Sample records for physical retrieval algorithm

  1. A New Inversion-Based Algorithm for Retrieval of Over-Water Rain Rate from SSM/I Multichannel Imagery

    NASA Technical Reports Server (NTRS)

    Petty, Grant W.; Stettner, David R.

    1994-01-01

    This paper discusses certain aspects of a new inversion based algorithm for the retrieval of rain rate over the open ocean from the special sensor microwave/imager (SSM/I) multichannel imagery. This algorithm takes a more detailed physical approach to the retrieval problem than previously discussed algorithms that perform explicit forward radiative transfer calculations based on detailed model hydrometer profiles and attempt to match the observations to the predicted brightness temperature.

  2. Land Surface Modeling and Data Assimilation to Support Physical Precipitation Retrievals for GPM

    NASA Technical Reports Server (NTRS)

    Peters-Lidard, Christa D.; Tian. Yudong; Kumar, Sujay; Geiger, James; Choudhury, Bhaskar

    2010-01-01

    Objective: The objective of this proposal is to provide a routine land surface modeling and data assimilation capability for GPM in order to provide global land surface states that are necessary to support physical precipitation retrieval algorithms over land. It is well-known that surface emission, particularly over the range of frequencies to be included in GPM, is sensitive to land surface states, including soil properties, vegetation type and greenness, soil moisture, surface temperature, and snow cover, density, and grain size. Therefore, providing a robust capability to routinely provide these critical land states is essential to support GPM-era physical retrieval algorithms over land.

  3. Retrieving the properties of ice-phase precipitation with multi-frequency radar measurements

    NASA Astrophysics Data System (ADS)

    Mace, G. G.; Gergely, M.; Mascio, J.

    2017-12-01

    The objective of most retrieval algorithms applied to remote sensing measurements is the microphysical properties that a model might predict such as condensed water content, particle number, or effective size. However, because ice crystals grow and aggregate into complex non spherical shapes, the microphysical properties of interest are very much dependent on the physical characteristics of the precipitation such as how mass and crystal area are distributed as a function of particle size. Such physical properties also have a strong influence on how microwave electromagnetic energy scatters from ice crystals causing significant ambiguity in retrieval algorithms. In fact, passive and active microwave remote sensing measurements are typically nearly as sensitive to the ice crystal physical properties as they are to the microphysical characteristics that are typically the aim of the retrieval algorithm. There has, however, been active development of multi frequency algorithms recently that attempt to ameliorate and even exploit this sensitivity. In this paper, we will review these approaches and present practical applications of retrieving ice crystal properties such as mass- and area dimensional relationships from single and dual frequency radar measurements of precipitating ice using data collected aboard ship in the Southern Ocean and from remote sensors in the Rocky Mountains of the Western U.S.

  4. An Uncertainty Quantification Framework for Remote Sensing Retrievals

    NASA Astrophysics Data System (ADS)

    Braverman, A. J.; Hobbs, J.

    2017-12-01

    Remote sensing data sets produced by NASA and other space agencies are the result of complex algorithms that infer geophysical state from observed radiances using retrieval algorithms. The processing must keep up with the downlinked data flow, and this necessitates computational compromises that affect the accuracies of retrieved estimates. The algorithms are also limited by imperfect knowledge of physics and of ancillary inputs that are required. All of this contributes to uncertainties that are generally not rigorously quantified by stepping outside the assumptions that underlie the retrieval methodology. In this talk we discuss a practical framework for uncertainty quantification that can be applied to a variety of remote sensing retrieval algorithms. Ours is a statistical approach that uses Monte Carlo simulation to approximate the sampling distribution of the retrieved estimates. We will discuss the strengths and weaknesses of this approach, and provide a case-study example from the Orbiting Carbon Observatory 2 mission.

  5. Bayesian aerosol retrieval algorithm for MODIS AOD retrieval over land

    NASA Astrophysics Data System (ADS)

    Lipponen, Antti; Mielonen, Tero; Pitkänen, Mikko R. A.; Levy, Robert C.; Sawyer, Virginia R.; Romakkaniemi, Sami; Kolehmainen, Ville; Arola, Antti

    2018-03-01

    We have developed a Bayesian aerosol retrieval (BAR) algorithm for the retrieval of aerosol optical depth (AOD) over land from the Moderate Resolution Imaging Spectroradiometer (MODIS). In the BAR algorithm, we simultaneously retrieve all dark land pixels in a granule, utilize spatial correlation models for the unknown aerosol parameters, use a statistical prior model for the surface reflectance, and take into account the uncertainties due to fixed aerosol models. The retrieved parameters are total AOD at 0.55 µm, fine-mode fraction (FMF), and surface reflectances at four different wavelengths (0.47, 0.55, 0.64, and 2.1 µm). The accuracy of the new algorithm is evaluated by comparing the AOD retrievals to Aerosol Robotic Network (AERONET) AOD. The results show that the BAR significantly improves the accuracy of AOD retrievals over the operational Dark Target (DT) algorithm. A reduction of about 29 % in the AOD root mean square error and decrease of about 80 % in the median bias of AOD were found globally when the BAR was used instead of the DT algorithm. Furthermore, the fraction of AOD retrievals inside the ±(0.05+15 %) expected error envelope increased from 55 to 76 %. In addition to retrieving the values of AOD, FMF, and surface reflectance, the BAR also gives pixel-level posterior uncertainty estimates for the retrieved parameters. The BAR algorithm always results in physical, non-negative AOD values, and the average computation time for a single granule was less than a minute on a modern personal computer.

  6. Review of TRMM/GPM Rainfall Algorithm Validation

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.

    2004-01-01

    A review is presented concerning current progress on evaluation and validation of standard Tropical Rainfall Measuring Mission (TRMM) precipitation retrieval algorithms and the prospects for implementing an improved validation research program for the next generation Global Precipitation Measurement (GPM) Mission. All standard TRMM algorithms are physical in design, and are thus based on fundamental principles of microwave radiative transfer and its interaction with semi-detailed cloud microphysical constituents. They are evaluated for consistency and degree of equivalence with one another, as well as intercompared to radar-retrieved rainfall at TRMM's four main ground validation sites. Similarities and differences are interpreted in the context of the radiative and microphysical assumptions underpinning the algorithms. Results indicate that the current accuracies of the TRMM Version 6 algorithms are approximately 15% at zonal-averaged / monthly scales with precisions of approximately 25% for full resolution / instantaneous rain rate estimates (i.e., level 2 retrievals). Strengths and weaknesses of the TRMM validation approach are summarized. Because the dew of convergence of level 2 TRMM algorithms is being used as a guide for setting validation requirements for the GPM mission, it is important that the GPM algorithm validation program be improved to ensure concomitant improvement in the standard GPM retrieval algorithms. An overview of the GPM Mission's validation plan is provided including a description of a new type of physical validation model using an analytic 3-dimensional radiative transfer model.

  7. Retrieving Liquid Water Path and Precipitable Water Vapor from the Atmospheric Radiation Measurement (ARM) Microwave Radiometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, David D.; Clough, Shepard A.; Liljegren, James C.

    2007-11-01

    Ground-based two-channel microwave radiometers have been used for over 15 years by the Atmospheric Radiation Measurement (ARM) program to provide observations of downwelling emitted radiance from which precipitable water vapor (PWV) and liquid water path (LWP) – twp geophysical parameters critical for many areas of atmospheric research – are retrieved. An algorithm that utilizes two advanced retrieval techniques, a computationally expensive physical-iterative approach and an efficient statistical method, has been developed to retrieve these parameters. An important component of this Microwave Retrieval (MWRRET) algorithm is the determination of small (< 1K) offsets that are subtracted from the observed brightness temperaturesmore » before the retrievals are performed. Accounting for these offsets removes systematic biases from the observations and/or the model spectroscopy necessary for the retrieval, significantly reducing the systematic biases in the retrieved LWP. The MWRRET algorithm provides significantly more accurate retrievals than the original ARM statistical retrieval which uses monthly retrieval coefficients. By combining the two retrieval methods with the application of brightness temperature offsets to reduce the spurious LWP bias in clear skies, the MWRRET algorithm provides significantly better retrievals of PWV and LWP from the ARM 2-channel microwave radiometers compared to the original ARM product.« less

  8. Generating Global Leaf Area Index from Landsat: Algorithm Formulation and Demonstration

    NASA Technical Reports Server (NTRS)

    Ganguly, Sangram; Nemani, Ramakrishna R.; Zhang, Gong; Hashimoto, Hirofumi; Milesi, Cristina; Michaelis, Andrew; Wang, Weile; Votava, Petr; Samanta, Arindam; Melton, Forrest; hide

    2012-01-01

    This paper summarizes the implementation of a physically based algorithm for the retrieval of vegetation green Leaf Area Index (LAI) from Landsat surface reflectance data. The algorithm is based on the canopy spectral invariants theory and provides a computationally efficient way of parameterizing the Bidirectional Reflectance Factor (BRF) as a function of spatial resolution and wavelength. LAI retrievals from the application of this algorithm to aggregated Landsat surface reflectances are consistent with those of MODIS for homogeneous sites represented by different herbaceous and forest cover types. Example results illustrating the physics and performance of the algorithm suggest three key factors that influence the LAI retrieval process: 1) the atmospheric correction procedures to estimate surface reflectances; 2) the proximity of Landsatobserved surface reflectance and corresponding reflectances as characterized by the model simulation; and 3) the quality of the input land cover type in accurately delineating pure vegetated components as opposed to mixed pixels. Accounting for these factors, a pilot implementation of the LAI retrieval algorithm was demonstrated for the state of California utilizing the Global Land Survey (GLS) 2005 Landsat data archive. In a separate exercise, the performance of the LAI algorithm over California was evaluated by using the short-wave infrared band in addition to the red and near-infrared bands. Results show that the algorithm, while ingesting the short-wave infrared band, has the ability to delineate open canopies with understory effects and may provide useful information compared to a more traditional two-band retrieval. Future research will involve implementation of this algorithm at continental scales and a validation exercise will be performed in evaluating the accuracy of the 30-m LAI products at several field sites. ©

  9. Retrieval with Infrared Atmospheric Sounding Interferometer and Validation during JAIVEx

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Liu, Xu; Larar, Allen M.; Smith, William L.; Taylor, Jonathan P.; Schluessel, Peter; Strow, L. Larrabee; Mango, Stephen A.

    2008-01-01

    A state-of-the-art IR-only retrieval algorithm has been developed with an all-season-global EOF Physical Regression and followed by 1-D Var. Physical Iterative Retrieval for IASI, AIRS, and NAST-I. The benefits of this retrieval are to produce atmospheric structure with a single FOV horizontal resolution (approx. 15 km for IASI and AIRS), accurate profiles above the cloud (at least) or down to the surface, surface parameters, and/or cloud microphysical parameters. Initial case study and validation indicates that surface, cloud, and atmospheric structure (include TBL) are well captured by IASI and AIRS measurements. Coincident dropsondes during the IASI and AIRS overpasses are used to validate atmospheric conditions, and accurate retrievals are obtained with an expected vertical resolution. JAIVEx has provided the data needed to validate the retrieval algorithm and its products which allows us to assess the instrument ability and/or performance. Retrievals with global coverage are under investigation for detailed retrieval assessment. It is greatly desired that these products be used for testing the impact on Atmospheric Data Assimilation and/or Numerical Weather Prediction.

  10. APOLLO_NG - a probabilistic interpretation of the APOLLO legacy for AVHRR heritage channels

    NASA Astrophysics Data System (ADS)

    Klüser, L.; Killius, N.; Gesell, G.

    2015-10-01

    The cloud processing scheme APOLLO (AVHRR Processing scheme Over cLouds, Land and Ocean) has been in use for cloud detection and cloud property retrieval since the late 1980s. The physics of the APOLLO scheme still build the backbone of a range of cloud detection algorithms for AVHRR (Advanced Very High Resolution Radiometer) heritage instruments. The APOLLO_NG (APOLLO_NextGeneration) cloud processing scheme is a probabilistic interpretation of the original APOLLO method. It builds upon the physical principles that have served well in the original APOLLO scheme. Nevertheless, a couple of additional variables have been introduced in APOLLO_NG. Cloud detection is no longer performed as a binary yes/no decision based on these physical principles. It is rather expressed as cloud probability for each satellite pixel. Consequently, the outcome of the algorithm can be tuned from being sure to reliably identify clear pixels to conditions of reliably identifying definitely cloudy pixels, depending on the purpose. The probabilistic approach allows retrieving not only the cloud properties (optical depth, effective radius, cloud top temperature and cloud water path) but also their uncertainties. APOLLO_NG is designed as a standalone cloud retrieval method robust enough for operational near-realtime use and for application to large amounts of historical satellite data. The radiative transfer solution is approximated by the same two-stream approach which also had been used for the original APOLLO. This allows the algorithm to be applied to a wide range of sensors without the necessity of sensor-specific tuning. Moreover it allows for online calculation of the radiative transfer (i.e., within the retrieval algorithm) giving rise to a detailed probabilistic treatment of cloud variables. This study presents the algorithm for cloud detection and cloud property retrieval together with the physical principles from the APOLLO legacy it is based on. Furthermore a couple of example results from NOAA-18 are presented.

  11. APOLLO_NG - a probabilistic interpretation of the APOLLO legacy for AVHRR heritage channels

    NASA Astrophysics Data System (ADS)

    Klüser, L.; Killius, N.; Gesell, G.

    2015-04-01

    The cloud processing scheme APOLLO (Avhrr Processing scheme Over cLouds, Land and Ocean) has been in use for cloud detection and cloud property retrieval since the late 1980s. The physics of the APOLLO scheme still build the backbone of a range of cloud detection algorithms for AVHRR (Advanced Very High Resolution Radiometer) heritage instruments. The APOLLO_NG (APOLLO_NextGeneration) cloud processing scheme is a probabilistic interpretation of the original APOLLO method. While building upon the physical principles having served well in the original APOLLO a couple of additional variables have been introduced in APOLLO_NG. Cloud detection is not performed as a binary yes/no decision based on these physical principals but is expressed as cloud probability for each satellite pixel. Consequently the outcome of the algorithm can be tuned from clear confident to cloud confident depending on the purpose. The probabilistic approach allows to retrieving not only the cloud properties (optical depth, effective radius, cloud top temperature and cloud water path) but also their uncertainties. APOLLO_NG is designed as a standalone cloud retrieval method robust enough for operational near-realtime use and for the application with large amounts of historical satellite data. Thus the radiative transfer solution is approximated by the same two stream approach which also had been used for the original APOLLO. This allows the algorithm to be robust enough for being applied to a wide range of sensors without the necessity of sensor-specific tuning. Moreover it allows for online calculation of the radiative transfer (i.e. within the retrieval algorithm) giving rise to a detailed probabilistic treatment of cloud variables. This study presents the algorithm for cloud detection and cloud property retrieval together with the physical principles from the APOLLO legacy it is based on. Furthermore a couple of example results from on NOAA-18 are presented.

  12. A cloud and radiation model-based algorithm for rainfall retrieval from SSM/I multispectral microwave measurements

    NASA Technical Reports Server (NTRS)

    Xiang, Xuwu; Smith, Eric A.; Tripoli, Gregory J.

    1992-01-01

    A hybrid statistical-physical retrieval scheme is explored which combines a statistical approach with an approach based on the development of cloud-radiation models designed to simulate precipitating atmospheres. The algorithm employs the detailed microphysical information from a cloud model as input to a radiative transfer model which generates a cloud-radiation model database. Statistical procedures are then invoked to objectively generate an initial guess composite profile data set from the database. The retrieval algorithm has been tested for a tropical typhoon case using Special Sensor Microwave/Imager (SSM/I) data and has shown satisfactory results.

  13. New Features of the Collection 4 MODIS LAI and FPAR Product

    NASA Astrophysics Data System (ADS)

    Bin, T.; Yang, W.; Dong, H.; Shabanov, N.; Knyazikhin, Y.; Myneni, R.

    2003-12-01

    An algorithm based on physics of radiative transfer in vegetation canopies for the retrieval of vegetation green leaf area index (LAI) and fraction of absorbed photosynthetically active radiation (FPAR) from MODIS surface reflectance data was developed, prototyped and is in operational production at NASA computing facilities since June 2000. This poster highlights recent changes in the operational MODIS LAI and FPAR algorithm introduced for collection 4 data reprocessing. The changes to the algorithm are targeted to improve agreement of retrieved LAI and FPAR with corresponding field measurements, improve consistency of Quality Control (QC) definitions and miscellaneous bug fixes as summarized below. * Improvement of LUTs for the main and back-up algorithms for biomes 1 and 3. Benefits: a) increase in quality of retrievals; b) non-physical peaks in the global LAI distribution have been removed; c) improved agreement with field measurements * Improved QA scheme. Benefits: a) consistency between MODLAND and SCF quality flags has been achieved; b)ambiguity in QA has been resolved * New 8-day compositing scheme. Benefits: a) compositing over best quality retrievals, instead of all retrievals; b) lowers LAI values, decreases saturation and number of pixels generated by the back-up * At-launch static IGBP land cover, input to the LAI/FPAR algorithm, was replaced with the MODIS land cover map. Benefits: a) crosswalking of 17 classes IGBP scheme to 6-biome LC has been eliminated; b) uncertainties in the MODIS LAI/FPAR product due to uncertainties in land cover map have been reduced

  14. A New, More Physically Based Algorithm, for Retrieving Aerosol Properties over Land from MODIS

    NASA Technical Reports Server (NTRS)

    Levy, Robert C.; Kaufman, Yoram J.; Remer, Lorraine A.; Mattoo, Shana

    2004-01-01

    The MOD Imaging Spectrometer (MODIS) has been successfully retrieving aerosol properties, beginning in early 2000 from Terra and from mid 2002 from Aqua. Over land, the retrieval algorithm makes use of three MODIS channels, in the blue, red and infrared wavelengths. As part of the validation exercises, retrieved spectral aerosol optical thickness (AOT) has been compared via scatterplots against spectral AOT measured by the global Aerosol Robotic NETwork (AERONET). On one hand, global and long term validation looks promising, with two-thirds (average plus and minus one standard deviation) of all points falling between published expected error bars. On the other hand, regression of these points shows a positive y-offset and a slope less than 1.0. For individual regions, such as along the U.S. East Coast, the offset and slope are even worse. Here, we introduce an overhaul of the algorithm for retrieving aerosol properties over land. Some well-known weaknesses in the current aerosol retrieval from MODIS include: a) rigid assumptions about the underlying surface reflectance, b) limited aerosol models to choose from, c) simplified (scalar) radiative transfer (RT) calculations used to simulate satellite observations, and d) assumption that aerosol is transparent in the infrared channel. The new algorithm attempts to address all four problems: a) The new algorithm will include surface type information, instead of fixed ratios of the reflectance in the visible channels to the mid-IR reflectance. b) It will include updated aerosol optical properties to reflect the growing aerosol retrieved from eight-plus years of AERONE". operation. c) The effects of polarization will be including using vector RT calculations. d) Most importantly, the new algorithm does not assume that aerosol is transparent in the infrared channel. It will be an inversion of reflectance observed in the three channels (blue, red, and infrared), rather than iterative single channel retrievals. Thus, this new formulation of the MODIS aerosol retrieval over land includes more physically based surface, aerosol and radiative transfer with fewer potentially erroneous assumptions.

  15. Towards better understanding of high-mountain cryosphere changes using GPM data: A Joint Snowfall and Snow-cover Passive Microwave Retrieval Algorithm

    NASA Astrophysics Data System (ADS)

    Ebtehaj, A.; Foufoula-Georgiou, E.

    2016-12-01

    Scientific evidence suggests that the duration and frequency of snowfall and the extent of snow cover are rapidly declining under global warming. Both precipitation and snow cover scatter the upwelling surface microwave emission and decrease the observed high-frequency brightness temperatures. The mixture of these two scattering signals is amongst the largest sources of ambiguities and errors in passive microwave retrievals of both precipitation and snow-cover. The dual frequency radar and the high-frequency radiometer on board the GPM satellite provide a unique opportunity to improve passive retrievals of precipitation and snow-cover physical properties and fill the gaps in our understating of their variability in view of climate change. Recently, a new Bayesian rainfall retrieval algorithm (called ShARP) was developed using modern approximation methods and shown to yield improvements against other algorithms in retrieval of rainfall over radiometrically complex land surfaces. However, ShARP uses a large database of input rainfall and output brightness temperatures, which might be undersampled. Furthermore, it is not capable to discriminate between solid and liquid phase of precipitation and specifically discriminate the background snow-cover emission and its contamination effects on the retrievals. We address these problems by extending it to a new Bayesian land-atmosphere retrieval framework (ShARP-L) that allows joint retrievals of atmospheric constituents and land surface physical properties. Using modern sparse approximation techniques, the database is reduced to atomic microwave signatures in a family of compact class consistent dictionaries. These dictionaries can efficiently represent the entire database and allow us to discriminate between different land-atmosphere states. First the algorithm makes use of the dictionaries to detect the phase of the precipitation and type of the land-cover and then it estimates the physical properties of precipitation and snow cover using an extended version of the Dantzig Selector, which is robust to non-Gaussian and correlated geophysical noise. Promising results are presented in retrievals of snowfall and snow-cover over coastal orographic features of North America's Coast Range and South America's Andes.

  16. Theory of the amplitude-phase retrieval in any linear-transform system and its applications

    NASA Astrophysics Data System (ADS)

    Yang, Guozhen; Gu, Ben-Yuan; Dong, Bi-Zhen

    1992-12-01

    This paper is a summary of the theory of the amplitude-phase retrieval problem in any linear transform system and its applications based on our previous works in the past decade. We describe the general statement on the amplitude-phase retrieval problem in an imaging system and derive a set of equations governing the amplitude-phase distribution in terms of the rigorous mathematical derivation. We then show that, by using these equations and an iterative algorithm, a variety of amplitude-phase problems can be successfully handled. We carry out the systematic investigations and comprehensive numerical calculations to demonstrate the utilization of this new algorithm in various transform systems. For instance, we have achieved the phase retrieval from two intensity measurements in an imaging system with diffraction loss (non-unitary transform), both theoretically and experimentally, and the recovery of model real image from its Hartley-transform modulus only in one and two dimensional cases. We discuss the achievement of the phase retrieval problem from a single intensity only based on the sampling theorem and our algorithm. We also apply this algorithm to provide an optimal design of the phase-adjusted plate for a phase-adjustment focusing laser accelerator and a design approach of single phase-only element for implementing optical interconnect. In order to closely simulate the really measured data, we examine the reconstruction of image from its spectral modulus corrupted by a random noise in detail. The results show that the convergent solution can always be obtained and the quality of the recovered image is satisfactory. We also indicated the relationship and distinction between our algorithm and the original Gerchberg- Saxton algorithm. From these studies, we conclude that our algorithm shows great capability to deal with the comprehensive phase-retrieval problems in the imaging system and the inverse problem in solid state physics. It may open a new way to solve important inverse source problems extensively appearing in physics.

  17. Passive microwave algorithm development and evaluation

    NASA Technical Reports Server (NTRS)

    Petty, Grant W.

    1995-01-01

    The scientific objectives of this grant are: (1) thoroughly evaluate, both theoretically and empirically, all available Special Sensor Microwave Imager (SSM/I) retrieval algorithms for column water vapor, column liquid water, and surface wind speed; (2) where both appropriate and feasible, develop, validate, and document satellite passive microwave retrieval algorithms that offer significantly improved performance compared with currently available algorithms; and (3) refine and validate a novel physical inversion scheme for retrieving rain rate over the ocean. This report summarizes work accomplished or in progress during the first year of a three year grant. The emphasis during the first year has been on the validation and refinement of the rain rate algorithm published by Petty and on the analysis of independent data sets that can be used to help evaluate the performance of rain rate algorithms over remote areas of the ocean. Two articles in the area of global oceanic precipitation are attached.

  18. Cloud retrievals from satellite data using optimal estimation: evaluation and application to ATSR

    NASA Astrophysics Data System (ADS)

    Poulsen, C. A.; Siddans, R.; Thomas, G. E.; Sayer, A. M.; Grainger, R. G.; Campmany, E.; Dean, S. M.; Arnold, C.; Watts, P. D.

    2012-08-01

    Clouds play an important role in balancing the Earth's radiation budget. Hence, it is vital that cloud climatologies are produced that quantify cloud macro and micro physical parameters and the associated uncertainty. In this paper, we present an algorithm ORAC (Oxford-RAL retrieval of Aerosol and Cloud) which is based on fitting a physically consistent cloud model to satellite observations simultaneously from the visible to the mid-infrared, thereby ensuring that the resulting cloud properties provide both a good representation of the short-wave and long-wave radiative effects of the observed cloud. The advantages of the optimal estimation method are that it enables rigorous error propagation and the inclusion of all measurements and any a priori information and associated errors in a rigorous mathematical framework. The algorithm provides a measure of the consistency between retrieval representation of cloud and satellite radiances. The cloud parameters retrieved are the cloud top pressure, cloud optical depth, cloud effective radius, cloud fraction and cloud phase. The algorithm can be applied to most visible/infrared satellite instruments. In this paper, we demonstrate the applicability to the Along-Track Scanning Radiometers ATSR-2 and AATSR. Examples of applying the algorithm to ATSR-2 flight data are presented and the sensitivity of the retrievals assessed, in particular the algorithm is evaluated for a number of simulated single-layer and multi-layer conditions. The algorithm was found to perform well for single-layer cloud except when the cloud was very thin; i.e., less than 1 optical depths. For the multi-layer cloud, the algorithm was robust except when the upper ice cloud layer is less than five optical depths. In these cases the retrieved cloud top pressure and cloud effective radius become a weighted average of the 2 layers. The sum of optical depth of multi-layer cloud is retrieved well until the cloud becomes thick, greater than 50 optical depths, where the cloud begins to saturate. The cost proved a good indicator of multi-layer scenarios. Both the retrieval cost and the error need to be considered together in order to evaluate the quality of the retrieval. This algorithm in the configuration described here has been applied to both ATSR-2 and AATSR visible and infrared measurements in the context of the GRAPE (Global Retrieval and cloud Product Evaluation) project to produce a 14 yr consistent record for climate research.

  19. MWRRET Value-Added Product: The Retrieval of Liquid Water Path and Precipitable Water Vapor from Microwave Radiometer (MWR) Data Sets (Revision 2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaustad, KL; Turner, DD; McFarlane, SA

    2011-07-25

    This report provides a short description of the Atmospheric Radiation Measurement (ARM) Climate Research Facility microwave radiometer (MWR) Retrieval (MWRRET) value-added product (VAP) algorithm. This algorithm utilizes a complementary physical retrieval method and applies brightness temperature offsets to reduce spurious liquid water path (LWP) bias in clear skies resulting in significantly improved precipitable water vapor (PWV) and LWP retrievals. We present a general overview of the technique, input parameters, output products, and describe data quality checks. A more complete discussion of the theory and results is given in Turner et al. (2007b).

  20. Evaluation of Skin Temperatures Retrieved from GOES-8

    NASA Technical Reports Server (NTRS)

    Suggs, Ronnie, J.; Jedlovec, G. J.; Lapenta, W. M.; Haines, S. L.

    2000-01-01

    Skin temperatures derived from geostationary satellites have the potential of providing the temporal and spatial resolution needed for model assimilation. To adequately assess the potential improvements in numerical model forecasts that can be made by assimilating satellite data, an estimate of the accuracy of the skin temperature product is necessary. A particular skin temperature algorithm, the Physical Split Window Technique, that uses the longwave infrared channels of the GOES Imager has shown promise in recent model assimilation studies to provide land surface temperatures with reasonable accuracy. A comparison of retrieved GOES-8 skin temperatures from this algorithm with in situ measurements is presented. Various retrieval algorithm issues are addressed including surface emissivity

  1. Direct Retrieval of Sulfur Dioxide Amount and Altitude from Spaceborne Hyperspectral UV Measurements: Theory and Application

    NASA Technical Reports Server (NTRS)

    Yang, Kau; Liu, Xiong; Bhartia, Pawan K.; Krotkov, Nickolay A.; Carn, Simon A.; Hughes, Eric J.; Krueger, Arlin J.; Spurr, Robert D.; Trahan, Samuel G.

    2010-01-01

    We describe the physical processes by which a vertically localized absorber perturbs the top-of-atmosphere solar backscattered ultraviolet (UV) radiance. The distinct spectral responses to perturbations of an absorber in its column amount and layer altitude provide the basis for a practical satellite retrieval technique, the Extended Iterative Spectral Fitting (EISF) algorithm, for the simultaneous retrieval of these quantities of a SO2 plume. In addition, the EISF retrieval provides an improved UV aerosol index for quantifying the spectral contrast of apparent scene reflectance at the bottom of atmosphere bounded by the surface and/or cloud; hence it can be used for detection of the presence or absence of UV absorbing aerosols. We study the performance and characterize the uncertainties of the EISF algorithm using synthetic backscattered UV radiances, retrievals from which can be compared with those used in the simulation. Our findings indicate that the presence of aerosols (both absorbing and nonabsorbing) does not cause large errors in EISF retrievals under most observing conditions when they are located below the SO2 plume. The EISF retrievals assuming a homogeneous field of view can provide accurate column amounts for inhomogeneous scenes, but they always underestimate the plume altitudes. The EISF algorithm reduces systematic errors present in existing linear retrieval algorithms that use prescribed SO2 plume heights. Applying the EISF algorithm to Ozone Monitoring Instrument satellite observations of the recent Kasatochi volcanic eruption, we demonstrate the successful retrieval of effective plume altitude of volcanic SO2, and we also show the improvement in accuracy in the corresponding SO2 columns.

  2. MWRRET Value-Added Product: The Retrieval of Liquid Water Path and Precipitable Water Vapor from Microwave Radiometer (MWR) Datasets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KL Gaustad; DD Turner

    2007-09-30

    This report provides a short description of the Atmospheric Radiation Measurement (ARM) microwave radiometer (MWR) RETrievel (MWRRET) Value-Added Product (VAP) algorithm. This algorithm utilizes complimentary physical and statistical retrieval methods and applies brightness temperature offsets to reduce spurious liquid water path (LWP) bias in clear skies resulting in significantly improved precipitable water vapor (PWV) and LWP retrievals. We present a general overview of the technique, input parameters, output products, and describe data quality checks. A more complete discussion of the theory and results is given in Turner et al. (2007b).

  3. Improvement and further development of SSM/I overland parameter algorithms using the WetNet workstation

    NASA Technical Reports Server (NTRS)

    Neale, Christopher M. U.; Mcdonnell, Jeffrey J.; Ramsey, Douglas; Hipps, Lawrence; Tarboton, David

    1993-01-01

    Since the launch of the DMSP Special Sensor Microwave/Imager (SSM/I), several algorithms have been developed to retrieve overland parameters. These include the present operational algorithms resulting from the Navy calibration/validation effort such as land surface type (Neale et al. 1990), land surface temperature (McFarland et al. 1990), surface moisture (McFarland and Neale, 1991) and snow parameters (McFarland and Neale, 1991). In addition, other work has been done including the classification of snow cover and precipitation using the SSM/I (Grody, 1991). Due to the empirical nature of most of the above mentioned algorithms, further research is warranted and improvements can probably be obtained through a combination of radiative transfer modelling to study the physical processes governing the microwave emissions at the SSM/I frequencies, and the incorporation of additional ground truth data and special cases into the regression data sets. We have proposed specifically to improve the retrieval of surface moisture and snow parameters using the WetNet SSM/I data sets along with ground truth information namely climatic variables from the NOAA cooperative network of weather stations as well as imagery from other satellite sensors such as the AVHRR and Thematic Mapper. In the case of surface moisture retrievals the characterization of vegetation density is of primary concern. The higher spatial resolution satellite imagery collected at concurrent periods will be used to characterize vegetation types and amounts which, along with radiative transfer modelling should lead to more physically based retrievals. Snow parameter retrieval algorithm improvement will initially concentrate on the classification of snowpacks (dry snow, wet snow, refrozen snow) and later on specific products such as snow water equivalent. Significant accomplishments in the past year are presented.

  4. [The progress in retrieving land surface temperature based on thermal infrared and microwave remote sensing technologies].

    PubMed

    Zhang, Jia-Hua; Li, Xin; Yao, Feng-Mei; Li, Xian-Hua

    2009-08-01

    Land surface temperature (LST) is an important parameter in the study on the exchange of substance and energy between land surface and air for the land surface physics process at regional and global scales. Many applications of satellites remotely sensed data must provide exact and quantificational LST, such as drought, high temperature, forest fire, earthquake, hydrology and the vegetation monitor, and the models of global circulation and regional climate also need LST as input parameter. Therefore, the retrieval of LST using remote sensing technology becomes one of the key tasks in quantificational remote sensing study. Normally, in the spectrum bands, the thermal infrared (TIR, 3-15 microm) and microwave bands (1 mm-1 m) are important for retrieval of the LST. In the present paper, firstly, several methods for estimating the LST on the basis of thermal infrared (TIR) remote sensing were synthetically reviewed, i. e., the LST measured with an ground-base infrared thermometer, the LST retrieval from mono-window algorithm (MWA), single-channel algorithm (SCA), split-window techniques (SWT) and multi-channels algorithm(MCA), single-channel & multi-angle algorithm and multi-channels algorithm & multi-angle algorithm, and retrieval method of land surface component temperature using thermal infrared remotely sensed satellite observation. Secondly, the study status of land surface emissivity (epsilon) was presented. Thirdly, in order to retrieve LST for all weather conditions, microwave remotely sensed data, instead of thermal infrared data, have been developed recently, and the LST retrieval method from passive microwave remotely sensed data was also introduced. Finally, the main merits and shortcomings of different kinds of LST retrieval methods were discussed, respectively.

  5. Neural Network-Based Retrieval of Surface and Root Zone Soil Moisture using Multi-Frequency Remotely-Sensed Observations

    NASA Astrophysics Data System (ADS)

    Hamed Alemohammad, Seyed; Kolassa, Jana; Prigent, Catherine; Aires, Filipe; Gentine, Pierre

    2017-04-01

    Knowledge of root zone soil moisture is essential in studying plant's response to different stress conditions since plant photosynthetic activity and transpiration rate are constrained by the water available through their roots. Current global root zone soil moisture estimates are based on either outputs from physical models constrained by observations, or assimilation of remotely-sensed microwave-based surface soil moisture estimates with physical model outputs. However, quality of these estimates are limited by the accuracy of the model representations of physical processes (such as radiative transfer, infiltration, percolation, and evapotranspiration) as well as errors in the estimates of the surface parameters. Additionally, statistical approaches provide an alternative efficient platform to develop root zone soil moisture retrieval algorithms from remotely-sensed observations. In this study, we present a new neural network based retrieval algorithm to estimate surface and root zone soil moisture from passive microwave observations of SMAP satellite (L-band) and AMSR2 instrument (X-band). SMAP early morning observations are ideal for surface soil moisture retrieval. AMSR2 mid-night observations are used here as an indicator of plant hydraulic properties that are related to root zone soil moisture. The combined observations from SMAP and AMSR2 together with other ancillary observations including the Solar-Induced Fluorescence (SIF) estimates from GOME-2 instrument provide necessary information to estimate surface and root zone soil moisture. The algorithm is applied to observations from the first 18 months of SMAP mission and retrievals are validated against in-situ observations and other global datasets.

  6. System engineering approach to GPM retrieval algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, C. R.; Chandrasekar, V.

    2004-01-01

    System engineering principles and methods are very useful in large-scale complex systems for developing the engineering requirements from end-user needs. Integrating research into system engineering is a challenging task. The proposed Global Precipitation Mission (GPM) satellite will use a dual-wavelength precipitation radar to measure and map global precipitation with unprecedented accuracy, resolution and areal coverage. The satellite vehicle, precipitation radars, retrieval algorithms, and ground validation (GV) functions are all critical subsystems of the overall GPM system and each contributes to the success of the mission. Errors in the radar measurements and models can adversely affect the retrieved output values. Groundmore » validation (GV) systems are intended to provide timely feedback to the satellite and retrieval algorithms based on measured data. These GV sites will consist of radars and DSD measurement systems and also have intrinsic constraints. One of the retrieval algorithms being studied for use with GPM is the dual-wavelength DSD algorithm that does not use the surface reference technique (SRT). The underlying microphysics of precipitation structures and drop-size distributions (DSDs) dictate the types of models and retrieval algorithms that can be used to estimate precipitation. Many types of dual-wavelength algorithms have been studied. Meneghini (2002) analyzed the performance of single-pass dual-wavelength surface-reference-technique (SRT) based algorithms. Mardiana (2003) demonstrated that a dual-wavelength retrieval algorithm could be successfully used without the use of the SRT. It uses an iterative approach based on measured reflectivities at both wavelengths and complex microphysical models to estimate both No and Do at each range bin. More recently, Liao (2004) proposed a solution to the Do ambiguity problem in rain within the dual-wavelength algorithm and showed a possible melting layer model based on stratified spheres. With the No and Do calculated at each bin, the rain rate can then be calculated based on a suitable rain-rate model. This paper develops a system engineering interface to the retrieval algorithms while remaining cognizant of system engineering issues so that it can be used to bridge the divide between algorithm physics an d overall mission requirements. Additionally, in line with the systems approach, a methodology is developed such that the measurement requirements pass through the retrieval model and other subsystems and manifest themselves as measurement and other system constraints. A systems model has been developed for the retrieval algorithm that can be evaluated through system-analysis tools such as MATLAB/Simulink.« less

  7. A 1DVAR-based snowfall rate retrieval algorithm for passive microwave radiometers

    NASA Astrophysics Data System (ADS)

    Meng, Huan; Dong, Jun; Ferraro, Ralph; Yan, Banghua; Zhao, Limin; Kongoli, Cezar; Wang, Nai-Yu; Zavodsky, Bradley

    2017-06-01

    Snowfall rate retrieval from spaceborne passive microwave (PMW) radiometers has gained momentum in recent years. PMW can be so utilized because of its ability to sense in-cloud precipitation. A physically based, overland snowfall rate (SFR) algorithm has been developed using measurements from the Advanced Microwave Sounding Unit-A/Microwave Humidity Sounder sensor pair and the Advanced Technology Microwave Sounder. Currently, these instruments are aboard five polar-orbiting satellites, namely, NOAA-18, NOAA-19, Metop-A, Metop-B, and Suomi-NPP. The SFR algorithm relies on a separate snowfall detection algorithm that is composed of a satellite-based statistical model and a set of numerical weather prediction model-based filters. There are four components in the SFR algorithm itself: cloud properties retrieval, computation of ice particle terminal velocity, ice water content adjustment, and the determination of snowfall rate. The retrieval of cloud properties is the foundation of the algorithm and is accomplished using a one-dimensional variational (1DVAR) model. An existing model is adopted to derive ice particle terminal velocity. Since no measurement of cloud ice distribution is available when SFR is retrieved in near real time, such distribution is implicitly assumed by deriving an empirical function that adjusts retrieved SFR toward radar snowfall estimates. Finally, SFR is determined numerically from a complex integral. The algorithm has been validated against both radar and ground observations of snowfall events from the contiguous United States with satisfactory results. Currently, the SFR product is operationally generated at the National Oceanic and Atmospheric Administration and can be obtained from that organization.

  8. Foundations for statistical-physical precipitation retrieval from passive microwave satellite measurements. I - Brightness-temperature properties of a time-dependent cloud-radiation model

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Mugnai, Alberto; Cooper, Harry J.; Tripoli, Gregory J.; Xiang, Xuwu

    1992-01-01

    The relationship between emerging microwave brightness temperatures (T(B)s) and vertically distributed mixtures of liquid and frozen hydrometeors was investigated, using a cloud-radiation model, in order to establish the framework for a hybrid statistical-physical rainfall retrieval algorithm. Although strong relationships were found between the T(B) values and various rain parameters, these correlations are misleading in that the T(B)s are largely controlled by fluctuations in the ice-particle mixing ratios, which in turn are highly correlated to fluctuations in liquid-particle mixing ratios. However, the empirically based T(B)-rain-rate (T(B)-RR) algorithms can still be used as tools for estimating precipitation if the hydrometeor profiles used for T(B)-RR algorithms are not specified in an ad hoc fashion.

  9. MWRRET Value-Added Product: The Retrieval of Liquid Water Path and Precipitable Water Vapor from Microwave Radiometer (MWR) Datasets May 2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaustad, KL; Turner, DD

    2009-05-30

    This report provides a short description of the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) microwave radiometer (MWR) RETrievel (MWRRET) value-added product (VAP) algorithm. This algorithm utilizes a complementary physical retrieval method and applies brightness temperature offsets to reduce spurious liquid water path (LWP) bias in clear skies resulting in significantly improved precipitable water vapor (PWV) and LWP retrievals. We present a general overview of the technique, input parameters, output products, and describe data quality checks. A more complete discussion of the theory and results is given in Turner et al. (2007b).

  10. Aerosol Remote Sensing

    NASA Technical Reports Server (NTRS)

    Lenoble, Jacqueline (Editor); Remer, Lorraine (Editor); Tanre, Didier (Editor)

    2012-01-01

    This book gives a much needed explanation of the basic physical principles of radia5tive transfer and remote sensing, and presents all the instruments and retrieval algorithms in a homogenous manner. For the first time, an easy path from theory to practical algorithms is available in one easily accessible volume, making the connection between theoretical radiative transfer and individual practical solutions to retrieve aerosol information from remote sensing. In addition, the specifics and intercomparison of all current and historical methods are explained and clarified.

  11. NASA GPM GV Science Implementation

    NASA Technical Reports Server (NTRS)

    Petersen, W. A.

    2009-01-01

    Pre-launch algorithm development & post-launch product evaluation: The GPM GV paradigm moves beyond traditional direct validation/comparison activities by incorporating improved algorithm physics & model applications (end-to-end validation) in the validation process. Three approaches: 1) National Network (surface): Operational networks to identify and resolve first order discrepancies (e.g., bias) between satellite and ground-based precipitation estimates. 2) Physical Process (vertical column): Cloud system and microphysical studies geared toward testing and refinement of physically-based retrieval algorithms. 3) Integrated (4-dimensional): Integration of satellite precipitation products into coupled prediction models to evaluate strengths/limitations of satellite precipitation producers.

  12. Assessment of the NPOESS/VIIRS Nighttime Infrared Cloud Optical Properties Algorithms

    NASA Astrophysics Data System (ADS)

    Wong, E.; Ou, S. C.

    2008-12-01

    In this paper we will describe two NPOESS VIIRS IR algorithms used to retrieve microphysical properties for water and ice clouds during nighttime conditions. Both algorithms employ four VIIRS IR channels: M12 (3.7 μm), M14 (8.55 μm), M15 (10.7 μm) and M16 (12 μm). The physical basis for the two algorithms is similar in that while the Cloud Top Temperature (CTT) is derived from M14 and M16 for ice clouds the Cloud Optical Thickness (COT) and Cloud Effective Particle Size (CEPS) are derived from M12 and M15. The two algorithms depart in the different radiative transfer parameterization equations used for ice and water clouds. Both the VIIRS nighttime IR algorithms and the CERES split-window method employ the 3.7 μm and 10.7 μm bands for cloud optical properties retrievals, apparently based on similar physical principles but with different implementations. It is reasonable to expect that the VIIRS and CERES IR algorithms produce comparable performance and similar limitations. To demonstrate the VIIRS nighttime IR algorithm performance, we will select a number of test cases using NASA MODIS L1b radiance products as proxy input data for VIIRS. The VIIRS retrieved COT and CEPS will then be compared to cloud products available from the MODIS, NASA CALIPSO, CloudSat and CERES sensors. For the MODIS product, the nighttime cloud emissivity will serve as an indirect comparison to VIIRS COT. For the CALIPSO and CloudSat products, the layered COT will be used for direct comparison. Finally, the CERES products will provide direct comparison with COT as well as CEPS. This study can only provide a qualitative assessment of the VIIRS IR algorithms due to the large uncertainties in these cloud products.

  13. CDRD and PNPR passive microwave precipitation retrieval algorithms: verification study over Africa and Southern Atlantic

    NASA Astrophysics Data System (ADS)

    Panegrossi, Giulia; Casella, Daniele; Cinzia Marra, Anna; Petracca, Marco; Sanò, Paolo; Dietrich, Stefano

    2015-04-01

    The ongoing NASA/JAXA Global Precipitation Measurement mission (GPM) requires the full exploitation of the complete constellation of passive microwave (PMW) radiometers orbiting around the globe for global precipitation monitoring. In this context the coherence of the estimates of precipitation using different passive microwave radiometers is a crucial need. We have developed two different passive microwave precipitation retrieval algorithms: one is the Cloud Dynamics Radiation Database algorithm (CDRD), a physically ¬based Bayesian algorithm for conically scanning radiometers (i.e., DMSP SSMIS); the other one is the Passive microwave Neural network Precipitation Retrieval (PNPR) algorithm for cross¬-track scanning radiometers (i.e., NOAA and MetOp¬A/B AMSU-¬A/MHS, and NPP Suomi ATMS). The algorithms, originally created for application over Europe and the Mediterranean basin, and used operationally within the EUMETSAT Satellite Application Facility on Support to Operational Hydrology and Water Management (H-SAF, http://hsaf.meteoam.it), have been recently modified and extended to Africa and Southern Atlantic for application to the MSG full disk area. The two algorithms are based on the same physical foundation, i.e., the same cloud-radiation model simulations as a priori information in the Bayesian solver and as training dataset in the neural network approach, and they also use similar procedures for identification of frozen background surface, detection of snowfall, and determination of a pixel based quality index of the surface precipitation retrievals. In addition, similar procedures for the screening of not ¬precipitating pixels are used. A novel algorithm for the detection of precipitation in tropical/sub-tropical areas has been developed. The precipitation detection algorithm shows a small rate of false alarms (also over arid/desert regions), a superior detection capability in comparison with other widely used screening algorithms, and it is applicable to all available PMW radiometers in the GPM constellation of satellites (including NPP Suomi ATMS, and GMI). Three years of SSMIS and AMSU/MHS data have been considered to carry out a verification study over Africa of the retrievals from the CDRD and PNPR algorithms. The precipitation products from the TRMM ¬Precipitation radar (PR) (TRMM product 2A25 and 2A23) have been used as ground truth. The results of this study aimed at assessing the accuracy of the precipitation retrievals in different climatic regions and precipitation regimes will be presented. Particular emphasis will be given to the analysis of the level of coherence of the precipitation estimates and patterns between the two algorithms exploiting different radiometers. Recent developments aimed at the full exploitation of the GPM constellation of satellites for optimal precipitation/drought monitoring will be also presented.

  14. Cross-validation of two liquid water path retrieval algorithms applied to ground-based microwave radiation measurements by RPG-HATPRO instrument

    NASA Astrophysics Data System (ADS)

    Kostsov, Vladimir; Ionov, Dmitry; Biryukov, Egor; Zaitsev, Nikita

    2017-04-01

    A built-in operational regression algorithm (REA) of liquid water path (LWP) retrieval supplied by the manufacturer of the RPG-HATPRO microwave radiometer has been compared to a so-called physical algorithm (PHA) based on the inversion of the radiative transfer equation. The comparison has been performed for different scenarios of microwave observations by the RPG-HATPRO instrument that has been operating at St.Petersburg University since June 2012. The data for the scenarios have been collected within the time period December 2012 - December 2014. The estimations of bias and random error for both REA and PHA have been obtained. Special attention has been paid to the analysis of the quality of the LWP retrievals during and after rain events that have been detected by the built-in rain sensor. The estimation has been done of the time period after a rain event when the retrieval quality has to be considered as insufficient.

  15. The Physics of Imaging with Remote Sensors : Photon State Space & Radiative Transfer

    NASA Technical Reports Server (NTRS)

    Davis, Anthony B.

    2012-01-01

    Standard (mono-pixel/steady-source) retrieval methodology is reaching its fundamental limit with access to multi-angle/multi-spectral photo- polarimetry. Next... Two emerging new classes of retrieval algorithm worth nurturing: multi-pixel time-domain Wave-radiometry transition regimes, and more... Cross-fertilization with bio-medical imaging. Physics-based remote sensing: - What is "photon state space?" - What is "radiative transfer?" - Is "the end" in sight? Two wide-open frontiers! center dot Examples (with variations.

  16. A New 1DVAR Retrieval for AMSR2 and GMI: Validation and Sensitivites

    NASA Astrophysics Data System (ADS)

    Duncan, D.; Kummerow, C. D.

    2015-12-01

    A new non-raining retrieval has been developed for microwave imagers and applied to the GMI and AMSR2 sensors. With the Community Radiative Transfer Model (CRTM) as the forward model for the physical retrieval, a 1-dimensional variational method finds the atmospheric state which minimizes the difference between observed and simulated brightness temperatures. A key innovation of the algorithm development is a method to calculate the sensor error covariance matrix that is specific to the forward model employed and includes off-diagonal elements, allowing the algorithm to handle various forward models and sensors with little cross-talk. The water vapor profile is resolved by way of empirical orthogonal functions (EOFs) and then summed to get total precipitable water (TPW). Validation of retrieved 10m wind speed, TPW, and sea surface temperature (SST) is performed via comparison with buoys and radiosondes as well as global models and other remotely sensed products. In addition to the validation, sensitivity experiments investigate the impact of ancillary data on the under-constrained retrieval, a concern for climate data records that strive to be independent of model biases. The introduction of model analysis data is found to aid the algorithm most at high frequency channels and affect TPW retrievals, whereas wind and cloud water retrievals show little effect from ingesting further ancillary data.

  17. Atmospheric, Cloud, and Surface Parameters Retrieved from Satellite Ultra-spectral Infrared Sounder Measurements

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Liu, Xu; Larar, Allen M.; Smith, William L.; Yang, Ping; Schluessel, Peter; Strow, Larrabee

    2007-01-01

    An advanced retrieval algorithm with a fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. This physical inversion scheme has been developed, dealing with cloudy as well as cloud-free radiance observed with ultraspectral infrared sounders, to simultaneously retrieve surface, atmospheric thermodynamic, and cloud microphysical parameters. A fast radiative transfer model, which applies to the clouded atmosphere, is used for atmospheric profile and cloud parameter retrieval. A one-dimensional (1-d) variational multivariable inversion solution is used to improve an iterative background state defined by an eigenvector-regression-retrieval. The solution is iterated in order to account for non-linearity in the 1-d variational solution. This retrieval algorithm is applied to the MetOp satellite Infrared Atmospheric Sounding Interferometer (IASI) launched on October 19, 2006. IASI possesses an ultra-spectral resolution of 0.25 cm(exp -1) and a spectral coverage from 645 to 2760 cm(exp -1). Preliminary retrievals of atmospheric soundings, surface properties, and cloud optical/microphysical properties with the IASI measurements are obtained and presented.

