of materials, including electrical, thermal, optical, magnetic, and mechanical properties * Classes of materials, including semiconductors, superconductors, magnetic materials, and optical materials in addition to metals, ceramics, polymers, dielectrics, and ferroelectrics * A section on surfaces, thin films, interfaces, and multilayers discusses the effects of spatial discontinuities in the physical and chemical structure of materials * A section on synthesis and processing examines the effects of synthesis on the structure and properties of various materials This book is enhanced by a Web-based supplement that offers advanced material together with an entire electronic chapter on the characterization of materials. The Physics and Chemistry of Materials is a complete introduction to the structure and properties of materials for students and an excellent reference for scientists and engineers.
Soil structural quality assessment for soil protection regulation
NASA Astrophysics Data System (ADS)
Johannes, Alice; Boivin, Pascal
2017-04-01
Soil quality assessment is rapidly developing worldwide, though mostly focused on the monitoring of arable land and soil fertility. Soil protection regulations assess soil quality differently, focusing on priority pollutants and threshold values. The soil physical properties are weakly considered, due to lack of consensus and experimental difficulties faced with characterization. Non-disputable, easy to perform and inexpensive methods should be available for environmental regulation to be applied, which is unfortunately not the case. As a consequence, quantitative soil physical protection regulation is not applied, and inexpensive soil physical quality indicators for arable soil management are not available. Overcoming these limitations was the objective of a research project funded by the Swiss federal office for environment (FOEN). The main results and the perspectives of application are given in this presentation. A first step of the research was to characterize soils in a good structural state (reference soils) under different land use. The structural quality was assessed with field expertise and Visual Evaluation of the Soil Structure (VESS), and the physical properties were assessed with Shrinkage analysis. The relationships between the physical properties and the soil constituents were linear and highly determined. They represent the reference properties of the corresponding soils. In a second step, the properties of physically degraded soils were analysed and compared to the reference properties. This allowed defining the most discriminant parameters departing the different structure qualities and their threshold limits. Equivalent properties corresponding to these parameters but inexpensive and easy to determine were defined and tested. More than 90% of the samples were correctly classed with this method, which meets, therefore, the requirements for practical application in regulation. Moreover, result-oriented agri-environmental schemes for soil quality are now proposed to farmers based on these indicators.
Ji, Chen-Chen; Xu, Mao-Wen; Bao, Shu-Juan; Cai, Chang-Jun; Lu, Zheng-Jiang; Chai, Hui; Yang, Fan; Wei, Hua
2013-10-01
Homogeneously distributed self-assembling hybrid graphene-based aerogels with 3D interconnected pores, employing three types of carbohydrates (glucose, β-cyclodextrin, and chitosan), have been fabricated by a simple hydrothermal route. Using three types of carbohydrates as morphology oriented agents and reductants can effectively tailor the microstructures, physical properties, and electrochemical performances of the products. The effects of different carbohydrates on graphene oxide reduction to form graphene-based aerogels with different microcosmic morphologies and physical properties were also systemically discussed. The electrochemical behaviors of all graphene-based aerogel samples showed remarkably strong and stable performances, which indicated that all the 3D interpenetrating microstructure graphene-based aerogel samples with well-developed porous nanostructures and interconnected conductive networks could provide fast ionic channels for electrochemical energy storage. These results demonstrate that this strategy would offer an easy and effective way to fabricate graphene-based materials. Copyright © 2013 Elsevier Inc. All rights reserved.
Shi, Hui-Sheng; Kan, Li-Li
2009-03-15
The study of cementitious activity of chromium residue (CR) was carried out to formulate the properties of chromium residue-cement matrices (CRCM) by blending CR with Ordinary Portland Cement (OPC). The particle size distribution, microstructures of CR were investigated by some apparatuses, and physical properties, leaching behavior of hexavalent chromium [Cr(VI)] of CRCM were also determined by some experiments. Three types of commonly used superplasticizers (sulphonated acetone formaldehyde superplasticizer (J1), polycarboxylate-based superplasticizer (J2) and naphthalene superplasticizer (J3)) were chosen to investigate their influences on the physical properties and the Cr(VI)-immobilisation in the leachate of the CRCM hardened pastes. The results show that the CR has a certain cementitious activity. The incorporation of CR improves the pore size distribution of CRCM. The Cr(VI) concentrations in the leachate of CRCM significantly decrease by incorporation of J2. Among three superplasticizers, J2 achieves lowest Cr(VI) leaching ratio. Based on this study, it is likely to develop CR as a potential new additive used in cement-based materials.
40 CFR 98.454 - Monitoring and QA/QC requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... using measurements and/or engineering assessments or calculations based on chemical engineering principles or physical or chemical laws or properties. Such assessments or calculations may be based on, as...
40 CFR 98.454 - Monitoring and QA/QC requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... using measurements and/or engineering assessments or calculations based on chemical engineering principles or physical or chemical laws or properties. Such assessments or calculations may be based on, as...
40 CFR 98.454 - Monitoring and QA/QC requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... using measurements and/or engineering assessments or calculations based on chemical engineering principles or physical or chemical laws or properties. Such assessments or calculations may be based on, as...
40 CFR 98.454 - Monitoring and QA/QC requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... using measurements and/or engineering assessments or calculations based on chemical engineering principles or physical or chemical laws or properties. Such assessments or calculations may be based on, as...
Thermophysical properties of fluids: dynamic viscosity and thermal conductivity
NASA Astrophysics Data System (ADS)
Latini, G.
2017-11-01
Thermophysical properties of fluids strongly depend upon atomic and molecular structure, complex systems governed by physics laws providing the time evolution. Theoretically the knowledge of the initial position and velocity of each atom, of the interaction forces and of the boundary conditions, leads to the solution; actually this approach contains too many variables and it is generally impossible to obtain an acceptable solution. In many cases it is only possible to calculate or to measure some macroscopic properties of fluids (pressure, temperature, molar volume, heat capacities...). The ideal gas “law,” PV = nRT, was one of the first important correlations of properties and the deviations from this law for real gases were usefully proposed. Moreover the statistical mechanics leads for example to the “hard-sphere” model providing the link between the transport properties and the molecular size and speed of the molecules. Further approximations take into account the intermolecular interactions (the potential functions) which can be used to describe attractions and repulsions. In any case thermodynamics reduces experimental or theoretical efforts by relating one physical property to another: the Clausius-Clapeyron equation provides a classical example of this method and the PVT function must be known accurately. However, in spite of the useful developments in molecular theory and computers technology, often it is usual to search for physical properties when the existing theories are not reliable and experimental data are not available: the required value of the physical or thermophysical property must be estimated or predicted (very often estimation and prediction are improperly used as synonymous). In some cases empirical correlations are useful, if it is clearly defined the range of conditions on which they are based. This work is concerned with dynamic viscosity µ and thermal conductivity λ and is based on clear and important rules to be respected when a prediction or estimation method is proposed.
Yan, Liang; Zheng, Yue Bing; Zhao, Feng; Li, Shoujian; Gao, Xingfa; Xu, Bingqian; Weiss, Paul S; Zhao, Yuliang
2012-01-07
Graphene has attracted great interest for its superior physical, chemical, mechanical, and electrical properties that enable a wide range of applications from electronics to nanoelectromechanical systems. Functionalization is among the significant vectors that drive graphene towards technological applications. While the physical properties of graphene have been at the center of attention, we still lack the knowledge framework for targeted graphene functionalization. In this critical review, we describe some of the important chemical and physical processes for graphene functionalization. We also identify six major challenges in graphene research and give perspectives and practical strategies for both fundamental studies and applications of graphene (315 references). This journal is © The Royal Society of Chemistry 2012
Physical and Chemical Properties of the Copper-Alanine System: An Advanced Laboratory Project
ERIC Educational Resources Information Center
Farrell, John J.
1977-01-01
An integrated physical-analytical-inorganic chemistry laboratory procedure for use with undergraduate biology majors is described. The procedure requires five to six laboratory periods and includes acid-base standardizations, potentiometric determinations, computer usage, spectrophotometric determinations of crystal-field splitting…
238U Mössbauer study on the magnetic properties of uranium-based heavy fermion superconductors
NASA Astrophysics Data System (ADS)
Tsutsui, Satoshi; Nakada, Masami; Nasu, Saburo; Haga, Yoshinori; Honma, Tetsuo; Yamamoto, Etsuji; Ohkuni, Hitoshi; Ōnuki, Yoshichika
2000-07-01
We have performed 238U Mössbauer spectroscopy of uranium-based heavy fermion superconductors, UPd2Al3 and URu2Si2, in order to investigate their physical properties, mainly their magnetic properties. The slow relaxation of magnetic hyperfine interaction in a paramagnetic state and the static hyperfine field has been observed in an antiferromagnetic ordered state for each compound. The line-widths have maximum at their characteristic temperatures where their magnetic susceptibilities have maximum values.
NASA Astrophysics Data System (ADS)
King, J. M.; Kasurak, A.; Kelly, R. E.; Duguay, C. R.; Derksen, C.; Rutter, N.; Sandells, M.; Watts, T.
2012-12-01
During the winter of 2010-2011 ground-based Ku- (17.2 GHz) and X-band (9.6 GHz) scatterometers were deployed near Churchill, Manitoba, Canada to evaluate the potential for dual-frequency observation of tundra snow properties. Field-based scatterometer observations when combined with in-situ snowpack properties and physically based models, provide the means necessary to develop and evaluate local scale property retrievals. To form meaningful analysis of the observed physical interaction space, potential sources of bias and error in the observed backscatter must be identified and quantified. This paper explores variation in observed Ku- and X-band backscatter in relation to the physical complexities of shallow tundra snow whose properties evolve at scales smaller than the observing instrument. The University of Waterloo scatterometer (UW-Scat) integrates observations over wide azimuth sweeps, several meters in length, to minimize errors resulting from radar fade and poor signal-to-noise ratios. Under ideal conditions, an assumption is made that the observed snow target is homogeneous. Despite an often-outward appearance of homogeneity, topographic elements of the Canadian open tundra produce significant local scale variability in snow properties, including snow water equivalent (SWE). Snow at open tundra sites observed during this campaign was found to vary by as much as 20 cm in depth and 40 mm in SWE within the scatterometer field of view. Previous studies suggest that changes in snow properties on this order will produce significant variation in backscatter, potentially introducing bias into products used for analysis. To assess the influence of sub-scan variability, extensive snow surveys were completed within the scatterometer field of view immediately after each scan at 32 sites. A standardized sampling protocol captured a grid of geo-located measurements, characterizing the horizontal variability of bulk properties including depth, density, and SWE. Based upon these measurements, continuous surfaces were generated to represent the observed snow target. Two snow pits were also completed within the field of view, quantifying vertical variability in density, permittivity, temperature, grain size, and stratigraphy. A new post-processing method is applied to divide the previously aggregated scatterometer observations into smaller sub-sets, which are then co-located with the physical snow observations. Sub-scan backscatter coefficients and their relationship to tundra snowpack parameters are then explored. The results presented here provide quantitative methods relevant to the radar observation science of snow and, therefore, to potential future space-borne missions such as the Cold Regions Hydrology High-resolution Observatory (CoReH2O), a candidate European Space Agency Earth Explorer mission. Moreover, this paper provides guidelines for future studies exploring ground-based scatterometer observations of tundra snow.
Field-Scale Evaluation of Infiltration Parameters From Soil Texture for Hydrologic Analysis
NASA Astrophysics Data System (ADS)
Springer, Everett P.; Cundy, Terrance W.
1987-02-01
Recent interest in predicting soil hydraulic properties from simple physical properties such as texture has major implications in the parameterization of physically based models of surface runoff. This study was undertaken to (1) compare, on a field scale, soil hydraulic parameters predicted from texture to those derived from field measurements and (2) compare simulated overland flow response using these two parameter sets. The parameters for the Green-Ampt infiltration equation were obtained from field measurements and using texture-based predictors for two agricultural fields, which were mapped as single soil units. Results of the analyses were that (1) the mean and variance of the field-based parameters were not preserved by the texture-based estimates, (2) spatial and cross correlations between parameters were induced by the texture-based estimation procedures, (3) the overland flow simulations using texture-based parameters were significantly different than those from field-based parameters, and (4) simulations using field-measured hydraulic conductivities and texture-based storage parameters were very close to simulations using only field-based parameters.
Atomistic methodologies for material properties of 2D materials at the nanoscale
NASA Astrophysics Data System (ADS)
Zhang, Zhen
Research on two dimensional (2D) materials, such as graphene and MoS2, now involves thousands of researchers worldwide cutting across physics, chemistry, engineering and biology. Due to the extraordinary properties of 2D materials, research extends from fundamental science to novel applications of 2D materials. From an engineering point of view, understanding the material properties of 2D materials under various conditions is crucial for tailoring the electrical and mechanical properties of 2D-material-based devices at the nanoscale. Even at the nanoscale, molecular systems typically consist of a vast number of atoms. Molecular dynamics (MD) simulations enable us to understand the properties of assemblies of molecules in terms of their structure and the microscopic interactions between them. From a continuum approach, mechanical properties and thermal properties, such as strain, stress, and heat capacity, are well defined and experimentally measurable. In MD simulations, material systems are considered to be discrete, and only interatomic potential, interatomic forces, and atom positions are directly obtainable. Besides, most of the fracture mechanics concepts, such as stress intensity factors, are not applicable since there is no singularity in MD simulations. However, energy release rate still remains to be a feasible and crucial physical quantity to characterize the fracture mechanical property of materials at the nanoscale. Therefore, equivalent definition of a physical quantity both in atomic scale and macroscopic scale is necessary in order to understand molecular and continuum scale phenomena concurrently. This work introduces atomistic simulation methodologies, based on interatomic potential and interatomic forces, as a tool to unveil the mechanical properties, thermal properties and fracture mechanical properties of 2D materials at the nanoscale. Among many 2D materials, graphene and MoS2 have attracted intense interest. Therefore, we applied our methodologies to graphene and MoS2 as examples. Young's modulus, Poison's ratio, heat conductivity, heat capacity, and energy release rate at the nanoscale are studied. These findings lend compelling insights into the atomistic mechanisms of graphene and MoS2, and provide useful guidelines for the design of 2D-material-based nanodevices.
Polymer-Based Nanocomposites: An Internship Program for Deaf and Hard of Hearing Students
NASA Astrophysics Data System (ADS)
Cebe, Peggy; Cherdack, Daniel; Seyhan Ince-Gunduz, B.; Guertin, Robert; Haas, Terry; Valluzzi, Regina
2007-03-01
We report on our summer internship program in Polymer-Based Nanocomposites, for deaf and hard of hearing undergraduates who engage in classroom and laboratory research work in polymer physics. The unique attributes of this program are its emphasis on: 1. Teamwork; 2. Performance of a start-to-finish research project; 3. Physics of materials approach; and 4. Diversity. Students of all disability levels have participated in this program, including students who neither hear nor voice. The classroom and laboratory components address the materials chemistry and physics of polymer-based nanocomposites, crystallization and melting of polymers, the interaction of X-rays and light with polymers, mechanical properties of polymers, and the connection between thermal processing, structure, and ultimate properties of polymers. A set of Best Practices is developed for accommodating deaf and hard of hearing students into the laboratory setting. The goal is to bring deaf and hard of hearing students into the larger scientific community as professionals, by providing positive scientific experiences at a formative time in their educational lives.
Zink, Joël; Wyrobnik, Tom; Prinz, Tobias; Schmid, Markus
2016-01-01
Protein-based films and coatings are an interesting alternative to traditional petroleum-based materials. However, their mechanical and barrier properties need to be enhanced in order to match those of the latter. Physical, chemical, and biochemical methods can be used for this purpose. The aim of this article is to provide an overview of the effects of various treatments on whey, soy, and wheat gluten protein-based films and coatings. These three protein sources have been chosen since they are among the most abundantly used and are well described in the literature. Similar behavior might be expected for other protein sources. Most of the modifications are still not fully understood at a fundamental level, but all the methods discussed change the properties of the proteins and resulting products. Mastering these modifications is an important step towards the industrial implementation of protein-based films. PMID:27563881
Relativity Based on Physical Processes Rather Than Space-Time
NASA Astrophysics Data System (ADS)
Giese, Albrecht
2013-09-01
Physicists' understanding of relativity and the way it is handled is at present dominated by the interpretation of Albert Einstein, who related relativity to specific properties of space and time. The principal alternative to Einstein's interpretation is based on a concept proposed by Hendrik A. Lorentz, which uses knowledge of classical physics to explain relativistic phenomena. In this paper, we will show that on the one hand the Lorentz-based interpretation provides a simpler mathematical way of arriving at the known results for both Special and General Relativity. On the other hand, it is able to solve problems which have remained open to this day. Furthermore, a particle model will be presented, based on Lorentzian relativity, which explains the origin of mass without the use of the Higgs mechanism, based on the finiteness of the speed of light, and which provides the classical results for particle properties that are currently only accessible through quantum mechanics.
Effect of in-office bleaching agents on physical properties of dental composite resins.
Mourouzis, Petros; Koulaouzidou, Elisabeth A; Helvatjoglu-Antoniades, Maria
2013-04-01
The physical properties of dental restorative materials have a crucial effect on the longevity of restorations and moreover on the esthetic demands of patients, but they may be compromised by bleaching treatments. The purpose of this study was to evaluate the effects of in-office bleaching agents on the physical properties of three composite resin restorative materials. The bleaching agents used were hydrogen peroxide and carbamide peroxide at high concentrations. Specimens of each material were prepared, cured, and polished. Measurements of color difference, microhardness, and surface roughness were recorded before and after bleaching and data were examined statistically by analysis of variance (ANOVA) and Tukey HSD post-hoc test at P < .05. The measurements showed that hue and chroma of silorane-based composite resin altered after the bleaching procedure (P < .05). No statistically significant differences were found when testing the microhardness and surface roughness of composite resins tested (P > .05). The silorane-based composite resin tested showed some color alteration after bleaching procedures. The bleaching procedure did not alter the microhardness and the surface roughness of all composite resins tested.
NASA Astrophysics Data System (ADS)
Abramovich, A.
2016-04-01
Metal-ceramics composites (cermets) are modern construction material used in different industry branches. Their strength and heat resistance depend on elastic and thermos physical properties. In this work cermets based on corundum and stainless steel (sintered in high vacuum at temperatures 1500 - 1600°C) are investigated. The volume steel concentration in the samples varies up 2 to 20 vol %. The elastic modules were measured by ultrasonic method at room temperature, measuring of thermo conductivity coefficient were carried out at temperatures 100, 200°C by method of continued heating in adiabatic calorimeter. We founded appearance of two extremes on dependences of elastic modules (E, G) on stainless steel concentrations, nature of which is unknown, modules values change in range: E = 110 - 310, G = 60 - 130GPa (for different temperatures of sintering). Similar dependence is observed for thermo conductivity coefficient which values varies up 10 to 40 W/(m.K). There is presented also discussion of results based on structure cermet model as multiphase micro heterogeneous media with isotropic physical properties in the work.
Atomistic modeling for interfacial properties of Ni-Al-V ternary system
NASA Astrophysics Data System (ADS)
Dong, Wei-ping; Lee, Byeong-Joo; Chen, Zheng
2014-05-01
Interatomic potentials for Ni-Al-V ternary systems have been developed based on the second-nearest-neighbor modified embedded-atom method potential formalism. The potentials can describe various fundamental physical properties of the relevant materials in good agreement with experimental information. The potential is utilized for an atomistic computation of interfacial properties of Ni-Al-V alloys. It is found that vanadium atoms segregate on the γ-fcc/L12 interface and this segregation affects the interfacial properties. The applicability of the atomistic approach to an elaborate alloy design of advanced Ni-based superalloys through the investigation of the effect of alloying elements on interfacial properties is discussed.
NASA Astrophysics Data System (ADS)
Rieben, James C., Jr.
This study focuses on the effects of relevance and lab design on student learning within the chemistry laboratory environment. A general chemistry conductivity of solutions experiment and an upper level organic chemistry cellulose regeneration experiment were employed. In the conductivity experiment, the two main variables studied were the effect of relevant (or "real world") samples on student learning and a verification-based lab design versus a discovery-based lab design. With the cellulose regeneration experiment, the effect of a discovery-based lab design vs. a verification-based lab design was the sole focus. Evaluation surveys consisting of six questions were used at three different times to assess student knowledge of experimental concepts. In the general chemistry laboratory portion of this study, four experimental variants were employed to investigate the effect of relevance and lab design on student learning. These variants consisted of a traditional (or verification) lab design, a traditional lab design using "real world" samples, a new lab design employing real world samples/situations using unknown samples, and the new lab design using real world samples/situations that were known to the student. Data used in this analysis were collected during the Fall 08, Winter 09, and Fall 09 terms. For the second part of this study a cellulose regeneration experiment was employed to investigate the effects of lab design. A demonstration creating regenerated cellulose "rayon" was modified and converted to an efficient and low-waste experiment. In the first variant students tested their products and verified a list of physical properties. In the second variant, students filled in a blank physical property chart with their own experimental results for the physical properties. Results from the conductivity experiment show significant student learning of the effects of concentration on conductivity and how to use conductivity to differentiate solution types with the use of real world samples. In the organic chemistry experiment, results suggest that the discovery-based design improved student retention of the chain length differentiation by physical properties relative to the verification-based design.
Glass-based confined structures enabling light control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiappini, Andrea; Normani, Simone; Chiasera, Alessandro
2015-04-24
When a luminescent ion is confined in a system characterized by one or more specific properties such as spatial size, geometrical dimension and shape, refractive index, local crystal field, cut-off vibrational energy and so on, it's possible to control its emission. The control of branching ratios as a function of the composition, the luminescence enhancement induced by a photonic crystal, or the laser action in a microresonator, are well known examples of light control. Photonic glass-based structures are extremely viable systems to exploit the above mentioned properties and in our research team we have successfully fabricated luminescent photonic structures bymore » different techniques, including sol-gel, rf sputtering, drawing, melting, and physical vapour deposition. Here we will discuss some of them with the aim to make the reader aware of the chemical-physical properties related to each specific system. We will demonstrate that glass ceramic waveguides in some cases present superior spectroscopic properties in respect to the parent glass, that compositional properties can play a positive role in reducing luminescence quenching and in developing novel planar waveguides and fibers, that colloids allow to obtain high internal quantum efficiency and that photonic crystals, microcavities and microresonators can enable the handling of the rare earth luminescence. Finally, the pros and cons of the systems and of the different techniques employed for their fabrication will be discussed and some perspectives concerning the glass photonics will be proposed looking at both possible applications and investigation of physical properties.« less
Electro-optical and physic-mechanical properties of colored alicyclic polyimide
NASA Astrophysics Data System (ADS)
Kravtsova, V.; Umerzakova, M.; Korobova, N.; Timoshenkov, S.; Timoshenkov, V.; Orlov, S.; Iskakov, R.; Prikhodko, O.
2016-09-01
Main optical, thermal and mechanical properties of new compositions based on alicyclic polyimide and active bright red 6C synthetic dye have been studied. It was shown that the transmission ratio of the new material in the region of 400-900 nm and 2.0 wt.% dye concentration was around 60-70%. Thermal, mechanical and electrical properties of new colored compositions were comparable with the properties of original polyimide.
Pan, Hongyang; Jiang, Bo; Chen, Jie; Jin, Zhengyu
2014-11-04
Multi-component substances made through direct blending or blending with co-drying can form films on the surfaces of intermediate moisture foods (IMFs), which help retain moisture and protect food texture and flavor. An IMF film system based on pullulan, with glycerol serving as the plasticizer, was studied using alginate and four different types of polysaccharides (propyleneglycol alginate, pectin, carrageenan, and aloe polysaccharide) as the blend-modified substances. The physical, mechanical, color, transparency, and moisture-retention properties of the co-blended films with the polysaccharides were assessed. A new formula was established for the average moisture retention property, water barrier, tensile strength, elongation at break, and oxygen barrier property of the ternary co-blended films using the Design Expert software. The new model established for moisture content measurement used an indirect method of film formation on food surfaces by humectants, which should expedite model validation and allow a better comprehension of moisture transfer through edible films. Copyright © 2014 Elsevier Ltd. All rights reserved.
Properties of resonant trans-Neptunian objects based on Herschel Space Observatory data
NASA Astrophysics Data System (ADS)
Farkas Anikó, Takácsné; Kiss, Csaba; Mueller, Thomas G.; Mommert, Michael; Vilenius, Esa
2016-10-01
The goal of our work is to characterise the physical characteristics of resonant, detached and scattered disk objects in the trans-Neptunian region, observed in the framework of the "TNOs are Cool!" Herschel Open Time Key Program. Based on thermal emission measurements with the Herschel/PACS and Spitzer/MIPS instruments we were able to determine size, albedo, and surface thermal properties for 23 objects using radiometric modelling techniques. This is the first analysis in which the physical properties of objects in the outer resonances are determined for a larger sample. In addition to the results for individual objects, we have compared these characteristic with the bulk properties of other populations of the trans-Neptunian region. The newly analysed objects show e.g. a large variety of beaming factors, indicating diverse surfaces, and in general they follow the albedo-colour clustering identified earlier for Kuiper belt objects and Centaurs, further strengthening the evidence for a compositional discontinuity in the young solar system.
Validating an operational physical method to compute surface radiation from geostationary satellites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sengupta, Manajit; Dhere, Neelkanth G.; Wohlgemuth, John H.
We developed models to compute global horizontal irradiance (GHI) and direct normal irradiance (DNI) over the last three decades. These models can be classified as empirical or physical based on the approach. Empirical models relate ground-based observations with satellite measurements and use these relations to compute surface radiation. Physical models consider the physics behind the radiation received at the satellite and create retrievals to estimate surface radiation. Furthermore, while empirical methods have been traditionally used for computing surface radiation for the solar energy industry, the advent of faster computing has made operational physical models viable. The Global Solar Insolation Projectmore » (GSIP) is a physical model that computes DNI and GHI using the visible and infrared channel measurements from a weather satellite. GSIP uses a two-stage scheme that first retrieves cloud properties and uses those properties in a radiative transfer model to calculate GHI and DNI. Developed for polar orbiting satellites, GSIP has been adapted to NOAA's Geostationary Operation Environmental Satellite series and can run operationally at high spatial resolutions. Our method holds the possibility of creating high quality datasets of GHI and DNI for use by the solar energy industry. We present an outline of the methodology and results from running the model as well as a validation study using ground-based instruments.« less
Physical and mechanical testing of essential oil-embedded cellulose ester films
USDA-ARS?s Scientific Manuscript database
Polymer films made from cellulose esters are useful for embedding plant essential oils, either for food packaging or air freshener applications. Studies and testing were done on the physical and mechanical properties of cellulose ester-based films incorporating essential oils (EO) from lemongrass (C...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubic, William Louis; Jenkins, Rhodri W.; Moore, Cameron M.
Chemical pathways for converting biomass into fuels produce compounds for which key physical and chemical property data are unavailable. We developed an artificial neural network based group contribution method for estimating cetane and octane numbers that captures the complex dependence of fuel properties of pure compounds on chemical structure and is statistically superior to current methods.
Kubic, William Louis; Jenkins, Rhodri W.; Moore, Cameron M.; ...
2017-09-28
Chemical pathways for converting biomass into fuels produce compounds for which key physical and chemical property data are unavailable. We developed an artificial neural network based group contribution method for estimating cetane and octane numbers that captures the complex dependence of fuel properties of pure compounds on chemical structure and is statistically superior to current methods.
Physics-Based GOES Product for Use in NREL's National Solar Radiation Database: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sengupta, Manajit; Habte, Aron; Gotseff, Peter
The Global Solar Insolation Project (GSIP) is an operational physical model from the National Oceanic and Atmospheric Administration (NOAA) that computes global horizontal radiation (GHI) using the visible and infrared channel measurements from geostationary operational environmental satellites (GOES). GSIP uses a two-stage scheme that retrieves cloud properties and uses those properties in the Satellite Algorithm for Surface Radiation Budget (SASRAB) model to calculate surface radiation. The National Renewable Energy Laboratory, University of Wisconsin, and NOAA have recently collaborated to adapt GSIP to create a high-temporal and spatial resolution data set. The data sets are currently being incorporated into the widelymore » used National Solar Radiation Data Base.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ali, Melkamu; Ye, Sheng; Li, Hongyi
2014-07-19
Subsurface stormflow is an important component of the rainfall-runoff response, especially in steep forested regions. However; its contribution is poorly represented in current generation of land surface hydrological models (LSMs) and catchment-scale rainfall-runoff models. The lack of physical basis of common parameterizations precludes a priori estimation (i.e. without calibration), which is a major drawback for prediction in ungauged basins, or for use in global models. This paper is aimed at deriving physically based parameterizations of the storage-discharge relationship relating to subsurface flow. These parameterizations are derived through a two-step up-scaling procedure: firstly, through simulations with a physically based (Darcian) subsurfacemore » flow model for idealized three dimensional rectangular hillslopes, accounting for within-hillslope random heterogeneity of soil hydraulic properties, and secondly, through subsequent up-scaling to the catchment scale by accounting for between-hillslope and within-catchment heterogeneity of topographic features (e.g., slope). These theoretical simulation results produced parameterizations of the storage-discharge relationship in terms of soil hydraulic properties, topographic slope and their heterogeneities, which were consistent with results of previous studies. Yet, regionalization of the resulting storage-discharge relations across 50 actual catchments in eastern United States, and a comparison of the regionalized results with equivalent empirical results obtained on the basis of analysis of observed streamflow recession curves, revealed a systematic inconsistency. It was found that the difference between the theoretical and empirically derived results could be explained, to first order, by climate in the form of climatic aridity index. This suggests a possible codependence of climate, soils, vegetation and topographic properties, and suggests that subsurface flow parameterization needed for ungauged locations must account for both the physics of flow in heterogeneous landscapes, and the co-dependence of soil and topographic properties with climate, including possibly the mediating role of vegetation.« less
[Experimental basis of a new material for the manufacture of bases dentures].
Shturminskiĭ, V G
2013-10-01
The author studied the problem of improving the quality of prosthetic removable prostheses through the development of new basic material based on polypropylene copolymer. To this end, we examined the physical and chemical structure and hygienic properties of the produced material. The studies found that the developed material of polypropylene optimal solution for the partial plate denture bases, without flaws acrylic prosthesis and improves the properties of the previously used polypropylene plastics.
Improvement on Physical Properties of Pullulan Films by Novel Cross-Linking Strategy.
Chen, Chieh-Ting; Chen, Kuan-I; Chiang, Hsin-Han; Chen, Yu-Kuo; Cheng, Kuan-Chen
2017-01-01
Pullulan based films possess several advantages, including high transparency, low toxicity, good biodegradability, good mechanical properties, and low oxygen permeability, are preferable for food packaging. The application of pullulan films on food packaging, however, has inherent disadvantage of high water solubility. In this study, glutaraldehyde and glycerol were used as the cross-linking reagent and the plasticizer respectively to improve water resistance and physical properties of the pullulan films. Effects of cross-linking degree on physical properties, including water absorptions, swelling behaviors, water vapor permeability and tensile strengths of films were evaluated. FTIR results demonstrated that the pullulan films were successfully cross-linked by glutaraldehyde. The tensile strength of pullulan films could be enhanced significantly (P < 0.05) when glutaraldehyde was between 1% and 5% (w/w); nevertheless, the amount of glutaraldehyde above 20% (w/w) led to films brittleness. With the addition of glycerol as a plasticizer enhanced the extensibility of films as well as the hydrophilicity, resulting in higher water vapor permeability. © 2016 Institute of Food Technologists®.
A Review of Accelerometry-Based Wearable Motion Detectors for Physical Activity Monitoring
Yang, Che-Chang; Hsu, Yeh-Liang
2010-01-01
Characteristics of physical activity are indicative of one’s mobility level, latent chronic diseases and aging process. Accelerometers have been widely accepted as useful and practical sensors for wearable devices to measure and assess physical activity. This paper reviews the development of wearable accelerometry-based motion detectors. The principle of accelerometry measurement, sensor properties and sensor placements are first introduced. Various research using accelerometry-based wearable motion detectors for physical activity monitoring and assessment, including posture and movement classification, estimation of energy expenditure, fall detection and balance control evaluation, are also reviewed. Finally this paper reviews and compares existing commercial products to provide a comprehensive outlook of current development status and possible emerging technologies. PMID:22163626
Generalized statistical mechanics approaches to earthquakes and tectonics.
Vallianatos, Filippos; Papadakis, Giorgos; Michas, Georgios
2016-12-01
Despite the extreme complexity that characterizes the mechanism of the earthquake generation process, simple empirical scaling relations apply to the collective properties of earthquakes and faults in a variety of tectonic environments and scales. The physical characterization of those properties and the scaling relations that describe them attract a wide scientific interest and are incorporated in the probabilistic forecasting of seismicity in local, regional and planetary scales. Considerable progress has been made in the analysis of the statistical mechanics of earthquakes, which, based on the principle of entropy, can provide a physical rationale to the macroscopic properties frequently observed. The scale-invariant properties, the (multi) fractal structures and the long-range interactions that have been found to characterize fault and earthquake populations have recently led to the consideration of non-extensive statistical mechanics (NESM) as a consistent statistical mechanics framework for the description of seismicity. The consistency between NESM and observations has been demonstrated in a series of publications on seismicity, faulting, rock physics and other fields of geosciences. The aim of this review is to present in a concise manner the fundamental macroscopic properties of earthquakes and faulting and how these can be derived by using the notions of statistical mechanics and NESM, providing further insights into earthquake physics and fault growth processes.
Generalized statistical mechanics approaches to earthquakes and tectonics
Papadakis, Giorgos; Michas, Georgios
2016-01-01
Despite the extreme complexity that characterizes the mechanism of the earthquake generation process, simple empirical scaling relations apply to the collective properties of earthquakes and faults in a variety of tectonic environments and scales. The physical characterization of those properties and the scaling relations that describe them attract a wide scientific interest and are incorporated in the probabilistic forecasting of seismicity in local, regional and planetary scales. Considerable progress has been made in the analysis of the statistical mechanics of earthquakes, which, based on the principle of entropy, can provide a physical rationale to the macroscopic properties frequently observed. The scale-invariant properties, the (multi) fractal structures and the long-range interactions that have been found to characterize fault and earthquake populations have recently led to the consideration of non-extensive statistical mechanics (NESM) as a consistent statistical mechanics framework for the description of seismicity. The consistency between NESM and observations has been demonstrated in a series of publications on seismicity, faulting, rock physics and other fields of geosciences. The aim of this review is to present in a concise manner the fundamental macroscopic properties of earthquakes and faulting and how these can be derived by using the notions of statistical mechanics and NESM, providing further insights into earthquake physics and fault growth processes. PMID:28119548
Kroman, S L; Roos, E M; Bennell, K L; Hinman, R S; Dobson, F
2014-01-01
To systematically appraise the evidence on measurement properties of performance-based outcome measures to assess physical function in young and middle-aged people known to be at high risk of hip and/or knee osteoarthritis (OA). Electronic searches were performed in MEDLINE, CINAHL, Scopus and SPORTDiscus in May 2013. Two reviewers independently rated the measurement properties using the 4-point COSMIN checklist. Best evidence synthesis was made using COSMIN quality, consistency and direction of findings and sample size. Twenty of 2736 papers were eligible for inclusion and 24 different performance-based outcome measures knee or obese populations were evaluated. No tests related to hip populations were included. Twenty-five measurement properties including reliability (nine studies), construct validity (hypothesis testing) (nine studies), measurement error (three studies), structural validity (two studies), interpretability (one study) and responsiveness (one study) were evaluated. A positive rating was given to 12.5% (30/240) of all possible measurement ratings. Tests were grouped into two categories based on the population characteristics. The one-legged hop for distance, followed by the 6-m timed hop and cross over hop for distance were the best-rated tests for the knee-injured population. Whereas the 6-min walk test was the only included test for the obese population. This review highlights the many gaps in knowledge about the measurement properties of performance-based outcome measures for young and middle-aged people known to be at high risk of hip and/or knee OA. There is a need for consensus on which outcome measures should be used and/or combined when assessing physical function in this population. Further good quality research is required. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Experimental econophysics: Complexity, self-organization, and emergent properties
NASA Astrophysics Data System (ADS)
Huang, J. P.
2015-03-01
Experimental econophysics is concerned with statistical physics of humans in the laboratory, and it is based on controlled human experiments developed by physicists to study some problems related to economics or finance. It relies on controlled human experiments in the laboratory together with agent-based modeling (for computer simulations and/or analytical theory), with an attempt to reveal the general cause-effect relationship between specific conditions and emergent properties of real economic/financial markets (a kind of complex adaptive systems). Here I review the latest progress in the field, namely, stylized facts, herd behavior, contrarian behavior, spontaneous cooperation, partial information, and risk management. Also, I highlight the connections between such progress and other topics of traditional statistical physics. The main theme of the review is to show diverse emergent properties of the laboratory markets, originating from self-organization due to the nonlinear interactions among heterogeneous humans or agents (complexity).
GaAs-based micro/nanomechanical resonators
NASA Astrophysics Data System (ADS)
Yamaguchi, Hiroshi
2017-10-01
Micro/nanomechanical resonators have been extensively studied both for device applications, such as high-performance sensors and high-frequency devices, and for fundamental science, such as quantum physics in macroscopic objects. The advantages of GaAs-based semiconductor heterostructures include improved mechanical properties through strain engineering, highly controllable piezoelectric transduction, carrier-mediated optomechanical coupling, and hybridization with quantum low-dimensional structures. This article reviews our recent activities, as well as those of other groups, on the physics and applications of mechanical resonators fabricated using GaAs-based heterostructures.
A review on III-V core-multishell nanowires: growth, properties, and applications
NASA Astrophysics Data System (ADS)
Royo, Miquel; De Luca, Marta; Rurali, Riccardo; Zardo, Ilaria
2017-04-01
This review focuses on the emerging field of core-multishell (CMS) semiconductor nanowires (NWs). In these kinds of wires, a NW grown vertically on a substrate acts as a template for the coaxial growth of two or more layers wrapped around it. Thanks to the peculiar geometry, the strain is partially released along the radial direction, thus allowing the creation of fascinating heterostructures, even based on lattice mismatched materials that would hardly grow in a planar geometry. Enabling the unique bridging of the 1D nature of NWs with the exciting properties of 2D heterostructures, these novel systems are becoming attractive for material science, as well as fundamental and applied physics. We will focus on NWs made of III-V and III-V-based alloys as they represent a model system in which present growth techniques have reached a high degree of control on the material structural properties, and many physical properties have been assessed, from both the theoretical and experimental points of view. In particular, we provide an overview on the growth methods and structural properties of CMS NWs, on the modulation doping mechanisms enabled by these heterostructures, on the effects of a magnetic field, and on the phononic and optical properties typical of CMS NWs. Moreover, we review the main technological applications based on these systems, such as optoelectronic and photovoltaic devices.
Calcium silicate-based sealers: Assessment of physicochemical properties, porosity and hydration.
Marciano, Marina Angélica; Duarte, Marco Antonio Hungaro; Camilleri, Josette
2016-02-01
Investigation of hydration, chemical, physical properties and porosity of experimental calcium silicate-based sealers. Experimental calcium silicate-based sealers with calcium tungstate and zirconium oxide radio-opacifiers were prepared by mixing 1g of powder to 0.3 mL of 80% distilled water and 20% propylene glycol. MTA and MTA Fillapex were used as controls. The raw materials and set sealers were characterized using a combination of scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. Physical properties were analyzed according to ANSI/ADA. The pH and calcium ion release were assessed after 3, 24, 72 and 168 h. The porosity was assessed using mercury intrusion porosimetry. The analysis of hydration of prototype sealers revealed calcium hydroxide as a by-product resulting in alkaline pH and detection of calcium ion release, with high values in initial periods. The radiopacity was similar to MTA for the sealers containing high amounts of radio-opacifiers (p>0.05). Flowability was higher and film thickness was lower for resinous MTA Fillapex sealer (p<0.05). The test sealers showed water sorption and porosity similar to MTA (p>0.05). The prototype sealers presented adequate hydration, elevated pH and calcium ion release. Regarding physical properties, elevated proportions of radio-opacifiers were necessary to accomplish adequate radiopacity, enhance flowability and reduce film thickness. All the tested sealers presented water sorption and porosity similar to MTA. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Anderson, Kyle; Segall, Paul
2013-01-01
Physics-based models of volcanic eruptions can directly link magmatic processes with diverse, time-varying geophysical observations, and when used in an inverse procedure make it possible to bring all available information to bear on estimating properties of the volcanic system. We develop a technique for inverting geodetic, extrusive flux, and other types of data using a physics-based model of an effusive silicic volcanic eruption to estimate the geometry, pressure, depth, and volatile content of a magma chamber, and properties of the conduit linking the chamber to the surface. A Bayesian inverse formulation makes it possible to easily incorporate independent information into the inversion, such as petrologic estimates of melt water content, and yields probabilistic estimates for model parameters and other properties of the volcano. Probability distributions are sampled using a Markov-Chain Monte Carlo algorithm. We apply the technique using GPS and extrusion data from the 2004–2008 eruption of Mount St. Helens. In contrast to more traditional inversions such as those involving geodetic data alone in combination with kinematic forward models, this technique is able to provide constraint on properties of the magma, including its volatile content, and on the absolute volume and pressure of the magma chamber. Results suggest a large chamber of >40 km3 with a centroid depth of 11–18 km and a dissolved water content at the top of the chamber of 2.6–4.9 wt%.
Cook, Daniel L; Neal, Maxwell L; Bookstein, Fred L; Gennari, John H
2013-12-02
In prior work, we presented the Ontology of Physics for Biology (OPB) as a computational ontology for use in the annotation and representations of biophysical knowledge encoded in repositories of physics-based biosimulation models. We introduced OPB:Physical entity and OPB:Physical property classes that extend available spatiotemporal representations of physical entities and processes to explicitly represent the thermodynamics and dynamics of physiological processes. Our utilitarian, long-term aim is to develop computational tools for creating and querying formalized physiological knowledge for use by multiscale "physiome" projects such as the EU's Virtual Physiological Human (VPH) and NIH's Virtual Physiological Rat (VPR). Here we describe the OPB:Physical dependency taxonomy of classes that represent of the laws of classical physics that are the "rules" by which physical properties of physical entities change during occurrences of physical processes. For example, the fluid analog of Ohm's law (as for electric currents) is used to describe how a blood flow rate depends on a blood pressure gradient. Hooke's law (as in elastic deformations of springs) is used to describe how an increase in vascular volume increases blood pressure. We classify such dependencies according to the flow, transformation, and storage of thermodynamic energy that occurs during processes governed by the dependencies. We have developed the OPB and annotation methods to represent the meaning-the biophysical semantics-of the mathematical statements of physiological analysis and the biophysical content of models and datasets. Here we describe and discuss our approach to an ontological representation of physical laws (as dependencies) and properties as encoded for the mathematical analysis of biophysical processes.
1D-Var multilayer assimilation of X-band SAR data into a detailed snowpack model
NASA Astrophysics Data System (ADS)
Phan, X. V.; Ferro-Famil, L.; Gay, M.; Durand, Y.; Dumont, M.; Morin, S.; Allain, S.; D'Urso, G.; Girard, A.
2014-10-01
The structure and physical properties of a snowpack and their temporal evolution may be simulated using meteorological data and a snow metamorphism model. Such an approach may meet limitations related to potential divergences and accumulated errors, to a limited spatial resolution, to wind or topography-induced local modulations of the physical properties of a snow cover, etc. Exogenous data are then required in order to constrain the simulator and improve its performance over time. Synthetic-aperture radars (SARs) and, in particular, recent sensors provide reflectivity maps of snow-covered environments with high temporal and spatial resolutions. The radiometric properties of a snowpack measured at sufficiently high carrier frequencies are known to be tightly related to some of its main physical parameters, like its depth, snow grain size and density. SAR acquisitions may then be used, together with an electromagnetic backscattering model (EBM) able to simulate the reflectivity of a snowpack from a set of physical descriptors, in order to constrain a physical snowpack model. In this study, we introduce a variational data assimilation scheme coupling TerraSAR-X radiometric data into the snowpack evolution model Crocus. The physical properties of a snowpack, such as snow density and optical diameter of each layer, are simulated by Crocus, fed by the local reanalysis of meteorological data (SAFRAN) at a French Alpine location. These snowpack properties are used as inputs of an EBM based on dense media radiative transfer (DMRT) theory, which simulates the total backscattering coefficient of a dry snow medium at X and higher frequency bands. After evaluating the sensitivity of the EBM to snowpack parameters, a 1D-Var data assimilation scheme is implemented in order to minimize the discrepancies between EBM simulations and observations obtained from TerraSAR-X acquisitions by modifying the physical parameters of the Crocus-simulated snowpack. The algorithm then re-initializes Crocus with the modified snowpack physical parameters, allowing it to continue the simulation of snowpack evolution, with adjustments based on remote sensing information. This method is evaluated using multi-temporal TerraSAR-X images acquired over the specific site of the Argentière glacier (Mont-Blanc massif, French Alps) to constrain the evolution of Crocus. Results indicate that X-band SAR data can be taken into account to modify the evolution of snowpack simulated by Crocus.