  18. An operational retrieval algorithm for determining aerosol optical properties in the ultraviolet

    NASA Astrophysics Data System (ADS)

    Taylor, Thomas E.; L'Ecuyer, Tristan S.; Slusser, James R.; Stephens, Graeme L.; Goering, Christian D.

    2008-02-01

    This paper describes a number of practical considerations concerning the optimization and operational implementation of an algorithm used to characterize the optical properties of aerosols across part of the ultraviolet (UV) spectrum. The algorithm estimates values of aerosol optical depth (AOD) and aerosol single scattering albedo (SSA) at seven wavelengths in the UV, as well as total column ozone (TOC) and wavelength-independent asymmetry factor (g) using direct and diffuse irradiances measured with a UV multifilter rotating shadowband radiometer (UV-MFRSR). A novel method for cloud screening the irradiance data set is introduced, as well as several improvements and optimizations to the retrieval scheme which yield a more realistic physical model for the inversion and increase the efficiency of the algorithm. Introduction of a wavelength-dependent retrieval error budget generated from rigorous forward model analysis as well as broadened covariances on the a priori values of AOD, SSA and g and tightened covariances of TOC allows sufficient retrieval sensitivity and resolution to obtain unique solutions of aerosol optical properties as demonstrated by synthetic retrievals. Analysis of a cloud screened data set (May 2003) from Panther Junction, Texas, demonstrates that the algorithm produces realistic values of the optical properties that compare favorably with pseudo-independent methods for AOD, TOC and calculated Ångstrom exponents. Retrieval errors of all parameters (except TOC) are shown to be negatively correlated to AOD, while the Shannon information content is positively correlated, indicating that retrieval skill improves with increasing atmospheric turbidity. When implemented operationally on more than thirty instruments in the Ultraviolet Monitoring and Research Program's (UVMRP) network, this retrieval algorithm will provide a comprehensive and internally consistent climatology of ground-based aerosol properties in the UV spectral range that can be used for both validation of satellite measurements as well as regional aerosol and ultraviolet transmission studies.

  19. Retrieval of total water vapour in the Arctic using microwave humidity sounders

    NASA Astrophysics Data System (ADS)

    Cristian Scarlat, Raul; Melsheimer, Christian; Heygster, Georg

    2018-04-01

    Quantitative retrievals of atmospheric water vapour in the Arctic present numerous challenges because of the particular climate characteristics of this area. Here, we attempt to build upon the work of Melsheimer and Heygster (2008) to retrieve total atmospheric water vapour (TWV) in the Arctic from satellite microwave radiometers. While the above-mentioned algorithm deals primarily with the ice-covered central Arctic, with this work we aim to extend the coverage to partially ice-covered and ice-free areas. By using modelled values for the microwave emissivity of the ice-free sea surface, we develop two sub-algorithms using different sets of channels that deal solely with open-ocean areas. The new algorithm extends the spatial coverage of the retrieval throughout the year but especially in the warmer months when higher TWV values are frequent. The high TWV measurements over both sea-ice and open-water surfaces are, however, connected to larger uncertainties as the retrieval values are close to the instrument saturation limits.This approach allows us to apply the algorithm to regions where previously no data were available and ensures a more consistent physical analysis of the satellite measurements by taking into account the contribution of the surface emissivity to the measured signal.

  20. Full-Physics Inverse Learning Machine for Satellite Remote Sensing Retrievals

    NASA Astrophysics Data System (ADS)

    Loyola, D. G.

    2017-12-01

    The satellite remote sensing retrievals are usually ill-posed inverse problems that are typically solved by finding a state vector that minimizes the residual between simulated data and real measurements. The classical inversion methods are very time-consuming as they require iterative calls to complex radiative-transfer forward models to simulate radiances and Jacobians, and subsequent inversion of relatively large matrices. In this work we present a novel and extremely fast algorithm for solving inverse problems called full-physics inverse learning machine (FP-ILM). The FP-ILM algorithm consists of a training phase in which machine learning techniques are used to derive an inversion operator based on synthetic data generated using a radiative transfer model (which expresses the "full-physics" component) and the smart sampling technique, and an operational phase in which the inversion operator is applied to real measurements. FP-ILM has been successfully applied to the retrieval of the SO2 plume height during volcanic eruptions and to the retrieval of ozone profile shapes from UV/VIS satellite sensors. Furthermore, FP-ILM will be used for the near-real-time processing of the upcoming generation of European Sentinel sensors with their unprecedented spectral and spatial resolution and associated large increases in the amount of data.

  1. Physical Retrieval of Surface Emissivity Spectrum from Hyperspectral Infrared Radiances

    NASA Technical Reports Server (NTRS)

    Li, Jun; Weisz, Elisabeth; Zhou, Daniel K.

    2007-01-01

    Retrieval of temperature, moisture profiles and surface skin temperature from hyperspectral infrared (IR) radiances requires spectral information about the surface emissivity. Using constant or inaccurate surface emissivities typically results in large retrieval errors, particularly over semi-arid or arid areas where the variation in emissivity spectrum is large both spectrally and spatially. In this study, a physically based algorithm has been developed to retrieve a hyperspectral IR emissivity spectrum simultaneously with the temperature and moisture profiles, as well as the surface skin temperature. To make the solution stable and efficient, the hyperspectral emissivity spectrum is represented by eigenvectors, derived from the laboratory measured hyperspectral emissivity database, in the retrieval process. Experience with AIRS (Atmospheric InfraRed Sounder) radiances shows that a simultaneous retrieval of the emissivity spectrum and the sounding improves the surface skin temperature as well as temperature and moisture profiles, particularly in the near surface layer.

  2. The potential of LIRIC to validate the vertical profiles of the aerosol mass concentration estimated by an air quality model

    NASA Astrophysics Data System (ADS)

    Siomos, Nikolaos; Filoglou, Maria; Poupkou, Anastasia; Liora, Natalia; Dimopoulos, Spyros; Melas, Dimitris; Chaikovsky, Anatoli; Balis, Dimitris

    2015-04-01

    Vertical profiles of the aerosol mass concentration derived by a retrieval algorithm that uses combined sunphotometer and LIDAR data (LIRIC) were used in order to validate the mass concentration profiles estimated by the air quality model CAMx. LIDAR and CIMEL measurements of the Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki were used for this validation.The aerosol mass concentration profiles of the fine and coarse mode derived by CAMx were compared with the respective profiles derived by the retrieval algorithm. For the coarse mode particles, forecasts of the Saharan dust transportation model BSC-DREAM8bV2 were also taken into account. Each of the retrieval algorithm's profiles were matched to the models' profile with the best agreement within a time window of four hours before and after the central measurement. OPAC, a software than can provide optical properties of aerosol mixtures, was also employed in order to calculate the angstrom exponent and the lidar ratio values for 355nm and 532nm for each of the model's profiles aiming in a comparison with the angstrom exponent and the lidar ratio values derived by the retrieval algorithm for each measurement. The comparisons between the fine mode aerosol concentration profiles resulted in a good agreement between CAMx and the retrieval algorithm, with the vertical mean bias error never exceeding 7 μgr/m3. Concerning the aerosol coarse mode concentration profiles both CAMx and BSC-DREAM8bV2 values are severely underestimated, although, in cases of Saharan dust transportation events there is an agreement between the profiles of BSC-DREAM8bV2 model and the retrieval algorithm.

  3. EM Bias-Correction for Ice Thickness and Surface Roughness Retrievals over Rough Deformed Sea Ice

    NASA Astrophysics Data System (ADS)

    Li, L.; Gaiser, P. W.; Allard, R.; Posey, P. G.; Hebert, D. A.; Richter-Menge, J.; Polashenski, C. M.

    2016-12-01

    The very rough ridge sea ice accounts for significant percentage of total ice areas and even larger percentage of total volume. The commonly used Radar altimeter surface detection techniques are empirical in nature and work well only over level/smooth sea ice. Rough sea ice surfaces can modify the return waveforms, resulting in significant Electromagnetic (EM) bias in the estimated surface elevations, and thus large errors in the ice thickness retrievals. To understand and quantify such sea ice surface roughness effects, a combined EM rough surface and volume scattering model was developed to simulate radar returns from the rough sea ice `layer cake' structure. A waveform matching technique was also developed to fit observed waveforms to a physically-based waveform model and subsequently correct the roughness induced EM bias in the estimated freeboard. This new EM Bias Corrected (EMBC) algorithm was able to better retrieve surface elevations and estimate the surface roughness parameter simultaneously. In situ data from multi-instrument airborne and ground campaigns were used to validate the ice thickness and surface roughness retrievals. For the surface roughness retrievals, we applied this EMBC algorithm to co-incident LiDAR/Radar measurements collected during a Cryosat-2 under-flight by the NASA IceBridge missions. Results show that not only does the waveform model fit very well to the measured radar waveform, but also the roughness parameters derived independently from the LiDAR and radar data agree very well for both level and deformed sea ice. For sea ice thickness retrievals, validation based on in-situ data from the coordinated CRREL/NRL field campaign demonstrates that the physically-based EMBC algorithm performs fundamentally better than the empirical algorithm over very rough deformed sea ice, suggesting that sea ice surface roughness effects can be modeled and corrected based solely on the radar return waveforms.

  4. A passive microwave technique for estimating rainfall and vertical structure information from space. Part 1: Algorithm description

    NASA Technical Reports Server (NTRS)

    Kummerow, Christian; Giglio, Louis

    1994-01-01

    This paper describes a multichannel physical approach for retrieving rainfall and vertical structure information from satellite-based passive microwave observations. The algorithm makes use of statistical inversion techniques based upon theoretically calculated relations between rainfall rates and brightness temperatures. Potential errors introduced into the theoretical calculations by the unknown vertical distribution of hydrometeors are overcome by explicity accounting for diverse hydrometeor profiles. This is accomplished by allowing for a number of different vertical distributions in the theoretical brightness temperature calculations and requiring consistency between the observed and calculated brightness temperatures. This paper will focus primarily on the theoretical aspects of the retrieval algorithm, which includes a procedure used to account for inhomogeneities of the rainfall within the satellite field of view as well as a detailed description of the algorithm as it is applied over both ocean and land surfaces. The residual error between observed and calculated brightness temperatures is found to be an important quantity in assessing the uniqueness of the solution. It is further found that the residual error is a meaningful quantity that can be used to derive expected accuracies from this retrieval technique. Examples comparing the retrieved results as well as the detailed analysis of the algorithm performance under various circumstances are the subject of a companion paper.

  5. A Ground Flash Fraction Retrieval Algorithm for GLM

    NASA Technical Reports Server (NTRS)

    Koshak, William J.

    2010-01-01

    A Bayesian inversion method is introduced for retrieving the fraction of ground flashes in a set of N lightning observed by a satellite lightning imager (such as the Geostationary Lightning Mapper, GLM). An exponential model is applied as a physically reasonable constraint to describe the measured lightning optical parameter distributions. Population statistics (i.e., the mean and variance) are invoked to add additional constraints to the retrieval process. The Maximum A Posteriori (MAP) solution is employed. The approach is tested by performing simulated retrievals, and retrieval error statistics are provided. The approach is feasible for N greater than 2000, and retrieval errors decrease as N is increased.

  6. 1D-VAR Retrieval Using Superchannels

    NASA Technical Reports Server (NTRS)

    Liu, Xu; Zhou, Daniel; Larar, Allen; Smith, William L.; Schluessel, Peter; Mango, Stephen; SaintGermain, Karen

    2008-01-01

    Since modern ultra-spectral remote sensors have thousands of channels, it is difficult to include all of them in a 1D-var retrieval system. We will describe a physical inversion algorithm, which includes all available channels for the atmospheric temperature, moisture, cloud, and surface parameter retrievals. Both the forward model and the inversion algorithm compress the channel radiances into super channels. These super channels are obtained by projecting the radiance spectra onto a set of pre-calculated eigenvectors. The forward model provides both super channel properties and jacobian in EOF space directly. For ultra-spectral sensors such as Infrared Atmospheric Sounding Interferometer (IASI) and the NPOESS Airborne Sounder Testbed Interferometer (NAST), a compression ratio of more than 80 can be achieved, leading to a significant reduction in computations involved in an inversion process. Results will be shown applying the algorithm to real IASI and NAST data.

  7. NASA GPM GV Science Requirements

    NASA Technical Reports Server (NTRS)

    Smith, E.

    2003-01-01

    An important scientific objective of the NASA portion of the GPM Mission is to generate quantitatively-based error characterization information along with the rainrate retrievals emanating from the GPM constellation of satellites. These data must serve four main purposes: (1) they must be of sufficient quality, uniformity, and timeliness to govern the observation weighting schemes used in the data assimilation modules of numerical weather prediction models; (2) they must extend over that portion of the globe accessible by the GPM core satellite to which the NASA GV program is focused - (approx.65 degree inclination); (3) they must have sufficient specificity to enable detection of physically-formulated microphysical and meteorological weaknesses in the standard physical level 2 rainrate algorithms to be used in the GPM Precipitation Processing System (PPS), i.e., algorithms which will have evolved from the TRMM standard physical level 2 algorithms; and (4) they must support the use of physical error modeling as a primary validation tool and as the eventual replacement of the conventional GV approach of statistically intercomparing surface rainrates fiom ground and satellite measurements. This approach to ground validation research represents a paradigm shift vis-&-vis the program developed for the TRMM mission, which conducted ground validation largely as a statistical intercomparison process between raingauge-derived or radar-derived rainrates and the TRMM satellite rainrate retrievals -- long after the original satellite retrievals were archived. This approach has been able to quantify averaged rainrate differences between the satellite algorithms and the ground instruments, but has not been able to explain causes of algorithm failures or produce error information directly compatible with the cost functions of data assimilation schemes. These schemes require periodic and near-realtime bias uncertainty (i.e., global space-time distributed conditional accuracy of the retrieved rainrates) and local error covariance structure (i.e., global space-time distributed error correlation information for the local 4-dimensional space-time domain -- or in simpler terms, the matrix form of precision error). This can only be accomplished by establishing a network of high quality-heavily instrumented supersites selectively distributed at a few oceanic, continental, and coastal sites. Economics and pragmatics dictate that the network must be made up of a relatively small number of sites (6-8) created through international cooperation. This presentation will address some of the details of the methodology behind the error characterization approach, some proposed solutions for expanding site-developed error properties to regional scales, a data processing and communications concept that would enable rapid implementation of algorithm improvement by the algorithm developers, and the likely available options for developing the supersite network.

  8. A neural network for real-time retrievals of PWV and LWP from Arctic millimeter-wave ground-based observations.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cadeddu, M. P.; Turner, D. D.; Liljegren, J. C.

    2009-07-01

    This paper presents a new neural network (NN) algorithm for real-time retrievals of low amounts of precipitable water vapor (PWV) and integrated liquid water from millimeter-wave ground-based observations. Measurements are collected by the 183.3-GHz G-band vapor radiometer (GVR) operating at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility, Barrow, AK. The NN provides the means to explore the nonlinear regime of the measurements and investigate the physical boundaries of the operability of the instrument. A methodology to compute individual error bars associated with the NN output is developed, and a detailed error analysis of the network output is provided.more » Through the error analysis, it is possible to isolate several components contributing to the overall retrieval errors and to analyze the dependence of the errors on the inputs. The network outputs and associated errors are then compared with results from a physical retrieval and with the ARM two-channel microwave radiometer (MWR) statistical retrieval. When the NN is trained with a seasonal training data set, the retrievals of water vapor yield results that are comparable to those obtained from a traditional physical retrieval, with a retrieval error percentage of {approx}5% when the PWV is between 2 and 10 mm, but with the advantages that the NN algorithm does not require vertical profiles of temperature and humidity as input and is significantly faster computationally. Liquid water path (LWP) retrievals from the NN have a significantly improved clear-sky bias (mean of {approx}2.4 g/m{sup 2}) and a retrieval error varying from 1 to about 10 g/m{sup 2} when the PWV amount is between 1 and 10 mm. As an independent validation of the LWP retrieval, the longwave downwelling surface flux was computed and compared with observations. The comparison shows a significant improvement with respect to the MWR statistical retrievals, particularly for LWP amounts of less than 60 g/m{sup 2}.« less

  9. Influence of the micro-physical properties of the aerosol on the atmospheric correction of OLI data acquired over desert area

    NASA Astrophysics Data System (ADS)

    Manzo, Ciro; Bassani, Cristiana

    2016-04-01

    This paper focuses on the evaluation of surface reflectance obtained by different atmospheric correction algorithms of the Landsat 8 OLI data considering or not the micro-physical properties of the aerosol when images are acquired in desert area located in South-West of Nile delta. The atmospheric correction of remote sensing data was shown to be sensitive to the aerosol micro-physical properties, as reported in Bassani et al., 2012. In particular, the role of the aerosol micro-physical properties on the accuracy of the atmospheric correction of remote sensing data was investigated [Bassani et al., 2015; Tirelli et al., 2015]. In this work, the OLI surface reflectance was retrieved by the developed OLI@CRI (OLI ATmospherically Corrected Reflectance Imagery) physically-based atmospheric correction which considers the aerosol micro-physical properties available from the two AERONET stations [Holben et al., 1998] close to the study area (El_Farafra and Cairo_EMA_2). The OLI@CRI algorithm is based on 6SV radiative transfer model, last generation of the Second Simulation of a Satellite Signal in the Solar Spectrum (6S) radiative transfer code [Kotchenova et al., 2007; Vermote et al., 1997], specifically developed for Landsat 8 OLI data. The OLI reflectance obtained by the OLI@CRI was compared with reflectance obtained by other atmospheric correction algorithms which do not consider micro-physical properties of aerosol (DOS) or take on aerosol standard models (FLAASH, implemented in ENVI software). The accuracy of the surface reflectance retrieved by different algorithms were calculated by comparing the spatially resampled OLI images with the MODIS surface reflectance products. Finally, specific image processing was applied to the OLI reflectance images in order to compare remote sensing products obtained for same scene. The results highlight the influence of the physical characterization of aerosol on the OLI data improving the retrieved atmospherically corrected reflectance. One of the most important outreach of this research is the retrieval of the highest possible accuracy of the OLI reflectance for land surface variables by spectral indices. Consequently if OLI@CRI algorithm is applied to time series data, the uncertainty into the time curve can be reduced. Kotchenova and Vermote, 2007. Appl. Opt. doi:10.1364/AO.46.004455. Vermote et al., 1997. IEEE Trans. Geosci. Remote Sens. doi:10.1109/36.581987. Bassani et al., 2015. Atmos. Meas. Tech. doi:10.5194/amt-8-1593-2015. Bassani et al., 2012. Atmos. Meas. Tech. doi:10.5194/amt-5-1193-2012. Tirelli et al., 2015. Remote Sens. doi:10.3390/rs70708391. Holben et al., 1998. Rem. Sens. Environ. doi:10.1016/S0034-4257(98)00031-5.

  10. Error analysis of the greenhouse-gases monitor instrument short wave infrared XCO2 retrieval algorithm

    NASA Astrophysics Data System (ADS)

    Wu, Hao; Wang, Xianhua; Ye, Hanhan; Jiang, Yun; Duan, Fenghua

    2018-01-01

    We developed an algorithm (named GMI_XCO2) to retrieve the global column-averaged dry air mole fraction of atmospheric carbon dioxide (XCO2) for greenhouse-gases monitor instrument (GMI) and directional polarized camera (DPC) on the GF-5 satellite. This algorithm is designed to work in cloudless atmospheric conditions with aerosol optical thickness (AOT)<0.3. To quantify the uncertainty level of the retrieved XCO2 when the aerosols and cirrus clouds occurred in retrieving XCO2 with the GMI short wave infrared (SWIR) data, we analyzed the errors rate caused by the six types of aerosols and cirrus clouds. The results indicated that in AOT range of 0.05 to 0.3 (550 nm), the uncertainties of aerosols could lead to errors of -0.27% to 0.59%, -0.32% to 1.43%, -0.10% to 0.49%, -0.12% to 1.17%, -0.35% to 0.49%, and -0.02% to -0.24% for rural, dust, clean continental, maritime, urban, and soot aerosols, respectively. The retrieval results presented a large error due to cirrus clouds. In the cirrus optical thickness range of 0.05 to 0.8 (500 nm), the most underestimation is up to 26.25% when the surface albedo is 0.05. The most overestimation is 8.1% when the surface albedo is 0.65. The retrieval results of GMI simulation data demonstrated that the accuracy of our algorithm is within 4 ppm (˜1%) using the simultaneous measurement of aerosols and clouds from DPC. Moreover, the speed of our algorithm is faster than full-physics (FP) methods. We verified our algorithm with Greenhouse-gases Observing Satellite (GOSAT) data in Beijing area during 2016. The retrieval errors of most observations are within 4 ppm except for summer. Compared with the results of GOSAT, the correlation coefficient is 0.55 for the whole year data, increasing to 0.62 after excluding the summer data.

  11. Retrieval of Atmospheric Water Vapor Profiles from the Special Sensor Microwave TEMPERATURE-2

    NASA Astrophysics Data System (ADS)

    Al-Khalaf, Abdulrahman Khal

    1995-01-01

    Radiometric measurements from the Special Sensor Microwave/Temperature-2 (SSM/T-2) instrument are used to retrieve atmospheric water vapor profiles over ocean, land, coast, and ice/snow backgrounds. These measurements are used to retrieve vertical distribution of integrated water vapor (IWV) and total integrated water vapor (TIWV) using a physical algorithm. The algorithm infers the presence of cloud at a given height from super-saturation of the retrieved humidity at that height then the algorithm estimate the cloud liquid water content. Retrievals of IWV over five different layers are validated against available ground truth such as global radiosondes and ECMWF analyses. Over ocean, the retrieved total integrated water vapor (TIWV) and IWV close to the surface compare quite well, with those from radiosonde observations and the European Center for Medium Range Weather Forecasts (ECMWF) analyses. However, comparisons to radiosonde results are better than (ECMWF) analyses. TIWV root mean square (RMS) difference was 5.95 mm and TWV RMS difference for the lowest layer (SFC-850 mb) was 2.8 mm for radiosonde comparisons. Water vapor retrieval over land is less accurate than over ocean due to the low contrast between the surface and the atmosphere near the surface; therefore, land retrievals are more reliable at layers above 700 mb. However, TIWV and IWV at all layers compare appropriately with ground truth. Over coastal areas the agreement between retrieved water vapor profiles and ground truth is quite good for both TIWV and IWV for the five layers. The natural variability and large variations in the surface emissivity over ice and snow fields leads toward poor results. Clouds degrade retrievals over land and coast, improve the retrievals a little over ocean, and improve dramatically over snow/ice. Examples of retrieved relative humidity profiles were shown to illustrate the algorithm performance for the actual profile retrieval. The overall features of the retrieved profiles compared well with those from radiosonde data and ECMWF analyses. However, due to the limited number of channels, the retrieved profiles generally do not reproduce the fine details when a rapid change in relative humidity versus height was observed.

  12. Evaluation of the OMI Cloud Pressures Derived from Rotational Raman Scattering by Comparisons with other Satellite Data and Radiative Transfer Simulations

    NASA Technical Reports Server (NTRS)

    Vasilkov, Alexander; Joiner, Joanna; Spurr, Robert; Bhartia, Pawan K.; Levelt, Pieternel; Stephens, Graeme

    2009-01-01

    In this paper we examine differences between cloud pressures retrieved from the Ozone Monitoring Instrument (OMI) using the ultraviolet rotational Raman scattering (RRS) algorithm and those from the thermal infrared (IR) Aqua/MODIS. Several cloud data sets are currently being used in OMI trace gas retrieval algorithms including climatologies based on IR measurements and simultaneous cloud parameters derived from OMI. From a validation perspective, it is important to understand the OMI retrieved cloud parameters and how they differ with those derived from the IR. To this end, we perform radiative transfer calculations to simulate the effects of different geophysical conditions on the OMI RRS cloud pressure retrievals. We also quantify errors related to the use of the Mixed Lambert-Equivalent Reflectivity (MLER) concept as currently implemented of the OMI algorithms. Using properties from the Cloudsat radar and MODIS, we show that radiative transfer calculations support the following: (1) The MLER model is adequate for single-layer optically thick, geometrically thin clouds, but can produce significant errors in estimated cloud pressure for optically thin clouds. (2) In a two-layer cloud, the RRS algorithm may retrieve a cloud pressure that is either between the two cloud decks or even beneath the top of the lower cloud deck because of scattering between the cloud layers; the retrieved pressure depends upon the viewing geometry and the optical depth of the upper cloud deck. (3) Absorbing aerosol in and above a cloud can produce significant errors in the retrieved cloud pressure. (4) The retrieved RRS effective pressure for a deep convective cloud will be significantly higher than the physical cloud top pressure derived with thermal IR.

  13. Precipitation Retrievals in typhoon domain combining of FY3C MWHTS Observations and WRF Predicted Models

    NASA Astrophysics Data System (ADS)

    Jieying, HE; Shengwei, ZHANG; Na, LI

    2017-02-01

    A passive sub-millimeter precipitation retrievals algorithm is provided based on Microwave Humidity and Temperature Sounder (MWHTS) onboard the Chinese Feng Yun 3C (FY-3C) satellite. Using the validated global reference physical model NCEP/WRF/VDISORT), NCEP data per 6 hours are downloaded to run the Weather Research and Forecast model WRF, and derive the typical precipitation data from the whole world. The precipitation retrieval algorithm can operate either on land or on seawater for global. To simply the calculation procedure and save the training time, principle component analysis (PCA) was adapted to filter out the redundancy caused by scanning angle and surface effects, as well as system noise. According to the comparison and validation combing with other precipitation sources, it is demonstrated that the retrievals are reliable for surface precipitation rate higher than 0.1 mm/h at 15km resolution.

  14. Physical Retrievals of Over-Ocean Rain Rate from Multichannel Microwave Imagery. Part 1; Theoretical Characteristics of Normalized Polarization and Scattering Indices

    NASA Technical Reports Server (NTRS)

    Petty, G. W.

    1994-01-01

    Microwave rain rate retrieval algorithms have most often been formulated in terms of the raw brightness temperatures observed by one or more channels of a satellite radiometer. Taken individually, single-channel brightness temperatures generally represent a near-arbitrary combination of positive contributions due to liquid water emission and negative contributions due to scattering by ice and/or visibility of the radiometrically cold ocean surface. Unfortunately, for a given rain rate, emission by liquid water below the freezing level and scattering by ice particles above the freezing level are rather loosely coupled in both a physical and statistical sense. Furthermore, microwave brightness temperatures may vary significantly (approx. 30-70 K) in response to geophysical parameters other than liquid water and precipitation. Because of these complications, physical algorithms which attempt to directly invert observed brightness temperatures have typically relied on the iterative adjustment of detailed micro-physical profiles or cloud models, guided by explicit forward microwave radiative transfer calculations. In support of an effort to develop a significantly simpler and more efficient inversion-type rain rate algorithm, the physical information content of two linear transformations of single-frequency, dual-polarization brightness temperatures is studied: the normalized polarization difference P of Petty and Katsaros (1990, 1992), which is intended as a measure of footprint-averaged rain cloud transmittance for a given frequency; and a scattering index S (similar to the polarization corrected temperature of Spencer et al.,1989) which is sensitive almost exclusively to ice. A reverse Monte Carlo radiative transfer model is used to elucidate the qualitative response of these physically distinct single-frequency indices to idealized 3-dimensional rain clouds and to demonstrate their advantages over raw brightness temperatures both as stand-alone indices of precipitation activity and as primary variables in physical, multichannel rain rate retrieval schemes. As a byproduct of the present analysis, it is shown that conventional plane-parallel analyses of the well-known foot-print-filling problem for emission-based algorithms may in some cases give seriously misleading results.

  15. Application of randomly oriented spheroids for retrieval of dust particle parameters from multiwavelength lidar measurements

    NASA Astrophysics Data System (ADS)

    Veselovskii, I.; Dubovik, O.; Kolgotin, A.; Lapyonok, T.; di Girolamo, P.; Summa, D.; Whiteman, D. N.; Mishchenko, M.; Tanré, D.

    2010-11-01

    Multiwavelength (MW) Raman lidars have demonstrated their potential to profile particle parameters; however, until now, the physical models used in retrieval algorithms for processing MW lidar data have been predominantly based on the Mie theory. This approach is applicable to the modeling of light scattering by spherically symmetric particles only and does not adequately reproduce the scattering by generally nonspherical desert dust particles. Here we present an algorithm based on a model of randomly oriented spheroids for the inversion of multiwavelength lidar data. The aerosols are modeled as a mixture of two aerosol components: one composed only of spherical and the second composed of nonspherical particles. The nonspherical component is an ensemble of randomly oriented spheroids with size-independent shape distribution. This approach has been integrated into an algorithm retrieving aerosol properties from the observations with a Raman lidar based on a tripled Nd:YAG laser. Such a lidar provides three backscattering coefficients, two extinction coefficients, and the particle depolarization ratio at a single or multiple wavelengths. Simulations were performed for a bimodal particle size distribution typical of desert dust particles. The uncertainty of the retrieved particle surface, volume concentration, and effective radius for 10% measurement errors is estimated to be below 30%. We show that if the effect of particle nonsphericity is not accounted for, the errors in the retrieved aerosol parameters increase notably. The algorithm was tested with experimental data from a Saharan dust outbreak episode, measured with the BASIL multiwavelength Raman lidar in August 2007. The vertical profiles of particle parameters as well as the particle size distributions at different heights were retrieved. It was shown that the algorithm developed provided substantially reasonable results consistent with the available independent information about the observed aerosol event.

  16. Development of microwave rainfall retrieval algorithm for climate applications

    NASA Astrophysics Data System (ADS)

    KIM, J. H.; Shin, D. B.

    2014-12-01

    With the accumulated satellite datasets for decades, it is possible that satellite-based data could contribute to sustained climate applications. Level-3 products from microwave sensors for climate applications can be obtained from several algorithms. For examples, the Microwave Emission brightness Temperature Histogram (METH) algorithm produces level-3 rainfalls directly, whereas the Goddard profiling (GPROF) algorithm first generates instantaneous rainfalls and then temporal and spatial averaging process leads to level-3 products. The rainfall algorithm developed in this study follows a similar approach to averaging instantaneous rainfalls. However, the algorithm is designed to produce instantaneous rainfalls at an optimal resolution showing reduced non-linearity in brightness temperature (TB)-rain rate(R) relations. It is found that the resolution tends to effectively utilize emission channels whose footprints are relatively larger than those of scattering channels. This algorithm is mainly composed of a-priori databases (DBs) and a Bayesian inversion module. The DB contains massive pairs of simulated microwave TBs and rain rates, obtained by WRF (version 3.4) and RTTOV (version 11.1) simulations. To improve the accuracy and efficiency of retrieval process, data mining technique is additionally considered. The entire DB is classified into eight types based on Köppen climate classification criteria using reanalysis data. Among these sub-DBs, only one sub-DB which presents the most similar physical characteristics is selected by considering the thermodynamics of input data. When the Bayesian inversion is applied to the selected DB, instantaneous rain rate with 6 hours interval is retrieved. The retrieved monthly mean rainfalls are statistically compared with CMAP and GPCP, respectively.

  17. Improved Temperature Sounding and Quality Control Methodology Using AIRS/AMSU Data: The AIRS Science Team Version 5 Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John M.; Iredell, Lena; Keita, Fricky

    2009-01-01

    This paper describes the AIRS Science Team Version 5 retrieval algorithm in terms of its three most significant improvements over the methodology used in the AIRS Science Team Version 4 retrieval algorithm. Improved physics in Version 5 allows for use of AIRS clear column radiances in the entire 4.3 micron CO2 absorption band in the retrieval of temperature profiles T(p) during both day and night. Tropospheric sounding 15 micron CO2 observations are now used primarily in the generation of clear column radiances .R(sub i) for all channels. This new approach allows for the generation of more accurate values of .R(sub i) and T(p) under most cloud conditions. Secondly, Version 5 contains a new methodology to provide accurate case-by-case error estimates for retrieved geophysical parameters and for channel-by-channel clear column radiances. Thresholds of these error estimates are used in a new approach for Quality Control. Finally, Version 5 also contains for the first time an approach to provide AIRS soundings in partially cloudy conditions that does not require use of any microwave data. This new AIRS Only sounding methodology, referred to as AIRS Version 5 AO, was developed as a backup to AIRS Version 5 should the AMSU-A instrument fail. Results are shown comparing the relative performance of the AIRS Version 4, Version 5, and Version 5 AO for the single day, January 25, 2003. The Goddard DISC is now generating and distributing products derived using the AIRS Science Team Version 5 retrieval algorithm. This paper also described the Quality Control flags contained in the DISC AIRS/AMSU retrieval products and their intended use for scientific research purposes.

  18. Preparations for Global Precipitation Measurement(GPM)Ground Validation

    NASA Technical Reports Server (NTRS)

    Bidwell, S. W.; Bibyk, I. K.; Duming, J. F.; Everett, D. F.; Smith, E. A.; Wolff, D. B.

    2004-01-01

    The Global Precipitation Measurement (GPM) program is an international partnership led by the National Aeronautics and Space Administration (NASA) and the Japan Aerospace Exploration Agency (JAXA). GPM will improve climate, weather, and hydro-meterorological forecasts through more frequent and more accurate measurement of precipitation across the globe. This paper describes the concept and the preparations for Ground Validation within the GPM program. Ground Validation (GV) plays a critical role in the program by investigating and quantitatively assessing the errors within the satellite retrievals. These quantitative estimates of retrieval errors will assist the scientific community by bounding the errors within their research products. The two fundamental requirements of the GPM Ground Validation program are: (1) error characterization of the precipitation retrievals and (2) continual improvement of the satellite retrieval algorithms. These two driving requirements determine the measurements, instrumentation, and location for ground observations. This paper describes GV plans for estimating the systematic and random components of retrieval error and for characterizing the spatial and temporal structure of the error. This paper describes the GPM program for algorithm improvement in which error models are developed and experimentally explored to uncover the physical causes of errors within the retrievals. GPM will ensure that information gained through Ground Validation is applied to future improvements in the spaceborne retrieval algorithms. This paper discusses the potential locations for validation measurement and research, the anticipated contributions of GPM's international partners, and the interaction of Ground Validation with other GPM program elements.

  19. Aerosol Optical Retrieval and Surface Reflectance from Airborne Remote Sensing Data over Land

    PubMed Central

    Bassani, Cristiana; Cavalli, Rosa Maria; Pignatti, Stefano

    2010-01-01

    Quantitative analysis of atmospheric optical properties and surface reflectance can be performed by applying radiative transfer theory in the Atmosphere-Earth coupled system, for the atmospheric correction of hyperspectral remote sensing data. This paper describes a new physically-based algorithm to retrieve the aerosol optical thickness at 550nm (τ550) and the surface reflectance (ρ) from airborne acquired data in the atmospheric window of the Visible and Near-Infrared (VNIR) range. The algorithm is realized in two modules. Module A retrieves τ550 with a minimization algorithm, then Module B retrieves the surface reflectance ρ for each pixel of the image. The method was tested on five remote sensing images acquired by an airborne sensor under different geometric conditions to evaluate the reliability of the method. The results, τ550 and ρ, retrieved from each image were validated with field data contemporaneously acquired by a sun-sky radiometer and a spectroradiometer, respectively. Good correlation index, r, and low root mean square deviations, RMSD, were obtained for the τ550 retrieved by Module A (r2 = 0.75, RMSD = 0.08) and the ρ retrieved by Module B (r2 ≤ 0.9, RMSD ≤ 0.003). Overall, the results are encouraging, indicating that the method is reliable for optical atmospheric studies and the atmospheric correction of airborne hyperspectral images. The method does not require additional at-ground measurements about at-ground reflectance of the reference pixel and aerosol optical thickness. PMID:22163558

  20. Full-Physics Inverse Learning Machine for Satellite Remote Sensing of Ozone Profile Shapes and Tropospheric Columns

    NASA Astrophysics Data System (ADS)

    Xu, J.; Heue, K.-P.; Coldewey-Egbers, M.; Romahn, F.; Doicu, A.; Loyola, D.

    2018-04-01

    Characterizing vertical distributions of ozone from nadir-viewing satellite measurements is known to be challenging, particularly the ozone information in the troposphere. A novel retrieval algorithm called Full-Physics Inverse Learning Machine (FP-ILM), has been developed at DLR in order to estimate ozone profile shapes based on machine learning techniques. In contrast to traditional inversion methods, the FP-ILM algorithm formulates the profile shape retrieval as a classification problem. Its implementation comprises a training phase to derive an inverse function from synthetic measurements, and an operational phase in which the inverse function is applied to real measurements. This paper extends the ability of the FP-ILM retrieval to derive tropospheric ozone columns from GOME- 2 measurements. Results of total and tropical tropospheric ozone columns are compared with the ones using the official GOME Data Processing (GDP) product and the convective-cloud-differential (CCD) method, respectively. Furthermore, the FP-ILM framework will be used for the near-real-time processing of the new European Sentinel sensors with their unprecedented spectral and spatial resolution and corresponding large increases in the amount of data.

  1. Simultaneous retrieval of sea ice thickness and snow depth using concurrent active altimetry and passive L-band remote sensing data

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Xu, S.; Liu, J.

    2017-12-01

    The retrieval of sea ice thickness mainly relies on satellite altimetry, and the freeboard measurements are converted to sea ice thickness (hi) under certain assumptions over snow loading. The uncertain in snow depth (hs) is a major source of uncertainty in the retrieved sea ice thickness and total volume for both radar and laser altimetry. In this study, novel algorithms for the simultaneous retrieval of hi and hs are proposed for the data synergy of L-band (1.4 GHz) passive remote sensing and both types of active altimetry: (1) L-band (1.4GHz) brightness temperature (TB) from Soil Moisture Ocean Salinity (SMOS) satellite and sea ice freeboard (FBice) from radar altimetry, (2) L-band TB data and snow freeboard (FBsnow) from laser altimetry. Two physical models serve as the forward models for the retrieval: L-band radiation model, and the hydrostatic equilibrium model. Verification with SMOS and Operational IceBridge (OIB) data is carried out, showing overall good retrieval accuracy for both sea ice parameters. Specifically, we show that the covariability between hs and FBsnow is crucial for the synergy between TB and FBsnow. Comparison with existing algorithms shows lower uncertainty in both sea ice parameters, and that the uncertainty in the retrieved sea ice thickness as caused by that of snow depth is spatially uncorrelated, with the potential reduction of the volume uncertainty through spatial sampling. The proposed algorithms can be applied to the retrieval of sea ice parameters at basin-scale, using concurrent active and passive remote sensing data based on satellites.

  2. Radiative Transfer Modeling and Retrievals for Advanced Hyperspectral Sensors

    NASA Technical Reports Server (NTRS)

    Liu, Xu; Zhou, Daniel K.; Larar, Allen M.; Smith, William L., Sr.; Mango, Stephen A.

    2009-01-01

    A novel radiative transfer model and a physical inversion algorithm based on principal component analysis will be presented. Instead of dealing with channel radiances, the new approach fits principal component scores of these quantities. Compared to channel-based radiative transfer models, the new approach compresses radiances into a much smaller dimension making both forward modeling and inversion algorithm more efficient.

  3. Sensor Calibration and Ocean Products for TRMM Microwave Radiometer

    NASA Technical Reports Server (NTRS)

    Wentz, Frank J.; Lawrence, Richard J. (Technical Monitor)

    2003-01-01

    During the three years of finding, we have carefully corrected for two sensor/platform problems, developed a physically based retrieval algorithm to calculate SST, wind speed, water vapor, cloud liquid water and rain rates, validated these variables, and demonstrated that satellite microwave radiometers can provide very accurate SST retrievals through clouds. Prior to this, there was doubt by some scientists that the technique of microwave SST retrieval from satellites is a viable option. We think we have put these concerns to rest, and look forward to making microwave SSTs a standard component of the Earth science data sets. Our TMI SSTs were featured on several network news broadcasts and were reported in Science magazine. Additionally, we have developed a SST algorithm for VIRS to facilitate IR/MW inter-comparisons and completed research into diurnal cycles and air-sea interactions.

  4. Sensor Calibration and Ocean Products for TRMM Microwave Radiometer

    NASA Technical Reports Server (NTRS)

    Lawrence, Richard J. (Technical Monitor); Wentz, Frank J.

    2003-01-01

    During the three years of fundin& we have carefully corrected for two sensor/platform problems, developed a physically based retrieval algorithm to calculate SST, wind speed, water vapor, cloud liquid water and rain rates, validated these variables, and demonstrated that satellite microwave radiometers can provide very accurate SST retrievals through clouds. Prior to this, there was doubt by some scientists that the technique of microwave SST retrieval from satellites is a viable option. We think we have put these concerns to rest, and look forward to making microwave SSTs a standard component of the Earth science data sets. Our TMI SSTs were featured on several network news broadcasts and were reported in Science magazine. Additionally, we have developed a SST algorithm for VIRS to facilitate IR/MW inter-comparisons and completed research into diurnal cycles and air-sea interactions.

  5. The Greenhouse Gas Climate Change Initiative (GHG-CCI): comparative validation of GHG-CCI SCIAMACHY/ENVISAT and TANSO-FTS/GOSAT CO2 and CH4 retrieval algorithm products with measurements from the TCCON

    NASA Astrophysics Data System (ADS)

    Dils, B.; Buchwitz, M.; Reuter, M.; Schneising, O.; Boesch, H.; Parker, R.; Guerlet, S.; Aben, I.; Blumenstock, T.; Burrows, J. P.; Butz, A.; Deutscher, N. M.; Frankenberg, C.; Hase, F.; Hasekamp, O. P.; Heymann, J.; De Mazière, M.; Notholt, J.; Sussmann, R.; Warneke, T.; Griffith, D.; Sherlock, V.; Wunch, D.

    2014-06-01

    Column-averaged dry-air mole fractions of carbon dioxide and methane have been retrieved from spectra acquired by the TANSO-FTS (Thermal And Near-infrared Sensor for carbon Observations-Fourier Transform Spectrometer) and SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric Cartography) instruments on board GOSAT (Greenhouse gases Observing SATellite) and ENVISAT (ENVIronmental SATellite), respectively, using a range of European retrieval algorithms. These retrievals have been compared with data from ground-based high-resolution Fourier transform spectrometers (FTSs) from the Total Carbon Column Observing Network (TCCON). The participating algorithms are the weighting function modified differential optical absorption spectroscopy (DOAS) algorithm (WFMD, University of Bremen), the Bremen optimal estimation DOAS algorithm (BESD, University of Bremen), the iterative maximum a posteriori DOAS (IMAP, Jet Propulsion Laboratory (JPL) and Netherlands Institute for Space Research algorithm (SRON)), the proxy and full-physics versions of SRON's RemoTeC algorithm (SRPR and SRFP, respectively) and the proxy and full-physics versions of the University of Leicester's adaptation of the OCO (Orbiting Carbon Observatory) algorithm (OCPR and OCFP, respectively). The goal of this algorithm inter-comparison was to identify strengths and weaknesses of the various so-called round- robin data sets generated with the various algorithms so as to determine which of the competing algorithms would proceed to the next round of the European Space Agency's (ESA) Greenhouse Gas Climate Change Initiative (GHG-CCI) project, which is the generation of the so-called Climate Research Data Package (CRDP), which is the first version of the Essential Climate Variable (ECV) "greenhouse gases" (GHGs). For XCO2, all algorithms reach the precision requirements for inverse modelling (< 8 ppm), with only WFMD having a lower precision (4.7 ppm) than the other algorithm products (2.4-2.5 ppm). When looking at the seasonal relative accuracy (SRA, variability of the bias in space and time), none of the algorithms have reached the demanding < 0.5 ppm threshold. For XCH4, the precision for both SCIAMACHY products (50.2 ppb for IMAP and 76.4 ppb for WFMD) fails to meet the < 34 ppb threshold for inverse modelling, but note that this work focusses on the period after the 2005 SCIAMACHY detector degradation. The GOSAT XCH4 precision ranges between 18.1 and 14.0 ppb. Looking at the SRA, all GOSAT algorithm products reach the < 10 ppm threshold (values ranging between 5.4 and 6.2 ppb). For SCIAMACHY, IMAP and WFMD have a SRA of 17.2 and 10.5 ppb, respectively.

  6. Bayesian Retrieval of Complete Posterior PDFs of Oceanic Rain Rate From Microwave Observations

    NASA Technical Reports Server (NTRS)

    Chiu, J. Christine; Petty, Grant W.

    2005-01-01

    This paper presents a new Bayesian algorithm for retrieving surface rain rate from Tropical Rainfall Measurements Mission (TRMM) Microwave Imager (TMI) over the ocean, along with validations against estimates from the TRMM Precipitation Radar (PR). The Bayesian approach offers a rigorous basis for optimally combining multichannel observations with prior knowledge. While other rain rate algorithms have been published that are based at least partly on Bayesian reasoning, this is believed to be the first self-contained algorithm that fully exploits Bayes Theorem to yield not just a single rain rate, but rather a continuous posterior probability distribution of rain rate. To advance our understanding of theoretical benefits of the Bayesian approach, we have conducted sensitivity analyses based on two synthetic datasets for which the true conditional and prior distribution are known. Results demonstrate that even when the prior and conditional likelihoods are specified perfectly, biased retrievals may occur at high rain rates. This bias is not the result of a defect of the Bayesian formalism but rather represents the expected outcome when the physical constraint imposed by the radiometric observations is weak, due to saturation effects. It is also suggested that the choice of the estimators and the prior information are both crucial to the retrieval. In addition, the performance of our Bayesian algorithm is found to be comparable to that of other benchmark algorithms in real-world applications, while having the additional advantage of providing a complete continuous posterior probability distribution of surface rain rate.

  7. Content-based cell pathology image retrieval by combining different features

    NASA Astrophysics Data System (ADS)

    Zhou, Guangquan; Jiang, Lu; Luo, Limin; Bao, Xudong; Shu, Huazhong

    2004-04-01

    Content Based Color Cell Pathology Image Retrieval is one of the newest computer image processing applications in medicine. Recently, some algorithms have been developed to achieve this goal. Because of the particularity of cell pathology images, the result of the image retrieval based on single characteristic is not satisfactory. A new method for pathology image retrieval by combining color, texture and morphologic features to search cell images is proposed. Firstly, nucleus regions of leukocytes in images are automatically segmented by K-mean clustering method. Then single leukocyte region is detected by utilizing thresholding algorithm segmentation and mathematics morphology. The features that include color, texture and morphologic features are extracted from single leukocyte to represent main attribute in the search query. The features are then normalized because the numerical value range and physical meaning of extracted features are different. Finally, the relevance feedback system is introduced. So that the system can automatically adjust the weights of different features and improve the results of retrieval system according to the feedback information. Retrieval results using the proposed method fit closely with human perception and are better than those obtained with the methods based on single feature.

  8. Next Generation Aura-OMI SO2 Retrieval Algorithm: Introduction and Implementation Status

    NASA Technical Reports Server (NTRS)

    Li, Can; Joiner, Joanna; Krotkov, Nickolay A.; Bhartia, Pawan K.

    2014-01-01

    We introduce our next generation algorithm to retrieve SO2 using radiance measurements from the Aura Ozone Monitoring Instrument (OMI). We employ a principal component analysis technique to analyze OMI radiance spectral in 310.5-340 nm acquired over regions with no significant SO2. The resulting principal components (PCs) capture radiance variability caused by both physical processes (e.g., Rayleigh and Raman scattering, and ozone absorption) and measurement artifacts, enabling us to account for these various interferences in SO2 retrievals. By fitting these PCs along with SO2 Jacobians calculated with a radiative transfer model to OMI-measured radiance spectra, we directly estimate SO2 vertical column density in one step. As compared with the previous generation operational OMSO2 PBL (Planetary Boundary Layer) SO2 product, our new algorithm greatly reduces unphysical biases and decreases the noise by a factor of two, providing greater sensitivity to anthropogenic emissions. The new algorithm is fast, eliminates the need for instrument-specific radiance correction schemes, and can be easily adapted to other sensors. These attributes make it a promising technique for producing long-term, consistent SO2 records for air quality and climate research. We have operationally implemented this new algorithm on OMI SIPS for producing the new generation standard OMI SO2 products.

  9. Rain Rate and DSD Retrievals at Kwajalein Atoll

    NASA Astrophysics Data System (ADS)

    Wolff, David; Marks, David; Tokay, Ali

    2010-05-01

    The dual-polarization weather radar on Kwajalein Atoll in the Republic of the Marshall Islands (KPOL) is one of the only full-time (24/7) operational S-band dual-polarimetric (DP) radars in the tropics. Using the DP data from KPOL, as well as data from a Joss-Waldvogel disdrometer on Kwajalein Island, algorithms for quality control, as well as calibration of reflectivity and differential reflectivity have been developed and adapted for application in a near real-time operational environment. Observations during light rain and drizzle show that KPOL measurements (since 2006) meet or exceed quality thresholds for these applications (as determined by consensus of the radar community). While the methodology for development of such applications is well documented, tuning of specific algorithms to a particular regime and observed raindrop size distributions requires a comprehensive testing and adjustment period to ensure high quality products. Upon application of these data quality techniques to the KPOL data, we have tested and compared several different rain retrieval algorithms. These include conventional Z-R, DP hybrid techniques, as well as polarimetrically-tuned Z-R described by Bringi et al. 2004. One of the major benefits of the polarimetrically tuned Z-R technique, is its ability to use the DP observations to retrieve key parameters of the drop size distribution (DSD), such as the median drop diameter, and the intercept and shape parameter of the assumed gammaDSD. We will show several such retrievals for different rain systems, as well as their distribution with height below the melting layer. From a physical validation perspective, such DSD parameter retrievals provide an important means to cross-validate microphysical parameterizations in GPM Dual-frequency Precipitation Radar (DPR) and GPM Microwave Imager (GMI) retrieval algorithms.

  10. The influence of sea fog inhomogeneity on its microphysical characteristics retrieval

    NASA Astrophysics Data System (ADS)

    Hao, Zengzhou; Pan, Delu; Gong, Fang; He, Xianqiang

    2008-10-01

    A study on the effect of sea fog inhomogeneity on its microphysical parameters retrieval is presented. On the condition that the average liquid water content is linear vertically and the power spectrum spectral index sets 2.0, we generate a 3D sea fog fields by controlling the total liquid water contents greater than 0.04g/m3 based on the iterative method for generating scaling log-normal random field with an energy spectrum and a fragmentized cloud algorithm. Based on the fog field, the radiance at the wavelengths of 0.67 and 1.64 μm are simulated with 3D radiative transfer model SHDOM, and then the fog optical thickness and effective particle radius are simultaneously retrieved using the generic look-up-table AVHRR cloud algorithm. By comparing those fog optical thickness and effective particle radius, the influence of sea fog inhomogeneity on its properties retrieval is discussed. It exhibits the system bias when inferring sea fog physical properties from satellite measurements based on the assumption of plane parallel homogeneous atmosphere. And the bias depends on the solar zenith angel. The optical thickness is overrated while the effective particle radius is under-estimated at two solar zenith angle 30° and 60°. Those results show that it is necessary for sea fog true characteristics retrieval to develop a new algorithm using the 3D radiative transfer.

  11. Land Surface Temperature Measurements form EOS MODIS Data

    NASA Technical Reports Server (NTRS)

    Wan, Zhengming

    1996-01-01

    We have developed a physics-based land-surface temperature (LST) algorithm for simultaneously retrieving surface band-averaged emissivities and temperatures from day/night pairs of MODIS (Moderate Resolution Imaging Spectroradiometer) data in seven thermal infrared bands. The set of 14 nonlinear equations in the algorithm is solved with the statistical regression method and the least-squares fit method. This new LST algorithm was tested with simulated MODIS data for 80 sets of band-averaged emissivities calculated from published spectral data of terrestrial materials in wide ranges of atmospheric and surface temperature conditions. Comprehensive sensitivity and error analysis has been made to evaluate the performance of the new LST algorithm and its dependence on variations in surface emissivity and temperature, upon atmospheric conditions, as well as the noise-equivalent temperature difference (NE(Delta)T) and calibration accuracy specifications of the MODIS instrument. In cases with a systematic calibration error of 0.5%, the standard deviations of errors in retrieved surface daytime and nighttime temperatures fall between 0.4-0.5 K over a wide range of surface temperatures for mid-latitude summer conditions. The standard deviations of errors in retrieved emissivities in bands 31 and 32 (in the 10-12.5 micrometer IR spectral window region) are 0.009, and the maximum error in retrieved LST values falls between 2-3 K. Several issues related to the day/night LST algorithm (uncertainties in the day/night registration and in surface emissivity changes caused by dew occurrence, and the cloud cover) have been investigated. The LST algorithms have been validated with MODIS Airborne Simulator (MAS) dada and ground-based measurement data in two field campaigns conducted in Railroad Valley playa, NV in 1995 and 1996. The MODIS LST version 1 software has been delivered.

  12. The Potential of Clear Sky Carbon Dioxide Satellite Retrievals

    NASA Astrophysics Data System (ADS)

    Nelson, R.; O'Dell, C.

    2013-12-01

    It has been shown that neglecting scattering and absorption by aerosols and thin clouds can lead to significant errors in retrievals of the column-averaged dry-air mole fraction of carbon dioxide (XCO2) from space-based measurements of near-infrared reflected sunlight. These clear sky retrievals, which assume no aerosol effects, are desirable because of their high computational efficiency relative to common full physics retrievals. Further, clear sky retrievals may be able to make higher quality measurements relative to the full physics approach because they may introduce fewer potential biases under certain circumstances. These biases can appear when we try to retrieve clouds and aerosols in the full physics methods when there are none actually present. Recent work has shown that intelligent pre-screening can remove soundings with large light-path modifications over ocean surfaces. In this work, we test the hypothesis that intelligent pre-screening of soundings may be successfully used over land surfaces as well as oceans, which would allow clear sky retrievals to be applicable over all surfaces. We also test the hypothesis that major light path modification effects associated with aerosols can be identified based on spectral tests at 0.76, 1.6, and 2 microns. This presentation summarizes our study of both simulated data and satellite observations from the GOSAT instrument in order to assess the effectiveness of using a clear sky retrieval algorithm coupled with intelligent pre-screening to accurately measure carbon dioxide from space-borne instruments.

  13. A Physical Model to Estimate Snowfall over Land using AMSU-B Observations

    NASA Technical Reports Server (NTRS)

    Kim, Min-Jeong; Weinman, J. A.; Olson, W. S.; Chang, D.-E.; Skofronick-Jackson, G.; Wang, J. R.

    2008-01-01

    In this study, we present an improved physical model to retrieve snowfall rate over land using brightness temperature observations from the National Oceanic and Atmospheric Administration's (NOAA) Advanced Microwave Sounder Unit-B (AMSU-B) at 89 GHz, 150 GHz, 183.3 +/- 1 GHz, 183.3 +/- 3 GHz, and 183.3 +/- 7 GHz. The retrieval model is applied to the New England blizzard of March 5, 2001 which deposited about 75 cm of snow over much of Vermont, New Hampshire, and northern New York. In this improved physical model, prior retrieval assumptions about snowflake shape, particle size distributions, environmental conditions, and optimization methodology have been updated. Here, single scattering parameters for snow particles are calculated with the Discrete-Dipole Approximation (DDA) method instead of assuming spherical shapes. Five different snow particle models (hexagonal columns, hexagonal plates, and three different kinds of aggregates) are considered. Snow particle size distributions are assumed to vary with air temperature and to follow aircraft measurements described by previous studies. Brightness temperatures at AMSU-B frequencies for the New England blizzard are calculated using these DDA calculated single scattering parameters and particle size distributions. The vertical profiles of pressure, temperature, relative humidity and hydrometeors are provided by MM5 model simulations. These profiles are treated as the a priori data base in the Bayesian retrieval algorithm. In algorithm applications to the blizzard data, calculated brightness temperatures associated with selected database profiles agree with AMSU-B observations to within about +/- 5 K at all five frequencies. Retrieved snowfall rates compare favorably with the near-concurrent National Weather Service (NWS) radar reflectivity measurements. The relationships between the NWS radar measured reflectivities Z(sub e) and retrieved snowfall rate R for a given snow particle model are derived by a histogram matching technique. All of these Z(sub e)-R relationships fall in the range of previously established Z(sub e)-R relationships for snowfall. This suggests that the current physical model developed in this study can reliably estimate the snowfall rate over land using the AMSU-B measured brightness temperatures.

  14. Estimation of Multiple Parameters over Vegetated Surfaces by Integrating Optical-Thermal Remote Sensing Observations

    NASA Astrophysics Data System (ADS)

    Ma, H.

    2016-12-01

    Land surface parameters from remote sensing observations are critical in monitoring and modeling of global climate change and biogeochemical cycles. Current methods for estimating land surface parameters are generally parameter-specific algorithms and are based on instantaneous physical models, which result in spatial, temporal and physical inconsistencies in current global products. Besides, optical and Thermal Infrared (TIR) remote sensing observations are usually separated to use based on different models , and the Middle InfraRed (MIR) observations have received little attention due to the complexity of the radiometric signal that mixes both reflected and emitted fluxes. In this paper, we proposed a unified algorithm for simultaneously retrieving a total of seven land surface parameters, including Leaf Area Index (LAI), Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), land surface albedo, Land Surface Temperature (LST), surface emissivity, downward and upward longwave radiation, by exploiting remote sensing observations from visible to TIR domain based on a common physical Radiative Transfer (RT) model and a data assimilation framework. The coupled PROSPECT-VISIR and 4SAIL RT model were used for canopy reflectance modeling. At first, LAI was estimated using a data assimilation method that combines MODIS daily reflectance observation and a phenology model. The estimated LAI values were then input into the RT model to simulate surface spectral emissivity and surface albedo. Besides, the background albedo and the transmittance of solar radiation, and the canopy albedo were also calculated to produce FAPAR. Once the spectral emissivity of seven MODIS MIR to TIR bands were retrieved, LST can be estimated from the atmospheric corrected surface radiance by exploiting an optimization method. At last, the upward longwave radiation were estimated using the retrieved LST, broadband emissivity (converted from spectral emissivity) and the downward longwave radiation (modeled by MODTRAN). These seven parameters were validated over several representative sites with different biome type, and compared with MODIS and GLASS product. Results showed that this unified inversion algorithm can retrieve temporally complete and physical consistent land surface parameters with high accuracy.

  15. Thermodynamic and cloud parameter retrieval using infrared spectral data

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Smith, William L., Sr.; Liu, Xu; Larar, Allen M.; Huang, Hung-Lung A.; Li, Jun; McGill, Matthew J.; Mango, Stephen A.

    2005-01-01

    High-resolution infrared radiance spectra obtained from near nadir observations provide atmospheric, surface, and cloud property information. A fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. The retrieval algorithm is presented along with its application to recent field experiment data from the NPOESS Airborne Sounding Testbed - Interferometer (NAST-I). The retrieval accuracy dependence on cloud properties is discussed. It is shown that relatively accurate temperature and moisture retrievals can be achieved below optically thin clouds. For optically thick clouds, accurate temperature and moisture profiles down to cloud top level are obtained. For both optically thin and thick cloud situations, the cloud top height can be retrieved with an accuracy of approximately 1.0 km. Preliminary NAST-I retrieval results from the recent Atlantic-THORPEX Regional Campaign (ATReC) are presented and compared with coincident observations obtained from dropsondes and the nadir-pointing Cloud Physics Lidar (CPL).

  16. Applying Advances in GPM Radiometer Intercalibration and Algorithm Development to a Long-Term TRMM/GPM Global Precipitation Dataset

    NASA Astrophysics Data System (ADS)

    Berg, W. K.

    2016-12-01

    The Global Precipitation Mission (GPM) Core Observatory, which was launched in February of 2014, provides a number of advances for satellite monitoring of precipitation including a dual-frequency radar, high frequency channels on the GPM Microwave Imager (GMI), and coverage over middle and high latitudes. The GPM concept, however, is about producing unified precipitation retrievals from a constellation of microwave radiometers to provide approximately 3-hourly global sampling. This involves intercalibration of the input brightness temperatures from the constellation radiometers, development of an apriori precipitation database using observations from the state-of-the-art GPM radiometer and radars, and accounting for sensor differences in the retrieval algorithm in a physically-consistent way. Efforts by the GPM inter-satellite calibration working group, or XCAL team, and the radiometer algorithm team to create unified precipitation retrievals from the GPM radiometer constellation were fully implemented into the current version 4 GPM precipitation products. These include precipitation estimates from a total of seven conical-scanning and six cross-track scanning radiometers as well as high spatial and temporal resolution global level 3 gridded products. Work is now underway to extend this unified constellation-based approach to the combined TRMM/GPM data record starting in late 1997. The goal is to create a long-term global precipitation dataset employing these state-of-the-art calibration and retrieval algorithm approaches. This new long-term global precipitation dataset will incorporate the physics provided by the combined GPM GMI and DPR sensors into the apriori database, extend prior TRMM constellation observations to high latitudes, and expand the available TRMM precipitation data to the full constellation of available conical and cross-track scanning radiometers. This combined TRMM/GPM precipitation data record will thus provide a high-quality high-temporal resolution global dataset for use in a wide variety of weather and climate research applications.

  17. MODIS Retrievals of Cloud Optical Thickness and Particle Radius

    NASA Technical Reports Server (NTRS)

    Platnick, S.; King, M. D.; Ackerman, S. A.; Gray, M.; Moody, E.; Arnold, G. T.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) provides an unprecedented opportunity for global cloud studies with 36 spectral bands from the visible through the infrared, and spatial resolution from 250 m to 1 km at nadir. In particular, all solar window bands useful for simultaneous retrievals of cloud optical thickness and particle size (0.67, 0.86, 1.2, 1.6, 2.1, and 3.7 micron bands) are now available on a single satellite instrument/platform for the first time. An operational algorithm for the retrieval of these optical and cloud physical properties (including water path) have been developed for both liquid and ice phase clouds. The product is archived into two categories: pixel-level retrievals at 1 km spatial resolution (referred to as a Level-2 product) and global gridded statistics (Level-3 product). An overview of the MODIS cloud retrieval algorithm and early level-2 and -3 results will be presented. A number of MODIS cloud validation activities are being planned, including the recent Southern Africa Regional Science Initiative 2000 (SAFARI-2000) dry season campaign conducted in August/September 2000. The later part of the experiment concentrated on MODIS validation in the Namibian stratocumulus regime off the southwest coast of Africa. Early retrieval results from this regime will be discussed.

  18. Application of Artificial Neural Networks to the Development of Improved Multi-Sensor Retrievals of Near-Surface Air Temperature and Humidity Over Ocean

    NASA Technical Reports Server (NTRS)

    Roberts, J. Brent; Robertson, Franklin R.; Clayson, Carol Anne

    2012-01-01

    Improved estimates of near-surface air temperature and air humidity are critical to the development of more accurate turbulent surface heat fluxes over the ocean. Recent progress in retrieving these parameters has been made through the application of artificial neural networks (ANN) and the use of multi-sensor passive microwave observations. Details are provided on the development of an improved retrieval algorithm that applies the nonlinear statistical ANN methodology to a set of observations from the Advanced Microwave Scanning Radiometer (AMSR-E) and the Advanced Microwave Sounding Unit (AMSU-A) that are currently available from the NASA AQUA satellite platform. Statistical inversion techniques require an adequate training dataset to properly capture embedded physical relationships. The development of multiple training datasets containing only in-situ observations, only synthetic observations produced using the Community Radiative Transfer Model (CRTM), or a mixture of each is discussed. An intercomparison of results using each training dataset is provided to highlight the relative advantages and disadvantages of each methodology. Particular emphasis will be placed on the development of retrievals in cloudy versus clear-sky conditions. Near-surface air temperature and humidity retrievals using the multi-sensor ANN algorithms are compared to previous linear and non-linear retrieval schemes.

  19. A novel image retrieval algorithm based on PHOG and LSH

    NASA Astrophysics Data System (ADS)

    Wu, Hongliang; Wu, Weimin; Peng, Jiajin; Zhang, Junyuan

    2017-08-01

    PHOG can describe the local shape of the image and its relationship between the spaces. The using of PHOG algorithm to extract image features in image recognition and retrieval and other aspects have achieved good results. In recent years, locality sensitive hashing (LSH) algorithm has been superior to large-scale data in solving near-nearest neighbor problems compared with traditional algorithms. This paper presents a novel image retrieval algorithm based on PHOG and LSH. First, we use PHOG to extract the feature vector of the image, then use L different LSH hash table to reduce the dimension of PHOG texture to index values and map to different bucket, and finally extract the corresponding value of the image in the bucket for second image retrieval using Manhattan distance. This algorithm can adapt to the massive image retrieval, which ensures the high accuracy of the image retrieval and reduces the time complexity of the retrieval. This algorithm is of great significance.

  20. Satellite Retrieval of Atmospheric Water Budget over Gulf of Mexico- Caribbean Basin: Seasonal Variability

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Santos, Pablo; Einaudi, Franco (Technical Monitor)

    2001-01-01

    This study presents results from a multi-satellite/multi-sensor retrieval system designed to obtain the atmospheric water budget over the open ocean. A combination of hourly-sampled monthly datasets derived from the GOES-8 5 Imager and the DMSP 7-channel passive microwave radiometer (SSM/I) have been acquired for the Gulf of Mexico-Caribbean Sea basin. Whereas the methodology is being tested over this basin, the retrieval system is designed for portability to any open-ocean region. Algorithm modules using the different datasets to retrieve individual geophysical parameters needed in the water budget equation are designed in a manner that takes advantage of the high temporal resolution of the GOES-8 measurements, as well as the physical relationships inherent to the SSM/I passive microwave signals in conjunction with water vapor, cloud liquid water, and rainfall. The methodology consists of retrieving the precipitation, surface evaporation, and vapor-cloud water storage terms in the atmospheric water balance equation from satellite techniques, with the water vapor advection term being obtained as the residue needed for balance. Thus, we have sought to develop a purely satellite-based method for obtaining the full set of terms in the atmospheric water budget equation without requiring in situ sounding information on the wind profile. The algorithm is partly validated by first cross-checking all the algorithm components through multiple-algorithm retrieval intercomparisons. More fundamental validation is obtained by directly comparing water vapor transports into the targeted basin diagnosed from the satellite algorithm to those obtained observationally from a network of land-based upper air stations that nearly uniformly surround the basin. Total columnar atmospheric water budget results will be presented for an extended annual cycle consisting of the months of October-97, January-98, April-98, July-98, October-98, and January-1999. These results are used to emphasize the changing relationship in E-P, as well as in the varying roles of storage and advection in balancing E-P both on daily and monthly time scales and on localized and basin space scales. Results from the algorithm-to-algorithm intercomparisons will also be presented in the context of sensitivity testing to help understand the intrinsic uncertainties in the water budget terms.

  1. Applications of Land Surface Temperature from Microwave Observations

    USDA-ARS?s Scientific Manuscript database

    Land surface temperature (LST) is a key input for physically-based retrieval algorithms of hydrological states and fluxes. Yet, it remains a poorly constrained parameter for global scale studies. The main two observational methods to remotely measure T are based on thermal infrared (TIR) observation...

  2. Variational Assimilation of Global Microwave Rainfall Retrievals: Physical and Dynamical Impact on GEOS Analyses and Forecasts

    NASA Technical Reports Server (NTRS)

    Lin, Xin; Zhang, Sara Q.; Hou, Arthur Y.

    2006-01-01

    Global microwave rainfall retrievals from a 5-satellite constellation, including TMI from TRMM, SSWI from DMSP F13, F14 and F15, and AMSR-E from EOS-AQUA, are assimilated into the NASA Goddard Earth Observing System (GEOS) Data Assimilation System (DAS) using a 1-D variational continuous assimilation (VCA) algorithm. The physical and dynamical impact of rainfall assimilation on GEOS analyses and forecasts is examined at various temporal and spatial scales. This study demonstrates that the 1-D VCA algorithm, which was originally developed and evaluated for rainfall assimilations over tropical oceans, can effectively assimilate satellite microwave rainfall retrievals and improve GEOS analyses over both the Tropics and the extratropics where the atmospheric processes are dominated by different large-scale dynamics and moist physics, and also over the land, where rainfall estimates from passive microwave radiometers are believed to be less accurate. Results show that rainfall assimilation renders the GEOS analysis physically and dynamically more consistent with the observed precipitation at the monthly-mean and 6-hour time scales. Over regions where the model precipitation tends to misbehave in distinctly different rainy regimes, the 1-D VCA algorithm, by compensating for errors in the model s moist time-tendency in a 6-h analysis window, is able to bring the rainfall analysis closer to the observed. The radiation and cloud fields also tend to be in better agreement with independent satellite observations in the rainfall-assimilation m especially over regions where rainfall analyses indicate large improvements. Assimilation experiments with and without rainfall data for a midlatitude frontal system clearly indicates that the GEOS analysis is improved through changes in the thermodynamic and dynamic fields that respond to the rainfall assimilation. The synoptic structures of temperature, moisture, winds, divergence, and vertical motion, as well as vorticity are more realistically captured across the front. Short-term forecasts using initial conditions assimilated with rainfall data also show slight improvements. 1

  3. Developing an A Priori Database for Passive Microwave Snow Water Retrievals Over Ocean

    NASA Astrophysics Data System (ADS)

    Yin, Mengtao; Liu, Guosheng

    2017-12-01

    A physically optimized a priori database is developed for Global Precipitation Measurement Microwave Imager (GMI) snow water retrievals over ocean. The initial snow water content profiles are derived from CloudSat Cloud Profiling Radar (CPR) measurements. A radiative transfer model in which the single-scattering properties of nonspherical snowflakes are based on the discrete dipole approximate results is employed to simulate brightness temperatures and their gradients. Snow water content profiles are then optimized through a one-dimensional variational (1D-Var) method. The standard deviations of the difference between observed and simulated brightness temperatures are in a similar magnitude to the observation errors defined for observation error covariance matrix after the 1D-Var optimization, indicating that this variational method is successful. This optimized database is applied in a Bayesian retrieval snow water algorithm. The retrieval results indicated that the 1D-Var approach has a positive impact on the GMI retrieved snow water content profiles by improving the physical consistency between snow water content profiles and observed brightness temperatures. Global distribution of snow water contents retrieved from the a priori database is compared with CloudSat CPR estimates. Results showed that the two estimates have a similar pattern of global distribution, and the difference of their global means is small. In addition, we investigate the impact of using physical parameters to subset the database on snow water retrievals. It is shown that using total precipitable water to subset the database with 1D-Var optimization is beneficial for snow water retrievals.

  4. Using microwave observations to estimate land surface temperature during cloudy conditions

    USDA-ARS?s Scientific Manuscript database

    Land surface temperature (LST), a key ingredient for physically-based retrieval algorithms of hydrological states and fluxes, remains a poorly constrained parameter for global scale studies. The main two observational methods to remotely measure T are based on thermal infrared (TIR) observations and...

  5. The Ozone Mapping and Profiler Suite (OMPS) Limb Profiler (LP) Version 1 aerosol extinction retrieval algorithm: theoretical basis

    NASA Astrophysics Data System (ADS)

    Loughman, Robert; Bhartia, Pawan K.; Chen, Zhong; Xu, Philippe; Nyaku, Ernest; Taha, Ghassan

    2018-05-01

    The theoretical basis of the Ozone Mapping and Profiler Suite (OMPS) Limb Profiler (LP) Version 1 aerosol extinction retrieval algorithm is presented. The algorithm uses an assumed bimodal lognormal aerosol size distribution to retrieve aerosol extinction profiles at 675 nm from OMPS LP radiance measurements. A first-guess aerosol extinction profile is updated by iteration using the Chahine nonlinear relaxation method, based on comparisons between the measured radiance profile at 675 nm and the radiance profile calculated by the Gauss-Seidel limb-scattering (GSLS) radiative transfer model for a spherical-shell atmosphere. This algorithm is discussed in the context of previous limb-scattering aerosol extinction retrieval algorithms, and the most significant error sources are enumerated. The retrieval algorithm is limited primarily by uncertainty about the aerosol phase function. Horizontal variations in aerosol extinction, which violate the spherical-shell atmosphere assumed in the version 1 algorithm, may also limit the quality of the retrieved aerosol extinction profiles significantly.

  6. Precipitation from the GPM Microwave Imager and Constellation Radiometers

    NASA Astrophysics Data System (ADS)

    Kummerow, Christian; Randel, David; Kirstetter, Pierre-Emmanuel; Kulie, Mark; Wang, Nai-Yu

    2014-05-01

    Satellite precipitation retrievals from microwave sensors are fundamentally underconstrained requiring either implicit or explicit a-priori information to constrain solutions. The radiometer algorithm designed for the GPM core and constellation satellites makes this a-priori information explicit in the form of a database of possible rain structures from the GPM core satellite and a Bayesian retrieval scheme. The a-priori database will eventually come from the GPM core satellite's combined radar/radiometer retrieval algorithm. That product is physically constrained to ensure radiometric consistency between the radars and radiometers and is thus ideally suited to create the a-priori databases for all radiometers in the GPM constellation. Until a robust product exists, however, the a-priori databases are being generated from the combination of existing sources over land and oceans. Over oceans, the Day-1 GPM radiometer algorithm uses the TRMM PR/TMI physically derived hydrometer profiles that are available from the tropics through sea surface temperatures of approximately 285K. For colder sea surface temperatures, the existing profiles are used with lower hydrometeor layers removed to correspond to colder conditions. While not ideal, the results appear to be reasonable placeholders until the full GPM database can be constructed. It is more difficult to construct physically consistent profiles over land due to ambiguities in surface emissivities as well as details of the ice scattering that dominates brightness temperature signatures over land. Over land, the a-priori databases have therefore been constructed by matching satellite overpasses to surface radar data derived from the WSR-88 network over the continental United States through the National Mosaic and Multi-Sensor QPE (NMQ) initiative. Databases are generated as a function of land type (4 categories of increasing vegetation cover as well as 4 categories of increasing snow depth), land surface temperature and total precipitable water. One year of coincident observations, generating 20 and 80 million database entries, depending upon the sensor, are used in the retrieval algorithm. The remaining areas such as sea ice and high latitude coastal zones are filled with a combination of CloudSat and AMSR-E plus MHS observations together with a model to create the equivalent databases for other radiometers in the constellation. The most noteworthy result from the Day-1 algorithm is the quality of the land products when compared to existing products. Unlike previous versions of land algorithms that depended upon complex screening routines to decide if pixels were precipitating or not, the current scheme is free of conditional rain statements and appears to produce rain rate with much greater fidelity than previous schemes. There results will be shown.

  7. A retrieval algorithm of hydrometer profile for submillimeter-wave radiometer

    NASA Astrophysics Data System (ADS)

    Liu, Yuli; Buehler, Stefan; Liu, Heguang

    2017-04-01

    Vertical profiles of particle microphysics perform vital functions for the estimation of climatic feedback. This paper proposes a new algorithm to retrieve the profile of the parameters of the hydrometeor(i.e., ice, snow, rain, liquid cloud, graupel) based on passive submillimeter-wave measurements. These parameters include water content and particle size. The first part of the algorithm builds the database and retrieves the integrated quantities. Database is built up by Atmospheric Radiative Transfer Simulator(ARTS), which uses atmosphere data to simulate the corresponding brightness temperature. Neural network, trained by the precalculated database, is developed to retrieve the water path for each type of particles. The second part of the algorithm analyses the statistical relationship between water path and vertical parameters profiles. Based on the strong dependence existing between vertical layers in the profiles, Principal Component Analysis(PCA) technique is applied. The third part of the algorithm uses the forward model explicitly to retrieve the hydrometeor profiles. Cost function is calculated in each iteration, and Differential Evolution(DE) algorithm is used to adjust the parameter values during the evolutionary process. The performance of this algorithm is planning to be verified for both simulation database and measurement data, by retrieving profiles in comparison with the initial one. Results show that this algorithm has the ability to retrieve the hydrometeor profiles efficiently. The combination of ARTS and optimization algorithm can get much better results than the commonly used database approach. Meanwhile, the concept that ARTS can be used explicitly in the retrieval process shows great potential in providing solution to other retrieval problems.

  8. MISR Aerosol Product Attributes and Statistical Comparisons with MODIS

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.; Nelson, David L.; Garay, Michael J.; Levy, Robert C.; Bull, Michael A.; Diner, David J.; Martonchik, John V.; Paradise, Susan R.; Hansen, Earl G.; Remer, Lorraine A.

    2009-01-01

    In this paper, Multi-angle Imaging SpectroRadiometer (MISR) aerosol product attributes are described, including geometry and algorithm performance flags. Actual retrieval coverage is mapped and explained in detail using representative global monthly data. Statistical comparisons are made with coincident aerosol optical depth (AOD) and Angstrom exponent (ANG) retrieval results from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument. The relationship between these results and the ones previously obtained for MISR and MODIS individually, based on comparisons with coincident ground-truth observations, is established. For the data examined, MISR and MODIS each obtain successful aerosol retrievals about 15% of the time, and coincident MISR-MODIS aerosol retrievals are obtained for about 6%-7% of the total overlap region. Cloud avoidance, glint and oblique-Sun exclusions, and other algorithm physical limitations account for these results. For both MISR and MODIS, successful retrievals are obtained for over 75% of locations where attempts are made. Where coincident AOD retrievals are obtained over ocean, the MISR-MODIS correlation coefficient is about 0.9; over land, the correlation coefficient is about 0.7. Differences are traced to specific known algorithm issues or conditions. Over-ocean ANG comparisons yield a correlation of 0.67, showing consistency in distinguishing aerosol air masses dominated by coarse-mode versus fine-mode particles. Sampling considerations imply that care must be taken when assessing monthly global aerosol direct radiative forcing and AOD trends with these products, but they can be used directly for many other applications, such as regional AOD gradient and aerosol air mass type mapping and aerosol transport model validation. Users are urged to take seriously the published product data-quality statements.

  9. Query Modification through External Sources to Support Clinical Decisions

    DTIC Science & Technology

    2014-11-01

    takes no medications. Physical examination is normal. The EKG shows nonspecific changes. Summary 58-year-old woman with hypertension and obesity presents...algorithm for suffix stripping. Program, 14:130–137, 1980. Reprinted in Readings in Information Retrieval, pages 313–316, 1997. M. S. Simpson, E

  10. Global Precipitation Measurement (GPM) Ground Validation (GV) Science Implementation Plan

    NASA Technical Reports Server (NTRS)

    Petersen, Walter A.; Hou, Arthur Y.

    2008-01-01

    For pre-launch algorithm development and post-launch product evaluation Global Precipitation Measurement (GPM) Ground Validation (GV) goes beyond direct comparisons of surface rain rates between ground and satellite measurements to provide the means for improving retrieval algorithms and model applications.Three approaches to GPM GV include direct statistical validation (at the surface), precipitation physics validation (in a vertical columns), and integrated science validation (4-dimensional). These three approaches support five themes: core satellite error characterization; constellation satellites validation; development of physical models of snow, cloud water, and mixed phase; development of cloud-resolving model (CRM) and land-surface models to bridge observations and algorithms; and, development of coupled CRM-land surface modeling for basin-scale water budget studies and natural hazard prediction. This presentation describes the implementation of these approaches.

  11. Updated MISR Dark Water Research Aerosol Retrieval Algorithm - Part 1: Coupled 1.1 km Ocean Surface Chlorophyll a Retrievals with Empirical Calibration Corrections

    NASA Technical Reports Server (NTRS)

    Limbacher, James A.; Kahn, Ralph A.

    2017-01-01

    As aerosol amount and type are key factors in the 'atmospheric correction' required for remote-sensing chlorophyll alpha concentration (Chl) retrievals, the Multi-angle Imaging SpectroRadiometer (MISR) can contribute to ocean color analysis despite a lack of spectral channels optimized for this application. Conversely, an improved ocean surface constraint should also improve MISR aerosol-type products, especially spectral single-scattering albedo (SSA) retrievals. We introduce a coupled, self-consistent retrieval of Chl together with aerosol over dark water. There are time-varying MISR radiometric calibration errors that significantly affect key spectral reflectance ratios used in the retrievals. Therefore, we also develop and apply new calibration corrections to the MISR top-of-atmosphere (TOA) reflectance data, based on comparisons with coincident MODIS (Moderate Resolution Imaging Spectroradiometer) observations and trend analysis of the MISR TOA bidirectional reflectance factors (BRFs) over three pseudo-invariant desert sites. We run the MISR research retrieval algorithm (RA) with the corrected MISR reflectances to generate MISR-retrieved Chl and compare the MISR Chl values to a set of 49 coincident SeaBASS (SeaWiFS Bio-optical Archive and Storage System) in situ observations. Where Chl(sub in situ) less than 1.5 mg m(exp -3), the results from our Chl model are expected to be of highest quality, due to algorithmic assumption validity. Comparing MISR RA Chl to the 49 coincident SeaBASS observations, we report a correlation coefficient (r) of 0.86, a root-mean-square error (RMSE) of 0.25, and a median absolute error (MAE) of 0.10. Statistically, a two-sample Kolmogorov- Smirnov test indicates that it is not possible to distinguish between MISR Chl and available SeaBASS in situ Chl values (p greater than 0.1). We also compare MODIS-Terra and MISR RA Chl statistically, over much broader regions. With about 1.5 million MISR-MODIS collocations having MODIS Chl less than 1.5 mg m(exp -3), MISR and MODIS show very good agreement: r = 0.96, MAE = 0.09, and RMSE = 0.15. The new dark water aerosol/Chl RA can retrieve Chl in low-Chl, case I waters, independent of other imagers such as MODIS, via a largely physical algorithm, compared to the commonly applied statistical ones. At a minimum, MISR's multi-angle data should help reduce uncertainties in the MODIS-Terra ocean color retrieval where coincident measurements are made, while also allowing for a more robust retrieval of particle properties such as spectral single-scattering albedo.

  12. Updated MISR dark water research aerosol retrieval algorithm - Part 1: Coupled 1.1 km ocean surface chlorophyll a retrievals with empirical calibration corrections

    NASA Astrophysics Data System (ADS)

    Limbacher, James A.; Kahn, Ralph A.

    2017-04-01

    As aerosol amount and type are key factors in the atmospheric correction required for remote-sensing chlorophyll a concentration (Chl) retrievals, the Multi-angle Imaging SpectroRadiometer (MISR) can contribute to ocean color analysis despite a lack of spectral channels optimized for this application. Conversely, an improved ocean surface constraint should also improve MISR aerosol-type products, especially spectral single-scattering albedo (SSA) retrievals. We introduce a coupled, self-consistent retrieval of Chl together with aerosol over dark water. There are time-varying MISR radiometric calibration errors that significantly affect key spectral reflectance ratios used in the retrievals. Therefore, we also develop and apply new calibration corrections to the MISR top-of-atmosphere (TOA) reflectance data, based on comparisons with coincident MODIS (Moderate Resolution Imaging Spectroradiometer) observations and trend analysis of the MISR TOA bidirectional reflectance factors (BRFs) over three pseudo-invariant desert sites. We run the MISR research retrieval algorithm (RA) with the corrected MISR reflectances to generate MISR-retrieved Chl and compare the MISR Chl values to a set of 49 coincident SeaBASS (SeaWiFS Bio-optical Archive and Storage System) in situ observations. Where Chlin situ < 1.5 mg m-3, the results from our Chl model are expected to be of highest quality, due to algorithmic assumption validity. Comparing MISR RA Chl to the 49 coincident SeaBASS observations, we report a correlation coefficient (r) of 0.86, a root-mean-square error (RMSE) of 0.25, and a median absolute error (MAE) of 0.10. Statistically, a two-sample Kolmogorov-Smirnov test indicates that it is not possible to distinguish between MISR Chl and available SeaBASS in situ Chl values (p > 0.1). We also compare MODIS-Terra and MISR RA Chl statistically, over much broader regions. With about 1.5 million MISR-MODIS collocations having MODIS Chl < 1.5 mg m-3, MISR and MODIS show very good agreement: r = 0. 96, MAE = 0.09, and RMSE = 0.15. The new dark water aerosol/Chl RA can retrieve Chl in low-Chl, case I waters, independent of other imagers such as MODIS, via a largely physical algorithm, compared to the commonly applied statistical ones. At a minimum, MISR's multi-angle data should help reduce uncertainties in the MODIS-Terra ocean color retrieval where coincident measurements are made, while also allowing for a more robust retrieval of particle properties such as spectral single-scattering albedo.

  13. Water Quality Monitoring for Lake Constance with a Physically Based Algorithm for MERIS Data.

    PubMed

    Odermatt, Daniel; Heege, Thomas; Nieke, Jens; Kneubühler, Mathias; Itten, Klaus

    2008-08-05

    A physically based algorithm is used for automatic processing of MERIS level 1B full resolution data. The algorithm is originally used with input variables for optimization with different sensors (i.e. channel recalibration and weighting), aquatic regions (i.e. specific inherent optical properties) or atmospheric conditions (i.e. aerosol models). For operational use, however, a lake-specific parameterization is required, representing an approximation of the spatio-temporal variation in atmospheric and hydrooptic conditions, and accounting for sensor properties. The algorithm performs atmospheric correction with a LUT for at-sensor radiance, and a downhill simplex inversion of chl-a, sm and y from subsurface irradiance reflectance. These outputs are enhanced by a selective filter, which makes use of the retrieval residuals. Regular chl-a sampling measurements by the Lake's protection authority coinciding with MERIS acquisitions were used for parameterization, training and validation.

  14. SSM/I Rain Retrievals Within a Unified All-Weather Ocean Algorithm

    NASA Technical Reports Server (NTRS)

    Wentz, Frank J.; Spencer, Roy W.

    1996-01-01

    A new method for the physical retrieval of rain rates from satellite microwave radiometers is presented and compared to two other rainfall climatologies derived from satellites. The method is part of a unified ocean parameter retrieval algorithm that is based on the fundamental principles of radiative transfer. The algorithm simultaneously finds near-surface wind speed W, columnar water vapor V, columnar cloud liquid water L, rain rate R, and effective radiating temperature T(sub U) for the upwelling radiation. The performance of the algorithm in the absence of rain is discussed in Wentz, and this paper focuses on the rain component of the algorithm. A particular strength of the unified algorithm is its ability to 'orthogonalize' the retrievals so that there is minimum cross-talk between the retrieved parameters. For example, comparisons of the retrieved water vapor with radiosonde observations show that there is very little correlation between the water vapor retrieval error and rain rate. For rain rates from 1 to 15 mm/h, the rms difference between the retrieved water vapor and the radiosonde value is 5 mm. A novel feature of the rain retrieval method is a beamfilling correction that is based upon the ratio of the retrieved liquid water absorption coefficients at 37 GHz and 19.35 GHz. This ratio decreases by about 40% when heavy and light rain co-exist within the SSM/I footprint as compared to the case of uniform rain. This correction has the effect of increasing the rain rate when the spectral ratio of the absorption coefficients is small. Even with this beamfilling correction, tropical rainfall is still unrealistically low when the freezing level in the tropics (approx. 5 km) is used to specify the rain layer thickness. We restore realism by reducing the assumed averaged tropical rain layer thickness to 3 km, thereby accounting for the existence of warm rain processes in which the rain layer does not extend to the freezing level. Global rain rates are produced for the 1991 through 1994 period from observations taken by microwave radiometers (SSM/I) that are aboard two polar-orbiting satellites. We find that approximately 6% of the SSM/I observations detect measurable rain rates (R greater than 0.2 mm/h). Zonal averages of the rain rates show the peak at the intertropical convergence zone (ITCZ) is quite narrow in meridional extent and varies from about 7 mm/day in the winter to a maximum 11 mm/day in the summer. Very low precipitation rates (less than 0.3 mm/day) are observed in those areas of subsidence influenced by the large semipermanent anticyclones. In general, these features are similar to those reported in previously published rain climatologies. However, significant differences do exists between our rain rates and those produced by Spencer. These differences seem to be related to non-precipitating cloud water.

  15. Evaluation of MODIS columnar aerosol retrievals using AERONET in semi-arid Nevada and California, U.S.A., during the summer of 2012

    NASA Astrophysics Data System (ADS)

    Loría-Salazar, S. Marcela; Holmes, Heather A.; Patrick Arnott, W.; Barnard, James C.; Moosmüller, Hans

    2016-11-01

    Satellite characterization of local aerosol pollution is desirable because of the potential for broad spatial coverage, enabling transport studies of pollution from major sources, such as biomass burning events. However, retrieval of quantitative measures of air pollution such as Aerosol Optical Depth (AOD) from satellite measurements is challenging over land because the underlying surface albedo may be heterogeneous in space and time. Ground-based sunphotometer measurements of AOD are unaffected by surface albedo and are crucial in enabling evaluation, testing, and further development of satellite instruments and retrieval algorithms. Columnar aerosol optical properties from ground-based sunphotometers (Cimel CE-318) as part of AERONET and MODIS aerosol retrievals from Aqua and Terra satellites were compared over semi-arid California and Nevada during the summer season of 2012. Sunphotometer measurements were used as a 'ground truth' to evaluate the current state of satellite retrievals in this spatiotemporal domain. Satellite retrieved (MODIS Collection 6) AOD showed the presence of wildfires in northern California during August. During the study period, the dark-target (DT) retrieval algorithm appears to overestimate AERONET AOD by an average factor of 3.85 in the entire study domain. AOD from the deep-blue (DB) algorithm overestimates AERONET AOD by an average factor of 1.64. Low AOD correlation was also found between AERONET, DT, and DB retrievals. Smoke from fires strengthened the aerosol signal, but MODIS versus AERONET AOD correlation hardly increased during fire events (r2∼0.1-0.2 during non-fire periods and r2∼0-0.31 during fire periods). Furthermore, aerosol from fires increased the normalized mean bias (NMB) of MODIS retrievals of AOD (NMB∼23%-154% for non-fire periods and NMB∼77%-196% for fire periods). Ångström Extinction Exponent (AEE) from DB for both Terra and Aqua did not correlate with AERONET observations. High surface reflectance and incorrect aerosol physical parametrizations may still be affecting the DT and DB MODIS AOD retrievals in the semi-arid western U.S.

  16. Pulse retrieval algorithm for interferometric frequency-resolved optical gating based on differential evolution.

    PubMed

    Hyyti, Janne; Escoto, Esmerando; Steinmeyer, Günter

    2017-10-01

    A novel algorithm for the ultrashort laser pulse characterization method of interferometric frequency-resolved optical gating (iFROG) is presented. Based on a genetic method, namely, differential evolution, the algorithm can exploit all available information of an iFROG measurement to retrieve the complex electric field of a pulse. The retrieval is subjected to a series of numerical tests to prove the robustness of the algorithm against experimental artifacts and noise. These tests show that the integrated error-correction mechanisms of the iFROG method can be successfully used to remove the effect from timing errors and spectrally varying efficiency in the detection. Moreover, the accuracy and noise resilience of the new algorithm are shown to outperform retrieval based on the generalized projections algorithm, which is widely used as the standard method in FROG retrieval. The differential evolution algorithm is further validated with experimental data, measured with unamplified three-cycle pulses from a mode-locked Ti:sapphire laser. Additionally introducing group delay dispersion in the beam path, the retrieval results show excellent agreement with independent measurements with a commercial pulse measurement device based on spectral phase interferometry for direct electric-field retrieval. Further experimental tests with strongly attenuated pulses indicate resilience of differential-evolution-based retrieval against massive measurement noise.

  17. Validation and Error Characterization for the Global Precipitation Measurement

    NASA Technical Reports Server (NTRS)

    Bidwell, Steven W.; Adams, W. J.; Everett, D. F.; Smith, E. A.; Yuter, S. E.

    2003-01-01

    The Global Precipitation Measurement (GPM) is an international effort to increase scientific knowledge on the global water cycle with specific goals of improving the understanding and the predictions of climate, weather, and hydrology. These goals will be achieved through several satellites specifically dedicated to GPM along with the integration of numerous meteorological satellite data streams from international and domestic partners. The GPM effort is led by the National Aeronautics and Space Administration (NASA) of the United States and the National Space Development Agency (NASDA) of Japan. In addition to the spaceborne assets, international and domestic partners will provide ground-based resources for validating the satellite observations and retrievals. This paper describes the validation effort of Global Precipitation Measurement to provide quantitative estimates on the errors of the GPM satellite retrievals. The GPM validation approach will build upon the research experience of the Tropical Rainfall Measuring Mission (TRMM) retrieval comparisons and its validation program. The GPM ground validation program will employ instrumentation, physical infrastructure, and research capabilities at Supersites located in important meteorological regimes of the globe. NASA will provide two Supersites, one in a tropical oceanic and the other in a mid-latitude continental regime. GPM international partners will provide Supersites for other important regimes. Those objectives or regimes not addressed by Supersites will be covered through focused field experiments. This paper describes the specific errors that GPM ground validation will address, quantify, and relate to the GPM satellite physical retrievals. GPM will attempt to identify the source of errors within retrievals including those of instrument calibration, retrieval physical assumptions, and algorithm applicability. With the identification of error sources, improvements will be made to the respective calibration, assumption, or algorithm. The instrumentation and techniques of the Supersites will be discussed. The GPM core satellite, with its dual-frequency radar and conically scanning radiometer, will provide insight into precipitation drop-size distributions and potentially increased measurement capabilities of light rain and snowfall. The ground validation program will include instrumentation and techniques commensurate with these new measurement capabilities.

  18. Retrieval of atmospheric properties from hyper and multispectral imagery with the FLAASH atmospheric correction algorithm

    NASA Astrophysics Data System (ADS)

    Perkins, Timothy; Adler-Golden, Steven; Matthew, Michael; Berk, Alexander; Anderson, Gail; Gardner, James; Felde, Gerald

    2005-10-01

    Atmospheric Correction Algorithms (ACAs) are used in applications of remotely sensed Hyperspectral and Multispectral Imagery (HSI/MSI) to correct for atmospheric effects on measurements acquired by air and space-borne systems. The Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) algorithm is a forward-model based ACA created for HSI and MSI instruments which operate in the visible through shortwave infrared (Vis-SWIR) spectral regime. Designed as a general-purpose, physics-based code for inverting at-sensor radiance measurements into surface reflectance, FLAASH provides a collection of spectral analysis and atmospheric retrieval methods including: a per-pixel vertical water vapor column estimate, determination of aerosol optical depth, estimation of scattering for compensation of adjacency effects, detection/characterization of clouds, and smoothing of spectral structure resulting from an imperfect atmospheric correction. To further improve the accuracy of the atmospheric correction process, FLAASH will also detect and compensate for sensor-introduced artifacts such as optical smile and wavelength mis-calibration. FLAASH relies on the MODTRANTM radiative transfer (RT) code as the physical basis behind its mathematical formulation, and has been developed in parallel with upgrades to MODTRAN in order to take advantage of the latest improvements in speed and accuracy. For example, the rapid, high fidelity multiple scattering (MS) option available in MODTRAN4 can greatly improve the accuracy of atmospheric retrievals over the 2-stream approximation. In this paper, advanced features available in FLAASH are described, including the principles and methods used to derive atmospheric parameters from HSI and MSI data. Results are presented from processing of Hyperion, AVIRIS, and LANDSAT data.

  19. Accuracy of retrieving temperature and humidity profiles by ground-based microwave radiometry in truly complex terrain

    NASA Astrophysics Data System (ADS)

    Massaro, G.; Stiperski, I.; Pospichal, B.; Rotach, M. W.

    2015-03-01

    Within the Innsbruck Box project, a ground-based microwave radiometer (RPG-HATPRO) was operated in the Inn Valley (Austria), in very complex terrain, between September 2012 and May 2013 to obtain temperature and humidity vertical profiles of the full troposphere with a specific focus on the valley boundary layer. The profiles obtained by the radiometer with different retrieval algorithms based on different climatologies, are compared to local radiosonde data. A retrieval that is improved with respect to the one provided by the manufacturer, based on better resolved data, shows a significantly smaller root mean square error (RMSE), both for the temperature and humidity profiles. The improvement is particularly substantial at the heights close to the mountaintop level and in the upper troposphere. Lower level inversions, common in an alpine valley, are resolved to a satisfactory degree. On the other hand, upper level inversions (above 1200 m) still pose a significant challenge for retrieval. For this purpose, specialized retrieval algorithms were developed by classifying the radiosonde climatologies into specialized categories according to different criteria (seasons, daytime, nighttime) and using additional regressors (e.g., measurements from mountain stations). The training and testing on the radiosonde data for these specialized categories suggests that a classification of profiles that reproduces meaningful physical characteristics can yield improved targeted specialized retrievals. A really new and very promising method of improving the profile retrieval in a mountain region is adding further information in the retrieval, such as the surface temperature at fixed levels along a topographic slope or from nearby mountain tops.

  20. Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR) PARM tape user's guide

    NASA Technical Reports Server (NTRS)

    Han, D.; Gloersen, P.; Kim, S. T.; Fu, C. C.; Cebula, R. P.; Macmillan, D.

    1992-01-01

    The Scanning Multichannel Microwave Radiometer (SMMR) instrument, onboard the Nimbus-7 spacecraft, collected data from Oct. 1978 until Jun. 1986. The data were processed to physical parameter level products. Geophysical parameters retrieved include the following: sea-surface temperatures, sea-surface windspeed, total column water vapor, and sea-ice parameters. These products are stored on PARM-LO, PARM-SS, and PARM-30 tapes. The geophysical parameter retrieval algorithms and the quality of these products are described for the period between Nov. 1978 and Oct 1985. Additionally, data formats and data availability are included.

  1. Algorithms and sensitivity analyses for Stratospheric Aerosol and Gas Experiment II water vapor retrieval

    NASA Technical Reports Server (NTRS)

    Chu, W. P.; Chiou, E. W.; Larsen, J. C.; Thomason, L. W.; Rind, D.; Buglia, J. J.; Oltmans, S.; Mccormick, M. P.; Mcmaster, L. M.

    1993-01-01

    The operational inversion algorithm used for the retrieval of the water-vapor vertical profiles from the Stratospheric Aerosol and Gas Experiment II (SAGE II) occultation data is presented. Unlike the algorithm used for the retrieval of aerosol, O3, and NO2, the water-vapor retrieval algorithm accounts for the nonlinear relationship between the concentration versus the broad-band absorption characteristics of water vapor. Problems related to the accuracy of the computational scheme, the accuracy of the removal of other interfering species, and the expected uncertainty of the retrieved profile are examined. Results are presented on the error analysis of the SAGE II water vapor retrieval, indicating that the SAGE II instrument produced good quality water vapor data.

  2. A Fast and Sensitive New Satellite SO2 Retrieval Algorithm based on Principal Component Analysis: Application to the Ozone Monitoring Instrument

    NASA Technical Reports Server (NTRS)

    Li, Can; Joiner, Joanna; Krotkov, A.; Bhartia, Pawan K.

    2013-01-01

    We describe a new algorithm to retrieve SO2 from satellite-measured hyperspectral radiances. We employ the principal component analysis technique in regions with no significant SO2 to capture radiance variability caused by both physical processes (e.g., Rayleigh and Raman scattering and ozone absorption) and measurement artifacts. We use the resulting principal components and SO2 Jacobians calculated with a radiative transfer model to directly estimate SO2 vertical column density in one step. Application to the Ozone Monitoring Instrument (OMI) radiance spectra in 310.5-340 nm demonstrates that this approach can greatly reduce biases in the operational OMI product and decrease the noise by a factor of 2, providing greater sensitivity to anthropogenic emissions. The new algorithm is fast, eliminates the need for instrument-specific radiance correction schemes, and can be easily adapted to other sensors. These attributes make it a promising technique for producing longterm, consistent SO2 records for air quality and climate research.

  3. Use of GOES, SSM/I, TRMM Satellite Measurements Estimating Water Budget Variations in Gulf of Mexico - Caribbean Sea Basins

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.