Silk-based biomaterials in biomedical textiles and fiber-based implants
Li, Gang; Li, Yi; Chen, Guoqiang; He, Jihuan; Han, Yifan
2015-01-01
Biomedical textiles and fiber-based implants (BTFIs) have been in routine clinical use to facilitate healing for nearly five decades. Amongst the variety of biomaterials used, silk-based biomaterials (SBBs) have been widely used clinically viz. sutures for centuries and are being increasingly recognized as a prospective material for biomedical textiles. The ease of processing, controllable degradability, remarkable mechanical properties and biocompatibility have prompted the use of SBBs for various BTFIs for extracorporeal implants, soft tissue repair, healthcare/hygiene products and related needs. The present review focuses on BTFIs from the perspective of types and physical and biological properties, and this discussion is followed with an examination of the advantages and limitations of BTFIs from SBBs. The review covers progress in surface coatings, physical and chemical modifications of SBBs for BTFIs and identifies future needs and opportunities for the further development for BTFIs using SBBs. PMID:25772248
Bennett, Erin R; Clausen, Jay; Linkov, Eugene; Linkov, Igor
2009-11-01
Reliable, up-front information on physical and biological properties of emerging materials is essential before making a decision and investment to formulate, synthesize, scale-up, test, and manufacture a new material for use in both military and civilian applications. Multiple quantitative structure-activity relationships (QSARs) software tools are available for predicting a material's physical/chemical properties and environmental effects. Even though information on emerging materials is often limited, QSAR software output is treated without sufficient uncertainty analysis. We hypothesize that uncertainty and variability in material properties and uncertainty in model prediction can be too large to provide meaningful results. To test this hypothesis, we predicted octanol water partitioning coefficients (logP) for multiple, similar compounds with limited physical-chemical properties using six different commercial logP calculators (KOWWIN, MarvinSketch, ACD/Labs, ALogP, CLogP, SPARC). Analysis was done for materials with largely uncertain properties that were similar, based on molecular formula, to military compounds (RDX, BTTN, TNT) and pharmaceuticals (Carbamazepine, Gemfibrizol). We have also compared QSAR modeling results for a well-studied pesticide and pesticide breakdown product (Atrazine, DDE). Our analysis shows variability due to structural variations of the emerging chemicals may be several orders of magnitude. The model uncertainty across six software packages was very high (10 orders of magnitude) for emerging materials while it was low for traditional chemicals (e.g. Atrazine). Thus the use of QSAR models for emerging materials screening requires extensive model validation and coupling QSAR output with available empirical data and other relevant information.
Strategies to predict metal mobility in surficial mining environments
Smith, Kathleen S.
2007-01-01
This report presents some strategies to predict metal mobility at mining sites. These strategies are based on chemical, physical, and geochemical information about metals and their interactions with the environment. An overview of conceptual models, metal sources, and relative mobility of metals under different geochemical conditions is presented, followed by a discussion of some important physical and chemical properties of metals that affect their mobility, bioavailability, and toxicity. The physical and chemical properties lead into a discussion of the importance of the chemical speciation of metals. Finally, environmental and geochemical processes and geochemical barriers that affect metal speciation are discussed. Some additional concepts and applications are briefly presented at the end of this report.
NASA Astrophysics Data System (ADS)
Tarnavskii, G. A.
2006-07-01
The physical aspects of the effective-adiabatic-exponent model making it possible to decompose the total problem on modeling of high-velocity gas flows into individual subproblems (“physicochemical processes” and “ aeromechanics”), which ensures the creation of a universal and efficient computer complex divided into a number of independent units, have been analyzed. Shock-wave structures appearing at entry into the duct of a hypersonic aircraft have been investigated based on this methodology, and the influence of the physical properties of the gas medium in a wide range of variations of the effective adiabatic exponent has been studied.
Radiopacifier Particle Size Impacts the Physical Properties of Tricalcium Silicate–based Cements
Saghiri, Mohammad Ali; Gutmann, James L.; Orangi, Jafar; Asatourian, Armen; Sheibani, Nader
2016-01-01
Introduction The aim of this study was to evaluate the impact of radiopaque additive, bismuth oxide, particle size on the physical properties, and radiopacity of tricalcium silicate–based cements. Methods Six types of tricalcium silicate cement (CSC) including CSC without bismuth oxide, CSC + 10% (wt%) regular bismuth oxide (particle size 10 μm), CSC + 20% regular bismuth oxide (simulating white mineral trioxide aggregate [WMTA]) as a control, CSC + 10% nano bismuth oxide (particle size 50–80 nm), CSC + 20% nano-size bismuth oxide, and nano WMTA (a nano modification of WMTA comprising nanoparticles in the range of 40–100 nm) were prepared. Twenty-four samples from each group were divided into 4 groups and subjected to push-out, surface microhardness, radiopacity, and compressive strength tests. Data were analyzed by 1-way analysis of variance with the post hoc Tukey test. Results The push-out and compressive strength of CSC without bismuth oxide and CSC with 10% and 20% nano bismuth oxide were significantly higher than CSC with 10% or 20% regular bismuth oxide (P < .05). The surface micro-hardness of CSC without bismuth oxide and CSC with 10% regular bismuth oxide had the lowest values (P < .05). The lowest radiopacity values were seen in CSC without bismuth oxide and CSC with 10% nano bismuth oxide (P < .05). Nano WMTA samples showed the highest values for all tested properties (P < .05) except for radiopacity. Conclusions The addition of 20% nano bismuth oxide enhanced the physical properties of CSC without any significant changes in radiopacity. Regular particle-size bismuth oxide reduced the physical properties of CSC material for tested parameters. PMID:25492489
Nano-QSPR Modelling of Carbon-Based Nanomaterials Properties.
Salahinejad, Maryam
2015-01-01
Evaluation of chemical and physical properties of nanomaterials is of critical importance in a broad variety of nanotechnology researches. There is an increasing interest in computational methods capable of predicting properties of new and modified nanomaterials in the absence of time-consuming and costly experimental studies. Quantitative Structure- Property Relationship (QSPR) approaches are progressive tools in modelling and prediction of many physicochemical properties of nanomaterials, which are also known as nano-QSPR. This review provides insight into the concepts, challenges and applications of QSPR modelling of carbon-based nanomaterials. First, we try to provide a general overview of QSPR implications, by focusing on the difficulties and limitations on each step of the QSPR modelling of nanomaterials. Then follows with the most significant achievements of QSPR methods in modelling of carbon-based nanomaterials properties and their recent applications to generate predictive models. This review specifically addresses the QSPR modelling of physicochemical properties of carbon-based nanomaterials including fullerenes, single-walled carbon nanotube (SWNT), multi-walled carbon nanotube (MWNT) and graphene.
Wafa Chouaib; Peter V. Caldwell; Younes Alila
2018-01-01
This paper advances the physical understanding of the flow duration curve (FDC) regional variation. It provides a process-based analysis of the interaction between climate and landscape properties to explain disparities in FDC shapes. We used (i) long term measured flow and precipitation data over 73 catchments from the eastern US. (ii) We calibrated the...
Properties Of Carbon/Carbon and Carbon/Phenolic Composites
NASA Technical Reports Server (NTRS)
Mathis, John R.; Canfield, A. R.
1993-01-01
Report presents data on physical properties of carbon-fiber-reinforced carbon-matrix and phenolic-matrix composite materials. Based on tests conducted on panels, cylinders, blocks, and formed parts. Data used by designers to analyze thermal-response and stress levels and develop structural systems ensuring high reliability at minimum weight.
Synthesis and physical properties of new estolide esters
USDA-ARS?s Scientific Manuscript database
Vegetable oil-based oils usually fail to meet the rigorous demands of industrial lubricants by not having acceptable low temperature properties, pour point (PP) and/or cloud point (CP). The oleic estolide was esterified with a series of 16 different alcohols that were either branched or straight-cha...
USDA-ARS?s Scientific Manuscript database
Paulownia wood flour (PWF), a byproduct of milling lumber, was tested as bio-filler with polylactic acid (PLA). Paulownia wood (PW) shavings were milled and separated into particle fractions and then blended with PLA with a single screw extruder. Mechanical and thermal properties were tested. Dif...
Wiitavaara, Birgitta; Heiden, Marina
2017-06-02
The purpose was to investigate how physical function is assessed in people with musculoskeletal disorders (MSD) in the neck. Specifically, we aimed to determine: (1) Which questionnaires are used to assess physical function in people with MSD in the neck? (2) What do those questionnaires measure? (3) What are the measurement properties of the questionnaires? A systematic review was performed to identify questionnaires and psychometric evaluations. The content of the questionnaires was categorized according to the International Classification of Function, Disability and Health, and the psychometric properties were quality-rated using the COnsensus-based Standards for the selection of health Measurement INstruments checklist. Ten questionnaires and 32 articles evaluating measurement properties were analyzed. Most questionnaires covered only the components body functions and activity and participation, more often activity participation than body function. Internal consistency was adequate in most questionnaires, whereas responsiveness was generally low. Neck Disability Index was most evaluated, but the evaluations of all questionnaires tended to cover most properties in the checklist. The questionnaires differed substantially in items and extent to which their psychometric properties had been evaluated. Focus of measurement was on activities in daily life rather than physical function as such. Implications for Rehabilitation To provide early diagnostics and effective treatment for patients with neck disorders, valid and reliable instruments that measure relevant aspects of the disorders are needed. This paper presents an overview of content and quality of questionnaires used to assess physical function in neck disorders, which may facilitate informed decisions about which measurement instruments to use when evaluating the course of neck disorders. Most of the questionnaires need more testing to judge the quality, however the NDI was the most frequently tested questionnaire. The COnsensus-based Standards for the selection of health Measurement INstruments checklist is a useful tool in relation to psychometric testing of questionnaires, but clear definitions of interpretation of the quality criteria in each study would enhance comparability of results.
Physical Training Methods For Mine Rescuers In 2015
NASA Astrophysics Data System (ADS)
Marin, Laurentiu; Pavel, Topala; Marin, Catalina Daniela; Sandu, Teodor
2015-07-01
Research and development activities presented were aimed at obtaining a nanocomposite polyurethane matrix with special anti-wear, anti-slip and fire-resistant properties. Research and development works were materialized by obtaining polyurethane nanocomposite matrix, by its physico-chemical modification in order to give the desired technological properties and by characterization of the obtained material. Polyurethane nanocomposite matrix was obtained by reacting a PETOL 3 type polyetherpolyol (having a molecular weight of 5000 UAM) with a diisocyanate under well-established reaction conditions. Target specific technological properties were obtained by physical and chemical modification of polyurethane nanocomposite matrix. The final result was getting a pellicle material based on modified nanocomposite polyurethane, with anti-wear, anti-slip and fire-resistant properties, compatible with most substrates encountered in civil and industrial construction: wood, concrete, metal.
NASA Technical Reports Server (NTRS)
Esposito, J. J.; Zabora, R. F.
1975-01-01
Pertinent mechanical and physical properties of six high conductivity metals were determined. The metals included Amzirc, NARloy Z, oxygen free pure copper, electroformed copper, fine silver, and electroformed nickel. Selection of these materials was based on their possible use in high performance reusable rocket nozzles. The typical room temperature properties determined for each material included tensile ultimate strength, tensile yield strength, elongation, reduction of area, modulus of elasticity, Poisson's ratio, density, specific heat, thermal conductivity, and coefficient of thermal expansion. Typical static tensile stress-strain curves, cyclic stress-strain curves, and low-cycle fatigue life curves are shown. Properties versus temperature are presented in graphical form for temperatures from 27.6K (-410 F) to 810.9K (1000 F).
Preliminary surficial geologic map database of the Amboy 30 x 60 minute quadrangle, California
Bedford, David R.; Miller, David M.; Phelps, Geoffrey A.
2006-01-01
The surficial geologic map database of the Amboy 30x60 minute quadrangle presents characteristics of surficial materials for an area approximately 5,000 km2 in the eastern Mojave Desert of California. This map consists of new surficial mapping conducted between 2000 and 2005, as well as compilations of previous surficial mapping. Surficial geology units are mapped and described based on depositional process and age categories that reflect the mode of deposition, pedogenic effects occurring post-deposition, and, where appropriate, the lithologic nature of the material. The physical properties recorded in the database focus on those that drive hydrologic, biologic, and physical processes such as particle size distribution (PSD) and bulk density. This version of the database is distributed with point data representing locations of samples for both laboratory determined physical properties and semi-quantitative field-based information. Future publications will include the field and laboratory data as well as maps of distributed physical properties across the landscape tied to physical process models where appropriate. The database is distributed in three parts: documentation, spatial map-based data, and printable map graphics of the database. Documentation includes this file, which provides a discussion of the surficial geology and describes the format and content of the map data, a database 'readme' file, which describes the database contents, and FGDC metadata for the spatial map information. Spatial data are distributed as Arc/Info coverage in ESRI interchange (e00) format, or as tabular data in the form of DBF3-file (.DBF) file formats. Map graphics files are distributed as Postscript and Adobe Portable Document Format (PDF) files, and are appropriate for representing a view of the spatial database at the mapped scale.
Thermoplastic adhesives based on 4,4'-isophthaloyldiphthalic anhydride (IDPA)
NASA Technical Reports Server (NTRS)
Progar, Donald J.; Stclair, Terry L.; Pratt, J. Richard
1988-01-01
Thermoplastic polyimides were prepared and evaluated as adhesives. These materials are based on 4,4'-isophthaloyldiphathalic anhydride (IDAP) and either metaphenylene diamine (MPD) or 3,3'-diaminobenzophenone (DBAP). Both polymers exhibit excellent adhesive properties; however, the IDPA-MPD is the more attractive system because of a combination of high mechanical and physical properties as well as being made from commercially attractive monomers. The IDPA-MPD is an isomeric form of the commercially available adhesive and matrix resin, LARC-TPI and both systems have the same glass transition temperature and exhibit similar adhesive properties.
Spectral Automorphisms in Quantum Logics
NASA Astrophysics Data System (ADS)
Ivanov, Alexandru; Caragheorgheopol, Dan
2010-12-01
In quantum mechanics, the Hilbert space formalism might be physically justified in terms of some axioms based on the orthomodular lattice (OML) mathematical structure (Piron in Foundations of Quantum Physics, Benjamin, Reading, 1976). We intend to investigate the extent to which some fundamental physical facts can be described in the more general framework of OMLs, without the support of Hilbert space-specific tools. We consider the study of lattice automorphisms properties as a “substitute” for Hilbert space techniques in investigating the spectral properties of observables. This is why we introduce the notion of spectral automorphism of an OML. Properties of spectral automorphisms and of their spectra are studied. We prove that the presence of nontrivial spectral automorphisms allow us to distinguish between classical and nonclassical theories. We also prove, for finite dimensional OMLs, that for every spectral automorphism there is a basis of invariant atoms. This is an analogue of the spectral theorem for unitary operators having purely point spectrum.
Mineralization dynamics of metakaolin-based alkali-activated cements
Gevaudan, Juan Pablo; Campbell, Kate M.; Kane, Tyler; Shoemaker, Richard K.; Srubar, Wil V.
2017-01-01
This paper investigates the early-age dynamics of mineral formation in metakaolin-based alkali-activated cements. The effects of silica availability and alkali content on mineral formation were investigated via X-ray diffraction and solid-state 29Si magic-angle spinning nuclear magnetic resonance spectroscopy at 2, 7, 14, and 28 days. Silica availability was controlled by using either liquid- (immediate) or solid-based (gradual) sodium silicate supplements. Mineral (zeolitic) and amorphous microstructural characteristics were correlated with observed changes in bulk physical properties, namely shrinkage, density, and porosity. Results demonstrate that, while alkali content controls the mineralization in immediately available silica systems, alkali content controls the silica availability in gradually available silica systems. Immediate silica availability generally leads to a more favorable mineral formation as demonstrated by correlated improvements in bulk physical properties.
Dundua, Alexander; Landfester, Katharina; Taden, Andreas
2014-11-01
Hydrophobic association and stimuli-responsiveness is a powerful tool towards water-based adhesives with strongly improved properties, which is demonstrated based on the example of hydrophobically modified alkali-soluble latexes (HASE) with modulated association. Their rheological properties are highly tunable due to the hydrophobic domains that act as physical crosslinking sites of adjustable interaction strength. Ethanol, propanol, and butanol are used as water-soluble model additives with different hydrophobicity in order to specifically target the association sites and impact the viscoelastic properties and stimuli-responsiveness. The rheological and mechanical property response upon dilution with water can be tailored, and dilution-resistant or even dilution-thickening systems are obtained. The investigations are of high importance for water-based adhesives, as our findings provide insight into general structure-property relationships to improve their setting behavior, especially upon contact with wet substrates. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The physical properties and ion release of CPP-ACP-modified calcium silicate-based cements.
Dawood, A E; Manton, D J; Parashos, P; Wong, Rhk; Palamara, Jea; Stanton, D P; Reynolds, E C
2015-12-01
This study investigated the physical properties and ion release of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP)-modified calcium silicate-based cements (CSCs) and compared the properties of a trial mineral trioxide aggregate (MTA) with two commercially available CSCs, Biodentine(™) and Angelus(®) MTA. The setting time, solubility, compressive strength and Vickers surface microhardness of the three CSCs incorporated with 0%, 0.5%, 1.0%, 2.0% and 3.0% (w/w) CPP-ACP were investigated. Release of calcium (Ca(2+) ), phosphate ions (Pi ) and pH of the test cements were measured after 24, 72, 168 and 336 h of storage. The addition of up to 1.0% CPP-ACP into Biodentine(™) and 0.5% into the other cements did not adversely affect their physical properties except for the setting time. The addition of 0.5% CPP-ACP increased Ca(2+) released from Biodentine(™) (after 168 and 336 h), Angelus(®) MTA (after 168 h) and the trial MTA (after 72 h). The addition of 1.0-3.0% CPP-ACP increased Ca(2+) and Pi released from all the cements. Biodentine(™) released more Ca(2+) particularly in the early stages and showed shorter setting time and higher mechanical properties than the other cements. The mechanical properties of Angelus(®) MTA and the trial MTA were similar. All the cements produced highly alkaline storage solutions. Up to 1.0% CPP-ACP in Biodentine(™) improves Ca(2+) and Pi release and 0.5% CPP-ACP in Angelus(®) MTA and the trial MTA improves Ca(2+) release without altering the mechanical properties and solubility. The addition of CPP-ACP into CSCs prolonged the setting time. © 2015 Australian Dental Association.
Wang, Fan C; Marangoni, Alejandro G
A petroleum-free skin cream was developed using food-grade ingredients. The rheological and sensorial properties of this petroleum-free skin cream were compared to a commercially available petroleum-based skin cream. Specifically, large-amplitude oscillatory shear (LAOS) characterization of the two skin creams was performed. The petroleum-free skin cream showed similar linear and nonlinear viscoelastic rheological properties, comparable skin hydration functions, and consumer acceptance as the commercially available skin cream. A schematic diagram aiming to correlate the physical and sensorial properties of skin cream was also proposed at the end of the work. Results of this work could provide the cosmetic industry necessary information for the development of alternatives for petroleum-based skin creams.
Kimura, H; Yu, P Y; Teraoka, F; Sugita, M
1989-09-01
To develop the visible light-cured FRP denture base, we investigated the physical properties and the warp of FRP plate by using various combinations of matrix resin and reinforcement. From the results of the bending test, hardness test and manipulation processing, the matrix resin of Bis-GMA/UDMA/3 G at 48/48/4 wt% was determined. The sateen weave's glasscloth as the reinforcement of the prepreg was used. The maximum plies included FRP of 0.5 mm, 0.8 and 1.0 mm thickness have the same maximum bending strengths of 45 kgf/mm2, which is about 5 times larger than that of conventional acrylic resin. The warp of these FRP plates were not found.
41 CFR 109-1.5110 - Physical inventories of personal property.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Physical inventories of...-INTRODUCTION 1.51-Personal Property Management Standards and Practices § 109-1.5110 Physical inventories of personal property. (a) Physical inventories of those categories of personal property as specified in...
41 CFR 109-1.5110 - Physical inventories of personal property.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Physical inventories of...-INTRODUCTION 1.51-Personal Property Management Standards and Practices § 109-1.5110 Physical inventories of personal property. (a) Physical inventories of those categories of personal property as specified in...
41 CFR 109-1.5110 - Physical inventories of personal property.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Physical inventories of...-INTRODUCTION 1.51-Personal Property Management Standards and Practices § 109-1.5110 Physical inventories of personal property. (a) Physical inventories of those categories of personal property as specified in...
41 CFR 109-1.5110 - Physical inventories of personal property.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Physical inventories of...-INTRODUCTION 1.51-Personal Property Management Standards and Practices § 109-1.5110 Physical inventories of personal property. (a) Physical inventories of those categories of personal property as specified in...
41 CFR 109-1.5110 - Physical inventories of personal property.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Physical inventories of...-INTRODUCTION 1.51-Personal Property Management Standards and Practices § 109-1.5110 Physical inventories of personal property. (a) Physical inventories of those categories of personal property as specified in...
Cynthia L. Riccardi; Susan J. Prichard; David V. Sandberg; Roger D. Ottmar
2007-01-01
Wildland fuel characteristics are used in many applications of operational fire predictions and to understand fire effects and behaviour. Even so, there is a shortage of information on basic fuel properties and the physical characteristics of wildland fuels. The Fuel Characteristic Classification System (FCCS) builds and catalogues fuelbed descriptions based on...
Non-Invasive Acoustic-Based Monitoring of Heavy Water and Uranium Process Solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pantea, Cristian; Sinha, Dipen N.; Lakis, Rollin Evan
2017-11-02
The goals of the project are to leverage laboratory scientific strength in physical acoustics for critical international safeguards applications; create hardware demonstration capability for noninvasive, near real time, and low cost process monitor to capture future technology development programs; and measure physical property data to support method applicability.
Meng, Qingyu; Lu, Shou-En; Buckley, Barbara; Welsh, William J.; Whitsel, Eric A.; Hanna, Adel; Yeatts, Karin B.; Warren, Joshua; Herring, Amy H.; Xiu, Aijun
2013-01-01
Background: This paper presents an application of quantitative ion character–activity relationships (QICAR) to estimate associations of human cardiovascular (CV) diseases (CVDs) with a set of metal ion properties commonly observed in ambient air pollutants. QICAR has previously been used to predict ecotoxicity of inorganic metal ions based on ion properties. Objectives: The objective of this work was to examine potential associations of biological end points with a set of physical and chemical properties describing inorganic metal ions present in exposures using QICAR. Methods: Chemical and physical properties of 17 metal ions were obtained from peer-reviewed publications. Associations of cardiac arrhythmia, myocardial ischemia, myocardial infarction, stroke, and thrombosis with exposures to metal ions (measured as inference scores) were obtained from the Comparative Toxicogenomics Database (CTD). Robust regressions were applied to estimate the associations of CVDs with ion properties. Results: CVD was statistically significantly associated (Bonferroni-adjusted significance level of 0.003) with many ion properties reflecting ion size, solubility, oxidation potential, and abilities to form covalent and ionic bonds. The properties are relevant for reactive oxygen species (ROS) generation, which has been identified as a possible mechanism leading to CVDs. Conclusion: QICAR has the potential to complement existing epidemiologic methods for estimating associations between CVDs and air pollutant exposures by providing clues about the underlying mechanisms that may explain these associations. PMID:23462649
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haque, A.K.M. Mahmudul; Oh, Geum Seok; Kim, Taeoh
Highlights: • We study the microwave effect on the multi-walled carbon nanotubes (MWCNTs). • We examine the non uniform heating effect on the physical structure of MWCNTs. • We examine the purification of MWCNTs by microwave. • We analyze the thermal characteristics of microwave treated MWCNTs. - Abstract: This paper reports the effect of microwave on the physical properties of multi-walled carbon nanotubes (MWCNTs) where different power levels of microwave were applied on MWCNTs in order to apprehend the effect of microwave on MWCNTs distinctly. A low energy ball milling in aqueous circumstance was also applied on both MWCNTs andmore » microwave treated MWCNTs. Temperature profile, morphological analysis by field emission scanning electron microscopy (FESEM), defect analysis by Raman spectroscopy, thermal conductivity, thermal diffusivity as well as heat transfer coefficient enhancement ratio were studied which expose some strong witnesses of the effect of microwave on the both purification and dispersion properties of MWCNTs in base fluid distilled water. The highest thermal conductivity enhancement (6.06% at 40 °C) of MWCNTs based nanofluid is achieved by five minutes microwave treatment as well as wet grinding at 500 rpm for two hours.« less
An Internship Program for Deaf and Hard of Hearing Students in Polymer-Based Nanocomposites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cebe,P.; Cherdack, D.; Guertin, R.
2006-01-01
We report on our summer internship program in Polymer-Based Nanocomposites, for deaf and hard of hearing undergraduates who engage in classroom and laboratory research work in polymer physics. The unique attributes of this program are its emphasis on: 1. Teamwork; 2. Performance of a start-to-finish research project; 3. Physics of materials approach; and 4. Diversity. Students of all disability levels have participated in this program, including students who neither hear nor voice. The classroom and laboratory components address the materials chemistry and physics of polymer-based nanocomposites, crystallization and melting of polymers, the interaction of X-rays and light with polymers, mechanicalmore » properties of polymers, and the connection between thermal processing, structure, and ultimate properties of polymers. A set of Best Practices is developed for accommodating deaf and hard of hearing students into the laboratory setting. The goal is to bring deaf and hard of hearing students into the larger scientific community as professionals, by providing positive scientific experiences at a formative time in their educational lives.« less
Jin, Ke; Sales, Brian C.; Stocks, George Malcolm; ...
2016-02-01
We discovered that equiatomic alloys (e.g. high entropy alloys) have recently attracted considerable interest due to their exceptional properties, which might be closely related to their extreme disorder induced by the chemical complexity. To understand the effects of chemical complexity on their fundamental physical properties, a family of (eight) Ni-based, face-center-cubic (FCC), equiatomic alloys, extending from elemental Ni to quinary high entropy alloys, has been synthesized, and their electrical, thermal, and magnetic properties are systematically investigated in the range of 4–300 K by combining experiments with ab initio Korring-Kohn-Rostoker coherent-potential-approximation (KKR-CPA) calculations. The scattering of electrons is significantly increased duemore » to the chemical (especially magnetic) disorder. It has weak correlation with the number of elements but strongly depends on the type of elements. Thermal conductivities of the alloys are largely lower than pure metals, primarily because the high electrical resistivity suppresses the electronic thermal conductivity. Moreover, the temperature dependence of the electrical and thermal transport properties is further discussed, and the magnetization of five alloys containing three or more elements is measured in magnetic fields up to 4 T.« less
NASA Astrophysics Data System (ADS)
Kawai, Soshi; Terashima, Hiroshi; Negishi, Hideyo
2015-11-01
This paper addresses issues in high-fidelity numerical simulations of transcritical turbulent flows at supercritical pressure. The proposed strategy builds on a tabulated look-up table method based on REFPROP database for an accurate estimation of non-linear behaviors of thermodynamic and fluid transport properties at the transcritical conditions. Based on the look-up table method we propose a numerical method that satisfies high-order spatial accuracy, spurious-oscillation-free property, and capability of capturing the abrupt variation in thermodynamic properties across the transcritical contact surface. The method introduces artificial mass diffusivity to the continuity and momentum equations in a physically-consistent manner in order to capture the steep transcritical thermodynamic variations robustly while maintaining spurious-oscillation-free property in the velocity field. The pressure evolution equation is derived from the full compressible Navier-Stokes equations and solved instead of solving the total energy equation to achieve the spurious pressure oscillation free property with an arbitrary equation of state including the present look-up table method. Flow problems with and without physical diffusion are employed for the numerical tests to validate the robustness, accuracy, and consistency of the proposed approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawai, Soshi, E-mail: kawai@cfd.mech.tohoku.ac.jp; Terashima, Hiroshi; Negishi, Hideyo
2015-11-01
This paper addresses issues in high-fidelity numerical simulations of transcritical turbulent flows at supercritical pressure. The proposed strategy builds on a tabulated look-up table method based on REFPROP database for an accurate estimation of non-linear behaviors of thermodynamic and fluid transport properties at the transcritical conditions. Based on the look-up table method we propose a numerical method that satisfies high-order spatial accuracy, spurious-oscillation-free property, and capability of capturing the abrupt variation in thermodynamic properties across the transcritical contact surface. The method introduces artificial mass diffusivity to the continuity and momentum equations in a physically-consistent manner in order to capture themore » steep transcritical thermodynamic variations robustly while maintaining spurious-oscillation-free property in the velocity field. The pressure evolution equation is derived from the full compressible Navier–Stokes equations and solved instead of solving the total energy equation to achieve the spurious pressure oscillation free property with an arbitrary equation of state including the present look-up table method. Flow problems with and without physical diffusion are employed for the numerical tests to validate the robustness, accuracy, and consistency of the proposed approach.« less
Novel analytical methods to assess the chemical and physical properties of liposomes.
Kothalawala, Nuwan; Mudalige, Thilak K; Sisco, Patrick; Linder, Sean W
2018-08-01
Liposomes are used in commercial pharmaceutical formulations (PFs) and dietary supplements (DSs) as a carrier vehicle to protect the active ingredient from degradation and to increase the half-life of the injectable. Even as the commercialization of liposomal products has rapidly increased, characterization methodologies to evaluate physical and chemical properties of the liposomal products have not been well-established. Herein we develop rapid methodologies to evaluate chemical and selected physical properties of liposomal formulations. Chemical properties of liposomes are determined by their lipid composition. The lipid composition is evaluated by first screening of the lipids present in the sample using HPLC-ELSD followed by HPLC-MSMS analysis with high mass accuracy (<5 ppm), fragmentation pattern and lipid structure databases searching. Physical properties such as particle size and size distribution were investigated using Tunable Resistive Pulse Sensing (TRPS). The developed methods were used to analyze commercially available PFs and DSs. As results, PFs contain distinct number of lipids as indicated by the manufacture, but DSs were more complicated containing a large number of lipids belonging to different sub-classes. Commercially available liposomes have particles with wide size distribution based on size measurements performed by TRPS. The high mass accuracy as well as identification lipids using multiple fragment ions aided to accurately identify the lipids and differentiate them from other lipophilic molecules. The developed analytical methodologies were successfully adapted to measure the physiochemical properties of commercial liposomes. Copyright © 2018. Published by Elsevier B.V.
2013-01-01
Background In prior work, we presented the Ontology of Physics for Biology (OPB) as a computational ontology for use in the annotation and representations of biophysical knowledge encoded in repositories of physics-based biosimulation models. We introduced OPB:Physical entity and OPB:Physical property classes that extend available spatiotemporal representations of physical entities and processes to explicitly represent the thermodynamics and dynamics of physiological processes. Our utilitarian, long-term aim is to develop computational tools for creating and querying formalized physiological knowledge for use by multiscale “physiome” projects such as the EU’s Virtual Physiological Human (VPH) and NIH’s Virtual Physiological Rat (VPR). Results Here we describe the OPB:Physical dependency taxonomy of classes that represent of the laws of classical physics that are the “rules” by which physical properties of physical entities change during occurrences of physical processes. For example, the fluid analog of Ohm’s law (as for electric currents) is used to describe how a blood flow rate depends on a blood pressure gradient. Hooke’s law (as in elastic deformations of springs) is used to describe how an increase in vascular volume increases blood pressure. We classify such dependencies according to the flow, transformation, and storage of thermodynamic energy that occurs during processes governed by the dependencies. Conclusions We have developed the OPB and annotation methods to represent the meaning—the biophysical semantics—of the mathematical statements of physiological analysis and the biophysical content of models and datasets. Here we describe and discuss our approach to an ontological representation of physical laws (as dependencies) and properties as encoded for the mathematical analysis of biophysical processes. PMID:24295137
Nanomaterials are a diverse collection of novel materials that exhibit at least one dimension less than 100 nm and display unique chemical and physical properties due to their nanoscale size. An emphasis has been put on developing high throughput screening (HTS) assays to charac...
NASA Astrophysics Data System (ADS)
Tripathy, Satchidananda; Dehury, Janaki; Mishra, Debasmita
2016-02-01
Natural fiber reinforced polymer composites are being used frequently for variety of engineering applications due to many of their advantages like ease of availability, low density, low production cost and good mechanical properties but natural fibers are more or less hydrophilic in nature. Therefore, an investigation has been carried out to make better utilization of a class of natural fiber that is date palm stem fiber, for making a wide range of products. Attempts have been made in this research work to study the effect of fiber loading on the physical, mechanical and water absorption behaviour of treated and untreated short fiber based epoxy composites. Composites of various compositions of different amounts of fiber loading are fabricated by simple hand lay-up technique. It has been observed that there is a significant effect of surface treatment of fibers on the overall properties of composites. Further enhancement of properties with lower water absorption rate was attained with glass fiber-epoxy based hybrid composites.
NASA Astrophysics Data System (ADS)
Mishra, A. K.; Catalan, Jorge; Camacho, Diana; Martinez, Miguel; Hodges, D.
2017-08-01
Solution processed organic-inorganic metal halide perovskite based solar cells are emerging as a new cost effective photovoltaic technology. In the context of increasing the power conversion efficiency (PCE) and sustainability of perovskite solar cells (PSC) devices, we comprehensively analyzed a physics-based numerical modelling for doped and un-doped PSC devices. Our analytics emphasized the role of different charge carrier layers from the view point of interfacial adhesion and its influence on charge extraction rate and charge recombination mechanism. Morphological and charge transport properties of perovskite thin film as a function of device architecture are also considered to investigate the photovoltaic properties of PSC. We observed that photocurrent is dominantly influenced by interfacial recombination process and photovoltage has functional relationship with defect density of perovskite absorption layer. A novel contour mapping method to understand the characteristics of current density-voltage (J-V) curves for each device as a function of perovskite layer thickness provide an important insight about the distribution spectrum of photovoltaic properties. Functional relationship of device efficiency and fill factor with absorption layer thickness are also discussed.
NASA Astrophysics Data System (ADS)
Dubois, Daniel M.
2000-05-01
The main purpose of this paper is to show that anticipation is not only a property of biosystems but is also a fundamental property of physical systems. In electromagnetism, the anticipation is related to the Lorentz transform. In this framework the anticipation is a strong anticipation because it is not based on a prediction from a model of the physical system but is embedded in the fundamental system. So, Robert Rosen's anticipatory systems deal with weak anticipation. Contrary to Robert Rosen's affirmation, anticipation is thus not a characteristic of living systems. Finality is implicitly embedded in any system and thus the final cause of Aristotle is implicitly embedded in any physical and biological systems, contrary to what Robert Rosen argued. This paper will review some incursive and hyperincursive systems giving rise to strong anticipation. Space-time incursive parabolic systems show non-local properties. Hyperincursive crisp systems are related to catastrophe theory. Finally it will be shown that incursive and hyperincursive anticipatory systems could model properties of biosystems like free will, game strategy, theorem creation, etc. Anticipation is not only related to predictions but to decisions: hyperincursive systems create multiple choices and a decision process selects one choice. So, anticipation is not a final goal, like in cybernetics and system science, but is a fundamental property of physical and biological systems.
NASA Astrophysics Data System (ADS)
Zavala, Mitchel
Metal-matrix composites (MMCs) are engineered combinations of two or more materials. Tailored properties are achieved by systematic combinations of different constituents. Specialized design and synthesis procedures allow unique sets of material properties in composites. Covetics are a new type of metal-matrix nano-composite (MMnC) material. These materials are formed from FCC metals which are super-saturated with up to 10 wt. % of activated nano-carbon powder. The idea is that the nano-carbon particles will enhance the material properties of the base metal matrix, however most of the physical and mechanical properties of covetics have not been well characterized. The foci of this study are to optimize the covetic casting synthesis process under controlled conditions, to understand and analyze the microstructures of the synthesized copper and aluminum covetic, to provide a thorough analysis of the chemical composition of the synthesized covetic materials, and to characterize physical and mechanical properties of both of these materials using meticulously prepared samples and test procedures.
Computational discovery of extremal microstructure families
Chen, Desai; Skouras, Mélina; Zhu, Bo; Matusik, Wojciech
2018-01-01
Modern fabrication techniques, such as additive manufacturing, can be used to create materials with complex custom internal structures. These engineered materials exhibit a much broader range of bulk properties than their base materials and are typically referred to as metamaterials or microstructures. Although metamaterials with extraordinary properties have many applications, designing them is very difficult and is generally done by hand. We propose a computational approach to discover families of microstructures with extremal macroscale properties automatically. Using efficient simulation and sampling techniques, we compute the space of mechanical properties covered by physically realizable microstructures. Our system then clusters microstructures with common topologies into families. Parameterized templates are eventually extracted from families to generate new microstructure designs. We demonstrate these capabilities on the computational design of mechanical metamaterials and present five auxetic microstructure families with extremal elastic material properties. Our study opens the way for the completely automated discovery of extremal microstructures across multiple domains of physics, including applications reliant on thermal, electrical, and magnetic properties. PMID:29376124
Flowable Resin Composites: A Systematic Review and Clinical Considerations
Rodrigues, Jean C.
2015-01-01
Background Little is known about flowable composite materials. Most literature mentions conventional composite materials at large, giving minimal emphasis to flowables in particular. This paper briefly gives an in depth insight to the multiple facets of this versatile material. Aim To exclusively review the most salient features of flowable composite materials in comparison to conventional composites and to give clinicians a detailed understanding of the advantages, drawbacks, indications and contraindications based on composition and physical/mechanical properties. Methodology Data Sources: A thorough literature search from the year 1996 up to January 2015 was done on PubMed Central, The Cochrane Library, Science Direct, Wiley Online Library, and Google Scholar. Grey literature (pending patents, technical reports etc.) was also screened. The search terms used were “dental flowable resin composites”. Search Strategy After omitting the duplicates/repetitions, a total of 491 full text articles were assessed. As including all articles were out of the scope of this paper. Only relevant articles that fulfilled the reviewer’s objectives {mentioning indications, contraindications, applications, assessment of physical/mechanical/biological properties (in vitro/ in vivo /ex vivo)} were considered. A total of 92 full text articles were selected. Conclusion Flowable composites exhibit a variable composition and consequently variable mechanical/ physical properties. Clinicians must be aware of this aspect to make a proper material selection based on specific properties and indications of each material relevant to a particular clinical situation. PMID:26266238
Rheological properties of cross-linked hyaluronic acid dermal fillers.
Santoro, Stefano; Russo, Luisa; Argenzio, Vincenzo; Borzacchiello, Assunta
2011-01-01
Ha based dermal fillers in recent years aroused big interest in the area of cosmetic surgery for the rejuvenation of the dermis. There is not a ideal dermal filler (DF) for all applications and in commerce there are many types of DF that differ for their chemical-physical properties. So the aim of this paper is to correlate the rheological and physical properties of different DF to their clinical effectiveness. In this frame the samples have been subjected to oscillation dynamic rheological and steady shear measurements. Our results demonstrate that the viscoelastic properties of different DF varie strongly also considering fillers of the same family. Furthermore it was found that the materials physical properties influence significantly the performance of dermal filler. In particular the clinical data appear to correlate with the concentration of the polymer and with the product between the concentration and the percent elasticity, so these should be crucial parameters for the clinical performance of DF. So rheological data can be a tool to have an indication on the efficacy and longevity of DF but it has to be considered that production technology, in-vivo-conditions, injector skills and experience influence them also significantly.
Effect of food processing on the physicochemical properties of dietary fibre.
Ozyurt, Vasfiye Hazal; Ötles, Semih
2016-01-01
Products derived from the manufacturing or processing of plant based foods: cereals, fruits, vegetables, as well as algae, are sources of abundant dietary fibre. Diets high in dietary fibre have been associated with the reduced risk of cardiovascular disease, diabetes, hypertension, obesity, and gastrointestinal disorders. These fibre-rich products and byproducts can also fortify foods, increase their dietary fibre content and result in healthy products, low in calories, cholesterol and fat. Traditionally, consumers have chosen foods such as whole grains, fruits and vegetables as sources of dietary fibre. Recently, food manufacturers have responded to consumer demand for foods with a higher fibre content by developing products in which highfibre ingredients are used. Different food processing methods also increase the dietary fiber content of food. Moreover, its chemical and physical properties may be affected by food processing. Some of them might even improve the functionality of fibre. Therefore, they may also be applied as functional ingredients to improve physical properties like the physical and structural properties of hydration, oil-holding capacity, viscosity. This study was conducted to examine the effect of different food processing methods on the physicochemical properties of dietary fibre.
NASA Astrophysics Data System (ADS)
Tudge, J.; Webb, S. I.; Tobin, H. J.
2013-12-01
Since 2007 the Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) has drilled a total of 15 sites across the Nankai Trough subduction zone, including two sites on the incoming sediments of the Philippine Sea plate (PSP). Logging-while-drilling (LWD) data was acquired at 11 of these sites encompassing the forearc Kumano Basin, upper accretionary prism, toe region and input sites. Each of these tectonic domains is investigated for changes in physical properties and LWD characteristics, and this work fully integrates a large data set acquired over multiple years and IODP expeditions, most recently Expedition 338. Using the available logging-while-drilling data, primarily consisting of gamma ray, resistivity and sonic velocity, a log-based lithostratigraphy is developed at each site and integrated with the core, across the entire NanTroSEIZE transect. In addition to simple LWD characterization, the use of Iterative Non-hierarchical Cluster Analysis (INCA) on the sites with the full suite of LWD data clearly differentiates the unaltered forearc and slope basin sediments from the deformed sediments of the accretionary prism, suggesting the LWD is susceptible to the subtle changes in the physical properties between the tectonic domains. This differentiation is used to guide the development of tectonic-domain specific physical properties relationships. One of the most important physical property relationships between is the p-wave velocity and porosity. To fully characterize the character and properties of each tectonic domain we develop new velocity-porosity relationships for each domain found across the NanTroSEIZE transect. This allows the porosity of each domain to be characterized on the seismic scale and the resulting implications for porosity and pore pressure estimates across the plate interface fault zone.
Influence of different crosslinking treatments on the physical properties of collagen membranes.
Charulatha, V; Rajaram, A
2003-02-01
The physical properties of collagen-based biomaterials are profoundly influenced by the method and extent of crosslinking. In this study, the influence of various crosslinking treatments on the physical properties of reconstituted collagen membranes was assessed. Five crosslinking agents viz., GTA, DMS, DTBP, a combination of DMS and GTA and acyl azide method were used to stabilize collagen matrices. Crosslinking density, swelling ratio, thermo-mechanical properties, stress-strain characteristics and resistance to collagenase digestion were determined to evaluate the physical properties of crosslinked matrices. GTA treatment induced the maximum number of crosslinks (13) while DMS treatment induced the minimum (7). Of the two diimidoesters (DMS and DTBP), DTBP was a more effective crosslinking agent due to the presence of disulphide bonds in the DTBP crosslinks. T(s) for DTBP and DMS crosslinked collagen were 80 degrees C and 70 degrees C, and their HIT values were 5.4 and 2.85MN/m(2), respectively. Low concentration of GTA (0.01%) increased the crosslinking density of an already crosslinked matrix (DMS treated matrix) from 7 to 12. Lowest fracture energy was observed for the acyl azide treated matrix (0.61MJ/m(3)) while the highest was observed for the GTA treated matrix (1.97MJ/m(3)). The tensile strength of GTA treated matrix was maximum (12.4MPa) and that of acyl azide treated matrix was minimum (7.2MPa). GTA, DTBP and acyl azide treated matrices were equally resistant to collagenase degradation with approximately 6% solubilization after 5h while the DMS treated was least stable with 52.4% solubilization after the same time period. The spatial orientation of amino acid side chain residues on collagen plays an important role in determining the crosslinking density and consequent physical properties of the collagen matrix.
The in Silico Insight into Carbon Nanotube and Nucleic Acid Bases Interaction.
Karimi, Ali Asghar; Ghalandari, Behafarid; Tabatabaie, Seyed Saleh; Farhadi, Mohammad
2016-05-01
To explore practical applications of carbon nanotubes (CNTs) in biomedical fields the properties of their interaction with biomolecules must be revealed. Recent years, the interaction of CNTs with biomolecules is a subject of research interest for practical applications so that previous research explored that CNTs have complementary structure properties with single strand DNA (ssDNA). Hence, the quantum mechanics (QM) method based on ab initio was used for this purpose. Therefore values of binding energy, charge distribution, electronic energy and other physical properties of interaction were studied for interaction of nucleic acid bases and SCNT. In this study, the interaction between nucleic acid bases and a (4, 4) single-walled carbon nanotube (SCNT) were investigated through calculations within quantum mechanics (QM) method at theoretical level of Hartree-Fock (HF) method using 6-31G basis set. Hence, the physical properties such as electronic energy, total dipole moment, charge distributions and binding energy of nucleic acid bases interaction with SCNT were investigated based on HF method. It has been found that the guanine base adsorption is bound stronger to the outer surface of nanotube in comparison to the other bases, consistent with the recent theoretical studies. In the other words, the results explored that guanine interaction with SCNT has optimum level of electronic energy so that their interaction is stable. Also, the calculations illustrated that SCNT interact to nucleic acid bases by noncovalent interaction because of charge distribution an electrostatic area is created in place of interaction. Consequently, small diameter SCNT interaction with nucleic acid bases is noncovalent. Also, the results revealed that small diameter SCNT interaction especially SCNT (4, 4) with nucleic acid bases can be useful in practical application area of biomedical fields such detection and drug delivery.
Physics of epi-thermal boron neutron capture therapy (epi-thermal BNCT).
Seki, Ryoichi; Wakisaka, Yushi; Morimoto, Nami; Takashina, Masaaki; Koizumi, Masahiko; Toki, Hiroshi; Fukuda, Mitsuhiro
2017-12-01
The physics of epi-thermal neutrons in the human body is discussed in the effort to clarify the nature of the unique radiologic properties of boron neutron capture therapy (BNCT). This discussion leads to the computational method of Monte Carlo simulation in BNCT. The method is discussed through two examples based on model phantoms. The physics is kept at an introductory level in the discussion in this tutorial review.
Tchoua, Roselyne B; Qin, Jian; Audus, Debra J; Chard, Kyle; Foster, Ian T; de Pablo, Juan
2016-09-13
Structured databases of chemical and physical properties play a central role in the everyday research activities of scientists and engineers. In materials science, researchers and engineers turn to these databases to quickly query, compare, and aggregate various properties, thereby allowing for the development or application of new materials. The vast majority of these databases have been generated manually, through decades of labor-intensive harvesting of information from the literature; yet, while there are many examples of commonly used databases, a significant number of important properties remain locked within the tables, figures, and text of publications. The question addressed in our work is whether, and to what extent, the process of data collection can be automated. Students of the physical sciences and engineering are often confronted with the challenge of finding and applying property data from the literature, and a central aspect of their education is to develop the critical skills needed to identify such data and discern their meaning or validity. To address shortcomings associated with automated information extraction, while simultaneously preparing the next generation of scientists for their future endeavors, we developed a novel course-based approach in which students develop skills in polymer chemistry and physics and apply their knowledge by assisting with the semi-automated creation of a thermodynamic property database.