    2004-01-01

    This study presents results from a multi-satellite/multi-sensor retrieval system designed to obtain the atmospheric water budget over the open ocean. A combination of 3ourly-sampled monthly datasets derived from the GOES-8 5-channel Imager, the TRMM TMI radiometer, and the DMSP 7-channel passive microwave radiometers (SSM/I) have been acquired for the combined Gulf of Mexico-Caribbean Sea basin. Whereas the methodology has been tested over this basin, the retrieval system is designed for portability to any open-ocean region. Algorithm modules using the different datasets to retrieve individual geophysical parameters needed in the water budget equation are designed in a manner that takes advantage of the high temporal resolution of the GOES-8 measurements, as well as the physical relationships inherent to the TRMM and SSM/I passive microwave measurements in conjunction with water vapor, cloud liquid water, and rainfall. The methodology consists of retrieving the precipitation, surface evaporation, and vapor-cloud water storage terms in the atmospheric water balance equation from satellite techniques, with the water vapor advection term being obtained as the residue needed for balance. Thus, the intent is to develop a purely satellite-based method for obtaining the full set of terms in the atmospheric water budget equation without requiring in situ sounding information on the wind profile. The algorithm is validated by cross-checking all the algorithm components through multiple- algorithm retrieval intercomparisons. A further check on the validation is obtained by directly comparing water vapor transports into the targeted basin diagnosed from the satellite algorithms to those obtained observationally from a network of land-based upper air stations that nearly uniformly surround the basin, although it is fair to say that these checks are more effective m identifying problems in estimating vapor transports from a leaky operational radiosonde network than in verifying the transport estimates determined from the satellite algorithm system Total columnar atmospheric water budget results are presented for an extended annual cycle consisting of the months of October-97, January-98, April-98, July-98,October-98, and January 1999. These results are used to emphasize the changing relationship in E-P, as well as in the varying roles of storage and advection in balancing E-P both on daily and monthly time scales and on localized and basin space scales. Results from the algorithm-to-algorithm intercomparisons are also presented in the context of sensitivity testing to help understand the intrinsic uncertainties in evaluating the water budget terms by an all-satellite algorithm approach.

  4. Monthly-Diurnal Water Budget Variability Over Gulf of Mexico-Caribbean Sea Basin from Satellite Observations

    NASA Technical Reports Server (NTRS)

    Smith, E. A.; Santos, P.

    2006-01-01

    This study presents results from a multi-satellite/multi-sensor retrieval system design d to obtain the atmospheric water budget over the open ocean. A combination of hourly-sampled monthly datasets derived from the GOES-8 5-channel Imager, the TRMM TMI radiometer, and the DMSP 7-channel passive microwave radiometers (SSM/I) have been acquired for the combined Gulf of Mexico-Caribbean Sea basin. Whereas the methodology has been tested over this basin, the retrieval system is designed for portability to any open-ocean region. Algorithm modules using the different datasets to retrieve individual geophysical parameters needed in the water budget equation are designed in a manner that takes advantage of the high temporal resolution of the GOES-8 measurements, as well as the physical relationships inherent to the TRMM and SSM/I passive microwave measurements in conjunction with water vapor, cloud liquid water, and rainfall. The methodology consists of retrieving the precipitation, surface evaporation, and vapor-cloud water storage terms in the atmospheric water balance equation from satellite techniques, with the water vapor advection term being obtained as the residue needed for balance. Thus, the intent is to develop a purely satellite-based method for obtaining the full set of terms in the atmospheric water budget equation without requiring in situ sounding information on the wind profile. The algorithm is validated by cross-checking all the algorithm components through multiple-algorithm retrieval intercomparisons. A further check on the validation is obtained by directly comparing water vapor transports into the targeted basin diagnosed from the satellite algorithms to those obtained observationally from a network of land-based upper air stations that nearly uniformly surround the basin, although it is fair to say that these checks are more effective in identifying problems in estimating vapor transports from a "leaky" operational radiosonde network than in verifying the transport estimates determined from the satellite algorithm system. Total columnar atmospheric water budget results are presented for an extended annual cycle consisting of the months of October-97, January-98, April-98, July-98,October-98, and January- 1999. These results are used to emphasize the changing relationship in E-P, as well as in the varying roles of storage and advection in balancing E-P both on daily and monthly time scales and on localized and basin space scales. Results from the algorithm-to-algorithm intercomparisons are also presented in the context of sensitivity testing to help understand the intrinsic uncertainties in evaluating the water budget terms by an all-satellite algorithm approach.

  5. Comparative Results of AIRS AMSU and CrIS/ATMS Retrievals Using a Scientifically Equivalent Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Kouvaris, Louis; Iredell, Lena

    2016-01-01

    The AIRS Science Team Version 6 retrieval algorithm is currently producing high quality level-3 Climate Data Records (CDRs) from AIRSAMSU which are critical for understanding climate processes. The AIRS Science Team is finalizing an improved Version-7 retrieval algorithm to reprocess all old and future AIRS data. AIRS CDRs should eventually cover the period September 2002 through at least 2020. CrISATMS is the only scheduled follow on to AIRSAMSU. The objective of this research is to prepare for generation of a long term CrISATMS level-3 data using a finalized retrieval algorithm that is scientifically equivalent to AIRSAMSU Version-7.

  6. Rainfall Estimates from the TMI and the SSM/I

    NASA Technical Reports Server (NTRS)

    Hong, Ye; Kummerow, Christian D.; Olson, William S.; Viltard, Nicolas

    1999-01-01

    The Tropical Rainfall Measuring Mission (TRMM), which is a joint Japan-U.S. Earth observing satellite, has been successfully launched from Japan on November 27, 1997. The main purpose of the TRMM is to measure quantitatively rainfall over the tropics for the research of climate and weather. One of three rainfall measuring instruments abroad the TRMM is the high resolution TRMM Microwave Imager (TMI). The TMI instrument is essentially the copy of the SSM/I with a dual-polarized pair of 10.7 GHz channels added to increase the dynamic range of rainfall estimates. In addition, the 21.3 GHz water vapor absorption channel is designed in the TMI as opposed to the 22.235 GHz in the SSM/I to avoid saturation in the tropics. This paper will present instantaneous rain rates estimated from the coincident TMI and SSM/I observations. The algorithm for estimating instantaneous rainfall rates from both sensors is the Goddard Profiling algorithm (Gprof). The Gprof algorithm is a physically based, multichannel rainfall retrieval algorithm, The algorithm is very portable and can be used for various sensors with different channels and resolutions. The comparison of rain rates estimated from TMI and SSM/I on the same rain regions will be performed. The results from the comparison and the insight of tile retrieval algorithm will be given.

  7. Evaluation and Application of Satellite-Based Latent Heating Profile Estimation Methods

    NASA Technical Reports Server (NTRS)

    Olson, William S.; Grecu, Mircea; Yang, Song; Tao, Wei-Kuo

    2004-01-01

    In recent years, methods for estimating atmospheric latent heating vertical structure from both passive and active microwave remote sensing have matured to the point where quantitative evaluation of these methods is the next logical step. Two approaches for heating algorithm evaluation are proposed: First, application of heating algorithms to synthetic data, based upon cloud-resolving model simulations, can be used to test the internal consistency of heating estimates in the absence of systematic errors in physical assumptions. Second, comparisons of satellite-retrieved vertical heating structures to independent ground-based estimates, such as rawinsonde-derived analyses of heating, provide an additional test. The two approaches are complementary, since systematic errors in heating indicated by the second approach may be confirmed by the first. A passive microwave and combined passive/active microwave heating retrieval algorithm are evaluated using the described approaches. In general, the passive microwave algorithm heating profile estimates are subject to biases due to the limited vertical heating structure information contained in the passive microwave observations. These biases may be partly overcome by including more environment-specific a priori information into the algorithm s database of candidate solution profiles. The combined passive/active microwave algorithm utilizes the much higher-resolution vertical structure information provided by spaceborne radar data to produce less biased estimates; however, the global spatio-temporal sampling by spaceborne radar is limited. In the present study, the passive/active microwave algorithm is used to construct a more physically-consistent and environment-specific set of candidate solution profiles for the passive microwave algorithm and to help evaluate errors in the passive algorithm s heating estimates. Although satellite estimates of latent heating are based upon instantaneous, footprint- scale data, suppression of random errors requires averaging to at least half-degree resolution. Analysis of mesoscale and larger space-time scale phenomena based upon passive and passive/active microwave heating estimates from TRMM, SSMI, and AMSR data will be presented at the conference.

  8. Evaluation of Global LAI/FPAR Products from VIIRS and MODIS: Spatiotemporal Consistency and Uncertainty

    NASA Astrophysics Data System (ADS)

    Xu, B.; Park, T.; Yan, K.; Chen, C.; Jing, L.; Qinhuo, L.; Song, W.; Knyazikhin, Y.; Myneni, R.

    2017-12-01

    The operational EOS MODIS LAI/FPAR algorithm has been successfully transitioned to Suomi-NPP VIIRS by optimizing a small set of configurable parameters in Look-Up-Tables (LUTs). Our preliminary evaluation results show a reasonable agreement between VIIRS and MODIS LAI/FPAR retrievals. However, we still need more comprehensive investigations to assure the continuity of multi-sensor based global LAI/FPAR time series, as the preliminary evaluation was spatiotemporally limited. Here, we used a multi-year (2012-2016) global LAI/FPAR product generated from VIIRS Version 1 and MODIS Collection 6 to evaluate their spatiotemporal consistency at global and site scales. We also quantified the uncertainty of the product by defining and measuring theoretical and physical terms. For both consistency and uncertainty evaluation, we accounted varying biome types and temporal resolutions (i.e., 8-day, seasonal and annual steps). A newly developed approach (a.k.a., Grading and Upscaling Ground Measurements, GUGM) generating accurate validation datasets was implemented to help validating both products. Our results clearly indicate that the LAI/FPAR retrievals from VIIRS and MODIS are quite consistent at different spatio- (i.e., global and site) and temporal- (i.e., 8-day, seasonal and annual) scales. It is also worthy to note that the rate of retrievals from the radiative transfer based main algorithm is also comparable. However, we also saw a relatively larger LAI/FPAR discrepancy over highly dense tropical forests and a slightly less retrieval rate (main algorithm) from VIIRS over high latitude regions. For the uncertainty assessment, the theoretical uncertainty of VIIRS LAI (FPAR) is less than 0.2 (0.06) for non-forest and 0.9 (0.08) for forest, which is nearly identical to those of MODIS. The physical uncertainties of VIIRS and MODIS LAI (FPAR) products assessed by comparing to ground measurements are estimated by 0.60 (0.10) and 0.55 (0.11), respectively. All of the results presented here imbue confidence in assuring the consistency between VIIRS and MODIS LAI/FPAR retrievals, and the feasibility of generating long-term multi-sensor LAI/FPAR time series.

  9. Aerosol and Surface Parameter Retrievals for a Multi-Angle, Multiband Spectrometer

    NASA Technical Reports Server (NTRS)

    Broderick, Daniel

    2012-01-01

    This software retrieves the surface and atmosphere parameters of multi-angle, multiband spectra. The synthetic spectra are generated by applying the modified Rahman-Pinty-Verstraete Bidirectional Reflectance Distribution Function (BRDF) model, and a single-scattering dominated atmosphere model to surface reflectance data from Multiangle Imaging SpectroRadiometer (MISR). The aerosol physical model uses a single scattering approximation using Rayleigh scattering molecules, and Henyey-Greenstein aerosols. The surface and atmosphere parameters of the models are retrieved using the Lavenberg-Marquardt algorithm. The software can retrieve the surface and atmosphere parameters with two different scales. The surface parameters are retrieved pixel-by-pixel while the atmosphere parameters are retrieved for a group of pixels where the same atmosphere model parameters are applied. This two-scale approach allows one to select the natural scale of the atmosphere properties relative to surface properties. The software also takes advantage of an intelligent initial condition given by the solution of the neighbor pixels.

  10. CDRD and PNPR satellite passive microwave precipitation retrieval algorithms: EuroTRMM/EURAINSAT origins and H-SAF operations

    NASA Astrophysics Data System (ADS)

    Mugnai, A.; Smith, E. A.; Tripoli, G. J.; Bizzarri, B.; Casella, D.; Dietrich, S.; Di Paola, F.; Panegrossi, G.; Sanò, P.

    2013-04-01

    Satellite Application Facility on Support to Operational Hydrology and Water Management (H-SAF) is a EUMETSAT (European Organisation for the Exploitation of Meteorological Satellites) program, designed to deliver satellite products of hydrological interest (precipitation, soil moisture and snow parameters) over the European and Mediterranean region to research and operations users worldwide. Six satellite precipitation algorithms and concomitant precipitation products are the responsibility of various agencies in Italy. Two of these algorithms have been designed for maximum accuracy by restricting their inputs to measurements from conical and cross-track scanning passive microwave (PMW) radiometers mounted on various low Earth orbiting satellites. They have been developed at the Italian National Research Council/Institute of Atmospheric Sciences and Climate in Rome (CNR/ISAC-Rome), and are providing operational retrievals of surface rain rate and its phase properties. Each of these algorithms is physically based, however, the first of these, referred to as the Cloud Dynamics and Radiation Database (CDRD) algorithm, uses a Bayesian-based solution solver, while the second, referred to as the PMW Neural-net Precipitation Retrieval (PNPR) algorithm, uses a neural network-based solution solver. Herein we first provide an overview of the two initial EU research and applications programs that motivated their initial development, EuroTRMM and EURAINSAT (European Satellite Rainfall Analysis and Monitoring at the Geostationary Scale), and the current H-SAF program that provides the framework for their operational use and continued development. We stress the relevance of the CDRD and PNPR algorithms and their precipitation products in helping secure the goals of H-SAF's scientific and operations agenda, the former helpful as a secondary calibration reference to other algorithms in H-SAF's complete mix of algorithms. Descriptions of the algorithms' designs are provided including a few examples of their performance. This aspect of the development of the two algorithms is placed in the context of what we refer to as the TRMM era, which is the era denoting the active and ongoing period of the Tropical Rainfall Measuring Mission (TRMM) that helped inspire their original development. In 2015, the ISAC-Rome precipitation algorithms will undergo a transformation beginning with the upcoming Global Precipitation Measurement (GPM) mission, particularly the GPM Core Satellite technologies. A few years afterward, the first pair of imaging and sounding Meteosat Third Generation (MTG) satellites will be launched, providing additional technological advances. Various of the opportunities presented by the GPM Core and MTG satellites for improving the current CDRD and PNPR precipitation retrieval algorithms, as well as extending their product capability, are discussed.

  11. Retrieval of Aerosol Microphysical Properties from AERONET Photo-Polarimetric Measurements. 2: A New Research Algorithm and Case Demonstration

    NASA Technical Reports Server (NTRS)

    Xu, Xiaoguang; Wang, Jun; Zeng, Jing; Spurr, Robert; Liu, Xiong; Dubovik, Oleg; Li, Li; Li, Zhengqiang; Mishchenko, Michael I.; Siniuk, Aliaksandr; hide

    2015-01-01

    A new research algorithm is presented here as the second part of a two-part study to retrieve aerosol microphysical properties from the multispectral and multiangular photopolarimetric measurements taken by Aerosol Robotic Network's (AERONET's) new-generation Sun photometer. The algorithm uses an advanced UNified and Linearized Vector Radiative Transfer Model and incorporates a statistical optimization approach.While the new algorithmhas heritage from AERONET operational inversion algorithm in constraining a priori and retrieval smoothness, it has two new features. First, the new algorithmretrieves the effective radius, effective variance, and total volume of aerosols associated with a continuous bimodal particle size distribution (PSD) function, while the AERONET operational algorithm retrieves aerosol volume over 22 size bins. Second, our algorithm retrieves complex refractive indices for both fine and coarsemodes,while the AERONET operational algorithm assumes a size-independent aerosol refractive index. Mode-resolved refractive indices can improve the estimate of the single-scattering albedo (SSA) for each aerosol mode and thus facilitate the validation of satellite products and chemistry transport models. We applied the algorithm to a suite of real cases over Beijing_RADI site and found that our retrievals are overall consistent with AERONET operational inversions but can offer mode-resolved refractive index and SSA with acceptable accuracy for the aerosol composed by spherical particles. Along with the retrieval using both radiance and polarization, we also performed radiance-only retrieval to demonstrate the improvements by adding polarization in the inversion. Contrast analysis indicates that with polarization, retrieval error can be reduced by over 50% in PSD parameters, 10-30% in the refractive index, and 10-40% in SSA, which is consistent with theoretical analysis presented in the companion paper of this two-part study.

  12. Retrieval of radiative and microphysical properties of clouds from multispectral infrared measurements

    NASA Astrophysics Data System (ADS)

    Iwabuchi, Hironobu; Saito, Masanori; Tokoro, Yuka; Putri, Nurfiena Sagita; Sekiguchi, Miho

    2016-12-01

    Satellite remote sensing of the macroscopic, microphysical, and optical properties of clouds are useful for studying spatial and temporal variations of clouds at various scales and constraining cloud physical processes in climate and weather prediction models. Instead of using separate independent algorithms for different cloud properties, a unified, optimal estimation-based cloud retrieval algorithm is developed and applied to moderate resolution imaging spectroradiometer (MODIS) observations using ten thermal infrared bands. The model considers sensor configurations, background surface and atmospheric profile, and microphysical and optical models of ice and liquid cloud particles and radiative transfer in a plane-parallel, multilayered atmosphere. Measurement and model errors are thoroughly quantified from direct comparisons of clear-sky observations over the ocean with model calculations. Performance tests by retrieval simulations show that ice cloud properties are retrieved with high accuracy when cloud optical thickness (COT) is between 0.1 and 10. Cloud-top pressure is inferred with uncertainty lower than 10 % when COT is larger than 0.3. Applying the method to a tropical cloud system and comparing the results with the MODIS Collection 6 cloud product shows good agreement for ice cloud optical thickness when COT is less than about 5. Cloud-top height agrees well with estimates obtained by the CO2 slicing method used in the MODIS product. The present algorithm can detect optically thin parts at the edges of high clouds well in comparison with the MODIS product, in which these parts are recognized as low clouds by the infrared window method. The cloud thermodynamic phase in the present algorithm is constrained by cloud-top temperature, which tends not to produce results with an ice cloud that is too warm and liquid cloud that is too cold.

  13. Comparative Results of AIRS/AMSU and CrIS/ATMS Retrievals Using a Scientifically Equivalent Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Kouvaris, Louis; Iredell, Lena

    2016-01-01

    The AIRS Science Team Version-6 retrieval algorithm is currently producing high quality level-3 Climate Data Records (CDRs) from AIRS/AMSU which are critical for understanding climate processes. The AIRS Science Team is finalizing an improved Version-7 retrieval algorithm to reprocess all old and future AIRS data. AIRS CDRs should eventually cover the period September 2002 through at least 2020. CrIS/ATMS is the only scheduled follow on to AIRS/AMSU. The objective of this research is to prepare for generation of long term CrIS/ATMS CDRs using a retrieval algorithm that is scientifically equivalent to AIRS/AMSU Version-7.

  14. Round Robin evaluation of soil moisture retrieval models for the MetOp-A ASCAT Instrument

    NASA Astrophysics Data System (ADS)

    Gruber, Alexander; Paloscia, Simonetta; Santi, Emanuele; Notarnicola, Claudia; Pasolli, Luca; Smolander, Tuomo; Pulliainen, Jouni; Mittelbach, Heidi; Dorigo, Wouter; Wagner, Wolfgang

    2014-05-01

    Global soil moisture observations are crucial to understand hydrologic processes, earth-atmosphere interactions and climate variability. ESA's Climate Change Initiative (CCI) project aims to create a global consistent long-term soil moisture data set based on the merging of the best available active and passive satellite-based microwave sensors and retrieval algorithms. Within the CCI, a Round Robin evaluation of existing retrieval algorithms for both active and passive instruments was carried out. In this study we present the comparison of five different retrieval algorithms covering three different modelling principles applied to active MetOp-A ASCAT L1 backscatter data. These models include statistical models (Bayesian Regression and Support Vector Regression, provided by the Institute for Applied Remote Sensing, Eurac Research Viale Druso, Italy, and an Artificial Neural Network, provided by the Institute of Applied Physics, CNR-IFAC, Italy), a semi-empirical model (provided by the Finnish Meteorological Institute), and a change detection model (provided by the Vienna University of Technology). The algorithms were applied on L1 backscatter data within the period of 2007-2011, resampled to a 12.5 km grid. The evaluation was performed over 75 globally distributed, quality controlled in situ stations drawn from the International Soil Moisture Network (ISMN) using surface soil moisture data from the Global Land Data Assimilation System (GLDAS-) Noah land surface model as second independent reference. The temporal correlation between the data sets was analyzed and random errors of the the different algorithms were estimated using the triple collocation method. Absolute soil moisture values as well as soil moisture anomalies were considered including both long-term anomalies from the mean seasonal cycle and short-term anomalies from a five weeks moving average window. Results show a very high agreement between all five algorithms for most stations. A slight vegetation dependency of the errors and a spatial decorrelation of the performance patterns of the different algorithms was found. We conclude that future research should focus on understanding, combining and exploiting the advantages of all available modelling approaches rather than trying to optimize one approach to fit every possible condition.

  15. Combined neural network/Phillips-Tikhonov approach to aerosol retrievals over land from the NASA Research Scanning Polarimeter

    NASA Astrophysics Data System (ADS)

    Di Noia, Antonio; Hasekamp, Otto P.; Wu, Lianghai; van Diedenhoven, Bastiaan; Cairns, Brian; Yorks, John E.

    2017-11-01

    In this paper, an algorithm for the retrieval of aerosol and land surface properties from airborne spectropolarimetric measurements - combining neural networks and an iterative scheme based on Phillips-Tikhonov regularization - is described. The algorithm - which is an extension of a scheme previously designed for ground-based retrievals - is applied to measurements from the Research Scanning Polarimeter (RSP) on board the NASA ER-2 aircraft. A neural network, trained on a large data set of synthetic measurements, is applied to perform aerosol retrievals from real RSP data, and the neural network retrievals are subsequently used as a first guess for the Phillips-Tikhonov retrieval. The resulting algorithm appears capable of accurately retrieving aerosol optical thickness, fine-mode effective radius and aerosol layer height from RSP data. Among the advantages of using a neural network as initial guess for an iterative algorithm are a decrease in processing time and an increase in the number of converging retrievals.

  16. Global Precipitation Measurement (GPM) Ground Validation: Plans and Preparations

    NASA Technical Reports Server (NTRS)

    Schwaller, M.; Bidwell, S.; Durning, F. J.; Smith, E.

    2004-01-01

    The Global Precipitation Measurement (GPM) program is an international partnership led by the National Aeronautics and Space Administration (NASA) and the Japan Aerospace Exploration Agency (JAXA). GPM will improve climate, weather, and hydro-meteorological forecasts through more frequent and more accurate measurement of precipitation across the globe. This paper describes the concept, the planning, and the preparations for Ground Validation within the GPM program. Ground Validation (GV) plays an important role in the program by investigating and quantitatively assessing the errors within the satellite retrievals. These quantitative estimates of retrieval errors will assist the scientific community by bounding the errors within their research products. The two fundamental requirements of the GPM Ground Validation program are: (1) error characterization of the precipitation retrievals and (2) continual improvement of the satellite retrieval algorithms. These two driving requirements determine the measurements, instrumentation, and location for ground observations. This paper outlines GV plans for estimating the systematic and random components of retrieval error and for characterizing the spatial p d temporal structure of the error and plans for algorithm improvement in which error models are developed and experimentally explored to uncover the physical causes of errors within the retrievals. This paper discusses NASA locations for GV measurements as well as anticipated locations from international GPM partners. NASA's primary locations for validation measurements are an oceanic site at Kwajalein Atoll in the Republic of the Marshall Islands and a continental site in north-central Oklahoma at the U.S. Department of Energy's Atmospheric Radiation Measurement Program site.

  17. The Complexity of Bit Retrieval

    DOE PAGES

    Elser, Veit

    2018-09-20

    Bit retrieval is the problem of reconstructing a periodic binary sequence from its periodic autocorrelation, with applications in cryptography and x-ray crystallography. After defining the problem, with and without noise, we describe and compare various algorithms for solving it. A geometrical constraint satisfaction algorithm, relaxed-reflect-reflect, is currently the best algorithm for noisy bit retrieval.

  18. The Complexity of Bit Retrieval

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elser, Veit

    Bit retrieval is the problem of reconstructing a periodic binary sequence from its periodic autocorrelation, with applications in cryptography and x-ray crystallography. After defining the problem, with and without noise, we describe and compare various algorithms for solving it. A geometrical constraint satisfaction algorithm, relaxed-reflect-reflect, is currently the best algorithm for noisy bit retrieval.

  19. Inter-comparison of the EUMETSAT H-SAF and NASA PPS precipitation products over Western Europe.

    NASA Astrophysics Data System (ADS)

    Kidd, Chris; Panegrossi, Giulia; Ringerud, Sarah; Stocker, Erich

    2017-04-01

    The development of precipitation retrieval techniques utilising passive microwave satellite observations has achieved a good degree of maturity through the use of physically-based schemes. The DMSP Special Sensor Microwave Imager/Sounder (SSMIS) has been the mainstay of passive microwave observations over the last 13 years forming the basis of many satellite precipitation products, including NASA's Precipitation Processing System (PPS) and EUMETSAT's Hydrological Satellite Application Facility (H-SAF). The NASA PPS product utilises the Goddard Profiling (GPROF; currently 2014v2-0) retrieval scheme that provides a physically consistent retrieval scheme through the use of coincident active/passive microwave retrievals from the Global Precipitation Measurement (GPM) mission core satellite. The GPM combined algorithm retrieves hydrometeor profiles optimized for consistency with both Dual-frequency Precipitation Radar (DPR) and GPM Microwave Imager (GMI); these profiles form the basis of the GPROF database which can be utilized for any constellation radiometer within the framework a Bayesian retrieval scheme. The H-SAF product (PR-OBS-1 v1.7) is based on a physically-based Bayesian technique where the a priori information is provided by a Cloud Dynamic Radiation Database (CDRD). Meteorological parameter constraints, derived from synthetic dynamical-thermodynamical-hydrological meteorological profile variables, are used in conjunction with multi-hydrometeor microphysical profiles and multispectral PMW brightness temperature vectors into a specialized a priori knowledge database underpinning and guiding the algorithm's Bayesian retrieval solver. This paper will present the results of an inter-comparison of the NASA PPS GPROF and EUMETSAT H-SAF PR-OBS-1 products over Western Europe for the period from 1 January 2015 through 31 December 2016. Surface radar is derived from the UKMO-derived Nimrod European radar product, available at 15 minute/5 km resolution. Initial results show that overall the correlations between the two satellite precipitation products and surface radar precipitation estimates are similar, particularly for cases where there is extensive precipitation; however, the H-SAF tends to have poorer correlations in situations where rain is light or limited in extent. Similarly, RMSEs for the GPROF scheme tend to a smaller than those of the H-SAF retrievals. The difference in the performance can be traced to the identification of precipitation; the GPROF2014v2-0 scheme overestimates the occurrence and extent of the precipitation, generating a significant amount of light precipitation. The H-SAF scheme has a lower precipitation threshold of about 0.25 mmh-1 while overestimating moderate and higher precipitation intensities.

  20. Evaluation of SEVIRI-Derived Rain Rates and Accumulated Rainfall with TRMM-TMI and Rain Gauge Data over West-Africa

    NASA Astrophysics Data System (ADS)

    Wolters, E. L. A.; Roebeling, R. A.; Stammes, P.; Wang, P.; Ali, A.; Brissebrat, G.

    2009-11-01

    Clouds are of paramount importance to the hydrological cycle, as they influence the surface energy balance, thereby constraining the amount of energy available for evaporation, and their contribution through precipitation. Especially in regions where water availability is critical, such as in West-Africa, accurate determination of various terms of the hydrological cycle is warranted. At the Royal Netherlands Meteorological Institute (KNMI), an algorithm to retrieve Cloud Physical Properties (CPP) from mainly visible and near-infrared spectral channel radiances from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard Meteosat-8 and -9 has been developed. Recently, this algorithm as been extended with a rain rate retrieval method. Evaluation of this geophysical quantity has been done with rain radar data over the Netherlands. This paper presents the first results of this rain rate retrieval over West-Africa for June 2006. In addition, the added value of the high temporal and spatial resolution of the SEVIRI instrument is shown. Over land, retrievals are compared with rain gauge observations performed during the African Monsoon Multidisciplinary Analyses (AMMA) project and with a kriged dataset of the Comite Inter-Estate pour la Lutte contre la Secheresse au Sahel (CILSS) rain gauge network, whereas rain rate retrievals over ocean are evaluated using Tropical Rainfall Measurement Mission (TRMM) Microwave Imager (TMI) data.

  1. Effects of vertical distribution of water vapor and temperature on total column water vapor retrieval error

    NASA Technical Reports Server (NTRS)

    Sun, Jielun

    1993-01-01

    Results are presented of a test of the physically based total column water vapor retrieval algorithm of Wentz (1992) for sensitivity to realistic vertical distributions of temperature and water vapor. The ECMWF monthly averaged temperature and humidity fields are used to simulate the spatial pattern of systematic retrieval error of total column water vapor due to this sensitivity. The estimated systematic error is within 0.1 g/sq cm over about 70 percent of the global ocean area; systematic errors greater than 0.3 g/sq cm are expected to exist only over a few well-defined regions, about 3 percent of the global oceans, assuming that the global mean value is unbiased.

  2. Optimization of the GSFC TROPOZ DIAL retrieval using synthetic lidar returns and ozonesondes - Part 1: Algorithm validation

    NASA Astrophysics Data System (ADS)

    Sullivan, J. T.; McGee, T. J.; Leblanc, T.; Sumnicht, G. K.; Twigg, L. W.

    2015-10-01

    The main purpose of the NASA Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL) is to measure the vertical distribution of tropospheric ozone for science investigations. Because of the important health and climate impacts of tropospheric ozone, it is imperative to quantify background photochemical ozone concentrations and ozone layers aloft, especially during air quality episodes. For these reasons, this paper addresses the necessary procedures to validate the TROPOZ retrieval algorithm and confirm that it is properly representing ozone concentrations. This paper is focused on ensuring the TROPOZ algorithm is properly quantifying ozone concentrations, and a following paper will focus on a systematic uncertainty analysis. This methodology begins by simulating synthetic lidar returns from actual TROPOZ lidar return signals in combination with a known ozone profile. From these synthetic signals, it is possible to explicitly determine retrieval algorithm biases from the known profile. This was then systematically performed to identify any areas that need refinement for a new operational version of the TROPOZ retrieval algorithm. One immediate outcome of this exercise was that a bin registration error in the correction for detector saturation within the original retrieval was discovered and was subsequently corrected for. Another noticeable outcome was that the vertical smoothing in the retrieval algorithm was upgraded from a constant vertical resolution to a variable vertical resolution to yield a statistical uncertainty of <10 %. This new and optimized vertical-resolution scheme retains the ability to resolve fluctuations in the known ozone profile, but it now allows near-field signals to be more appropriately smoothed. With these revisions to the previous TROPOZ retrieval, the optimized TROPOZ retrieval algorithm (TROPOZopt) has been effective in retrieving nearly 200 m lower to the surface. Also, as compared to the previous version of the retrieval, the TROPOZopt had an overall mean improvement of 3.5 %, and large improvements (upwards of 10-15 % as compared to the previous algorithm) were apparent between 4.5 and 9 km. Finally, to ensure the TROPOZopt retrieval algorithm is robust enough to handle actual lidar return signals, a comparison is shown between four nearby ozonesonde measurements. The ozonesondes are mostly within the TROPOZopt retrieval uncertainty bars, which implies that this exercise was quite successful.

  3. Accuracy of retrieving temperature and humidity profiles by ground-based microwave radiometry in truly complex terrain

    NASA Astrophysics Data System (ADS)

    Massaro, G.; Stiperski, I.; Pospichal, B.; Rotach, M. W.

    2015-08-01

    Within the Innsbruck Box project, a ground-based microwave radiometer (RPG-HATPRO) was operated in the Inn Valley (Austria), in very complex terrain, between September 2012 and May 2013 to obtain temperature and humidity vertical profiles of the full troposphere with a specific focus on the valley boundary layer. In order to assess its performance in a deep alpine valley, the profiles obtained by the radiometer with different retrieval algorithms based on different climatologies are compared to local radiosonde data. A retrieval that is improved with respect to the one provided by the manufacturer, based on better resolved data, shows a significantly smaller root mean square error (RMSE), both for the temperature and humidity profiles. The improvement is particularly substantial at the heights close to the mountaintop level and in the upper troposphere. Lower-level inversions, common in an alpine valley, are resolved to a satisfactory degree. On the other hand, upper-level inversions (above 1200 m) still pose a significant challenge for retrieval. For this purpose, specialized retrieval algorithms were developed by classifying the radiosonde climatologies into specialized categories according to different criteria (seasons, daytime, nighttime) and using additional regressors (e.g., measurements from mountain stations). The training and testing on the radiosonde data for these specialized categories suggests that a classification of profiles that reproduces meaningful physical characteristics can yield improved targeted specialized retrievals. A novel and very promising method of improving the profile retrieval in a mountainous region is adding further information in the retrieval, such as the surface temperature at fixed levels along a topographic slope or from nearby mountaintops.

  4. An enhanced VIIRS aerosol optical thickness (AOT) retrieval algorithm over land using a global surface reflectance ratio database

    NASA Astrophysics Data System (ADS)

    Zhang, Hai; Kondragunta, Shobha; Laszlo, Istvan; Liu, Hongqing; Remer, Lorraine A.; Huang, Jingfeng; Superczynski, Stephen; Ciren, Pubu

    2016-09-01

    The Visible/Infrared Imager Radiometer Suite (VIIRS) on board the Suomi National Polar-orbiting Partnership (S-NPP) satellite has been retrieving aerosol optical thickness (AOT), operationally and globally, over ocean and land since shortly after S-NPP launch in 2011. However, the current operational VIIRS AOT retrieval algorithm over land has two limitations in its assumptions for land surfaces: (1) it only retrieves AOT over the dark surfaces and (2) it assumes that the global surface reflectance ratios between VIIRS bands are constants. In this work, we develop a surface reflectance ratio database over land with a spatial resolution 0.1° × 0.1° using 2 years of VIIRS top of atmosphere reflectances. We enhance the current operational VIIRS AOT retrieval algorithm by applying the surface reflectance ratio database in the algorithm. The enhanced algorithm is able to retrieve AOT over both dark and bright surfaces. Over bright surfaces, the VIIRS AOT retrievals from the enhanced algorithm have a correlation of 0.79, mean bias of -0.008, and standard deviation (STD) of error of 0.139 when compared against the ground-based observations at the global AERONET (Aerosol Robotic Network) sites. Over dark surfaces, the VIIRS AOT retrievals using the surface reflectance ratio database improve the root-mean-square error from 0.150 to 0.123. The use of the surface reflectance ratio database also increases the data coverage of more than 20% over dark surfaces. The AOT retrievals over bright surfaces are comparable to MODIS Deep Blue AOT retrievals.

  5. The operational cloud retrieval algorithms from TROPOMI on board Sentinel-5 Precursor

    NASA Astrophysics Data System (ADS)

    Loyola, Diego G.; Gimeno García, Sebastián; Lutz, Ronny; Argyrouli, Athina; Romahn, Fabian; Spurr, Robert J. D.; Pedergnana, Mattia; Doicu, Adrian; Molina García, Víctor; Schüssler, Olena

    2018-01-01

    This paper presents the operational cloud retrieval algorithms for the TROPOspheric Monitoring Instrument (TROPOMI) on board the European Space Agency Sentinel-5 Precursor (S5P) mission scheduled for launch in 2017. Two algorithms working in tandem are used for retrieving cloud properties: OCRA (Optical Cloud Recognition Algorithm) and ROCINN (Retrieval of Cloud Information using Neural Networks). OCRA retrieves the cloud fraction using TROPOMI measurements in the ultraviolet (UV) and visible (VIS) spectral regions, and ROCINN retrieves the cloud top height (pressure) and optical thickness (albedo) using TROPOMI measurements in and around the oxygen A-band in the near infrared (NIR). Cloud parameters from TROPOMI/S5P will be used not only for enhancing the accuracy of trace gas retrievals but also for extending the satellite data record of cloud information derived from oxygen A-band measurements, a record initiated with the Global Ozone Monitoring Experiment (GOME) on board the second European Remote-Sensing Satellite (ERS-2) over 20 years ago. The OCRA and ROCINN algorithms are integrated in the S5P operational processor UPAS (Universal Processor for UV/VIS/NIR Atmospheric Spectrometers), and we present here UPAS cloud results using the Ozone Monitoring Instrument (OMI) and GOME-2 measurements. In addition, we examine anticipated challenges for the TROPOMI/S5P cloud retrieval algorithms, and we discuss the future validation needs for OCRA and ROCINN.

  6. Remote assessment of ocean color for interpretation of satellite visible imagery: A review

    NASA Technical Reports Server (NTRS)

    Gordon, H. R.; Morel, A. Y.

    1983-01-01

    An assessment is presented of the state-of-the-art of remote, (satellite-based) Coastal Zone Color (CZCS) Scanning of color variations in the ocean due to phytoplankton. Attention is given to physical problems associated with ocean color remote sensing, in-water algorithms for the correction of atmospheric effects, constituent retrieval algorithms and application of the algorithms to CZCS imagery. The applicability of CZCS to both near-coast and mid-ocean waters is considered, and it is concluded that while differences between the two environments are complex, universal algorithms can be used for the case of mid-ocean waters, and site-specific algorithms are adequate for CZCS imaging of the near-coast oceanic environment. A short description of CVCS and some sample photographs are provided in an appendix.

  7. Imaging of voids by means of a physical-optics-based shape-reconstruction algorithm.

    PubMed

    Liseno, Angelo; Pierri, Rocco

    2004-06-01

    We analyze the performance of a shape-reconstruction algorithm for the retrieval of voids starting from the electromagnetic scattered field. Such an algorithm exploits the physical optics (PO) approximation to obtain a linear unknown-data relationship and performs inversions by means of the singular-value-decomposition approach. In the case of voids, in addition to a geometrical optics reflection, the presence of the lateral wave phenomenon must be considered. We analyze the effect of the presence of lateral waves on the reconstructions. For the sake of shape reconstruction, we can regard the PO algorithm as one of assuming the electric and magnetic field on the illuminated side as constant in amplitude and linear in phase, as far as the dependence on the frequency is concerned. Therefore we analyze how much the lateral wave phenomenon impairs such an assumption, and we show inversions for both one single and two circular voids, for different values of the background permittivity.

  8. On the Response of the Special Sensor Microwave/Imager to the Marine Environment: Implications for Atmospheric Parameter Retrievals. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Petty, Grant W.

    1990-01-01

    A reasonably rigorous basis for understanding and extracting the physical information content of Special Sensor Microwave/Imager (SSM/I) satellite images of the marine environment is provided. To this end, a comprehensive algebraic parameterization is developed for the response of the SSM/I to a set of nine atmospheric and ocean surface parameters. The brightness temperature model includes a closed-form approximation to microwave radiative transfer in a non-scattering atmosphere and fitted models for surface emission and scattering based on geometric optics calculations for the roughened sea surface. The combined model is empirically tuned using suitable sets of SSM/I data and coincident surface observations. The brightness temperature model is then used to examine the sensitivity of the SSM/I to realistic variations in the scene being observed and to evaluate the theoretical maximum precision of global SSM/I retrievals of integrated water vapor, integrated cloud liquid water, and surface wind speed. A general minimum-variance method for optimally retrieving geophysical parameters from multichannel brightness temperature measurements is outlined, and several global statistical constraints of the type required by this method are computed. Finally, a unified set of efficient statistical and semi-physical algorithms is presented for obtaining fields of surface wind speed, integrated water vapor, cloud liquid water, and precipitation from SSM/I brightness temperature data. Features include: a semi-physical method for retrieving integrated cloud liquid water at 15 km resolution and with rms errors as small as approximately 0.02 kg/sq m; a 3-channel statistical algorithm for integrated water vapor which was constructed so as to have improved linear response to water vapor and reduced sensitivity to precipitation; and two complementary indices of precipitation activity (based on 37 GHz attenuation and 85 GHz scattering, respectively), each of which are relatively insensitive to variations in other environmental parameters.

  9. Gradient descent algorithm applied to wavefront retrieval from through-focus images by an extreme ultraviolet microscope with partially coherent source

    DOE PAGES

    Yamazoe, Kenji; Mochi, Iacopo; Goldberg, Kenneth A.

    2014-12-01

    The wavefront retrieval by gradient descent algorithm that is typically applied to coherent or incoherent imaging is extended to retrieve a wavefront from a series of through-focus images by partially coherent illumination. For accurate retrieval, we modeled partial coherence as well as object transmittance into the gradient descent algorithm. However, this modeling increases the computation time due to the complexity of partially coherent imaging simulation that is repeatedly used in the optimization loop. To accelerate the computation, we incorporate not only the Fourier transform but also an eigenfunction decomposition of the image. As a demonstration, the extended algorithm is appliedmore » to retrieve a field-dependent wavefront of a microscope operated at extreme ultraviolet wavelength (13.4 nm). The retrieved wavefront qualitatively matches the expected characteristics of the lens design.« less

  10. Gradient descent algorithm applied to wavefront retrieval from through-focus images by an extreme ultraviolet microscope with partially coherent source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamazoe, Kenji; Mochi, Iacopo; Goldberg, Kenneth A.

    The wavefront retrieval by gradient descent algorithm that is typically applied to coherent or incoherent imaging is extended to retrieve a wavefront from a series of through-focus images by partially coherent illumination. For accurate retrieval, we modeled partial coherence as well as object transmittance into the gradient descent algorithm. However, this modeling increases the computation time due to the complexity of partially coherent imaging simulation that is repeatedly used in the optimization loop. To accelerate the computation, we incorporate not only the Fourier transform but also an eigenfunction decomposition of the image. As a demonstration, the extended algorithm is appliedmore » to retrieve a field-dependent wavefront of a microscope operated at extreme ultraviolet wavelength (13.4 nm). The retrieved wavefront qualitatively matches the expected characteristics of the lens design.« less

  11. Retrieval of nonprecipitating liquid water cloud parameters from microwave data - A simulation study

    NASA Technical Reports Server (NTRS)

    Huang, Hung-Lung; Diak, George R.

    1992-01-01

    A new microwave algorithm, analogous to the IR 'radiance-ratioing' method of Eyre and Menzel (1989) is developed to retrieve the height and 'effective' fraction (defined as the product of the emissivity times the actual physical fractional coverage) of nonprecipitating water clouds using various pairs of the 20 microwave channels planned for the Advanced Microwave Sounding Unit (AMSU), an instrument slated to fly on polar-orbiting satellites beginning in 1994. The results of a simulation study are presented to provide some insights into the potentials of this technique using different AMSU channel combinations. This study suggests that the use of the oxygen channels 3 and 5 and water vapor channels 19 and 20 will produce the most accurate retrievals of liquid water cloud parameters and the highest percentage of good-quality retrievals over a range of meteorological and cloud conditions.

  12. A multimedia retrieval framework based on semi-supervised ranking and relevance feedback.

    PubMed

    Yang, Yi; Nie, Feiping; Xu, Dong; Luo, Jiebo; Zhuang, Yueting; Pan, Yunhe

    2012-04-01

    We present a new framework for multimedia content analysis and retrieval which consists of two independent algorithms. First, we propose a new semi-supervised algorithm called ranking with Local Regression and Global Alignment (LRGA) to learn a robust Laplacian matrix for data ranking. In LRGA, for each data point, a local linear regression model is used to predict the ranking scores of its neighboring points. A unified objective function is then proposed to globally align the local models from all the data points so that an optimal ranking score can be assigned to each data point. Second, we propose a semi-supervised long-term Relevance Feedback (RF) algorithm to refine the multimedia data representation. The proposed long-term RF algorithm utilizes both the multimedia data distribution in multimedia feature space and the history RF information provided by users. A trace ratio optimization problem is then formulated and solved by an efficient algorithm. The algorithms have been applied to several content-based multimedia retrieval applications, including cross-media retrieval, image retrieval, and 3D motion/pose data retrieval. Comprehensive experiments on four data sets have demonstrated its advantages in precision, robustness, scalability, and computational efficiency.

  13. Improving Database Simulations for Bayesian Precipitation Retrieval using Non-Spherical Ice Particles

    NASA Astrophysics Data System (ADS)

    Ringerud, S.; Skofronick Jackson, G.; Kulie, M.; Randel, D.

    2016-12-01

    NASA's Global Precipitation Measurement Mission (GPM) provides a wealth of both active and passive microwave observations aimed at furthering understanding of global precipitation and the hydrologic cycle. Employing a constellation of passive microwave radiometers increases global coverage and sampling, while the core satellite acts as a transfer standard, enabling consistent retrievals across individual constellation members. The transfer standard is applied in the form of a physically based a priori database constructed for use in Bayesian retrieval algorithms for each radiometer. The database is constructed using hydrometeor profiles optimized for the best fit to simultaneous active/passive core satellite measurements via the GPM Combined Algorithm. Initial validation of GPM rainfall products using the combined database suggests high retrieval errors for convective precipitation over land and at high latitudes. In such regimes, the signal from ice scattering observed at the higher microwave frequencies becomes particularly important for detecting and retrieving precipitation. For cross-track sounders such as MHS and SAPHIR, this signal is crucial. It is therefore important that the scattering signals associated with precipitation are accurately represented and modeled in the retrieval database. In the current GPM combined retrieval and constellation databases, ice hydrometeors are represented as "fluffy spheres", with assumed density and scattering parameters calculated using Mie theory. Resulting simulated Tb agree reasonably well at frequencies up to 89 GHz, but show significant biases at higher frequencies. In this work the database is recreated using an ensemble of non-spherical ice particles with single scattering properties calculated using discrete dipole approximation. Simulated Tb agreement is significantly improved across the high frequencies, decreasing biases by an order of magnitude in several of the channels. The new database is applied for a sample of GPM constellation retrievals and the retrieved precipitation rates compared, to demonstrate areas where the use of more complex ice particles will have the greatest effect upon the final retrievals.

  14. Development of a remote sensing algorithm to retrieve atmospheric aerosol properties using multiwavelength and multipixel information

    NASA Astrophysics Data System (ADS)

    Hashimoto, Makiko; Nakajima, Teruyuki

    2017-06-01

    We developed a satellite remote sensing algorithm to retrieve the aerosol optical properties using satellite-received radiances for multiple wavelengths and pixels. Our algorithm utilizes spatial inhomogeneity of surface reflectance to retrieve aerosol properties, and the main target is urban aerosols. This algorithm can simultaneously retrieve aerosol optical thicknesses (AOT) for fine- and coarse-mode aerosols, soot volume fraction in fine-mode aerosols (SF), and surface reflectance over heterogeneous surfaces such as urban areas that are difficult to obtain by conventional pixel-by-pixel methods. We applied this algorithm to radiances measured by the Greenhouse Gases Observing Satellite/Thermal and Near Infrared Sensor for Carbon Observations-Cloud and Aerosol Image (GOSAT/TANSO-CAI) at four wavelengths and were able to retrieve the aerosol parameters in several urban regions and other surface types. A comparison of the retrieved AOTs with those from the Aerosol Robotic Network (AERONET) indicated retrieval accuracy within ±0.077 on average. It was also found that the column-averaged SF and the aerosol single scattering albedo (SSA) underwent seasonal changes as consistent with the ground surface measurements of SSA and black carbon at Beijing, China.

  15. The validation of the Yonsei CArbon Retrieval algorithm with improved aerosol information using GOSAT measurements

    NASA Astrophysics Data System (ADS)

    Jung, Yeonjin; Kim, Jhoon; Kim, Woogyung; Boesch, Hartmut; Goo, Tae-Young; Cho, Chunho

    2017-04-01

    Although several CO2 retrieval algorithms have been developed to improve our understanding about carbon cycle, limitations in spatial coverage and uncertainties due to aerosols and thin cirrus clouds are still remained as a problem for monitoring CO2 concentration globally. Based on an optimal estimation method, the Yonsei CArbon Retrieval (YCAR) algorithm was developed to retrieve the column-averaged dry-air mole fraction of carbon dioxide (XCO2) using the Greenhouse Gases Observing SATellite (GOSAT) measurements with optimized a priori CO2 profiles and aerosol models over East Asia. In previous studies, the aerosol optical properties (AOP) are the most important factors in CO2 retrievals since AOPs are assumed as fixed parameters during retrieval process, resulting in significant XCO2 retrieval error up to 2.5 ppm. In this study, to reduce these errors caused by inaccurate aerosol optical information, the YCAR algorithm improved with taking into account aerosol optical properties as well as aerosol vertical distribution simultaneously. The CO2 retrievals with two difference aerosol approaches have been analyzed using the GOSAT spectra and have been evaluated throughout the comparison with collocated ground-based observations at several Total Carbon Column Observing Network (TCCON) sites. The improved YCAR algorithm has biases of 0.59±0.48 ppm and 2.16±0.87 ppm at Saga and Tsukuba sites, respectively, with smaller biases and higher correlation coefficients compared to the GOSAT operational algorithm. In addition, the XCO2 retrievals will be validated at other TCCON sites and error analysis will be evaluated. These results reveal that considering better aerosol information can improve the accuracy of CO2 retrieval algorithm and provide more useful XCO2 information with reduced uncertainties. This study would be expected to provide useful information in estimating carbon sources and sinks.

  16. Improved Determination of Surface and Atmospheric Temperatures Using Only Shortwave AIRS Channels: The AIRS Version 6 Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John; Iredell, Lena

    2010-01-01

    AIRS was launched on EOS Aqua on May 4, 2002 together with ASMU-A and HSB to form a next generation polar orbiting infrared and microwave atmosphere sounding system (Pagano et al 2003). The theoretical approach used to analyze AIRS/AMSU/HSB data in the presence of clouds in the AIRS Science Team Version 3 at-launch algorithm, and that used in the Version 4 post-launch algorithm, have been published previously. Significant theoretical and practical improvements have been made in the analysis of AIRS/AMSU data since the Version 4 algorithm. Most of these have already been incorporated in the AIRS Science Team Version 5 algorithm (Susskind et al 2010), now being used operationally at the Goddard DISC. The AIRS Version 5 retrieval algorithm contains three significant improvements over Version 4. Improved physics in Version 5 allowed for use of AIRS clear column radiances (R(sub i)) in the entire 4.3 micron CO2 absorption band in the retrieval of temperature profiles T(p) during both day and night. Tropospheric sounding 15 micron CO2 observations were used primarily in the generation of clear column radiances (R(sub i)) for all channels. This new approach allowed for the generation of accurate Quality Controlled values of R(sub i) and T(p) under more stressing cloud conditions. Secondly, Version 5 contained a new methodology to provide accurate case-by-case error estimates for retrieved geophysical parameters and for channel-by-channel clear column radiances. Thresholds of these error estimates are used in a new approach for Quality Control. Finally, Version 5 contained for the first time an approach to provide AIRS soundings in partially cloudy conditions that does not require use of any microwave data. This new AIRS Only sounding methodology was developed as a backup to AIRS Version 5 should the AMSU-A instrument fail. Susskind et al 2010 shows that Version 5 AIRS Only sounding are only slightly degraded from the AIRS/AMSU soundings, even at large fractional cloud cover.

  17. Fast perceptual image hash based on cascade algorithm

    NASA Astrophysics Data System (ADS)

    Ruchay, Alexey; Kober, Vitaly; Yavtushenko, Evgeniya

    2017-09-01

    In this paper, we propose a perceptual image hash algorithm based on cascade algorithm, which can be applied in image authentication, retrieval, and indexing. Image perceptual hash uses for image retrieval in sense of human perception against distortions caused by compression, noise, common signal processing and geometrical modifications. The main disadvantage of perceptual hash is high time expenses. In the proposed cascade algorithm of image retrieval initializes with short hashes, and then a full hash is applied to the processed results. Computer simulation results show that the proposed hash algorithm yields a good performance in terms of robustness, discriminability, and time expenses.

  18. Near-Continuous Profiling of Temperature, Moisture, and Atmospheric Stability Using the Atmospheric Emitted Radiance Interferometer (AERI).

    NASA Astrophysics Data System (ADS)

    Feltz, W. F.; Smith, W. L.; Howell, H. B.; Knuteson, R. O.; Woolf, H.; Revercomb, H. E.

    2003-05-01

    The Department of Energy Atmospheric Radiation Measurement Program (ARM) has funded the development and installation of five ground-based atmospheric emitted radiance interferometer (AERI) systems at the Southern Great Plains (SGP) site. The purpose of this paper is to provide an overview of the AERI instrument, improvement of the AERI temperature and moisture retrieval technique, new profiling utility, and validation of high-temporal-resolution AERI-derived stability indices important for convective nowcasting. AERI systems have been built at the University of Wisconsin-Madison, Madison, Wisconsin, and deployed in the Oklahoma-Kansas area collocated with National Oceanic and Atmospheric Administration 404-MHz wind profilers at Lamont, Vici, Purcell, and Morris, Oklahoma, and Hillsboro, Kansas. The AERI systems produce absolutely calibrated atmospheric infrared emitted radiances at one-wavenumber resolution from 3 to 20 m at less than 10-min temporal resolution. The instruments are robust, are automated in the field, and are monitored via the Internet in near-real time. The infrared radiances measured by the AERI systems contain meteorological information about the vertical structure of temperature and water vapor in the planetary boundary layer (PBL; 0-3 km). A mature temperature and water vapor retrieval algorithm has been developed over a 10-yr period that provides vertical profiles at less than 10-min temporal resolution to 3 km in the PBL. A statistical retrieval is combined with the hourly Geostationary Operational Environmental Satellite (GOES) sounder water vapor or Rapid Update Cycle, version 2, numerical weather prediction (NWP) model profiles to provide a nominal hybrid first guess of temperature and moisture to the AERI physical retrieval algorithm. The hourly satellite or NWP data provide a best estimate of the atmospheric state in the upper PBL; the AERI radiances provide the mesoscale temperature and moisture profile correction in the PBL to the large-scale GOES and NWP model profiles at high temporal resolution. The retrieval product has been named AERIplus because the first guess used for the mathematical physical inversion uses an optimal combination of statistical climatological, satellite, and numerical model data to provide a best estimate of the atmospheric state. The AERI physical retrieval algorithm adjusts the boundary layer temperature and moisture structure provided by the hybrid first guess to fit the observed AERI downwelling radiance measurement. This provides a calculated AERI temperature and moisture profile using AERI-observed radiances `plus' the best-known atmospheric state above the boundary layer using NWP or satellite data. AERIplus retrieval accuracy for temperature has been determined to be better than 1 K, and water vapor retrieval accuracy is approximately 5% in absolute water vapor when compared with well-calibrated radiosondes from the surface to an altitude of 3 km. Because AERI can monitor the thermodynamics where the atmosphere usually changes most rapidly, atmospheric stability tendency information is readily available from the system. High-temporal-resolution retrieval of convective available potential energy, convective inhibition, and PBL equivalent potential temperature e are provided in near-real time from all five AERI systems at the ARM SGP site, offering a unique look at the atmospheric state. This new source of meteorological data has shown excellent skill in detecting rapid synoptic and mesoscale meteorological changes within clear atmospheric conditions. This method has utility in nowcasting temperature inversion strength and destabilization caused by e advection. This high-temporal-resolution monitoring of rapid atmospheric destabilization is especially important for nowcasting severe convection.

  19. Progress status of the GOSAT and GOSAT-2 SWIR L2 products

    NASA Astrophysics Data System (ADS)

    Yoshida, Y.; Oshio, H.; Kamei, A.; Morino, I.; Uchino, O.; Saito, M.; Noda, H.; Matsunaga, T.

    2017-12-01

    The Greenhouse gases Observing SATellite (GOSAT) has been operating for more than eight years, and the column-averaged dry air mole fractions of carbon dioxide, methane, and water vapor (XCO2, XCH4, and XH2O; hereafter called Xgas) have been retrieved globally from the Short-Wavelength InfraRed (SWIR) spectral data (0.76 μm, 1.6 μm, and 2.0 μm bands) observed with Thermal And Near-infrared Sensor for carbon Observation Fourier Transform Spectrometer (TANSO-FTS) onboard GOSAT. Xgas are simultaneously retrieved using a so-called full-physics retrieval method. The retrieval results are released as the FTS SWIR L2 product and available via GOSAT Data Archive Service (GDAS; https://data2.gosat.nies.go.jp/). During the TANSO-FTS operation, several issues were found, and some of them made small changes to the characteristics of the spectral data. Therefore, current SWIR L2 product has several minor versions as V02.xx to distinguish possible retrieval quality difference. To provide long-term uniform quality spectra, JAXA reprocessed whole spectral data as FTS L1B V201.202. We have been re-evaluating the characteristics of the new spectral data, and results will be reflected to the next major version up of the SWIR L2 products (V03). As a successor mission to the GOSAT, GOSAT-2 is planned to be launched in FY2018. According to the latest design of the TANSO-FTS-2 (FTS onboard the GOSAT-2), its SNR is higher than or almost equal to the TANSO-FTS, and its spectral range is expanded to cover the 2.3 μm carbon monoxide (CO) band. The SWIR L2 retrieval algorithm for GOSAT-2 is developing based on the latest retrieval algorithm for GOSAT. Our preliminary sensitivity test based on the designed specification shows that the SNR improvement in SWIR bands reduces the retrieval random error (precision) about 15% for XCO2 and 35% for XCH4 than those of GOSAT. In addition to the full-physics based XCO2, XCH4, XH2O, and XCO products, we are planning to provide the proxy-based XCH4 product as well as solar induced chlorophyll fluorescence (SIF) product.

  20. Retrieving Atmospheric Profiles Data in the Presence of Clouds from Hyperspectral Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Liu, Xu; Larar, Allen M.; Zhou, Daniel K.; Kizer, Susan H.; Wu, Wan; Barnet, Christopher; Divakarla, Murty; Guo, Guang; Blackwell, Bill; Smith, William L.; hide

    2011-01-01

    Different methods for retrieving atmospheric profiles in the presence of clouds from hyperspectral satellite remote sensing data will be described. We will present results from the JPSS cloud-clearing algorithm and NASA Langley cloud retrieval algorithm.

  1. Cloud Retrieval Intercomparisons Between SEVIRI, MODIS and VIIRS with CHIMAERA PGE06 Data Collection 6 Products

    NASA Technical Reports Server (NTRS)

    Wind, Galina; Riedi, Jerome; Platnick, Steven; Heidinger, Andrew

    2014-01-01

    The Cross-platform HIgh resolution Multi-instrument AtmosphEric Retrieval Algorithms (CHIMAERA) system allows us to perform MODIS-like cloud top, optical and microphysical properties retrievals on any sensor that possesses a minimum set of common spectral channels. The CHIMAERA system uses a shared-core architecture that takes retrieval method out of the equation when intercomparisons are made. Here we show an example of such retrieval and a comparison of simultaneous retrievals done using SEVIRI, MODIS and VIIRS sensors. All sensor retrievals are performed using CLAVR-x (or CLAVR-x based) cloud top properties algorithm. SEVIRI uses the SAF_NWC cloud mask. MODIS and VIIRS use the IFF-based cloud mask that is a shared algorithm between MODIS and VIIRS. The MODIS and VIIRS retrievals are performed using a VIIRS branch of CHIMAERA that limits available MODIS channel set. Even though in that mode certain MODIS products such as multilayer cloud map are not available, the cloud retrieval remains fully equivalent to operational Data Collection 6.

  2. Assessment of Chlorophyll-a Algorithms Considering Different Trophic Statuses and Optimal Bands.

    PubMed

    Salem, Salem Ibrahim; Higa, Hiroto; Kim, Hyungjun; Kobayashi, Hiroshi; Oki, Kazuo; Oki, Taikan

    2017-07-31

    Numerous algorithms have been proposed to retrieve chlorophyll- a concentrations in Case 2 waters; however, the retrieval accuracy is far from satisfactory. In this research, seven algorithms are assessed with different band combinations of multispectral and hyperspectral bands using linear (LN), quadratic polynomial (QP) and power (PW) regression approaches, resulting in altogether 43 algorithmic combinations. These algorithms are evaluated by using simulated and measured datasets to understand the strengths and limitations of these algorithms. Two simulated datasets comprising 500,000 reflectance spectra each, both based on wide ranges of inherent optical properties (IOPs), are generated for the calibration and validation stages. Results reveal that the regression approach (i.e., LN, QP, and PW) has more influence on the simulated dataset than on the measured one. The algorithms that incorporated linear regression provide the highest retrieval accuracy for the simulated dataset. Results from simulated datasets reveal that the 3-band (3b) algorithm that incorporate 665-nm and 680-nm bands and band tuning selection approach outperformed other algorithms with root mean square error (RMSE) of 15.87 mg·m -3 , 16.25 mg·m -3 , and 19.05 mg·m -3 , respectively. The spatial distribution of the best performing algorithms, for various combinations of chlorophyll- a (Chla) and non-algal particles (NAP) concentrations, show that the 3b_tuning_QP and 3b_680_QP outperform other algorithms in terms of minimum RMSE frequency of 33.19% and 60.52%, respectively. However, the two algorithms failed to accurately retrieve Chla for many combinations of Chla and NAP, particularly for low Chla and NAP concentrations. In addition, the spatial distribution emphasizes that no single algorithm can provide outstanding accuracy for Chla retrieval and that multi-algorithms should be included to reduce the error. Comparing the results of the measured and simulated datasets reveal that the algorithms that incorporate the 665-nm band outperform other algorithms for measured dataset (RMSE = 36.84 mg·m -3 ), while algorithms that incorporate the band tuning approach provide the highest retrieval accuracy for the simulated dataset (RMSE = 25.05 mg·m -3 ).

  3. Assessment of Chlorophyll-a Algorithms Considering Different Trophic Statuses and Optimal Bands

    PubMed Central

    Higa, Hiroto; Kobayashi, Hiroshi; Oki, Kazuo

    2017-01-01

    Numerous algorithms have been proposed to retrieve chlorophyll-a concentrations in Case 2 waters; however, the retrieval accuracy is far from satisfactory. In this research, seven algorithms are assessed with different band combinations of multispectral and hyperspectral bands using linear (LN), quadratic polynomial (QP) and power (PW) regression approaches, resulting in altogether 43 algorithmic combinations. These algorithms are evaluated by using simulated and measured datasets to understand the strengths and limitations of these algorithms. Two simulated datasets comprising 500,000 reflectance spectra each, both based on wide ranges of inherent optical properties (IOPs), are generated for the calibration and validation stages. Results reveal that the regression approach (i.e., LN, QP, and PW) has more influence on the simulated dataset than on the measured one. The algorithms that incorporated linear regression provide the highest retrieval accuracy for the simulated dataset. Results from simulated datasets reveal that the 3-band (3b) algorithm that incorporate 665-nm and 680-nm bands and band tuning selection approach outperformed other algorithms with root mean square error (RMSE) of 15.87 mg·m−3, 16.25 mg·m−3, and 19.05 mg·m−3, respectively. The spatial distribution of the best performing algorithms, for various combinations of chlorophyll-a (Chla) and non-algal particles (NAP) concentrations, show that the 3b_tuning_QP and 3b_680_QP outperform other algorithms in terms of minimum RMSE frequency of 33.19% and 60.52%, respectively. However, the two algorithms failed to accurately retrieve Chla for many combinations of Chla and NAP, particularly for low Chla and NAP concentrations. In addition, the spatial distribution emphasizes that no single algorithm can provide outstanding accuracy for Chla retrieval and that multi-algorithms should be included to reduce the error. Comparing the results of the measured and simulated datasets reveal that the algorithms that incorporate the 665-nm band outperform other algorithms for measured dataset (RMSE = 36.84 mg·m−3), while algorithms that incorporate the band tuning approach provide the highest retrieval accuracy for the simulated dataset (RMSE = 25.05 mg·m−3). PMID:28758984

  4. Validation of YCAR algorithm over East Asia TCCON sites

    NASA Astrophysics Data System (ADS)

    Kim, W.; Kim, J.; Jung, Y.; Lee, H.; Goo, T. Y.; Cho, C. H.; Lee, S.

    2016-12-01

    In order to reduce the retrieval error of TANSO-FTS column averaged CO2 concentration (XCO2) induced by aerosol, we develop the Yonsei university CArbon Retrieval (YCAR) algorithm using aerosol information from TANSO-Cloud and Aerosol Imager (TANSO-CAI), providing simultaneous aerosol optical depth properties for the same geometry and optical path along with the FTS. Also we validate the retrieved results using ground-based TCCON measurement. Particularly this study first utilized the measurements at Anmyeondo, the only TCCON site located in South Korea, which can improve the quality of validation in East Asia. After the post screening process, YCAR algorithms have higher data availability by 33 - 85 % than other operational algorithms (NIES, ACOS, UoL). Although the YCAR algorithm has higher data availability, regression analysis with TCCON measurements are better or similar to other algorithms; Regression line of YCAR algorithm is close to linear identity function with RMSE of 2.05, bias of - 0.86 ppm. According to error analysis, retrieval error of YCAR algorithm is 1.394 - 1.478 ppm at East Asia. In addition, spatio-temporal sampling error of 0.324 - 0.358 ppm for each single sounding retrieval is also analyzed with Carbon Tracker - Asia data. These results of error analysis reveal the reliability and accuracy of latest version of our YCAR algorithm. Both XCO2 values retrieved using YCAR algorithm on TANSO-FTS and TCCON measurements show the consistent increasing trend about 2.3 - 2.6 ppm per year. Comparing to the increasing rate of global background CO2 amount measured in Mauna Loa, Hawaii (2 ppm per year), the increasing trend in East Asia shows about 30% higher trend due to the rapid increase of CO2 emission from the source region.

  5. An advanced retrieval algorithm for greenhouse gases using polarization information measured by GOSAT TANSO-FTS SWIR I: Simulation study

    NASA Astrophysics Data System (ADS)

    Kikuchi, N.; Yoshida, Y.; Uchino, O.; Morino, I.; Yokota, T.

    2016-11-01

    We present an algorithm for retrieving column-averaged dry air mole fraction of carbon dioxide (XCO2) and methane (XCH4) from reflected spectra in the shortwave infrared (SWIR) measured by the TANSO-FTS (Thermal And Near infrared Sensor for carbon Observation Fourier Transform Spectrometer) sensor on board the Greenhouse gases Observing SATellite (GOSAT). The algorithm uses the two linear polarizations observed by TANSO-FTS to improve corrections to the interference effects of atmospheric aerosols, which degrade the accuracy in the retrieved greenhouse gas concentrations. To account for polarization by the land surface reflection in the forward model, we introduced a bidirectional reflection matrix model that has two parameters to be retrieved simultaneously with other state parameters. The accuracy in XCO2 and XCH4 values retrieved with the algorithm was evaluated by using simulated retrievals over both land and ocean, focusing on the capability of the algorithm to correct imperfect prior knowledge of aerosols. To do this, we first generated simulated TANSO-FTS spectra using a global distribution of aerosols computed by the aerosol transport model SPRINTARS. Then the simulated spectra were submitted to the algorithms as measurements both with and without polarization information, adopting a priori profiles of aerosols that differ from the true profiles. We found that the accuracy of XCO2 and XCH4, as well as profiles of aerosols, retrieved with polarization information was considerably improved over values retrieved without polarization information, for simulated observations over land with aerosol optical thickness greater than 0.1 at 1.6 μm.

  6. Development of a generalized algorithm of satellite remote sensing using multi-wavelength and multi-pixel information (MWP method) for aerosol properties by satellite-borne imager

    NASA Astrophysics Data System (ADS)

    Hashimoto, M.; Nakajima, T.; Morimoto, S.; Takenaka, H.

    2014-12-01

    We have developed a new satellite remote sensing algorithm to retrieve the aerosol optical characteristics using multi-wavelength and multi-pixel information of satellite imagers (MWP method). In this algorithm, the inversion method is a combination of maximum a posteriori (MAP) method (Rodgers, 2000) and the Phillips-Twomey method (Phillips, 1962; Twomey, 1963) as a smoothing constraint for the state vector. Furthermore, with the progress of computing technique, this method has being combined with the direct radiation transfer calculation numerically solved by each iteration step of the non-linear inverse problem, without using LUT (Look Up Table) with several constraints.Retrieved parameters in our algorithm are aerosol optical properties, such as aerosol optical thickness (AOT) of fine and coarse mode particles, a volume soot fraction in fine mode particles, and ground surface albedo of each observed wavelength. We simultaneously retrieve all the parameters that characterize pixels in each of horizontal sub-domains consisting the target area. Then we successively apply the retrieval method to all the sub-domains in the target area.We conducted numerical tests for the retrieval of aerosol properties and ground surface albedo for GOSAT/CAI imager data to test the algorithm for the land area. The result of the experiment showed that AOTs of fine mode and coarse mode, soot fraction and ground surface albedo are successfully retrieved within expected accuracy. We discuss the accuracy of the algorithm for various land surface types. Then, we applied this algorithm to GOSAT/CAI imager data, and we compared retrieved and surface-observed AOTs at the CAI pixel closest to an AERONET (Aerosol Robotic Network) or SKYNET site in each region. Comparison at several sites in urban area indicated that AOTs retrieved by our method are in agreement with surface-observed AOT within ±0.066.Our future work is to extend the algorithm for analysis of AGEOS-II/GLI and GCOM/C-SGLI data.

  7. Remote Sensing of Spectral Aerosol Properties: A Classroom Experience

    NASA Technical Reports Server (NTRS)

    Levy, Robert C.; Pinker, Rachel T.

    2006-01-01

    Bridging the gap between current research and the classroom is a major challenge to today s instructor, especially in the sciences where progress happens quickly. NASA Goddard Space Flight Center and the University of Maryland teamed up in designing a graduate class project intended to provide a hands-on introduction to the physical basis for the retrieval of aerosol properties from state-of-the-art MODIS observations. Students learned to recognize spectral signatures of atmospheric aerosols and to perform spectral inversions. They became acquainted with the operational MODIS aerosol retrieval algorithm over oceans, and methods for its evaluation, including comparisons with groundbased AERONET sun-photometer data.

  8. FPGA implementation of sparse matrix algorithm for information retrieval

    NASA Astrophysics Data System (ADS)

    Bojanic, Slobodan; Jevtic, Ruzica; Nieto-Taladriz, Octavio

    2005-06-01

    Information text data retrieval requires a tremendous amount of processing time because of the size of the data and the complexity of information retrieval algorithms. In this paper the solution to this problem is proposed via hardware supported information retrieval algorithms. Reconfigurable computing may adopt frequent hardware modifications through its tailorable hardware and exploits parallelism for a given application through reconfigurable and flexible hardware units. The degree of the parallelism can be tuned for data. In this work we implemented standard BLAS (basic linear algebra subprogram) sparse matrix algorithm named Compressed Sparse Row (CSR) that is showed to be more efficient in terms of storage space requirement and query-processing timing over the other sparse matrix algorithms for information retrieval application. Although inverted index algorithm is treated as the de facto standard for information retrieval for years, an alternative approach to store the index of text collection in a sparse matrix structure gains more attention. This approach performs query processing using sparse matrix-vector multiplication and due to parallelization achieves a substantial efficiency over the sequential inverted index. The parallel implementations of information retrieval kernel are presented in this work targeting the Virtex II Field Programmable Gate Arrays (FPGAs) board from Xilinx. A recent development in scientific applications is the use of FPGA to achieve high performance results. Computational results are compared to implementations on other platforms. The design achieves a high level of parallelism for the overall function while retaining highly optimised hardware within processing unit.

  9. Improving Simulated Soil Moisture Fields Through Assimilation of AMSR-E Soil Moisture Retrievals with an Ensemble Kalman Filter and a Mass Conservation Constraint

    NASA Technical Reports Server (NTRS)

    Li, Bailing; Toll, David; Zhan, Xiwu; Cosgrove, Brian

    2011-01-01

    Model simulated soil moisture fields are often biased due to errors in input parameters and deficiencies in model physics. Satellite derived soil moisture estimates, if retrieved appropriately, represent the spatial mean of soil moisture in a footprint area, and can be used to reduce model bias (at locations near the surface) through data assimilation techniques. While assimilating the retrievals can reduce model bias, it can also destroy the mass balance enforced by the model governing equation because water is removed from or added to the soil by the assimilation algorithm. In addition, studies have shown that assimilation of surface observations can adversely impact soil moisture estimates in the lower soil layers due to imperfect model physics, even though the bias near the surface is decreased. In this study, an ensemble Kalman filter (EnKF) with a mass conservation updating scheme was developed to assimilate the actual value of Advanced Microwave Scanning Radiometer (AMSR-E) soil moisture retrievals to improve the mean of simulated soil moisture fields by the Noah land surface model. Assimilation results using the conventional and the mass conservation updating scheme in the Little Washita watershed of Oklahoma showed that, while both updating schemes reduced the bias in the shallow root zone, the mass conservation scheme provided better estimates in the deeper profile. The mass conservation scheme also yielded physically consistent estimates of fluxes and maintained the water budget. Impacts of model physics on the assimilation results are discussed.

  10. Development, Comparisons and Evaluation of Aerosol Retrieval Algorithms

    NASA Astrophysics Data System (ADS)

    de Leeuw, G.; Holzer-Popp, T.; Aerosol-cci Team

    2011-12-01

    The Climate Change Initiative (cci) of the European Space Agency (ESA) has brought together a team of European Aerosol retrieval groups working on the development and improvement of aerosol retrieval algorithms. The goal of this cooperation is the development of methods to provide the best possible information on climate and climate change based on satellite observations. To achieve this, algorithms are characterized in detail as regards the retrieval approaches, the aerosol models used in each algorithm, cloud detection and surface treatment. A round-robin intercomparison of results from the various participating algorithms serves to identify the best modules or combinations of modules for each sensor. Annual global datasets including their uncertainties will then be produced and validated. The project builds on 9 existing algorithms to produce spectral aerosol optical depth (AOD and Ångström exponent) as well as other aerosol information; two instruments are included to provide the absorbing aerosol index (AAI) and stratospheric aerosol information. The algorithms included are: - 3 for ATSR (ORAC developed by RAL / Oxford university, ADV developed by FMI and the SU algorithm developed by Swansea University ) - 2 for MERIS (BAER by Bremen university and the ESA standard handled by HYGEOS) - 1 for POLDER over ocean (LOA) - 1 for synergetic retrieval (SYNAER by DLR ) - 1 for OMI retreival of the absorbing aerosol index with averaging kernel information (KNMI) - 1 for GOMOS stratospheric extinction profile retrieval (BIRA) The first seven algorithms aim at the retrieval of the AOD. However, each of the algorithms used differ in their approach, even for algorithms working with the same instrument such as ATSR or MERIS. To analyse the strengths and weaknesses of each algorithm several tests are made. The starting point for comparison and measurement of improvements is a retrieval run for 1 month, September 2008. The data from the same month are subsequently used for several runs with a prescribed set of aerosol models and an a priori data set derived from the median of AEROCOM model runs. The aerosol models and a priori data can be used in several ways, i.e. fully prescribed or with some freedom to choose a combination of aerosol models, based on the a priori or not. Another test gives insight in the effect of the cloud masks used, i.e. retrievals using the same cloud mask (the AATSR APOLLO cloud mask for collocated instruments) are compared with runs using the standard cloud masks. Tests to determine the influence of surface treatment are planned as well. The results of all these tests are evaluated by an independent team which compares the retrieval results with ground-based remote sensing (in particular AERONET) and in-situ data, and by a scoring method. Results are compared with other satellites such as MODIS and MISR. Blind tests using synthetic data are part of the algorithm characterization. The presentation will summarize results of the ongoing phase 1 inter-comparison and evaluation work within the Aerosol_cci project.

  11. A Parameterized Inversion Model for Soil Moisture and Biomass from Polarimetric Backscattering Coefficients

    NASA Technical Reports Server (NTRS)

    Truong-Loi, My-Linh; Saatchi, Sassan; Jaruwatanadilok, Sermsak

    2012-01-01

    A semi-empirical algorithm for the retrieval of soil moisture, root mean square (RMS) height and biomass from polarimetric SAR data is explained and analyzed in this paper. The algorithm is a simplification of the distorted Born model. It takes into account the physical scattering phenomenon and has three major components: volume, double-bounce and surface. This simplified model uses the three backscattering coefficients ( sigma HH, sigma HV and sigma vv) at low-frequency (P-band). The inversion process uses the Levenberg-Marquardt non-linear least-squares method to estimate the structural parameters. The estimation process is entirely explained in this paper, from initialization of the unknowns to retrievals. A sensitivity analysis is also done where the initial values in the inversion process are varying randomly. The results show that the inversion process is not really sensitive to initial values and a major part of the retrievals has a root-mean-square error lower than 5% for soil moisture, 24 Mg/ha for biomass and 0.49 cm for roughness, considering a soil moisture of 40%, roughness equal to 3cm and biomass varying from 0 to 500 Mg/ha with a mean of 161 Mg/ha

  12. Coupled retrieval of aerosol properties and land surface reflection using the Airborne Multiangle SpectroPolarimetric Imager

    NASA Astrophysics Data System (ADS)

    Xu, Feng; van Harten, Gerard; Diner, David J.; Kalashnikova, Olga V.; Seidel, Felix C.; Bruegge, Carol J.; Dubovik, Oleg

    2017-07-01

    The Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) has been flying aboard the NASA ER-2 high-altitude aircraft since October 2010. In step-and-stare operation mode, AirMSPI acquires radiance and polarization data in bands centered at 355, 380, 445, 470*, 555, 660*, 865*, and 935 nm (* denotes polarimetric bands). The imaged area covers about 10 km by 11 km and is typically observed from nine viewing angles between ±66° off nadir. For a simultaneous retrieval of aerosol properties and surface reflection using AirMSPI, an efficient and flexible retrieval algorithm has been developed. It imposes multiple types of physical constraints on spectral and spatial variations of aerosol properties as well as spectral and temporal variations of surface reflection. Retrieval uncertainty is formulated by accounting for both instrumental errors and physical constraints. A hybrid Markov-chain/adding-doubling radiative transfer (RT) model is developed to combine the computational strengths of these two methods in modeling polarized RT in vertically inhomogeneous and homogeneous media, respectively. Our retrieval approach is tested using 27 AirMSPI data sets with low to moderately high aerosol loadings, acquired during four NASA field campaigns plus one AirMSPI preengineering test flight. The retrieval results including aerosol optical depth, single-scattering albedo, aerosol size and refractive index are compared with Aerosol Robotic Network reference data. We identify the best angular combinations for 2, 3, 5, and 7 angle observations from the retrieval quality assessment of various angular combinations. We also explore the benefits of polarimetric and multiangular measurements and target revisits in constraining aerosol property and surface reflection retrieval.

  13. V2.1.4 L2AS Detailed Release Description September 27, 2001

    Atmospheric Science Data Center

    2013-03-14

    ... 27, 2001 Algorithm Changes Change method of selecting radiance pixels to use in aerosol retrieval over ... het. surface retrieval algorithm over areas of 100% dark water. Modify algorithm for selecting a default aerosol model to use in ...

  14. An enhanced TIMESAT algorithm for estimating vegetation phenology metrics from MODIS data

    USGS Publications Warehouse

    Tan, B.; Morisette, J.T.; Wolfe, R.E.; Gao, F.; Ederer, G.A.; Nightingale, J.; Pedelty, J.A.

    2011-01-01

    An enhanced TIMESAT algorithm was developed for retrieving vegetation phenology metrics from 250 m and 500 m spatial resolution Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation indexes (VI) over North America. MODIS VI data were pre-processed using snow-cover and land surface temperature data, and temporally smoothed with the enhanced TIMESAT algorithm. An objective third derivative test was applied to define key phenology dates and retrieve a set of phenology metrics. This algorithm has been applied to two MODIS VIs: Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI). In this paper, we describe the algorithm and use EVI as an example to compare three sets of TIMESAT algorithm/MODIS VI combinations: a) original TIMESAT algorithm with original MODIS VI, b) original TIMESAT algorithm with pre-processed MODIS VI, and c) enhanced TIMESAT and pre-processed MODIS VI. All retrievals were compared with ground phenology observations, some made available through the National Phenology Network. Our results show that for MODIS data in middle to high latitude regions, snow and land surface temperature information is critical in retrieving phenology metrics from satellite observations. The results also show that the enhanced TIMESAT algorithm can better accommodate growing season start and end dates that vary significantly from year to year. The TIMESAT algorithm improvements contribute to more spatial coverage and more accurate retrievals of the phenology metrics. Among three sets of TIMESAT/MODIS VI combinations, the start of the growing season metric predicted by the enhanced TIMESAT algorithm using pre-processed MODIS VIs has the best associations with ground observed vegetation greenup dates. ?? 2010 IEEE.

  15. An Enhanced TIMESAT Algorithm for Estimating Vegetation Phenology Metrics from MODIS Data

    NASA Technical Reports Server (NTRS)

    Tan, Bin; Morisette, Jeffrey T.; Wolfe, Robert E.; Gao, Feng; Ederer, Gregory A.; Nightingale, Joanne; Pedelty, Jeffrey A.

    2012-01-01

    An enhanced TIMESAT algorithm was developed for retrieving vegetation phenology metrics from 250 m and 500 m spatial resolution Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation indexes (VI) over North America. MODIS VI data were pre-processed using snow-cover and land surface temperature data, and temporally smoothed with the enhanced TIMESAT algorithm. An objective third derivative test was applied to define key phenology dates and retrieve a set of phenology metrics. This algorithm has been applied to two MODIS VIs: Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI). In this paper, we describe the algorithm and use EVI as an example to compare three sets of TIMESAT algorithm/MODIS VI combinations: a) original TIMESAT algorithm with original MODIS VI, b) original TIMESAT algorithm with pre-processed MODIS VI, and c) enhanced TIMESAT and pre-processed MODIS VI. All retrievals were compared with ground phenology observations, some made available through the National Phenology Network. Our results show that for MODIS data in middle to high latitude regions, snow and land surface temperature information is critical in retrieving phenology metrics from satellite observations. The results also show that the enhanced TIMESAT algorithm can better accommodate growing season start and end dates that vary significantly from year to year. The TIMESAT algorithm improvements contribute to more spatial coverage and more accurate retrievals of the phenology metrics. Among three sets of TIMESAT/MODIS VI combinations, the start of the growing season metric predicted by the enhanced TIMESAT algorithm using pre-processed MODIS VIs has the best associations with ground observed vegetation greenup dates.

  16. A Parallel Relational Database Management System Approach to Relevance Feedback in Information Retrieval.

    ERIC Educational Resources Information Center

    Lundquist, Carol; Frieder, Ophir; Holmes, David O.; Grossman, David

    1999-01-01

    Describes a scalable, parallel, relational database-drive information retrieval engine. To support portability across a wide range of execution environments, all algorithms adhere to the SQL-92 standard. By incorporating relevance feedback algorithms, accuracy is enhanced over prior database-driven information retrieval efforts. Presents…

  17. GOSAT CO2 retrieval results using TANSO-CAI aerosol information over East Asia

    NASA Astrophysics Data System (ADS)

    KIM, M.; Kim, W.; Jung, Y.; Lee, S.; Kim, J.; Lee, H.; Boesch, H.; Goo, T. Y.

    2015-12-01

    In the satellite remote sensing of CO2, incorrect aerosol information could induce large errors as previous studies suggested. Many factors, such as, aerosol type, wavelength dependency of AOD, aerosol polarization effect and etc. have been main error sources. Due to these aerosol effects, large number of data retrieved are screened out in quality control, or retrieval errors tend to increase if not screened out, especially in East Asia where aerosol concentrations are fairly high. To reduce these aerosol induced errors, a CO2 retrieval algorithm using the simultaneous TANSO-CAI aerosol information is developed. This algorithm adopts AOD and aerosol type information as a priori information from the CAI aerosol retrieval algorithm. The CO2 retrieval algorithm based on optimal estimation method and VLIDORT, a vector discrete ordinate radiative transfer model. The CO2 algorithm, developed with various state vectors to find accurate CO2 concentration, shows reasonable results when compared with other dataset. This study concentrates on the validation of retrieved results with the ground-based TCCON measurements in East Asia and the comparison with the previous retrieval from ACOS, NIES, and UoL. Although, the retrieved CO2 concentration is lower than previous results by ppm's, it shows similar trend and high correlation with previous results. Retrieved data and TCCON measurements data are compared at three stations of Tsukuba, Saga, Anmyeondo in East Asia, with the collocation criteria of ±2°in latitude/longitude and ±1 hours of GOSAT passing time. Compared results also show similar trend with good correlation. Based on the TCCON comparison results, bias correction equation is calculated and applied to the East Asia data.

  18. Multi-Spectral Cloud Retrievals from Moderate Image Spectrometer (MODIS)

    NASA Technical Reports Server (NTRS)

    Platnick, Steven

    2004-01-01

    MODIS observations from the NASA EOS Terra spacecraft (1030 local time equatorial sun-synchronous crossing) launched in December 1999 have provided a unique set of Earth observation data. With the launch of the NASA EOS Aqua spacecraft (1330 local time crossing! in May 2002: two MODIS daytime (sunlit) and nighttime observations are now available in a 24-hour period allowing some measure of diurnal variability. A comprehensive set of remote sensing algorithms for cloud masking and the retrieval of cloud physical and optical properties has been developed by members of the MODIS atmosphere science team. The archived products from these algorithms have applications in climate modeling, climate change studies, numerical weather prediction, as well as fundamental atmospheric research. In addition to an extensive cloud mask, products include cloud-top properties (temperature, pressure, effective emissivity), cloud thermodynamic phase, cloud optical and microphysical parameters (optical thickness, effective particle radius, water path), as well as derived statistics. An overview of the instrument and cloud algorithms will be presented along with various examples, including an initial analysis of several operational global gridded (Level-3) cloud products from the two platforms. Statistics of cloud optical and microphysical properties as a function of latitude for land and Ocean regions will be shown. Current algorithm research efforts will also be discussed.

  19. A data-driven and physics-based single-pass retrieval of active-passive microwave covariation and vegetation parameters for the SMAP mission

    NASA Astrophysics Data System (ADS)

    Entekhabi, D.; Jagdhuber, T.; Das, N. N.; Baur, M.; Link, M.; Piles, M.; Akbar, R.; Konings, A. G.; Mccoll, K. A.; Alemohammad, S. H.; Montzka, C.; Kunstmann, H.

    2016-12-01

    The active-passive soil moisture retrieval algorithm of NASA's SMAP mission depends on robust statistical estimation of active-passive covariation (β) and vegetation structure (Γ) parameters in order to provide reliable global measurements of soil moisture on an intermediate level (9km) compared to the native resolution of the radiometer (36km) and radar (3km) instruments. These parameters apply to the SMAP radiometer-radar combination over the period of record that was cut short with the end of the SMAP radar transmission. They also apply to the current SMAP radiometer and Sentinel 1A/B radar combination for high-resolution surface soil moisture mapping. However, the performance of the statistically-based approach is directly dependent on the selection of a representative time frame in which these parameters can be estimated assuming dynamic soil moisture and stationary soil roughness and vegetation cover. Here, we propose a novel, data-driven and physics-based single-pass retrieval of active-passive microwave covariation and vegetation parameters for the SMAP mission. The algorithm does not depend on time series analyses and can be applied using minimum one pair of an active-passive acquisition. The algorithm stems from the physical link between microwave emission and scattering via conservation of energy. The formulation of the emission radiative transfer is combined with the Distorted Born Approximation of radar scattering for vegetated land surfaces. The two formulations are simultaneously solved for the covariation and vegetation structure parameters. Preliminary results from SMAP active-passive observations (April 13th to July 7th 2015) compare well with the time-series statistical approach and confirms the capability of this method to estimate these parameters. Moreover, the method is not restricted to a given frequency (applies to both L-band and C-band combinations for the radar) or incidence angle (all angles and not just the fixed 40° incidence). Therefore, the approach is applicable to the combination of SMAP and Sentinel-1A/B data for active-passive and high-resolution soil moisture estimation.

  20. Comparative Analysis of Aerosol Retrievals from MODIS, OMI and MISR Over Sahara Region

    NASA Technical Reports Server (NTRS)

    Lyapustin, A.; Wang, Y.; Hsu, C.; Terres, O.; Leptoukh, G.; Kalashnikova, O.; Korkin, S.

    2011-01-01

    MODIS is a wide field-of-view sensor providing daily global observations of the Earth. Currently, global MODIS aerosol retrievals over land are performed with the main Dark Target algorithm complimented with the Deep Blue (DB) Algorithm over bright deserts. The Dark Target algorithm relies on surface parameterization which relates reflectance in MODIS visible bands with the 2.1 micrometer region, whereas the Deep Blue algorithm uses an ancillary angular distribution model of surface reflectance developed from the time series of clear-sky MODIS observations. Recently, a new Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm has been developed for MODIS. MAIAC uses a time series and an image based processing to perform simultaneous retrievals of aerosol properties and surface bidirectional reflectance. It is a generic algorithm which works over both dark vegetative surfaces and bright deserts and performs retrievals at 1 km resolution. In this work, we will provide a comparative analysis of DB, MAIAC, MISR and OMI aerosol products over bright deserts of northern Africa.

  1. Satellite aerosol retrieval using dark target algorithm by coupling BRDF effect over AERONET site

    NASA Astrophysics Data System (ADS)

    Yang, Leiku; Xue, Yong; Guang, Jie; Li, Chi

    2012-11-01

    For most satellite aerosol retrieval algorithms even for multi-angle instrument, the simple forward model (FM) based on Lambertian surface assumption is employed to simulate top of the atmosphere (TOA) spectral reflectance, which does not fully consider the surface bi-directional reflectance functions (BRDF) effect. The approximating forward model largely simplifies the radiative transfer model, reduces the size of the look-up tables, and creates faster algorithm. At the same time, it creates systematic biases in the aerosol optical depth (AOD) retrieval. AOD product from the Moderate Resolution Imaging Spectro-radiometer (MODIS) data based on the dark target algorithm is considered as one of accurate satellite aerosol products at present. Though it performs well at a global scale, uncertainties are still found on regional in a lot of studies. The Lambertian surface assumpiton employed in the retrieving algorithm may be one of the uncertain factors. In this study, we first use radiative transfer simulations over dark target to assess the uncertainty to what extent is introduced from the Lambertian surface assumption. The result shows that the uncertainties of AOD retrieval could reach up to ±0.3. Then the Lambertian FM (L_FM) and the BRDF FM (BRDF_FM) are respectively employed in AOD retrieval using dark target algorithm from MODARNSS (MODIS/Terra and MODIS/Aqua Atmosphere Aeronet Subsetting Product) data over Beijing AERONET site. The validation shows that accuracy in AOD retrieval has been improved by employing the BRDF_FM accounting for the surface BRDF effect, the regression slope of scatter plots with retrieved AOD against AEROENET AOD increases from 0.7163 (for L_FM) to 0.7776 (for BRDF_FM) and the intercept decreases from 0.0778 (for L_FM) to 0.0627 (for BRDF_FM).

  2. The performance of the new enhanced-resolution satellite passive microwave dataset applied for snow water equivalent estimation

    NASA Astrophysics Data System (ADS)

    Pan, J.; Durand, M. T.; Jiang, L.; Liu, D.

    2017-12-01

    The newly-processed NASA MEaSures Calibrated Enhanced-Resolution Brightness Temperature (CETB) reconstructed using antenna measurement response function (MRF) is considered to have significantly improved fine-resolution measurements with better georegistration for time-series observations and equivalent field of view (FOV) for frequencies with the same monomial spatial resolution. We are looking forward to its potential for the global snow observing purposes, and therefore aim to test its performance for characterizing snow properties, especially the snow water equivalent (SWE) in large areas. In this research, two candidate SWE algorithms will be tested in China for the years between 2005 to 2010 using the reprocessed TB from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E), with the results to be evaluated using the daily snow depth measurements at over 700 national synoptic stations. One of the algorithms is the SWE retrieval algorithm used for the FengYun (FY) - 3 Microwave Radiation Imager. This algorithm uses the multi-channel TB to calculate SWE for three major snow regions in China, with the coefficients adapted for different land cover types. The second algorithm is the newly-established Bayesian Algorithm for SWE Estimation with Passive Microwave measurements (BASE-PM). This algorithm uses the physically-based snow radiative transfer model to find the histogram of most-likely snow property that matches the multi-frequency TB from 10.65 to 90 GHz. It provides a rough estimation of snow depth and grain size at the same time and showed a 30 mm SWE RMS error using the ground radiometer measurements at Sodankyla. This study will be the first attempt to test it spatially for satellite. The use of this algorithm benefits from the high resolution and the spatial consistency between frequencies embedded in the new dataset. This research will answer three questions. First, to what extent can CETB increase the heterogeneity in the mapped SWE? Second, will the SWE estimation error statistics be improved using this high-resolution dataset? Third, how will the SWE retrieval accuracy be improved using CETB and the new SWE retrieval techniques?

  3. Ensembles of satellite aerosol retrievals based on three AATSR algorithms within aerosol_cci

    NASA Astrophysics Data System (ADS)

    Kosmale, Miriam; Popp, Thomas

    2016-04-01

    Ensemble techniques are widely used in the modelling community, combining different modelling results in order to reduce uncertainties. This approach could be also adapted to satellite measurements. Aerosol_cci is an ESA funded project, where most of the European aerosol retrieval groups work together. The different algorithms are homogenized as far as it makes sense, but remain essentially different. Datasets are compared with ground based measurements and between each other. Three AATSR algorithms (Swansea university aerosol retrieval, ADV aerosol retrieval by FMI and Oxford aerosol retrieval ORAC) provide within this project 17 year global aerosol records. Each of these algorithms provides also uncertainty information on pixel level. Within the presented work, an ensembles of the three AATSR algorithms is performed. The advantage over each single algorithm is the higher spatial coverage due to more measurement pixels per gridbox. A validation to ground based AERONET measurements shows still a good correlation of the ensemble, compared to the single algorithms. Annual mean maps show the global aerosol distribution, based on a combination of the three aerosol algorithms. In addition, pixel level uncertainties of each algorithm are used for weighting the contributions, in order to reduce the uncertainty of the ensemble. Results of different versions of the ensembles for aerosol optical depth will be presented and discussed. The results are validated against ground based AERONET measurements. A higher spatial coverage on daily basis allows better results in annual mean maps. The benefit of using pixel level uncertainties is analysed.

  4. Evaluation of chlorophyll-a retrieval algorithms based on MERIS bands for optically varying eutrophic inland lakes.

    PubMed

    Lyu, Heng; Li, Xiaojun; Wang, Yannan; Jin, Qi; Cao, Kai; Wang, Qiao; Li, Yunmei

    2015-10-15

    Fourteen field campaigns were conducted in five inland lakes during different seasons between 2006 and 2013, and a total of 398 water samples with varying optical characteristics were collected. The characteristics were analyzed based on remote sensing reflectance, and an automatic cluster two-step method was applied for water classification. The inland waters could be clustered into three types, which we labeled water types I, II and III. From water types I to III, the effect of the phytoplankton on the optical characteristics gradually decreased. Four chlorophyll-a retrieval algorithms for Case II water, a two-band, three-band, four-band and SCI (Synthetic Chlorophyll Index) algorithm were evaluated for three water types based on the MERIS bands. Different MERIS bands were used for the three water types in each of the four algorithms. The four algorithms had different levels of retrieval accuracy for each water type, and no single algorithm could be successfully applied to all water types. For water types I and III, the three-band algorithm performed the best, while the four-band algorithm had the highest retrieval accuracy for water type II. However, the three-band algorithm is preferable to the two-band algorithm for turbid eutrophic inland waters. The SCI algorithm is recommended for highly turbid water with a higher concentration of total suspended solids. Our research indicates that the chlorophyll-a concentration retrieval by remote sensing for optically contrasted inland water requires a specific algorithm that is based on the optical characteristics of inland water bodies to obtain higher estimation accuracy. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Ice surface temperature retrieval from AVHRR, ATSR, and passive microwave satellite data: Algorithm development and application

    NASA Technical Reports Server (NTRS)

    Key, Jeff; Maslanik, James; Steffen, Konrad

    1995-01-01

    During the second phase project year we have made progress in the development and refinement of surface temperature retrieval algorithms and in product generation. More specifically, we have accomplished the following: (1) acquired a new advanced very high resolution radiometer (AVHRR) data set for the Beaufort Sea area spanning an entire year; (2) acquired additional along-track scanning radiometer(ATSR) data for the Arctic and Antarctic now totalling over eight months; (3) refined our AVHRR Arctic and Antarctic ice surface temperature (IST) retrieval algorithm, including work specific to Greenland; (4) developed ATSR retrieval algorithms for the Arctic and Antarctic, including work specific to Greenland; (5) developed cloud masking procedures for both AVHRR and ATSR; (6) generated a two-week bi-polar global area coverage (GAC) set of composite images from which IST is being estimated; (7) investigated the effects of clouds and the atmosphere on passive microwave 'surface' temperature retrieval algorithms; and (8) generated surface temperatures for the Beaufort Sea data set, both from AVHRR and special sensor microwave imager (SSM/I).

  6. Evaluation of MODIS aerosol optical depth for semi­-arid environments in complex terrain

    NASA Astrophysics Data System (ADS)

    Holmes, H.; Loria Salazar, S. M.; Panorska, A. K.; Arnott, W. P.; Barnard, J.

    2015-12-01

    The use of satellite remote sensing to estimate spatially resolved ground level air pollutant concentrations is increasing due to advancements in remote sensing technology and the limited number of surface observations. Satellite retrievals provide global, spatiotemporal air quality information and are used to track plumes, estimate human exposures, model emissions, and determine sources (i.e., natural versus anthropogenic) in regulatory applications. Ground level PM2.5 concentrations can be estimated using columnar aerosol optical depth (AOD) from MODIS, where the satellite retrieval serves as a spatial surrogate to simulate surface PM2.5 gradients. The spatial statistical models and MODIS AOD retrieval algorithms have been evaluated for the dark, vegetated eastern US, while the semi-arid western US continues to be an understudied region with associated complexity due to heterogeneous emissions, smoke from wildfires, and complex terrain. The objective of this work is to evaluate the uncertainty of MODIS AOD retrievals by comparing with columnar AOD and surface PM2.5 measurements from AERONET and EPA networks. Data is analyzed from multiple stations in California and Nevada for three years where four major wildfires occurred. Results indicate that MODIS retrievals fail to estimate column-integrated aerosol pollution in the summer months. This is further investigated by quantifying the statistical relationships between MODIS AOD, AERONET AOD, and surface PM2.5 concentrations. Data analysis indicates that the distribution of MODIS AOD is significantly (p<0.05) different than AERONET AOD. Further, using the results of distributional and association analysis the impacts of MODIS AOD uncertainties on the spatial gradients are evaluated. Additionally, the relationships between these uncertainties and physical parameters in the retrieval algorithm (e.g., surface reflectance, Ångström Extinction Exponent) are discussed.

  7. Phase retrieval using regularization method in intensity correlation imaging

    NASA Astrophysics Data System (ADS)

    Li, Xiyu; Gao, Xin; Tang, Jia; Lu, Changming; Wang, Jianli; Wang, Bin

    2014-11-01

    Intensity correlation imaging(ICI) method can obtain high resolution image with ground-based low precision mirrors, in the imaging process, phase retrieval algorithm should be used to reconstituted the object's image. But the algorithm now used(such as hybrid input-output algorithm) is sensitive to noise and easy to stagnate. However the signal-to-noise ratio of intensity interferometry is low especially in imaging astronomical objects. In this paper, we build the mathematical model of phase retrieval and simplified it into a constrained optimization problem of a multi-dimensional function. New error function was designed by noise distribution and prior information using regularization method. The simulation results show that the regularization method can improve the performance of phase retrieval algorithm and get better image especially in low SNR condition

  8. The NASA CloudSat/GPM Light Precipitation Validation Experiment (LPVEx)

    NASA Technical Reports Server (NTRS)

    Petersen, Walter A.; L'Ecuyer, Tristan; Moisseev, Dmitri

    2011-01-01

    Ground-based measurements of cool-season precipitation at mid and high latitudes (e.g., above 45 deg N/S) suggest that a significant fraction of the total precipitation volume falls in the form of light rain, i.e., at rates less than or equal to a few mm/h. These cool-season light rainfall events often originate in situations of a low-altitude (e.g., lower than 2 km) melting level and pose a significant challenge to the fidelity of all satellite-based precipitation measurements, especially those relying on the use of multifrequency passive microwave (PMW) radiometers. As a result, significant disagreements exist between satellite estimates of rainfall accumulation poleward of 45 deg. Ongoing efforts to develop, improve, and ultimately evaluate physically-based algorithms designed to detect and accurately quantify high latitude rainfall, however, suffer from a general lack of detailed, observationally-based ground validation datasets. These datasets serve as a physically consistent framework from which to test and refine algorithm assumptions, and as a means to build the library of algorithm retrieval databases in higher latitude cold-season light precipitation regimes. These databases are especially relevant to NASA's CloudSat and Global Precipitation Measurement (GPM) ground validation programs that are collecting high-latitude precipitation measurements in meteorological systems associated with frequent coolseason light precipitation events. In an effort to improve the inventory of cool-season high-latitude light precipitation databases and advance the physical process assumptions made in satellite-based precipitation retrieval algorithm development, the CloudSat and GPM mission ground validation programs collaborated with the Finnish Meteorological Institute (FMI), the University of Helsinki (UH), and Environment Canada (EC) to conduct the Light Precipitation Validation Experiment (LPVEx). The LPVEx field campaign was designed to make detailed measurements of cool-season light precipitation by leveraging existing infrastructure in the Helsinki Precipitation Testbed. LPVEx was conducted during the months of September--October, 2010 and featured coordinated ground and airborne remote sensing components designed to observe and quantify the precipitation physics associated with light rain in low-altitude melting layer environments over the Gulf of Finland and neighboring land mass surrounding Helsinki, Finland.