Blending Education and Polymer Science: Semiautomated Creation of a Thermodynamic Property Database
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tchoua, Roselyne B.; Qin, Jian; Audus, Debra J.
Structured databases of chemical and physical properties play a central role in the everyday research activities of scientists and engineers. In materials science, researchers and engineers turn to these databases to quickly query, compare, and aggregate various properties, thereby allowing for the development or application of new materials. The vast majority of these databases have been generated manually, through decades of labor-intensive harvesting of information from the literature, yet while there are many examples of commonly used databases, a significant number of important properties remain locked within the tables, figures, and text of publications. The question addressed in our workmore » is whether and to what extent the process of data collection can be automated. Students of the physical sciences and engineering are often confronted with the challenge of finding and applying property data from the literature, and a central aspect of their education is to develop the critical skills needed to identify such data and discern their meaning or validity. To address shortcomings associated with automated information extraction while simultaneously preparing the next generation of scientists for their future endeavors, we developed a novel course-based approach in which students develop skills in polymer chemistry and physics and apply their knowledge by assisting with the semiautomated creation of a thermodynamic property database.« less
Design and basic properties of ternary gypsum-based mortars
NASA Astrophysics Data System (ADS)
Doleželová, M.; Vimmrová, A.
2017-10-01
Ternary mortars, prepared from gypsum, hydrated lime and three types of pozzolan were designed and tested. As a pozzolan admixture crushed ceramic, silica fume and granulated blast slag were used. The amount of pozzolans in the mixtures was determined according to molar weight of amorphous SiO2 in the material. The samples were stored under the water. The basic physical properties and mechanical properties were measured. The properties were compared with the properties of material without pozzolan. The best results in the water environment were achieved by the samples with silica fume.
Generator Set Durability Testing Using 25% ATJ Fuel Blend
2016-02-01
Table Page Table 1. Chemical & Physical Properties of Evaluated 25% ATJ Blend .................................................... 3 Table 2... Chemical & Physical Properties of Evaluated 25% ATJ Blend .................................................... 4 Table 3. Chemical & Physical...Properties of Evaluated 25% ATJ Blend .................................................... 5 Table 4. Chemical & Physical Properties of Evaluated 25
NASA Astrophysics Data System (ADS)
Almasri, Karima Amer; Sidek, Hj. Ab Aziz; Matori, Khamirul Amin; Zaid, Mohd Hafiz Mohd
The impact of different sintering temperatures on physical, optical and structural properties of wollastonite (CaSiO3) based glass-ceramics were investigated for its potential application as a building material. Wollastonite based glass-ceramics was provided by a conventional melt-quenching method and followed by a controlled sintering process. In this work, soda lime silica glass waste was utilized as a source of silicon. The chemical composition and physical properties of glass were characterized by using Energy Dispersive X-ray Fluorescence (EDXRF) and Archimedes principle. The Archimedes measurement results show that the density increased with the increasing of sintering temperature. The generation of CaSiO3, morphology, size and crystal phase with increasing the heat-treatment temperature were examined by field emission scanning electron microscopy (FESEM), Fourier transforms infrared reflection spectroscopy (FTIR), and X-ray diffraction (XRD). The average calculated crystal size gained from XRD was found to be in the range 60 nm. The FESEM results show a uniform distribution of particles and the morphology of the wollastonite crystal is in relict shapes. The appearance of CaO, SiO2, and Ca-O-Si bands disclosed from FTIR which showed the formation of CaSiO3 crystal phase. In addition to the calculation of the energy band gap which found to be increased with increasing sintering temperature.
Single and collective cell migration: the mechanics of adhesions
De Pascalis, Chiara; Etienne-Manneville, Sandrine
2017-01-01
Chemical and physical properties of the environment control cell proliferation, differentiation, or apoptosis in the long term. However, to be able to move and migrate through a complex three-dimensional environment, cells must quickly adapt in the short term to the physical properties of their surroundings. Interactions with the extracellular matrix (ECM) occur through focal adhesions or hemidesmosomes via the engagement of integrins with fibrillar ECM proteins. Cells also interact with their neighbors, and this involves various types of intercellular adhesive structures such as tight junctions, cadherin-based adherens junctions, and desmosomes. Mechanobiology studies have shown that cell–ECM and cell–cell adhesions participate in mechanosensing to transduce mechanical cues into biochemical signals and conversely are responsible for the transmission of intracellular forces to the extracellular environment. As they migrate, cells use these adhesive structures to probe their surroundings, adapt their mechanical properties, and exert the appropriate forces required for their movements. The focus of this review is to give an overview of recent developments showing the bidirectional relationship between the physical properties of the environment and the cell mechanical responses during single and collective cell migration. PMID:28684609
Transmission of chirality through space and across length scales
NASA Astrophysics Data System (ADS)
Morrow, Sarah M.; Bissette, Andrew J.; Fletcher, Stephen P.
2017-05-01
Chirality is a fundamental property and vital to chemistry, biology, physics and materials science. The ability to use asymmetry to operate molecular-level machines or macroscopically functional devices, or to give novel properties to materials, may address key challenges at the heart of the physical sciences. However, how chirality at one length scale can be translated to asymmetry at a different scale is largely not well understood. In this Review, we discuss systems where chiral information is translated across length scales and through space. A variety of synthetic systems involve the transmission of chiral information between the molecular-, meso- and macroscales. We show how fundamental stereochemical principles may be used to design and understand nanoscale chiral phenomena and highlight important recent advances relevant to nanotechnology. The survey reveals that while the study of stereochemistry on the nanoscale is a rich and dynamic area, our understanding of how to control and harness it and dial-up specific properties is still in its infancy. The long-term goal of controlling nanoscale chirality promises to be an exciting journey, revealing insight into biological mechanisms and providing new technologies based on dynamic physical properties.
2D materials and van der Waals heterostructures.
Novoselov, K S; Mishchenko, A; Carvalho, A; Castro Neto, A H
2016-07-29
The physics of two-dimensional (2D) materials and heterostructures based on such crystals has been developing extremely fast. With these new materials, truly 2D physics has begun to appear (for instance, the absence of long-range order, 2D excitons, commensurate-incommensurate transition, etc.). Novel heterostructure devices--such as tunneling transistors, resonant tunneling diodes, and light-emitting diodes--are also starting to emerge. Composed from individual 2D crystals, such devices use the properties of those materials to create functionalities that are not accessible in other heterostructures. Here we review the properties of novel 2D crystals and examine how their properties are used in new heterostructure devices. Copyright © 2016, American Association for the Advancement of Science.
Actuators Based on Liquid Crystalline Elastomer Materials
Jiang, Hongrui; Li, Chensha; Huang, Xuezhen
2013-01-01
Liquid crystalline elastomers (LCEs) exhibit a number of remarkable physical effects, including the unique, high-stroke reversible mechanical actuation when triggered by external stimuli. This article reviews some recent exciting developments in the field of LCEs materials with an emphasis on their utilization in actuator applications. Such applications include artificial muscles, industrial manufacturing, health and microelectromechanical systems (MEMS). With suitable synthetic and preparation pathways and well-controlled actuation stimuli, such as heat, light, electric and magnetic field, excellent physical properties of LCE materials can be realized. By comparing the actuating properties of different systems, general relationships between the structure and the property of LCEs are discussed. How these materials can be turned into usable devices using interdisciplinary techniques is also described. PMID:23648966
Actuators based on liquid crystalline elastomer materials
NASA Astrophysics Data System (ADS)
Jiang, Hongrui; Li, Chensha; Huang, Xuezhen
2013-05-01
Liquid crystalline elastomers (LCEs) exhibit a number of remarkable physical effects, including the unique, high-stroke reversible mechanical actuation when triggered by external stimuli. This article reviews some recent exciting developments in the field of LCE materials with an emphasis on their utilization in actuator applications. Such applications include artificial muscles, industrial manufacturing, health and microelectromechanical systems (MEMS). With suitable synthetic and preparation pathways and well-controlled actuation stimuli, such as heat, light, electric and magnetic fields, excellent physical properties of LCE materials can be realized. By comparing the actuating properties of different systems, general relationships between the structure and the properties of LCEs are discussed. How these materials can be turned into usable devices using interdisciplinary techniques is also described.
PETher - Physical Properties of Thermal Water under In-situ-Conditions
NASA Astrophysics Data System (ADS)
Herfurth, Sarah; Schröder, Elisabeth
2016-04-01
The objective of PETher, a research project funded by the German Federal Ministry for Economic Affairs and Energy (BMWi), is to experimentally determine thermo-physical properties (specific isobaric heat capacity, kinematic viscosity, density and thermal conductivity) of geothermal water in-situ-conditions (pressure, temperature, chemical composition including gas content of the brine) present in geothermal applications. Knowing these thermo-physical properties reduces the uncertainties with respect to estimating the thermal output and therefore the economic viability of the power plant. Up to now, only a limited number of measurements of selected physical properties have been made, usually under laboratory conditions and for individual geothermal plants. In-situ measured parameters, especially in the temperature range of 120°C and higher, at pressures of 20 bar and higher, as well as with a salinity of up to 250 g/l, are sparse to non-existing. Therefore, pure water properties are often used as reference data and for designing the power plant and its components. Currently available numerical models describing the thermo-physical properties are typically not valid for the conditions in geothermal applications and do not consider the substantial influence of the chemical composition of the thermal water. Also, actual geothermal waters have not been subject of detailed measurements systematically performed under operational conditions on a large-scale basis. Owing to the lack of reliable data, a validation of numerical models for investigating geothermal systems is not possible. In order to determine the dependency of the thermo-physical properties of geothermal water on temperature, pressure and salinity in-situ measurements are conducted. The measurements are taking place directly at several geothermal applications located in Germany's hydrogeothermal key regions. In order to do this, a mobile testing unit was developed and refined with instruments specifically designed in-house to meet any geothermal reservoir conditions present in Germany. The obtained results will be compared with standard analytical methods as well as used to calibrate laboratory measurements that simulate the encountered in-situ conditions. A series of measurements will be performed to create a data base. In addition, these data can be used as reference data for developing and validating numerical models. In-situ measurements - in contrast to laboratory measurements - record the data online and instantaneously during normal operation of the plant and without changing the properties of the investigated fluid (pressure, temperature, etc.). Due to this, the uncertainties in the thermo-physical properties caused by degassing and precipitation are studiously avoided. As a result, the thermo-physical properties density, specific isobaric heat capacity, kinematic viscosity and thermal conductivity have been measured as functions of the geothermal water temperature, pressure and salinity at five sites, up to now. The measurements show that the thermo-physical properties correlate strongly with the salinity and therefore differ considerably from pure water values when a significant salt content is present.
Horak, W.F.
1988-01-01
Effective management of ground-water resources requires knowledge of all components of the water budget for the aquifer of interest. Efforts to simulate ground-water flow prior to development and the effects of proposed pumping in several of North Dakota's shallow glacial aquifers have been hindered by the lack of reliable estimates of ground-water recharge. This study was done to (1) review the methods that have been used to measure recharge, (2) review the theory of unsaturated flow and the methods for characterizing the physical properties of unsaturated media, (3) consider the relative merits of a rigorous data-intensive approach versus an estimation approach to the study of recharge, and (4) review past and current agronomic research in North Dakota for applicability of the research and the data generated to the study of recharge.Direct, quantitative techniques for evaluating recharge are rarely applied. The theory for computing fluxes in unsaturated media is well established and numerous physics-based models that effectively implement the theory are available, but the data required for the models generally are lacking. Many parametric approaches have been developed to avoid the large data requirements of the physics-based approaches for analyzing flow in the unsaturated zone. However, the parametric approaches normally include fitting coefficients that must be calibrated for every study site, thereby detracting from the general utility of the parametric approach. The functional relation of matric potential to moisture content is required for physics-based soil-water models, whether analytic or numeric. Laboratory methods to determine these relations are tedious, costly, and may not give results representative of the soils as they occur in the field. Many models have been proposed to estimate the moisture-characteristic curve and hydraulic-conductivity function from basic soil properties, but none yield results that are universally satisfactory. In situ methods, because they require minimal disturbance of the soil profile and may be used repeatedly on the same soil mass, have become the preferred means for acquiring physical data, especially hydraulic conductivity. Hydro logic investigations, except for recent studies of hazardous-waste disposal sites, rarely have included physical characterizations of unsaturated media. Any of four phenomena could hinder attempts to simulate unsaturated flow in settings typical of North Dakota; variability of soil properties, hysteresis, frozen ground, and macropore development. The spatial and temporal variability of soil properties probably is the greatest complicating phenomenon and must be dealt with by detailed characterization of the properties. Hysteresis can detract from the accuracy of flow calculations for some soils under certain conditions but, for the present, our scant knowledge of soil physical properties is a greater hindrance to reliable soi1-water mode 1 ing than is the hysteresis phenomenon. A1 though seasona1ly frozen ground undoubtedly affects hydrologic processes in North Dakota, much more research is needed before meaningful quantitative treatment is possible. Finally, macropores can influence soil-water movement significantly, but macropore development may not be common on the intensively farmed, coarse-textured soils that typically overlie North Dakota's glacial aquifers. Lysimetry currently is the only reliable means of analyzing macropore flow.The soil-related research that has been conducted in North Dakota to date (1983) provides little of the type of information required to estimate ground-water recharge. Useful data could be developed by systematically evaluating the hydraulic characteristics of the prominent soil types overlying North Dakota's shallow glacial aquifers. These data would be required to enable use of a physics-based approach to estimating recharge. The size of the aquifer under study, its economic value, and the resources available for data collection should be considered when choosing between parametric or physics-based methods.
Teaching Reciprocal Space to Undergraduates via Theory and Code Components of an IPython Notebook
ERIC Educational Resources Information Center
Srnec, Matthew N.; Upadhyay, Shiv; Madura, Jeffrey D.
2016-01-01
In this technology report, a tool is provided for teaching reciprocal space to undergraduates in physical chemistry and materials science courses. Reciprocal space plays a vital role in understanding a material's electronic structure and physical properties. Here, we provide an example based on previous work in the "Journal of Chemical…
Study of physical properties of strontium based alumino-borosilicate glasses
NASA Astrophysics Data System (ADS)
Kaur, Mandeep; Kaur, Gurbinder; Kumar, V.
2018-05-01
In the present study, an attempt has been made to study the influence of CaO/Mgo ratio (R) on different physical properties of (10+x)CaO-(10-x)-MgO-10SrO-10B2O3-20Al2O3-40SiO2 glasses. The novel glass series has been synthesized by melt quenching technique. The parameters like reflection loss and dielectric constant have been determined. Also, molar refraction, molar electronic polarizability and oxygen packing density have been calculated on the basis of measured values of density, molar volume and refractive index of the glasses.
NASA Astrophysics Data System (ADS)
Huzil, J. Torin; Sivaloganathan, Siv; Kohandel, Mohammad; Foldvari, Marianna
2011-11-01
The advancement of dermal and transdermal drug delivery requires the development of delivery systems that are suitable for large protein and nucleic acid-based therapeutic agents. However, a complete mechanistic understanding of the physical barrier properties associated with the epidermis, specifically the membrane structures within the stratum corneum, has yet to be developed. Here, we describe the assembly and computational modeling of stratum corneum lipid bilayers constructed from varying ratios of their constituent lipids (ceramide, free fatty acids and cholesterol) to determine if there is a difference in the physical properties of stratum corneum compositions.
Investigation on thermo physical characteristics of ethylene glycol based Al:ZnO nanofluids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiruba, R., E-mail: krbranjini@gmail.com, E-mail: drkingson@karunya.edu; George, Ritty; Gopalakrishnan, M.
2015-06-24
The present work describes the experimental aspects of viscosity and thermal conductivity characteristics of nanofluids. Aluminium doped zinc oxide nanostructures were synthesized by chemical precipitation method. Ultrasonic technique is used to disperse the nanostructures in ethylene glycol. Structural and morphological properties of Al doped ZnO nanostructures are characterized using X-ray diffractometer and scanning electron microscopic technique. The effect of concentration and temperature on thermo-physical properties of Al/ZnO nanofluids is also investigated. The experimental results showed there is enhancement in thermal conductivity with rise in temperature which can be utilized for coolant application.
NASA Astrophysics Data System (ADS)
Vimmrová, Alena; Kočí, Václav; Krejsová, Jitka; Černý, Robert
2016-06-01
A method for lightweight-gypsum material design using waste stone dust as the foaming agent is described. The main objective is to reach several physical properties which are inversely related in a certain way. Therefore, a linear optimization method is applied to handle this task systematically. The optimization process is based on sequential measurement of physical properties. The results are subsequently point-awarded according to a complex point criterion and new composition is proposed. After 17 trials the final mixture is obtained, having the bulk density equal to (586 ± 19) kg/m3 and compressive strength (1.10 ± 0.07) MPa. According to a detailed comparative analysis with reference gypsum, the newly developed material can be used as excellent thermally insulating interior plaster with the thermal conductivity of (0.082 ± 0.005) W/(m·K). In addition, its practical application can bring substantial economic and environmental benefits as the material contains 25 % of waste stone dust.
Atomic and molecular far-infrared lines from high redshift galaxies
NASA Astrophysics Data System (ADS)
Vallini, L.
2015-03-01
The advent of Atacama Large Millimeter-submillimeter Array (ALMA), with its unprecedented sensitivity, makes it possible the detection of far-infrared (FIR) metal cooling and molecular lines from the first galaxies that formed after the Big Bang. These lines represent a powerful tool to shed light on the physical properties of the interstellar medium (ISM) in high-redshift sources. In what follows we show the potential of a physically motivated theoretical approach that we developed to predict the ISM properties of high redshift galaxies. The model allows to infer, as a function of the metallicity, the luminosities of various FIR lines observable with ALMA. It is based on high resolution cosmological simulations of star-forming galaxies at the end of the Epoch of Reionization (z˜eq6) , further implemented with sub-grid physics describing the cooling and the heating processes that take place in the neutral diffuse ISM. Finally we show how a different approach based on semi-analytical calculations can allow to predict the CO flux function at z>6.
The Effect of Rheological Properties of Foods on Bolus Characteristics After Mastication
Hwang, Junah; Bae, Jung Hyun; Kang, Si Hyun; Seo, Kyung Mook; Kim, Byong Ki; Lee, Sook Young
2012-01-01
Objective To evaluate the effects of physical properties of foods on the changes of viscosity and mass as well as the particle size distribution after mastication. Method Twenty subjects with no masticatory disorders were recruited. Six grams of four solid foods of different textures (banana, tofu, cooked-rice, cookie) were provided, and the viscosity and mass after 10, 20, and 30 cycles of mastication and just before swallowing were measured. The physical properties of foods, such as hardness, cohesiveness, and adhesiveness, were measured with a texture analyzer. Wet sieving and laser diffraction were used to determine the distribution of food particle size. Results When we measured the physical characteristics of foods, the cookie was the hardest food, and the banana exhibited marked adhesiveness. Tofu and cooked-rice exhibited a highly cohesive nature. As the number of mastication cycles increased, the masses of all foods were significantly increased (p<0.05), and the viscosity was significantly decreased in the case of banana, tofu, and cooked-rice (p<0.05). The mass and viscosity of all foods were significantly different between the foods after mastication (p<0.05). Analyzing the distribution of the particle size, that of the bolus was different between foods. However, the curves representing the particle size distribution for each food were superimposable for most subjects. Conclusion The viscosity and particle size distribution of the bolus were different between solid foods that have different physical properties. Based on this result, the mastication process and food bolus formation were affected by the physical properties of the food. PMID:23342309
Increased Thermal Conductivity in Metal-Organic Heat Carrier Nanofluids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nandasiri, Manjula I.; Liu, Jian; McGrail, B. Peter
2016-06-15
Metal organic heat carriers (MOHCs) are recently developed nanofluids containing metal organic framework (MOF) nanoparticles dispersed in various base fluids including refrigerants (R245Fa) and methanol. MOHCs utilize the MOF properties to improve the thermo-physical properties of base fluids. Here, we report the synthesis and characterization of MOHCs containing nanoMIL-101(Cr) and graphene oxide (GO) in an effort to improve the thermo-physical properties of various base fluids. MOHC containing MIL-101(Cr)/GO nanocomposites showed enhanced surface area, porosity, and nitrogen adsorption compared with the intrinsic nano MIL-101(Cr) and the properties depend on the amount of GO added. Powder X-ray diffraction (PXRD) confirmed the preservedmore » crystallinity of MIL-101(Cr) in all nanocomposites with the absence of any unreacted GO. Scanning electron microscopy images confirmed the presence of near spherical MIL-101(Cr) nanoparticles in the range of 40-80 nm in diameter. MOHC nanofluids containing MIL-101(Cr)/GO in methanol exhibited significant enhancement in the thermal conductivity (by approxi-mately 50%) relative to that of the intrinsic nano MIL-101(Cr) in methanol. The thermal conductivity of base fluid (methanol) was enhanced by about 20 %. The enhancement in the thermal conductivity of nanoMIL-101(Cr) MOHCs due to graphene oxide functionalization is explained using a classical Maxwell model.« less
41 CFR 109-1.5107 - Physical protection of personal property.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Physical protection of personal property. 109-1.5107 Section 109-1.5107 Public Contracts and Property Management Federal Property...-INTRODUCTION 1.51-Personal Property Management Standards and Practices § 109-1.5107 Physical protection of...
41 CFR 109-1.5107 - Physical protection of personal property.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Physical protection of personal property. 109-1.5107 Section 109-1.5107 Public Contracts and Property Management Federal Property...-INTRODUCTION 1.51-Personal Property Management Standards and Practices § 109-1.5107 Physical protection of...
41 CFR 109-1.5107 - Physical protection of personal property.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Physical protection of personal property. 109-1.5107 Section 109-1.5107 Public Contracts and Property Management Federal Property...-INTRODUCTION 1.51-Personal Property Management Standards and Practices § 109-1.5107 Physical protection of...
41 CFR 109-1.5107 - Physical protection of personal property.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Physical protection of personal property. 109-1.5107 Section 109-1.5107 Public Contracts and Property Management Federal Property...-INTRODUCTION 1.51-Personal Property Management Standards and Practices § 109-1.5107 Physical protection of...
41 CFR 109-1.5107 - Physical protection of personal property.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Physical protection of personal property. 109-1.5107 Section 109-1.5107 Public Contracts and Property Management Federal Property...-INTRODUCTION 1.51-Personal Property Management Standards and Practices § 109-1.5107 Physical protection of...
NASA Astrophysics Data System (ADS)
Manzo, Ciro; Bassani, Cristiana
2016-04-01
This paper focuses on the evaluation of surface reflectance obtained by different atmospheric correction algorithms of the Landsat 8 OLI data considering or not the micro-physical properties of the aerosol when images are acquired in desert area located in South-West of Nile delta. The atmospheric correction of remote sensing data was shown to be sensitive to the aerosol micro-physical properties, as reported in Bassani et al., 2012. In particular, the role of the aerosol micro-physical properties on the accuracy of the atmospheric correction of remote sensing data was investigated [Bassani et al., 2015; Tirelli et al., 2015]. In this work, the OLI surface reflectance was retrieved by the developed OLI@CRI (OLI ATmospherically Corrected Reflectance Imagery) physically-based atmospheric correction which considers the aerosol micro-physical properties available from the two AERONET stations [Holben et al., 1998] close to the study area (El_Farafra and Cairo_EMA_2). The OLI@CRI algorithm is based on 6SV radiative transfer model, last generation of the Second Simulation of a Satellite Signal in the Solar Spectrum (6S) radiative transfer code [Kotchenova et al., 2007; Vermote et al., 1997], specifically developed for Landsat 8 OLI data. The OLI reflectance obtained by the OLI@CRI was compared with reflectance obtained by other atmospheric correction algorithms which do not consider micro-physical properties of aerosol (DOS) or take on aerosol standard models (FLAASH, implemented in ENVI software). The accuracy of the surface reflectance retrieved by different algorithms were calculated by comparing the spatially resampled OLI images with the MODIS surface reflectance products. Finally, specific image processing was applied to the OLI reflectance images in order to compare remote sensing products obtained for same scene. The results highlight the influence of the physical characterization of aerosol on the OLI data improving the retrieved atmospherically corrected reflectance. One of the most important outreach of this research is the retrieval of the highest possible accuracy of the OLI reflectance for land surface variables by spectral indices. Consequently if OLI@CRI algorithm is applied to time series data, the uncertainty into the time curve can be reduced. Kotchenova and Vermote, 2007. Appl. Opt. doi:10.1364/AO.46.004455. Vermote et al., 1997. IEEE Trans. Geosci. Remote Sens. doi:10.1109/36.581987. Bassani et al., 2015. Atmos. Meas. Tech. doi:10.5194/amt-8-1593-2015. Bassani et al., 2012. Atmos. Meas. Tech. doi:10.5194/amt-5-1193-2012. Tirelli et al., 2015. Remote Sens. doi:10.3390/rs70708391. Holben et al., 1998. Rem. Sens. Environ. doi:10.1016/S0034-4257(98)00031-5.
Martins, Júlia Caetano; Aguiar, Larissa Tavares; Nadeau, Sylvie; Scianni, Aline Alvim; Teixeira-Salmela, Luci Fuscaldi; Faria, Christina Danielli Coelho de Morais
2017-01-01
Introduction Self-report physical activity assessment tools are commonly used for the evaluation of physical activity levels in individuals with stroke. A great variety of these tools have been developed and widely used in recent years, which justify the need to examine their measurement properties and clinical utility. Therefore, the main objectives of this systematic review are to examine the measurement properties and clinical utility of self-report measures of physical activity and discuss the strengths and limitations of the identified tools. Methods and analysis A systematic review of studies that investigated the measurement properties and/or clinical utility of self-report physical activity assessment tools in stroke will be conducted. Electronic searches will be performed in five databases: Medical Literature Analysis and Retrieval System Online (MEDLINE) (PubMed), Excerpta Medica Database (EMBASE), Physiotherapy Evidence Database (PEDro), Literatura Latino-Americana e do Caribe em Ciências da Saúde (LILACS) and Scientific Electronic Library Online (SciELO), followed by hand searches of the reference lists of the included studies. Two independent reviewers will screen all retrieve titles, abstracts, and full texts, according to the inclusion criteria and will also extract the data. A third reviewer will be referred to solve any disagreement. A descriptive summary of the included studies will contain the design, participants, as well as the characteristics, measurement properties, and clinical utility of the self-report tools. The methodological quality of the studies will be evaluated using the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) checklist and the clinical utility of the identified tools will be assessed considering predefined criteria. This systematic review will follow the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) statement. Discussion This systematic review will provide an extensive review of the measurement properties and clinical utility of self-report physical activity assessment tools used in individuals with stroke, which would benefit clinicians and researchers. Trial registration number PROSPERO CRD42016037146. PMID:28193848
NASA Astrophysics Data System (ADS)
Gromek, Katherine Emily
A novel computational and inference framework of the physics-of-failure (PoF) reliability modeling for complex dynamic systems has been established in this research. The PoF-based reliability models are used to perform a real time simulation of system failure processes, so that the system level reliability modeling would constitute inferences from checking the status of component level reliability at any given time. The "agent autonomy" concept is applied as a solution method for the system-level probabilistic PoF-based (i.e. PPoF-based) modeling. This concept originated from artificial intelligence (AI) as a leading intelligent computational inference in modeling of multi agents systems (MAS). The concept of agent autonomy in the context of reliability modeling was first proposed by M. Azarkhail [1], where a fundamentally new idea of system representation by autonomous intelligent agents for the purpose of reliability modeling was introduced. Contribution of the current work lies in the further development of the agent anatomy concept, particularly the refined agent classification within the scope of the PoF-based system reliability modeling, new approaches to the learning and the autonomy properties of the intelligent agents, and modeling interacting failure mechanisms within the dynamic engineering system. The autonomous property of intelligent agents is defined as agent's ability to self-activate, deactivate or completely redefine their role in the analysis. This property of agents and the ability to model interacting failure mechanisms of the system elements makes the agent autonomy fundamentally different from all existing methods of probabilistic PoF-based reliability modeling. 1. Azarkhail, M., "Agent Autonomy Approach to Physics-Based Reliability Modeling of Structures and Mechanical Systems", PhD thesis, University of Maryland, College Park, 2007.
Proliferative activity of elastin-like-peptides depends on charge and phase transition.
Yuan, Yuan; Koria, Piyush
2016-03-01
Elastin-like-peptides (ELPs) are stimulus-responsive protein-based polymers and are attractive biomaterials due to their biocompatibility and unique properties. This study shows that in addition to their physical properties, ELPs have biological activities that are conducive to tissue regeneration. Specifically, we found that ELPs induce fibroblast proliferation via cell surface heparan sulfate proteoglycans (HSPG). Furthermore, our data suggests that ELP based materials with differential proliferative potential can be designed by controlling the interaction of ELPs with HSPGs by incorporating either hydrophobic or positively charged residues within the ELP sequence. Fibroblast proliferation is important for granulation tissue formation which is important in chronic wounds as well as in healing of other tissues. The customizable biological activity of ELPs coupled with their unique physical properties will enable us to design novel, sustainable and cost effective therapies for different tissue regeneration applications. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 697-706, 2016. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
di Stefano, Marco; Paulsen, Jonas; Lien, Tonje G.; Hovig, Eivind; Micheletti, Cristian
2016-10-01
Combining genome-wide structural models with phenomenological data is at the forefront of efforts to understand the organizational principles regulating the human genome. Here, we use chromosome-chromosome contact data as knowledge-based constraints for large-scale three-dimensional models of the human diploid genome. The resulting models remain minimally entangled and acquire several functional features that are observed in vivo and that were never used as input for the model. We find, for instance, that gene-rich, active regions are drawn towards the nuclear center, while gene poor and lamina associated domains are pushed to the periphery. These and other properties persist upon adding local contact constraints, suggesting their compatibility with non-local constraints for the genome organization. The results show that suitable combinations of data analysis and physical modelling can expose the unexpectedly rich functionally-related properties implicit in chromosome-chromosome contact data. Specific directions are suggested for further developments based on combining experimental data analysis and genomic structural modelling.
Di Stefano, Marco; Paulsen, Jonas; Lien, Tonje G; Hovig, Eivind; Micheletti, Cristian
2016-10-27
Combining genome-wide structural models with phenomenological data is at the forefront of efforts to understand the organizational principles regulating the human genome. Here, we use chromosome-chromosome contact data as knowledge-based constraints for large-scale three-dimensional models of the human diploid genome. The resulting models remain minimally entangled and acquire several functional features that are observed in vivo and that were never used as input for the model. We find, for instance, that gene-rich, active regions are drawn towards the nuclear center, while gene poor and lamina associated domains are pushed to the periphery. These and other properties persist upon adding local contact constraints, suggesting their compatibility with non-local constraints for the genome organization. The results show that suitable combinations of data analysis and physical modelling can expose the unexpectedly rich functionally-related properties implicit in chromosome-chromosome contact data. Specific directions are suggested for further developments based on combining experimental data analysis and genomic structural modelling.
Construction material processed using lunar simulant in various environments
NASA Technical Reports Server (NTRS)
Chase, Stan; Ocallaghan-Hay, Bridget; Housman, Ralph; Kindig, Michael; King, John; Montegrande, Kevin; Norris, Raymond; Vanscotter, Ryan; Willenborg, Jonathan; Staubs, Harry
1995-01-01
The manufacture of construction materials from locally available resources in space is an important first step in the establishment of lunar and planetary bases. The objective of the CoMPULSIVE (Construction Material Processed Using Lunar Simulant In Various Environments) experiment is to develop a procedure to produce construction materials by sintering or melting Johnson Space Center Simulant 1 (JSC-1) lunar soil simulant in both earth-based (1-g) and microgravity (approximately 0-g) environments. The characteristics of the resultant materials will be tested to determine its physical and mechanical properties. The physical characteristics include: crystalline, thermal, and electrical properties. The mechanical properties include: compressive tensile, and flexural strengths. The simulant, placed in a sealed graphite crucible, will be heated using a high temperature furnace. The crucible will then be cooled by radiative and forced convective means. The core furnace element consists of space qualified quartz-halogen incandescent lamps with focusing mirrors. Sample temperatures of up to 2200 C are attainable using this heating method.
Fullerenes, carbon nanotubes, and graphene for molecular electronics.
Pinzón, Julio R; Villalta-Cerdas, Adrián; Echegoyen, Luis
2012-01-01
With the constant growing complexity of electronic devices, the top-down approach used with silicon based technology is facing both technological and physical challenges. Carbon based nanomaterials are good candidates to be used in the construction of electronic circuitry using a bottom-up approach, because they have semiconductor properties and dimensions within the required physical limit to establish electrical connections. The unique electronic properties of fullerenes for example, have allowed the construction of molecular rectifiers and transistors that can operate with more than two logical states. Carbon nanotubes have shown their potential to be used in the construction of molecular wires and FET transistors that can operate in the THz frequency range. On the other hand, graphene is not only the most promising material for replacing ITO in the construction of transparent electrodes but it has also shown quantum Hall effect and conductance properties that depend on the edges or chemical doping. The purpose of this review is to present recent developments on the utilization carbon nanomaterials in molecular electronics.
Vivolo-Kantor, Alana M.; Olsen, Emily O’malley; Bacon, Sarah
2016-01-01
BACKGROUND Teen dating violence (TDV) negatively impacts health, mental and physical well-being, and school performance. METHODS Data from a nationally representative sample of high school students participating in the Centers for Disease Control and Prevention (CDC)’s 2013 Youth Risk Behavior Survey (YRBS) are used to demonstrate associations of physical and sexual TDV with school violence-related experiences and behaviors, including bullying victimization. Bivariate and adjusted sex-stratified regressions assessed relationships between TDV and school violence-related experiences and behaviors. RESULTS Compared to students not reporting TDV, those experiencing both physical and sexual TDV were more likely to report carrying a weapon at school, missing school because they felt unsafe, being threatened or injured with a weapon on school property, having a physical fight at school, and being bullied on school property. CONCLUSIONS School-based prevention efforts should target multiple forms of violence. PMID:27374352
NRV web knowledge base on low-energy nuclear physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karpov, V., E-mail: karpov@jinr.ru; Denikin, A. S.; Alekseev, A. P.
Principles underlying the organization and operation of the NRV web knowledge base on low-energy nuclear physics (http://nrv.jinr.ru) are described. This base includes a vast body of digitized experimental data on the properties of nuclei and on cross sections for nuclear reactions that is combined with a wide set of interconnected computer programs for simulating complex nuclear dynamics, which work directly in the browser of a remote user. Also, the current situation in the realms of application of network information technologies in nuclear physics is surveyed. The potential of the NRV knowledge base is illustrated in detail by applying it tomore » the example of an analysis of the fusion of nuclei that is followed by the decay of the excited compound nucleus formed.« less
NASA Astrophysics Data System (ADS)
Frolov, A. M.; Tkachev, V. V.; Fedorets, A. N.; Pustovalov, E. V.; Kraynova, G. S.; Dolzhikov, S. V.; Ilin, N. V.; Tsesarskaya, A. K.
2017-09-01
The tapes are quickly quenched onto a rotating drum. The structure of mechanical and physical properties is studied depending on the spinning parameters. An approach is proposed for the classification of obtained bands based on the statistics of the microrelief of their surfaces.
ERIC Educational Resources Information Center
DiLillo, David; Hayes-Skelton, Sarah A.; Fortier, Michelle A.; Perry, Andrea R.; Evans, Sarah E.; Messman Moore, Terri L.; Walsh, Kate; Nash, Cindy; Fauchier, Angele
2010-01-01
Objectives: The present study reports on the development and initial psychometric properties of the Computer Assisted Maltreatment Inventory (CAMI), a web-based self-report measure of child maltreatment history, including sexual and physical abuse, exposure to interparental violence, psychological abuse, and neglect. Methods: The CAMI was…
Bulk and Thin film Properties of Nanoparticle-based Ionic Materials
NASA Astrophysics Data System (ADS)
Fang, Jason
2008-03-01
Nanoparticle-based ionic materials (NIMS) offer exciting opportunities for research at the forefront of science and engineering. NIMS are hybrid particles comprised of a charged oligomeric corona attached to hard, inorganic nanoparticle cores. Because of their hybrid nature, physical properties --rheological, optical, electrical, thermal - of NIMS can be tailored over an unusually wide range by varying geometric and chemical characteristics of the core and canopy and thermodynamic variables such as temperature and volume fraction. On one end of the spectrum are materials with a high core content, which display properties similar to crystalline solids, stiff waxes, and gels. At the opposite extreme are systems that spontaneously form particle-based fluids characterized by transport properties remarkably similar to simple liquids. In this poster I will present our efforts to synthesize NIMS and discuss their bulk and surface properties. In particular I will discuss our work on preparing smart surfaces using NIMS.
Effect of atmospheric scattering and surface reflection on upwelling solar radiation
NASA Technical Reports Server (NTRS)
Suttles, J. T.; Barkstrom, B. R.; Tiwari, S. N.
1981-01-01
A study is presented of the solar radiation transfer in the complete earth-atmosphere system, and numerical results are compared with satellite data obtained during the Earth Radiation Budget Experiment on Nimbus 6, in August, 1975. Emphasis is placed on the upwelling radiance distribution at the top of the atmosphere, assumed to be at 50 km. The numerical technique is based on the finite difference method, which includes azimuth and spectral variations for the entire solar wavelength range. Detailed solar properties, atmospheric physical properties, and optical properties are used. However, since the property descriptions are based on a trade-off between accuracy and computational realities, aerosol and cloud optical properties are treated with simple approximations. The radiative transfer model is in good agreement with the satellite radiance observations. The method provides a valuable tool in analyzing satellite- and ground-based radiation budget measurements and in designing instrumentation.
Passive Optical Technique to Measure Physical Properties of a Vibrating Surface
2014-01-01
it is not necessary to understand the details of a non-Lambertian BRDF to detect surface vibration phenomena, an accurate model incorporating physics...summarize the discussion of BRDF , while a physics-based BRDF model is not necessary to use scattered light as a surface vibration diagnostic, it may...penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 2014 2
Zhang, Shanxin; Zhou, Zhiping; Chen, Xinmeng; Hu, Yong; Yang, Lindong
2017-08-07
DNase I hypersensitive sites (DHSs) are accessible chromatin regions hypersensitive to cleavages by DNase I endonucleases. DHSs are indicative of cis-regulatory DNA elements (CREs), all of which play important roles in global gene expression regulation. It is helpful for discovering CREs by recognition of DHSs in genome. To accelerate the investigation, it is an important complement to develop cost-effective computational methods to identify DHSs. However, there is a lack of tools used for identifying DHSs in plant genome. Here we presented pDHS-SVM, a computational predictor to identify plant DHSs. To integrate the global sequence-order information and local DNA properties, reverse complement kmer and dinucleotide-based auto covariance of DNA sequences were applied to construct the feature space. In this work, fifteen physical-chemical properties of dinucleotides were used and Support Vector Machine (SVM) was employed. To further improve the performance of the predictor and extract an optimized subset of nucleotide physical-chemical properties positive for the DHSs, a heuristic nucleotide physical-chemical property selection algorithm was introduced. With the optimized subset of properties, experimental results of Arabidopsis thaliana and rice (Oryza sativa) showed that pDHS-SVM could achieve accuracies up to 87.00%, and 85.79%, respectively. The results indicated the effectiveness of proposed method for predicting DHSs. Furthermore, pDHS-SVM could provide a helpful complement for predicting CREs in plant genome. Our implementation of the novel proposed method pDHS-SVM is freely available as source code, at https://github.com/shanxinzhang/pDHS-SVM. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rusli, Stephanie P.; Donovan, David P.; Russchenberg, Herman W. J.
2017-12-01
Despite the importance of radar reflectivity (Z) measurements in the retrieval of liquid water cloud properties, it remains nontrivial to interpret Z due to the possible presence of drizzle droplets within the clouds. So far, there has been no published work that utilizes Z to identify the presence of drizzle above the cloud base in an optimized and a physically consistent manner. In this work, we develop a retrieval technique that exploits the synergy of different remote sensing systems to carry out this task and to subsequently profile the microphysical properties of the cloud and drizzle in a unified framework. This is accomplished by using ground-based measurements of Z, lidar attenuated backscatter below as well as above the cloud base, and microwave brightness temperatures. Fast physical forward models coupled to cloud and drizzle structure parameterization are used in an optimal-estimation-type framework in order to retrieve the best estimate for the cloud and drizzle property profiles. The cloud retrieval is first evaluated using synthetic signals generated from large-eddy simulation (LES) output to verify the forward models used in the retrieval procedure and the vertical parameterization of the liquid water content (LWC). From this exercise it is found that, on average, the cloud properties can be retrieved within 5 % of the mean truth. The full cloud-drizzle retrieval method is then applied to a selected ACCEPT (Analysis of the Composition of Clouds with Extended Polarization Techniques) campaign dataset collected in Cabauw, the Netherlands. An assessment of the retrieval products is performed using three independent methods from the literature; each was specifically developed to retrieve only the cloud properties, the drizzle properties below the cloud base, or the drizzle fraction within the cloud. One-to-one comparisons, taking into account the uncertainties or limitations of each retrieval, show that our results are consistent with what is derived using the three independent methods.
A Particle Model Explaining Mass and Relativity in a Physical Way
NASA Astrophysics Data System (ADS)
Giese, Albrecht
Physicists' understanding of relativity and the way it is handled is up to present days dominated by the interpretation of Albert Einstein, who related relativity to specific properties of space and time. The principal alternative to Einstein's interpretation is based on a concept proposed by Hendrik A. Lorentz, which uses knowledge of classical physics alone to explain relativistic phenomena. In this paper, we will show that on the one hand the Lorentz-based interpretation provides a simpler mathematical way of arriving at the known results for both Special and General Relativity. On the other hand, it is able to solve problems which have remained open to this day. Furthermore, a particle model will be presented, based on Lorentzian relativity and the quantum mechanical concept of Louis de Broglie, which explains the origin of mass without the use of the Higgs mechanism. It is based on the finiteness of the speed of light and provides classical results for particle properties which are currently only accessible through quantum mechanics.
Joint Schemes for Physical Layer Security and Error Correction
ERIC Educational Resources Information Center
Adamo, Oluwayomi
2011-01-01
The major challenges facing resource constraint wireless devices are error resilience, security and speed. Three joint schemes are presented in this research which could be broadly divided into error correction based and cipher based. The error correction based ciphers take advantage of the properties of LDPC codes and Nordstrom Robinson code. A…
Physics of SrTiO3-based heterostructures and nanostructures: a review.
Pai, Yun-Yi; Tylan-Tyler, Anthony; Irvin, Patrick; Levy, Jeremy
2018-02-09
This review provides a summary of the rich physics expressed within SrTiO 3 -based heterostructures and nanostructures. The intended audience is researchers who are working in the field of oxides, but also those with different backgrounds (e.g., semiconductor nanostructures). After reviewing the relevant properties of SrTiO 3 itself, we will then discuss the basics of SrTiO 3 -based heterostructures, how they can be grown, and how devices are typically fabricated. Next, we will cover the physics of these heterostructures, including their phase diagram and coupling between the various degrees of freedom. Finally, we will review the rich landscape of quantum transport phenomena, as well as the devices that elicit them.
Gravitational waves from warm inflation
NASA Astrophysics Data System (ADS)
Li, Xi-Bin; Wang, He; Zhu, Jian-Yang
2018-03-01
A fundamental prediction of inflation is a nearly scale-invariant spectrum of gravitational wave. The features of such a signal provide extremely important information about the physics of the early universe. In this paper, we focus on several topics about warm inflation. First, we discuss the stability property about warm inflation based on nonequilibrium statistical mechanics, which gives more fundamental physical illustrations to thermal property of such model. Then, we calculate the power spectrum of gravitational waves generated during warm inflation, in which there are three components contributing to such spectrum: thermal term, quantum term, and cross term combining the both. We also discuss some interesting properties about these terms and illustrate them in different panels. As a model different from cold inflation, warm inflation model has its individual properties in observational practice, so we finally give a discussion about the observational effect to distinguish it from cold inflation.
NASA Astrophysics Data System (ADS)
Bai, Gang; Xie, Qiyun; Liu, Zhiguo; Wu, Dongmei
2015-08-01
A nonlinear thermodynamic formalism has been proposed to calculate the physical properties of the epitaxial SrTiO3 films containing vertical nano-pillar array on Si-substrate. The out-of-plane stress induced by the mismatch between film and nano-pillars provides an effective way to tune the physical properties of ferroelectric SrTiO3 films. Tensile out-of-plane stress raises the phase transition temperature and increases the out-of-plane polarization, but decreases the out-of-plane dielectric constant below Curie temperature, pyroelectric coefficient, and piezoelectric coefficient. These results showed that by properly controlling the out-of-plane stress, the out-of-plane stress induced paraelectric-ferroelectric phase transformation will appear near room temperature. Excellent dielectric, pyroelectric, piezoelectric properties of these SrTiO3 films similar to PZT and other lead-based ferroelectrics can be expected.
NASA Astrophysics Data System (ADS)
Prameswari, I. K.; Manuhara, G. J.; Amanto, B. S.; Atmaka, W.
2018-05-01
Tapioca starch application in bread processing change water absorption level by the dough, while sufficient mixing time makes the optimal water absorption. This research aims to determine the effect of variations in water volume and mixing time on physical properties of tapioca starch – wheat composite bread and the best method for the composite bread processing. This research used Complete Randomized Factorial Design (CRFD) with two factors: variations of water volume (111,8 ml, 117,4 ml, 123 ml) and mixing time (16 minutes, 17 minutes 36 seconds, 19 minutes 12 seconds). The result showed that water volume significantly affected on dough volume, bread volume and specific volume, baking expansion, and crust thickness. Mixing time significantly affected on dough volume and specific volume, bread volume and specific volume, baking expansion, bread height, and crust thickness. While the combination of water volume and mixing time significantly affected for all physical properties parameters except crust thickness.
Emborsky, Christopher P; Cox, Kenneth R; Chapman, Walter G
2011-08-28
The ubiquitous use of surfactants in commercial and industrial applications has led to many experimental, theoretical, and simulation based studies. These efforts seek to provide a molecular level understanding of the effects on structuring behavior and the corresponding impacts on observable properties (e.g., interfacial tension). With such physical detail, targeted system design can be improved over typical techniques of observational trends and phenomenological correlations by taking advantage of predictive system response. This research provides a systematic study of part of the broad parameter space effects on equilibrium microstructure and interfacial properties of amphiphiles at a liquid-liquid interface using the interfacial statistical associating fluid theory density functional theory as a molecular model for the system from the bulk to the interface. Insights into the molecular level physics and thermodynamics governing the system behavior are discussed as they relate to both predictions qualitatively consistent with experimental observations and extensions beyond currently available studies. © 2011 American Institute of Physics
Unni, Mythreyi; Uhl, Amanda M; Savliwala, Shehaab; Savitzky, Benjamin H; Dhavalikar, Rohan; Garraud, Nicolas; Arnold, David P; Kourkoutis, Lena F; Andrew, Jennifer S; Rinaldi, Carlos
2017-02-28
Decades of research focused on size and shape control of iron oxide nanoparticles have led to methods of synthesis that afford excellent control over physical size and shape but comparatively poor control over magnetic properties. Popular synthesis methods based on thermal decomposition of organometallic precursors in the absence of oxygen have yielded particles with mixed iron oxide phases, crystal defects, and poorer than expected magnetic properties, including the existence of a thick "magnetically dead layer" experimentally evidenced by a magnetic diameter significantly smaller than the physical diameter. Here, we show how single-crystalline iron oxide nanoparticles with few defects and similar physical and magetic diameter distributions can be obtained by introducing molecular oxygen as one of the reactive species in the thermal decomposition synthesis. This is achieved without the need for any postsynthesis oxidation or thermal annealing. These results address a significant challenge in the synthesis of nanoparticles with predictable magnetic properties and could lead to advances in applications of magnetic nanoparticles.
Effect of Nano Silica on the Physical Property of Porous Concrete Pavement
NASA Astrophysics Data System (ADS)
Yusak, Mohd Ibrahim Mohd; Ezree Abdullah, Mohd; Putra Jaya, Ramadhansyah; Rosli Hainin, Mohd; Ibrahim, Mohd Haziman Wan
2017-08-01
Rice husk can be categorized as an organic waste material from paddy industries. Silica is a major inorganic element of the rice husk. The aim of present study is to evaluate the effect of Nano silica on the physical properties of porous concrete pavement. Rice husk has been burned in the furnace (650°C for 6 hours) and ground for four different grinding times (33, 48, 63 and 81 hours). Five types of mixes were prepared to evaluate the different Nano silica grinding time. A Nano silica dosage of 10% by weight of binder was used throughout the experiments. The physical properties were examined through compressive strength, transmission electron microscopy and x-ray fluorescence. The experimental results indicate that the different Nano size gives a different effect to porous concrete strength. Based on the results obtained, Nano silica ground for 63 hours (65.84nm) gives the best result and performance to porous concrete pavement specimens.
Dave, Vivek S; Shahin, Hend I; Youngren-Ortiz, Susanne R; Chougule, Mahavir B; Haware, Rahul V
2017-10-30
The density, porosity, breaking force, viscoelastic properties, and the presence or absence of any structural defects or irregularities are important physical-mechanical quality attributes of popular solid dosage forms like tablets. The irregularities associated with these attributes may influence the drug product functionality. Thus, an accurate and efficient characterization of these properties is critical for successful development and manufacturing of a robust tablets. These properties are mainly analyzed and monitored with traditional pharmacopeial and non-pharmacopeial methods. Such methods are associated with several challenges such as lack of spatial resolution, efficiency, or sample-sparing attributes. Recent advances in technology, design, instrumentation, and software have led to the emergence of newer techniques for non-invasive characterization of physical-mechanical properties of tablets. These techniques include near infrared spectroscopy, Raman spectroscopy, X-ray microtomography, nuclear magnetic resonance (NMR) imaging, terahertz pulsed imaging, laser-induced breakdown spectroscopy, and various acoustic- and thermal-based techniques. Such state-of-the-art techniques are currently applied at various stages of development and manufacturing of tablets at industrial scale. Each technique has specific advantages or challenges with respect to operational efficiency and cost, compared to traditional analytical methods. Currently, most of these techniques are used as secondary analytical tools to support the traditional methods in characterizing or monitoring tablet quality attributes. Therefore, further development in the instrumentation and software, and studies on the applications are necessary for their adoption in routine analysis and monitoring of tablet physical-mechanical properties. Copyright © 2017 Elsevier B.V. All rights reserved.
The development of graphene-based devices for cell biology research
NASA Astrophysics Data System (ADS)
Yan, Zhi-Qin; Zhang, Wei
2014-06-01
Graphene has emerged as a new carbon nanoform with great potential in many applications due to its exceptional physical and chemical properties. Especially, graphene and its derivatives are also gaining a lot of interest in the biomedical field as new components for biosensors, tissue engineering, and drug delivery. This review presents unique properties of graphene, the bio-effects of graphene and its derivatives, especially their interactions with cells and the development of graphene-based biosensors and nanomedicines for cancer diagnosis and treatment.
Visualization of the Invisible: The Qubit as Key to Quantum Physics
NASA Astrophysics Data System (ADS)
Dür, Wolfgang; Heusler, Stefan
2014-11-01
Quantum mechanics is one of the pillars of modern physics, however rather difficult to teach at the introductory level due to the conceptual difficulties and the required advanced mathematics. Nevertheless, attempts to identify relevant features of quantum mechanics and to put forward concepts of how to teach it have been proposed.1-8 Here we present an approach to quantum physics based on the simplest quantum mechanical system—the quantum bit (qubit).1 Like its classical counterpart—the bit—a qubit corresponds to a two-level system, i.e., some system with a physical property that can admit two possible values. While typically a physical system has more than just one property or the property can admit more than just two values, in many situations most degrees of freedom can be considered to be fixed or frozen. Hence a variety of systems can be effectively described as a qubit. For instance, one may consider the spin of an electron or atom, with spin up and spin down as two possible values, and where other properties of the particle such as its mass or its position are fixed. Further examples include the polarization degree of freedom of a photon (horizontal and vertical polarization), two electronic degrees of freedom (i.e., two energy levels) of an atom, or the position of an atom in a double well potential (atom in left or right well). In all cases, only two states are relevant to describe the system.
Sorting cells by their density
Norouzi, Nazila; Bhakta, Heran C.
2017-01-01
Sorting cells by their type is an important capability in biological research and medical diagnostics. However, most cell sorting techniques rely on labels or tags, which may have limited availability and specificity. Sorting different cell types by their different physical properties is an attractive alternative to labels because all cells intrinsically have these physical properties. But some physical properties, like cell size, vary significantly from cell to cell within a cell type; this makes it difficult to identify and sort cells based on their sizes alone. In this work we continuously sort different cells types by their density, a physical property with much lower cell-to-cell variation within a cell type (and therefore greater potential to discriminate different cell types) than other physical properties. We accomplish this using a 3D-printed microfluidic chip containing a horizontal flowing micron-scale density gradient. As cells flow through the chip, Earth’s gravity makes each cell move vertically to the point where the cell’s density matches the surrounding fluid’s density. When the horizontal channel then splits, cells with different densities are routed to different outlets. As a proof of concept, we use our density sorter chip to sort polymer microbeads by their material (polyethylene and polystyrene) and blood cells by their type (white blood cells and red blood cells). The chip enriches the fraction of white blood cells in a blood sample from 0.1% (in whole blood) to nearly 98% (in the output of the chip), a 1000x enrichment. Any researcher with access to a 3D printer can easily replicate our density sorter chip and use it in their own research using the design files provided as online Supporting Information. Additionally, researchers can simulate the performance of a density sorter chip in their own applications using the Python-based simulation software that accompanies this work. The simplicity, resolution, and throughput of this technique make it suitable for isolating even rare cell types in complex biological samples, in a wide variety of different research and clinical applications. PMID:28723908
NASA Astrophysics Data System (ADS)
Handley, Scott Michael
The central theme of this thesis is to contribute to the physics underlying the mechanical properties of highly anisotropic materials. Our hypothesis is that a fundamental understanding of the physics involved in the interaction of interrogating ultrasonic waves with anisotropic media will provide useful information applicable to quantitative ultrasonic measurement techniques employed for the determination of material properties. Fiber-reinforced plastics represent a class of advanced composite materials that exhibit substantial anisotropy. The desired characteristics of practical fiber -reinforced composites depend on average mechanical properties achieved by placing fibers at specific angles relative to the external surfaces of the finished part. We examine the physics underlying the use of ultrasound as an interrogation probe for determination of ultrasonic and mechanical properties of anisotropic materials such as fiber-reinforced composites. Fundamental constituent parameters, such as elastic stiffness coefficients (c_{rm IJ}), are experimentally determined from ultrasonic time-of-flight measurements. Mechanical moduli (Poisson's ratio, Young's and shear modulus) descriptive of the anisotropic mechanical properties of unidirectional graphite/epoxy composites are obtained from the ultrasonically determined stiffness coefficients. Three-dimensional visualizations of the anisotropic ultrasonic and mechanical properties of unidirectional graphite/epoxy composites are generated. A related goal of the research is to strengthen the connection-between practical ultrasonic nondestructive evaluation methods and the physics underlying quantitative ultrasonic measurements for the assessment of manufactured fiber-reinforced composites. Production defects such as porosity have proven to be of substantial concern in the manufacturing of composites. We investigate the applicability of ultrasonic interrogation techniques for the detection and characterization of porosity in graphite/epoxy laminates. Complementary ultrasonic parameters based on the frequency dependence of ultrasonic attenuation and integrated polar backscatter are investigated. In summary, the approach taken in this thesis is to examine the physical mechanisms in terms of a continuum mechanics framework and a linear elastic description of ultrasonic wave propagation in anisotropic media with specific application to the nondestructive evaluation of advanced composite materials.
NASA Technical Reports Server (NTRS)
Holanda, R.
1984-01-01
The thermoelectric properties alloys of the nickel-base, iron-base, and cobalt-base groups containing from 1% to 25% 106 chromium were compared and correlated with the following material characteristics: atomic percent of the principle alloy constituent; ratio of concentration of two constituents; alloy physical property (electrical resistivity); alloy phase structure (percent precipitate or percent hardener content); alloy electronic structure (electron concentration). For solid-solution-type alloys the most consistent correlation was obtained with electron concentration, for precipitation-hardenable alloys of the nickel-base superalloy group, the thermoelectric potential correlated with hardener content in the alloy structure. For solid-solution-type alloys, no problems were found with thermoelectric stability to 1000; for precipitation-hardenable alloys, thermoelectric stability was dependent on phase stability. The effects of the compositional range of alloy constituents on temperature measurement uncertainty are discussed.
Olguín, Yusser; Campos, Cristian; Catalán, Javiera; Velásquez, Luís; Osorio, Fernando; Montenegro, Iván; Madrid, Alejandro; Acevedo, Cristian
2017-09-22
Advances in the generation of suitable thermosensitive hydrogels for the delivery of cells in neural tissue engineering demonstrate a delicate relationship between physical properties and capabilities to promote cell proliferation and differentiation. To improve the properties of these materials, it is possible to add liposomes for the controlled release of bioactive elements, which in turn can affect the physical and biological properties of the hydrogels. In the present investigation, different hydrogels based on Pluronic F127 have been formulated with the incorporation of chitosan and two types of liposomes of two different sizes. The rheological and thermal properties and their relation with the neurite proliferation and growth of the PC12 cell line were evaluated. Our results show that the incorporation of liposomes modifies the properties of the hydrogels dependent on the concentration of chitosan and the lipid type in the liposomes, which directly affect the capabilities of the hydrogels to promote the viability and differentiation of PC12 cells.
Olguín, Yusser; Campos, Cristian; Catalán, Javiera; Velásquez, Luís; Osorio, Fernando; Montenegro, Iván; Madrid, Alejandro; Acevedo, Cristian
2017-01-01
Advances in the generation of suitable thermosensitive hydrogels for the delivery of cells in neural tissue engineering demonstrate a delicate relationship between physical properties and capabilities to promote cell proliferation and differentiation. To improve the properties of these materials, it is possible to add liposomes for the controlled release of bioactive elements, which in turn can affect the physical and biological properties of the hydrogels. In the present investigation, different hydrogels based on Pluronic F127 have been formulated with the incorporation of chitosan and two types of liposomes of two different sizes. The rheological and thermal properties and their relation with the neurite proliferation and growth of the PC12 cell line were evaluated. Our results show that the incorporation of liposomes modifies the properties of the hydrogels dependent on the concentration of chitosan and the lipid type in the liposomes, which directly affect the capabilities of the hydrogels to promote the viability and differentiation of PC12 cells. PMID:28937646
2014-01-01
Semiconductor nanowires, due to their unique electronic, optical, and chemical properties, are firmly placed at the forefront of nanotechnology research. The rich physics of semiconductor nanowire optics arises due to the enhanced light–matter interactions at the nanoscale and coupling of optical modes to electronic resonances. Furthermore, confinement of light can be taken to new extremes via coupling to the surface plasmon modes of metal nanostructures integrated with nanowires, leading to interesting physical phenomena. This Perspective will examine how the optical properties of semiconductor nanowires can be altered via their integration with highly confined plasmonic nanocavities that have resulted in properties such as orders of magnitude faster and more efficient light emission and lasing. The use of plasmonic nanocavities for tailored optical absorption will also be discussed in order to understand and engineer fundamental optical properties of these hybrid systems along with their potential for novel applications, which may not be possible with purely dielectric cavities. PMID:25396030
Purpose: Biochars are a soil amendment produced from lignocellulosic and manure feedstocks. Not all biochars are viable soil amendments because of differences in their physical and chemical properties. Biochar could deliver more effective service as a soil amendment if its chemis...
USDA-ARS?s Scientific Manuscript database
Characterization, aggregation behavior, physical properties and drug-polymer interaction of novel soybean oil-based polymers i.e., hydrolyzed polymers of (epoxidized) soybean oil (HPESO), were studied. The surface tension method was used to determine the critical micelle concentration (CMC). CMC w...
Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology.
Schirhagl, Romana; Chang, Kevin; Loretz, Michael; Degen, Christian L
2014-01-01
Crystal defects in diamond have emerged as unique objects for a variety of applications, both because they are very stable and because they have interesting optical properties. Embedded in nanocrystals, they can serve, for example, as robust single-photon sources or as fluorescent biomarkers of unlimited photostability and low cytotoxicity. The most fascinating aspect, however, is the ability of some crystal defects, most prominently the nitrogen-vacancy (NV) center, to locally detect and measure a number of physical quantities, such as magnetic and electric fields. This metrology capacity is based on the quantum mechanical interactions of the defect's spin state. In this review, we introduce the new and rapidly evolving field of nanoscale sensing based on single NV centers in diamond. We give a concise overview of the basic properties of diamond, from synthesis to electronic and magnetic properties of embedded NV centers. We describe in detail how single NV centers can be harnessed for nanoscale sensing, including the physical quantities that may be detected, expected sensitivities, and the most common measurement protocols. We conclude by highlighting a number of the diverse and exciting applications that may be enabled by these novel sensors, ranging from measurements of ion concentrations and membrane potentials to nanoscale thermometry and single-spin nuclear magnetic resonance.
Modeling of carbonate reservoir variable secondary pore space based on CT images
NASA Astrophysics Data System (ADS)
Nie, X.; Nie, S.; Zhang, J.; Zhang, C.; Zhang, Z.
2017-12-01
Digital core technology has brought convenience to us, and X-ray CT scanning is one of the most common way to obtain 3D digital cores. However, it can only provide the original information of the only samples being scanned, and we can't modify the porosity of the scanned cores. For numerical rock physical simulations, a series of cores with variable porosities are needed to determine the relationship between the physical properties and porosity. In carbonate rocks, the secondary pore space including dissolution pores, caves and natural fractures is the key reservoir space, which makes the study of carbonate secondary porosity very important. To achieve the variation of porosities in one rock sample, based on CT scanned digital cores, according to the physical and chemical properties of carbonate rocks, several mathematical methods are chosen to simulate the variation of secondary pore space. We use the erosion and dilation operations of mathematical morphology method to simulate the pore space changes of dissolution pores and caves. We also use the Fractional Brownian Motion model to generate natural fractures with different widths and angles in digital cores to simulate fractured carbonate rocks. The morphological opening-and-closing operations in mathematical morphology method are used to simulate distribution of fluid in the pore space. The established 3D digital core models with different secondary porosities and water saturation status can be used in the study of the physical property numerical simulations of carbonate reservoir rocks.
MP3C - the Minor Planet Physical Properties Catalogue: a New VO Service For Multi-database Query
NASA Astrophysics Data System (ADS)
Tanga, Paolo; Delbo, M.; Gerakis, J.
2013-10-01
In the last few years we witnessed a large growth in the number of asteroids for which we have physical properties. However, these data are dispersed in a multiplicity of catalogs. Extracting data and combining them for further analysis requires custom tools, a situation further complicated by the variety of data sources, some of them standardized (Planetary Data System) others not. With these problems in mind, we created a new Virtual Observatory service named “Minor Planet Physical Properties Catalogue” (abbreviated as MP3C - http://mp3c.oca.eu/). MP3C is not a new database, but rather a portal allowing the user to access selected properties of objects by easy SQL query, even from different sources. At present, such diverse data as orbital parameters, photometric and light curve parameters, sizes and albedos derived by IRAS, AKARI and WISE, SDSS colors, SMASS taxonomy, family membership, satellite data, stellar occultation results, are included. Other data sources will be added in the near future. The physical properties output of the MP3C can be tuned by the users by query criteria based upon ranges of values of the ingested quantities. The resulting list of object can be used for interactive plots through standard VO tools such as TOPCAT. Also, their ephemerids and visibilities from given sites can be computed. We are targeting full VO compliance for providing a new standardized service to the community.
Numerical Simulation of Electrical Properties of Carbonate Reservoir Rocks Using µCT Images
NASA Astrophysics Data System (ADS)
Colgin, J.; Niu, Q.; Zhang, C.; Zhang, F.
2017-12-01
Digital rock physics involves the modern microscopic imaging of geomaterials, digitalization of the microstructure, and numerical simulation of physical properties of rocks. This physics-based approach can give important insight into understanding properties of reservoir rocks, and help reveal the link between intrinsic rock properties and macroscopic geophysical responses. The focus of this study is the simulation of the complex conductivity of carbonate reservoir rocks using reconstructed 3D rock structures from high-resolution X-ray micro computed tomography (µCT). Carbonate core samples with varying lithofacies and pore structures from the Cambro-Ordovician Arbuckle Group and the Upper Pennsylvanian Lansing-Kansas City Group in Kansas are used in this study. The wide variations in pore geometry and connectivity of these samples were imaged using µCT. A two-phase segmentation method was used to reconstruct a digital rock of solid particles and pores. We then calculate the effective electrical conductivity of the digital rock volume using a pore-scale numerical approach. The complex conductivity of geomaterials is influenced by the electrical properties and geometry of each phase, i.e., the solid and fluid phases. In addition, the electrical double layer that forms between the solid and fluid phases can also affect the effective conductivity of the material. In the numerical modeling, the influence of the electrical double layer is quantified by a complex surface conductance and converted to an apparent volumetric complex conductivity of either solid particles or pore fluid. The effective complex conductivity resulting from numerical simulations based on µCT images will be compared to results from laboratory experiments on equivalent rock samples. The imaging and digital segmentation method, assumptions in the numerical simulation, and trends as compared to laboratory results will be discussed. This study will help us understand how microscale physics affects macroscale electrical conductivity in porous media.
Perovskite Materials: Solar Cell and Optoelectronic Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Bin; Geohegan, David B; Xiao, Kai
2017-01-01
Hybrid organometallic trihalide perovskites are promising candidates in the applications for next-generation, high-performance, low-cost optoelectronic devices, including photovoltaics, light emitting diodes, and photodetectors. Particularly, the solar cells based on this type of materials have reached 22% lab scale power conversion efficiency in only about seven years, comparable to the other thin film photovoltaic technologies. Hybrid perovskite materials not only exhibit superior optoelectronic properties, but also show many interesting physical properties such as ion migration and defect physics, which may allow the exploration of more device functionalities. In this article, the fundamental understanding of the interrelationships between crystal structure, electronic structure,more » and material properties is discussed. Various chemical synthesis and processing methods for superior device performance in solar cells and optoelectronic devices are reviewed.« less
Graphene-Based Materials for Biosensors: A Review
Suvarnaphaet, Phitsini; Pechprasarn, Suejit
2017-01-01
The advantages conferred by the physical, optical and electrochemical properties of graphene-based nanomaterials have contributed to the current variety of ultrasensitive and selective biosensor devices. In this review, we present the points of view on the intrinsic properties of graphene and its surface engineering concerned with the transduction mechanisms in biosensing applications. We explain practical synthesis techniques along with prospective properties of the graphene-based materials, which include the pristine graphene and functionalized graphene (i.e., graphene oxide (GO), reduced graphene oxide (RGO) and graphene quantum dot (GQD). The biosensing mechanisms based on the utilization of the charge interactions with biomolecules and/or nanoparticle interactions and sensing platforms are also discussed, and the importance of surface functionalization in recent up-to-date biosensors for biological and medical applications. PMID:28934118
R&D of Energetic Ionic Liquids
2011-11-01
Ammonia 3-6 H2O balance Properties LMP-103S AF - M315E Hydrazine Ispvac,lbf sec/lbm (e = 50:1 Pc = 300 psi) 252 (theor.) 235 (del) 266...Distribution A: Public Release, Distribution unlimited. AF - M315E is US Air Force IL-Based Monopropellant •Significant physical property and performance...6 Toxicity Assessment of AF - M315E Toxicity Testing Results PROPERTY AF - M315E HYDRAZINE LD50 (rat), mg/kg 550 60 Dermal Irritation (rabbit
Adsorption Properties of Lignin-derived Activated Carbon Fibers (LACF)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Contescu, Cristian I.; Gallego, Nidia C.; Thibaud-Erkey, Catherine
The object of this CRADA project between Oak Ridge National Laboratory (ORNL) and United Technologies Research Center (UTRC) is the characterization of lignin-derived activated carbon fibers (LACF) and determination of their adsorption properties for volatile organic compounds (VOC). Carbon fibers from lignin raw materials were manufactured at Oak Ridge National Laboratory (ORNL) using the technology previously developed at ORNL. These fibers were physically activated at ORNL using various activation conditions, and their surface area and pore-size distribution were characterized by gas adsorption. Based on these properties, ORNL did down-select five differently activated LACF materials that were delivered to UTRC formore » measurement of VOC adsorption properties. UTRC used standard techniques based on breakthrough curves to measure and determine the adsorption properties of indoor air pollutants (IAP) - namely formaldehyde and carbon dioxide - and to verify the extent of saturated fiber regenerability by thermal treatments. The results are summarized as follows: (1) ORNL demonstrated that physical activation of lignin-derived carbon fibers can be tailored to obtain LACF with surface areas and pore size distributions matching the properties of activated carbon fibers obtained from more expensive, fossil-fuel precursors; (2) UTRC investigated the LACF potential for use in air cleaning applications currently pursued by UTRC, such as building ventilation, and demonstrated their regenerability for CO2 and formaldehyde, (3) Both partners agree that LACF have potential for possible use in air cleaning applications.« less
Transport Properties of Complex Oxides: New Ideas and Insights from Theory and Simulation
NASA Astrophysics Data System (ADS)
Benedek, Nicole
Complex oxides are one of the largest and most technologically important materials families. The ABO3 perovskite oxides in particular display an unparalleled variety of physical properties. The microscopic origin of these properties (how they arise from the structure of the material) is often complicated, but in many systems previous research has identified simple guidelines or `rules of thumb' that link structure and chemistry to the physics of interest. For example, the tolerance factor is a simple empirical measure that relates the composition of a perovskite to its tendency to adopt a distorted structure. First-principles calculations have shown that the tendency towards ferroelectricity increases systematically as the tolerance factor of the perovskite decreases. Can we uncover a similar set of simple guidelines to yield new insights into the ionic and thermal transport properties of perovskites? I will discuss recent research from my group on the link between crystal structure and chemistry, soft phonons and ionic transport in a family of layered perovskite oxides, the Ln2NiO4+δ Ruddlesden-Popper phases. In particular, we show how the lattice dynamical properties of these materials (their tendency to undergo certain structural distortions) can be correlated with oxide ion transport properties. Ultimately, we seek new ways to understand the microscopic origins of complex transport processes and to develop first-principles-based design rules for new materials based on our understanding.
Symétries et nomenclature des baryons: Proposition d'une nouvelle nomenclature
NASA Astrophysics Data System (ADS)
Landry, Gaëtan
Baryons, such as protons and neutrons, are matter particles made of three quarks. Their current nomenclature is based on the concept of isospin, introduced by Werner Heisenberg in 1932 to explain the similarity between the masses of protons and neutrons, as well as the similarity of their behaviour under the strong interaction. It is a refinement of a nomenclature designed in 1964, before the acceptance of the quark model, for light baryons. A historical review of baryon physics before the advent of the quark model is given to understand the motivations behind the light baryon nomenclature. Then, an overview of the quark model is given to understand the extensions done to this nomenclature in 1986, as well as to understand the physics of baryons and of properties such as isospin and flavour quantum numbers. Since baryon properties are in general explained by the quark model, a nomenclature based on isospin leads to several issues of physics and of clarity. To resolve these issues, the concepts of isospin and mass groups are generalized to all flavours of quarks, the Gell-Mann--Okubo formalism is extended to generalized mass groups, and a baryon nomenclature based on the quark model, reflecting modern knowledge, is proposed.
Nippe, Stefanie; General, Sascha
2011-09-15
Drospirenone (DRSP) is a contraceptive drug substance with challenging physicochemical properties, due to insufficient solubility in aqueous and oil-based vehicles as well as low chemical stability in aqueous fluids. Although it is one of the most popular orally used progestins, no parenteral long-acting contraceptive containing the drug substance is marketed. An oil-based DRSP microcrystal suspension (MCS) might be an attractive formulation option. The main focus of this study was to investigate the physicochemical stability of such preparations. Moreover, syringeability and injectability via autoinjector were analysed using a materials testing machine. A high chemical stability of DRSP was found in oil-based vehicles. Span(®) 83, cholesteryl oleate, lecithin, methyl cholate, Aerosil(®) R972 and 200 Pharma were tested for increasing the physical stability of DRSP dispersions. Changes in viscosity, rheological properties, and solubility were analysed. The intention was to show a stabilising effect of the excipients without increasing viscosity and solubility. To evaluate the physical stability of DRSP MCS with and without addition of stabilising agents, sedimentation and particle growth after storage were examined. Especially, the silica derivatives Aerosil(®) 200 and R972 Pharma influenced the physical stability positively. Copyright © 2011 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Anchorage School District, AK.
This resource book introduces sixth-grade children to the physical and chemical properties of gases. The unit begins with an investigation of acids and bases. Students then generate carbon dioxide, oxygen, and hydrogen, and investigate the properties of each. The unit culminates with an activity involving an unknown gas. Students conduct tests to…
Laccase modification of the physical properties of bark and pulp of loblolly pine and spruce pulp
William Kenealy; John Klungness; Mandla Tshabalala; Eric Horn; Masood Akhtar; Roland Gleisner; Gisela Buschle-Diller
2004-01-01
Pine bark, pine pulp, and spruce pulp were reacted with laccase in the presence of phenolic laccase substrates to modify the fiber surface properties. The acid-base and dispersive characteristics of these modified steam-treated thermomechanical loblolly pine pulps were determined by inverse gas chromatography. Different combinations of substrates with laccase modified...
Ink Wash Painting Style Rendering With Physically-based Ink Dispersion Model
NASA Astrophysics Data System (ADS)
Wang, Yifan; Li, Weiran; Zhu, Qing
2018-04-01
This paper presents a real-time rendering method based on the GPU programmable pipeline for rendering the 3D scene in ink wash painting style. The method is divided into main three parts: First, render the ink properties of 3D model by calculating its vertex curvature. Then, cached the ink properties to a paper structure and using an ink dispersion model which is defined by referencing the theory of porous media to simulate the dispersion of ink. Finally, convert the ink properties to the pixel color information and render it to the screen. This method has a better performance than previous methods in visual quality.
Physical properties of forest soils
Charles H. Perry; Michael C. Amacher
2007-01-01
Why Are Physical Properties of the Soil Important? The soil quality indicator, when combined with other data collected by the FIA program, can indicate the current rates of soil erosion, the extent and intensity of soil compaction, and some basic physical properties of the forest floor and the top 20 cm of soil. In this report, two particular physical properties of the...
Recent advances in molecular electronics based on carbon nanotubes.
Bourgoin, Jean-Philippe; Campidelli, Stéphane; Chenevier, Pascale; Derycke, Vincent; Filoramo, Arianna; Goffman, Marcelo F
2010-01-01
Carbon nanotubes (CNTs) have exceptional physical properties that make them one of the most promising building blocks for future nanotechnologies. They may in particular play an important role in the development of innovative electronic devices in the fields of flexible electronics, ultra-high sensitivity sensors, high frequency electronics, opto-electronics, energy sources and nano-electromechanical systems (NEMS). Proofs of concept of several high performance devices already exist, usually at the single device level, but there remain many serious scientific issues to be solved before the viability of such routes can be evaluated. In particular, the main concern regards the controlled synthesis and positioning of nanotubes. In our opinion, truly innovative use of these nano-objects will come from: (i) the combination of some of their complementary physical properties, such as combining their electrical and mechanical properties, (ii) the combination of their properties with additional benefits coming from other molecules grafted on the nanotubes, and (iii) the use of chemically- or bio-directed self-assembly processes to allow the efficient combination of several devices into functional arrays or circuits. In this article, we outline the main issues concerning the development of carbon nanotubes based electronics applications and review our recent results in the field.
New approaches to estimation of peat deposits for production of biologically active compounds
NASA Astrophysics Data System (ADS)
Stepchenko, L. M.; Yurchenko, V. I.; Krasnik, V. G.; Syedykh, N. J.
2009-04-01
It is known, that biologically active preparations from peat increase animals productivity as well as resistance against stress-factors and have adaptogeneous, antioxidant, immunomodulative properties. Optymal choice of peat deposits for the production of biologically active preparations supposes the detailed comparative analysis of peat properties from different deposits. For this the cadastre of peat of Ukraine is developed in the humic substances laboratory named after prof. Khristeva L.A. (Dnipropetrovsk Agrarian University, Ukraine). It based on the research of its physical and chemical properties, toxicity and biological activity, and called Biocadastre. The Biocadastre is based on the set of parameters, including the descriptions of physical and chemical properties (active acidity, degree of decomposition, botanical composition etc.), toxicity estimation (by parabyotyc, infusorial, inhibitor and other tests), biological activity indexes (growth-promoting, antioxidative, adaptogeneous, immunomodulative antistress and other actions). The blocks of Biocadastre indexes are differentiated, taking into account their use for creation the preparations for vegetable, animals and microorganisms. The Biocadastre will allow to choose the peat deposits, most suitable for the production of different biologically active preparations, both wide directed and narrow spectrum of action, depending on application fields (medicine, agriculture, veterinary medicine, microbiological industry, balneology, cosmetology).
Daniels, J.J.; Olhoeft, G.R.; Scott, J.H.
1984-01-01
Laboratory and well log physical property measurements show variations in the mineralogy with depth in UPH-3. Gamma ray values generally decrease with depth in the drill hole, corresponding to a decrease in the felsic mineral components of the granite. Correspondingly, an increase with depth in mafic minerals in the granite is indicated by the magnetic susceptibility, and gamma ray measurements. These mineralogic changes indicated by the geophysical well logs support the hypothesis of fractionation during continuous crystallization of the intrusive penetrated by UPH-3. Two fracture zones, and an altered zone within the granite penetrated by drill hole UPH-3 are defined by the physical property measurements. An abnormally low magnetic susceptibility response in the upper portion of the drill hole can be attributed to alteration of the rock adjacent to the sediments overlying the granite. Fracture zones can be identified from the sonic velocity, neutron, and resistivity measurements. A fracture zone, characterized by low resistivity values and low neutron values, is present in the depth interval from 1150 to 1320 m. Low magnetic susceptibility and high gamma ray values indicate the presence of felsic-micaceous pegmatites within this fracture zone. An unfractured region present from a depth of 1380 m to the bottom of the hole is characterized by an absence of physical property variations. The magnetic susceptibility and gamma ray measurements indicate a change in the amount of mafic minerals at the base of this otherwise homogenous region of the drilled interval. Abrupt changes and repeated patterns of physical properties within the drill hole may represent interruptions in the crystallization process of the melt or they may be indicative of critical temperatures for specific mineral assemblages within the intrusive.
Earth-type planets (Mercury, Venus, and Mars)
NASA Technical Reports Server (NTRS)
Marov, M. Y.; Davydov, V. D.
1975-01-01
Spacecraft- and Earth-based studies on the physical nature of the planets Mercury, Venus, and Mars are reported. Charts and graphs are presented on planetary surface properties, rotational parameters, atmospheric compositions, and astronomical characteristics.
E-FAST-Exposure and Fate Assessment Screening Tool Version 2014
E-FAST estimates potential exposures to the general population and surface water concentrations based on releases from industrial operations and basic physical-chemical properties and fate parameters of the substance
Mogol, Burçe Ataç; Gökmen, Vural
2014-05-01
Computer vision-based image analysis has been widely used in food industry to monitor food quality. It allows low-cost and non-contact measurements of colour to be performed. In this paper, two computer vision-based image analysis approaches are discussed to extract mean colour or featured colour information from the digital images of foods. These types of information may be of particular importance as colour indicates certain chemical changes or physical properties in foods. As exemplified here, the mean CIE a* value or browning ratio determined by means of computer vision-based image analysis algorithms can be correlated with acrylamide content of potato chips or cookies. Or, porosity index as an important physical property of breadcrumb can be calculated easily. In this respect, computer vision-based image analysis provides a useful tool for automatic inspection of food products in a manufacturing line, and it can be actively involved in the decision-making process where rapid quality/safety evaluation is needed. © 2013 Society of Chemical Industry.
Evaluation of Binding Effects in Wood Flour Board Containing Ligno-Cellulose Nanofibers
Kojima, Yoichi; Isa, Akiko; Kobori, Hikaru; Suzuki, Shigehiko; Ito, Hirokazu; Makise, Rie; Okamoto, Masaki
2014-01-01
Wood-based materials are used extensively in residual construction worldwide. Most of the adhesives used in wood-based materials are derived from fossil resources, and some are not environmentally friendly. This study explores nanofiber technology as an alternative to such adhesives. Previous studies have shown that the three-dimensional binding effects of cellulose nanofiber (CNF), when mixed with wood flour, can significantly improve the physical and mechanical properties of wood flour board. In this study, ligno-cellulose nanofibers (LCNF) were fabricated by wet disk milling of wood flour. Composite boards of wood flour and LCNF were produced to investigate the binding effect(s) of LCNF. The fabrication of LCNF by disk milling was simple and effective, and its incorporation into wood flour board significantly enhanced the physical and mechanical properties of the board. PMID:28788217
Inference of Surface Chemical and Physical Properties Using Mid-Infrared (MIR) Spectral Observations
NASA Technical Reports Server (NTRS)
Roush, Ted L.
2016-01-01
Reflected or emitted energy from solid surfaces in the solar system can provide insight into thermo-physical and chemical properties of the surface materials. Measurements have been obtained from instruments located on Earth-based telescopes and carried on several space missions. The characteristic spectral features commonly observed in Mid-Infrared (MIR) spectra of minerals will be reviewed, along with methods used for compositional interpretations of MIR emission spectra. The influence of surface grain size, and space weathering processes on MIR emissivity spectra will also be discussed. Methods used for estimating surface temperature, emissivity, and thermal inertias from MIR spectral observations will be reviewed.
Chiarotto, Alessandro; Maxwell, Lara J; Terwee, Caroline B; Wells, George A; Tugwell, Peter; Ostelo, Raymond W
2016-10-01
Physical functioning is a core outcome domain to be measured in nonspecific low back pain (NSLBP). A panel of experts recommended the Roland-Morris Disability Questionnaire (RMDQ) and Oswestry Disability Index (ODI) to measure this domain. The original 24-item RMDQ and ODI 2.1a are recommended by their developers. The purpose of this study was to evaluate whether the 24-item RMDQ or the ODI 2.1a has better measurement properties than the other to measure physical functioning in adult patients with NSLBP. Bibliographic databases (MEDLINE, Embase, CINAHL, SportDiscus, PsycINFO, and Google Scholar), references of existing reviews, and citation tracking were the data sources. Two reviewers selected studies performing a head-to-head comparison of measurement properties (reliability, validity, and responsiveness) of the 2 questionnaires. The COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) checklist was used to assess the methodological quality of these studies. The studies' characteristics and results were extracted by 2 reviewers. A meta-analysis was conducted when there was sufficient clinical and methodological homogeneity among studies. Nine articles were included, for a total of 11 studies assessing 5 measurement properties. All studies were classified as having poor or fair methodological quality. The ODI displayed better test-retest reliability and smaller measurement error, whereas the RMDQ presented better construct validity as a measure of physical functioning. There was conflicting evidence for both instruments regarding responsiveness and inconclusive evidence for internal consistency. The results of this review are not generalizable to all available versions of these questionnaires or to patients with specific causes for their LBP. Based on existing head-to-head comparison studies, there are no strong reasons to prefer 1 of these 2 instruments to measure physical functioning in patients with NSLBP, but studies of higher quality are needed to confirm this conclusion. Foremost, content, structural, and cross-cultural validity of these questionnaires in patients with NSLBP should be assessed and compared. © 2016 American Physical Therapy Association.
NASA Astrophysics Data System (ADS)
Dong, S.
2018-05-01
We present a reduction-consistent and thermodynamically consistent formulation and an associated numerical algorithm for simulating the dynamics of an isothermal mixture consisting of N (N ⩾ 2) immiscible incompressible fluids with different physical properties (densities, viscosities, and pair-wise surface tensions). By reduction consistency we refer to the property that if only a set of M (1 ⩽ M ⩽ N - 1) fluids are present in the system then the N-phase governing equations and boundary conditions will exactly reduce to those for the corresponding M-phase system. By thermodynamic consistency we refer to the property that the formulation honors the thermodynamic principles. Our N-phase formulation is developed based on a more general method that allows for the systematic construction of reduction-consistent formulations, and the method suggests the existence of many possible forms of reduction-consistent and thermodynamically consistent N-phase formulations. Extensive numerical experiments have been presented for flow problems involving multiple fluid components and large density ratios and large viscosity ratios, and the simulation results are compared with the physical theories or the available physical solutions. The comparisons demonstrate that our method produces physically accurate results for this class of problems.
Katsogiannis, Konstantinos Alexandros G; Vladisavljević, Goran T; Georgiadou, Stella; Rahmani, Ramin
2016-10-26
The effect of pore induction on increasing electrospun fibrous network specific surface area was investigated in this study. Theoretical models based on the available surface area of the fibrous network and exclusion of the surface area lost due to fiber-to-fiber contacts were developed. The models for calculation of the excluded area are based on Hertzian, Derjaguin-Muller-Toporov (DMT), and Johnson-Kendall-Roberts (JKR) contact models. Overall, the theoretical models correlated the network specific surface area to the material properties including density, surface tension, Young's modulus, Poisson's ratio, as well as network physical properties, such as density and geometrical characteristics including fiber radius, fiber aspect ratio and network thickness. Pore induction proved to increase the network specific surface area up to 52%, compared to the maximum surface area that could be achieved by nonporous fiber network with the same physical properties and geometrical characteristics. The model based on Johnson-Kendall-Roberts contact model describes accurately the fiber-to-fiber contact area under the experimental conditions used for pore generation. The experimental results and the theoretical model based on Johnson-Kendall-Roberts contact model show that the increase in network surface area due to pore induction can reach to up to 58%.
Biodegradable baked foam made with chayotextle starch mixed with plantain flour and wood fiber
USDA-ARS?s Scientific Manuscript database
New renewable materials are needed to reduce petroleum-based plastic packaging. The effect of plantain flour (PF) and wood fiber (WF) on the properties of starch-based foams (SBFs) were investigated. The SBFs were characterized using physical, thermal, and mechanical methods to better understand the...
A dynamics based view of atmosphere-fire interactions
Brian E. Potter
2002-01-01
Current research on severe fire interactions with the atmosphere focuses largely on examination of correlations between fire growth and various atmospheric properties, and on the development of indices based on these correlations. The author proposes that progress requires understanding the physics and atmospheric dynamics behind the correlations. A conceptual 3-stage...
USDA-ARS?s Scientific Manuscript database
Polyvinyl alcohols-based nanocomposite films were fabricated with four types of montmorillonite (MMT) nanoclay, including 18-amino stearic acid (I.24TL), methyl, bis hydroxyethyl, octadecyl ammonium (I.34TCN), di-methyl, di-hydrogenated tallow ammonium/siloxane (I.44PSS) organically modified MMT, an...
Evaluating the effect of tillage on soil structural properties using the pedostructure concept
USDA-ARS?s Scientific Manuscript database
The pedostructure (PS) concept is a physically-based method of soil characterization that defines a soil based on its structure and the relationship between structure and soil water behavior. There are fifteen unique pedostructure parameters that define the macropore and micropore soil water behavio...
Effect of polysoap on physical and tribology properties of soybean oil-based grease
USDA-ARS?s Scientific Manuscript database
The overall objective of this work was to evaluate the evolution of soybean oil based grease containing polysoaps made from polymeric epoxdized soybean oil. With this aim, lubricating greases were prepared from a mixed soap comprising lithium soap and triethanol ammonium polysoap synthesized from so...
Effect of annealing over optoelectronic properties of graphene based transparent electrodes
NASA Astrophysics Data System (ADS)
Yadav, Shriniwas; Kaur, Inderpreet
2016-04-01
Graphene, an atom-thick two dimensional graphitic material have led various fundamental breakthroughs in the field of science and technology. Due to their exceptional optical, physical and electrical properties, graphene based transparent electrodes have shown several applications in organic light emitting diodes, solar cells and thin film transistors. Here, we are presenting effect of annealing over optoelectronic properties of graphene based transparent electrodes. Graphene based transparent electrodes have been prepared by wet chemical approach over glass substrates. After fabrication, these electrodes tested for optical transmittance in visible region. Sheet resistance was measured using four probe method. Effect of thermal annealing at 200 °C was studied over optical and electrical performance of these electrodes. Optoelectronic performance was judged from ratio of direct current conductivity to optical conductivity (σdc/σopt) as a figure of merit for transparent conductors. The fabricated electrodes display good optical and electrical properties. Such electrodes can be alternatives for doped metal oxide based transparent electrodes.
The Effect of Plant Source on the Structural Properties of Lignin-based Polyurethane Blends
NASA Astrophysics Data System (ADS)
Lang, Jason; Dadmun, Mark
The development of polyurethane materials based on incorporating lignin from a variety of plant sources (softwood, hardwood, and non-wood) were synthesized. Further experiments study the physical properties of the resulting lignin-based polyurethane as a function of the lignin structure, which varies with plant source. Here, we report the effect that internal crosslinking of the lignin structure has on the modulus, hardness, glass transition temperature, and thermal decomposition of the synthesized lignin-based polyurethane composites. The lignins used in this work were a softwood kraft lignin, hardwood lignosulfonate, and a wheat straw soda lignin. The lignin, acting as a polyol and the hardblock segment, reacts with TDI-endcapped PPG (2,300 MN) as the rubbery softblock component to produce lignin-based polyurethanes with varying lignin content (10, 20, 30, 40, 50, and 60 wt%). Results show that the wheat straw lignin provides the superior mechanical properties and thermal resistance. These properties are correlated to the two-phase morphology of the resultant polyurethane.
Friction-induced nano-structural evolution of graphene as a lubrication additive
NASA Astrophysics Data System (ADS)
Zhao, Jun; Mao, Junyuan; Li, Yingru; He, Yongyong; Luo, Jianbin
2018-03-01
Graphene has attracted enormous attention in the field of lubrication based on its excellent physical and chemical properties. Although many studies have obtained thermally or chemically- exfoliated graphene and investigated their wide and important application, few studies have reported their physical nano-structural evolution under friction. In this study, we investigated the lubrication properties of graphene additives with different layer numbers and interlayer spacing by exfoliating. The additives with a higher degrees of exfoliation changed to ordering under friction, and had better lubrication properties, while that with a lower degrees exhibited obvious structural defects and high friction. Therefore, the original degrees of exfoliation plays a key role in the structural evolution of graphene and superior lubrication can be achieved through the physical nano-structure changing to ordering, even graphitization. Furthermore, the ordered tribofilm on the frictional interfaces was parallel to the sliding direction, meaning the highly exfoliated graphene indeed reaching slippage between its layers, which wasn't experimentally discovered in previous studies. This work provides a new understanding of the relationship between friction-induced nano-structural evolution and lubrication properties of graphene as a lubrication additive, and has great potential for the structural design of graphene as a lubrication additive.
NASA Astrophysics Data System (ADS)
Ivanova, Bojidarka; Spiteller, Michael
2013-02-01
The paper presented a comprehensive theoretical and experimental study on the molecular drugs-design, synthesis, isolation, physical spectroscopic and mass spectrometric elucidation of novel functionalization derivatives of Cytisine (Cyt), using nucleosidic residues. Since these alkaloids have established biochemical profile, related the binding affinity of the nicotinic acetylcholine receptors (nAChRs), particularly α7 sub-type, the presented correlation between the molecular structure and properties allowed to evaluated the highlights of the biochemical hypothesises related the Schizophrenia. The anticancer activity of α7 subtype agonists and the crucial role of the nucleoside-based medications in the cancer therapy provided opportunity for further study on the biochemical relationship between Schizophrenia and few kinds of cancers, which has been hypothesized recently. The physical electronic absorptions (EAs), circular dichroic (CD) and Raman spectroscopic (RS) properties as well as mass spectrometric (MS) data, obtained using electrospray ionization (ESI) and atmospheric-pressure chemical ionization (APCI) methods under the positive single (MS) and tandem (MS/MS) modes of operation are discussed. Taking into account reports on a fatal intoxication of Cyt, the presented data would be of interest in the field of forensic chemistry, through development of highly selective and sensitive analytical protocols. Quantum chemical method is used to predict the physical properties of the isolated alkaloids, their affinity to the receptor loop and gas-phase stabilized species, observed mass spectrometrically.