  9. An Alternative Retrieval Algorithm for the Ozone Mapping and Profiler Suite Limb Profiler

    DTIC Science & Technology

    2012-05-01

    behavior of aerosol extinction from the upper troposphere through the stratosphere is critical for retrieving ozone in this region. Aerosol scattering is......include area code) b. ABSTRACT c. THIS PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT An Alternative Retrieval Algorithm for the Ozone Mapping and

  10. Visualizing and improving the robustness of phase retrieval algorithms

    DOE PAGES

    Tripathi, Ashish; Leyffer, Sven; Munson, Todd; ...

    2015-06-01

    Coherent x-ray diffractive imaging is a novel imaging technique that utilizes phase retrieval and nonlinear optimization methods to image matter at nanometer scales. We explore how the convergence properties of a popular phase retrieval algorithm, Fienup's HIO, behave by introducing a reduced dimensionality problem allowing us to visualize and quantify convergence to local minima and the globally optimal solution. We then introduce generalizations of HIO that improve upon the original algorithm's ability to converge to the globally optimal solution.

  11. Visualizing and improving the robustness of phase retrieval algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathi, Ashish; Leyffer, Sven; Munson, Todd

    Coherent x-ray diffractive imaging is a novel imaging technique that utilizes phase retrieval and nonlinear optimization methods to image matter at nanometer scales. We explore how the convergence properties of a popular phase retrieval algorithm, Fienup's HIO, behave by introducing a reduced dimensionality problem allowing us to visualize and quantify convergence to local minima and the globally optimal solution. We then introduce generalizations of HIO that improve upon the original algorithm's ability to converge to the globally optimal solution.

  12. Vertical profiles of aerosol optical properties and the solar heating rate estimated by combining sky radiometer and lidar measurements

    NASA Astrophysics Data System (ADS)

    Kudo, Rei; Nishizawa, Tomoaki; Aoyagi, Toshinori

    2016-07-01

    The SKYLIDAR algorithm was developed to estimate vertical profiles of aerosol optical properties from sky radiometer (SKYNET) and lidar (AD-Net) measurements. The solar heating rate was also estimated from the SKYLIDAR retrievals. The algorithm consists of two retrieval steps: (1) columnar properties are retrieved from the sky radiometer measurements and the vertically mean depolarization ratio obtained from the lidar measurements and (2) vertical profiles are retrieved from the lidar measurements and the results of the first step. The derived parameters are the vertical profiles of the size distribution, refractive index (real and imaginary parts), extinction coefficient, single-scattering albedo, and asymmetry factor. Sensitivity tests were conducted by applying the SKYLIDAR algorithm to the simulated sky radiometer and lidar data for vertical profiles of three different aerosols, continental average, transported dust, and pollution aerosols. The vertical profiles of the size distribution, extinction coefficient, and asymmetry factor were well estimated in all cases. The vertical profiles of the refractive index and single-scattering albedo of transported dust, but not those of transported pollution aerosol, were well estimated. To demonstrate the performance and validity of the SKYLIDAR algorithm, we applied the SKYLIDAR algorithm to the actual measurements at Tsukuba, Japan. The detailed vertical structures of the aerosol optical properties and solar heating rate of transported dust and smoke were investigated. Examination of the relationship between the solar heating rate and the aerosol optical properties showed that the vertical profile of the asymmetry factor played an important role in creating vertical variation in the solar heating rate. We then compared the columnar optical properties retrieved with the SKYLIDAR algorithm to those produced with the more established scheme SKYRAD.PACK, and the surface solar irradiance calculated from the SKYLIDAR retrievals was compared with pyranometer measurement. The results showed good agreements: the columnar values of the SKYLIDAR retrievals agreed with reliable SKYRAD.PACK retrievals, and the SKYLIDAR retrievals were sufficiently accurate to evaluate the surface solar irradiance.

  13. A Comparison of High Spectral Resolution Infrared Cloud-Top Pressure Altitude Algorithms Using S-HIS Measurements

    NASA Technical Reports Server (NTRS)

    Holz, Robert E.; Ackerman, Steve; Antonelli, Paolo; Nagle, Fred; McGill, Matthew; Hlavka, Dennis L.; Hart, William D.

    2005-01-01

    This paper presents a comparison of cloud-top altitude retrieval methods applied to S-HIS (Scanning High Resolution Interferometer Sounder) measurements. Included in this comparison is an improvement to the traditional CO2 Slicing method. The new method, CO2 Sorting, determines optimal channel pairs to apply the CO2 Slicing. Measurements from collocated samples of the Cloud Physics Lidar (CPL) and Modis Airborne Simulator (MAS) instruments assist in the comparison. For optically thick clouds good correlation between the S-HIS and lidar cloud-top retrievals are found. For tenuous ice clouds there can be large differences between lidar (CPL) and S-HIS retrieved cloud-tops. It is found that CO2 Sorting significantly reduces the cloud height biases for the optically thin cloud (total optical depths less then 1.0). For geometrically thick but optically thin cirrus clouds large differences between the S-HIS infrared cloud top retrievals and the CPL detected cloud top where found. For these cases the cloud height retrieved by the S-HIS cloud retrievals correlated closely with the level the CPL integrated cloud optical depth was approximately 1.0.

  14. Information Retrieval and Graph Analysis Approaches for Book Recommendation.

    PubMed

    Benkoussas, Chahinez; Bellot, Patrice

    2015-01-01

    A combination of multiple information retrieval approaches is proposed for the purpose of book recommendation. In this paper, book recommendation is based on complex user's query. We used different theoretical retrieval models: probabilistic as InL2 (Divergence from Randomness model) and language model and tested their interpolated combination. Graph analysis algorithms such as PageRank have been successful in Web environments. We consider the application of this algorithm in a new retrieval approach to related document network comprised of social links. We called Directed Graph of Documents (DGD) a network constructed with documents and social information provided from each one of them. Specifically, this work tackles the problem of book recommendation in the context of INEX (Initiative for the Evaluation of XML retrieval) Social Book Search track. A series of reranking experiments demonstrate that combining retrieval models yields significant improvements in terms of standard ranked retrieval metrics. These results extend the applicability of link analysis algorithms to different environments.

  15. Information Retrieval and Graph Analysis Approaches for Book Recommendation

    PubMed Central

    Benkoussas, Chahinez; Bellot, Patrice

    2015-01-01

    A combination of multiple information retrieval approaches is proposed for the purpose of book recommendation. In this paper, book recommendation is based on complex user's query. We used different theoretical retrieval models: probabilistic as InL2 (Divergence from Randomness model) and language model and tested their interpolated combination. Graph analysis algorithms such as PageRank have been successful in Web environments. We consider the application of this algorithm in a new retrieval approach to related document network comprised of social links. We called Directed Graph of Documents (DGD) a network constructed with documents and social information provided from each one of them. Specifically, this work tackles the problem of book recommendation in the context of INEX (Initiative for the Evaluation of XML retrieval) Social Book Search track. A series of reranking experiments demonstrate that combining retrieval models yields significant improvements in terms of standard ranked retrieval metrics. These results extend the applicability of link analysis algorithms to different environments. PMID:26504899

  16. The GRAPE aerosol retrieval algorithm

    NASA Astrophysics Data System (ADS)

    Thomas, G. E.; Poulsen, C. A.; Sayer, A. M.; Marsh, S. H.; Dean, S. M.; Carboni, E.; Siddans, R.; Grainger, R. G.; Lawrence, B. N.

    2009-11-01

    The aerosol component of the Oxford-Rutherford Aerosol and Cloud (ORAC) combined cloud and aerosol retrieval scheme is described and the theoretical performance of the algorithm is analysed. ORAC is an optimal estimation retrieval scheme for deriving cloud and aerosol properties from measurements made by imaging satellite radiometers and, when applied to cloud free radiances, provides estimates of aerosol optical depth at a wavelength of 550 nm, aerosol effective radius and surface reflectance at 550 nm. The aerosol retrieval component of ORAC has several incarnations - this paper addresses the version which operates in conjunction with the cloud retrieval component of ORAC (described by Watts et al., 1998), as applied in producing the Global Retrieval of ATSR Cloud Parameters and Evaluation (GRAPE) data-set. The algorithm is described in detail and its performance examined. This includes a discussion of errors resulting from the formulation of the forward model, sensitivity of the retrieval to the measurements and a priori constraints, and errors resulting from assumptions made about the atmospheric/surface state.

  17. The GRAPE aerosol retrieval algorithm

    NASA Astrophysics Data System (ADS)

    Thomas, G. E.; Poulsen, C. A.; Sayer, A. M.; Marsh, S. H.; Dean, S. M.; Carboni, E.; Siddans, R.; Grainger, R. G.; Lawrence, B. N.

    2009-04-01

    The aerosol component of the Oxford-Rutherford Aerosol and Cloud (ORAC) combined cloud and aerosol retrieval scheme is described and the theoretical performance of the algorithm is analysed. ORAC is an optimal estimation retrieval scheme for deriving cloud and aerosol properties from measurements made by imaging satellite radiometers and, when applied to cloud free radiances, provides estimates of aerosol optical depth at a wavelength of 550 nm, aerosol effective radius and surface reflectance at 550 nm. The aerosol retrieval component of ORAC has several incarnations - this paper addresses the version which operates in conjunction with the cloud retrieval component of ORAC (described by Watts et al., 1998), as applied in producing the Global Retrieval of ATSR Cloud Parameters and Evaluation (GRAPE) data-set. The algorithm is described in detail and its performance examined. This includes a discussion of errors resulting from the formulation of the forward model, sensitivity of the retrieval to the measurements and a priori constraints, and errors resulting from assumptions made about the atmospheric/surface state.

  18. Information content of ozone retrieval algorithms

    NASA Technical Reports Server (NTRS)

    Rodgers, C.; Bhartia, P. K.; Chu, W. P.; Curran, R.; Deluisi, J.; Gille, J. C.; Hudson, R.; Mateer, C.; Rusch, D.; Thomas, R. J.

    1989-01-01

    The algorithms are characterized that were used for production processing by the major suppliers of ozone data to show quantitatively: how the retrieved profile is related to the actual profile (This characterizes the altitude range and vertical resolution of the data); the nature of systematic errors in the retrieved profiles, including their vertical structure and relation to uncertain instrumental parameters; how trends in the real ozone are reflected in trends in the retrieved ozone profile; and how trends in other quantities (both instrumental and atmospheric) might appear as trends in the ozone profile. No serious deficiencies were found in the algorithms used in generating the major available ozone data sets. As the measurements are all indirect in someway, and the retrieved profiles have different characteristics, data from different instruments are not directly comparable.

  19. Optimal Aerosol Parameterization for Remote Sensing Retrievals

    NASA Technical Reports Server (NTRS)

    Newchurch, Michael J.

    2004-01-01

    We have developed a new algorithm for the retrieval of aerosol and gases from SAGE It1 solar transmission measurements. This algorithm improves upon the NASA operational algorithm in several key aspects, including solving the problem non-linearly and incorporating a new methodology for separating the contribution of aerosols and gases. In order to extract aerosol information we have built a huge database of aerosol models for both stratospheric and tropospheric aerosols, and polar stratospheric cloud particles. This set of models allows us to calculate a vast range of possible extinction spectra for aerosols. and from these, derive a set of eigenvectors which then provide the basis set used in our inversion algorithm. Our aerosol algorithm and retrievals are described in several articles (listed in References Section) published under this grant. In particular they allow us to analyze the spectral properties of aerosols and PSCs and ultimately derive their microphysical properties. We have found some considerable differences between our spectra and the ones derived from the SAGE III operational algorithm. These are interesting as they provide an independent check on the validity of published aerosol data and, in particular, on their associated uncertainties. In order to understand these differences, we are assembling independent aerosol data from other sources with which to make comparisons. We have carried out extensive comparisons of our ozone retrievals with both SAGE III and independent lidar, ozonesonde, and satellite measurements (Polyakov et al., 2004). These show very good agreement throughout the stratosphere and help to quantify differences which can be attributed to natural variation in ozone versus that produced by algorithmic differences. In the mid - upper stratosphere, agreement with independent data was generally within 5 - 20%. but in the lower stratosphere the differences were considerably larger. We believe that a large proportion of this discrepancy in the lower stratosphere is attributable to natural variation, and is also seen in comparisons between lidar and ozonesonde measurements. NO2 profiles obtained with our algorithm were compared to those obtained through the SAGE III operational algorithm and exhibited differences of 20 - 40%. Our retrieved profiles agree with the HALOE NO2 measurements significantly better than those of the operational retrieval. In other work (described below), we are extending our aerosol retrievals into the infrared regime and plan to perform retrievals from combined uv-visible-infrared spectra. This work will allow us to use the spectra to derive the size and composition of aerosols, and we plan to employ our algorithms in the analysis of PSC spectra. We are presently also developing a limb-scattering algorithm to retrieve aerosol data from limb measurements of solar scattered radiation.

  20. Application of stochastic particle swarm optimization algorithm to determine the graded refractive index distribution in participating media

    NASA Astrophysics Data System (ADS)

    Wei, Lin-Yang; Qi, Hong; Ren, Ya-Tao; Ruan, Li-Ming

    2016-11-01

    Inverse estimation of the refractive index distribution in one-dimensional participating media with graded refractive index (GRI) is investigated. The forward radiative transfer problem is solved by the Chebyshev collocation spectral method. The stochastic particle swarm optimization (SPSO) algorithm is employed to retrieve three kinds of GRI distribution, i.e. the linear, sinusoidal and quadratic GRI distribution. The retrieval accuracy of GRI distribution with different wall emissivity, optical thickness, absorption coefficients and scattering coefficients are discussed thoroughly. To improve the retrieval accuracy of quadratic GRI distribution, a double-layer model is proposed to supply more measurement information. The influence of measurement errors upon the precision of estimated results is also investigated. Considering the GRI distribution is unknown beforehand in practice, a quadratic function is employed to retrieve the linear GRI by SPSO algorithm. All the results show that the SPSO algorithm is applicable to retrieve different GRI distributions in participating media accurately even with noisy data.

  1. Dreaming of Atmospheres

    NASA Astrophysics Data System (ADS)

    Waldmann, I. P.

    2016-04-01

    Here, we introduce the RobERt (Robotic Exoplanet Recognition) algorithm for the classification of exoplanetary emission spectra. Spectral retrieval of exoplanetary atmospheres frequently requires the preselection of molecular/atomic opacities to be defined by the user. In the era of open-source, automated, and self-sufficient retrieval algorithms, manual input should be avoided. User dependent input could, in worst-case scenarios, lead to incomplete models and biases in the retrieval. The RobERt algorithm is based on deep-belief neural (DBN) networks trained to accurately recognize molecular signatures for a wide range of planets, atmospheric thermal profiles, and compositions. Reconstructions of the learned features, also referred to as the “dreams” of the network, indicate good convergence and an accurate representation of molecular features in the DBN. Using these deep neural networks, we work toward retrieval algorithms that themselves understand the nature of the observed spectra, are able to learn from current and past data, and make sensible qualitative preselections of atmospheric opacities to be used for the quantitative stage of the retrieval process.

  2. Remote Sensing of Cloud Properties using Ground-based Measurements of Zenith Radiance

    NASA Technical Reports Server (NTRS)

    Chiu, J. Christine; Marshak, Alexander; Knyazikhin, Yuri; Wiscombe, Warren J.; Barker, Howard W.; Barnard, James C.; Luo, Yi

    2006-01-01

    An extensive verification of cloud property retrievals has been conducted for two algorithms using zenith radiances measured by the Atmospheric Radiation Measurement (ARM) Program ground-based passive two-channel (673 and 870 nm) Narrow Field-Of-View Radiometer. The underlying principle of these algorithms is that clouds have nearly identical optical properties at these wavelengths, but corresponding spectral surface reflectances (for vegetated surfaces) differ significantly. The first algorithm, the RED vs. NIR, works for a fully three-dimensional cloud situation. It retrieves not only cloud optical depth, but also an effective radiative cloud fraction. Importantly, due to one-second time resolution of radiance measurements, we are able, for the first time, to capture detailed changes in cloud structure at the natural time scale of cloud evolution. The cloud optical depths tau retrieved by this algorithm are comparable to those inferred from both downward fluxes in overcast situations and microwave brightness temperatures for broken clouds. Moreover, it can retrieve tau for thin patchy clouds, where flux and microwave observations fail to detect them. The second algorithm, referred to as COUPLED, couples zenith radiances with simultaneous fluxes to infer 2. In general, the COUPLED and RED vs. NIR algorithms retrieve consistent values of tau. However, the COUPLED algorithm is more sensitive to the accuracies of measured radiance, flux, and surface reflectance than the RED vs. NIR algorithm. This is especially true for thick overcast clouds where it may substantially overestimate z.

  3. A new retrieval algorithm for tropospheric temperature, humidity and pressure profiling based on GNSS radio occultation data

    NASA Astrophysics Data System (ADS)

    Kirchengast, Gottfried; Li, Ying; Scherllin-Pirscher, Barbara; Schwärz, Marc; Schwarz, Jakob; Nielsen, Johannes K.

    2017-04-01

    The GNSS radio occultation (RO) technique is an important remote sensing technique for obtaining thermodynamic profiles of temperature, humidity, and pressure in the Earth's troposphere. However, due to refraction effects of both dry ambient air and water vapor in the troposphere, retrieval of accurate thermodynamic profiles at these lower altitudes is challenging and requires suitable background information in addition to the RO refractivity information. Here we introduce a new moist air retrieval algorithm aiming to improve the quality and robustness of retrieving temperature, humidity and pressure profiles in moist air tropospheric conditions. The new algorithm consists of four steps: (1) use of prescribed specific humidity and its uncertainty to retrieve temperature and its associated uncertainty; (2) use of prescribed temperature and its uncertainty to retrieve specific humidity and its associated uncertainty; (3) use of the previous results to estimate final temperature and specific humidity profiles through optimal estimation; (4) determination of air pressure and density profiles from the results obtained before. The new algorithm does not require elaborated matrix inversions which are otherwise widely used in 1D-Var retrieval algorithms, and it allows a transparent uncertainty propagation, whereby the uncertainties of prescribed variables are dynamically estimated accounting for their spatial and temporal variations. Estimated random uncertainties are calculated by constructing error covariance matrices from co-located ECMWF short-range forecast and corresponding analysis profiles. Systematic uncertainties are estimated by empirical modeling. The influence of regarding or disregarding vertical error correlations is quantified. The new scheme is implemented with static input uncertainty profiles in WEGC's current OPSv5.6 processing system and with full scope in WEGC's next-generation system, the Reference Occultation Processing System (rOPS). Results from both WEGC systems, current OPSv5.6 and next-generation rOPS, are shown and discussed, based on both insights from individual profiles and statistical ensembles, and compared to moist air retrieval results from the UCAR Boulder and ROM-SAF Copenhagen centers. The results show that the new algorithmic scheme improves the temperature, humidity and pressure retrieval performance, in particular also the robustness including for integrated uncertainty estimation for large-scale applications, over the previous algorithms. The new rOPS-implemented algorithm will therefore be used in the first large-scale reprocessing towards a tropospheric climate data record 2001-2016 by the rOPS, including its integrated uncertainty propagation.

  4. Does the Acquisition of Spatial Skill Involve a Shift from Algorithm to Memory Retrieval?

    ERIC Educational Resources Information Center

    Frank, David J.; Macnamara, Brooke N.

    2017-01-01

    Performance on verbal and mathematical tasks is enhanced when participants shift from using algorithms to retrieving information directly from memory (Siegler, 1988a). However, it is unknown whether a shift to retrieval is involved in dynamic spatial skill acquisition. For example, do athletes mentally extrapolate the trajectory of the ball, or do…

  5. Assessment of Uncertainty in Cloud Radiative Effects and Heating Rates through Retrieval Algorithm Differences: Analysis using 3-years of ARM data at Darwin, Australia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comstock, Jennifer M.; Protat, Alain; McFarlane, Sally A.

    2013-05-22

    Ground-based radar and lidar observations obtained at the Department of Energy’s Atmospheric Radiation Measurement Program’s Tropical Western Pacific site located in Darwin, Australia are used to retrieve ice cloud properties in anvil and cirrus clouds. Cloud microphysical properties derived from four different retrieval algorithms (two radar-lidar and two radar only algorithms) are compared by examining mean profiles and probability density functions of effective radius (Re), ice water content (IWC), extinction, ice number concentration, ice crystal fall speed, and vertical air velocity. Retrieval algorithm uncertainty is quantified using radiative flux closure exercises. The effect of uncertainty in retrieved quantities on themore » cloud radiative effect and radiative heating rates are presented. Our analysis shows that IWC compares well among algorithms, but Re shows significant discrepancies, which is attributed primarily to assumptions of particle shape. Uncertainty in Re and IWC translates into sometimes-large differences in cloud radiative effect (CRE) though the majority of cases have a CRE difference of roughly 10 W m-2 on average. These differences, which we believe are primarily driven by the uncertainty in Re, can cause up to 2 K/day difference in the radiative heating rates between algorithms.« less

  6. Evaluation and Validation of Case 2 Algorithms in Chesapeake Bay

    NASA Technical Reports Server (NTRS)

    Harding, Lawrence W., Jr.; Magnuson, Adrea

    2004-01-01

    The high temporal and spatial resolution of satellite ocean color observations will prove invaluable for monitoring the health of coastal ecosystems where physical and biological variability demands sampling scales beyond that possible by ship. However, ocean color remote sensing of Case 2 waters is a challenging undertaking due to the optical complexity of the water. The focus of this SIMBIOS support has been to provide in situ optical measurements form Chesapeake Bay (CB) and adjacent mid-Atlantic bight (MAB) waters for use in algorithm development and validation efforts to improve the satellite retrieval of chlorophyll (chl a) in Case 2 waters. CB provides a valuable site for validation of data from ocean color sensors for a number of reasons. First, the physical dimensions of the Bay (greater than 6,500 square kilometers) make retrievals from satellites with a spatial resolution of approximately 1 kilometer (i.e., SeaWiFS) or less (i.e., MODIS) reasonable for most of the ecosystem. Second, CB is highly influenced by freshwater flow from major rivers, making it a classic Case 2 water body with significant concentrations of chlorophyll, particulates and chromophoric dissolved organic matter (CDOM) that highly impact the shape of reflectance spectra. Finally, past and ongoing research efforts provided an expensive data set of optical observations that support the goal of this project.

  7. Comparison of snow depth retrieval algorithm in Northeastern China based on AMSR2 and FY3B-MWRI data

    NASA Astrophysics Data System (ADS)

    Fan, Xintong; Gu, Lingjia; Ren, Ruizhi; Zhou, Tingting

    2017-09-01

    Snow accumulation has a very important influence on the natural environment and human activities. Meanwhile, improving the estimation accuracy of passive microwave snow depth (SD) retrieval is a hotspot currently. Northeastern China is a typical snow study area including many different land cover types, such as forest, grassland and farmland. Especially, there is relatively stable snow accumulation in January every year. The brightness temperatures which are observed by the Advanced Microwave Scanning Radiometer 2 (AMSR2) on GCOM-W1 and FengYun3B Microwave Radiation Imager (FY3B-MWRI) in the same period in 2013 are selected as the study data in the research. The results of snow depth retrieval using AMSR2 standard algorithm and Jiang's FY operational algorithm are compared in the research. Moreover, to validate the accuracy of the two algorithms, the retrieval results are compared with the SD data observed at the national meteorological stations in Northeastern China. Furthermore, the retrieval SD is also compared with AMSR2 and FY standard SD products, respectively. The root mean square errors (RMSE) results using AMSR2 standard algorithms and FY operational algorithm are close in the forest surface, which are 6.33cm and 6.28cm, respectively. However, The FY operational algorithm shows a better result than the AMSR2 standard algorithms in the grassland and farmland surface. The RMSE results using FY operational algorithm in the grassland and farmland surface are 2.44cm and 6.13cm, respectively.

  8. Optimization of the GSFC TROPOZ DIAL retrieval using synthetic lidar returns and ozonesondes - Part 1: Algorithm validation

    NASA Astrophysics Data System (ADS)

    Sullivan, J. T.; McGee, T. J.; Leblanc, T.; Sumnicht, G. K.; Twigg, L. W.

    2015-04-01

    The main purpose of the NASA Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL) is to measure the vertical distribution of tropospheric ozone for science investigations. Because of the important health and climate impacts of tropospheric ozone, it is imperative to quantify background photochemical and aloft ozone concentrations, especially during air quality episodes. To better characterize tropospheric ozone, the Tropospheric Ozone Lidar Network (TOLNet) has recently been developed, which currently consists of five different ozone DIAL instruments, including the TROPOZ. This paper addresses the necessary procedures to validate the TROPOZ retrieval algorithm and develops a primary standard for retrieval consistency and optimization within TOLNet. This paper is focused on ensuring the TROPOZ and future TOLNet algorithms are properly quantifying ozone concentrations and the following paper will focus on defining a systematic uncertainty analysis standard for all TOLNet instruments. Although this paper is used to optimize the TROPOZ retrieval, the methodology presented may be extended and applied to most other DIAL instruments, even if the atmospheric product of interest is not tropospheric ozone (e.g. temperature or water vapor). The analysis begins by computing synthetic lidar returns from actual TROPOZ lidar return signals in combination with a known ozone profile. From these synthetic signals, it is possible to explicitly determine retrieval algorithm biases from the known profile, thereby identifying any areas that may need refinement for a new operational version of the TROPOZ retrieval algorithm. A new vertical resolution scheme is presented, which was upgraded from a constant vertical resolution to a variable vertical resolution, in order to yield a statistical uncertainty of <10%. The optimized vertical resolution scheme retains the ability to resolve fluctuations in the known ozone profile and now allows near field signals to be more appropriately smoothed. With these revisions, the optimized TROPOZ retrieval algorithm (TROPOZopt) has been effective in retrieving nearly 200 m lower to the surface. Also, as compared to the previous version of the retrieval, the TROPOZopt has reduced the mean profile bias by 3.5% and large reductions in bias (near 15 %) were apparent above 4.5 km. Finally, to ensure the TROPOZopt retrieval algorithm is robust enough to handle actual lidar return signals, a comparison is shown between four nearby ozonesonde measurements. The ozonesondes agree well with the retrieval and are mostly within the TROPOZopt retrieval uncertainty bars (which implies that this exercise was quite successful). A final mean percent difference plot is shown between the TROPOZopt and ozonesondes, which indicates that the new operational retrieval is mostly within 10% of the ozonesonde measurement and no systematic biases are present. The authors believe that this analysis has significantly added to the confidence in the TROPOZ instrument and provides a standard for current and future TOLNet algorithms.

  9. Constraining the Structure of Hot Jupiter Atmospheres Using a Hybrid Version of the NEMESIS Retrieval Algorithm

    NASA Astrophysics Data System (ADS)

    Badhan, Mahmuda A.; Mandell, Avi M.; Hesman, Brigette; Nixon, Conor; Deming, Drake; Irwin, Patrick; Barstow, Joanna; Garland, Ryan

    2015-11-01

    Understanding the formation environments and evolution scenarios of planets in nearby planetary systems requires robust measures for constraining their atmospheric physical properties. Here we have utilized a combination of two different parameter retrieval approaches, Optimal Estimation and Markov Chain Monte Carlo, as part of the well-validated NEMESIS atmospheric retrieval code, to infer a range of temperature profiles and molecular abundances of H2O, CO2, CH4 and CO from available dayside thermal emission observations of several hot-Jupiter candidates. In order to keep the number of parameters low and henceforth retrieve more plausible profile shapes, we have used a parametrized form of the temperature profile based upon an analytic radiative equilibrium derivation in Guillot et al. 2010 (Line et al. 2012, 2014). We show retrieval results on published spectroscopic and photometric data from both the Hubble Space Telescope and Spitzer missions, and compare them with simulations from the upcoming JWST mission. In addition, since NEMESIS utilizes correlated distribution of absorption coefficients (k-distribution) amongst atmospheric layers to compute these models, updates to spectroscopic databases can impact retrievals quite significantly for such high-temperature atmospheres. As high-temperature line databases are continually being improved, we also compare retrievals between old and newer databases.

  10. Dreaming of Atmospheres

    NASA Astrophysics Data System (ADS)

    Waldmann, Ingo

    2016-10-01

    Radiative transfer retrievals have become the standard in modelling of exoplanetary transmission and emission spectra. Analysing currently available observations of exoplanetary atmospheres often invoke large and correlated parameter spaces that can be difficult to map or constrain.To address these issues, we have developed the Tau-REx (tau-retrieval of exoplanets) retrieval and the RobERt spectral recognition algorithms. Tau-REx is a bayesian atmospheric retrieval framework using Nested Sampling and cluster computing to fully map these large correlated parameter spaces. Nonetheless, data volumes can become prohibitively large and we must often select a subset of potential molecular/atomic absorbers in an atmosphere.In the era of open-source, automated and self-sufficient retrieval algorithms, such manual input should be avoided. User dependent input could, in worst case scenarios, lead to incomplete models and biases in the retrieval. The RobERt algorithm is build to address these issues. RobERt is a deep belief neural (DBN) networks trained to accurately recognise molecular signatures for a wide range of planets, atmospheric thermal profiles and compositions. Using these deep neural networks, we work towards retrieval algorithms that themselves understand the nature of the observed spectra, are able to learn from current and past data and make sensible qualitative preselections of atmospheric opacities to be used for the quantitative stage of the retrieval process.In this talk I will discuss how neural networks and Bayesian Nested Sampling can be used to solve highly degenerate spectral retrieval problems and what 'dreaming' neural networks can tell us about atmospheric characteristics.

  11. Comparison of soil moisture retrieval algorithms based on the synergy between SMAP and SMOS-IC

    NASA Astrophysics Data System (ADS)

    Ebrahimi-Khusfi, Mohsen; Alavipanah, Seyed Kazem; Hamzeh, Saeid; Amiraslani, Farshad; Neysani Samany, Najmeh; Wigneron, Jean-Pierre

    2018-05-01

    This study was carried out to evaluate possible improvements of the soil moisture (SM) retrievals from the SMAP observations, based on the synergy between SMAP and SMOS. We assessed the impacts of the vegetation and soil roughness parameters on SM retrievals from SMAP observations. To do so, the effects of three key input parameters including the vegetation optical depth (VOD), effective scattering albedo (ω) and soil roughness (HR) parameters were assessed with the emphasis on the synergy with the VOD product derived from SMOS-IC, a new and simpler version of the SMOS algorithm, over two years of data (April 2015 to April 2017). First, a comprehensive comparison of seven SM retrieval algorithms was made to find the best one for SM retrievals from the SMAP observations. All results were evaluated against in situ measurements over 548 stations from the International Soil Moisture Network (ISMN) in terms of four statistical metrics: correlation coefficient (R), root mean square error (RMSE), bias and unbiased RMSE (UbRMSE). The comparison of seven SM retrieval algorithms showed that the dual channel algorithm based on the additional use of the SMOS-IC VOD product (selected algorithm) led to the best results of SM retrievals over 378, 399, 330 and 271 stations (out of a total of 548 stations) in terms of R, RMSE, UbRMSE and both R & UbRMSE, respectively. Moreover, comparing the measured and retrieved SM values showed that this synergy approach led to an increase in median R value from 0.6 to 0.65 and a decrease in median UbRMSE from 0.09 m3/m3 to 0.06 m3/m3. Second, using the algorithm selected in a first step and defined above, the ω and HR parameters were calibrated over 218 rather homogenous ISMN stations. 72 combinations of various values of ω and HR were used for the calibration over different land cover classes. In this calibration process, the optimal values of ω and HR were found for the different land cover classes. The obtained results indicated that the impact of the VOD parameter on SM retrievals is more considerable than the effects of HR and ω. Overall, the inclusion of the VOD parameter in the SMAP SM retrieval algorithm was found to be a very interesting approach and showed the large potential benefit of the synergy between SMAP and SMOS.

  12. Phase Retrieval Using a Genetic Algorithm on the Systematic Image-Based Optical Alignment Testbed

    NASA Technical Reports Server (NTRS)

    Taylor, Jaime R.

    2003-01-01

    NASA s Marshall Space Flight Center s Systematic Image-Based Optical Alignment (SIBOA) Testbed was developed to test phase retrieval algorithms and hardware techniques. Individuals working with the facility developed the idea of implementing phase retrieval by breaking the determination of the tip/tilt of each mirror apart from the piston motion (or translation) of each mirror. Presented in this report is an algorithm that determines the optimal phase correction associated only with the piston motion of the mirrors. A description of the Phase Retrieval problem is first presented. The Systematic Image-Based Optical Alignment (SIBOA) Testbeb is then described. A Discrete Fourier Transform (DFT) is necessary to transfer the incoming wavefront (or estimate of phase error) into the spatial frequency domain to compare it with the image. A method for reducing the DFT to seven scalar/matrix multiplications is presented. A genetic algorithm is then used to search for the phase error. The results of this new algorithm on a test problem are presented.

  13. An Integrated Retrieval Framework for AMSR2: Implications for Light Precipitation and Sea Ice Edge Detectability

    NASA Astrophysics Data System (ADS)

    Duncan, D.; Kummerow, C. D.; Meier, W.

    2016-12-01

    Over the lifetime of AMSR-E, operational retrieval algorithms were developed and run for precipitation, ocean suite (SST, wind speed, cloud liquid water path, and column water vapor over ocean), sea ice, snow water equivalent, and soil moisture. With a separate algorithm for each group, the retrievals were never interactive or integrated in any way despite many co-sensitivities. AMSR2, the follow-on mission to AMSR-E, retrieves the same parameters at a slightly higher spatial resolution. We have combined the operational algorithms for AMSR2 in a way that facilitates sharing information between the retrievals. Difficulties that arose were mainly related to calibration, spatial resolution, coastlines, and order of processing. The integration of all algorithms for AMSR2 has numerous benefits, including better detection of light precipitation and sea ice, fewer screened out pixels, and better quality flags. Integrating the algorithms opens up avenues for investigating the limits of detectability for precipitation from a passive microwave radiometer and the impact of spatial resolution on sea ice edge detection; these are investigated using CloudSat and MODIS coincident observations from the A-Train constellation.

  14. Efficient Retrieval of Massive Ocean Remote Sensing Images via a Cloud-Based Mean-Shift Algorithm.

    PubMed

    Yang, Mengzhao; Song, Wei; Mei, Haibin

    2017-07-23

    The rapid development of remote sensing (RS) technology has resulted in the proliferation of high-resolution images. There are challenges involved in not only storing large volumes of RS images but also in rapidly retrieving the images for ocean disaster analysis such as for storm surges and typhoon warnings. In this paper, we present an efficient retrieval of massive ocean RS images via a Cloud-based mean-shift algorithm. Distributed construction method via the pyramid model is proposed based on the maximum hierarchical layer algorithm and used to realize efficient storage structure of RS images on the Cloud platform. We achieve high-performance processing of massive RS images in the Hadoop system. Based on the pyramid Hadoop distributed file system (HDFS) storage method, an improved mean-shift algorithm for RS image retrieval is presented by fusion with the canopy algorithm via Hadoop MapReduce programming. The results show that the new method can achieve better performance for data storage than HDFS alone and WebGIS-based HDFS. Speedup and scaleup are very close to linear changes with an increase of RS images, which proves that image retrieval using our method is efficient.

  15. Efficient Retrieval of Massive Ocean Remote Sensing Images via a Cloud-Based Mean-Shift Algorithm

    PubMed Central

    Song, Wei; Mei, Haibin

    2017-01-01

    The rapid development of remote sensing (RS) technology has resulted in the proliferation of high-resolution images. There are challenges involved in not only storing large volumes of RS images but also in rapidly retrieving the images for ocean disaster analysis such as for storm surges and typhoon warnings. In this paper, we present an efficient retrieval of massive ocean RS images via a Cloud-based mean-shift algorithm. Distributed construction method via the pyramid model is proposed based on the maximum hierarchical layer algorithm and used to realize efficient storage structure of RS images on the Cloud platform. We achieve high-performance processing of massive RS images in the Hadoop system. Based on the pyramid Hadoop distributed file system (HDFS) storage method, an improved mean-shift algorithm for RS image retrieval is presented by fusion with the canopy algorithm via Hadoop MapReduce programming. The results show that the new method can achieve better performance for data storage than HDFS alone and WebGIS-based HDFS. Speedup and scaleup are very close to linear changes with an increase of RS images, which proves that image retrieval using our method is efficient. PMID:28737699

  16. Global Precipitation Measurement

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.; Skofronick-Jackson, Gail; Kummerow, Christian D.; Shepherd, James Marshall

    2008-01-01

    This chapter begins with a brief history and background of microwave precipitation sensors, with a discussion of the sensitivity of both passive and active instruments, to trace the evolution of satellite-based rainfall techniques from an era of inference to an era of physical measurement. Next, the highly successful Tropical Rainfall Measuring Mission will be described, followed by the goals and plans for the Global Precipitation Measurement (GPM) Mission and the status of precipitation retrieval algorithm development. The chapter concludes with a summary of the need for space-based precipitation measurement, current technological capabilities, near-term algorithm advancements and anticipated new sciences and societal benefits in the GPM era.

  17. Near-Real-Time Satellite Cloud Products for Icing Detection and Aviation Weather over the USA

    NASA Technical Reports Server (NTRS)

    Minnis, Patrick; Smith, William L., Jr.; Nguyen, Louis; Murray, J. J.; Heck, Patrick W.; Khaiyer, Mandana M.

    2003-01-01

    A set of physically based retrieval algorithms has been developed to derive from multispectral satellite imagery a variety of cloud properties that can be used to diagnose icing conditions when upper-level clouds are absent. The algorithms are being applied in near-real time to the Geostationary Operational Environmental Satellite (GOES) data over Florida, the Southern Great Plains, and the midwestern USA. The products are available in image and digital formats on the world-wide web. The analysis system is being upgraded to analyze GOES data over the CONUS. Validation, 24-hour processing, and operational issues are discussed.

  18. Impact of spatial resolution on cirrus infrared satellite retrievals in the presence of cloud heterogeneity

    NASA Astrophysics Data System (ADS)

    Fauchez, T.; Platnick, S. E.; Meyer, K.; Zhang, Z.; Cornet, C.; Szczap, F.; Dubuisson, P.

    2015-12-01

    Cirrus clouds are an important part of the Earth radiation budget but an accurate assessment of their role remains highly uncertain. Cirrus optical properties such as Cloud Optical Thickness (COT) and ice crystal effective particle size are often retrieved with a combination of Visible/Near InfraRed (VNIR) and ShortWave-InfraRed (SWIR) reflectance channels. Alternatively, Thermal InfraRed (TIR) techniques, such as the Split Window Technique (SWT), have demonstrated better accuracy for thin cirrus effective radius retrievals with small effective radii. However, current global operational algorithms for both retrieval methods assume that cloudy pixels are horizontally homogeneous (Plane Parallel Approximation (PPA)) and independent (Independent Pixel Approximation (IPA)). The impact of these approximations on ice cloud retrievals needs to be understood and, as far as possible, corrected. Horizontal heterogeneity effects in the TIR spectrum are mainly dominated by the PPA bias that primarily depends on the COT subpixel heterogeneity; for solar reflectance channels, in addition to the PPA bias, the IPA can lead to significant retrieval errors due to a significant photon horizontal transport between cloudy columns, as well as brightening and shadowing effects that are more difficult to quantify. Furthermore TIR retrievals techniques have demonstrated better retrieval accuracy for thin cirrus having small effective radii over solar reflectance techniques. The TIR range is thus particularly relevant in order to characterize, as accurately as possible, thin cirrus clouds. Heterogeneity effects in the TIR are evaluated as a function of spatial resolution in order to estimate the optimal spatial resolution for TIR retrieval applications. These investigations are performed using a cirrus 3D cloud generator (3DCloud), a 3D radiative transfer code (3DMCPOL), and two retrieval algorithms, namely the operational MODIS retrieval algorithm (MOD06) and a research-level SWT algorithm.

  19. Transfer and distortion of atmospheric information in the satellite temperature retrieval problem

    NASA Technical Reports Server (NTRS)

    Thompson, O. E.

    1981-01-01

    A systematic approach to investigating the transfer of basic ambient temperature information and its distortion by satellite systems and subsequent analysis algorithms is discussed. The retrieval analysis cycle is derived, the variance spectrum of information is examined as it takes different forms in that process, and the quality and quantity of information existing at each stop is compared with the initial ambient temperature information. Temperature retrieval algorithms can smooth, add, or further distort information, depending on how stable the algorithm is, and how heavily influenced by a priori data.

  20. Experiments at SRT Using the NOAA CrIS/ATMS Proxy Data Set

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Kouvaris, Louis; Iredell, Lena

    2011-01-01

    The objectives of the talk are: (1) Assess the performance of NGAS Version-1.5.03.00 CrIS/ATMS retrieval algorithm as delivered by LaRC, modified to include the MW and IR tuning coefficients and new CrIS noise model (a) Percent acceptance (b) RMS and mean differences of T(p) vs. ECMWF truth as a function of % yield (2) Compare performance of NGAS retrieval algorithm with an AIRS Science Team Version-6 like retrieval algorithm modified at Sounder Research Team (SRT) for CrIS/ATMS

  1. The Validation of Cloud Retrieval Algorithms Using Synthetic Datasets

    NASA Astrophysics Data System (ADS)

    Kokhanovsky, Alexander; Fischer, Jurgen; Linstrot, Rasmus; Meirink, Jan Fokke; Poulsen, Caroline; Preusker, Rene; Siddans, Richard; Thomas, Gareth; Arnold, Chris; Grainger, Roy; Lilli, Luca; Rozanov, Vladimir

    2012-11-01

    We have performed the inter-comparison study of cloud property retrievals using algorithms initially developed for AATSR (ORAC, RAL-Oxford University), AVHRR and SEVIRI (CPP, KNMI), SCIAMACHY/GOME (SACURA, University of Bremen), and MERIS (ANNA, Free University of Berlin). The accuracy of retrievals of cloud optical thickness (COT), effective radius (ER) of droplets, and cloud top height (CTH) is discussed.

  2. Solar Occultation Retrieval Algorithm Development

    NASA Technical Reports Server (NTRS)

    Lumpe, Jerry D.

    2004-01-01

    This effort addresses the comparison and validation of currently operational solar occultation retrieval algorithms, and the development of generalized algorithms for future application to multiple platforms. initial development of generalized forward model algorithms capable of simulating transmission data from of the POAM II/III and SAGE II/III instruments. Work in the 2" quarter will focus on: completion of forward model algorithms, including accurate spectral characteristics for all instruments, and comparison of simulated transmission data with actual level 1 instrument data for specific occultation events.

  3. Semiparametric modeling: Correcting low-dimensional model error in parametric models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, Tyrus, E-mail: thb11@psu.edu; Harlim, John, E-mail: jharlim@psu.edu; Department of Meteorology, the Pennsylvania State University, 503 Walker Building, University Park, PA 16802-5013

    2016-03-01

    In this paper, a semiparametric modeling approach is introduced as a paradigm for addressing model error arising from unresolved physical phenomena. Our approach compensates for model error by learning an auxiliary dynamical model for the unknown parameters. Practically, the proposed approach consists of the following steps. Given a physics-based model and a noisy data set of historical observations, a Bayesian filtering algorithm is used to extract a time-series of the parameter values. Subsequently, the diffusion forecast algorithm is applied to the retrieved time-series in order to construct the auxiliary model for the time evolving parameters. The semiparametric forecasting algorithm consistsmore » of integrating the existing physics-based model with an ensemble of parameters sampled from the probability density function of the diffusion forecast. To specify initial conditions for the diffusion forecast, a Bayesian semiparametric filtering method that extends the Kalman-based filtering framework is introduced. In difficult test examples, which introduce chaotically and stochastically evolving hidden parameters into the Lorenz-96 model, we show that our approach can effectively compensate for model error, with forecasting skill comparable to that of the perfect model.« less

  4. Improved VAS regression soundings of mesoscale temperature structure observed during the 1982 atmospheric variability experiment

    NASA Technical Reports Server (NTRS)

    Chesters, Dennis; Keyser, Dennis A.; Larko, David E.; Uccellini, Louis W.

    1987-01-01

    An Atmospheric Variability Experiment (AVE) was conducted over the central U.S. in the spring of 1982, collecting radiosonde date to verify mesoscale soundings from the VISSR Atmospheric Sounder (VAS) on the GOES satellite. Previously published VAS/AVE comparisons for the 6 March 1982 case found that the satellite retrievals scarcely detected a low level temperature inversion or a mid-tropospheric cold pool over a special mesoscale radiosonde verification network in north central Texas. The previously published regression and physical retrieval algorithms did not fully utilize VAS' sensitivity to important subsynoptic thermal features. Therefore, the 6 March 1982 case was reprocessed adding two enhancements to the VAS regression retrieval algorithm: (1) the regression matrix was determined using AVE profile data obtained in the region at asynoptic times, and (2) more optimistic signal-to-noise statistical conditioning factors were applied to the VAS temperature sounding channels. The new VAS soundings resolve more of the low level temperature inversion and mid-level cold pool. Most of the improvements stems from the utilization of asynoptic radiosonde observations at NWS sites. This case suggests that VAS regression soundings may require a ground-based asynoptic profiler network to bridge the gap between the synoptic radiosonde network and the high resolution geosynchronous satellite observations during the day.

  5. Data Assimilation Experiments using Quality Controlled AIRS Version 5 Temperature Soundings

    NASA Technical Reports Server (NTRS)

    SUsskind, Joel

    2008-01-01

    The AIRS Science Team Version 5 retrieval algorithm has been finalized and is now operational at the Goddard DAAC in the processing (and reprocessing) of all AIRS data. The AIRS Science Team Version 5 retrieval algorithm contains two significant improvements over Version 4: 1) Improved physics allows for use of AIRS observations in the entire 4.3 pm C02 absorption band in the retrieval of temperature profile T(p) during both day and night. Tropospheric sounding 15 pm C02 observations are now used primarily in the generation of cloud cleared radiances Ri. This approach allows for the generation of accurate values of Ri and T(p) under most cloud conditions. 2) Another very significant improvement in Version 5 is the ability to generate accurate case-by-case, level-by-level error estimates for the atmospheric temperature profile, as well as for channel-by- channel error estimates for Ri. These error estimates are used for quality control of the retrieved products. We have conducted forecast impact experiments assimilating AIRS temperature profiles with different levels of quality control using the NASA GEOS-5 data assimilation system. Assimilation of quality controlled T(p) resulted in significantly improved forecast skill compared to that obtained from analyses obtained when all data used operationally by NCEP, except for AIRS data, is assimilated. We also conducted an experiment assimilating AIRS radiances uncontaminated by clouds, as done Operationally by ECMWF and NCEP. Forecasts resulting from assimilated AIRS radiances were of poorer quality than those obtained assimilating AIRS temperatures.

  6. Assimilation of MODIS Dark Target and Deep Blue Observations in the Dust Aerosol Component of NMMB-MONARCH version 1.0

    NASA Technical Reports Server (NTRS)

    Di Tomaso, Enza; Schutgens, Nick A. J.; Jorba, Oriol; Perez Garcia-Pando, Carlos

    2017-01-01

    A data assimilation capability has been built for the NMMB-MONARCH chemical weather prediction system, with a focus on mineral dust, a prominent type of aerosol. An ensemble-based Kalman filter technique (namely the local ensemble transform Kalman filter - LETKF) has been utilized to optimally combine model background and satellite retrievals. Our implementation of the ensemble is based on known uncertainties in the physical parametrizations of the dust emission scheme. Experiments showed that MODIS AOD retrievals using the Dark Target algorithm can help NMMB-MONARCH to better characterize atmospheric dust. This is particularly true for the analysis of the dust outflow in the Sahel region and over the African Atlantic coast. The assimilation of MODIS AOD retrievals based on the Deep Blue algorithm has a further positive impact in the analysis downwind from the strongest dust sources of the Sahara and in the Arabian Peninsula. An analysis-initialized forecast performs better (lower forecast error and higher correlation with observations) than a standard forecast, with the exception of underestimating dust in the long-range Atlantic transport and degradation of the temporal evolution of dust in some regions after day 1. Particularly relevant is the improved forecast over the Sahara throughout the forecast range thanks to the assimilation of Deep Blue retrievals over areas not easily covered by other observational datasets.The present study on mineral dust is a first step towards data assimilation with a complete aerosol prediction system that includes multiple aerosol species.

  7. Assimilation of MODIS Dark Target and Deep Blue observations in the dust aerosol component of NMMB-MONARCH version 1.0

    NASA Astrophysics Data System (ADS)

    Di Tomaso, Enza; Schutgens, Nick A. J.; Jorba, Oriol; Pérez García-Pando, Carlos

    2017-03-01

    A data assimilation capability has been built for the NMMB-MONARCH chemical weather prediction system, with a focus on mineral dust, a prominent type of aerosol. An ensemble-based Kalman filter technique (namely the local ensemble transform Kalman filter - LETKF) has been utilized to optimally combine model background and satellite retrievals. Our implementation of the ensemble is based on known uncertainties in the physical parametrizations of the dust emission scheme. Experiments showed that MODIS AOD retrievals using the Dark Target algorithm can help NMMB-MONARCH to better characterize atmospheric dust. This is particularly true for the analysis of the dust outflow in the Sahel region and over the African Atlantic coast. The assimilation of MODIS AOD retrievals based on the Deep Blue algorithm has a further positive impact in the analysis downwind from the strongest dust sources of the Sahara and in the Arabian Peninsula. An analysis-initialized forecast performs better (lower forecast error and higher correlation with observations) than a standard forecast, with the exception of underestimating dust in the long-range Atlantic transport and degradation of the temporal evolution of dust in some regions after day 1. Particularly relevant is the improved forecast over the Sahara throughout the forecast range thanks to the assimilation of Deep Blue retrievals over areas not easily covered by other observational datasets. The present study on mineral dust is a first step towards data assimilation with a complete aerosol prediction system that includes multiple aerosol species.