Prediction of brittleness based on anisotropic rock physics model for kerogen-rich shale
NASA Astrophysics Data System (ADS)
Qian, Ke-Ran; He, Zhi-Liang; Chen, Ye-Quan; Liu, Xi-Wu; Li, Xiang-Yang
2017-12-01
The construction of a shale rock physics model and the selection of an appropriate brittleness index ( BI) are two significant steps that can influence the accuracy of brittleness prediction. On one hand, the existing models of kerogen-rich shale are controversial, so a reasonable rock physics model needs to be built. On the other hand, several types of equations already exist for predicting the BI whose feasibility needs to be carefully considered. This study constructed a kerogen-rich rock physics model by performing the selfconsistent approximation and the differential effective medium theory to model intercoupled clay and kerogen mixtures. The feasibility of our model was confirmed by comparison with classical models, showing better accuracy. Templates were constructed based on our model to link physical properties and the BI. Different equations for the BI had different sensitivities, making them suitable for different types of formations. Equations based on Young's Modulus were sensitive to variations in lithology, while those using Lame's Coefficients were sensitive to porosity and pore fluids. Physical information must be considered to improve brittleness prediction.
Liu, Jian-Guo; Du, Jian-Qiang; Zeng, Zhi-Fang; Ai, Guo-Ping
2016-10-01
The Korteweg-de Vries (KdV)-type models have been shown to describe many important physical situations such as fluid flows, plasma physics, and solid state physics. In this paper, a new (2 + 1)-dimensional KdV equation is discussed. Based on the Hirota's bilinear form and a generalized three-wave approach, we obtain new exact solutions for the new (2 + 1)-dimensional KdV equation. With the help of symbolic computation, the properties for some new solutions are presented with some figures.
Lasers, Cold Atoms and Atomic Clocks: Realizing the Second Today
NASA Astrophysics Data System (ADS)
Calonico, Davide
2013-09-01
The time is the physical quantity that mankind could measure with the best accuracy, thanks to the properties of the atomic physics, as the present definition of time is based on atomic energy transitions. This short review gives some basic information on the heart of the measurement of time in the contemporary world, i.e. the atomic clocks, and some trends related.
A skeleton family generator via physics-based deformable models.
Krinidis, Stelios; Chatzis, Vassilios
2009-01-01
This paper presents a novel approach for object skeleton family extraction. The introduced technique utilizes a 2-D physics-based deformable model that parameterizes the objects shape. Deformation equations are solved exploiting modal analysis, and proportional to model physical characteristics, a different skeleton is produced every time, generating, in this way, a family of skeletons. The theoretical properties and the experiments presented demonstrate that obtained skeletons match to hand-labeled skeletons provided by human subjects, even in the presence of significant noise and shape variations, cuts and tears, and have the same topology as the original skeletons. In particular, the proposed approach produces no spurious branches without the need of any known skeleton pruning method.
Knepper, D.H.; Langer, W.H.; Miller, S.
1995-01-01
Natural aggregate is vital to the construction industry. Although natural aggregate is a high volume/low value commodity that is abundant, new sources are becoming increasingly difficult to find and develop because of rigid industry specifications, political considerations, development and transportation costs, and environmental concerns. There are two primary sources of natural aggregate: (1) exposed or near-surface bedrock that can be crushed, and (2) deposits of sand and gravel. Remote sensing and airborne geophysics detect surface and near-surface phenomena, and may be useful for detecting and mapping potential aggregate sources; however, before a methodology for applying these techniques can be developed, it is necessary to understand the type, distribution, physical properties, and characteristics of natural aggregate deposits. The distribution of potential aggregate sources is closely tied to local geologic history. Conventional exploration for natural aggregate deposits has been largely a ground-based operation, although aerial photographs and topographic maps have been extensively used to target possible deposits. Today, the exploration process also considers factors such as the availability of the land, space and water supply for processing, political and environmental factors, and distance from the market; exploration and planning cannot be separated. There are many physical properties and characteristics by which to judge aggregate material for specific applications; most of these properties and characteristics pertain only to individual aggregate particles. The application of remote sensing and airborne geophysical measurements to detecting and mapping potential aggregate sources, however, is based on intrinsic bulk physical properties and extrinsic characteristics of the deposits that can be directly measured, mathematically derived from measurement, or interpreted with remote sensing and geophysical data. ?? 1995 Oxford UniversityPress.
Magnetic and Optical Properties of Submicron-Size Hollow Spheres
Ye, Quan-Lin; Yoshikawa, Hirofumi; Awaga, Kunio
2010-01-01
Magnetic hollow spheres with a controlled diameter and shell thickness have emerged as an important class of magnetic nanomaterials. The confined hollow geometry and pronouncedly curved surfaces induce unique physical properties different from those of flat thin films and solid counterparts. In this paper, we focus on recent progress on submicron-size spherical hollow magnets (e.g., cobalt- and iron-based materials), and discuss the effects of the hollow shape and the submicron size on magnetic and optical properties.
Mukhopadhyay, Rahul Dev; Praveen, Vakayil K; Hazra, Arpan; Maji, Tapas Kumar; Ajayaghosh, Ayyappanpillai
2015-11-13
Control over the self-assembly process of porous organic-inorganic hybrids often leads to unprecedented polymorphism and properties. Herein we demonstrate how light can be a powerful tool to intervene in the kinetically controlled mesoscale self-assembly of a coordination polymeric gelator. Ultraviolet light induced coordination modulation via photoisomerisation of an azobenzene based dicarboxylate linker followed by aggregation mediated crystal growth resulted in two distinct morphological forms (flowers and stars), which show subtle differences in their physical properties.
These include synthetics such as silicone fluids and tung oils, wood-derivative oils such as resin/rosin, animal fats/oil, and seed oils. Many have similar physical properties to petroleum-based, such as water insolubility and formation of slicks.
Parameter studies of sediments in the Storegga Slide region
NASA Astrophysics Data System (ADS)
Yang, S. L.; Kvalstad, T.; Solheim, A.; Forsberg, C. F.
2006-09-01
Based on classification tests, oedometer tests, fall-cone tests and triaxial tests, physical and mechanical properties of sediments in the Storegga Slide region were analysed to assess parameter interrelationships. The data show good relationships between a number of physical and mechanical parameters. Goodness of fit between compression index and various physical parameters can be improved by multiple regression analysis. The interclay void ratio and liquidity index correlate well with the undrained shear strength of clay. Sediments with higher water content, liquid limit, activity, interclay void ratio, plasticity index and liquidity index showed higher compression index and/or lower undrained shear strength. Some relationships between parameters were tested by using data from two other sites south of the Storegga Slide. A better understanding of properties of sediments in regions such as that of the Storegga Slide can be obtained through this approach.
40 CFR 716.50 - Reporting physical and chemical properties.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Reporting physical and chemical... SUBSTANCES CONTROL ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.50 Reporting physical and chemical properties. Studies of physical and chemical properties must be reported under this subpart if...
40 CFR 716.50 - Reporting physical and chemical properties.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Reporting physical and chemical... SUBSTANCES CONTROL ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.50 Reporting physical and chemical properties. Studies of physical and chemical properties must be reported under this subpart if...
40 CFR 716.50 - Reporting physical and chemical properties.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Reporting physical and chemical... SUBSTANCES CONTROL ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.50 Reporting physical and chemical properties. Studies of physical and chemical properties must be reported under this subpart if...
40 CFR 716.50 - Reporting physical and chemical properties.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Reporting physical and chemical... SUBSTANCES CONTROL ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.50 Reporting physical and chemical properties. Studies of physical and chemical properties must be reported under this subpart if...
40 CFR 716.50 - Reporting physical and chemical properties.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Reporting physical and chemical... SUBSTANCES CONTROL ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.50 Reporting physical and chemical properties. Studies of physical and chemical properties must be reported under this subpart if...
Peer-to-Peer Instruction with Interactive Demonstrations in Upper Level Astronomy Courses
NASA Astrophysics Data System (ADS)
Gelderman, Richard
2013-06-01
Spectral and polarization properties of light are topics that most intro physics courses barely touch. Students therefore rarely have any useful experience to draw on when those topics come up in an upper level astronomy class. This means that they approach problems dealing with spectra or polarization as plug-and-chug mathematics applications, devoid of physical context. We have been addressing such dilemmas by using interactive demonstrations in the lecture meeting to give students direct experience with polarization filters, diffraction gratings, spectral sources, and situations requiring them to analyze sources based on the observed polarization of spectral properties. Each student individually predicts the outcomes for a demonstration. Students then collaborate within in a group of three to discuss their prediction, reporting the group’s consensus prediction. After observing the demonstration, students in the group compare their predictions to the results, and attempt to explain the phenomena. Based on curricular reforms in physics education, these methods have provided our students with the ability to much more than just manipulate equations related to spectroscopic and polarization analysis.
Acoustic parameters inversion and sediment properties in the Yellow River reservoir
NASA Astrophysics Data System (ADS)
Li, Chang-Zheng; Yang, Yong; Wang, Rui; Yan, Xiao-Fei
2018-03-01
The physical properties of silt in river reservoirs are important to river dynamics. Unfortunately, traditional techniques yield insufficient data. Based on porous media acoustic theory, we invert the acoustic parameters for the top river-bottom sediments. An explicit form of the acoustic reflection coefficient at the water-sediment interface is derived based on Biot's theory. The choice of parameters in the Biot model is discussed and the relation between acoustic and geological parameters is studied, including that between the reflection coefficient and porosity and the attenuation coefficient and permeability. The attenuation coefficient of the sound wave in the sediments is obtained by analyzing the shift of the signal frequency. The acoustic reflection coefficient at the water-sediment interface is extracted from the sonar signal. Thus, an inversion method of the physical parameters of the riverbottom surface sediments is proposed. The results of an experiment at the Sanmenxia reservoir suggest that the estimated grain size is close to the actual data. This demonstrates the ability of the proposed method to determine the physical parameters of sediments and estimate the grain size.
AUV based study on physical and ecological processes at fronts
NASA Astrophysics Data System (ADS)
Tippenhauer, Sandra; Wulff, Thorben; Von Appen, Wilken-Jon
2017-04-01
Small-scale processes and their effects get more and more attention when it comes to understanding processes and changes in the (Arctic) ocean. Here we present a study on physical processes and ecological responses at submesoscale frontal systems in the Fram Strait investigated using an autonomous underwater vehicle (AUV). The AUV is equipped with physical and biogeochemical sensors such as an acoustic Doppler current profiler, a turbulence probe, a conductivity-temperature-depth probe, and sensors for Oxygen, Nitrate, Chlorophyll a, and photosynthetically active radiation (PAR). The study is designed such that the AUV covers tracks of several kilometers length in cross-frontal direction with the front roughly located in the middle of the track. On its way, the AUV records high-resolution vertical or zigzag profiles of the physical and biogeochemical properties in the upper 50 m which includes the euphotic zone. In both, physical and biogeochemical terms, the measurements revealed a complex structure of the water column. At the fronts the distribution of phytoplankton and nutrients was highly inhomogeneous, possibly due to wind-driven frontogenesis or the growth of mixed layer eddies. To set the observations into a larger context we also examine ship-based and satellite data. We investigate how the observed patterns of the potential vorticity and the biogeochemical properties may be formed and which processes could lead to a smoothing of the observed gradients.
The Web-based Module of Changes in Objects
NASA Astrophysics Data System (ADS)
Triayomi, R.
2017-09-01
To understand the changes of substances contained in such a kind of substance and substance characteristics then need a deep study of the concept. In this concept is expected to understand the changes of objects such as substance type and substance characteristics. Types of substances and characteristics of substances through physical changes and chemical changes and means of separation consisting of two or more substances. The principle of separation of the mixture is based on differences in physical properties of its constituents, such as substances, particle size, melting point, boiling point, magnetic properties, solubility, and so forth. This study aims to produce a web-based module of changes in objects that are valid, practical, and have effectiveness of student learning outcomes and activities on natural science learning. The experiment was conducted on 30 children in South Sumatera. The case of the development of the learning module of change of the object is influenced by the child’s understanding of the concept. Expected to be adapted by world teachers.
High-throughput determination of structural phase diagram and constituent phases using GRENDEL
NASA Astrophysics Data System (ADS)
Kusne, A. G.; Keller, D.; Anderson, A.; Zaban, A.; Takeuchi, I.
2015-11-01
Advances in high-throughput materials fabrication and characterization techniques have resulted in faster rates of data collection and rapidly growing volumes of experimental data. To convert this mass of information into actionable knowledge of material process-structure-property relationships requires high-throughput data analysis techniques. This work explores the use of the Graph-based endmember extraction and labeling (GRENDEL) algorithm as a high-throughput method for analyzing structural data from combinatorial libraries, specifically, to determine phase diagrams and constituent phases from both x-ray diffraction and Raman spectral data. The GRENDEL algorithm utilizes a set of physical constraints to optimize results and provides a framework by which additional physics-based constraints can be easily incorporated. GRENDEL also permits the integration of database data as shown by the use of critically evaluated data from the Inorganic Crystal Structure Database in the x-ray diffraction data analysis. Also the Sunburst radial tree map is demonstrated as a tool to visualize material structure-property relationships found through graph based analysis.
An analysis of the drying process in forest fuel material
G.M. Byram; R.M. Nelson
2015-01-01
It is assumed that the flow of moisture in forest fuels and other woody materials is determined by the gradient of a quantity g which is a function of some property, or properties, of the moisture content. There appears to be no preferred choice for this function, hence moisture transfer equations can be based on a number of equally valid definitions of g. The physical...
Alan E. Harvey; J. Michael Geist; Gerald L McDonald; Martin F. Jurgensen; Patrick H. Cochran; Darlene Zabowski; Robert T. Meurisse
1994-01-01
Productivity of forest and range land soils is based on a combination of diverse physical, chemical and biological properties. In ecosystems characteristic of eastside regions of Oregon and Washington, the productive zone is usually in the upper 1 or 2 m. Not only are the biological processes that drive both soil productivity and root development concentrated in...
Physical Properties of NiFeCrCo-based High-Entropy Alloys
NASA Astrophysics Data System (ADS)
Zaddach, Alexander Joseph
Conventional alloy design has been based on improving the properties of a single base, or solvent, element through relatively small additions of other elements. More recently, research has been conducted on alloys that contain multiple principal elements, particularly multi-component equiatomic alloys. When such alloys form solid solution phases, they are termed "high-entropy alloys" (HEAs) due to their high configurational entropy. These alloys often have favorable properties compared to conventional dilute solution alloys, but their compositional complexity and relative novelty means that they remain difficult to design and their basic properties are often unknown. The motivation for this work is a detailed experimental exploration of some of the basic physical properties of NiFeCrCo-based alloys. NiFeCrCoMn was one of the first equiatomic HEAs developed. As the compositional space within this single system is extremely large, this work focuses primarily on equiatomic alloys and a limited subset of non-equiatomic alloys chosen for their specific properties. Several alloys are prepared using both conventional methods (arc melting) and nonequilibrium methods (mechanical alloying). Properties studied include stacking fault energy, bulk mechanical properties, single crystal elastic constants, and magnetic properties. The equiatomic NiFeCrCo and NiFeCrCoMn alloys were found to have a moderate to low stacking fault energy, 18 -- 30 mJ m-2. As they are single-phase, fcc alloys, they have high tensile ductility. Additionally, they also exhibit high work-hardening rates, resulting in high toughness. NiFeCrCo outperforms the 5-component equiatomic alloy in ductility and toughness. A 5-component alloy with higher Co content to reduce the stacking fault energy also performs well. The single crystal elastic constants were measured using nanoindentation modulus measurements of grains of known orientation. The measured elastic constants were consistent with those calculated using first-principles modeling. Adding Zn in addition to Mn resulted in an alloy that preferred to form multiple phases. After the optimal heat treatment, it forms nano-sized grains of FeCo, which results in permanent magnetic behavior at room temperature.
Jin, Hui; O'Hare, Bernie; Dong, Jing; Arzhantsev, Sergei; Baker, Gary A; Wishart, James F; Benesi, Alan J; Maroncelli, Mark
2008-01-10
Physical properties of 4 room-temperature ionic liquids consisting of the 1-butyl-3-methylimidazolium cation with various perfluorinated anions and the bis(trifluoromethylsulfonyl)imide (Tf2N-) anion with 12 pyrrolidinium-, ammonium-, and hydroxyl-containing cations are reported. Electronic structure methods are used to calculate properties related to the size, shape, and dipole moment of individual ions. Experimental measurements of phase-transition temperatures, densities, refractive indices, surface tensions, solvatochromic polarities based on absorption of Nile Red, 19F chemical shifts of the Tf2N- anion, temperature-dependent viscosities, conductivities, and cation diffusion coefficients are reported. Correlations among the measured quantities as well as the use of surface tension and molar volume for estimating Hildebrand solubility parameters of ionic liquids are also discussed.
Geometric calculus-based postulates for the derivation and extension of the Maxwell equations
NASA Astrophysics Data System (ADS)
McClellan, Gene E.
2012-09-01
Clifford analysis, particularly application of the geometric algebra of three-dimensional physical space and its associated geometric calculus, enables a compact formulation of Maxwell's electromagnetic (EM) equations from a set of physically relevant and mathematically pleasing postulates. This formulation results in a natural extension of the Maxwell equations yielding wave solutions in addition to the usual EM waves. These additional solutions do not contradict experiment and have three properties in common with the apparent properties of dark energy. These three properties are that the wave solutions 1) propagate at the speed of light, 2) do not interact with ordinary electric charges or currents, and 3) possess retrograde momentum. By retrograde momentum, we mean that the momentum carried by such a wave is directed oppositely to the direction of energy transport. A "gas" of such waves generates negative pressure.
NASA Astrophysics Data System (ADS)
Bauer, Thomas; Strauss, Peter; Stiper, Katrin; Klipa, Vladimir; Popescu, Daniela; Winter, Silvia; Zaller, Johann G.
2016-04-01
Successful viticulture is mainly influenced by soil and climate. The availability of water during the growing season highly influences wine quality and quantity. To protect soil from being eroded most of the winegrowers keep the inter row zones of the vineyards green. Greening also helps to provide water-stress to the grapes for harvesting high quality wines. However, these greening strategies concerning the intensity of inter row management differ from farm to farm and are mainly based on personal experience of the winegrowers. However to what extent different inter row management practices affect soil physical properties are not clearly understood yet. To measure possible effects of inter row management in vineyards on soil physical parameters we selected paired vineyards with different inter row management in Austria and Romania. In total more than 7000 soil analysis were conducted for saturated and unsaturated hydraulic conductivity, soil water retention, water stable aggregates, total organic carbon, cation exchange capacity, potassium, phosphorous, soil texture, bulk density and water infiltration. The comparison between high intensity management with at least one soil disturbance per year, medium intensity with one soil disturbance every second inter row per year and low intensity management with no soil disturbance since at least 5 years indicates that investigated soil physical properties did not improve for the upper soil layer (3-8cm). This is in contrast to general perceptions of improved soil physical properties due to low intensity of inter row management, i.e. permanent vegetated inter rows. This may be attributed to long term and high frequency mechanical stress by agricultural machinery in inter rows.
Long-term leisure time physical activity and properties of bone: a twin study.
Ma, Hongqiang; Leskinen, Tuija; Alen, Markku; Cheng, Sulin; Sipilä, Sarianna; Heinonen, Ari; Kaprio, Jaakko; Suominen, Harri; Kujala, Urho M
2009-08-01
Effects of physical activity on bone properties, when controlled for genetic effects, are not fully understood. We aimed to study the association between long-term leisure time physical activity (LTPA) and bone properties using twin pairs known to be discordant for leisure time physical activity for at least 30 yr. Volumetric BMD and geometric properties were measured at the tibia shaft and distal end using pQCT in 16 middle-aged (50-74 yr) same-sex twin pairs (seven monozygotic [MZ] and nine dizygotic [DZ] pairs) selected from a population-based cohort. Paired differences between active and inactive co-twins were studied. Active members of MZ twin pairs had larger cortical bone cross-sectional area (intrapair difference: 8%, p = 0.006), thicker cortex (12%, p = 0.003), and greater moment of inertia (I(max), 20%, p = 0.024) at the tibia shaft than their inactive co-twins. At the distal tibia, trabecular BMD (12%, p = 0.050) and compressive strength index (18%, p = 0.038) were also higher in physically active MZ pair members than their inactive co-twins. The trends were similar, but less consistently so, in DZ pairs as in MZ pairs. Our genetically controlled study design shows that LTPA during adulthood strengthens bones in a site-specific manner, that is, the long bone shaft has a thicker cortex, and thus higher bending strength, whereas the distal bone has higher trabecular density and compressive strength. These results suggest that LTPA has a potential causal role in decreasing the long-term risk of osteoporosis and thus preventing osteoporotic fractures.
On some physical and dynamical properties of microplastic particles in marine environment.
Chubarenko, I; Bagaev, A; Zobkov, M; Esiukova, E
2016-07-15
Simplified physical models and geometrical considerations reveal general physical and dynamical properties of microplastic particles (0.5-5mm) of different density, shape and size in marine environment. Windage of extremely light foamed particles, surface area and fouling rate of slightly positively buoyant microplastic spheres, films and fibres and settling velocities of negatively buoyant particles are analysed. For the Baltic Sea dimensions and under the considered idealised external conditions, (i) only one day is required for a foamed polystyrene particle to cross the sea (ca. 250km); (ii) polyethylene fibres should spend about 6-8months in the euphotic zone before sinking due to bio-fouling, whilst spherical particles can be retained on the surface up to 10-15years; (iii) for heavy microplastic particles, the time of settling through the water column in the central Gotland basin (ca. 250m) is less than 18h. Proper physical setting of the problem of microplastics transport and developing of physically-based parameterisations are seen as applications. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mukhina, T M; Nikolaienko, T Yu
2015-01-01
Recent studies on Escherichia coli bacteria cultivation, in which DNA thymine was replaced with 5-chlorouracil have refreshed the problem of understanding the changes to physical properties of DNA monomers resultant from chemical modifications. These studies have shown that the replacement did not affect the normal activities and division of the bacteria, but has significantly reduced its life span. In this paper a comparative analysis was carried out by the methods of computational experiment of a set of 687 possible conformers of natural monomeric DNA unit (2'-deoxyribonucleotide thymidine monophosphate) and 660 conformers of 5-chloro-2'-deoxyuridine monophosphate - a similar molecules in which the natural nitrogenous base thymine is substituted with 5-chlorouracil. Structures of stable conformers of the modified deoxyribonucleotide have been obtained and physical factors, which determine their variation from the conformers of the unmodified molecule have been analyzed. A comparative analysis of the elastic properties of conformers of investigated molecules and non-covalent interactions present in them was conducted. The results can be usedfor planning experiments on synthesis of artficial DNA suitable for incorporation into living organisms.
El-Hadidy, Gladious Naguib; Ibrahim, Howida Kamal; Mohamed, Magdi Ibrahim; El-Milligi, Mohamed Farid
2012-01-01
This work was undertaken to investigate microemulsion (ME) as a topical delivery system for the poorly water-soluble voriconazole. Different ME components were selected for the preparation of plain ME systems with suitable rheological properties for topical use. Two permeation enhancers were incorporated, namely sodium deoxycholate or oleic acid. Drug-loaded MEs were evaluated for their physical appearance, pH, rheological properties and in vitro permeation studies using guinea pig skin. MEs based on polyoxyethylene(10)oleyl ether (Brij 97) as the surfactant showed pseudoplastic flow with thixotropic behavior and were loaded with voriconazole. Jojoba oil-based MEs successfully prolonged voriconazole release up to 4 h. No significant changes in physical or rheological properties were recorded on storage for 12 months at ambient conditions. The presence of permeation enhancers favored transdermal rather than dermal delivery. Sodium deoxycholate was more effective than oleic acid for enhancing the voriconazole permeation. Voriconazole-loaded MEs, with and without enhancers, showed significantly better antifungal activity against Candida albicans than voriconazole supersaturated solution. In conclusion, the studied ME formulae could be promising vehicles for topical delivery of voriconazole.
Martins, Júlia Caetano; Aguiar, Larissa Tavares; Nadeau, Sylvie; Scianni, Aline Alvim; Teixeira-Salmela, Luci Fuscaldi; Faria, Christina Danielli Coelho de Morais
2017-02-13
Self-report physical activity assessment tools are commonly used for the evaluation of physical activity levels in individuals with stroke. A great variety of these tools have been developed and widely used in recent years, which justify the need to examine their measurement properties and clinical utility. Therefore, the main objectives of this systematic review are to examine the measurement properties and clinical utility of self-report measures of physical activity and discuss the strengths and limitations of the identified tools. A systematic review of studies that investigated the measurement properties and/or clinical utility of self-report physical activity assessment tools in stroke will be conducted. Electronic searches will be performed in five databases: Medical Literature Analysis and Retrieval System Online (MEDLINE) (PubMed), Excerpta Medica Database (EMBASE), Physiotherapy Evidence Database (PEDro), Literatura Latino-Americana e do Caribe em Ciências da Saúde (LILACS) and Scientific Electronic Library Online (SciELO), followed by hand searches of the reference lists of the included studies. Two independent reviewers will screen all retrieve titles, abstracts, and full texts, according to the inclusion criteria and will also extract the data. A third reviewer will be referred to solve any disagreement. A descriptive summary of the included studies will contain the design, participants, as well as the characteristics, measurement properties, and clinical utility of the self-report tools. The methodological quality of the studies will be evaluated using the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) checklist and the clinical utility of the identified tools will be assessed considering predefined criteria. This systematic review will follow the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) statement. This systematic review will provide an extensive review of the measurement properties and clinical utility of self-report physical activity assessment tools used in individuals with stroke, which would benefit clinicians and researchers. PROSPERO CRD42016037146. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
NASA Astrophysics Data System (ADS)
Matter, Adrien; Johannes, Alice; Boivin, Pascal
2016-04-01
Soil Organic Carbon (SOC) is well known to largely determine the soil physical properties and fertility. Total porosity, structural porosity, aeration, structural stability among others are reported to increase linearly with increasing SOC in most studies. Is there an optimal SOC content as target in soil management, or is there no limit in physical fertility improvement with SOC? Dexter et al. (2008) investigated the relation between clay:SOC ratio and the physical properties of soils from different databases. They observed that the R2 of the relation between SOC and the physical properties were maximized when considering the SOC fraction limited to a clay:SOC ratio of 10. They concluded that this fraction of the SOC was complexed, and that the additional SOC was not influencing the physical properties as strongly as the complexed one. In this study, we reassessed this approach, on a database of 180 undisturbed soil samples collected from cambiluvisols of the Swiss Plateau, on an area of 2400 km2, and from different soil uses. The physical properties were obtained with Shrinkage Analysis, which involved the parameters used in Dexter et al., 2008. We used the same method, but detected biases in the statistical approach, which was, therefore, adapted. We showed that the relation between the bulk density and SOC was changing with the score of visual evaluation of the structure (VESS) (Ball et al., 2007). Therefore, we also worked only on the "good" structures according to VESS. All shrinkage parameters were linearly correlated to SOC regardless of the clay:SOC ratio, with R2 ranging from 0.45 to 0.8. Contrarily to Dexter et al. (2008), we did not observed an optimum in the R2 of the relation when considering a SOC fraction based on the clay:SOC ratio. R2 was increasing until a Clay:SOC of about 7, where it reached, and kept, its maximum value. The land use factor was not significant. The major difference with the former study is that we worked on the same soil group, on a large range of texture, with less sandy soils and accounting for structural state. Our results show that, on this soil group, any SOC increase almost linearly increases the physical properties and, therefore, the physical fertility and the ecological functions of the soil, regardless of the clay:SOC ratio. When considering the whole SOC instead of a fraction, we show that the 10 clay:SOC ratio, however corresponds to a good structure according to VESS and optimal physical values. Therefore, we think reaching a clay:SOC ratio of 10 must be considered as an objective for farmers and advisers. Ball, B.C., T. Batey, and L.J. Munkholm. 2007. Field assessment of soil structural quality - a development of the Peerlkamp test. Soil Use Manag. 23(4): 329-337. Dexter, A.R., G. Richard, D. Arrouays, E.A. Czyz, C. Jolivet, and O. Duval. 2008. Complexed organic matter controls soil physical properties. Geoderma 144(3-4): 620-627.
Niimura, Nobuo; Kikuchi, Kenji; Tuyen, Ninh Duc; Komatsuzaki, Masakazu; Motohashi, Yoshinobu
2015-01-01
We conducted an elution experiment with contaminated soils using various aqueous reagent solutions and autoradiography measurements of contaminated bamboo shoots and shiitake mushrooms to determine the physical and chemical characteristics of radioactive Cs from the Fukushima Daiichi Nuclear Power Plant accident. Based on our study results and data in the literature, we conclude that the active Cs emitted by the accident fell to the ground as granular non-ionic materials. Therefore, they were not adsorbed or trapped by minerals in the soil, but instead physically adhere to the rough surfaces of the soil mineral particles. Granular Cs* can be transferred among media, such as soils and plants. The physical properties and dynamic behavior of the granular Cs* is expected to be helpful in considering methods for decontamination of soil, litter, and other media. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.
Vivolo-Kantor, Alana M; Olsen, Emily O'Malley; Bacon, Sarah
2016-08-01
Teen dating violence (TDV) negatively impacts health, mental and physical well-being, and school performance. Data from a nationally representative sample of high school students participating in the Centers for Disease Control and Prevention (CDC)'s 2013 Youth Risk Behavior Survey (YRBS) are used to demonstrate associations of physical and sexual TDV with school violence-related experiences and behaviors, including bullying victimization. Bivariate and adjusted sex-stratified regressions assessed relationships between TDV and school violence-related experiences and behaviors. Compared to students not reporting TDV, those experiencing both physical and sexual TDV were more likely to report carrying a weapon at school, missing school because they felt unsafe, being threatened or injured with a weapon on school property, having a physical fight at school, and being bullied on school property. School-based prevention efforts should target multiple forms of violence. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.
NASA Technical Reports Server (NTRS)
Wilkes, G. L.
1982-01-01
The effects of physical aging on the material properties of some linear and network macromolecular glasses are discussed. The free volume concept is used to describe this behavior. The effect of physical aging on properties of some uniaxial graphite/fiber epoxy resin composites is investigated using stress relaxation in both tensile and flexural modes. The matrix polymers used were resins both of which are based on a 4,4-methylenedianiline derivative of epichlorohydrin with diamino diphenyl sulfone (DDS) as the curing agent. The matrix resin, as used in the practical application in composites, not fully cured and the glass transition of the network was dependent on the curing schedule. The physical aging of the bulk crosslinked epoxy was found to depend on the annealing temperature, and the T sub g of the resin. The physical aging of the composite, monitored by the stress relaxation method, was found to be dependent on the testing direction.
Novel schemes for measurement-based quantum computation.
Gross, D; Eisert, J
2007-06-01
We establish a framework which allows one to construct novel schemes for measurement-based quantum computation. The technique develops tools from many-body physics-based on finitely correlated or projected entangled pair states-to go beyond the cluster-state based one-way computer. We identify resource states radically different from the cluster state, in that they exhibit nonvanishing correlations, can be prepared using nonmaximally entangling gates, or have very different local entanglement properties. In the computational models, randomness is compensated in a different manner. It is shown that there exist resource states which are locally arbitrarily close to a pure state. We comment on the possibility of tailoring computational models to specific physical systems.
NASA Technical Reports Server (NTRS)
Venier, Clifford; Casserly, Edward W.; Jones, William R., Jr.; Marchetti, Mario; Jansen, Mark J.; Predmore, Roamer E.
2002-01-01
The tribological properties of a disubstituted alkylated cyclopentane, Pennzane (registered) Synthesized Hydrocarbon Fluid X-1000, are presented. This compound is a lower molecular weight version of the commonly used multiply alkylated cyclopentane, Pennzane X-2000, currently used in many space mechanisms. New, lower temperature applications will require liquid lubricants with lower viscosities and pour points and acceptable vapor pressures. Properties reported include: friction and wear studies and lubricated lifetime in vacuum; additionally, typical physical properties (i.e., viscosity-temperature, pour point, flash and fire point, specific gravity, refractive index, thermal properties, volatility and vapor pressure) are reported.
48 CFR 1852.245-78 - Physical inventory of capital personal property.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 6 2011-10-01 2011-10-01 false Physical inventory of... Provisions and Clauses 1852.245-78 Physical inventory of capital personal property. As prescribed in 1845.107-70(i), insert the following clause. Physical Inventory of Capital Personal Property (JAN 2011) (a) In...
Lithological and Surface Geometry Joint Inversions Using Multi-Objective Global Optimization Methods
NASA Astrophysics Data System (ADS)
Lelièvre, Peter; Bijani, Rodrigo; Farquharson, Colin
2016-04-01
Geologists' interpretations about the Earth typically involve distinct rock units with contacts (interfaces) between them. In contrast, standard minimum-structure geophysical inversions are performed on meshes of space-filling cells (typically prisms or tetrahedra) and recover smoothly varying physical property distributions that are inconsistent with typical geological interpretations. There are several approaches through which mesh-based minimum-structure geophysical inversion can help recover models with some of the desired characteristics. However, a more effective strategy may be to consider two fundamentally different types of inversions: lithological and surface geometry inversions. A major advantage of these two inversion approaches is that joint inversion of multiple types of geophysical data is greatly simplified. In a lithological inversion, the subsurface is discretized into a mesh and each cell contains a particular rock type. A lithological model must be translated to a physical property model before geophysical data simulation. Each lithology may map to discrete property values or there may be some a priori probability density function associated with the mapping. Through this mapping, lithological inverse problems limit the parameter domain and consequently reduce the non-uniqueness from that presented by standard mesh-based inversions that allow physical property values on continuous ranges. Furthermore, joint inversion is greatly simplified because no additional mathematical coupling measure is required in the objective function to link multiple physical property models. In a surface geometry inversion, the model comprises wireframe surfaces representing contacts between rock units. This parameterization is then fully consistent with Earth models built by geologists, which in 3D typically comprise wireframe contact surfaces of tessellated triangles. As for the lithological case, the physical properties of the units lying between the contact surfaces are set to a priori values. The inversion is tasked with calculating the geometry of the contact surfaces instead of some piecewise distribution of properties in a mesh. Again, no coupling measure is required and joint inversion is simplified. Both of these inverse problems involve high nonlinearity and discontinuous or non-obtainable derivatives. They can also involve the existence of multiple minima. Hence, one can not apply the standard descent-based local minimization methods used to solve typical minimum-structure inversions. Instead, we are applying Pareto multi-objective global optimization (PMOGO) methods, which generate a suite of solutions that minimize multiple objectives (e.g. data misfits and regularization terms) in a Pareto-optimal sense. Providing a suite of models, as opposed to a single model that minimizes a weighted sum of objectives, allows a more complete assessment of the possibilities and avoids the often difficult choice of how to weight each objective. While there are definite advantages to PMOGO joint inversion approaches, the methods come with significantly increased computational requirements. We are researching various strategies to ameliorate these computational issues including parallelization and problem dimension reduction.
Introduction to physical properties and elasticity models: Chapter 20
Dvorkin, Jack; Helgerud, Michael B.; Waite, William F.; Kirby, Stephen H.; Nur, Amos
2003-01-01
Estimating the in situ methane hydrate volume from seismic surveys requires knowledge of the rock physics relations between wave speeds and elastic moduli in hydrate/sediment mixtures. The elastic moduli of hydrate/sediment mixtures depend on the elastic properties of the individual sedimentary particles and the manner in which they are arranged. In this chapter, we present some rock physics data currently available from literature. The unreferenced values in Table I were not measured directly, but were derived from other values in Tables I and II using standard relationships between elastic properties for homogeneous, isotropic material. These derivations allow us to extend the list of physical property estimates, but at the expense of introducing uncertainties due to combining property values measured under different physical conditions. This is most apparent in the case of structure II (sII) hydrate for which very few physical properties have been measured under identical conditions.
USDA-ARS?s Scientific Manuscript database
As health-conscious consumers are increasingly looking for plant-based milk substitute beverages for weight management, cancer prevention, and overall cardiovascular health, we are exploring pulse based healthful beverages with soybean-navy bean blends of 100:0, 80:20, 60:40, 20:80, and 0:100 ratios...
Assesment of influncing factors on mechanical and electrical properties of Al/Cu joints
NASA Astrophysics Data System (ADS)
Selvaraj, R. Meby; Hynes, N. Rajesh Jesudoss
2018-05-01
Joining of dissimilar materials opens up challenging opportunities in todays technology. Al/Cu weldments are used in applications that demands corrosion resistance, thermal and electrical conducting properties. In dissimilar joining mechanical and thermal properties result in large stress gradients during heating. The Al-Cu joints are lighter, cheaper and have conductivity equal to copper alloy. The main scope of this study is to assess the influencing factors of Al/Cu joints in mechanical and electrical properties. It includes the influence of the dilution between the base metals, influence of physical properties, influence of welding parameters, influence of filler metal, influence of heat treatment, and influence of electrical properties
Developing model asphalt systems using molecular simulation : final model.
DOT National Transportation Integrated Search
2009-09-01
Computer based molecular simulations have been used towards developing simple mixture compositions whose : physical properties resemble those of real asphalts. First, Monte Carlo simulations with the OPLS all-atom force : field were used to predict t...
Atmospheric Science Data Center
2017-02-01
... physical properties, which scientists will match in time and space with CERES ... Space-based Observations of the Earth - Thermal radiation emitted from the ... The cloud data include the height and area of clouds, the liquid water they contain, and ... ...
Measuring presenteeism: which questionnaire to use in physical activity research?
Brown, Helen Elizabeth; Burton, Nicola; Gilson, Nicholas David; Brown, Wendy
2014-02-01
An emerging area of interest in workplace health is presenteeism; the measurable extent to which physical or psychosocial symptoms, conditions and disease adversely affect the work productivity of those who choose to remain at work. Given established links between presenteeism and health, and health and physical activity, presenteeism could be an important outcome in workplace physical activity research. This study provides a narrative review of questionnaires for use in such research. Eight self-report measures of presenteeism were identified. Information regarding development, constructs measured and psychometric properties was extracted from relevant articles. Questionnaires were largely self-administered, had 4-44 items, and recall periods ranging from 1 week to 1 year. Items were identified as assessing work performance, physical tolerance, psychological well-being and social or role functioning. Samples used to test questionnaires were predominantly American male employees, with an age range of 30-59 years. All instruments had undergone psychometric assessment, most commonly discriminant and construct validity. Based on instrument characteristics, the range of conceptual foci covered and acceptable measurement properties, the Health and Work Questionnaire, Work Ability Index, and Work Limitations Questionnaire are suggested as most suitable for further exploring the relationship between physical activity and presenteeism.
Temporal coding in a silicon network of integrate-and-fire neurons.
Liu, Shih-Chii; Douglas, Rodney
2004-09-01
Spatio-temporal processing of spike trains by neuronal networks depends on a variety of mechanisms distributed across synapses, dendrites, and somata. In natural systems, the spike trains and the processing mechanisms cohere though their common physical instantiation. This coherence is lost when the natural system is encoded for simulation on a general purpose computer. By contrast, analog VLSI circuits are, like neurons, inherently related by their real-time physics, and so, could provide a useful substrate for exploring neuronlike event-based processing. Here, we describe a hybrid analog-digital VLSI chip comprising a set of integrate-and-fire neurons and short-term dynamical synapses that can be configured into simple network architectures with some properties of neocortical neuronal circuits. We show that, despite considerable fabrication variance in the properties of individual neurons, the chip offers a viable substrate for exploring real-time spike-based processing in networks of neurons.
2011-01-01
The success of quenching process during industrial heat treatment mainly depends on the heat transfer characteristics of the quenching medium. In the case of quenching, the scope for redesigning the system or operational parameters for enhancing the heat transfer is very much limited and the emphasis should be on designing quench media with enhanced heat transfer characteristics. Recent studies on nanofluids have shown that these fluids offer improved wetting and heat transfer characteristics. Further water-based nanofluids are environment friendly as compared to mineral oil quench media. These potential advantages have led to the development of nanofluid-based quench media for heat treatment practices. In this article, thermo-physical properties, wetting and boiling heat transfer characteristics of nanofluids are reviewed and discussed. The unique thermal and heat transfer characteristics of nanofluids would be extremely useful for exploiting them as quench media for industrial heat treatment. PMID:21711877
NASA Astrophysics Data System (ADS)
Paimushin, V. N.; Kholmogorov, S. A.
2018-03-01
A series of tests to identify the physical-mechanical properties of a unidirectional carbon-fiber-reinforced composite based on an ELUR-P carbon fibers and an XT-118 epoxy binder were performed. The form of the stress-strain diagrams of specimens loaded in tension in the longitudinal, transverse, and ±45° directions and in compression in the longitudinal and ±45° directions were examined. Tensile diagrams were also determined for the XT-118 binder alone. The relation between the tangential shear modulus and shear strains of the composite was highly nonlinear from the very beginning of loading and depended on the loading type. Such a nonlinear response of the carbon-fiber-reinforced composite in shear cannot be the result of plastic deformation of binder, but can be explained only by structural changes caused by the inner buckling instability of the composite at micro- and mesolevels..
NASA Astrophysics Data System (ADS)
Nozaki, Mikito; Watanabe, Kenta; Yamada, Takahiro; Shih, Hong-An; Nakazawa, Satoshi; Anda, Yoshiharu; Ueda, Tetsuzo; Yoshigoe, Akitaka; Hosoi, Takuji; Shimura, Takayoshi; Watanabe, Heiji
2018-06-01
Alumina incorporating nitrogen (aluminum oxynitride; AlON) for immunity against charge injection was grown on a AlGaN/GaN substrate through the repeated atomic layer deposition (ALD) of AlN layers and in situ oxidation in ozone (O3) ambient under optimized conditions. The nitrogen distribution was uniform in the depth direction, the composition was controllable over a wide range (0.5–32%), and the thickness could be precisely controlled. Physical analysis based on synchrotron radiation X-ray photoelectron spectroscopy (SR-XPS) revealed that harmful intermixing at the insulator/AlGaN interface causing Ga out-diffusion in the gate stack was effectively suppressed by this method. AlON/AlGaN/GaN MOS capacitors were fabricated, and they had excellent electrical properties and immunity against electrical stressing as a result of the improved interface stability.
Cloud Properties Derived from Surface-Based Near-Infrared Spectral Transmission
NASA Technical Reports Server (NTRS)
Pilewskie, Peter; Twomey, S.; Gore, Warren J. Y. (Technical Monitor)
1996-01-01
Surface based near-infrared cloud spectral transmission measurements from a recent precipitation/cloud physics field study are used to determine cloud physical properties and relate them to other remote sensing and in situ measurements. Asymptotic formulae provide an effective means of closely approximating the qualitative and quantitative behavior of transmission computed by more laborious detailed methods. Relationships derived from asymptotic formulae are applied to measured transmission spectra to test objectively the internal consistency of data sets acquired during the field program and they confirmed the quality of the measurements. These relationships appear to be very useful in themselves, not merely as a quality control measure, but also a potentially valuable remote-sensing technique in its own right. Additional benefits from this analysis have been the separation of condensed water (cloud) transmission and water vapor transmission and the development of a method to derive cloud liquid water content.
Water Quality Monitoring for Lake Constance with a Physically Based Algorithm for MERIS Data.
Odermatt, Daniel; Heege, Thomas; Nieke, Jens; Kneubühler, Mathias; Itten, Klaus
2008-08-05
A physically based algorithm is used for automatic processing of MERIS level 1B full resolution data. The algorithm is originally used with input variables for optimization with different sensors (i.e. channel recalibration and weighting), aquatic regions (i.e. specific inherent optical properties) or atmospheric conditions (i.e. aerosol models). For operational use, however, a lake-specific parameterization is required, representing an approximation of the spatio-temporal variation in atmospheric and hydrooptic conditions, and accounting for sensor properties. The algorithm performs atmospheric correction with a LUT for at-sensor radiance, and a downhill simplex inversion of chl-a, sm and y from subsurface irradiance reflectance. These outputs are enhanced by a selective filter, which makes use of the retrieval residuals. Regular chl-a sampling measurements by the Lake's protection authority coinciding with MERIS acquisitions were used for parameterization, training and validation.
Bollhorst, Tobias; Shahabi, Shakiba; Wörz, Katharina; Petters, Charlotte; Dringen, Ralf; Maas, Michael; Rezwan, Kurosch
2015-01-02
Colloidosomes are microcapsules consisting of nanoparticle shells. These microcarriers can be self-assembled from a wide range of colloidal particles with selective chemical, physical, and morphological properties and show promise for application in the field of theranostic nanomedicine. Previous studies have mainly focused on fairly large colloidosomes (>1 μm) based on a single kind of particle; however, the intrinsic building-block nature of this microcarrier has not been exploited so far for the introduction of tailored functionality at the nanoscale. We report a synthetic route based on interfacial shear rheology studies that allows the simultaneous incorporation of different nanoparticles with distinct physical properties, that is, superparamagnetic iron oxide and fluorescent silica nanoparticles, in a single submicron colloidosome. These tailor-made microcapsules can potentially be used in various biomedical applications, including magnetic hyperthermia, magnetic particle imaging, drug targeting, and bioimaging. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ramesh, Gopalan; Prabhu, Narayan Kotekar
2011-04-14
The success of quenching process during industrial heat treatment mainly depends on the heat transfer characteristics of the quenching medium. In the case of quenching, the scope for redesigning the system or operational parameters for enhancing the heat transfer is very much limited and the emphasis should be on designing quench media with enhanced heat transfer characteristics. Recent studies on nanofluids have shown that these fluids offer improved wetting and heat transfer characteristics. Further water-based nanofluids are environment friendly as compared to mineral oil quench media. These potential advantages have led to the development of nanofluid-based quench media for heat treatment practices. In this article, thermo-physical properties, wetting and boiling heat transfer characteristics of nanofluids are reviewed and discussed. The unique thermal and heat transfer characteristics of nanofluids would be extremely useful for exploiting them as quench media for industrial heat treatment.