  8. Mathematical Inversion of Lightning Data: Techniques and Applications

    NASA Technical Reports Server (NTRS)

    Koshak, William

    2003-01-01

    A survey of some interesting mathematical inversion studies dealing with radio, optical, and electrostatic measurements of lightning are presented. A discussion of why NASA is interested in lightning, what specific physical properties of lightning are retrieved, and what mathematical techniques are used to perform the retrievals are discussed. In particular, a relatively new multi-station VHF time-of-arrival (TOA) antenna network is now on-line in Northern Alabama and will be discussed. The network, called the Lightning Mapping Array (LMA), employs GPS timing and detects VHF radiation from discrete segments (effectively point emitters) that comprise the channel of lightning strokes within cloud and ground flashes. The LMA supports on-going ground-validation activities of the low Earth orbiting Lightning Imaging Sensor (LIS) satellite developed at NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama. The LMA also provides detailed studies of the distribution and evolution of thunderstorms and lightning in the Tennessee Valley, and offers interesting comparisons with other meteorological/geophysical datasets. In order to take full advantage of these benefits, it is essential that the LMA channel mapping accuracy (in both space and time) be fully characterized and optimized. A new channel mapping retrieval algorithm is introduced for this purpose. To characterize the spatial distribution of retrieval errors, the algorithm has been applied to analyze literally tens of millions of computer-simulated lightning VHF point sources that have been placed at various ranges, azimuths, and altitudes relative to the LMA network. Statistical results are conveniently summarized in high-resolution, color-coded, error maps.

  9. Enhanced Deep Blue Aerosol Retrieval Algorithm: The Second Generation

    NASA Technical Reports Server (NTRS)

    Hsu, N. C.; Jeong, M.-J.; Bettenhausen, C.; Sayer, A. M.; Hansell, R.; Seftor, C. S.; Huang, J.; Tsay, S.-C.

    2013-01-01

    The aerosol products retrieved using the MODIS collection 5.1 Deep Blue algorithm have provided useful information about aerosol properties over bright-reflecting land surfaces, such as desert, semi-arid, and urban regions. However, many components of the C5.1 retrieval algorithm needed to be improved; for example, the use of a static surface database to estimate surface reflectances. This is particularly important over regions of mixed vegetated and non- vegetated surfaces, which may undergo strong seasonal changes in land cover. In order to address this issue, we develop a hybrid approach, which takes advantage of the combination of pre-calculated surface reflectance database and normalized difference vegetation index in determining the surface reflectance for aerosol retrievals. As a result, the spatial coverage of aerosol data generated by the enhanced Deep Blue algorithm has been extended from the arid and semi-arid regions to the entire land areas.

  10. DAVIS: A direct algorithm for velocity-map imaging system

    NASA Astrophysics Data System (ADS)

    Harrison, G. R.; Vaughan, J. C.; Hidle, B.; Laurent, G. M.

    2018-05-01

    In this work, we report a direct (non-iterative) algorithm to reconstruct the three-dimensional (3D) momentum-space picture of any charged particles collected with a velocity-map imaging system from the two-dimensional (2D) projected image captured by a position-sensitive detector. The method consists of fitting the measured image with the 2D projection of a model 3D velocity distribution defined by the physics of the light-matter interaction. The meaningful angle-correlated information is first extracted from the raw data by expanding the image with a complete set of Legendre polynomials. Both the particle's angular and energy distributions are then directly retrieved from the expansion coefficients. The algorithm is simple, easy to implement, fast, and explicitly takes into account the pixelization effect in the measurement.

  11. A circular median filter approach for resolving directional ambiguities in wind fields retrieved from spaceborne scatterometer data

    NASA Technical Reports Server (NTRS)

    Schultz, Howard

    1990-01-01

    The retrieval algorithm for spaceborne scatterometry proposed by Schultz (1985) is extended. A circular median filter (CMF) method is presented, which operates on wind directions independently of wind speed, removing any implicit wind speed dependence. A cell weighting scheme is included in the algorithm, permitting greater weights to be assigned to more reliable data. The mathematical properties of the ambiguous solutions to the wind retrieval problem are reviewed. The CMF algorithm is tested on twelve simulated data sets. The effects of spatially correlated likelihood assignment errors on the performance of the CMF algorithm are examined. Also, consideration is given to a wind field smoothing technique that uses a CMF.

  12. North Alabama Lightning Mapping Array (LMA): VHF Source Retrieval Algorithm and Error Analyses

    NASA Technical Reports Server (NTRS)

    Koshak, W. J.; Solakiewicz, R. J.; Blakeslee, R. J.; Goodman, S. J.; Christian, H. J.; Hall, J.; Bailey, J.; Krider, E. P.; Bateman, M. G.; Boccippio, D.

    2003-01-01

    Two approaches are used to characterize how accurately the North Alabama Lightning Mapping Array (LMA) is able to locate lightning VHF sources in space and in time. The first method uses a Monte Carlo computer simulation to estimate source retrieval errors. The simulation applies a VHF source retrieval algorithm that was recently developed at the NASA Marshall Space Flight Center (MSFC) and that is similar, but not identical to, the standard New Mexico Tech retrieval algorithm. The second method uses a purely theoretical technique (i.e., chi-squared Curvature Matrix Theory) to estimate retrieval errors. Both methods assume that the LMA system has an overall rms timing error of 50 ns, but all other possible errors (e.g., multiple sources per retrieval attempt) are neglected. The detailed spatial distributions of retrieval errors are provided. Given that the two methods are completely independent of one another, it is shown that they provide remarkably similar results. However, for many source locations, the Curvature Matrix Theory produces larger altitude error estimates than the (more realistic) Monte Carlo simulation.

  13. Aerosol Retrievals over the Ocean using Channel 1 and 2 AVHRR Data: A Sensitivity Analysis and Preliminary Results

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Geogdzhayev, Igor V.; Cairns, Brian; Rossow, William B.; Lacis, Andrew A.

    1999-01-01

    This paper outlines the methodology of interpreting channel 1 and 2 AVHRR radiance data over the oceans and describes a detailed analysis of the sensitivity of monthly averages of retrieved aerosol parameters to the assumptions made in different retrieval algorithms. The analysis is based on using real AVHRR data and exploiting accurate numerical techniques for computing single and multiple scattering and spectral absorption of light in the vertically inhomogeneous atmosphere-ocean system. We show that two-channel algorithms can be expected to provide significantly more accurate and less biased retrievals of the aerosol optical thickness than one-channel algorithms and that imperfect cloud screening and calibration uncertainties are by far the largest sources of errors in the retrieved aerosol parameters. Both underestimating and overestimating aerosol absorption as well as the potentially strong variability of the real part of the aerosol refractive index may lead to regional and/or seasonal biases in optical thickness retrievals. The Angstrom exponent appears to be the most invariant aerosol size characteristic and should be retrieved along with optical thickness as the second aerosol parameter.

  14. Millimeter-wave Imaging Radiometer (MIR) data processing and development of water vapor retrieval algorithms

    NASA Technical Reports Server (NTRS)

    Chang, L. Aron

    1995-01-01

    This document describes the progress of the task of the Millimeter-wave Imaging Radiometer (MIR) data processing and the development of water vapor retrieval algorithms, for the second six-month performing period. Aircraft MIR data from two 1995 field experiments were collected and processed with a revised data processing software. Two revised versions of water vapor retrieval algorithm were developed, one for the execution of retrieval on a supercomputer platform, and one for using pressure as the vertical coordinate. Two implementations of incorporating products from other sensors into the water vapor retrieval system, one from the Special Sensor Microwave Imager (SSM/I), the other from the High-resolution Interferometer Sounder (HIS). Water vapor retrievals were performed for both airborne MIR data and spaceborne SSM/T-2 data, during field experiments of TOGA/COARE, CAMEX-1, and CAMEX-2. The climatology of water vapor during TOGA/COARE was examined by SSM/T-2 soundings and conventional rawinsonde.

  15. Retrieving cloudy atmosphere parameters from RPG-HATPRO radiometer data

    NASA Astrophysics Data System (ADS)

    Kostsov, V. S.

    2015-03-01

    An algorithm for simultaneously determining both tropospheric temperature and humidity profiles and cloud liquid water content from ground-based measurements of microwave radiation is presented. A special feature of this algorithm is that it combines different types of measurements and different a priori information on the sought parameters. The features of its use in processing RPG-HATPRO radiometer data obtained in the course of atmospheric remote sensing experiments carried out by specialists from the Faculty of Physics of St. Petersburg State University are discussed. The results of a comparison of both temperature and humidity profiles obtained using a ground-based microwave remote sensing method with those obtained from radiosonde data are analyzed. It is shown that this combined algorithm is comparable (in accuracy) to the classical method of statistical regularization in determining temperature profiles; however, this algorithm demonstrates better accuracy (when compared to the method of statistical regularization) in determining humidity profiles.

  16. Ten Years of Cloud Optical and Microphysical Retrievals from MODIS

    NASA Technical Reports Server (NTRS)

    Platnick, Steven; King, Michael D.; Wind, Galina; Hubanks, Paul; Arnold, G. Thomas; Amarasinghe, Nandana

    2010-01-01

    The MODIS cloud optical properties algorithm (MOD06/MYD06 for Terra and Aqua MODIS, respectively) has undergone extensive improvements and enhancements since the launch of Terra. These changes have included: improvements in the cloud thermodynamic phase algorithm; substantial changes in the ice cloud light scattering look up tables (LUTs); a clear-sky restoral algorithm for flagging heavy aerosol and sunglint; greatly improved spectral surface albedo maps, including the spectral albedo of snow by ecosystem; inclusion of pixel-level uncertainty estimates for cloud optical thickness, effective radius, and water path derived for three error sources that includes the sensitivity of the retrievals to solar and viewing geometries. To improve overall retrieval quality, we have also implemented cloud edge removal and partly cloudy detection (using MOD35 cloud mask 250m tests), added a supplementary cloud optical thickness and effective radius algorithm over snow and sea ice surfaces and over the ocean, which enables comparison with the "standard" 2.1 11m effective radius retrieval, and added a multi-layer cloud detection algorithm. We will discuss the status of the MOD06 algorithm and show examples of pixellevel (Level-2) cloud retrievals for selected data granules, as well as gridded (Level-3) statistics, notably monthly means and histograms (lD and 2D, with the latter giving correlations between cloud optical thickness and effective radius, and other cloud product pairs).

  17. Modified retrieval algorithm for three types of precipitation distribution using x-band synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Xie, Yanan; Zhou, Mingliang; Pan, Dengke

    2017-10-01

    The forward-scattering model is introduced to describe the response of normalized radar cross section (NRCS) of precipitation with synthetic aperture radar (SAR). Since the distribution of near-surface rainfall is related to the rate of near-surface rainfall and horizontal distribution factor, a retrieval algorithm called modified regression empirical and model-oriented statistical (M-M) based on the volterra integration theory is proposed. Compared with the model-oriented statistical and volterra integration (MOSVI) algorithm, the biggest difference is that the M-M algorithm is based on the modified regression empirical algorithm rather than the linear regression formula to retrieve the value of near-surface rainfall rate. Half of the empirical parameters are reduced in the weighted integral work and a smaller average relative error is received while the rainfall rate is less than 100 mm/h. Therefore, the algorithm proposed in this paper can obtain high-precision rainfall information.

  18. Information retrieval algorithms: A survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raghavan, P.

    We give an overview of some algorithmic problems arising in the representation of text/image/multimedia objects in a form amenable to automated searching, and in conducting these searches efficiently. These operations are central to information retrieval and digital library systems.

  19. A differential optical absorption spectroscopy method for retrieval from ground-based Fourier transform spectrometers measurements of the direct solar beam

    NASA Astrophysics Data System (ADS)

    Huo, Yanfeng; Duan, Minzheng; Tian, Wenshou; Min, Qilong

    2015-08-01

    A differential optical absorption spectroscopy (DOAS)-like algorithm is developed to retrieve the column-averaged dryair mole fraction of carbon dioxide from ground-based hyper-spectral measurements of the direct solar beam. Different to the spectral fitting method, which minimizes the difference between the observed and simulated spectra, the ratios of multiple channel-pairs—one weak and one strong absorption channel—are used to retrieve from measurements of the shortwave infrared (SWIR) band. Based on sensitivity tests, a super channel-pair is carefully selected to reduce the effects of solar lines, water vapor, air temperature, pressure, instrument noise, and frequency shift on retrieval errors. The new algorithm reduces computational cost and the retrievals are less sensitive to temperature and H2O uncertainty than the spectral fitting method. Multi-day Total Carbon Column Observing Network (TCCON) measurements under clear-sky conditions at two sites (Tsukuba and Bremen) are used to derive xxxx for the algorithm evaluation and validation. The DOAS-like results agree very well with those of the TCCON algorithm after correction of an airmass-dependent bias.

  20. Significant Advances in the AIRS Science Team Version-6 Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John; Iredell, Lena; Molnar, Gyula

    2012-01-01

    AIRS/AMSU is the state of the art infrared and microwave atmospheric sounding system flying aboard EOS Aqua. The Goddard DISC has analyzed AIRS/AMSU observations, covering the period September 2002 until the present, using the AIRS Science Team Version-S retrieval algorithm. These products have been used by many researchers to make significant advances in both climate and weather applications. The AIRS Science Team Version-6 Retrieval, which will become operation in mid-20l2, contains many significant theoretical and practical improvements compared to Version-5 which should further enhance the utility of AIRS products for both climate and weather applications. In particular, major changes have been made with regard to the algOrithms used to 1) derive surface skin temperature and surface spectral emissivity; 2) generate the initial state used to start the retrieval procedure; 3) compute Outgoing Longwave Radiation; and 4) determine Quality Control. This paper will describe these advances found in the AIRS Version-6 retrieval algorithm and demonstrate the improvement of AIRS Version-6 products compared to those obtained using Version-5,

  1. DREAMING OF ATMOSPHERES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waldmann, I. P., E-mail: ingo@star.ucl.ac.uk

    Here, we introduce the RobERt (Robotic Exoplanet Recognition) algorithm for the classification of exoplanetary emission spectra. Spectral retrieval of exoplanetary atmospheres frequently requires the preselection of molecular/atomic opacities to be defined by the user. In the era of open-source, automated, and self-sufficient retrieval algorithms, manual input should be avoided. User dependent input could, in worst-case scenarios, lead to incomplete models and biases in the retrieval. The RobERt algorithm is based on deep-belief neural (DBN) networks trained to accurately recognize molecular signatures for a wide range of planets, atmospheric thermal profiles, and compositions. Reconstructions of the learned features, also referred to as themore » “dreams” of the network, indicate good convergence and an accurate representation of molecular features in the DBN. Using these deep neural networks, we work toward retrieval algorithms that themselves understand the nature of the observed spectra, are able to learn from current and past data, and make sensible qualitative preselections of atmospheric opacities to be used for the quantitative stage of the retrieval process.« less

  2. Minimizing the semantic gap in biomedical content-based image retrieval

    NASA Astrophysics Data System (ADS)

    Guan, Haiying; Antani, Sameer; Long, L. Rodney; Thoma, George R.

    2010-03-01

    A major challenge in biomedical Content-Based Image Retrieval (CBIR) is to achieve meaningful mappings that minimize the semantic gap between the high-level biomedical semantic concepts and the low-level visual features in images. This paper presents a comprehensive learning-based scheme toward meeting this challenge and improving retrieval quality. The article presents two algorithms: a learning-based feature selection and fusion algorithm and the Ranking Support Vector Machine (Ranking SVM) algorithm. The feature selection algorithm aims to select 'good' features and fuse them using different similarity measurements to provide a better representation of the high-level concepts with the low-level image features. Ranking SVM is applied to learn the retrieval rank function and associate the selected low-level features with query concepts, given the ground-truth ranking of the training samples. The proposed scheme addresses four major issues in CBIR to improve the retrieval accuracy: image feature extraction, selection and fusion, similarity measurements, the association of the low-level features with high-level concepts, and the generation of the rank function to support high-level semantic image retrieval. It models the relationship between semantic concepts and image features, and enables retrieval at the semantic level. We apply it to the problem of vertebra shape retrieval from a digitized spine x-ray image set collected by the second National Health and Nutrition Examination Survey (NHANES II). The experimental results show an improvement of up to 41.92% in the mean average precision (MAP) over conventional image similarity computation methods.

  3. An integrated content and metadata based retrieval system for art.

    PubMed

    Lewis, Paul H; Martinez, Kirk; Abas, Fazly Salleh; Fauzi, Mohammad Faizal Ahmad; Chan, Stephen C Y; Addis, Matthew J; Boniface, Mike J; Grimwood, Paul; Stevenson, Alison; Lahanier, Christian; Stevenson, James

    2004-03-01

    A new approach to image retrieval is presented in the domain of museum and gallery image collections. Specialist algorithms, developed to address specific retrieval tasks, are combined with more conventional content and metadata retrieval approaches, and implemented within a distributed architecture to provide cross-collection searching and navigation in a seamless way. External systems can access the different collections using interoperability protocols and open standards, which were extended to accommodate content based as well as text based retrieval paradigms. After a brief overview of the complete system, we describe the novel design and evaluation of some of the specialist image analysis algorithms including a method for image retrieval based on sub-image queries, retrievals based on very low quality images and retrieval using canvas crack patterns. We show how effective retrieval results can be achieved by real end-users consisting of major museums and galleries, accessing the distributed but integrated digital collections.

  4. Optically secured information retrieval using two authenticated phase-only masks.

    PubMed

    Wang, Xiaogang; Chen, Wen; Mei, Shengtao; Chen, Xudong

    2015-10-23

    We propose an algorithm for jointly designing two phase-only masks (POMs) that allow for the encryption and noise-free retrieval of triple images. The images required for optical retrieval are first stored in quick-response (QR) codes for noise-free retrieval and flexible readout. Two sparse POMs are respectively calculated from two different images used as references for authentication based on modified Gerchberg-Saxton algorithm (GSA) and pixel extraction, and are then used as support constraints in a modified double-phase retrieval algorithm (MPRA), together with the above-mentioned QR codes. No visible information about the target images or the reference images can be obtained from each of these authenticated POMs. This approach allows users to authenticate the two POMs used for image reconstruction without visual observation of the reference images. It also allows user to friendly access and readout with mobile devices.

  5. Optically secured information retrieval using two authenticated phase-only masks

    PubMed Central

    Wang, Xiaogang; Chen, Wen; Mei, Shengtao; Chen, Xudong

    2015-01-01

    We propose an algorithm for jointly designing two phase-only masks (POMs) that allow for the encryption and noise-free retrieval of triple images. The images required for optical retrieval are first stored in quick-response (QR) codes for noise-free retrieval and flexible readout. Two sparse POMs are respectively calculated from two different images used as references for authentication based on modified Gerchberg-Saxton algorithm (GSA) and pixel extraction, and are then used as support constraints in a modified double-phase retrieval algorithm (MPRA), together with the above-mentioned QR codes. No visible information about the target images or the reference images can be obtained from each of these authenticated POMs. This approach allows users to authenticate the two POMs used for image reconstruction without visual observation of the reference images. It also allows user to friendly access and readout with mobile devices. PMID:26494213

  6. Optically secured information retrieval using two authenticated phase-only masks

    NASA Astrophysics Data System (ADS)

    Wang, Xiaogang; Chen, Wen; Mei, Shengtao; Chen, Xudong

    2015-10-01

    We propose an algorithm for jointly designing two phase-only masks (POMs) that allow for the encryption and noise-free retrieval of triple images. The images required for optical retrieval are first stored in quick-response (QR) codes for noise-free retrieval and flexible readout. Two sparse POMs are respectively calculated from two different images used as references for authentication based on modified Gerchberg-Saxton algorithm (GSA) and pixel extraction, and are then used as support constraints in a modified double-phase retrieval algorithm (MPRA), together with the above-mentioned QR codes. No visible information about the target images or the reference images can be obtained from each of these authenticated POMs. This approach allows users to authenticate the two POMs used for image reconstruction without visual observation of the reference images. It also allows user to friendly access and readout with mobile devices.

  7. Physical Validation of GPM Retrieval Algorithms Over Land: An Overview of the Mid-Latitude Continental Convective Clouds Experiment (MC3E)

    NASA Technical Reports Server (NTRS)

    Petersen, Walter A.; Jensen, Michael P.

    2011-01-01

    The joint NASA Global Precipitation Measurement (GPM) -- DOE Atmospheric Radiation Measurement (ARM) Midlatitude Continental Convective Clouds Experiment (MC3E) was conducted from April 22-June 6, 2011, centered on the DOE-ARM Southern Great Plains Central Facility site in northern Oklahoma. GPM field campaign objectives focused on the collection of airborne and ground-based measurements of warm-season continental precipitation processes to support refinement of GPM retrieval algorithm physics over land, and to improve the fidelity of coupled cloud resolving and land-surface satellite simulator models. DOE ARM objectives were synergistically focused on relating observations of cloud microphysics and the surrounding environment to feedbacks on convective system dynamics, an effort driven by the need to better represent those interactions in numerical modeling frameworks. More specific topics addressed by MC3E include ice processes and ice characteristics as coupled to precipitation at the surface and radiometer signals measured in space, the correlation properties of rainfall and drop size distributions and impacts on dual-frequency radar retrieval algorithms, the transition of cloud water to rain water (e.g., autoconversion processes) and the vertical distribution of cloud water in precipitating clouds, and vertical draft structure statistics in cumulus convection. The MC3E observational strategy relied on NASA ER-2 high-altitude airborne multi-frequency radar (HIWRAP Ka-Ku band) and radiometer (AMPR, CoSMIR; 10-183 GHz) sampling (a GPM "proxy") over an atmospheric column being simultaneously profiled in situ by the University of North Dakota Citation microphysics aircraft, an array of ground-based multi-frequency scanning polarimetric radars (DOE Ka-W, X and C-band; NASA D3R Ka-Ku and NPOL S-bands) and wind-profilers (S/UHF bands), supported by a dense network of over 20 disdrometers and rain gauges, all nested in the coverage of a six-station mesoscale rawinsonde network. As an exploratory effort to examine land-surface emissivity impacts on retrieval algorithms, and to demonstrate airborne soil moisture retrieval capabilities, the University of Tennessee Space Institute Piper aircraft carrying the MAPIR L-band radiometer was also flown during the latter half of the experiment in coordination with the ER-2. The observational strategy provided a means to sample the atmospheric column in a redundant framework that enables inter-calibration and constraint of measured and retrieved precipitation characteristics such as particle size distributions, or water contents- all within the umbrella of "proxy" satellite measurements (i.e., the ER-2). Complimenting the precipitation sampling framework, frequent and coincident launches of atmospheric soundings (e.g., 4-8/day) then provided a much larger mesoscale view of the thermodynamic and winds environment, a data set useful for initializing cloud models. The datasets collected represent a variety cloud and precipitation types including isolated cumulus clouds, severe thunderstorms, mesoscale convective systems, and widespread regions of light to moderate stratiform precipitation. We will present the MC3E experiment design, an overview of operations, and a summary of preliminary results.

  8. Cirrus cloud retrieval with MSG/SEVIRI using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Strandgren, Johan; Bugliaro, Luca; Sehnke, Frank; Schröder, Leon

    2017-09-01

    Cirrus clouds play an important role in climate as they tend to warm the Earth-atmosphere system. Nevertheless their physical properties remain one of the largest sources of uncertainty in atmospheric research. To better understand the physical processes of cirrus clouds and their climate impact, enhanced satellite observations are necessary. In this paper we present a new algorithm, CiPS (Cirrus Properties from SEVIRI), that detects cirrus clouds and retrieves the corresponding cloud top height, ice optical thickness and ice water path using the SEVIRI imager aboard the geostationary Meteosat Second Generation satellites. CiPS utilises a set of artificial neural networks trained with SEVIRI thermal observations, CALIOP backscatter products, the ECMWF surface temperature and auxiliary data. CiPS detects 71 and 95 % of all cirrus clouds with an optical thickness of 0.1 and 1.0, respectively, that are retrieved by CALIOP. Among the cirrus-free pixels, CiPS classifies 96 % correctly. With respect to CALIOP, the cloud top height retrieved by CiPS has a mean absolute percentage error of 10 % or less for cirrus clouds with a top height greater than 8 km. For the ice optical thickness, CiPS has a mean absolute percentage error of 50 % or less for cirrus clouds with an optical thickness between 0.35 and 1.8 and of 100 % or less for cirrus clouds with an optical thickness down to 0.07 with respect to the optical thickness retrieved by CALIOP. The ice water path retrieved by CiPS shows a similar performance, with mean absolute percentage errors of 100 % or less for cirrus clouds with an ice water path down to 1.7 g m-2. Since the training reference data from CALIOP only include ice water path and optical thickness for comparably thin clouds, CiPS also retrieves an opacity flag, which tells us whether a retrieved cirrus is likely to be too thick for CiPS to accurately derive the ice water path and optical thickness. By retrieving CALIOP-like cirrus properties with the large spatial coverage and high temporal resolution of SEVIRI during both day and night, CiPS is a powerful tool for analysing the temporal evolution of cirrus clouds including their optical and physical properties. To demonstrate this, the life cycle of a thin cirrus cloud is analysed.

  9. Assessment of the Broadleaf Crops Leaf Area Index Product from the Terra MODIS Instrument

    NASA Technical Reports Server (NTRS)

    Tan, Bin; Hu, Jiannan; Huang, Dong; Yang, Wenze; Zhang, Ping; Shabanov, Nikolay V.; Knyazikhin, Yuri; Nemani, Ramakrishna R.; Myneni, Ranga B.

    2005-01-01

    The first significant processing of Terra MODIS data, called Collection 3, covered the period from November 2000 to December 2002. The Collection 3 leaf area index (LAI) and fraction vegetation absorbed photosynthetically active radiation (FPAR) products for broadleaf crops exhibited three anomalies (a) high LAI values during the peak growing season, (b) differences in LAI seasonality between the radiative transfer-based main algorithm and the vegetation index based back-up algorithm, and (c) too few retrievals from the main algorithm during the summer period when the crops are at full flush. The cause of these anomalies is a mismatch between reflectances modeled by the algorithm and MODIS measurements. Therefore, the Look-Up-Tables accompanying the algorithm were revised and implemented in Collection 4 processing. The main algorithm with the revised Look-Up-Tables generated retrievals for over 80% of the pixels with valid data. Retrievals from the back-up algorithm, although few, should be used with caution as they are generated from surface reflectances with high uncertainties.

  10. Retrieving handwriting by combining word spotting and manifold ranking

    NASA Astrophysics Data System (ADS)

    Peña Saldarriaga, Sebastián; Morin, Emmanuel; Viard-Gaudin, Christian

    2012-01-01

    Online handwritten data, produced with Tablet PCs or digital pens, consists in a sequence of points (x, y). As the amount of data available in this form increases, algorithms for retrieval of online data are needed. Word spotting is a common approach used for the retrieval of handwriting. However, from an information retrieval (IR) perspective, word spotting is a primitive keyword based matching and retrieval strategy. We propose a framework for handwriting retrieval where an arbitrary word spotting method is used, and then a manifold ranking algorithm is applied on the initial retrieval scores. Experimental results on a database of more than 2,000 handwritten newswires show that our method can improve the performances of a state-of-the-art word spotting system by more than 10%.

  11. Evaluation of the MODIS Retrievals of Dust Aerosol over the Ocean during PRIDE

    NASA Technical Reports Server (NTRS)

    Levy, Robert C.; Remer, Lorraine A.; Tanre, Didier; Kaufman, Yoram J.; Ichoku, Charles; Holben, Brent N.; Livingston, John M.; Russell, Philip B.; Maring, Hal

    2002-01-01

    The Puerto Rico Dust Experiment (PRIDE) took place in Roosevelt Roads, Puerto Rico from June 26 to July 24,2000 to study the radiative and physical properties of African dust aerosol transported into the region. PRIDE had the unique distinction of being the first major field experiment to allow direct comparison of aerosol retrievals from the MODerate Imaging Spectro-radiometer (MODIS) with sunphotometer and in-situ aerosol measurements. Over the ocean, the MODIS algorithm retrieves aerosol optical depth (AOD) as well as information about the aerosols size distribution. During PRIDE, MODIS derived AODs in the red wavelengths (0.66 micrometers) compare closely with AODs measured from sunphotometers, but, are too large at blue and green wavelengths (0.47 and 0.55 micrometers) and too small in the infrared (0.87 micrometers). This discrepancy of spectral slope results in particle size distributions retrieved by MODIS that are small compared to in-situ measurements, and smaller still when compared to sunphotometer sky radiance inversions. The differences in size distributions are, at least in part, associated with MODIS simplification of dust as spherical particles. Analysis of this PRIDE data set is a first step towards derivation of realistic non-spherical models for future MODIS retrievals.

  12. The Error Structure of the SMAP Single and Dual Channel Soil Moisture Retrievals

    NASA Astrophysics Data System (ADS)

    Dong, Jianzhi; Crow, Wade T.; Bindlish, Rajat

    2018-01-01

    Knowledge of the temporal error structure for remotely sensed surface soil moisture retrievals can improve our ability to exploit them for hydrologic and climate studies. This study employs a triple collocation analysis to investigate both the total variance and temporal autocorrelation of errors in Soil Moisture Active and Passive (SMAP) products generated from two separate soil moisture retrieval algorithms, the vertically polarized brightness temperature-based single-channel algorithm (SCA-V, the current baseline SMAP algorithm) and the dual-channel algorithm (DCA). A key assumption made in SCA-V is that real-time vegetation opacity can be accurately captured using only a climatology for vegetation opacity. Results demonstrate that while SCA-V generally outperforms DCA, SCA-V can produce larger total errors when this assumption is significantly violated by interannual variability in vegetation health and biomass. Furthermore, larger autocorrelated errors in SCA-V retrievals are found in areas with relatively large vegetation opacity deviations from climatological expectations. This implies that a significant portion of the autocorrelated error in SCA-V is attributable to the violation of its vegetation opacity climatology assumption and suggests that utilizing a real (as opposed to climatological) vegetation opacity time series in the SCA-V algorithm would reduce the magnitude of autocorrelated soil moisture retrieval errors.

  13. Assessment of the improvements in accuracy of aerosol characterization resulted from additions of polarimetric measurements to intensity-only observations using GRASP algorithm (Invited)

    NASA Astrophysics Data System (ADS)

    Dubovik, O.; Litvinov, P.; Lapyonok, T.; Herman, M.; Fedorenko, A.; Lopatin, A.; Goloub, P.; Ducos, F.; Aspetsberger, M.; Planer, W.; Federspiel, C.

    2013-12-01

    During last few years we were developing GRASP (Generalized Retrieval of Aerosol and Surface Properties) algorithm designed for the enhanced characterization of aerosol properties from spectral, multi-angular polarimetric remote sensing observations. The concept of GRASP essentially relies on the accumulated positive research heritage from previous remote sensing aerosol retrieval developments, in particular those from the AERONET and POLDER retrieval activities. The details of the algorithm are described by Dubovik et al. (Atmos. Meas. Tech., 4, 975-1018, 2011). The GRASP retrieves properties of both aerosol and land surface reflectance in cloud-free environments. It is based on highly advanced statistically optimized fitting and deduces nearly 50 unknowns for each observed site. The algorithm derives a similar set of aerosol parameters as AERONET including detailed particle size distribution, the spectrally dependent the complex index of refraction and the fraction of non-spherical particles. The algorithm uses detailed aerosol and surface models and fully accounts for all multiple interactions of scattered solar light with aerosol, gases and the underlying surface. All calculations are done on-line without using traditional look-up tables. In addition, the algorithm uses the new multi-pixel retrieval concept - a simultaneous fitting of a large group of pixels with additional constraints limiting the time variability of surface properties and spatial variability of aerosol properties. This principle is expected to result in higher consistency and accuracy of aerosol products compare to conventional approaches especially over bright surfaces where information content of satellite observations in respect to aerosol properties is limited. The GRASP is a highly versatile algorithm that allows input from both satellite and ground-based measurements. It also has essential flexibility in measurement processing. For example, if observation data set includes spectral measurements of both total intensity and polarization, the algorithm can be easily set to use either total intensity or polarization, as well as both of them in the same retrieval. Using this feature of the algorithm design we have studied the relative importance of total intensity and polarization measurements for retrieving different parameters of aerosol. In this presentation, we present the quantitative assessment of the improvements in aerosol retrievals associated with additions of polarimetric measurements to the intensity-only observations. The study has been performed using satellite measurements by POLDER/PARASOL polarimeter and ground-based measurements by new generation AERONET sun/sky-radiometers implementing measurements of polarization at each spectral channel.

  14. Use of Multiangle Satellite Observations to Retrieve Aerosol Properties and Ocean Color

    NASA Technical Reports Server (NTRS)

    Martonchik, John V.; Diner, David; Khan, Ralph

    2005-01-01

    A new technique is described for retrieving aerosol over ocean water and the associated ocean color using multiangle satellite observations. Unlike current satellite aerosol retrieval algorithms which only utilize observations at red wavelengths and longer, with the assumption that these wavelengths have a negligible ocean (water-leaving radiance), this new algorithm uses all available spectral bands and simultaneously retrieves both aerosol properties and the spectral ocean color. We show some results of case studies using MISR data, performed over different water conditions (coastal water, blooms, and open water).

  15. Improved OSIRIS NO2 retrieval algorithm: description and validation

    NASA Astrophysics Data System (ADS)

    Sioris, Christopher E.; Rieger, Landon A.; Lloyd, Nicholas D.; Bourassa, Adam E.; Roth, Chris Z.; Degenstein, Douglas A.; Camy-Peyret, Claude; Pfeilsticker, Klaus; Berthet, Gwenaël; Catoire, Valéry; Goutail, Florence; Pommereau, Jean-Pierre; McLinden, Chris A.

    2017-03-01

    A new retrieval algorithm for OSIRIS (Optical Spectrograph and Infrared Imager System) nitrogen dioxide (NO2) profiles is described and validated. The algorithm relies on spectral fitting to obtain slant column densities of NO2, followed by inversion using an algebraic reconstruction technique and the SaskTran spherical radiative transfer model (RTM) to obtain vertical profiles of local number density. The validation covers different latitudes (tropical to polar), years (2002-2012), all seasons (winter, spring, summer, and autumn), different concentrations of nitrogen dioxide (from denoxified polar vortex to polar summer), a range of solar zenith angles (68.6-90.5°), and altitudes between 10.5 and 39 km, thereby covering the full retrieval range of a typical OSIRIS NO2 profile. The use of a larger spectral fitting window than used in previous retrievals reduces retrieval uncertainties and the scatter in the retrieved profiles due to noisy radiances. Improvements are also demonstrated through the validation in terms of bias reduction at 15-17 km relative to the OSIRIS operational v3.0 algorithm. The diurnal variation of NO2 along the line of sight is included in a fully spherical multiple scattering RTM for the first time. Using this forward model with built-in photochemistry, the scatter of the differences relative to the correlative balloon NO2 profile data is reduced.

  16. Combining approaches to on-line handwriting information retrieval

    NASA Astrophysics Data System (ADS)

    Peña Saldarriaga, Sebastián; Viard-Gaudin, Christian; Morin, Emmanuel

    2010-01-01

    In this work, we propose to combine two quite different approaches for retrieving handwritten documents. Our hypothesis is that different retrieval algorithms should retrieve different sets of documents for the same query. Therefore, significant improvements in retrieval performances can be expected. The first approach is based on information retrieval techniques carried out on the noisy texts obtained through handwriting recognition, while the second approach is recognition-free using a word spotting algorithm. Results shows that for texts having a word error rate (WER) lower than 23%, the performances obtained with the combined system are close to the performances obtained on clean digital texts. In addition, for poorly recognized texts (WER > 52%), an improvement of nearly 17% can be observed with respect to the best available baseline method.

  17. Temperature Crosstalk Sensitivity of the Kummerow Rainfall Algorithm

    NASA Technical Reports Server (NTRS)

    Spencer, Roy W.; Petrenko, Boris

    1999-01-01

    Even though the signal source for passive microwave retrievals is thermal emission, retrievals of non-temperature geophysical parameters typically do not explicitly take into account the effects of temperature change on the retrievals. For global change research, changes in geophysical parameters (e.g. water vapor, rainfall, etc.) are referenced to the accompanying changes in temperature. If the retrieval of a certain parameter has a cross-talk response from temperature change alone, the retrievals might not be very useful for climate research. We investigated the sensitivity of the Kummerow rainfall retrieval algorithm to changes in air temperature. It was found that there was little net change in total rainfall with air temperature change. However, there were non-negligible changes within individual rain rate categories.

  18. Flash-Type Discrimination

    NASA Technical Reports Server (NTRS)

    Koshak, William J.

    2010-01-01

    This viewgraph presentation describes the significant progress made in the flash-type discrimination algorithm development. The contents include: 1) Highlights of Progress for GLM-R3 Flash-Type discrimination Algorithm Development; 2) Maximum Group Area (MGA) Data; 3) Retrieval Errors from Simulations; and 4) Preliminary Global-scale Retrieval.

  19. SWIM: A Semi-Analytical Ocean Color Inversion Algorithm for Optically Shallow Waters

    NASA Technical Reports Server (NTRS)

    McKinna, Lachlan I. W.; Werdell, P. Jeremy; Fearns, Peter R. C. S.; Weeks, Scarla J.; Reichstetter, Martina; Franz, Bryan A.; Bailey, Sean W.; Shea, Donald M.; Feldman, Gene C.

    2014-01-01

    In clear shallow waters, light that is transmitted downward through the water column can reflect off the sea floor and thereby influence the water-leaving radiance signal. This effect can confound contemporary ocean color algorithms designed for deep waters where the seafloor has little or no effect on the water-leaving radiance. Thus, inappropriate use of deep water ocean color algorithms in optically shallow regions can lead to inaccurate retrievals of inherent optical properties (IOPs) and therefore have a detrimental impact on IOP-based estimates of marine parameters, including chlorophyll-a and the diffuse attenuation coefficient. In order to improve IOP retrievals in optically shallow regions, a semi-analytical inversion algorithm, the Shallow Water Inversion Model (SWIM), has been developed. Unlike established ocean color algorithms, SWIM considers both the water column depth and the benthic albedo. A radiative transfer study was conducted that demonstrated how SWIM and two contemporary ocean color algorithms, the Generalized Inherent Optical Properties algorithm (GIOP) and Quasi-Analytical Algorithm (QAA), performed in optically deep and shallow scenarios. The results showed that SWIM performed well, whilst both GIOP and QAA showed distinct positive bias in IOP retrievals in optically shallow waters. The SWIM algorithm was also applied to a test region: the Great Barrier Reef, Australia. Using a single test scene and time series data collected by NASA's MODIS-Aqua sensor (2002-2013), a comparison of IOPs retrieved by SWIM, GIOP and QAA was conducted.

  20. Analyzing the impact of sensor characteristics on retrieval methods of solar-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Ding, Wenjuan; Zhao, Feng; Yang, Lizi

    2017-02-01

    In this study, we evaluated the influence of retrieval algorithms and sensor characteristics, such as spectral resolution (SR) and signal to noise ratio (SNR), on the retrieval accuracy of fluorescence signal (Fs). Here Fs was retrieved by four commonly used retrieval methods, namely the original Fraunhofer Line Discriminator method (FLD), the 3 bands FLD (3FLD), the improved FLD (iFLD) and the spectral fitting method (SFM). Fs was retrieved in the oxygen A band centered at around 761nm (O2-A). We analyzed the impact of sensor characteristics on four retrieval methods based on simulated data which were generated by the model SCOPE (Soil Canopy Observation, Photochemistry and Energy fluxes), and obtained consistent conclusions when compared with experimental data. Results presented in this study indicate that both retrieval algorithms and sensor characteristics affect the retrieval accuracy of Fs. When applied to the actual measurement, we should choose the instrument with higher performance and adopt appropriate retrieval method according to measuring instruments and conditions.

  1. Assessment of Mixed-Layer Height Estimation from Single-wavelength Ceilometer Profiles.

    PubMed

    Knepp, Travis N; Szykman, James J; Long, Russell; Duvall, Rachelle M; Krug, Jonathan; Beaver, Melinda; Cavender, Kevin; Kronmiller, Keith; Wheeler, Michael; Delgado, Ruben; Hoff, Raymond; Berkoff, Timothy; Olson, Erik; Clark, Richard; Wolfe, Daniel; Van Gilst, David; Neil, Doreen

    2017-01-01

    Differing boundary/mixed-layer height measurement methods were assessed in moderately-polluted and clean environments, with a focus on the Vaisala CL51 ceilometer. This intercomparison was performed as part of ongoing measurements at the Chemistry And Physics of the Atmospheric Boundary Layer Experiment (CAPABLE) site in Hampton, Virginia and during the 2014 Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field campaign that took place in and around Denver, Colorado. We analyzed CL51 data that were collected via two different methods (BLView software, which applied correction factors, and simple terminal emulation logging) to determine the impact of data collection methodology. Further, we evaluated the STRucture of the ATmosphere (STRAT) algorithm as an open-source alternative to BLView (note that the current work presents an evaluation of the BLView and STRAT algorithms and does not intend to act as a validation of either). Filtering criteria were defined according to the change in mixed-layer height (MLH) distributions for each instrument and algorithm and were applied throughout the analysis to remove high-frequency fluctuations from the MLH retrievals. Of primary interest was determining how the different data-collection methodologies and algorithms compare to each other and to radiosonde-derived boundary-layer heights when deployed as part of a larger instrument network. We determined that data-collection methodology is not as important as the processing algorithm and that much of the algorithm differences might be driven by impacts of local meteorology and precipitation events that pose algorithm difficulties. The results of this study show that a common processing algorithm is necessary for LIght Detection And Ranging (LIDAR)-based MLH intercomparisons, and ceilometer-network operation and that sonde-derived boundary layer heights are higher (10-15% at mid-day) than LIDAR-derived mixed-layer heights. We show that averaging the retrieved MLH to 1-hour resolution (an appropriate time scale for a priori data model initialization) significantly improved correlation between differing instruments and differing algorithms.

  2. Marine Boundary Layer Cloud Property Retrievals from High-Resolution ASTER Observations: Case Studies and Comparison with Terra MODIS

    NASA Technical Reports Server (NTRS)

    Werner, Frank; Wind, Galina; Zhang, Zhibo; Platnick, Steven; Di Girolamo, Larry; Zhao, Guangyu; Amarasinghe, Nandana; Meyer, Kerry

    2016-01-01

    A research-level retrieval algorithm for cloud optical and microphysical properties is developed for the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) aboard the Terra satellite. It is based on the operational MODIS algorithm. This paper documents the technical details of this algorithm and evaluates the retrievals for selected marine boundary layer cloud scenes through comparisons with the operational MODIS Data Collection 6 (C6) cloud product. The newly developed, ASTERspecific cloud masking algorithm is evaluated through comparison with an independent algorithm reported in Zhao and Di Girolamo (2006). To validate and evaluate the cloud optical thickness (tau) and cloud effective radius (r(sub eff)) from ASTER, the high-spatial-resolution ASTER observations are first aggregated to the same 1000m resolution as MODIS. Subsequently, tau(sub aA) and r(sub eff, aA) retrieved from the aggregated ASTER radiances are compared with the collocated MODIS retrievals. For overcast pixels, the two data sets agree very well with Pearson's product-moment correlation coefficients of R greater than 0.970. However, for partially cloudy pixels there are significant differences between r(sub eff, aA) and the MODIS results which can exceed 10 micrometers. Moreover, it is shown that the numerous delicate cloud structures in the example marine boundary layer scenes, resolved by the high-resolution ASTER retrievals, are smoothed by the MODIS observations. The overall good agreement between the research-level ASTER results and the operational MODIS C6 products proves the feasibility of MODIS-like retrievals from ASTER reflectance measurements and provides the basis for future studies concerning the scale dependency of satellite observations and three-dimensional radiative effects.

  3. Marine boundary layer cloud property retrievals from high-resolution ASTER observations: case studies and comparison with Terra MODIS

    NASA Astrophysics Data System (ADS)

    Werner, Frank; Wind, Galina; Zhang, Zhibo; Platnick, Steven; Di Girolamo, Larry; Zhao, Guangyu; Amarasinghe, Nandana; Meyer, Kerry

    2016-12-01

    A research-level retrieval algorithm for cloud optical and microphysical properties is developed for the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) aboard the Terra satellite. It is based on the operational MODIS algorithm. This paper documents the technical details of this algorithm and evaluates the retrievals for selected marine boundary layer cloud scenes through comparisons with the operational MODIS Data Collection 6 (C6) cloud product. The newly developed, ASTER-specific cloud masking algorithm is evaluated through comparison with an independent algorithm reported in [Zhao and Di Girolamo(2006)]. To validate and evaluate the cloud optical thickness (τ) and cloud effective radius (reff) from ASTER, the high-spatial-resolution ASTER observations are first aggregated to the same 1000 m resolution as MODIS. Subsequently, τaA and reff, aA retrieved from the aggregated ASTER radiances are compared with the collocated MODIS retrievals. For overcast pixels, the two data sets agree very well with Pearson's product-moment correlation coefficients of R > 0.970. However, for partially cloudy pixels there are significant differences between reff, aA and the MODIS results which can exceed 10 µm. Moreover, it is shown that the numerous delicate cloud structures in the example marine boundary layer scenes, resolved by the high-resolution ASTER retrievals, are smoothed by the MODIS observations. The overall good agreement between the research-level ASTER results and the operational MODIS C6 products proves the feasibility of MODIS-like retrievals from ASTER reflectance measurements and provides the basis for future studies concerning the scale dependency of satellite observations and three-dimensional radiative effects.

  4. Recent Theoretical Advances in Analysis of AIRS/AMSU Sounding Data

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2007-01-01

    AIRS was launched on EOS Aqua on May 4,2002, together with AMSU-A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. This paper describes the AIRS Science Team Version 5.0 retrieval algorithm. Starting in early 2007, the Goddard DAAC will use this algorithm to analyze near real time AIRS/AMSU observations. These products are then made available to the scientific community for research purposes. The products include twice daily measurements of the Earth's three dimensional global temperature, water vapor, and ozone distribution as well as cloud cover. In addition, accurate twice daily measurements of the earth's land and ocean temperatures are derived and reported. Scientists use this important set of observations for two major applications. They provide important information for climate studies of global and regional variability and trends of different aspects of the earth's atmosphere. They also provide information for researchers to improve the skill of weather forecasting. A very important new product of the AIRS Version 5 algorithm is accurate case-by-case error estimates of the retrieved products. This heightens their utility for use in both weather and climate applications. These error estimates are also used directly for quality control of the retrieved products. Version 5 also allows for accurate quality controlled AIRS only retrievals, called "Version 5 AO retrievals" which can be used as a backup methodology if AMSU fails. Examples of the accuracy of error estimates and quality controlled retrieval products of the AIRS/AMSU Version 5 and Version 5 AO algorithms are given, and shown to be significantly better than the previously used Version 4 algorithm. Assimilation of Version 5 retrievals are also shown to significantly improve forecast skill, especially when the case-by-case error estimates are utilized in the data assimilation process.

  5. The performance of Yonsei CArbon Retrieval (YCAR) algorithm with improved aerosol information using GOSAT measurements over East Asia

    NASA Astrophysics Data System (ADS)

    Jung, Y.; Kim, J.; Kim, W.; Boesch, H.; Yoshida, Y.; Cho, C.; Lee, H.; Goo, T. Y.

    2016-12-01

    The Greenhouse Gases Observing SATellite (GOSAT) is the first satellite dedicated to measure atmospheric CO2 concentrations from space that can able to improve our knowledge about carbon cycle. Several studies have performed to develop the CO2 retrieval algorithms using GOSAT measurements, but limitations in spatial coverage and uncertainties due to aerosols and thin cirrus clouds are still remained as a problem for monitoring CO2 concentration globally. In this study, we develop the Yonsei CArbon Retrieval (YCAR) algorithm based on optimal estimation method to retrieve the column-averaged dry-air mole fraction of carbon dioxide (XCO2) with optimized a priori CO2 profiles and aerosol models over East Asia. In previous studies, the aerosol optical properties (AOP) and the aerosol top height used to cause significant errors in retrieved XCO2 up to 2.5 ppm. Since this bias comes from a rough assumption of aerosol information in the forward model used in CO2 retrieval process, the YCAR algorithm improves the process to take into account AOPs as well as aerosol vertical distribution; total AOD and the fine mode fraction (FMF) are obtained from the ground-based measurements closely located, and other parameters are obtained from a priori information. Comparing to ground-based XCO2 measurements, the YCAR XCO2 product has a bias of 0.59±0.48 ppm and 2.16±0.87 ppm at Saga and Tsukuba sites, respectively, showing lower biases and higher correlations rather than the GOSAT standard products. These results reveal that considering better aerosol information can improve the accuracy of CO2 retrieval algorithm and provide more useful XCO2 information with reduced uncertainties.

  6. Using Induction to Refine Information Retrieval Strategies

    NASA Technical Reports Server (NTRS)

    Baudin, Catherine; Pell, Barney; Kedar, Smadar

    1994-01-01

    Conceptual information retrieval systems use structured document indices, domain knowledge and a set of heuristic retrieval strategies to match user queries with a set of indices describing the document's content. Such retrieval strategies increase the set of relevant documents retrieved (increase recall), but at the expense of returning additional irrelevant documents (decrease precision). Usually in conceptual information retrieval systems this tradeoff is managed by hand and with difficulty. This paper discusses ways of managing this tradeoff by the application of standard induction algorithms to refine the retrieval strategies in an engineering design domain. We gathered examples of query/retrieval pairs during the system's operation using feedback from a user on the retrieved information. We then fed these examples to the induction algorithm and generated decision trees that refine the existing set of retrieval strategies. We found that (1) induction improved the precision on a set of queries generated by another user, without a significant loss in recall, and (2) in an interactive mode, the decision trees pointed out flaws in the retrieval and indexing knowledge and suggested ways to refine the retrieval strategies.