NASA Astrophysics Data System (ADS)
Hu, S. X.; Collins, L. A.; Boehly, T. R.; Ding, Y. H.; Radha, P. B.; Goncharov, V. N.; Karasiev, V. V.; Collins, G. W.; Regan, S. P.; Campbell, E. M.
2018-05-01
Polystyrene (CH), commonly known as "plastic," has been one of the widely used ablator materials for capsule designs in inertial confinement fusion (ICF). Knowing its precise properties under high-energy-density conditions is crucial to understanding and designing ICF implosions through radiation-hydrodynamic simulations. For this purpose, systematic ab initio studies on the static, transport, and optical properties of CH, in a wide range of density and temperature conditions (ρ = 0.1 to 100 g/cm3 and T = 103 to 4 × 106 K), have been conducted using quantum molecular dynamics (QMD) simulations based on the density functional theory. We have built several wide-ranging, self-consistent material-properties tables for CH, such as the first-principles equation of state, the QMD-based thermal conductivity (κQMD) and ionization, and the first-principles opacity table. This paper is devoted to providing a review on (1) what results were obtained from these systematic ab initio studies; (2) how these self-consistent results were compared with both traditional plasma-physics models and available experiments; and (3) how these first-principles-based properties of polystyrene affect the predictions of ICF target performance, through both 1-D and 2-D radiation-hydrodynamic simulations. In the warm dense regime, our ab initio results, which can significantly differ from predictions of traditional plasma-physics models, compared favorably with experiments. When incorporated into hydrocodes for ICF simulations, these first-principles material properties of CH have produced significant differences over traditional models in predicting 1-D/2-D target performance of ICF implosions on OMEGA and direct-drive-ignition designs for the National Ignition Facility. Finally, we will discuss the implications of these studies on the current small-margin ICF target designs using a CH ablator.
Experimental and numerical investigations of sedimentation of porous wastewater sludge flocs.
Hriberšek, M; Zajdela, B; Hribernik, A; Zadravec, M
2011-02-01
The paper studies the properties and sedimentation characteristics of sludge flocs, as they appear in biological wastewater treatment (BWT) plants. The flocs are described as porous and permeable bodies, with their properties defined based on conducted experimental study. The derivation is based on established geometrical properties, high-speed camera data on settling velocities and non-linear numerical model, linking settling velocity with physical properties of porous flocs. The numerical model for derivation is based on generalized Stokes model, with permeability of the floc described by the Brinkman model. As a result, correlation for flocs porosity is obtained as a function of floc diameter. This data is used in establishing a CFD numerical model of sedimentation of flocs in test conditions, as recorded during experimental investigation. The CFD model is based on Euler-Lagrange formulation, where the Lagrange formulation is chosen for computation of flocs trajectories during sedimentation. The results of numerical simulations are compared with experimental results and very good agreement is observed. © 2010 Elsevier Ltd. All rights reserved.
Nanostructure symmetry: Relevance for physics and computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dupertuis, Marc-André; Oberli, D. Y.; Karlsson, K. F.
2014-03-31
We review the research done in recent years in our group on the effects of nanostructure symmetry, and outline its relevance both for nanostructure physics and for computations of their electronic and optical properties. The exemples of C3v and C2v quantum dots are used. A number of surprises and non-trivial aspects are outlined, and a few symmetry-based tools for computing and analysis are shortly presented.
Analysis and Simulation of Far-Field Seismic Data from the Source Physics Experiment
2012-09-01
ANALYSIS AND SIMULATION OF FAR-FIELD SEISMIC DATA FROM THE SOURCE PHYSICS EXPERIMENT Arben Pitarka, Robert J. Mellors, Arthur J. Rodgers, Sean...Security Site (NNSS) provides new data for investigating the excitation and propagation of seismic waves generated by buried explosions. A particular... seismic model. The 3D seismic model includes surface topography. It is based on regional geological data, with material properties constrained by shallow
[Physical principles and general considerations].
Alfageme Roldán, F; Mollet Sánchez, J; Cerezo López, E
2015-11-01
Cutaneous ultrasound is based on the application of the physical properties of ultrasound to the skin and cutaneous adnexae. Knowledge of ultrasound semiology, artifacts and the application of Doppler examination allows deeper study of the biology and diseases of the skin and its adnexae. Copyright © 2015 Academia Española de Dermatología y Venereología. Published by Elsevier España, S.L.U. All rights reserved.
Physical-mechanical image of the cell surface on the base of AFM data in contact mode
NASA Astrophysics Data System (ADS)
Starodubtseva, M. N.; Starodubtsev, I. E.; Yegorenkov, N. I.; Kuzhel, N. S.; Konstantinova, E. E.; Chizhik, S. A.
2017-10-01
Physical and mechanical properties of the cell surface are well-known markers of a cell state. The complex of the parameters characterizing the cell surface properties, such as the elastic modulus (E), the parameters of adhesive (Fa), and friction (Ff) forces can be measured using atomic force microscope (AFM) in a contact mode and form namely the physical-mechanical image of the cell surface that is a fundamental element of the cell mechanical phenotype. The paper aims at forming the physical-mechanical images of the surface of two types of glutaraldehyde-fixed cancerous cells (human epithelial cells of larynx carcinoma, HEp-2c cells, and breast adenocarcinoma, MCF-7 cells) based on the data obtained by AFM in air and revealing the basic difference between them. The average values of friction, elastic and adhesive forces, and the roughness of lateral force maps, as well as dependence of the fractal dimension of lateral force maps on Z-scale factor have been studied. We have revealed that the response of microscale areas of the HEp-2c cell surface having numerous microvilli to external mechanical forces is less expressed and more homogeneous in comparison with the response of MCF-7 cell surface.
Han, Lei; Wulie, Buzha; Yang, Yiling; Wang, Hongqing
2015-01-05
This study investigated a novel method of fusing visible (VIS) and infrared (IR) images with the major objective of obtaining higher-resolution IR images. Most existing image fusion methods focus only on visual performance and many fail to consider the thermal physical properties of the IR images, leading to spectral distortion in the fused image. In this study, we use the IR thermal physical property to correct the VIS image directly. Specifically, the Stefan-Boltzmann Law is used as a strong constraint to modulate the VIS image, such that the fused result shows a similar level of regional thermal energy as the original IR image, while preserving the high-resolution structural features from the VIS image. This method is an improvement over our previous study, which required VIS-IR multi-wavelet fusion before the same correction method was applied. The results of experiments show that applying this correction to the VIS image directly without multi-resolution analysis (MRA) processing achieves similar results, but is considerably more computationally efficient, thereby providing a new perspective on VIS and IR image fusion.
Han, Lei; Wulie, Buzha; Yang, Yiling; Wang, Hongqing
2015-01-01
This study investigated a novel method of fusing visible (VIS) and infrared (IR) images with the major objective of obtaining higher-resolution IR images. Most existing image fusion methods focus only on visual performance and many fail to consider the thermal physical properties of the IR images, leading to spectral distortion in the fused image. In this study, we use the IR thermal physical property to correct the VIS image directly. Specifically, the Stefan-Boltzmann Law is used as a strong constraint to modulate the VIS image, such that the fused result shows a similar level of regional thermal energy as the original IR image, while preserving the high-resolution structural features from the VIS image. This method is an improvement over our previous study, which required VIS-IR multi-wavelet fusion before the same correction method was applied. The results of experiments show that applying this correction to the VIS image directly without multi-resolution analysis (MRA) processing achieves similar results, but is considerably more computationally efficient, thereby providing a new perspective on VIS and IR image fusion. PMID:25569749
NASA Astrophysics Data System (ADS)
Gyan, Isaiah Owusu
This dissertation details electrochemical characterization of GUITAR (Graphite from the University of Idaho Thermolyzed Asphalt Reaction), a new allotrope of carbon. Applications based on fundamental electrochemical properties of this material are also presented. The dissertation is presented in five chapters. Chapter one presents a summary of the discovery and physical characterizations of GUITAR and how its physical properties position it among carbon materials. In chapter two, fundamental electrochemical properties covering aqueous potential window and electron transfer kinetics with common dissolved redox couples are presented. This chapter highlights significant electrochemical differences between GUITAR and other sp2 carbon materials, notably, fast electron transfer across basal plane GUITAR, contrary to reports at basal planes of graphite and graphene electrodes. In chapter three, the concept of electron transfer facility is extended with biologically relevant molecules. GUITAR is shown to be suitable for biosensing with properties such as; facile electron transfer, low detection limit, high resistance to fouling and stability to anodic regeneration procedures. Chapter four presents further exploration of GUITAR's wide cathodic potential limits in other aqueous electrolytes and preliminary studies towards the exploitation of this property in the negative half of vanadium redox flow battery, where GUITAR-based electrodes are expected to increase coulombic efficiency and increase battery performance due to low hydrogen evolution. Chapter five concludes this dissertation with point-by-point presentation of significant discoveries that highlights GUITAR's uniqueness. This chapter also describes how the various fundamental electrochemical properties of GUITAR make it useful for various applications.
NASA Astrophysics Data System (ADS)
Tang, S. Y.; Lee, J. S.; Loh, S. P.; Tham, H. J.
2017-06-01
The objectives of this study were to use Artificial Neural Network (ANN) to predict colour change, shrinkage and texture of osmotically dehydrated pumpkin slices. The effects of process variables such as concentration of osmotic solution, immersion temperature and immersion time on the above mentioned physical properties were studied. The colour of the samples was measured using a colorimeter and the net colour difference changes, ΔE were determined. The texture was measured in terms of hardness by using a Texture Analyzer. As for the shrinkage, displacement of volume method was applied and percentage of shrinkage was obtained in terms of volume changes. A feed-forward backpropagation network with sigmoidal function was developed and best network configuration was chosen based on the highest correlation coefficients between the experimental values versus predicted values. As a comparison, Response Surface Methodology (RSM) statistical analysis was also employed. The performances of both RSM and ANN modelling were evaluated based on absolute average deviation (AAD), correlation of determination (R2) and root mean square error (RMSE). The results showed that ANN has higher prediction capability as compared to RSM. The relative importance of the variables on the physical properties were also determined by using connection weight approach in ANN. It was found that solution concentration showed the highest influence on all three physical properties.
A physical data model for fields and agents
NASA Astrophysics Data System (ADS)
de Jong, Kor; de Bakker, Merijn; Karssenberg, Derek
2016-04-01
Two approaches exist in simulation modeling: agent-based and field-based modeling. In agent-based (or individual-based) simulation modeling, the entities representing the system's state are represented by objects, which are bounded in space and time. Individual objects, like an animal, a house, or a more abstract entity like a country's economy, have properties representing their state. In an agent-based model this state is manipulated. In field-based modeling, the entities representing the system's state are represented by fields. Fields capture the state of a continuous property within a spatial extent, examples of which are elevation, atmospheric pressure, and water flow velocity. With respect to the technology used to create these models, the domains of agent-based and field-based modeling have often been separate worlds. In environmental modeling, widely used logical data models include feature data models for point, line and polygon objects, and the raster data model for fields. Simulation models are often either agent-based or field-based, even though the modeled system might contain both entities that are better represented by individuals and entities that are better represented by fields. We think that the reason for this dichotomy in kinds of models might be that the traditional object and field data models underlying those models are relatively low level. We have developed a higher level conceptual data model for representing both non-spatial and spatial objects, and spatial fields (De Bakker et al. 2016). Based on this conceptual data model we designed a logical and physical data model for representing many kinds of data, including the kinds used in earth system modeling (e.g. hydrological and ecological models). The goal of this work is to be able to create high level code and tools for the creation of models in which entities are representable by both objects and fields. Our conceptual data model is capable of representing the traditional feature data models and the raster data model, among many other data models. Our physical data model is capable of storing a first set of kinds of data, like omnipresent scalars, mobile spatio-temporal points and property values, and spatio-temporal rasters. With our poster we will provide an overview of the physical data model expressed in HDF5 and show examples of how it can be used to capture both object- and field-based information. References De Bakker, M, K. de Jong, D. Karssenberg. 2016. A conceptual data model and language for fields and agents. European Geosciences Union, EGU General Assembly, 2016, Vienna.
NASA Astrophysics Data System (ADS)
Arvidson, R. E.; Bellutta, P.; Calef, F.; Fraeman, A. A.; Garvin, J. B.; Gasnault, O.; Grant, J. A.; Grotzinger, J. P.; Hamilton, V. E.; Heverly, M.; Iagnemma, K. A.; Johnson, J. R.; Lanza, N.; Le Mouélic, S.; Mangold, N.; Ming, D. W.; Mehta, M.; Morris, R. V.; Newsom, H. E.; Rennó, N.; Rubin, D.; Schieber, J.; Sletten, R.; Stein, N. T.; Thuillier, F.; Vasavada, A. R.; Vizcaino, J.; Wiens, R. C.
2014-06-01
Physical properties of terrains encountered by the Curiosity rover during the first 360 sols of operations have been inferred from analysis of the scour zones produced by Sky Crane Landing System engine plumes, wheel touch down dynamics, pits produced by Chemical Camera (ChemCam) laser shots, rover wheel traverses over rocks, the extent of sinkage into soils, and the magnitude and sign of rover-based slippage during drives. Results have been integrated with morphologic, mineralogic, and thermophysical properties derived from orbital data, and Curiosity-based measurements, to understand the nature and origin of physical properties of traversed terrains. The hummocky plains (HP) landing site and traverse locations consist of moderately to well-consolidated bedrock of alluvial origin variably covered by slightly cohesive, hard-packed basaltic sand and dust, with both embedded and surface-strewn rock clasts. Rock clasts have been added through local bedrock weathering and impact ejecta emplacement and form a pavement-like surface in which only small clasts (<5 to 10 cm wide) have been pressed into the soil during wheel passages. The bedded fractured (BF) unit, site of Curiosity's first drilling activity, exposes several alluvial-lacustrine bedrock units with little to no soil cover and varying degrees of lithification. Small wheel sinkage values (<1 cm) for both HP and BF surfaces demonstrate that compaction resistance countering driven-wheel thrust has been minimal and that rover slippage while traversing across horizontal surfaces or going uphill, and skid going downhill, have been dominated by terrain tilts and wheel-surface material shear modulus values.
Computational Design for Multifunctional Microstructural Composites
NASA Astrophysics Data System (ADS)
Chen, Yuhang; Zhou, Shiwei; Li, Qing
As an important class of natural and engineered materials, periodic microstructural composites have drawn substantial attention from the material research community for their excellent flexibility in tailoring various desirable physical behaviors. To develop periodic cellular composites for multifunctional applications, this paper presents a unified design framework for combining stiffness and a range of physical properties governed by quasi-harmonic partial differential equations. A multiphase microstructural configuration is sought within a periodic base-cell design domain using topology optimization. To deal with conflicting properties, e.g. conductivity/permeability versus bulk modulus, the optimum is sought in a Pareto sense. Illustrative examples demonstrate the capability of the presented procedure for the design of multiphysical composites and tissue scaffolds.
Measuring the elasticity of plant cells with atomic force microscopy.
Braybrook, Siobhan A
2015-01-01
The physical properties of biological materials impact their functions. This is most evident in plants where the cell wall contains each cell's contents and connects each cell to its neighbors irreversibly. Examining the physical properties of the plant cell wall is key to understanding how plant cells, tissues, and organs grow and gain the shapes important for their respective functions. Here, we present an atomic force microscopy-based nanoindentation method for examining the elasticity of plant cells at the subcellular, cellular, and tissue level. We describe the important areas of experimental design to be considered when planning and executing these types of experiments and provide example data as illustration. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lezon, Timothy R.; Banavar, Jayanth R.; Maritan, Amos
2006-01-01
All living organisms rely upon networks of molecular interactions to carry out their vital processes. In order for a molecular system to display the properties of life, its constituent molecules must themselves be endowed with several features: stability, specificity, self-organization, functionality, sensitivity, robustness, diversity and adaptability. We argue that these are the emergent properties of a unique phase of matter, and we demonstrate that proteins, the functional molecules of terrestrial life, are perfectly suited to this phase. We explore, through an understanding of this phase of matter, the physical principles that govern the operation of living matter. Our work has implications for the design of functionally useful nanoscale devices and the ultimate development of physically based artificial life.
Fabrication of chemically cross-linked porous gelatin matrices.
Bozzini, Sabrina; Petrini, Paola; Altomare, Lina; Tanzi, Maria Cristina
2009-01-01
The aim of this study was to chemically cross-link gelatin, by reacting its free amino groups with an aliphatic diisocyanate. To produce hydrogels with controllable properties, the number of reacting amino groups was carefully determined. Porosity was introduced into the gelatin-based hydrogels through the lyophilization process. Porous and non-porous matrices were characterized with respect to their chemical structure, morphology, water uptake and mechanical properties. The physical, chemical and mechanical properties of the porous matrices are related to the extent of their cross-linking, showing that they can be controlled by varying the reaction parameters. Water uptake values (24 hours) vary between 160% and 200% as the degree of cross-linking increases. The flexibility of the samples also decreases by changing the extent of cross-linking. Young's modulus shows values between 0.188 KPa, for the highest degree, and 0.142 KPa for the lowest degree. The matrices are potential candidates for use as tissue-engineering scaffolds by modulating their physical chemical properties according to the specific application.
Efficient synthetic access to thermo-responsive core/shell nanoparticles
NASA Astrophysics Data System (ADS)
Dine, Enaam Jamal Al; Ferjaoui, Zied; Roques-Carmes, Thibault; Schjen, Aleksandra; Meftah, Abdelaziz; Hamieh, Tayssir; Toufaily, Joumana; Schneider, Raphaël; Gaffet, Eric; Alem, Halima
2017-03-01
Core/shell nanostructures based on silica, fluorescent ZnO quantum dots (QDs) and superparamagnetic Fe3O4 nanoparticles (NPs) were prepared and fully characterized by the combination of different techniques and the physical properties of the nanostructures were studied. We demonstrate the efficiency of the atom transfer radical polymerization with activators regenerated by electron transfer process to graft (co-)polymers of different structures and polarity at the surface of metal oxide NPs. The influence of the polymer chain configuration on the optical properties of the ZnO/polymer core/shell QDs was enlightened. Concerning the magnetic properties of the Fe3O4/polymer nanostructures, only the amount of the grafted polymer plays a role on the saturation magnetization of the NPs and no influence of the aggregation was evidenced. The simple and fast process described in this work is efficient for the grafting of copolymers from surfaces and the derived NPs display the combination of the physical properties of the core and the macromolecular behavior of the shell.
Lee, Ka-Yeon; Song, Kyung Bin
2017-03-01
Olive flounder skin gelatin (OSG) was used as a film base material. A bilayer film of OSG and polylactic acid (PLA) was prepared using solvent casting method to enhance the film properties. Physical properties of the OSG-PLA film were increased compared with the nonaugmented OSG film. In particular, the PLA lamination decreased water vapor permeability from 2.17 to 0.92 × 10 -9 g·m/m 2 ·s·Pa, as well as of the water solubility from 16.62% to 9.27%, in the bilayer film relative to the OSG film. The oxygen permeability of the OSG-PLA bilayer film was held low by the OSG film, compensating for the high oxygen permeability of the PLA layer. Therefore, the OSG-PLA bilayer film with its enhanced physical properties and high water and oxygen barrier properties can be applied as a food packaging material. © 2017 Institute of Food Technologists®.
Efficient synthetic access to thermo-responsive core/shell nanoparticles.
Dine, Enaam Jamal Al; Ferjaoui, Zied; Roques-Carmes, Thibault; Schjen, Aleksandra; Meftah, Abdelaziz; Hamieh, Tayssir; Toufaily, Joumana; Schneider, Raphaël; Gaffet, Eric; Alem, Halima
2017-03-24
Core/shell nanostructures based on silica, fluorescent ZnO quantum dots (QDs) and superparamagnetic Fe 3 O 4 nanoparticles (NPs) were prepared and fully characterized by the combination of different techniques and the physical properties of the nanostructures were studied. We demonstrate the efficiency of the atom transfer radical polymerization with activators regenerated by electron transfer process to graft (co-)polymers of different structures and polarity at the surface of metal oxide NPs. The influence of the polymer chain configuration on the optical properties of the ZnO/polymer core/shell QDs was enlightened. Concerning the magnetic properties of the Fe 3 O 4 /polymer nanostructures, only the amount of the grafted polymer plays a role on the saturation magnetization of the NPs and no influence of the aggregation was evidenced. The simple and fast process described in this work is efficient for the grafting of copolymers from surfaces and the derived NPs display the combination of the physical properties of the core and the macromolecular behavior of the shell.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lancet, M.S.; Curran, G.P.; Sim, F.A.
1982-08-01
The coking properties of seven bituminous coals, including three Eastern US coals, one Midwestern US coal, a Western US coal and two from the UK were studied with respect to the possible utilization of these coals in moving bed gasifier systems. Complete physical, chemical and petrographic analyses were obtained for each coal in addition to the highly specialized CCDC simulated gasifier coking test data. The effects of total pressure, hydrogen partial pressure, heating rate and the addition of gob and tar on the fluidity and swelling properties of each coal was studied. Samples of each coal were shock heated undermore » pressure to simulate coking in the top of a Lurgi gasifier. The resultant cokes were tested for various physical properties and the product yields were determined. Gas release patterns during pressurized pyrolysis were obtained in several instances. The data obtained in this work should provide a valuable data base for future gasifier feedstock evaluation programs.« less
Phenomenology and energetics of diffusion across cell phase states.
Ashrafuzzaman, Md
2015-11-01
Cell based transport properties have been mathematically addressed. Cell contained cross boundary diffusion of materials has been explained using valid formalisms and related analytical expressions have been developed. Various distinguishable physical structures and their properties raise different general structure specific diffusion mechanisms and controlled transport related parameters. Some of these parameters play phenomenological roles and some cause regulatory effects. The cell based compartments may be divided into three major physical phase states namely liquid, plasma and solid phase states. Transport of ions, nutrients, small molecules like proteins, etc. across inter phase states and intraphase states follows general transport related formalisms. Creation of some localized permanent and/or temporary structures e.g., ion channels, clustering of constituents, etc. and the transitions between such structures appear as regulators of the transport mechanisms. In this article, I have developed mainly a theoretical analysis of the commonly observed cell transport phenomena. I have attempted to develop formalisms on general cell based diffusion followed by a few numerical computations to address the analytical expression phenomenologically. I have then extended the analysis to adopting with the local structure originated energetics. Independent or correlated molecular transport naturally relies on some general parameters that define the nature of local cell environment as well as on some occasionally raised or transiently active stochastic resonance due to localized interactions. Short and long range interaction energies play crucial roles in this regard. Physical classification of cellular compartments has led us developing analytical expressions on both biologically observed diffusion mechanisms and the diffusions's occasional stochasticity causing energetics. These analytical expressions help us address the diffusion phenomena generally considering the physical properties of the biostructures across the diffusion pathways. A specific example case of single molecule transport and localized interaction energetics in a specific cell phase has been utilized to address the diffusion quite clearly. This article helps to address the mechanisms of cell based diffusion and nutrient movements and thus helps develop strategic templates to manipulate the diffusion mechanisms. Application of the theoretical knowledge into designing or discovering drugs or small molecule inhibitors targeting cell based structures may open up new avenues in biomedical sciences.
Farah, Shady; Anderson, Daniel G; Langer, Robert
2016-12-15
Poly(lactic acid) (PLA), so far, is the most extensively researched and utilized biodegradable aliphatic polyester in human history. Due to its merits, PLA is a leading biomaterial for numerous applications in medicine as well as in industry replacing conventional petrochemical-based polymers. The main purpose of this review is to elaborate the mechanical and physical properties that affect its stability, processability, degradation, PLA-other polymers immiscibility, aging and recyclability, and therefore its potential suitability to fulfill specific application requirements. This review also summarizes variations in these properties during PLA processing (i.e. thermal degradation and recyclability), biodegradation, packaging and sterilization, and aging (i.e. weathering and hygrothermal). In addition, we discuss up-to-date strategies for PLA properties improvements including components and plasticizer blending, nucleation agent addition, and PLA modifications and nanoformulations. Incorporating better understanding of the role of these properties with available improvement strategies is the key for successful utilization of PLA and its copolymers/composites/blends to maximize their fit with worldwide application needs. Copyright © 2016 Elsevier B.V. All rights reserved.
Overview of Boundary Layer Clouds Using Satellite and Ground-Based Measurements
NASA Astrophysics Data System (ADS)
Xi, B.; Dong, X.; Wu, P.; Qiu, S.
2017-12-01
A comprehensive summary of boundary layer clouds properties based on our few recently studies will be presented. The analyses include the global cloud fractions and cloud macro/micro- physical properties based on satellite measurements using both CERES-MODIS and CloudSat/Caliposo data products,; the annual/seasonal/diurnal variations of stratocumulus clouds over different climate regions (mid-latitude land, mid-latitude ocean, and Arctic region) using DOE ARM ground-based measurements over Southern great plain (SGP), Azores (GRW), and North slope of Alaska (NSA) sites; the impact of environmental conditions to the formation and dissipation process of marine boundary layer clouds over Azores site; characterizing Arctice mixed-phase cloud structure and favorable environmental conditions for the formation/maintainess of mixed-phase clouds over NSA site. Though the presentation has widely spread topics, we will focus on the representation of the ground-based measurements over different climate regions; evaluation of satellite retrieved cloud properties using these ground-based measurements, and understanding the uncertainties of both satellite and ground-based retrievals and measurements.
Retrieving the aerosol lidar ratio profile by combining ground- and space-based elastic lidars.
Feiyue, Mao; Wei, Gong; Yingying, Ma
2012-02-15
The aerosol lidar ratio is a key parameter for the retrieval of aerosol optical properties from elastic lidar, which changes largely for aerosols with different chemical and physical properties. We proposed a method for retrieving the aerosol lidar ratio profile by combining simultaneous ground- and space-based elastic lidars. The method was tested by a simulated case and a real case at 532 nm wavelength. The results demonstrated that our method is robust and can obtain accurate lidar ratio and extinction coefficient profiles. Our method can be useful for determining the local and global lidar ratio and validating space-based lidar datasets.
Coexistence of superconductivity and antiferromagnetism in (Li0.8Fe0.2)OHFeSe.
Lu, X F; Wang, N Z; Wu, H; Wu, Y P; Zhao, D; Zeng, X Z; Luo, X G; Wu, T; Bao, W; Zhang, G H; Huang, F Q; Huang, Q Z; Chen, X H
2015-03-01
Iron selenide superconductors exhibit a number of unique characteristics that are helpful for understanding the mechanism of superconductivity in high-Tc iron-based superconductors more generally. However, in the case of AxFe2Se2 (A = K, Rb, Cs), the presence of an intergrown antiferromagnetic insulating phase makes the study of the underlying physics problematic. Moreover, FeSe-based systems intercalated with alkali metal ions, NH3 molecules or organic molecules are extremely sensitive to air, which prevents the further investigation of their physical properties. It is therefore desirable to find a stable and easily accessible FeSe-based superconductor to study its physical properties in detail. Here, we report the synthesis of an air-stable material, (Li0.8Fe0.2)OHFeSe, which remains superconducting at temperatures up to ~40 K, by means of a novel hydrothermal method. The crystal structure is unambiguously determined by a combination of X-ray and neutron powder diffraction and nuclear magnetic resonance. Moreover, antiferromagnetic order is shown to coexist with superconductivity. This synthetic route opens a path for exploring superconductivity in other related systems, and confirms the appeal of iron selenides as a platform for understanding superconductivity in iron pnictides more broadly.
Haeufle, D F B; Günther, M; Wunner, G; Schmitt, S
2014-01-01
In biomechanics and biorobotics, muscles are often associated with reduced movement control effort and simplified control compared to technical actuators. This is based on evidence that the nonlinear muscle properties positively influence movement control. It is, however, open how to quantify the simplicity aspect of control effort and compare it between systems. Physical measures, such as energy consumption, stability, or jerk, have already been applied to compare biological and technical systems. Here a physical measure of control effort based on information entropy is presented. The idea is that control is simpler if a specific movement is generated with less processed sensor information, depending on the control scheme and the physical properties of the systems being compared. By calculating the Shannon information entropy of all sensor signals required for control, an information cost function can be formulated allowing the comparison of models of biological and technical control systems. Exemplarily applied to (bio-)mechanical models of hopping, the method reveals that the required information for generating hopping with a muscle driven by a simple reflex control scheme is only I=32 bits versus I=660 bits with a DC motor and a proportional differential controller. This approach to quantifying control effort captures the simplicity of a control scheme and can be used to compare completely different actuators and control approaches.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habte, A.; Sengupta, M.; Wilcox, S.
Models to compute Global Horizontal Irradiance (GHI) and Direct Normal Irradiance (DNI) have been in development over the last 3 decades. These models can be classified as empirical or physical, based on the approach. Empirical models relate ground based observations with satellite measurements and use these relations to compute surface radiation. Physical models consider the radiation received from the earth at the satellite and create retrievals to estimate surface radiation. While empirical methods have been traditionally used for computing surface radiation for the solar energy industry the advent of faster computing has made operational physical models viable. The Global Solarmore » Insolation Project (GSIP) is an operational physical model from NOAA that computes GHI using the visible and infrared channel measurements from the GOES satellites. GSIP uses a two-stage scheme that first retrieves cloud properties and uses those properties in a radiative transfer model to calculate surface radiation. NREL, University of Wisconsin and NOAA have recently collaborated to adapt GSIP to create a 4 km GHI and DNI product every 30 minutes. This paper presents an outline of the methodology and a comprehensive validation using high quality ground based solar data from the National Oceanic and Atmospheric Administration (NOAA) Surface Radiation (SURFRAD) (http://www.srrb.noaa.gov/surfrad/sitepage.html) and Integrated Surface Insolation Study (ISIS) http://www.srrb.noaa.gov/isis/isissites.html), the Solar Radiation Research Laboratory (SRRL) at National Renewable Energy Laboratory (NREL), and Sun Spot One (SS1) stations.« less
Universal interface of TAUOLA: Technical and physics documentation
NASA Astrophysics Data System (ADS)
Davidson, N.; Nanava, G.; Przedziński, T.; Richter-Waş, E.; Waş, Z.
2012-03-01
Because of their narrow width, τ decays can be well separated from their production process. Only spin degrees of freedom connect these two parts of the physics process of interest for high energy collision experiments. In the following, we present a Monte Carlo algorithm which is based on that property. The interface supplements events generated by other programs, with τ decays. Effects of spin, including transverse degrees of freedom, genuine weak corrections or of new physics may be taken into account at the time when a τ decay is generated and written into an event record. The physics content of the C++ interface is already now richer than its FORTRAN predecessor.
NASA Astrophysics Data System (ADS)
2015-10-01
I think and hope that most experienced physics and astronomy teachers would agree that teaching is both a science and a creative art. There is a way to creatively introduce vectors into introductory astronomy that lets students learn some basic, but fundamental, physics and at the same time demonstrates that mathematics need not be a barrier in a science course. The approach is entirely graphical in that it is based on the geometric properties of vectors and is implemented by drawing diagrams. Despite the simplicity, it allows astronomy students to experience genuine physics reasoning at about the same level of a conceptual physics course (and possibly a higher level).
Single Spin Readout for the Silicon-Based Quantum Computer
2007-01-03
cantilever unlike softer magnetic materi- als such as Co and NiFe . Therefore fabrication of high coercivity magnets are different from the techniques...not suitable for batch fabrication. However the advanta- geous physical properties of the resulting probe magnet outweigh the ease of fabrication of...studying the magnetic properties of these tiny moment micromagnets as a prerequisite to their successful development. We have developed a sen- sitive
Research and Development of Energetic Ionic Liquids
2012-03-01
Navy/ AF ) – USAF AF - M315E • Propellant uses ionic liquids to yield low vapor toxicity 22 – Sweden/ECAPS LMP-103S • Propellant uses ADN-based formulation...hydrazine replacement monopropellant objectives, relevant monopropellant properties, AF -M1028A monopropellant composition and physical properties...thruster tests of AF -M1028A, ionic liquids as explosives, predictive toxicology, predictive methods expected payoff. AFRL continues efforts in energetic
NDE Research At Nondestructive Measurement Science At NASA Langley
1989-06-01
our staff include: ultrasonics, nonlinear acoustics , thermal acoustics and diffusion, magnetics , fiber optics, and x-ray tomography . We have a...based on the simple assumption that acoustic waves interact with the sample and reveal "important" properties . In practice, such assumptions have...between the acoustic wave and the media. The most useful models can generally be inverted to determine the physical properties or geometry of the
Distant Comets in the Early Solar System
NASA Technical Reports Server (NTRS)
Meech, Karen J.
2000-01-01
The main goal of this project is to physically characterize the small outer solar system bodies. An understanding of the dynamics and physical properties of the outer solar system small bodies is currently one of planetary science's highest priorities. The measurement of the size distributions of these bodies will help constrain the early mass of the outer solar system as well as lead to an understanding of the collisional and accretional processes. A study of the physical properties of the small outer solar system bodies in comparison with comets in the inner solar system and in the Kuiper Belt will give us information about the nebular volatile distribution and small body surface processing. We will increase the database of comet nucleus sizes making it statistically meaningful (for both Short-Period and Centaur comets) to compare with those of the Trans-Neptunian Objects. In addition, we are proposing to do active ground-based observations in preparation for several upcoming space missions.
The electric and thermoelectric properties of Cu(II)-Schiff base nano-complexes
NASA Astrophysics Data System (ADS)
Ibrahim, E. M. M.; Abdel-Rahman, Laila H.; Abu-Dief, Ahmed M.; Elshafaie, A.; Hamdan, Samar Kamel; Ahmed, A. M.
2018-05-01
The physical properties, such as electric and optical properties, of metal-Schiff base complexes have been widely investigated. However, their thermoelectric (TE) properties remain unreported. This work presents Cu(II)-Schiff base complexes as promising materials for TE power generation. Therefore, three Cu(II)-Schiff base complexes (namely, [Cu(C32H22N4O2)].3/2H2O, [Cu(C23H17N4O7Br)], and [Cu(C27H22N4O8)].H2O) have been synthesized in nanosized scale. The electric and TE properties have been studied and comprehensive discussions have been presented to promote the nano-complexes (NCs) practical applications in the field of TE power generation. The electrical measurements confirm that the NCs are semiconductors and the electrical conduction process is governed by intermolecular and intramolecular transfer of the charge carriers. The TE measurements reveal that the Cu(II)-Schiff base NCs are nondegenerate P-type semiconductors. The measured Seebeck coefficient values were higher compared to the values reported in previous works for other organic materials indicating that the complexes under study are promising candidates for theremoelectric applications if the electrical conductivity could be enhanced.
Tracking and Motion Analysis of Crack Propagations in Crystals for Molecular Dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsap, L V; Duchaineau, M; Goldgof, D B
2001-05-14
This paper presents a quantitative analysis for a discovery in molecular dynamics. Recent simulations have shown that velocities of crack propagations in crystals under certain conditions can become supersonic, which is contrary to classical physics. In this research, they present a framework for tracking and motion analysis of crack propagations in crystals. It includes line segment extraction based on Canny edge maps, feature selection based on physical properties, and subsequent tracking of primary and secondary wavefronts. This tracking is completely automated; it runs in real time on three 834-image sequences using forty 250 MHZ processors. Results supporting physical observations aremore » presented in terms of both feature tracking and velocity analysis.« less
A study of swing-curve physics in diffraction-based overlay
NASA Astrophysics Data System (ADS)
Bhattacharyya, Kaustuve; den Boef, Arie; Storms, Greet; van Heijst, Joost; Noot, Marc; An, Kevin; Park, Noh-Kyoung; Jeon, Se-Ra; Oh, Nang-Lyeom; McNamara, Elliott; van de Mast, Frank; Oh, SeungHwa; Lee, Seung Yoon; Hwang, Chan; Lee, Kuntack
2016-03-01
With the increase of process complexity in advanced nodes, the requirements of process robustness in overlay metrology continues to tighten. Especially with the introduction of newer materials in the film-stack along with typical stack variations (thickness, optical properties, profile asymmetry etc.), the signal formation physics in diffraction-based overlay (DBO) becomes an important aspect to apply in overlay metrology target and recipe selection. In order to address the signal formation physics, an effort is made towards studying the swing-curve phenomena through wavelength and polarizations on production stacks using simulations as well as experimental technique using DBO. The results provide a wealth of information on target and recipe selection for robustness. Details from simulation and measurements will be reported in this technical publication.
NASA Astrophysics Data System (ADS)
Indrarti, L.; Indriyati
2017-03-01
The use of edible films in food protection and preservation has recently gained more interest since they offer several advantages over synthetic packaging materials. Biocellulose (BC) offers great opportunity as edible film due to their unique physical and mechanical properties. In this study, biocellulose films were prepared by solution casting with addition of 30% carboxymethyl cellulose (CMC) and 30% glycerol as the homogenizer and plasticizer, respectively. Furthermore, various citrus essential oils (EOs) including lemon, lime, and sweet orange were added at 50% w/w of BC dried weight. The solutions were then cast on the tray and allowed to dry in the air convection oven at 40°C overnight. The films were characterized for water solubility, tensile strength (TS), elongation at break (EB), water vapour transmission rate (WVTR), and color. Those characteristics may influence consumer acceptability of the packaged products. Results revealed that addition of lemon and sweet orange EOs into BC-based edible film decreased water solubility and TS, but improved EB, as these oils acted as plasticizers in the film. However, different trend was observed for BC-based film incorporated with lime oil, which had higher solubility and TS, but lower EB and WVTR compared with that of control film. Addition of citrus EOs into BC-based films did not have much effect on color properties as stated in L*, a*, and b* values.
NASA Astrophysics Data System (ADS)
Kim, J. B.; Lee, T. H.; Sohn, I.
2018-04-01
The effect of compositional variation in TiO2-based flux-cored arc welding fluxes on viscosity, wettability, and electronegativity was studied. The thermo-physical properties of the retrieved fluxes and their relationship with the mechanical properties of the weld zone, including tensile strength and micro-Vickers hardness, after welding were identified. Microstructural observation under similar welding conditions revealed significant grain coarsening at a corrected optical basicity (Λcorr) of 0.62, resulting in reduced strength and hardness due to greater heat transfer. Welding fluxes containing TiO2-based simple structural units should result in greater heat transfer due to the deficiency in complex [AlO4]5-- and [SiO4]4--based structural units, as identified through spectroscopic analyses using fourier transform infrared spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. The electronegativity of the retrieved fluxes was also evaluated since higher electronegativity results in greater absorption of electrons in the arc, resulting in arc condensation towards the center direction. Consequently, deeper penetration could be obtained, where the highest electronegativity was identified to be approximately 0.62 of the corrected optical basicity. Thus, both the thermal conductivity and electronegativity of the welding fluxes were identified to determine the heat transfer phenomenon during flux-cored arc welding.
NASA Astrophysics Data System (ADS)
Kim, J. B.; Lee, T. H.; Sohn, I.
2018-07-01
The effect of compositional variation in TiO2-based flux-cored arc welding fluxes on viscosity, wettability, and electronegativity was studied. The thermo-physical properties of the retrieved fluxes and their relationship with the mechanical properties of the weld zone, including tensile strength and micro-Vickers hardness, after welding were identified. Microstructural observation under similar welding conditions revealed significant grain coarsening at a corrected optical basicity (Λcorr) of 0.62, resulting in reduced strength and hardness due to greater heat transfer. Welding fluxes containing TiO2-based simple structural units should result in greater heat transfer due to the deficiency in complex [AlO4]5-- and [SiO4]4--based structural units, as identified through spectroscopic analyses using fourier transform infrared spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. The electronegativity of the retrieved fluxes was also evaluated since higher electronegativity results in greater absorption of electrons in the arc, resulting in arc condensation towards the center direction. Consequently, deeper penetration could be obtained, where the highest electronegativity was identified to be approximately 0.62 of the corrected optical basicity. Thus, both the thermal conductivity and electronegativity of the welding fluxes were identified to determine the heat transfer phenomenon during flux-cored arc welding.
Blind test of physics-based prediction of protein structures.
Shell, M Scott; Ozkan, S Banu; Voelz, Vincent; Wu, Guohong Albert; Dill, Ken A
2009-02-01
We report here a multiprotein blind test of a computer method to predict native protein structures based solely on an all-atom physics-based force field. We use the AMBER 96 potential function with an implicit (GB/SA) model of solvation, combined with replica-exchange molecular-dynamics simulations. Coarse conformational sampling is performed using the zipping and assembly method (ZAM), an approach that is designed to mimic the putative physical routes of protein folding. ZAM was applied to the folding of six proteins, from 76 to 112 monomers in length, in CASP7, a community-wide blind test of protein structure prediction. Because these predictions have about the same level of accuracy as typical bioinformatics methods, and do not utilize information from databases of known native structures, this work opens up the possibility of predicting the structures of membrane proteins, synthetic peptides, or other foldable polymers, for which there is little prior knowledge of native structures. This approach may also be useful for predicting physical protein folding routes, non-native conformations, and other physical properties from amino acid sequences.
Blind Test of Physics-Based Prediction of Protein Structures
Shell, M. Scott; Ozkan, S. Banu; Voelz, Vincent; Wu, Guohong Albert; Dill, Ken A.
2009-01-01
We report here a multiprotein blind test of a computer method to predict native protein structures based solely on an all-atom physics-based force field. We use the AMBER 96 potential function with an implicit (GB/SA) model of solvation, combined with replica-exchange molecular-dynamics simulations. Coarse conformational sampling is performed using the zipping and assembly method (ZAM), an approach that is designed to mimic the putative physical routes of protein folding. ZAM was applied to the folding of six proteins, from 76 to 112 monomers in length, in CASP7, a community-wide blind test of protein structure prediction. Because these predictions have about the same level of accuracy as typical bioinformatics methods, and do not utilize information from databases of known native structures, this work opens up the possibility of predicting the structures of membrane proteins, synthetic peptides, or other foldable polymers, for which there is little prior knowledge of native structures. This approach may also be useful for predicting physical protein folding routes, non-native conformations, and other physical properties from amino acid sequences. PMID:19186130
Setting semantics: conceptual set can determine the physical properties that capture attention.
Goodhew, Stephanie C; Kendall, William; Ferber, Susanne; Pratt, Jay
2014-08-01
The ability of a stimulus to capture visuospatial attention depends on the interplay between its bottom-up saliency and its relationship to an observer's top-down control set, such that stimuli capture attention if they match the predefined properties that distinguish a searched-for target from distractors (Folk, Remington, & Johnston, Journal of Experimental Psychology: Human Perception & Performance, 18, 1030-1044 1992). Despite decades of research on this phenomenon, however, the vast majority has focused exclusively on matches based on low-level physical properties. Yet if contingent capture is indeed a "top-down" influence on attention, then semantic content should be accessible and able to determine which physical features capture attention. Here we tested this prediction by examining whether a semantically defined target could create a control set for particular features. To do this, we had participants search to identify a target that was differentiated from distractors by its meaning (e.g., the word "red" among color words all written in black). Before the target array, a cue was presented, and it was varied whether the cue appeared in the physical color implied by the target word. Across three experiments, we found that cues that embodied the meaning of the word produced greater cuing than cues that did not. This suggests that top-down control sets activate content that is semantically associated with the target-defining property, and this content in turn has the ability to exogenously orient attention.
NASA Astrophysics Data System (ADS)
Olkhov, A.; Lobanov, A.; Staroverova, O.; Tyubaeva, P.; Zykova, A.; Pantyukhov, P.; Popov, A.; Iordanskii, A.
2017-02-01
Ferric iron (III)-based complexes with porphyrins are the homogenous catalysts of auto-oxidation of several biogenic substances. The most perspective carrier for functional low-molecular substances is the polymer fibers with nano-dimensional parameters. Application of natural polymers, poly-(3-hydroxybutyrate) or polylactic acid for instance, makes possible to develop fiber and matrice systems to solve ecological problem in biomedicine The aim of the article is to obtain fibrous material on poly-(3-hydroxybutyrate) and ferric iron (III)-based porphyrins basis and to examine its physical-chemical and antibacterial properties. The work is focused on possibility to apply such material to biomedical purposes. Microphotographs of obtained material showed that addition of 1% wt. ferric iron (III)-based porphyrins to PHB led to increased average diameter and disappeared spindly structures in comparison with initial PHB. Biological tests of nonwoven fabrics showed that fibers, containing ferric iron (III)-based tetraphenylporphyrins, were active in relation to bacterial test-cultures. It was found that materials on polymer and metal complexes with porphyrins basis can be applied to production of decontamination equipment in relation to pathogenic and opportunistic microorganisms.
Physical-chemical properties of dental composites and adhesives containing silane-modified SBA-15.
Martim, Gedalias Custódio; Kupfer, Vicente Lira; Moisés, Murilo Pereira; Dos Santos, Andressa; Buzzetti, Paulo Henrique Maciel; Rinaldi, Andrelson Wellington; Rubira, Adley Forti; Girotto, Emerson Marcelo
2018-04-01
The aim of this study was to synthesize and characterize mesoporous materials SBA-15 and SBA-15 modified with 3-(methacryloxy)-propyl-trimethoxysilane (MPS) to be used as inorganic filler in restorative dental composites and adhesives, and evaluate the main physical-chemical properties of the resulting material. The SBA-15 and SBA-15/MPS were characterized by FTIR, BET and X-Ray and combined with TEGDMA, bis-GMA and commercial spherical silica to produce dental composites. Afterwards, the mesoporous materials were combined with TEGDMA, bis-GMA and HEMA to make adhesives. To compare the results, composites and adhesives containing only commercial spherical silica were investigated. Some physical-chemical properties such as degree of conversion (DC), flexural strength (FS) and modulus (FM), water sorption and solubility (W sp and W sl ), specific area (BET), and the leachable components were evaluated. The SBA-15/MPS can be used to prepare dental restorative materials, with some foreseeable advantages compared with pure SBA-15 dental materials and with improved properties compared with commercial spherical silica dental materials. An important improvement was that the dental materials based on modified SBA-15 presented a reduction of approximately 60% in leaching of unreacted monomers extracted by solvent compared to the control group. Copyright © 2018 Elsevier Ltd. All rights reserved.
Antimicrobial and physical properties of chitosan films incorporated with turmeric extract.
Kalaycıoğlu, Zeynep; Torlak, Emrah; Akın-Evingür, Gülşen; Özen, İlhan; Erim, F Bedia
2017-08-01
In this study, the effects of turmeric extract incorporation on the antibacterial and physical properties of the chitosan films were evaluated. Turmeric containing chitosan-based film was produced with casting procedure and cross-linked with sodium sulfate. Mechanical, optical, thermal properties, and water vapor permeability of the films were studied. The addition of turmeric to chitosan film significantly increased the tensile strength of the film and improved the ultraviolet-visible light barrier of the film. Infrared spectroscopy analysis suggested an interaction between the phenolic compounds of the extract and amin group of chitosan. Antimicrobial activity of the chitosan films was studied against Salmonella and Staphylococcus aureus by plate count agar technique and a better antimicrobial activity was observed with turmeric incorporation. Turmeric incorporated chitosan films with enhanced antimicrobial activity and film stiffness can be suggested as a promising application for food packaging. Copyright © 2017 Elsevier B.V. All rights reserved.
Surface crystallization behavior and physical properties of (GeTe4)85(AgI)15 chalcogenide glass
NASA Astrophysics Data System (ADS)
Zhu, Erwei; Wu, Bo; Zhao, Xuhao; Wang, Jingsong; Lin, Changgui; Wang, Xunsi; Li, Xing; Tian, Peijing
2017-11-01
Glass-ceramics embedded Te and α-GeTe particles were fabricated from (GeTe4)85(AgI)15 chalcohalide glass using an appropriate heat-treatment at fairly low temperatures ranging from 160 to 190 °C for different times. The crystallization behavior and physical properties of the obtained samples were studied in detail. The glass transition temperature of crystallized samples increases with the elongation of crystallization times. And the results of mechanical properties show that, compared with the base glass, the crystallized samples present improved thermal shock resistance and fracture toughness, and meanwhile still remain its good IR transmittance. This study could provide an initial observation of crystallization in telluride glasses, and be of good guidance to fabricate novel telluride glass-ceramics that operating in far-IR spectral region ranging from 2.5 μm to 25 μm.
Accurate Semilocal Density Functional for Condensed-Matter Physics and Quantum Chemistry.
Tao, Jianmin; Mo, Yuxiang
2016-08-12
Most density functionals have been developed by imposing the known exact constraints on the exchange-correlation energy, or by a fit to a set of properties of selected systems, or by both. However, accurate modeling of the conventional exchange hole presents a great challenge, due to the delocalization of the hole. Making use of the property that the hole can be made localized under a general coordinate transformation, here we derive an exchange hole from the density matrix expansion, while the correlation part is obtained by imposing the low-density limit constraint. From the hole, a semilocal exchange-correlation functional is calculated. Our comprehensive test shows that this functional can achieve remarkable accuracy for diverse properties of molecules, solids, and solid surfaces, substantially improving upon the nonempirical functionals proposed in recent years. Accurate semilocal functionals based on their associated holes are physically appealing and practically useful for developing nonlocal functionals.
Classification of adulterated honeys by multivariate analysis.
Amiry, Saber; Esmaiili, Mohsen; Alizadeh, Mohammad
2017-06-01
In this research, honey samples were adulterated with date syrup (DS) and invert sugar syrup (IS) at three concentrations (7%, 15% and 30%). 102 adulterated samples were prepared in six batches with 17 replications for each batch. For each sample, 32 parameters including color indices, rheological, physical, and chemical parameters were determined. To classify the samples, based on type and concentrations of adulterant, a multivariate analysis was applied using principal component analysis (PCA) followed by a linear discriminant analysis (LDA). Then, 21 principal components (PCs) were selected in five sets. Approximately two-thirds were identified correctly using color indices (62.75%) or rheological properties (67.65%). A power discrimination was obtained using physical properties (97.06%), and the best separations were achieved using two sets of chemical properties (set 1: lactone, diastase activity, sucrose - 100%) (set 2: free acidity, HMF, ash - 95%). Copyright © 2016 Elsevier Ltd. All rights reserved.
Asymptotic formulae for likelihood-based tests of new physics
NASA Astrophysics Data System (ADS)
Cowan, Glen; Cranmer, Kyle; Gross, Eilam; Vitells, Ofer
2011-02-01
We describe likelihood-based statistical tests for use in high energy physics for the discovery of new phenomena and for construction of confidence intervals on model parameters. We focus on the properties of the test procedures that allow one to account for systematic uncertainties. Explicit formulae for the asymptotic distributions of test statistics are derived using results of Wilks and Wald. We motivate and justify the use of a representative data set, called the "Asimov data set", which provides a simple method to obtain the median experimental sensitivity of a search or measurement as well as fluctuations about this expectation.
Zornoza, R; Guerrero, C; Mataix-Solera, J; Scow, K M; Arcenegui, V; Mataix-Beneyto, J
2008-07-01
The potential of near infrared (NIR) reflectance spectroscopy to predict various physical, chemical and biochemical properties in Mediterranean soils from SE Spain was evaluated. Soil samples (n=393) were obtained by sampling thirteen locations during three years (2003-2005 period). These samples had a wide range of soil characteristics due to variations in land use, vegetation cover and specific climatic conditions. Biochemical properties also included microbial biomarkers based on phospholipid fatty acids (PLFA). Partial least squares (PLS) regression with cross validation was used to establish relationships between the NIR spectra and the reference data from physical, chemical and biochemical analyses. Based on the values of coefficient of determination (r(2)) and the ratio of standard deviation of validation set to root mean square error of cross validation (RPD), predicted results were evaluated as excellent (r(2)>0.90 and RPD>3) for soil organic carbon, Kjeldahl nitrogen, soil moisture, cation exchange capacity, microbial biomass carbon, basal soil respiration, acid phosphatase activity, β-glucosidase activity and PLFA biomarkers for total bacteria, Gram positive bacteria, actinomycetes, vesicular-arbuscular mycorrhizal fungi and total PLFA biomass. Good predictions (0.81
NASA Technical Reports Server (NTRS)
Richter, L.; Sims, M.; Economou, T.; Stoker, C.; Wright, I.; Tokano, T.
2004-01-01
Previous in-situ measurements of soil-like materials on the surface of Mars, in particular during the on-going Mars Exploration Rover missions, have shown complex relationships between composition, exposure to the surface environment, texture, and local rocks. In particular, a diversity in both compositional and physical properties could be established that is interpreted to be diagnostic of the complex geologic history of the martian surface layer. Physical and chemical properties vary laterally and vertically, providing insight into the composition of rocks from which soils derive, and environmental conditions that led to soil formation. They are central to understanding whether habitable environments existed on Mars in the distant past. An instrument the Mole for Soil Compositional Studies and Sampling (MOCSS) - is proposed to allow repeated access to subsurface regolith on Mars to depths of up to 1.5 meters for in-situ measurements of elemental composition and of physical and thermophysical properties, as well as for subsurface sample acquisition. MOCSS is based on the compact PLUTO (PLanetary Underground TOol) Mole system developed for the Beagle 2 lander and incorporates a small X-ray fluorescence spectrometer within the Mole which is a new development. Overall MOCSS mass is approximately 1.4 kilograms. Taken together, the MOCSS science data support to decipher the geologic history at the landing site as compositional and textural stratigraphy if they exist - can be detected at a number of places if the MOCSS were accommodated on a rover such as MSL. Based on uncovered stratigraphy, the regional sequence of depositional and erosional styles can be constrained which has an impact on understanding the ancient history of the Martian near-surface layer, considering estimates of Mars soil production rates of 0.5... 1.0 meters per billion years on the one hand and Mole subsurface access capability of approximately 1.5 meters. An overview of the MOCSS, XRS instrument accomodation and the impact that these instruments have on Mars science is discussed.
41 CFR 109-27.5007 - Physical inventories.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Physical inventories. 109-27.5007 Section 109-27.5007 Public Contracts and Property Management Federal Property Management...-INVENTORY MANAGEMENT 27.50-Inventory Management Policies, Procedures, and Guidelines § 109-27.5007 Physical...
41 CFR 109-27.5007 - Physical inventories.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Physical inventories. 109-27.5007 Section 109-27.5007 Public Contracts and Property Management Federal Property Management...-INVENTORY MANAGEMENT 27.50-Inventory Management Policies, Procedures, and Guidelines § 109-27.5007 Physical...
41 CFR 109-27.5007 - Physical inventories.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Physical inventories. 109-27.5007 Section 109-27.5007 Public Contracts and Property Management Federal Property Management...-INVENTORY MANAGEMENT 27.50-Inventory Management Policies, Procedures, and Guidelines § 109-27.5007 Physical...
41 CFR 109-27.5007 - Physical inventories.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Physical inventories. 109-27.5007 Section 109-27.5007 Public Contracts and Property Management Federal Property Management...-INVENTORY MANAGEMENT 27.50-Inventory Management Policies, Procedures, and Guidelines § 109-27.5007 Physical...
41 CFR 109-27.5007 - Physical inventories.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Physical inventories. 109-27.5007 Section 109-27.5007 Public Contracts and Property Management Federal Property Management...-INVENTORY MANAGEMENT 27.50-Inventory Management Policies, Procedures, and Guidelines § 109-27.5007 Physical...
Characterization and nultivariate analysis of physical properties of processing peaches
USDA-ARS?s Scientific Manuscript database
Characterization of physical properties of fruits represents the first vital step to ensure optimal performance of fruit processing operations and is also a prerequisite in the development of new processing equipment. In this study, physical properties of engineering significance to processing of th...
NASA Astrophysics Data System (ADS)
Dufoyer, A.; Lecoq, N.; Massei, N.; Marechal, J. C.
2017-12-01
Physics-based modeling of karst systems remains almost impossible without enough accurate information about the inner physical characteristics. Usually, the only available hydrodynamic information is the flow rate at the karst outlet. Numerous works in the past decades have used and proven the usefulness of time-series analysis and spectral techniques applied to spring flow, precipitations or even physico-chemical parameters, for interpreting karst hydrological functioning. However, identifying or interpreting the karst systems physical features that control statistical or spectral characteristics of spring flow variations is still challenging, not to say sometimes controversial. The main objective of this work is to determine how the statistical and spectral characteristics of the hydrodynamic signal at karst springs can be related to inner physical and hydraulic properties. In order to address this issue, we undertake an empirical approach based on the use of both distributed and physics-based models, and on synthetic systems responses. The first step of the research is to conduct a sensitivity analysis of time-series/spectral methods to karst hydraulic and physical properties. For this purpose, forward modeling of flow through several simple, constrained and synthetic cases in response to precipitations is undertaken. It allows us to quantify how the statistical and spectral characteristics of flow at the outlet are sensitive to changes (i) in conduit geometries, and (ii) in hydraulic parameters of the system (matrix/conduit exchange rate, matrix hydraulic conductivity and storativity). The flow differential equations resolved by MARTHE, a computer code developed by the BRGM, allows karst conduits modeling. From signal processing on simulated spring responses, we hope to determine if specific frequencies are always modified, thanks to Fourier series and multi-resolution analysis. We also hope to quantify which parameters are the most variable with auto-correlation analysis: first results seem to show higher variations due to conduit conductivity than the ones due to matrix/conduit exchange rate. Future steps will be using another computer code, based on double-continuum approach and allowing turbulent conduit flow, and modeling a natural system.
Physical Properties of Gas Hydrates: A Review
Gabitto, Jorge F.; Tsouris, Costas
2010-01-01
Memore » thane gas hydrates in sediments have been studied by several investigators as a possible future energy resource. Recent hydrate reserves have been estimated at approximately 10 16 m 3 of methane gas worldwide at standard temperature and pressure conditions. In situ dissociation of natural gas hydrate is necessary in order to commercially exploit the resource from the natural-gas-hydrate-bearing sediment. The presence of gas hydrates in sediments dramatically alters some of the normal physical properties of the sediment. These changes can be detected by field measurements and by down-hole logs. An understanding of the physical properties of hydrate-bearing sediments is necessary for interpretation of geophysical data collected in field settings, borehole, and slope stability analyses; reservoir simulation; and production models. This work reviews information available in literature related to the physical properties of sediments containing gas hydrates. A brief review of the physical properties of bulk gas hydrates is included. Detection methods, morphology, and relevant physical properties of gas-hydrate-bearing sediments are also discussed.« less
Flux-Based Finite Volume representations for general thermal problems
NASA Technical Reports Server (NTRS)
Mohan, Ram V.; Tamma, Kumar K.
1993-01-01
Flux-Based Finite Volume (FV) element representations for general thermal problems are given in conjunction with a generalized trapezoidal gamma-T family of algorithms, formulated following the spirit of what we term as the Lax-Wendroff based FV formulations. The new flux-based representations introduced offer an improved physical interpretation of the problem along with computationally convenient and attractive features. The space and time discretization emanate from a conservation form of the governing equation for thermal problems, and in conjunction with the flux-based element representations give rise to a physically improved and locally conservative numerical formulations. The present representations seek to involve improved locally conservative properties, improved physical representations and computational features; these are based on a 2D, bilinear FV element and can be extended for other cases. Time discretization based on a gamma-T family of algorithms in the spirit of a Lax-Wendroff based FV formulations are employed. Numerical examples involving linear/nonlinear steady and transient situations are shown to demonstrate the applicability of the present representations for thermal analysis situations.
ERIC Educational Resources Information Center
Tinsley, Howard E. A.; Eldredge, Barbara D.
1995-01-01
Proposes a needs-based taxonomy of leisure activities. Study participants (n=3,771) indicated the extent to which leisure activities met different psychological needs. Results support theories that leisure experiences affect individuals' physical and mental health. Provides a taxonomy of 12 leisure activity clusters so as to allow greater…
R symmetries and a heterotic MSSM
NASA Astrophysics Data System (ADS)
Kappl, Rolf; Nilles, Hans Peter; Schmitz, Matthias
2015-02-01
We employ powerful techniques based on Hilbert and Gröbner bases to analyze particle physics models derived from string theory. Individual models are shown to have a huge landscape of vacua that differ in their phenomenological properties. We explore the (discrete) symmetries of these vacua, the new R symmetry selection rules and their consequences for moduli stabilization.
Code of Federal Regulations, 2014 CFR
2014-04-01
... justified by a newly created property-based needs assessment (a life-cycle physical needs assessments... calculated as the sum of total operating cost, modernization cost, and costs to address accrual needs. Costs... assist PHAs in completing the assessments. The spreadsheet calculator is designed to walk housing...
Code of Federal Regulations, 2013 CFR
2013-04-01
... justified by a newly created property-based needs assessment (a life-cycle physical needs assessments... calculated as the sum of total operating cost, modernization cost, and costs to address accrual needs. Costs... assist PHAs in completing the assessments. The spreadsheet calculator is designed to walk housing...
NASA Astrophysics Data System (ADS)
Shitrit, Omri; Hatzor, Yossef H.; Feinstein, Shimon; Vinegar, Harold J.
2017-12-01
Thermal maturation is known to influence the rock physics of organic-rich rocks. While most studies were performed on low-porosity organic-rich shales, here we examine the effect of thermal maturation on a high-porosity organic-rich chalk. We compare the physical properties of native state immature rock with the properties at two pyrolysis-simulated maturity levels: early-mature and over-mature. We further evaluate the applicability of results from unconfined pyrolysis experiments to naturally matured rock properties. Special attention is dedicated to the elastic properties of the organic phase and the influence of bitumen and kerogen contents. Rock physics is studied based on confined petrophysical measurements of porosity, density and permeability, and measurements of bedding-normal acoustic velocities at estimated field stresses. Geochemical parameters like total organic carbon (TOC), bitumen content and thermal maturation indicators are used to monitor variations in density and volume fraction of each phase. We find that porosity increases significantly upon pyrolysis and that P wave velocity decreases in accordance. Solids density versus TOC relationships indicate that the kerogen increases its density from 1.43 to 1.49 g/cc at the immature and early-mature stages to 2.98 g/cc at the over-mature stage. This density value is unusually high, although increase in S wave velocity and backscatter SEM images of the over-mature samples verify that the over-mature kerogen is significantly denser and stiffer. Using the petrophysical and acoustic properties, the elastic moduli of the rock are estimated by two Hashin-Shtrikman (HS)-based models: "HS + BAM" and "HS kerogen." The "HS + BAM" model is calibrated to the post-pyrolysis measurements to describe the mechanical effect of the unconfined pyrolysis on the rock. The absence of compaction in the pyrolysis process causes the post-pyrolysis samples to be extremely porous. The "HS kerogen" model, which simulates a kerogen-supported matrix, depicts a compacted version of the matrix and is believed to be more representative of a naturally matured rock. Rock physics analysis using the "HS kerogen" model indicates strong mechanical dominance of porosity and organic content, and only small maturity-associated effects.
NASA Astrophysics Data System (ADS)
Aghaei, A.
2017-12-01
Digital imaging and modeling of rocks and subsequent simulation of physical phenomena in digitally-constructed rock models are becoming an integral part of core analysis workflows. One of the inherent limitations of image-based analysis, at any given scale, is image resolution. This limitation becomes more evident when the rock has multiple scales of porosity such as in carbonates and tight sandstones. Multi-scale imaging and constructions of hybrid models that encompass images acquired at multiple scales and resolutions are proposed as a solution to this problem. In this study, we investigate the effect of image resolution and unresolved porosity on petrophysical and two-phase flow properties calculated based on images. A helical X-ray micro-CT scanner with a high cone-angle is used to acquire digital rock images that are free of geometric distortion. To remove subjectivity from the analyses, a semi-automated image processing technique is used to process and segment the acquired data into multiple phases. Direct and pore network based models are used to simulate physical phenomena and obtain absolute permeability, formation factor and two-phase flow properties such as relative permeability and capillary pressure. The effect of image resolution on each property is investigated. Finally a hybrid network model incorporating images at multiple resolutions is built and used for simulations. The results from the hybrid model are compared against results from the model built at the highest resolution and those from laboratory tests.
Proton Electrostatic Analyzer.
1983-02-01
Detector Assembly ......................................... 11 2.2 Analyzer (Energy Selector) Assembly............................ 12 2.3 Collimator...Spectrometer assembly ........................................ 13 2.2 Base plate .................................................. 14 - ~ 2.3 Detector ... sensitive vehicle systems. Space objects undergo differential charging due to variations in physical properties among their surface regions. The rate and
Calculating Henry’s Constants of Charged Molecules Using SPARC
SPARC Performs Automated Reasoning in Chemistry is a computer program designed to model physical and chemical properties of molecules solely based on thier chemical structure. SPARC uses a toolbox of mechanistic perturbation models to model intermolecular interactions. SPARC has ...
Code of Federal Regulations, 2014 CFR
2014-07-01
... permit limit applicable to the process vent. (4) Design analysis based on accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or properties. (5) All data... tested for vapor tightness. (b) Engineering assessment. Engineering assessment to determine if a vent...
Code of Federal Regulations, 2012 CFR
2012-07-01
... permit limit applicable to the process vent. (4) Design analysis based on accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or properties. (5) All data... tested for vapor tightness. (b) Engineering assessment. Engineering assessment to determine if a vent...
Code of Federal Regulations, 2011 CFR
2011-07-01
... permit limit applicable to the process vent. (4) Design analysis based on accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or properties. (5) All data... tested for vapor tightness. (b) Engineering assessment. Engineering assessment to determine if a vent...
Code of Federal Regulations, 2010 CFR
2010-07-01
... permit limit applicable to the process vent. (4) Design analysis based on accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or properties. (5) All data... tested for vapor tightness. (b) Engineering assessment. Engineering assessment to determine if a vent...
Code of Federal Regulations, 2013 CFR
2013-07-01
... permit limit applicable to the process vent. (4) Design analysis based on accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or properties. (5) All data... tested for vapor tightness. (b) Engineering assessment. Engineering assessment to determine if a vent...
Monitoring abnormal bio-optical and physical properties in the Gulf of Mexico
NASA Astrophysics Data System (ADS)
Arnone, Robert; Jones, Brooke
2017-05-01
The dynamic bio-optical and physical ocean properties within the Gulf of Mexico (GoM) have been identified by the Ocean Weather Laboratory. Ocean properties from VIIRS satellite (Chlorophyll and Bio-Optics and SST) and ocean-circulation models (currents, SST and salinity) were used to identify regions of dynamic changing properties. The degree of environmental change is defined by the dynamic anomaly of bio-optical and physical environmental properties (DAP). A Mississippi River plume event (Aug 2015) that extended to Key West was used to demonstrate the anomaly products. Locations where normal and abnormal ocean properties occur determine ecological and physical hotspots in the GoM, which can be used for adaptive sampling of ocean processes. Methods are described to characterize the weekly abnormal environmental properties using differences with a previous baseline 8 week mean with a 2 week lag. The intensity of anomaly is quantified using levels of standard deviation of the baseline and can be used to recognize ocean events and provide decision support for adaptive sampling. The similarities of the locations of different environmental property anomalies suggest interaction between the bio-optical and physical properties. A coral bleaching event at the Flower Garden Banks Marine Protected Area is represented by the salinity anomaly. Results identify ocean regions for sampling to reduce data gaps and improve monitoring of bio-optical and physical properties.
Preparation and electrical properties of oil-based magnetic fluids
NASA Astrophysics Data System (ADS)
Sartoratto, P. P. C.; Neto, A. V. S.; Lima, E. C. D.; Rodrigues de Sá, A. L. C.; Morais, P. C.
2005-05-01
This paper describes an improvement in the preparation of magnetic fluids for electrical transformers. The samples are based on surface-coated maghemite nanoparticles dispersed in transformer insulating oil. Colloidal stability at 90°C was higher for oleate-grafted maghemite-based magnetic fluid, whereas decanoate and dodecanoate-grafted samples were very unstable. Electrical properties were evaluated for samples containing 0.80%-0.0040% maghemite volume fractions. Relative permittivity varied from 8.8 to 2.1 and the minimum value of the loss factor was 12% for the most diluted sample. The resistivity falls in the range of 0.7-2.5×1010Ωm, whereas the ac dielectric strength varied from 70to79kV. These physical characteristics reveal remarkable step forward in the properties of the magnetic fluid samples and may result in better operation of electrical transformers.
Improved understanding of the relationship between hydraulic properties and streaming potentials
NASA Astrophysics Data System (ADS)
Cassiani, G.; Brovelli, A.
2009-12-01
Streaming potential (SP) measurements have been satisfactorily used in a number of recent studies as a non-invasive tool to monitor fluid movement in both the vadose and the saturated zone. SPs are generated from the coupling between two independent physical processes oc-curring at the pore-level, namely water flow and excess of ions at the negatively charged solid matrix-water interface. The intensity of the measured potentials depends on physical proper-ties of the medium, including the internal micro-geometry of the system, the charge density of the interface and the composition of the pore fluid, which affects its ionic strength, pH and redox potential. The goal of this work is to investigate whether a relationship between the intensity of the SPs and the saturated hydraulic conductivity can be identified. Both properties are - at least to some extent - dependent on the pore-size distribution and connectivity of the pores, and there-fore some degree of correlation is expected. We used a pore-scale numerical model previously developed to simulate both the bulk hydraulic conductivity and the intensity of the SPs gener-ated in a three-dimensional pore-network. The chemical-physical properties of both the inter-face (Zeta-potential) and of the aqueous phase are computed using an analytical, physically based model that has shown good agreement with experimental data. Modelling results were satisfactorily compared with experimental data, showing that the model, although simplified retains the key properties and mechanisms that control SP generation. A sensitivity analysis with respect to the key geometrical and chemical parameters was conducted to evaluate how the correlation between the two studied variables changes and to ascertain whether the bulk hydraulic conductivity can be estimated from SP measurements alone.
Li, Yan; Yang, Chuan; Khan, Majad; Liu, Shaoqiong; Hedrick, James L; Yang, Yi-Yan; Ee, Pui-Lai R
2012-09-01
Effective delivery of DNA to direct cell behavior in a well defined three dimensional scaffold offers a superior approach in tissue engineering. In this study, we synthesized biodegradable nanostructured hydrogels with tunable physical properties for cell and gene delivery. The hydrogels were formed via Michael addition chemistry by reacting a four-arm acrylate-terminated PEG with a four-arm thiol-functionalized PEG. Nanosized micelles self-assembled from the amphiphilic PEG-b-polycarbonate diblock copolymer, having reactive end-groups, were chemically incorporated into the hydrogel networks at various contents. The use of Michael addition chemistry allows for in situ hydrogel formation under the physiological conditions. Mechanical property analysis of the hydrogels revealed a correlation between the content of micelles and the storage modulus of the hydrogels. Internal morphology of hydrogels was observed using a field emission scanning electron microscope, which showed that the number and/or size of the pores in the hydrogel increased with increasing micelle content due to reduced crosslinking degree. There exists an optimal micelle content for cell proliferation and gene transfection. MTT assays demonstrated the highest cell viability in the hydrogel with 20% micelles. The gene expression level in hMSCs in the hydrogel with 20% micelles was also significantly higher than that in the hydrogel without micelles. The enhanced cell viability and gene expression in the hydrogel with the optimized micelle content are likely attributed to the physical properties that provide a better environment for cell-matrix interactions. Therefore, incorporating micelles into the hydrogel is a good strategy to control cellular behavior in 3-D through changes in physical properties of the microenvironment. Copyright © 2012 Elsevier Ltd. All rights reserved.
PropBase Query Layer: a single portal to UK subsurface physical property databases
NASA Astrophysics Data System (ADS)
Kingdon, Andrew; Nayembil, Martin L.; Richardson, Anne E.; Smith, A. Graham
2013-04-01
Until recently, the delivery of geological information for industry and public was achieved by geological mapping. Now pervasively available computers mean that 3D geological models can deliver realistic representations of the geometric location of geological units, represented as shells or volumes. The next phase of this process is to populate these with physical properties data that describe subsurface heterogeneity and its associated uncertainty. Achieving this requires capture and serving of physical, hydrological and other property information from diverse sources to populate these models. The British Geological Survey (BGS) holds large volumes of subsurface property data, derived both from their own research data collection and also other, often commercially derived data sources. This can be voxelated to incorporate this data into the models to demonstrate property variation within the subsurface geometry. All property data held by BGS has for many years been stored in relational databases to ensure their long-term continuity. However these have, by necessity, complex structures; each database contains positional reference data and model information, and also metadata such as sample identification information and attributes that define the source and processing. Whilst this is critical to assessing these analyses, it also hugely complicates the understanding of variability of the property under assessment and requires multiple queries to study related datasets making extracting physical properties from these databases difficult. Therefore the PropBase Query Layer has been created to allow simplified aggregation and extraction of all related data and its presentation of complex data in simple, mostly denormalized, tables which combine information from multiple databases into a single system. The structure from each relational database is denormalized in a generalised structure, so that each dataset can be viewed together in a common format using a simple interface. Data are re-engineered to facilitate easy loading. The query layer structure comprises tables, procedures, functions, triggers, views and materialised views. The structure contains a main table PRB_DATA which contains all of the data with the following attribution: • a unique identifier • the data source • the unique identifier from the parent database for traceability • the 3D location • the property type • the property value • the units • necessary qualifiers • precision information and an audit trail Data sources, property type and units are constrained by dictionaries, a key component of the structure which defines what properties and inheritance hierarchies are to be coded and also guides the process as to what and how these are extracted from the structure. Data types served by the Query Layer include site investigation derived geotechnical data, hydrogeology datasets, regional geochemistry, geophysical logs as well as lithological and borehole metadata. The size and complexity of the data sets with multiple parent structures requires a technically robust approach to keep the layer synchronised. This is achieved through Oracle procedures written in PL/SQL containing the logic required to carry out the data manipulation (inserts, updates, deletes) to keep the layer synchronised with the underlying databases either as regular scheduled jobs (weekly, monthly etc) or invoked on demand. The PropBase Query Layer's implementation has enabled rapid data discovery, visualisation and interpretation of geological data with greater ease, simplifying the parametrisation of 3D model volumes and facilitating the study of intra-unit heterogeneity.
Arévalo-Gardini, Enrique; Canto, Manuel; Alegre, Julio; Loli, Oscar; Julca, Alberto; Baligar, Virupax
2015-01-01
Growing cacao (Theobroma cacao L.) in an agroforestry system generates a productive use of the land, preserves the best conditions for physical, chemical and biological properties of tropical soils, and plays an important role in improving cacao production and fertility of degraded tropical soils. The aim of this study was to evaluate the impact of two long term agroforestry systems of cacao management on soil physical and chemical properties in an area originally inhabited by 30 years old native secondary forest (SF). The two agroforestry systems adapted were: improved natural agroforestry system (INAS) where trees without economic value were selectively removed to provide 50% shade and improved traditional agroforestry system (ITAS) where all native trees were cut and burnt in the location. For evaluation of the changes of soil physical and chemical properties with time due to the imposed cacao management systems, plots of 10 cacao genotypes (ICS95, UF613, CCN51, ICT1112, ICT1026, ICT2162, ICT2171, ICT2142, H35, U30) and one plot with a spontaneous hybrid were selected. Soil samples were taken at 0-20, 20-40 and 40-60 cm depths before the installation of the management systems (2004), and then followed at two years intervals. Bulk density, porosity, field capacity and wilting point varied significantly during the years of assessment in the different soil depths and under the systems assessed. Soil pH, CEC, exchangeable Mg and sum of the bases were higher in the INAS than the ITAS. In both systems, SOM, Ext. P, K and Fe, exch. K, Mg and Al+H decreased with years of cultivation; these changes were more evident in the 0-20 cm soil depth. Overall improvement of SOM and soil nutrient status was much higher in the ITAS than INAS. The levels of physical and chemical properties of soil under cacao genotypes showed a marked difference in both systems. PMID:26181053
Arévalo-Gardini, Enrique; Canto, Manuel; Alegre, Julio; Loli, Oscar; Julca, Alberto; Baligar, Virupax
2015-01-01
Growing cacao (Theobroma cacao L.) in an agroforestry system generates a productive use of the land, preserves the best conditions for physical, chemical and biological properties of tropical soils, and plays an important role in improving cacao production and fertility of degraded tropical soils. The aim of this study was to evaluate the impact of two long term agroforestry systems of cacao management on soil physical and chemical properties in an area originally inhabited by 30 years old native secondary forest (SF). The two agroforestry systems adapted were: improved natural agroforestry system (INAS) where trees without economic value were selectively removed to provide 50% shade and improved traditional agroforestry system (ITAS) where all native trees were cut and burnt in the location. For evaluation of the changes of soil physical and chemical properties with time due to the imposed cacao management systems, plots of 10 cacao genotypes (ICS95, UF613, CCN51, ICT1112, ICT1026, ICT2162, ICT2171, ICT2142, H35, U30) and one plot with a spontaneous hybrid were selected. Soil samples were taken at 0-20, 20-40 and 40-60 cm depths before the installation of the management systems (2004), and then followed at two years intervals. Bulk density, porosity, field capacity and wilting point varied significantly during the years of assessment in the different soil depths and under the systems assessed. Soil pH, CEC, exchangeable Mg and sum of the bases were higher in the INAS than the ITAS. In both systems, SOM, Ext. P, K and Fe, exch. K, Mg and Al+H decreased with years of cultivation; these changes were more evident in the 0-20 cm soil depth. Overall improvement of SOM and soil nutrient status was much higher in the ITAS than INAS. The levels of physical and chemical properties of soil under cacao genotypes showed a marked difference in both systems.
Physical signals for protein-DNA recognition
NASA Astrophysics Data System (ADS)
Cao, Xiao-Qin; Zeng, Jia; Yan, Hong
2009-09-01
This paper discovers consensus physical signals around eukaryotic splice sites, transcription start sites, and replication origin start and end sites on a genome-wide scale based on their DNA flexibility profiles calculated by three different flexibility models. These salient physical signals are localized highly rigid and flexible DNAs, which may play important roles in protein-DNA recognition by the sliding search mechanism. The found physical signals lead us to a detailed hypothetical view of the search process in which a DNA-binding protein first finds a genomic region close to the target site from an arbitrary starting location by three-dimensional (3D) hopping and intersegment transfer mechanisms for long distances, and subsequently uses the one-dimensional (1D) sliding mechanism facilitated by the localized highly rigid DNAs to accurately locate the target flexible binding site within 30 bp (base pair) short distances. Guided by these physical signals, DNA-binding proteins rapidly search the entire genome to recognize a specific target site from the 3D to 1D pathway. Our findings also show that current promoter prediction programs (PPPs) based on DNA physical properties may suffer from lots of false positives because other functional sites such as splice sites and replication origins have similar physical signals as promoters do.
A new physical method to assess handle properties of fabrics made from wood-based fibers
NASA Astrophysics Data System (ADS)
Abu-Rous, M.; Liftinger, E.; Innerlohinger, J.; Malengier, B.; Vasile, S.
2017-10-01
In this work, the handfeel of fabrics made of wood-based fibers such as viscose, modal and Lyocell was investigated in relation to cotton fabrics applying the Tissue Softness Analyzer (TSA) method in comparison to other classical methods. Two different construction groups of textile were investigated. The validity of TSA in assessing textile softness of these constructions was tested. TSA results were compared to human hand evaluation as well as to classical physical measurements like drape coefficient, ring pull-through and Handle-o-meter, as well as a newer device, the Fabric Touch Tester (FTT). Physical methods as well as human hand assessments mostly agreed on the softest and smoothest range, but showed different rankings in the harder/rougher side fabrics. TSA ranking of softness and smoothness corresponded to the rankings by other physical methods as well as with human hand feel for the basic textile constructions.
Induced cholesteric systems based on some cyano derivatives as host phases
NASA Astrophysics Data System (ADS)
Shkolnikova, Natalya I.; Kutulya, Lidiya A.; Vashchenko, V. V.; Fedoryako, A. P.; Lapanik, V. I.; Posledovich, N. R.
2002-12-01
Macroscopical properties of some induced cholesteric compositions based on 4-pentyl-4'-cyano derivatives of biphenyl and phenylcyclohexane as host phases have been investigated. The series of N-arylidene derivatives of (S)-1-phenylethylamine with varied both rigid moiety of the N-arylidene fragment and terminal substituent was used as chiral dopants. The influence of the chiral dopant molecular structure as well as of physical properties of the host phases used on the helical twisting power, the temperature dependence of the induced helical pitch and the N* mesophase thermal stability has been characterized. It has been concluded that the distinctions in properties of the LC systems containing the OCH2 and COO linking groups are caused by their different conformational states.
10B enriched plastic scintillators for application in thermal neutron detection
NASA Astrophysics Data System (ADS)
Mahl, Adam; Yemam, Henok A.; Fernando, Roshan; Koubek, Joshua T.; Sellinger, Alan; Greife, Uwe
2018-02-01
We report here on the synthesis and characterization of a novel 10B enriched aromatic molecule that can be incorporated into common poly(vinyltoluene) (PVT) based plastic scintillators to achieve enhanced thermal neutron detection. Starting from relatively inexpensive 10B enriched boric acid, we have prepared 4,4,5,5-tetramethyl-2-phenyl-1,3,2-dioxaborolane (MBB) in three high yield steps. MBB is soluble and compatible with PVT based formulations and results in stable plastic scintillators. Chemical synthesis, solubility limit in PVT, and the physical properties of the dopant were explored. The relevant response properties of the resulting scintillators when exposed to neutron and gamma radiation, including light yield and pulse shape discrimination properties were measured and analyzed.
High-throughput density-functional perturbation theory phonons for inorganic materials
NASA Astrophysics Data System (ADS)
Petretto, Guido; Dwaraknath, Shyam; P. C. Miranda, Henrique; Winston, Donald; Giantomassi, Matteo; van Setten, Michiel J.; Gonze, Xavier; Persson, Kristin A.; Hautier, Geoffroy; Rignanese, Gian-Marco
2018-05-01
The knowledge of the vibrational properties of a material is of key importance to understand physical phenomena such as thermal conductivity, superconductivity, and ferroelectricity among others. However, detailed experimental phonon spectra are available only for a limited number of materials, which hinders the large-scale analysis of vibrational properties and their derived quantities. In this work, we perform ab initio calculations of the full phonon dispersion and vibrational density of states for 1521 semiconductor compounds in the harmonic approximation based on density functional perturbation theory. The data is collected along with derived dielectric and thermodynamic properties. We present the procedure used to obtain the results, the details of the provided database and a validation based on the comparison with experimental data.
In2O3-based multicomponent metal oxide films and their prospects for thermoelectric applications
NASA Astrophysics Data System (ADS)
Korotcenkov, G.; Brinzari, V.; Cho, B. K.
2016-02-01
Thermoelectric properties of In2O3-SnO2-based multi-component metal oxide films formed by spray pyrolysis method are studied. It is shown that the introduction of additional components such as gallium and zinc can control the parameters of the deposited layers. At that, the doping with gallium is more effective for optimization of the efficiency of the thermoelectric conversion. The explanation of the observed changes in the electro-physical and thermoelectric properties of the films at the composition change is given. It is found that the main changes in the properties of multicomponent metal oxide films take place at concentrations of dopants which correspond to their limit solubility in the dominant oxide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gürel, Hikmet Hakan, E-mail: hhakan.gurel@kocaeli.edu.tr; Salmankurt, Bahadır
2016-03-25
Nanometer-sized graphene as a 2D material has unique chemical and electronic properties. Because of its unique physical, chemical, and electronic properties, its interesting shape and size make it a promising nanomaterial in many biological applications. It is expected that biomaterials incorporating graphene will be developed for the graphene-based drug delivery systems and biomedical devices. The interactions of biomolecules and graphene are long-ranged and very weak. Development of new techniques is very desirable for design of bioelectronics sensors and devices. In this work, we present first-principles calculations within density functional theory to calculate effects of charging on nucleobases on graphene. Itmore » is shown that how modify structural and electronic properties of nucleobases on graphene by applied charging.« less
NASA Astrophysics Data System (ADS)
George, Johnsy; Kumar, R.; Sajeevkumar, V. A.; Sabapathy, S. N.; Vaijapurkar, S. G.; Kumar, D.; Kchawahha, A.; Bawa, A. S.
2007-07-01
Irradiation processing of food in the prepackaged form may affect chemical and physical properties of the plastic packaging materials. The effect of γ-irradiation doses (2.5-10.0 kGy) on polypropylene (PP)-based retortable food packaging materials, were investigated using Fourier transform infrared (FTIR) spectroscopic analysis, which revealed the changes happening to these materials after irradiation. The mechanical properties decreased with irradiation while oxygen transmission rate (OTR) was not affected significantly. Colour measurement indicated that Nylon 6 containing multilayer films became yellowish after irradiation. Thermal characterization revealed the changes in percentage crystallinity.
A Study of ATLAS Grid Performance for Distributed Analysis
NASA Astrophysics Data System (ADS)
Panitkin, Sergey; Fine, Valery; Wenaus, Torre
2012-12-01
In the past two years the ATLAS Collaboration at the LHC has collected a large volume of data and published a number of ground breaking papers. The Grid-based ATLAS distributed computing infrastructure played a crucial role in enabling timely analysis of the data. We will present a study of the performance and usage of the ATLAS Grid as platform for physics analysis in 2011. This includes studies of general properties as well as timing properties of user jobs (wait time, run time, etc). These studies are based on mining of data archived by the PanDA workload management system.
Characterizing Scitillation and Cherenkov Light Yield in Water-Based Liquid Scintillators
NASA Astrophysics Data System (ADS)
Land, B. J.; Caravaca, J.; Descamps, F. B.; Orebi Gann, G. D.
2016-03-01
The recent development of Water-based Liquid Scintillator (WbLS) has made it possible to produce scintillating materials with highly tunable light yields and excellent optical clarity. This allows for a straightforward combination of the directional properties of Cherenkov light with the greater energy resolution afforded by the typically brighter scintillation light, which lends itself well to a broad program of neutrino physics. Here we explore the light yields and optical properties of WbLS materials in development for Theia (formerly ASDC) as measured in our benchtop Theia R&D at Berkeley Lab and extrapolate to larger detectors.
NASA Astrophysics Data System (ADS)
Almqvist, B. S. G.; Czaplinska, D.; Piazolo, S.
2015-12-01
Progress in seismic methods offers the possibility to visualize in ever greater detail the structure and composition of middle to lower continental crust. Ideally, the seismic parameters, including compressional (Vp) and shear (Vs) wave velocities, anisotropy and Vp/Vs-ratio, allow the inference of detailed and quantitative information on the deformation conditions, chemical composition, temperature and the amount and geometry of fluids and melts in the crust. However, such inferences regarding the crust should be calibrated with known mineral and rock physical properties. Seismic properties calculated from the crystallographic preferred orientation (CPO) and laboratory measurements on representative core material allow us to quantify the interpretations from seismic data. The challenge of such calibrations lies in the non-unique interpretation of seismic data. A large catalogue of physical rock properties is therefore useful, with as many constraining geophysical parameters as possible (including anisotropy and Vp/Vs ratio). We present new CPO data and modelled seismic properties for amphibolite and greenschist grade rocks representing the orogenic wedge in the Central Scandinavian Caledonides. Samples were collected from outcrops in the field and from a 2.5 km long drill core, which penetrated an amphibolite-grade allochthonous unit composed of meta-sedimentary and meta-igneous rocks, as well as mica and chlorite-rich mylonites. The textural data was acquired using large area electron backscatter diffraction (EBSD) maps, and the chemical composition of minerals obtained by energy dispersive x-ray (EDS). Based on the texture data, we compare and evaluate some of the existing methods to calculate texture-based seismic properties of rocks. The suite of samples consists of weakly anisotropic rocks such as felsic gneiss and calc-silicates, and more anisotropic amphibolite, metagabbro, mica-schist. The newly acquired dataset provides a range of seismic properties that improves compositional and structural characterization of deformed middle and lower crust.
Impact of long-term tillage and manure application on soil physical properties
USDA-ARS?s Scientific Manuscript database
Soil physical properties play an integral role in maintaining soil quality for sustainable agricultural practices. Agronomic practices such as tillage systems and organic amendments have been shown to influence soil physical properties. Thus, a study was conducted to evaluate effects of long-term ma...
Selected physical and mechanical properties of moso bamboo (Phyllostachys pubescens)
H.Q. Yu; Z.H. Jiang; C.Y. Hse; T.F. Shupe
2008-01-01
Selected physical and mechanical properties of moso bamboo (Phyllostachys pubescens). Selected physical and mechanical properties of 4?6 year old moso bamboo (Phyllostachys pubescens) grown in Zhejiang, China were investigated at different vertical and horizontal positions. Two way analysis of variance and Tukey?s mean comparison...
NASA Astrophysics Data System (ADS)
Yakushin, V. A.; Stirna, U. K.; Zhmud', N. P.
1999-07-01
The dependence of physical and mechanical properties of oligoether-based foam polyurethanes on the molecular mass (Mc) of polymer chains between the nodes of the polymer network and on the content of rigid segments in the polymer is investigated at 293 and 98K. The values of Mc at which the foam plastics have the best mechanical properties at low temperatures are determined. The content of rigid segments in the polymer at which foam polyurethanes have the best combination of the linear thermal expansion coefficient and mechanical properties in tension at a temperature of 98K is found.
Prediction of properties of intraply hybrid composites
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Sinclair, J. H.
1979-01-01
Equations based on the mixtures rule are presented for predicting the physical, thermal, hygral, and mechanical properties of unidirectional intraply hybrid composites (UIHC) from the corresponding properties of their constituent composites. Bounds were derived for uniaxial longitudinal strengths, tension, compression, and flexure of UIHC. The equations predict shear and flexural properties which agree with experimental data from UIHC. Use of these equations in a composites mechanics computer code predicted flexural moduli which agree with experimental data from various intraply hybrid angleplied laminates (IHAL). It is indicated, briefly, how these equations can be used in conjunction with composite mechanics and structural analysis during the analysis/design process.
European Science Notes. Volume 41, Number 8.
1987-08-01
trations, as reported by B. Volesky 420 ESN 41-8 (1987) (Department of Chemical Engineering, biosorption metal concentration processes McGill...UniVersity, Montreal, Canada). can be effected on both sides of the Biosorption is a property of certdin process cycle--i.e., during the uptake types of...extractive process based ents have been isssued for the use of a on biosorption . In addition, the physical very effective common mold of genus properties
Formulation and Physical Properties of Cyanate Ester Nanocomposites Based on Graphene
2014-03-01
during cure. The addition of GO, and, to a lesser extent, TRGO, resulted in improved mechanical properties, particularly fracture toughness, with the...a lesser extent, TRGO, resulted in improved mechanical proper- ties, particularly fracture toughness, with the addition of TRGO having a modestly...LECy. However, the mechanism of fracture toughness improvement may be different with each form of graphene. In the case of GO, the high degree of oxi
Solitonic Josephson-based meminductive systems
NASA Astrophysics Data System (ADS)
Guarcello, Claudio; Solinas, Paolo; di Ventra, Massimiliano; Giazotto, Francesco
2017-04-01
Memristors, memcapacitors, and meminductors represent an innovative generation of circuit elements whose properties depend on the state and history of the system. The hysteretic behavior of one of their constituent variables, is their distinctive fingerprint. This feature endows them with the ability to store and process information on the same physical location, a property that is expected to benefit many applications ranging from unconventional computing to adaptive electronics to robotics. Therefore, it is important to find appropriate memory elements that combine a wide range of memory states, long memory retention times, and protection against unavoidable noise. Although several physical systems belong to the general class of memelements, few of them combine these important physical features in a single component. Here, we demonstrate theoretically a superconducting memory based on solitonic long Josephson junctions. Moreover, since solitons are at the core of its operation, this system provides an intrinsic topological protection against external perturbations. We show that the Josephson critical current behaves hysteretically as an external magnetic field is properly swept. Accordingly, long Josephson junctions can be used as multi-state memories, with a controllable number of available states, and in other emerging areas such as memcomputing, i.e., computing directly in/by the memory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdullin, I.Sh.; Bragin, V.E.; Bykanov, A.N.
Gas discharge plasma modification of polymer materials and metals is one of the known physical approaches for improving of materials biocompatibility in ophthalmology and surgery. The surface treatment in RF discharges can be effectively realized in the discharge afterglow and in the discharge region itself too. This modification method is more convenient and produces more uniform surfaces in comparison with other discharge types. The carried out experiments and published up to now results show that interaction of UV radiation, fluxes of ions, electrons and metastable particles with material`s surface changes chemical composition and surface structure. The exerting of these agentsmore » on the sample surface produces the following effects. There are processes of physical and plasma-chemical surface etching producing effective surface cleaning of different types of contaminations. It may be surface contaminations by hydrocarbons because of preliminary surface contacts with biological or physical bodies. It may be surface contaminations caused by characteristic properties of chemical technology too. There is a surface layer with thickness from some angstroms up to few hundreds of angstroms. The chemical content and structure of this layer is distinguished from the bulk polymer properties. The presence of such {open_quotes}technological{close_quotes} contaminations produces the layer of material substantially differing from the base polymer. The basic layer physical and chemical properties for example, gas permeation rate may substantially differ from the base polymer. Attempts to clean the surface from these contaminations by chemical methods (solutions) have not been successful and produced contaminations of more deep polymer layers. So the plasma cleaning is the most profitable method of polymer treatment for removing the surface contaminations. The improving of wettability occurs during this stage of treatment.« less
Surficial geologic map of the Amboy 30' x 60' quadrangle, San Bernardino County, California
Bedford, David R.; Miller, David M.; Phelps, Geoffrey A.
2010-01-01
The surficial geologic map of the Amboy 30' x 60' quadrangle presents characteristics of surficial materials for an area of approximately 5,000 km2 in the eastern Mojave Desert of southern California. This map consists of new surficial mapping conducted between 2000 and 2007, as well as compilations from previous surficial mapping. Surficial geologic units are mapped and described based on depositional process and age categories that reflect the mode of deposition, pedogenic effects following deposition, and, where appropriate, the lithologic nature of the material. Many physical properties were noted and measured during the geologic mapping. This information was used to classify surficial deposits and to understand their ecological importance. We focus on physical properties that drive hydrologic, biologic, and physical processes such as particle-size distribution (PSD) and bulk density. The database contains point data representing locations of samples for both laboratory determined physical properties and semiquantitative field-based information in the database. We include the locations of all field observations and note the type of information collected in the field to help assist in assessing the quality of the mapping. The publication is separated into three parts: documentation, spatial data, and printable map graphics of the database. Documentation includes this pamphlet, which provides a discussion of the surficial geology and units and the map. Spatial data are distributed as ArcGIS Geodatabase in Microsoft Access format and are accompanied by a readme file, which describes the database contents, and FGDC metadata for the spatial map information. Map graphics files are distributed as Postscript and Adobe Portable Document Format (PDF) files that provide a view of the spatial database at the mapped scale.
Nanotechnology: emerging tool for diagnostics and therapeutics.
Chakraborty, Mainak; Jain, Surangna; Rani, Vibha
2011-11-01
Nanotechnology is an emerging technology which is an amalgamation of different aspects of science and technology that includes disciplines such as electrical engineering, mechanical engineering, biology, physics, chemistry, and material science. It has potential in the fields of information and communication technology, biotechnology, and medicinal technology. It involves manipulating the dimensions of nanoparticles at an atomic scale to make use of its physical and chemical properties. All these properties are responsible for the wide application of nanoparticles in the field of human health care. Promising new technologies based on nanotechnology are being utilized to improve diverse aspects of medical treatments like diagnostics, imaging, and gene and drug delivery. This review summarizes the most promising nanomaterials and their application in human health.
How fast do living organisms move: Maximum speeds from bacteria to elephants and whales
NASA Astrophysics Data System (ADS)
Meyer-Vernet, Nicole; Rospars, Jean-Pierre
2015-08-01
Despite their variety and complexity, living organisms obey simple scaling laws due to the universality of the laws of physics. In the present paper, we study the scaling between maximum speed and size, from bacteria to the largest mammals. While the preferred speed has been widely studied in the framework of Newtonian mechanics, the maximum speed has rarely attracted the interest of physicists, despite its remarkable scaling property; it is roughly proportional to length throughout nearly the whole range of running and swimming organisms. We propose a simple order-of-magnitude interpretation of this ubiquitous relationship, based on physical properties shared by life forms of very different body structure and varying by more than 20 orders of magnitude in body mass.
Carbon stardust: From soot to diamonds
NASA Technical Reports Server (NTRS)
Tielens, Alexander G. G. M.
1990-01-01
The formation of carbon dust in the outflow from stars and the subsequent evolution of this so called stardust in the interstellar medium is reviewed. The chemical and physical processes that play a role in carbon stardust formation are very similar to those occurring in sooting flames. Based upon extensive laboratory studies of the latter, the structure and physical and chemical properties of carbon soot are reviewed and possible chemical pathways towards carbon stardust are discussed. Grain-grain collisions behind strong interstellar shocks provide the high pressures required to transform graphite and amorphous carbon grains into diamond. This process is examined and the properties of shock-synthesized diamonds are reviewed. Finally, the interrelationship between carbon stardust and carbonaceous meteorites is briefly discussed.
NASA Astrophysics Data System (ADS)
Winardi, Y.; Triyono; Wijayanta, A. T.
2017-02-01
In this study, the effect of filler and heat treatment on the physical and mechanical properties of the brazed joint carbide tip and steel was investigated. Tip carbide YG6 and low carbon steel (SS400) is joining by torch brazing with two filler metals, silver, and copper filler. Heat treatment was performed in induction furnace. Microstructure and shear strength of the brazed joint have been investigated. Many silver filler layer are formed on the surface of the base metal rather then using copper filler. The highest shear strength is achieved using a silver filler metal at temperatur 725°C. The highest shear load is 18.62 kN.
Ionic polymer-metal composite torsional sensor: physics-based modeling and experimental validation
NASA Astrophysics Data System (ADS)
Aidi Sharif, Montassar; Lei, Hong; Khalid Al-Rubaiai, Mohammed; Tan, Xiaobo
2018-07-01
Ionic polymer-metal composites (IPMCs) have intrinsic sensing and actuation properties. Typical IPMC sensors are in the shape of beams and only respond to stimuli acting along beam-bending directions. Rod or tube-shaped IPMCs have been explored as omnidirectional bending actuators or sensors. In this paper, physics-based modeling is studied for a tubular IPMC sensor under pure torsional stimulus. The Poisson–Nernst–Planck model is used to describe the fundamental physics within the IPMC, where it is hypothesized that the anion concentration is coupled to the sum of shear strains induced by the torsional stimulus. Finite element simulation is conducted to solve for the torsional sensing response, where some of the key parameters are identified based on experimental measurements using an artificial neural network. Additional experimental results suggest that the proposed model is able to capture the torsional sensing dynamics for different amplitudes and rates of the torsional stimulus.
A new physics-based modeling approach for tsunami-ionosphere coupling
NASA Astrophysics Data System (ADS)
Meng, X.; Komjathy, A.; Verkhoglyadova, O. P.; Yang, Y.-M.; Deng, Y.; Mannucci, A. J.
2015-06-01
Tsunamis can generate gravity waves propagating upward through the atmosphere, inducing total electron content (TEC) disturbances in the ionosphere. To capture this process, we have implemented tsunami-generated gravity waves into the Global Ionosphere-Thermosphere Model (GITM) to construct a three-dimensional physics-based model WP (Wave Perturbation)-GITM. WP-GITM takes tsunami wave properties, including the wave height, wave period, wavelength, and propagation direction, as inputs and time-dependently characterizes the responses of the upper atmosphere between 100 km and 600 km altitudes. We apply WP-GITM to simulate the ionosphere above the West Coast of the United States around the time when the tsunami associated with the March 2011 Tohuku-Oki earthquke arrived. The simulated TEC perturbations agree with Global Positioning System observations reasonably well. For the first time, a fully self-consistent and physics-based model has reproduced the GPS-observed traveling ionospheric signatures of an actual tsunami event.
Physical and verbal aggressive behavior and COMT genotype: Sensitivity to the environment.
Tuvblad, Catherine; Narusyte, Jurgita; Comasco, Erika; Andershed, Henrik; Andershed, Anna-Karin; Colins, Olivier F; Fanti, Kostas A; Nilsson, Kent W
2016-07-01
Catechol-O-methyltransferase (COMT) genotype has been implicated as a vulnerability factor for several psychiatric diseases as well as aggressive behavior, either directly, or in interaction with an adverse environment. The present study aimed at investigating the susceptibility properties of COMT genotype to adverse and favorable environment in relation to physical and verbal aggressive behavior. The COMT Val158Met polymorphism was genotyped in a Swedish population-based cohort including 1,783 individuals, ages 20-24 years (47% males). A significant three-way interaction was found, after correction for multiple testing, between COMT genotype, exposure to violence, and parent-child relationship in association with physical but not verbal aggressive behavior. Homozygous for the Val allele reported lower levels of physical aggressive behavior when they were exposed to violence and at the same time experienced a positive parent-child relationship compared to Met carriers. Thus, susceptibility properties of COMT genotype were observed in relation to physical aggressive behavior supporting the hypothesis that COMT genotypes are modifying the sensitivity to environment that confers either risk or protection for aggressive behavior. As these are novel findings, they warrant further investigation and replication in independent samples. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
A statistical physics perspective on criticality in financial markets
NASA Astrophysics Data System (ADS)
Bury, Thomas
2013-11-01
Stock markets are complex systems exhibiting collective phenomena and particular features such as synchronization, fluctuations distributed as power-laws, non-random structures and similarity to neural networks. Such specific properties suggest that markets operate at a very special point. Financial markets are believed to be critical by analogy to physical systems, but little statistically founded evidence has been given. Through a data-based methodology and comparison to simulations inspired by the statistical physics of complex systems, we show that the Dow Jones and index sets are not rigorously critical. However, financial systems are closer to criticality in the crash neighborhood.
Physical Modeling of Microtubules Network
NASA Astrophysics Data System (ADS)
Allain, Pierre; Kervrann, Charles
2014-10-01
Microtubules (MT) are highly dynamic tubulin polymers that are involved in many cellular processes such as mitosis, intracellular cell organization and vesicular transport. Nevertheless, the modeling of cytoskeleton and MT dynamics based on physical properties is difficult to achieve. Using the Euler-Bernoulli beam theory, we propose to model the rigidity of microtubules on a physical basis using forces, mass and acceleration. In addition, we link microtubules growth and shrinkage to the presence of molecules (e.g. GTP-tubulin) in the cytosol. The overall model enables linking cytosol to microtubules dynamics in a constant state space thus allowing usage of data assimilation techniques.
NASA Technical Reports Server (NTRS)
Van Diedenhoven, Bastiaan; Stangl, Alexander; Perlwitz, Jan; Fridlind, Ann M.; Chowdhary, Jacek; Cairns, Brian
2015-01-01
The physical and chemical properties of soil dust aerosol particles fundamentally affect their interaction with climate, including shortwave absorption and radiative forcing, nucleation of cloud droplets and ice crystals, heterogeneous formation of sulfates and nitrates on the surface of dust particles, and atmospheric processing of iron into bioavailable forms that increase the productivity of marine phytoplankton. Lidar measurements, such as extinction-to-backscatter, color and depolarization ratios, are frequently used to distinguish between aerosol types with different physical and chemical properties. The chemical composition of aerosol particles determines their complex refractive index, hence affecting their backscattering properties. Here we present a study on how dust aerosol backscattering and depolarization properties at wavelengths of 355, 532 and 1064 nm are related to size and complex refractive index, which varies with the mineral composition of the dust. Dust aerosols are represented by collections of spheroids with a range of prolate and oblate aspect ratios and their optical properties are obtained using T-matrix calculations. We find simple, systematic relationships between lidar observables and the dust size and complex refractive index that may aid the use of space-based or airborne lidars for direct retrieval of dust properties or for the evaluation of chemical transport models using forward simulated lidar variables. In addition, we present first results on the spatial variation of forward-simulated lidar variables based on a dust model that accounts for the atmospheric cycle of eight different mineral types plus internal mixtures of seven mineral types with iron oxides, which was recently implemented in the NASA GISS Earth System ModelE2.
Robinson, Karen A; Davis, Wesley E; Dinglas, Victor D; Mendez-Tellez, Pedro A; Rabiee, Anahita; Sukrithan, Vineeth; Yalamanchilli, Ramakrishna; Turnbull, Alison E; Needham, Dale M
2017-02-01
There is a growing number of studies evaluating the physical, cognitive, mental health, and health-related quality of life (HRQOL) outcomes of adults surviving critical illness. However, there is little consensus on the most appropriate instruments to measure these outcomes. To inform the development of such consensus, we conducted a systematic review of the performance characteristics of instruments measuring physical, cognitive, mental health, and HRQOL outcomes in adult intensive care unit (ICU) survivors. We searched PubMed, Embase, PsycInfo, Cumulative Index of Nursing and Allied Health Literature, and The Cochrane Library in March 2015. We also conducted manual searches of reference lists of eligible studies and relevant review articles. Two people independently selected studies, completed data abstraction, and assessed the quality of eligible studies using the COnsensus-based Standards for the selection of health Measurement Instruments (COSMIN) initiative checklist. We identified 20 studies which explicitly evaluated measurement properties for 21 different instruments assessing outcomes in ICU survivors. Eleven of the instruments assessed quality of life, with few instruments assessing other domains. Of the nine measurement properties evaluated on the COSMIN checklist, six were assessed in <10% of the evaluations. Overall quality of eligible studies was generally poor to fair based on the COSMIN checklist. Although an increasing number of studies measure physical, cognitive, mental health, and HRQOL outcomes in adult ICU survivors, data on the measurement properties of such instruments are sparse and generally of poor to fair quality. Empirical analyses evaluating the performance of instruments in adult ICU survivors are needed to advance research in this field. Copyright © 2016 Elsevier Inc. All rights reserved.
Choi, Du Hyung; Lim, Jun Yeul; Shin, Sangmun; Choi, Won Jun; Jeong, Seong Hoon; Lee, Sangkil
2014-10-01
To investigate the effects of hydrophilic polymers on the matrix system, an experimental design method was developed to integrate response surface methodology and the time series modeling. Moreover, the relationships among polymers on the matrix system were studied with the evaluation of physical properties including water uptake, mass loss, diffusion, and gelling index. A mixture simplex lattice design was proposed while considering eight input control factors: Polyethylene glycol 6000 (x1 ), polyethylene oxide (PEO) N-10 (x2 ), PEO 301 (x3 ), PEO coagulant (x4 ), PEO 303 (x5 ), hydroxypropyl methylcellulose (HPMC) 100SR (x6 ), HPMC 4000SR (x7 ), and HPMC 10(5) SR (x8 ). With the modeling, optimal formulations were obtained depending on the four types of targets. The optimal formulations showed the four significant factors (x1 , x2 , x3 , and x8 ) and other four input factors (x4 , x5 , x6 , and x7 ) were not significant based on drug release profiles. Moreover, the optimization results were analyzed with estimated values, targets values, absolute biases, and relative biases based on observed times for the drug release rates with four different targets. The result showed that optimal solutions and target values had consistent patterns with small biases. On the basis of the physical properties of the optimal solutions, the type and ratio of the hydrophilic polymer and the relationships between polymers significantly influenced the physical properties of the system and drug release. This experimental design method is very useful in formulating a matrix system with optimal drug release. Moreover, it can distinctly confirm the relationships between excipients and the effects on the system with extensive and intensive evaluations. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
NASA Astrophysics Data System (ADS)
Magyar, Rudolph
2013-06-01
We report a computational and validation study of equation of state (EOS) properties of liquid / dense plasma mixtures of xenon and ethane to explore and to illustrate the physics of the molecular scale mixing of light elements with heavy elements. Accurate EOS models are crucial to achieve high-fidelity hydrodynamics simulations of many high-energy-density phenomena such as inertial confinement fusion and strong shock waves. While the EOS is often tabulated for separate species, the equation of state for arbitrary mixtures is generally not available, requiring properties of the mixture to be approximated by combining physical properties of the pure systems. The main goal of this study is to access how accurate this approximation is under shock conditions. Density functional theory molecular dynamics (DFT-MD) at elevated-temperature and pressure is used to assess the thermodynamics of the xenon-ethane mixture. The simulations are unbiased as to elemental species and therefore provide comparable accuracy when describing total energies, pressures, and other physical properties of mixtures as they do for pure systems. In addition, we have performed shock compression experiments using the Sandia Z-accelerator on pure xenon, ethane, and various mixture ratios thereof. The Hugoniot results are compared to the DFT-MD results and the predictions of different rules for combing EOS tables. The DFT-based simulation results compare well with the experimental points, and it is found that a mixing rule based on pressure equilibration performs reliably well for the mixtures considered. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Modes of Visual Recognition and Perceptually Relevant Sketch-based Coding for Images
NASA Technical Reports Server (NTRS)
Jobson, Daniel J.
1991-01-01
A review of visual recognition studies is used to define two levels of information requirements. These two levels are related to two primary subdivisions of the spatial frequency domain of images and reflect two distinct different physical properties of arbitrary scenes. In particular, pathologies in recognition due to cerebral dysfunction point to a more complete split into two major types of processing: high spatial frequency edge based recognition vs. low spatial frequency lightness (and color) based recognition. The former is more central and general while the latter is more specific and is necessary for certain special tasks. The two modes of recognition can also be distinguished on the basis of physical scene properties: the highly localized edges associated with reflectance and sharp topographic transitions vs. smooth topographic undulation. The extreme case of heavily abstracted images is pursued to gain an understanding of the minimal information required to support both modes of recognition. Here the intention is to define the semantic core of transmission. This central core of processing can then be fleshed out with additional image information and coding and rendering techniques.
NASA Astrophysics Data System (ADS)
Šćepanović, M.; Grujić-Brojčin, M.; Abramović, B.; Golubović, A.
2017-01-01
Systematic investigation of the relationship between structural, morphological, optical and photocatalytic properties of the titania-based nanopowders is presented. A series of pure and doped titania catalysts with various (anatase and brookite) phase compositions have been prepared by sol-gel or hydrothermal route. The crystal structure and composition of the synthesized samples have been extensively characterised by XRD and Raman scattering measurements. The nanopowder morphology has been studied using microscopic methods (SEM, AFM, and STM), whereas the porous structure has been revealed by the analysis of nitrogen sorption data. The optical and electronic properties have been studied by spectroscopic ellipsometry. All investigated properties have been correlated to photocatalytic activity, tested in degradation of the pharmaceutically active substances (such as metoprolol and alprazolam) induced by UVA or visible radiation. Based on this correlation, the physical properties which contribute most to the increase in photocatalytic activity of synthesized nanopowders have been determined, in order to optimize the synthesis conditions which could lead to the maximal efficiency in degradation of particular pollutant.
Some fundamental and applicative properties of [polymer/nano-SiC] hybrid nanocomposites
NASA Astrophysics Data System (ADS)
Kassiba, A.; Bouclé, J.; Makowska-Janusik, M.; Errien, N.
2007-08-01
Hybrid nanocomposites which combine polymer as host matrix and nanocrystals as active elements are promising functional materials for electronics, optics or photonics. In these systems, the physical response is governed by the nanocrystal features (size, surface and defect states), the polymer properties and the polymer-nanocrystal interface. This work reviews some selective nanostructured architectures based on active elements such as silicon carbide (SiC) nanocrystals and polymer host matrices. Beyond an overview of some key properties of the nanocrystals, a main part will be devoted to the electro-optical (EO) properties of SiC based hybrid systems where SiC nanocrystals are embedded in polymer matrices of different chemical nature such as poly-(methylmethacrylate) (PMMA), poly-vinylcarbazole (PVK) or polycarbonate. Using this approach, the organic-inorganic interface effects are emphasised with regard to the dielectric or hole transporting behaviour of PMMA and PVK respectively. These effects are illustrated through different EO responses associated with hybrid composites based on PMMA or PVK.
ERIC Educational Resources Information Center
Talesnick, Irwin, Ed.
1984-01-01
Provides innovative ideas in biology, chemistry, and physics on the following topics: enzyme decomposition; chemical waste; time measurement; acid-base color magic; ball bouncing properties; heat; cell theory; and specimen boxes. Materials and procedures are listed when appropriate along with hints for expanding these ideas and investigations. (JM)
NASA Astrophysics Data System (ADS)
Sofiah, A. G. N.; Kananathan, J.; Samykano, M.; Ulakanathan, S.; Lah, N. A. C.; Harun, W. S. W.; Sudhakar, K.; Kadirgama, K.; Ngui, W. K.; Siregar, J. P.
2017-10-01
This paper investigates the influence of the electrolytic bath temperature on the morphology and physical properties of nickel (Ni) nanowires electrochemically deposited into the anodic alumina oxide porous membrane (AAO). The synthesis was performed using nickel sulfate hexahydrate (NiSO4.6H2O) and boric acid (H3BO3) as an electrolytic bath for the electrochemical deposition of Ni nanowires. During the experiment, the electrolyte bath temperature varied from 40°C, 80°C, and 120°C. After the electrochemical deposition process, AAO templates cleaned with distilled water preceding to dissolution in sodium hydroxide (NaOH) solution to obtain free-standing Ni nanowires. Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive Spectroscopy (EDX) and X-ray Diffraction (XRD) analysis were employed to characterize the morphology and physical properties of the synthesized Ni nanowires. Finding reveals the electrodeposition bath temperature significantly influences the morphology and physical properties of the synthesized Ni nanowires. Rougher surface texture, larger crystal size, and longer Ni nanowires obtained as the deposition bath temperature increased. From the physical properties properties analysis, it can be concluded that deposition bath temperature influence the physical properties of Ni nanowires.
NASA Astrophysics Data System (ADS)
Mahl, Adam; Lim, Allison; Latta, Joseph; Yemam, Henok A.; Greife, Uwe; Sellinger, Alan
2018-03-01
Pulse shape discrimination (PSD) is an important method that can efficiently sort and separate neutron and gamma radiation signals. PSD is currently achieved in plastic scintillators by over-doping poly(vinyl toluene) (PVT) matrices with fluorescent molecules. Meaningful separation of the signals requires addition of >20 wt% 2,5-diphenyloxazole (PPO) fluor in PVT. At these concentrations PPO acts as a plasticizer, negatively affecting the physical properties of the final plastic such as hardness, machinability, and thermomechanical stability. This work addresses these issues by implementing a cost-effective solution using cross-linking chemistry via commercially available bisphenol A dimethacrylate (BPA-DM), and a synthesized fluorinated analogue. Both improve the physical properties of over-doped PPO based plastic scintillators without degrading the measured light yield or PSD and Figure of Merit (FoM). In addition, the fluorinated analogue appears to enhance the hydrophobicity of the surface of the plastic scintillators, which may improve the scintillators' resistance to water diffusion and subsequent radiation response degradation. The new formulations improve the feasibility of widely deploying long lifetime PSD capable plastic scintillators in large area coverage assemblies.
Riaz, Asad; Lei, Shicheng; Akhtar, Hafiz Muhammad Saleem; Wan, Peng; Chen, Dan; Jabbar, Saqib; Abid, Muhammad; Hashim, Malik Muhammad; Zeng, Xiaoxiong
2018-07-15
In the present study, apple peel polyphenols (APP) were incorporated into chitosan (CS) to develop a novel functional film. Scanning electron microscopy, Fourier transform-infrared spectroscopy and thermogravimetric analyses were performed to study the structure, potential interaction and thermal stability of the prepared films. Physical properties including moisture content, density, color, opacity, water solubility, swelling ration and water vapor permeability were measured. The results revealed that addition of APP into CS significantly improved the physical properties of the film by increasing its thickness, density, solubility, opacity and swelling ratio whereas moisture content and water vapor permeability were decreased. Tensile strength and elongation at break of the CS-APP film with 1% APP was 16.48MPa and 13.33%, respectively, significantly lower than those for CS control film. Thermal stability of the prepared films was decreased while antioxidant and antimicrobial activities of the CS-based APP film were significantly increased. CS-APP film with 0.50% APP concentration exhibited good mechanical and antimicrobial properties, indicating that it could be developed as bio-composite food packaging material for the food industry. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Badescu, Mircea; Bonitz, Robert; Kulczycki, Erick; Aisen, Norman; Dandino, Charles M.; Cantrell, Brett S.; Gallagher, William; Shevin, Jesse; Ganino, Anthony; Haddad, Nicolas;
2013-01-01
The 2011 Decadal Survey for planetary science released by the National Research Council of the National Academies identified Comet Surface Sample Return (CSSR) as one of five high priority potential New Frontiers-class missions in the next decade. The main objectives of the research described in this publication are: develop a concept for an end-to-end system for collecting and storing a comet sample to be returned to Earth; design, fabricate and test a prototype Dynamic Acquisition and Retrieval Tool (DART) capable of collecting 500 cc sample in a canister and eject the canister with a predetermined speed; identify a set of simulants with physical properties at room temperature that suitably match the physical properties of the comet surface as it would be sampled. We propose the use of a dart that would be launched from the spacecraft to impact and penetrate the comet surface. After collecting the sample, the sample canister would be ejected at a speed greater than the comet's escape velocity and captured by the spacecraft, packaged into a return capsule and returned to Earth. The dart would be composed of an inner tube or sample canister, an outer tube, a decelerator, a means of capturing and retaining the sample, and a mechanism to eject the canister with the sample for later rendezvous with the spacecraft. One of the significant unknowns is the physical properties of the comet surface. Based on new findings from the recent Deep Impact comet encounter mission, we have limited our search of solutions for sampling materials to materials with 10 to 100 kPa shear strength in loose or consolidated form. As the possible range of values for the comet surface temperature is also significantly different than room temperature and testing at conditions other than the room temperature can become resource intensive, we sought sample simulants with physical properties at room temperature similar to the expected physical properties of the comet surface material. The chosen DART configuration, the efforts to identify a test simulant and the properties of these simulants, and the results of the preliminary testing will be described in this paper.
Study of a hydraulic DCPA/CaO-based cement for dental applications.
El Briak, Hasna; Durand, Denis; Boudeville, Philippe
2008-02-01
A CPC was obtained by mixing calcium hydrogenphosphate (DCPA: CaHPO(4)) and calcium oxide with either water or sodium phosphate (NaP) buffers. Physical and mechanical properties such as compressive strength (CS), initial (I) and final (F) setting times, cohesion time (T(C)), dough time (T(D)), swelling time (T(S)), dimensional and thermal behavior, injectability (t(100%)), antimicrobial properties, setting reaction kinetics, and powder stability over time were investigated by varying different parameters such as liquid-to-powder (L/P) ratio (0.35 to 0.7 mL g(-1)), molar calcium-to-phosphate (Ca/P) ratio (1.67 to 3), the pH (4, 7 or 9) and the concentration (0 to 1 M) of the NaP buffer. The best results were obtained with the pH 7 NaP buffer at a concentration of 0.75 M. With this liquid phase, physical and mechanical properties depended on the Ca/P and L/P ratios, varying from 3 to 11 MPa (CS), 6 to 10 min (I), 11 to 15 min (F), 15 to 45 min (T(S)), 3 to 12 min (t(100%)), 16 min (T(D)). This cement expanded during its setting (2.5-7%), and is thus appropriate for tight filling. Finally the cement has antimicrobial activity from Ca/P = 2 and the whole properties were conserved after 8 months storage. Given the mechanical, rheological and antimicrobial properties of this new DCPA/CaO-based cement, its use as root canal sealing or pulp capping material may be considered as similar to calcium hydroxide or ZnO/eugenol-based pastes, without or with a gutta-percha point.
Wyrwich, KW; Phillips, GA; Vollmer, T; Guo, S
2016-01-01
Background Investigations using classical test theory support the psychometric properties of the original version of the Multiple Sclerosis Impact Scale (MSIS-29v1), a disease-specific measure of multiple sclerosis (MS) impact (physical and psychological subscales). Later, assessments of the MSIS-29v1 in an MS community-based sample using Rasch analysis led to revisions of the instrument’s response options (MSIS-29v2). Objective The objective of this paper is to evaluate the psychometric properties of the MSIS-29v1 in a clinical trial cohort of relapsing–remitting MS patients (RRMS). Methods Data from 600 patients with RRMS enrolled in the SELECT clinical trial were used. Assessments were performed at baseline and at Weeks 12, 24, and 52. In addition to traditional psychometric analyses, Item Response Theory (IRT) and Rasch analysis were used to evaluate the measurement properties of the MSIS-29v1. Results Both MSIS-29v1 subscales demonstrated strong reliability, construct validity, and responsiveness. The IRT and Rasch analysis showed overall support for response category threshold ordering, person-item fit, and item fit for both subscales. Conclusions Both MSIS-29v1 subscales demonstrated robust measurement properties using classical, IRT, and Rasch techniques. Unlike previous research using a community-based sample, the MSIS-29v1 was found to be psychometrically sound to assess physical and psychological impairments in a clinical trial sample of patients with RRMS. PMID:28607741
Bacci, E D; Wyrwich, K W; Phillips, G A; Vollmer, T; Guo, S
2016-01-01
Investigations using classical test theory support the psychometric properties of the original version of the Multiple Sclerosis Impact Scale (MSIS-29v1), a disease-specific measure of multiple sclerosis (MS) impact (physical and psychological subscales). Later, assessments of the MSIS-29v1 in an MS community-based sample using Rasch analysis led to revisions of the instrument's response options (MSIS-29v2). The objective of this paper is to evaluate the psychometric properties of the MSIS-29v1 in a clinical trial cohort of relapsing-remitting MS patients (RRMS). Data from 600 patients with RRMS enrolled in the SELECT clinical trial were used. Assessments were performed at baseline and at Weeks 12, 24, and 52. In addition to traditional psychometric analyses, Item Response Theory (IRT) and Rasch analysis were used to evaluate the measurement properties of the MSIS-29v1. Both MSIS-29v1 subscales demonstrated strong reliability, construct validity, and responsiveness. The IRT and Rasch analysis showed overall support for response category threshold ordering, person-item fit, and item fit for both subscales. Both MSIS-29v1 subscales demonstrated robust measurement properties using classical, IRT, and Rasch techniques. Unlike previous research using a community-based sample, the MSIS-29v1 was found to be psychometrically sound to assess physical and psychological impairments in a clinical trial sample of patients with RRMS.
NASA Astrophysics Data System (ADS)
Ocko, Ilissa B.; Ginoux, Paul A.
2017-04-01
Anthropogenic aerosols are a key factor governing Earth's climate and play a central role in human-caused climate change. However, because of aerosols' complex physical, optical, and dynamical properties, aerosols are one of the most uncertain aspects of climate modeling. Fortunately, aerosol measurement networks over the past few decades have led to the establishment of long-term observations for numerous locations worldwide. Further, the availability of datasets from several different measurement techniques (such as ground-based and satellite instruments) can help scientists increasingly improve modeling efforts. This study explores the value of evaluating several model-simulated aerosol properties with data from spatially collocated instruments. We compare aerosol optical depth (AOD; total, scattering, and absorption), single-scattering albedo (SSA), Ångström exponent (α), and extinction vertical profiles in two prominent global climate models (Geophysical Fluid Dynamics Laboratory, GFDL, CM2.1 and CM3) to seasonal observations from collocated instruments (AErosol RObotic NETwork, AERONET, and Cloud-Aerosol Lidar with Orthogonal Polarization, CALIOP) at seven polluted and biomass burning regions worldwide. We find that a multi-parameter evaluation provides key insights on model biases, data from collocated instruments can reveal underlying aerosol-governing physics, column properties wash out important vertical distinctions, and improved
models does not mean all aspects are improved. We conclude that it is important to make use of all available data (parameters and instruments) when evaluating aerosol properties derived by models.
Zhang, Xiaoyan; Hou, Lili; Samorì, Paolo
2016-01-01
Multifunctional carbon-based nanomaterials offer routes towards the realization of smart and high-performing (opto)electronic (nano)devices, sensors and logic gates. Meanwhile photochromic molecules exhibit reversible transformation between two forms, induced by the absorption of electromagnetic radiation. By combining carbon-based nanomaterials with photochromic molecules, one can achieve reversible changes in geometrical structure, electronic properties and nanoscale mechanics triggering by light. This thus enables a reversible modulation of numerous physical and chemical properties of the carbon-based nanomaterials towards the fabrication of cognitive devices. This review examines the state of the art with respect to these responsive materials, and seeks to identify future directions for investigation. PMID:27067387
Min, Bockki; Lim, Jongbin; Ko, Sanghoon; Lee, Kwang-Geun; Lee, Sung Ho; Lee, Suyong
2011-02-01
Apple pomace which is the main waste of fruit juice industry was utilized to extract pectins in an environmentally friendly way, which was then compared with chemically-extracted pectins. The water-based extraction with combined physical and enzymatic treatments produced pectins with 693.2 mg g(-1) galacturonic acid and 4.6% yield, which were less than those of chemically-extracted pectins. Chemically-extracted pectins exhibited lower degree of esterification (58%) than the pectin samples obtained by physical/enzymatic treatments (69%), which were also confirmed by FT-IR analysis. When subjected to steady-shear rheological conditions, both pectin solutions were shown to have shear-thinning properties. However, decreased viscosity was observed in the pectins extracted by combined physical/enzymatic methods which could be mainly attributed to the presence of more methyl esters, thus limiting polymer chain interactions. Moreover, the pectins which were extracted by combined physical/enzymatic treatments, showed less elastic properties under high shear rate conditions, compared to the chemically-extracted pectins. Copyright © 2010 Elsevier Ltd. All rights reserved.
Gas Hydrate Estimation Using Rock Physics Modeling and Seismic Inversion
NASA Astrophysics Data System (ADS)
Dai, J.; Dutta, N.; Xu, H.
2006-05-01
ABSTRACT We conducted a theoretical study of the effects of gas hydrate saturation on the acoustic properties (P- and S- wave velocities, and bulk density) of host rocks, using wireline log data from the Mallik wells in the Mackenzie Delta in Northern Canada. We evaluated a number of gas hydrate rock physics models that correspond to different rock textures. Our study shows that, among the existing rock physics models, the one that treats gas hydrate as part of the solid matrix best fits the measured data. This model was also tested on gas hydrate hole 995B of ODP leg 164 drilling at Blake Ridge, which shows adequate match. Based on the understanding of rock models of gas hydrates and properties of shallow sediments, we define a procedure that quantifies gas hydrate using rock physics modeling and seismic inversion. The method allows us to estimate gas hydrate directly from seismic information only. This paper will show examples of gas hydrates quantification from both 1D profile and 3D volume in the deepwater of Gulf of Mexico.
B physics and Quarkonia in CMS
NASA Astrophysics Data System (ADS)
Fiorendi, Sara
2017-12-01
The heavy-flavor sector offers the opportunity to perform indirect tests of beyond the Standard Model physics through precision measurements and of quantum chromodynamics (QCD) through particle production studies. A review of recent measurements on heavy flavors from the CMS experiment is presented. Results are based on data collected during LHC Run I and Run II and include measurements of heavy flavor production and properties, rare decays, CP violation, exotic and standard quarkonia. Warning, no authors found for 2017EPJWC.16407006.
A physics based method for combining multiple anatomy models with application to medical simulation.
Zhu, Yanong; Magee, Derek; Ratnalingam, Rishya; Kessel, David
2009-01-01
We present a physics based approach to the construction of anatomy models by combining components from different sources; different image modalities, protocols, and patients. Given an initial anatomy, a mass-spring model is generated which mimics the physical properties of the solid anatomy components. This helps maintain valid spatial relationships between the components, as well as the validity of their shapes. Combination can be either replacing/modifying an existing component, or inserting a new component. The external forces that deform the model components to fit the new shape are estimated from Gradient Vector Flow and Distance Transform maps. We demonstrate the applicability and validity of the described approach in the area of medical simulation, by showing the processes of non-rigid surface alignment, component replacement, and component insertion.
Mechanical design of DNA nanostructures
NASA Astrophysics Data System (ADS)
Castro, Carlos E.; Su, Hai-Jun; Marras, Alexander E.; Zhou, Lifeng; Johnson, Joshua
2015-03-01
Structural DNA nanotechnology is a rapidly emerging field that has demonstrated great potential for applications such as single molecule sensing, drug delivery, and templating molecular components. As the applications of DNA nanotechnology expand, a consideration of their mechanical behavior is becoming essential to understand how these structures will respond to physical interactions. This review considers three major avenues of recent progress in this area: (1) measuring and designing mechanical properties of DNA nanostructures, (2) designing complex nanostructures based on imposed mechanical stresses, and (3) designing and controlling structurally dynamic nanostructures. This work has laid the foundation for mechanically active nanomachines that can generate, transmit, and respond to physical cues in molecular systems.Structural DNA nanotechnology is a rapidly emerging field that has demonstrated great potential for applications such as single molecule sensing, drug delivery, and templating molecular components. As the applications of DNA nanotechnology expand, a consideration of their mechanical behavior is becoming essential to understand how these structures will respond to physical interactions. This review considers three major avenues of recent progress in this area: (1) measuring and designing mechanical properties of DNA nanostructures, (2) designing complex nanostructures based on imposed mechanical stresses, and (3) designing and controlling structurally dynamic nanostructures. This work has laid the foundation for mechanically active nanomachines that can generate, transmit, and respond to physical cues in molecular systems. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07153k
Mental Rolodexing: Senior Chemistry Majors' Understanding of Chemical and Physical Properties
ERIC Educational Resources Information Center
DeFever, Ryan S.; Bruce, Heather; Bhattacharyya, Gautam
2015-01-01
Using a constructivist framework, eight senior chemistry majors were interviewed twice to determine: (i) structural inferences they are able to make from chemical and physical properties; and (ii) their ability to apply their inferences and understandings of these chemical and physical properties to solve tasks on the reactivity of organic…
Characterization of the mechanical and physical properties of TD-NiCr (Ni-20Cr-2ThO2) alloy sheet
NASA Technical Reports Server (NTRS)
Fritz, L. J.; Koster, W. P.; Taylor, R. E.
1973-01-01
Sheets of TD-NiCr processed using techniques developed to produce uniform material were tested to supply mechanical and physical property data. Two heats each of 0.025 and 0.051 cm thick sheet were tested. Mechanical properties evaluated included tensile, modulus of elasticity, Poisson's Ratio, compression, creep-rupture, creep strength, bearing strength, shear strength, sharp notch and fatigue strength. Test temperatures covered the range from ambient to 1589K. Physical properties were also studied as a function of temperature. The physical properties measured were thermal conductivity, linear thermal expansion, specific heat, total hemispherical emittance, thermal diffusivity, and electrical conductivity.
Wood and Wood-Based Materials as Sensors—A Review of the Piezoelectric Effect in Wood
Robert J. Ross; Jiangming Kan; Xiping Wang; Julie Blankenburg; Janet I. Stockhausen; Roy F. Pellerin
2012-01-01
A variety of techniques have been investigated for use in assessing the physical and mechanical properties of wood products and structures. Ultrasound, transverse vibration, and stress-wave based methods are all techniques that have shown promise for many nondestructive evaluation applications. These techniques and others rely on the use of measurement systems to...
Joint Geophysical Inversion With Multi-Objective Global Optimization Methods
NASA Astrophysics Data System (ADS)
Lelievre, P. G.; Bijani, R.; Farquharson, C. G.
2015-12-01
Pareto multi-objective global optimization (PMOGO) methods generate a suite of solutions that minimize multiple objectives (e.g. data misfits and regularization terms) in a Pareto-optimal sense. Providing a suite of models, as opposed to a single model that minimizes a weighted sum of objectives, allows a more complete assessment of the possibilities and avoids the often difficult choice of how to weight each objective. We are applying PMOGO methods to three classes of inverse problems. The first class are standard mesh-based problems where the physical property values in each cell are treated as continuous variables. The second class of problems are also mesh-based but cells can only take discrete physical property values corresponding to known or assumed rock units. In the third class we consider a fundamentally different type of inversion in which a model comprises wireframe surfaces representing contacts between rock units; the physical properties of each rock unit remain fixed while the inversion controls the position of the contact surfaces via control nodes. This third class of problem is essentially a geometry inversion, which can be used to recover the unknown geometry of a target body or to investigate the viability of a proposed Earth model. Joint inversion is greatly simplified for the latter two problem classes because no additional mathematical coupling measure is required in the objective function. PMOGO methods can solve numerically complicated problems that could not be solved with standard descent-based local minimization methods. This includes the latter two classes of problems mentioned above. There are significant increases in the computational requirements when PMOGO methods are used but these can be ameliorated using parallelization and problem dimension reduction strategies.
NASA Astrophysics Data System (ADS)
Skataric, Maja; Bose, Sandip; Zeroug, Smaine; Tilke, Peter
2017-02-01
It is not uncommon in the field of non-destructive evaluation that multiple measurements encompassing a variety of modalities are available for analysis and interpretation for determining the underlying states of nature of the materials or parts being tested. Despite and sometimes due to the richness of data, significant challenges arise in the interpretation manifested as ambiguities and inconsistencies due to various uncertain factors in the physical properties (inputs), environment, measurement device properties, human errors, and the measurement data (outputs). Most of these uncertainties cannot be described by any rigorous mathematical means, and modeling of all possibilities is usually infeasible for many real time applications. In this work, we will discuss an approach based on Hierarchical Bayesian Graphical Models (HBGM) for the improved interpretation of complex (multi-dimensional) problems with parametric uncertainties that lack usable physical models. In this setting, the input space of the physical properties is specified through prior distributions based on domain knowledge and expertise, which are represented as Gaussian mixtures to model the various possible scenarios of interest for non-destructive testing applications. Forward models are then used offline to generate the expected distribution of the proposed measurements which are used to train a hierarchical Bayesian network. In Bayesian analysis, all model parameters are treated as random variables, and inference of the parameters is made on the basis of posterior distribution given the observed data. Learned parameters of the posterior distribution obtained after the training can therefore be used to build an efficient classifier for differentiating new observed data in real time on the basis of pre-trained models. We will illustrate the implementation of the HBGM approach to ultrasonic measurements used for cement evaluation of cased wells in the oil industry.
Laplace Transform Based Radiative Transfer Studies
NASA Astrophysics Data System (ADS)
Hu, Y.; Lin, B.; Ng, T.; Yang, P.; Wiscombe, W.; Herath, J.; Duffy, D.
2006-12-01
Multiple scattering is the major uncertainty for data analysis of space-based lidar measurements. Until now, accurate quantitative lidar data analysis has been limited to very thin objects that are dominated by single scattering, where photons from the laser beam only scatter a single time with particles in the atmosphere before reaching the receiver, and simple linear relationship between physical property and lidar signal exists. In reality, multiple scattering is always a factor in space-based lidar measurement and it dominates space- based lidar returns from clouds, dust aerosols, vegetation canopy and phytoplankton. While multiple scattering are clear signals, the lack of a fast-enough lidar multiple scattering computation tool forces us to treat the signal as unwanted "noise" and use simple multiple scattering correction scheme to remove them. Such multiple scattering treatments waste the multiple scattering signals and may cause orders of magnitude errors in retrieved physical properties. Thus the lack of fast and accurate time-dependent radiative transfer tools significantly limits lidar remote sensing capabilities. Analyzing lidar multiple scattering signals requires fast and accurate time-dependent radiative transfer computations. Currently, multiple scattering is done with Monte Carlo simulations. Monte Carlo simulations take minutes to hours and are too slow for interactive satellite data analysis processes and can only be used to help system / algorithm design and error assessment. We present an innovative physics approach to solve the time-dependent radiative transfer problem. The technique utilizes FPGA based reconfigurable computing hardware. The approach is as following, 1. Physics solution: Perform Laplace transform on the time and spatial dimensions and Fourier transform on the viewing azimuth dimension, and convert the radiative transfer differential equation solving into a fast matrix inversion problem. The majority of the radiative transfer computation goes to matrix inversion processes, FFT and inverse Laplace transforms. 2. Hardware solutions: Perform the well-defined matrix inversion, FFT and Laplace transforms on highly parallel, reconfigurable computing hardware. This physics-based computational tool leads to accurate quantitative analysis of space-based lidar signals and improves data quality of current lidar mission such as CALIPSO. This presentation will introduce the basic idea of this approach, preliminary results based on SRC's FPGA-based Mapstation, and how we may apply it to CALIPSO data analysis.
Investigation of sources, properties and preparation of distillate test fuels
NASA Technical Reports Server (NTRS)
Bowden, J. N.; Erwin, J.
1983-01-01
Distillate test fuel blends were generated for prescribed variations in composition and physical properties. Fuels covering a wide range in properties and composition which would provide a matrix of fuels for possible use in future combustion research programs were identified. Except for tetralin the blending components were all from typical refinery streams. Property variation blends span a boiling range within 150 C to 335 C, freezing point -23 C to -43 C, aromatic content 20 to 50 volume percent, hydrogen content 11.8 to 14.2 mass percent, viscosity 4 and 11 cSt (-20 C), and naphthalenes 8 and 16 volume percent. Composition variation blends were made with two base stocks, one paraffinic and the other napthenic. To each base stock was added each of three aromatic type fuels (alkyl benzenes, tetralin, and naphthalenes) for assigned initial boiling point, final boiling point, and hydrogen content. The hydrogen content was 13.5 mass percent for the paraffinic base stock blends and 12.5 mass percent and 11.5 mass percent for the naphthenic base stock blends. Sample 5-gallon quantities of all blends were prepared and analyzed.