  7. Status of the NPP and J1 NOAA Unique Combined Atmospheric Processing System (NUCAPS): recent algorithm enhancements geared toward validation and near real time users applications.

    NASA Astrophysics Data System (ADS)

    Gambacorta, A.; Nalli, N. R.; Tan, C.; Iturbide-Sanchez, F.; Wilson, M.; Zhang, K.; Xiong, X.; Barnet, C. D.; Sun, B.; Zhou, L.; Wheeler, A.; Reale, A.; Goldberg, M.

    2017-12-01

    The NOAA Unique Combined Atmospheric Processing System (NUCAPS) is the NOAA operational algorithm to retrieve thermodynamic and composition variables from hyper spectral thermal sounders such as CrIS, IASI and AIRS. The combined use of microwave sounders, such as ATMS, AMSU and MHS, enables full atmospheric sounding of the atmospheric column under all-sky conditions. NUCAPS retrieval products are accessible in near real time (about 1.5 hour delay) through the NOAA Comprehensive Large Array-data Stewardship System (CLASS). Since February 2015, NUCAPS retrievals have been also accessible via Direct Broadcast, with unprecedented low latency of less than 0.5 hours. NUCAPS builds on a long-term, multi-agency investment on algorithm research and development. The uniqueness of this algorithm consists in a number of features that are key in providing highly accurate and stable atmospheric retrievals, suitable for real time weather and air quality applications. Firstly, maximizing the use of the information content present in hyper spectral thermal measurements forms the foundation of the NUCAPS retrieval algorithm. Secondly, NUCAPS is a modular, name-list driven design. It can process multiple hyper spectral infrared sounders (on Aqua, NPP, MetOp and JPSS series) by mean of the same exact retrieval software executable and underlying spectroscopy. Finally, a cloud-clearing algorithm and a synergetic use of microwave radiance measurements enable full vertical sounding of the atmosphere, under all-sky regimes. As we transition toward improved hyper spectral missions, assessing retrieval skill and consistency across multiple platforms becomes a priority for real time users applications. Focus of this presentation is a general introduction on the recent improvements in the delivery of the NUCAPS full spectral resolution upgrade and an overview of the lessons learned from the 2017 Hazardous Weather Test bed Spring Experiment. Test cases will be shown on the use of NPP and MetOp NUCAPS under pre-convective, capping inversion and dry layer intrusion events.

  8. Retrieval of volcanic ash height from satellite-based infrared measurements

    NASA Astrophysics Data System (ADS)

    Zhu, Lin; Li, Jun; Zhao, Yingying; Gong, He; Li, Wenjie

    2017-05-01

    A new algorithm for retrieving volcanic ash cloud height from satellite-based measurements is presented. This algorithm, which was developed in preparation for China's next-generation meteorological satellite (FY-4), is based on volcanic ash microphysical property simulation and statistical optimal estimation theory. The MSG satellite's main payload, a 12-channel Spinning Enhanced Visible and Infrared Imager, was used as proxy data to test this new algorithm. A series of eruptions of Iceland's Eyjafjallajökull volcano during April to May 2010 and the Puyehue-Cordón Caulle volcanic complex eruption in the Chilean Andes on 16 June 2011 were selected as two typical cases for evaluating the algorithm under various meteorological backgrounds. Independent volcanic ash simulation training samples and satellite-based Cloud-Aerosol Lidar with Orthogonal Polarization data were used as validation data. It is demonstrated that the statistically based volcanic ash height algorithm is able to rapidly retrieve volcanic ash heights, globally. The retrieved ash heights show comparable accuracy with both independent training data and the lidar measurements, which is consistent with previous studies. However, under complicated background, with multilayers in vertical scale, underlying stratus clouds tend to have detrimental effects on the final retrieval accuracy. This is an unresolved problem, like many other previously published methods using passive satellite sensors. Compared with previous studies, the FY-4 ash height algorithm is independent of simultaneous atmospheric profiles, providing a flexible way to estimate volcanic ash height using passive satellite infrared measurements.

  9. Aquarius Salinity Retrieval Algorithm: Final Pre-Launch Version

    NASA Technical Reports Server (NTRS)

    Wentz, Frank J.; Le Vine, David M.

    2011-01-01

    This document provides the theoretical basis for the Aquarius salinity retrieval algorithm. The inputs to the algorithm are the Aquarius antenna temperature (T(sub A)) measurements along with a number of NCEP operational products and pre-computed tables of space radiation coming from the galaxy and sun. The output is sea-surface salinity and many intermediate variables required for the salinity calculation. This revision of the Algorithm Theoretical Basis Document (ATBD) is intended to be the final pre-launch version.

  10. The SAPHIRE server: a new algorithm and implementation.

    PubMed Central

    Hersh, W.; Leone, T. J.

    1995-01-01

    SAPHIRE is an experimental information retrieval system implemented to test new approaches to automated indexing and retrieval of medical documents. Due to limitations in its original concept-matching algorithm, a modified algorithm has been implemented which allows greater flexibility in partial matching and different word order within concepts. With the concomitant growth in client-server applications and the Internet in general, the new algorithm has been implemented as a server that can be accessed via other applications on the Internet. PMID:8563413

  11. Retrieval of cloud properties from POLDER-3 data using the neural network approach

    NASA Astrophysics Data System (ADS)

    Di Noia, A.; Hasekamp, O. P.

    2017-12-01

    Satellite multi-angle spectroplarimetry is a useful technique for observing the microphysical properties of clouds and aerosols. Most of the algorithms for the retrieval of cloud and aerosol properties from satellite measurements require multiple calls to radiative transfer models, which make the retrieval computationally expensive. A traditional alternative to these schemes is represented by lookup-tables (LUTs), where the retrieval is performed by choosing, within a predefined database of combinations of clouds or aerosol properties, the combination that best fits the measurements. LUT retrievals are quicker than full-physics, iterative retrievals, but their accuracy is limited by the number of entries stored in the LUT. Another retrieval method capable of producing very quick retrievals without a big sacrifice in accuracy is the neural network method. Neural network methods are routinely applied to several types of satellite measurements, but their application to multi-angle spectropolarimetric data is still in its early stage, because of the difficulty of accounting for the angular variability of the measurements in the training process. We have recently developed a neural network scheme for the retrieval of cloud properties from POLDER-3 data. The neural network retrieval is trained using synthetic measurements performed for realistic combinations of cloud properties and measurement angles, and is able to process an entire orbit in about 20 seconds. Comparisons of the retrieved cloud properties with Moderate Resolution Imaging Spectroradiometer (MODIS) gridded products during one year show encouraging retrieval performance for cloud optical thickness and effective radius. A discussion of the setup of the neural network and of the validation results will be the main topic of our presentation.

  12. Applications of the BIOPHYS Algorithm for Physically-Based Retrieval of Biophysical, Structural and Forest Disturbance Information

    NASA Technical Reports Server (NTRS)

    Peddle, Derek R.; Huemmrich, K. Fred; Hall, Forrest G.; Masek, Jeffrey G.; Soenen, Scott A.; Jackson, Chris D.

    2011-01-01

    Canopy reflectance model inversion using look-up table approaches provides powerful and flexible options for deriving improved forest biophysical structural information (BSI) compared with traditional statistical empirical methods. The BIOPHYS algorithm is an improved, physically-based inversion approach for deriving BSI for independent use and validation and for monitoring, inventory and quantifying forest disturbance as well as input to ecosystem, climate and carbon models. Based on the multiple-forward mode (MFM) inversion approach, BIOPHYS results were summarized from different studies (Minnesota/NASA COVER; Virginia/LEDAPS; Saskatchewan/BOREAS), sensors (airborne MMR; Landsat; MODIS) and models (GeoSail; GOMS). Applications output included forest density, height, crown dimension, branch and green leaf area, canopy cover, disturbance estimates based on multi-temporal chronosequences, and structural change following recovery from forest fires over the last century. Good correspondences with validation field data were obtained. Integrated analyses of multiple solar and view angle imagery further improved retrievals compared with single pass data. Quantifying ecosystem dynamics such as the area and percent of forest disturbance, early regrowth and succession provide essential inputs to process-driven models of carbon flux. BIOPHYS is well suited for large-area, multi-temporal applications involving multiple image sets and mosaics for assessing vegetation disturbance and quantifying biophysical structural dynamics and change. It is also suitable for integration with forest inventory, monitoring, updating, and other programs.

  13. Tomographic retrievals of ozone with the OMPS Limb Profiler: algorithm description and preliminary results

    NASA Astrophysics Data System (ADS)

    Zawada, Daniel J.; Rieger, Landon A.; Bourassa, Adam E.; Degenstein, Douglas A.

    2018-04-01

    Measurements of limb-scattered sunlight from the Ozone Mapping and Profiler Suite Limb Profiler (OMPS-LP) can be used to obtain vertical profiles of ozone in the stratosphere. In this paper we describe a two-dimensional, or tomographic, retrieval algorithm for OMPS-LP where variations are retrieved simultaneously in altitude and the along-orbital-track dimension. The algorithm has been applied to measurements from the center slit for the full OMPS-LP mission to create the publicly available University of Saskatchewan (USask) OMPS-LP 2D v1.0.2 dataset. Tropical ozone anomalies are compared with measurements from the Microwave Limb Sounder (MLS), where differences are less than 5 % of the mean ozone value for the majority of the stratosphere. Examples of near-coincident measurements with MLS are also shown, and agreement at the 5 % level is observed for the majority of the stratosphere. Both simulated retrievals and coincident comparisons with MLS are shown at the edge of the polar vortex, comparing the results to a traditional one-dimensional retrieval. The one-dimensional retrieval is shown to consistently overestimate the amount of ozone in areas of large horizontal gradients relative to both MLS and the two-dimensional retrieval.

  14. Multiple Query Evaluation Based on an Enhanced Genetic Algorithm.

    ERIC Educational Resources Information Center

    Tamine, Lynda; Chrisment, Claude; Boughanem, Mohand

    2003-01-01

    Explains the use of genetic algorithms to combine results from multiple query evaluations to improve relevance in information retrieval. Discusses niching techniques, relevance feedback techniques, and evolution heuristics, and compares retrieval results obtained by both genetic multiple query evaluation and classical single query evaluation…

  15. MERIS Retrieval of Water Quality Components in the Turbid Albemarle-Pamlico Sound Estuary, USA

    EPA Science Inventory

    Two remote-sensing optical algorithms for the retrieval of the water quality components (WQCs) in the Albemarle-Pamlico Estuarine System (APES) have been developed and validated for chlorophyll a (Chl) concentration. Both algorithms are semiempirical because they incorporate some...

  16. Global Multispectral Cloud Retrievals from MODIS

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Platnick, Steven; Ackerman, Steven A.; Menzel, W. Paul; Riedi, Jerome C.; Baum, Bryan A.

    2003-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched onboard the Terra spacecraft on December 18,1999 and Aqua spacecraft on May 4,2002. It achieved its final orbit and began Earth observations on February 24, 2000 for Terra and June 24, 2002 for Aqua. A comprehensive set of remote sensing algorithms for cloud masking and the retrieval of cloud physical and optical properties has been developed by members of the MODIS atmosphere science team. The archived products from these algorithms have applications in climate change studies, climate modeling, numerical weather prediction, as well as fundamental atmospheric research. In addition to an extensive cloud mask, products include cloud-top properties (temperature, pressure, effective emissivity), cloud thermodynamic phase, cloud optical and microphysical parameters (optical thickness, effective particle radius, water path), as well as derived statistics. We will describe the various cloud properties being analyzed on a global basis from both Terra and Aqua, and will show characteristics of cloud optical and microphysical properties as a function of latitude for land and ocean separately, and contrast the statistical properties of similar cloud types in various parts of the world.

  17. A Novel Bayesian algorithm for Microwave Retrieval of Precipitation from Space: Applications in Snow and Coastal Hydrology

    NASA Astrophysics Data System (ADS)

    Foufoula, Efi; Ebtehaj, Ardeshir M.; Bras, Rafael L.

    2015-04-01

    Resolving accurately the space-time structure of precipitation over remote areas of the world where in-situ observations are not available is one of the biggest challenges in hydrology in view of the pressure to understand and mitigate climate and human-induced hydrologic and eco-geomorphologic changes. Two especially vulnerable areas are snow covered highlands (earlier snowmelt and changes in land-atmosphere feedbacks affecting storm dynamics and hydrologic response) and coastal areas (threats due to extreme storms and flooding in view of sea level rise and land-use changes affecting hazard potential in these overly populated low land areas). The GPM constellation of satellites offers the potential to retrieve precipitation over these complex surfaces but not without significant new ideas in the retrieval techniques for operational products. Here we present recent results from a new Bayesian inversion Passive Microwave Rainfall Retrieval algorithm (called ShARP) which introduces two main innovations: (1) a new distance metric in the space of retrieval (physically-derived or observational databases of brightness temperature and rainfall profiles) to create neighborhoods whose closeness is judged not on the basis of spatial averages but in terms of spatial structure in the space of spectral brightness temperatures, and (2) computes weights of those elements by minimizing a log-likelihood function plus a prior density of the spatial precipitation gradients. Both innovations rely on extending the typical Least squares (ℓ2) distance metric used in inverse problems to a mixed ℓ2 - ℓ1 metric (via regularization) and showing that this new metric is consistent with the localized small-scale spatial rainfall structure of sharp features embedded within more homogeneous domains. Using the data provided by the Tropical Rainfall Measuring Mission (TRMM) satellite, we demonstrate marked improvements in the ShARP rainfall retrievals in comparison with the standard TRMM-2A12 operational products by analysis of case studies in the Tibetan Highlands and the Ganges-Brahmaputra-Meghna river basin and its coastal delta.

  18. Help, I don’t know which sea ice algorithm to use?!: Developing an authoritative sea ice climate data record

    NASA Astrophysics Data System (ADS)

    Meier, W.; Stroeve, J.; Duerr, R. E.; Fetterer, F. M.

    2009-12-01

    The declining Arctic sea ice is one of the most dramatic indicators of climate change and is being recognized as a key factor in future climate impacts on biology, human activities, and global climate change. As such, the audience for sea ice data is expanding well beyond the sea ice community. The most comprehensive sea ice data are from a series of satellite-borne passive microwave sensors. They provide a near-complete daily timeseries of sea ice concentration and extent since late-1978. However, there are many complicating issues in using such data, particularly for novice users. First, there is not one single, definitive algorithm, but several. And even for a given algorithm, different processing and quality-control methods may be used, depending on the source. Second, for all algorithms, there are uncertainties in any retrieved value. In general, these limitations are well-known: low spatial-resolution results in an imprecise ice edge determination and lack of small-scale detail (e.g., lead detection) within the ice pack; surface melt depresses concentration values during summer; thin ice is underestimated in some algorithms; some algorithms are sensitive to physical surface temperature; other surface features (e.g., snow) can influence retrieved data. While general error estimates are available for concentration values, currently the products do not carry grid-cell level or even granule level data quality information. Finally, metadata and data provenance information are limited, both of which are essential for future reprocessing. Here we describe the progress to date toward development of sea ice concentration products and outline the future steps needed to complete a sea ice climate data record.

  19. Soil moisture retrieval from Sentinel-1 satellite data

    NASA Astrophysics Data System (ADS)

    Benninga, Harm-Jan; van der Velde, Rogier; Su, Zhongbo

    2016-04-01

    Reliable up-to-date information on the current water availability and models to evaluate management scenarios are indispensable for skilful water management. The Sentinel-1 radar satellite programme provides an opportunity to monitor water availability (as surface soil moisture) from space on an operational basis at unprecedented fine spatial and temporal resolutions. However, the influences of soil roughness and vegetation cover complicate the retrieval of soil moisture states from radar data. In this contribution, we investigate the sensitivity of Sentinel-1 radar backscatter to soil moisture states and vegetation conditions. The analyses are based on 105 Sentinel-1 images in the period from October 2014 to January 2016 covering the Twente region in the Netherlands. This area is almost flat and has a heterogeneous landscape, including agricultural (mainly grass, cereal and corn), forested and urban land covers. In-situ measurements at 5 cm depth collected from the Twente soil moisture monitoring network are used as reference. This network consists of twenty measurement stations (most of them at agricultural fields) distributed across an area of 50 km × 40 km. The Normalized Difference Vegetation Index (NDVI) derived from optical images is adopted as proxy to represent seasonal variability in vegetation conditions. The results from this sensitivity study provide insight into the potential capability of Sentinel-1 data for the estimation of soil moisture states and they will facilitate the further development of operational retrieval methods. An operationally applicable soil moisture retrieval method requires an algorithm that is usable without the need for area specific model calibration with detailed field information (regarding roughness and vegetation). Because it is not yet clear which method provides the most reliable soil moisture retrievals from Sentinel-1 data, multiple soil moisture retrieval methods will be studied in which the fine spatiotemporal resolution and the dual-polarized information of Sentinel-1 are utilized. Three candidate algorithms are presented at the conference, which are a data-driven algorithm, inversion of a radar scattering model and downscaling of coarser resolution soil moisture products. The research is part of the OWAS1S project (Optimizing Water Availability with Sentinel-1 Satellites), which stands for integration of the freely available global Sentinel-1 data and local knowledge on soil physical processes, to optimize water management of regional water systems and to develop value-added products for agriculture.

  20. Image encryption using fingerprint as key based on phase retrieval algorithm and public key cryptography

    NASA Astrophysics Data System (ADS)

    Zhao, Tieyu; Ran, Qiwen; Yuan, Lin; Chi, Yingying; Ma, Jing

    2015-09-01

    In this paper, a novel image encryption system with fingerprint used as a secret key is proposed based on the phase retrieval algorithm and RSA public key algorithm. In the system, the encryption keys include the fingerprint and the public key of RSA algorithm, while the decryption keys are the fingerprint and the private key of RSA algorithm. If the users share the fingerprint, then the system will meet the basic agreement of asymmetric cryptography. The system is also applicable for the information authentication. The fingerprint as secret key is used in both the encryption and decryption processes so that the receiver can identify the authenticity of the ciphertext by using the fingerprint in decryption process. Finally, the simulation results show the validity of the encryption scheme and the high robustness against attacks based on the phase retrieval technique.

  1. GFIT2: an experimental algorithm for vertical profile retrieval from near-IR spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connor, Brian J.; Sherlock, Vanessa; Toon, Geoff

    An algorithm for retrieval of vertical profiles from ground-based spectra in the near IR is described and tested. Known as GFIT2, the algorithm is primarily intended for CO 2, and is used exclusively for CO 2 in this paper. Retrieval of CO 2 vertical profiles from ground-based spectra is theoretically possible, would be very beneficial for carbon cycle studies and the validation of satellite measurements, and has been the focus of much research in recent years. GFIT2 is tested by application both to synthetic spectra and to measurements at two Total Carbon Column Observing Network (TCCON) sites. We demonstrate thatmore » there are approximately 3° of freedom for the CO 2 profile, and the algorithm performs as expected on synthetic spectra. We show that the accuracy of retrievals of CO 2 from measurements in the 1.61 μ (6220 cm -1) spectral band is limited by small uncertainties in calculation of the atmospheric spectrum. We investigate several techniques to minimize the effect of these uncertainties in calculation of the spectrum. These techniques are somewhat effective but to date have not been demonstrated to produce CO 2 profile retrievals with sufficient precision for applications to carbon dynamics. As a result, we finish by discussing ongoing research which may allow CO 2 profile retrievals with sufficient accuracy to significantly improve the scientific value of the measurements from that achieved with column retrievals.« less

  2. Description and Sensitivity Analysis of the SOLSE/LORE-2 and SAGE III Limb Scattering Ozone Retrieval Algorithms

    NASA Technical Reports Server (NTRS)

    Loughman, R.; Flittner, D.; Herman, B.; Bhartia, P.; Hilsenrath, E.; McPeters, R.; Rault, D.

    2002-01-01

    The SOLSE (Shuttle Ozone Limb Sounding Experiment) and LORE (Limb Ozone Retrieval Experiment) instruments are scheduled for reflight on Space Shuttle flight STS-107 in July 2002. In addition, the SAGE III (Stratospheric Aerosol and Gas Experiment) instrument will begin to make limb scattering measurements during Spring 2002. The optimal estimation technique is used to analyze visible and ultraviolet limb scattered radiances and produce a retrieved ozone profile. The algorithm used to analyze data from the initial flight of the SOLSE/LORE instruments (on Space Shuttle flight STS-87 in November 1997) forms the basis of the current algorithms, with expansion to take advantage of the increased multispectral information provided by SOLSE/LORE-2 and SAGE III. We also present detailed sensitivity analysis for these ozone retrieval algorithms. The primary source of ozone retrieval error is tangent height misregistration (i.e., instrument pointing error), which is relevant throughout the altitude range of interest, and can produce retrieval errors on the order of 10-20 percent due to a tangent height registration error of 0.5 km at the tangent point. Other significant sources of error are sensitivity to stratospheric aerosol and sensitivity to error in the a priori ozone estimate (given assumed instrument signal-to-noise = 200). These can produce errors up to 10 percent for the ozone retrieval at altitudes less than 20 km, but produce little error above that level.

  3. GFIT2: an experimental algorithm for vertical profile retrieval from near-IR spectra

    DOE PAGES

    Connor, Brian J.; Sherlock, Vanessa; Toon, Geoff; ...

    2016-08-02

    An algorithm for retrieval of vertical profiles from ground-based spectra in the near IR is described and tested. Known as GFIT2, the algorithm is primarily intended for CO 2, and is used exclusively for CO 2 in this paper. Retrieval of CO 2 vertical profiles from ground-based spectra is theoretically possible, would be very beneficial for carbon cycle studies and the validation of satellite measurements, and has been the focus of much research in recent years. GFIT2 is tested by application both to synthetic spectra and to measurements at two Total Carbon Column Observing Network (TCCON) sites. We demonstrate thatmore » there are approximately 3° of freedom for the CO 2 profile, and the algorithm performs as expected on synthetic spectra. We show that the accuracy of retrievals of CO 2 from measurements in the 1.61 μ (6220 cm -1) spectral band is limited by small uncertainties in calculation of the atmospheric spectrum. We investigate several techniques to minimize the effect of these uncertainties in calculation of the spectrum. These techniques are somewhat effective but to date have not been demonstrated to produce CO 2 profile retrievals with sufficient precision for applications to carbon dynamics. As a result, we finish by discussing ongoing research which may allow CO 2 profile retrievals with sufficient accuracy to significantly improve the scientific value of the measurements from that achieved with column retrievals.« less

  4. Spatial Distribution of Accuracy of Aerosol Retrievals from Multiple Satellite Sensors

    NASA Technical Reports Server (NTRS)

    Petrenko, Maksym; Ichoku, Charles

    2012-01-01

    Remote sensing of aerosols from space has been a subject of extensive research, with multiple sensors retrieving aerosol properties globally on a daily or weekly basis. The diverse algorithms used for these retrievals operate on different types of reflected signals based on different assumptions about the underlying physical phenomena. Depending on the actual retrieval conditions and especially on the geographical location of the sensed aerosol parcels, the combination of these factors might be advantageous for one or more of the sensors and unfavorable for others, resulting in disagreements between similar aerosol parameters retrieved from different sensors. In this presentation, we will demonstrate the use of the Multi-sensor Aerosol Products Sampling System (MAPSS) to analyze and intercompare aerosol retrievals from multiple spaceborne sensors, including MODIS (on Terra and Aqua), MISR, OMI, POLDER, CALIOP, and SeaWiFS. Based on this intercomparison, we are determining geographical locations where these products provide the greatest accuracy of the retrievals and identifying the products that are the most suitable for retrieval at these locations. The analyses are performed by comparing quality-screened satellite aerosol products to available collocated ground-based aerosol observations from the Aerosol Robotic Network (AERONET) stations, during the period of 2006-2010 when all the satellite sensors were operating concurrently. Furthermore, we will discuss results of a statistical approach that is applied to the collocated data to detect and remove potential data outliers that can bias the results of the analysis.

  5. Assessment of Mars Atmospheric Temperature Retrievals from the Thermal Emission Spectrometer Radiances

    NASA Technical Reports Server (NTRS)

    Hoffman, Matthew J.; Eluszkiewicz, Janusz; Weisenstein, Deborah; Uymin, Gennady; Moncet, Jean-Luc

    2012-01-01

    Motivated by the needs of Mars data assimilation. particularly quantification of measurement errors and generation of averaging kernels. we have evaluated atmospheric temperature retrievals from Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) radiances. Multiple sets of retrievals have been considered in this study; (1) retrievals available from the Planetary Data System (PDS), (2) retrievals based on variants of the retrieval algorithm used to generate the PDS retrievals, and (3) retrievals produced using the Mars 1-Dimensional Retrieval (M1R) algorithm based on the Optimal Spectral Sampling (OSS ) forward model. The retrieved temperature profiles are compared to the MGS Radio Science (RS) temperature profiles. For the samples tested, the M1R temperature profiles can be made to agree within 2 K with the RS temperature profiles, but only after tuning the prior and error statistics. Use of a global prior that does not take into account the seasonal dependence leads errors of up 6 K. In polar samples. errors relative to the RS temperature profiles are even larger. In these samples, the PDS temperature profiles also exhibit a poor fit with RS temperatures. This fit is worse than reported in previous studies, indicating that the lack of fit is due to a bias correction to TES radiances implemented after 2004. To explain the differences between the PDS and Ml R temperatures, the algorithms are compared directly, with the OSS forward model inserted into the PDS algorithm. Factors such as the filtering parameter, the use of linear versus nonlinear constrained inversion, and the choice of the forward model, are found to contribute heavily to the differences in the temperature profiles retrieved in the polar regions, resulting in uncertainties of up to 6 K. Even outside the poles, changes in the a priori statistics result in different profile shapes which all fit the radiances within the specified error. The importance of the a priori statistics prevents reliable global retrievals based a single a priori and strongly implies that a robust science analysis must instead rely on retrievals employing localized a priori information, for example from an ensemble based data assimilation system such as the Local Ensemble Transform Kalman Filter (LETKF).

  6. Development and application of a probability distribution retrieval scheme to the remote sensing of clouds and precipitation

    NASA Astrophysics Data System (ADS)

    McKague, Darren Shawn

    2001-12-01

    The statistical properties of clouds and precipitation on a global scale are important to our understanding of climate. Inversion methods exist to retrieve the needed cloud and precipitation properties from satellite data pixel-by-pixel that can then be summarized over large data sets to obtain the desired statistics. These methods can be quite computationally expensive, and typically don't provide errors on the statistics. A new method is developed to directly retrieve probability distributions of parameters from the distribution of measured radiances. The method also provides estimates of the errors on the retrieved distributions. The method can retrieve joint distributions of parameters that allows for the study of the connection between parameters. A forward radiative transfer model creates a mapping from retrieval parameter space to radiance space. A Monte Carlo procedure uses the mapping to transform probability density from the observed radiance histogram to a two- dimensional retrieval property probability distribution function (PDF). An estimate of the uncertainty in the retrieved PDF is calculated from random realizations of the radiance to retrieval parameter PDF transformation given the uncertainty of the observed radiances, the radiance PDF, the forward radiative transfer, the finite number of prior state vectors, and the non-unique mapping to retrieval parameter space. The retrieval method is also applied to the remote sensing of precipitation from SSM/I microwave data. A method of stochastically generating hydrometeor fields based on the fields from a numerical cloud model is used to create the precipitation parameter radiance space transformation. The impact of vertical and horizontal variability within the hydrometeor fields has a significant impact on algorithm performance. Beamfilling factors are computed from the simulated hydrometeor fields. The beamfilling factors vary quite a bit depending upon the horizontal structure of the rain. The algorithm is applied to SSM/I images from the eastern tropical Pacific and is compared to PDFs of rain rate computed using pixel-by-pixel retrievals from Wilheit and from Liu and Curry. Differences exist between the three methods, but good general agreement is seen between the PDF retrieval algorithm and the algorithm of Liu and Curry. (Abstract shortened by UMI.)

  7. Ice surface temperature retrieval from AVHRR, ATSR, and passive microwave satellite data: Algorithm development and application

    NASA Technical Reports Server (NTRS)

    Key, Jeff; Maslanik, James; Steffen, Konrad

    1994-01-01

    During the first half of our second project year we have accomplished the following: (1) acquired a new AVHRR data set for the Beaufort Sea area spanning an entire year; (2) acquired additional ATSR data for the Arctic and Antarctic now totaling over seven months; (3) refined our AVHRR Arctic and Antarctic ice surface temperature (IST) retrieval algorithm, including work specific to Greenland; (4) developed ATSR retrieval algorithms for the Arctic and Antarctic, including work specific to Greenland; (5) investigated the effects of clouds and the atmosphere on passive microwave 'surface' temperature retrieval algorithms; (6) generated surface temperatures for the Beaufort Sea data set, both from AVHRR and SSM/I; and (7) continued work on compositing GAC data for coverage of the entire Arctic and Antarctic. During the second half of the year we will continue along these same lines, and will undertake a detailed validation study of the AVHRR and ATSR retrievals using LEADEX and the Beaufort Sea year-long data. Cloud masking methods used for the AVHRR will be modified for use with the ATSR. Methods of blending in situ and satellite-derived surface temperature data sets will be investigated.

  8. Retrieve Optically Thick Ice Cloud Microphysical Properties by Using Airborne Dual-Wavelength Radar Measurements

    NASA Technical Reports Server (NTRS)

    Wang, Zhien; Heymsfield, Gerald M.; Li, Lihua; Heymsfield, Andrew J.

    2005-01-01

    An algorithm to retrieve optically thick ice cloud microphysical property profiles is developed by using the GSFC 9.6 GHz ER-2 Doppler Radar (EDOP) and the 94 GHz Cloud Radar System (CRS) measurements aboard the high-altitude ER-2 aircraft. In situ size distribution and total water content data from the CRYSTAL-FACE field campaign are used for the algorithm development. To reduce uncertainty in calculated radar reflectivity factors (Ze) at these wavelengths, coincident radar measurements and size distribution data are used to guide the selection of mass-length relationships and to deal with the density and non-spherical effects of ice crystals on the Ze calculations. The algorithm is able to retrieve microphysical property profiles of optically thick ice clouds, such as, deep convective and anvil clouds, which are very challenging for single frequency radar and lidar. Examples of retrieved microphysical properties for a deep convective clouds are presented, which show that EDOP and CRS measurements provide rich information to study cloud structure and evolution. Good agreement between IWPs derived from an independent submillimeter-wave radiometer, CoSSIR, and dual-wavelength radar measurements indicates accuracy of the IWC retrieved from the two-frequency radar algorithm.

  9. Improved Methodology for Surface and Atmospheric Soundings, Error Estimates, and Quality Control Procedures: the AIRS Science Team Version-6 Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John; Iredell, Lena

    2014-01-01

    The AIRS Science Team Version-6 AIRS/AMSU retrieval algorithm is now operational at the Goddard DISC. AIRS Version-6 level-2 products are generated near real-time at the Goddard DISC and all level-2 and level-3 products are available starting from September 2002. This paper describes some of the significant improvements in retrieval methodology contained in the Version-6 retrieval algorithm compared to that previously used in Version-5. In particular, the AIRS Science Team made major improvements with regard to the algorithms used to 1) derive surface skin temperature and surface spectral emissivity; 2) generate the initial state used to start the cloud clearing and retrieval procedures; and 3) derive error estimates and use them for Quality Control. Significant improvements have also been made in the generation of cloud parameters. In addition to the basic AIRS/AMSU mode, Version-6 also operates in an AIRS Only (AO) mode which produces results almost as good as those of the full AIRS/AMSU mode. This paper also demonstrates the improvements of some AIRS Version-6 and Version-6 AO products compared to those obtained using Version-5.

  10. Phase-Retrieval Uncertainty Estimation and Algorithm Comparison for the JWST-ISIM Test Campaign

    NASA Technical Reports Server (NTRS)

    Aronstein, David L.; Smith, J. Scott

    2016-01-01

    Phase retrieval, the process of determining the exitpupil wavefront of an optical instrument from image-plane intensity measurements, is the baseline methodology for characterizing the wavefront for the suite of science instruments (SIs) in the Integrated Science Instrument Module (ISIM) for the James Webb Space Telescope (JWST). JWST is a large, infrared space telescope with a 6.5-meter diameter primary mirror. JWST is currently NASA's flagship mission and will be the premier space observatory of the next decade. ISIM contains four optical benches with nine unique instruments, including redundancies. ISIM was characterized at the Goddard Space Flight Center (GSFC) in Greenbelt, MD in a series of cryogenic vacuum tests using a telescope simulator. During these tests, phase-retrieval algorithms were used to characterize the instruments. The objective of this paper is to describe the Monte-Carlo simulations that were used to establish uncertainties (i.e., error bars) for the wavefronts of the various instruments in ISIM. Multiple retrieval algorithms were used in the analysis of ISIM phase-retrieval focus-sweep data, including an iterativetransform algorithm and a nonlinear optimization algorithm. These algorithms emphasize the recovery of numerous optical parameters, including low-order wavefront composition described by Zernike polynomial terms and high-order wavefront described by a point-by-point map, location of instrument best focus, focal ratio, exit-pupil amplitude, the morphology of any extended object, and optical jitter. The secondary objective of this paper is to report on the relative accuracies of these algorithms for the ISIM instrument tests, and a comparison of their computational complexity and their performance on central and graphical processing unit clusters. From a phase-retrieval perspective, the ISIM test campaign includes a variety of source illumination bandwidths, various image-plane sampling criteria above and below the Nyquist- Shannon critical sampling value, various extended object sizes, and several other impactful effects.

  11. Improving Forecast Skill by Assimilation of Quality Controlled AIRS Version 5 Temperature Soundings

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Reale, Oreste

    2009-01-01

    The AIRS Science Team Version 5 retrieval algorithm has been finalized and is now operational at the Goddard DAAC in the processing (and reprocessing) of all AIRS data. The AIRS Science Team Version 5 retrieval algorithm contains two significant improvements over Version 4: 1) Improved physics allows for use of AIRS observations in the entire 4.3 micron CO2 absorption band in the retrieval of temperature profile T(p) during both day and night. Tropospheric sounding 15 micron CO2 observations are now used primarily in the generation of cloud cleared radiances R(sub i). This approach allows for the generation of accurate values of R(sub i) and T(p) under most cloud conditions. 2) Another very significant improvement in Version 5 is the ability to generate accurate case-by-case, level-by-level error estimates for the atmospheric temperature profile, as well as for channel-by-channel error estimates for R(sub i). These error estimates are used for Quality Control of the retrieved products. We have conducted forecast impact experiments assimilating AIRS temperature profiles with different levels of Quality Control using the NASA GEOS-5 data assimilation system. Assimilation of Quality Controlled T(p) resulted in significantly improved forecast skill compared to that obtained from analyses obtained when all data used operationally by NCEP, except for AIRS data, is assimilated. We also conducted an experiment assimilating AIRS radiances uncontaminated by clouds, as done operationally by ECMWF and NCEP. Forecast resulting from assimilated AIRS radiances were of poorer quality than those obtained assimilating AIRS temperatures.

  12. Retrieval of Dry Snow Parameters from Radiometric Data Using a Dense Medium Model and Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Tedesco, Marco; Kim, Edward J.

    2005-01-01

    In this paper, GA-based techniques are used to invert the equations of an electromagnetic model based on Dense Medium Radiative Transfer Theory (DMRT) under the Quasi Crystalline Approximation with Coherent Potential to retrieve snow depth, mean grain size and fractional volume from microwave brightness temperatures. The technique is initially tested on both noisy and not-noisy simulated data. During this phase, different configurations of genetic algorithm parameters are considered to quantify how their change can affect the algorithm performance. A configuration of GA parameters is then selected and the algorithm is applied to experimental data acquired during the NASA Cold Land Process Experiment. Snow parameters retrieved with the GA-DMRT technique are then compared with snow parameters measured on field.

  13. Analysis of Leaf Area Index and Fraction of PAR Absorbed by Vegetation Products from the Terra MODIS Sensor: 2000-2005

    NASA Technical Reports Server (NTRS)

    Yang, Wenze; Huang, Dong; Tan, Bin; Stroeve, Julienne C.; Shabanov, Nikolay V.; Knyazikhin, Yuri; Nemani, Ramakrishna R.; Myneni, Ranga B.

    2006-01-01

    The analysis of two years of Collection 3 and five years of Collection 4 Terra Moderate Resolution Imaging Spectroradiometer (MODIS) Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation (FPAR) data sets is presented in this article with the goal of understanding product quality with respect to version (Collection 3 versus 4), algorithm (main versus backup), snow (snow-free versus snow on the ground), and cloud (cloud-free versus cloudy) conditions. Retrievals from the main radiative transfer algorithm increased from 55% in Collection 3 to 67% in Collection 4 due to algorithm refinements and improved inputs. Anomalously high LAI/FPAR values observed in Collection 3 product in some vegetation types were corrected in Collection 4. The problem of reflectance saturation and too few main algorithm retrievals in broadleaf forests persisted in Collection 4. The spurious seasonality in needleleaf LAI/FPAR fields was traced to fewer reliable input data and retrievals during the boreal winter period. About 97% of the snow covered pixels were processed by the backup Normalized Difference Vegetation Index-based algorithm. Similarly, a majority of retrievals under cloudy conditions were obtained from the backup algorithm. For these reasons, the users are advised to consult the quality flags accompanying the LAI and FPAR product.

  14. Characterization and error analysis of an operational retrieval algorithm for estimating column ozone and aerosol properties from ground-based ultra-violet irradiance measurements

    NASA Astrophysics Data System (ADS)

    Taylor, Thomas E.; L'Ecuyer, Tristan; Slusser, James; Stephens, Graeme; Krotkov, Nick; Davis, John; Goering, Christian

    2005-08-01

    Extensive sensitivity and error characteristics of a recently developed optimal estimation retrieval algorithm which simultaneously determines aerosol optical depth (AOD), aerosol single scatter albedo (SSA) and total ozone column (TOC) from ultra-violet irradiances are described. The algorithm inverts measured diffuse and direct irradiances at 7 channels in the UV spectral range obtained from the United States Department of Agriculture's (USDA) UV-B Monitoring and Research Program's (UVMRP) network of 33 ground-based UV-MFRSR instruments to produce aerosol optical properties and TOC at all seven wavelengths. Sensitivity studies of the Tropospheric Ultra-violet/Visible (TUV) radiative transfer model performed for various operating modes (Delta-Eddington versus n-stream Discrete Ordinate) over domains of AOD, SSA, TOC, asymmetry parameter and surface albedo show that the solutions are well constrained. Realistic input error budgets and diagnostic and error outputs from the retrieval are analyzed to demonstrate the atmospheric conditions under which the retrieval provides useful and significant results. After optimizing the algorithm for the USDA site in Panther Junction, Texas the retrieval algorithm was run on a cloud screened set of irradiance measurements for the month of May 2003. Comparisons to independently derived AOD's are favorable with root mean square (RMS) differences of about 3% to 7% at 300nm and less than 1% at 368nm, on May 12 and 22, 2003. This retrieval method will be used to build an aerosol climatology and provide ground-truthing of satellite measurements by running it operationally on the USDA UV network database.

  15. Overview of the EarthCARE simulator and its applications

    NASA Astrophysics Data System (ADS)

    van Zadelhoff, G.; Donovan, D. P.; Lajas, D.

    2011-12-01

    The EarthCARE Simulator (ECSIM) was initially developed in 2004 as a scientific tool to simulate atmospheric scenes, radiative transfer and instrument models for the four instruments of the EarthCARE mission. ECSIM has subsequently been significantly further enhanced and is evolving into a tool for both mission performance assessment and L2 retrieval development. It is an ESA requirement that all L2 retrieval algorithms foreseen for the ground segment will be integrated and tested in ECSIM. It is furthermore envisaged, that the (retrieval part of) ECSIM will be the tool for scientists to work with on updates and new L2 algorithms during the EarthCARE Commissioning phase and beyond. ECSIM is capable of performing 'end to end' simulations of single, or any combination of the EarthCARE instruments. That is, ECSIM starts with an input atmospheric ``scene'', then uses various radiative transfer and instrument models in order to generate synthetic observations which can be subsequently inverted. The results of the inversions may then be compared to the input "truth". ECSIM consists of a modular general framework populated by various models. The models within ECSIM are grouped according to the following scheme: 1) Scene creation models (3D atmospheric scene definition) 2) Orbit models (orbit and orientation of the platform as it overflies the scene) 3) Forward models (calculate the signal impinging on the telescope/antenna of the instrument(s) in question) 4) Instrument models (calculate the instrument response to the signals calculated by the Forward models) 5) Retrieval models (invert the instrument signals to recover relevant geophysical information) Within the default ECSIM models crude instrument specific parameterizations (i.e. empirically based radar reflectivity vs. IWC relationships) are avoided. Instead, the radiative transfer forward models are kept separate (as possible) from the instrument models. In order to accomplish this, the atmospheric scenes are specified in high detail (i.e. bin resolved [cloud] size distributions) and the relevant wavelength dependent optical properties are specified in a separate database. This helps insure that all the instruments involved in the simulation are treated consistently and that the physical relationships between the various measurements are realistically captured. ECSIM is mainly used as an algorithm development platform for EarthCARE. However, it has also been used for simulating Calipso, CloudSAT, future multi-wavelength HSRL satellite missions and airborne HSRL data, showing the versatility of the tool. Validating L2 retrieval algorithms require the creation of atmospheric scenes ranging in complexity from very simple (blocky) to 'realistic' (high resolution) scenes. Recent work on the evaluation of aerosol retrieval algorithms from satellite lidar data (e.g. ATLID) required these latter scenes, which were created based on HSRL and in-situ measurements from the DLR FALCON aircraft. The synthetic signals were subsequently evaluated by comparing to the original measured signals. In this presentation an overview of the EarthCARE Simulator, its philosophy and the construction of realistic "scenes'' based on actual campaign observations is presented.

  16. The Passive Microwave Neural Network Precipitation Retrieval (PNPR) for AMSU/MHS and ATMS cross-track scanning radiometers

    NASA Astrophysics Data System (ADS)

    Sano', Paolo; Casella, Daniele; Panegrossi, Giulia; Cinzia Marra, Anna; Dietrich, Stefano

    2016-04-01

    Spaceborne microwave cross-track scanning radiometers, originally developed for temperature and humidity sounding, have shown great capabilities to provide a significant contribution in precipitation monitoring both in terms of measurement quality and spatial/temporal coverage. The Passive microwave Neural network Precipitation Retrieval (PNPR) algorithm for cross-track scanning radiometers, originally developed for the Advanced Microwave Sounding Unit/Microwave Humidity Sounder (AMSU-A/MHS) radiometers (on board the European MetOp and U.S. NOAA satellites), was recently newly designed to exploit the Advanced Technology Microwave Sounder (ATMS) on board the Suomi-NPP satellite and the future JPSS satellites. The PNPR algorithm is based on the Artificial Neural Network (ANN) approach. The main PNPR-ATMS algorithm changes with respect to PNPR-AMSU/MHS are the design and implementation of a new ANN able to manage the information derived from the additional ATMS channels (respect to the AMSU-A/MHS radiometer) and a new screening procedure for not-precipitating pixels. In order to achieve maximum consistency of the retrieved surface precipitation, both PNPR algorithms are based on the same physical foundation. The PNPR is optimized for the European and the African area. The neural network was trained using a cloud-radiation database built upon 94 cloud-resolving simulations over Europe and the Mediterranean and over the African area and radiative transfer model simulations of TB vectors consistent with the AMSU-A/MHS and ATMS channel frequencies, viewing angles, and view-angle dependent IFOV sizes along the scan projections. As opposed to other ANN precipitation retrieval algorithms, PNPR uses a unique ANN that retrieves the surface precipitation rate for all types of surface backgrounds represented in the training database, i.e., land (vegetated or arid), ocean, snow/ice or coast. This approach prevents different precipitation estimates from being inconsistent with one another when an observed precipitation system extends over two or more types of surfaces. As input data, the PNPR algorithm incorporates the TBs from selected channels, and various additional TBs-derived variables. Ancillary geographical/geophysical inputs (i.e., latitude, terrain height, surface type, season) are also considered during the training phase. The PNPR algorithm outputs consist of both the surface precipitation rate (along with the information on precipitation phase: liquid, mixed, solid) and a pixel-based quality index. We will illustrate the main features of the PNPR algorithm and will show results of a verification study over Europe and Africa. The study is based on the available ground-based radar and/or rain gauge network observations over the European area. In addition, results of the comparison with rainfall products available from the NASA/JAXA Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) (over the African area) and Global Precipitation Measurement (GPM) Dual frequency Precipitation Radar (DPR) will be shown. The analysis is built upon a two-years coincidence dataset of AMSU/MHS and ATMS observations with PR (2013-2014) and DPR (2014-2015). The PNPR is developed within the EUMETSAT H/SAF program (Satellite Application Facility for Operational Hydrology and Water Management), where it is used operationally towards the full exploitation of all microwave radiometers available in the GPM era. The algorithm will be tailored to the future European Microwave Sounder (MWS) onboard the MetOp-Second Generation (MetOp-SG) satellites.

  17. A radiative transfer model for sea surface temperature retrieval for the along-track scanning radiometer

    NASA Astrophysics Data System (ADS)

    ZáVody, A. M.; Mutlow, C. T.; Llewellyn-Jones, D. T.

    1995-01-01

    The measurements made by the along-track scanning radiometer are now converted routinely into sea surface temperature (SST). The details of the atmospheric model which had been used for deriving the SST algorithms are given, together with tables of the coefficients in the algorithms for the different SST products. The accuracy of the retrieval under normal conditions and the effect of errors in the model on the retrieved SST are briefly discussed.

  18. Remote Sensing of Cloud Top Height from SEVIRI: Analysis of Eleven Current Retrieval Algorithms

    NASA Technical Reports Server (NTRS)

    Hamann, U.; Walther, A.; Baum, B.; Bennartz, R.; Bugliaro, L.; Derrien, M.; Francis, P. N.; Heidinger, A.; Joro, S.; Kniffka, A.; hide

    2014-01-01

    The role of clouds remains the largest uncertainty in climate projections. They influence solar and thermal radiative transfer and the earth's water cycle. Therefore, there is an urgent need for accurate cloud observations to validate climate models and to monitor climate change. Passive satellite imagers measuring radiation at visible to thermal infrared (IR) wavelengths provide a wealth of information on cloud properties. Among others, the cloud top height (CTH) - a crucial parameter to estimate the thermal cloud radiative forcing - can be retrieved. In this paper we investigate the skill of ten current retrieval algorithms to estimate the CTH using observations from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) onboard Meteosat Second Generation (MSG). In the first part we compare ten SEVIRI cloud top pressure (CTP) data sets with each other. The SEVIRI algorithms catch the latitudinal variation of the CTP in a similar way. The agreement is better in the extratropics than in the tropics. In the tropics multi-layer clouds and thin cirrus layers complicate the CTP retrieval, whereas a good agreement among the algorithms is found for trade wind cumulus, marine stratocumulus and the optically thick cores of the deep convective system. In the second part of the paper the SEVIRI retrievals are compared to CTH observations from the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) and Cloud Profiling Radar (CPR) instruments. It is important to note that the different measurement techniques cause differences in the retrieved CTH data. SEVIRI measures a radiatively effective CTH, while the CTH of the active instruments is derived from the return time of the emitted radar or lidar signal. Therefore, some systematic differences are expected. On average the CTHs detected by the SEVIRI algorithms are 1.0 to 2.5 kilometers lower than CALIOP observations, and the correlation coefficients between the SEVIRI and the CALIOP data sets range between 0.77 and 0.90. The average CTHs derived by the SEVIRI algorithms are closer to the CPR measurements than to CALIOP measurements. The biases between SEVIRI and CPR retrievals range from -0.8 kilometers to 0.6 kilometers. The correlation coefficients of CPR and SEVIRI observations vary between 0.82 and 0.89. To discuss the origin of the CTH deviation, we investigate three cloud categories: optically thin and thick single layer as well as multi-layer clouds. For optically thick clouds the correlation coefficients between the SEVIRI and the reference data sets are usually above 0.95. For optically thin single layer clouds the correlation coefficients are still above 0.92. For this cloud category the SEVIRI algorithms yield CTHs that are lower than CALIOP and similar to CPR observations. Most challenging are the multi-layer clouds, where the correlation coefficients are for most algorithms between 0.6 and 0.8. Finally, we evaluate the performance of the SEVIRI retrievals for boundary layer clouds. While the CTH retrieval for this cloud type is relatively accurate, there are still considerable differences between the algorithms. These are related to the uncertainties and limited vertical resolution of the assumed temperature profiles in combination with the presence of temperature inversions, which lead to ambiguities in the CTH retrieval. Alternative approaches for the CTH retrieval of low clouds are discussed.

  19. The Time Series Technique for Aerosol Retrievals over Land from MODIS: Algorithm MAIAC

    NASA Technical Reports Server (NTRS)

    Lyapustin, Alexei; Wang, Yujie

    2008-01-01

    Atmospheric aerosols interact with sun light by scattering and absorbing radiation. By changing irradiance of the Earth surface, modifying cloud fractional cover and microphysical properties and a number of other mechanisms, they affect the energy balance, hydrological cycle, and planetary climate [IPCC, 2007]. In many world regions there is a growing impact of aerosols on air quality and human health. The Earth Observing System [NASA, 1999] initiated high quality global Earth observations and operational aerosol retrievals over land. With the wide swath (2300 km) of MODIS instrument, the MODIS Dark Target algorithm [Kaufman et al., 1997; Remer et al., 2005; Levy et al., 2007] currently complemented with the Deep Blue method [Hsu et al., 2004] provides daily global view of planetary atmospheric aerosol. The MISR algorithm [Martonchik et al., 1998; Diner et al., 2005] makes high quality aerosol retrievals in 300 km swaths covering the globe in 8 days. With MODIS aerosol program being very successful, there are still several unresolved issues in the retrieval algorithms. The current processing is pixel-based and relies on a single-orbit data. Such an approach produces a single measurement for every pixel characterized by two main unknowns, aerosol optical thickness (AOT) and surface reflectance (SR). This lack of information constitutes a fundamental problem of the remote sensing which cannot be resolved without a priori information. For example, MODIS Dark Target algorithm makes spectral assumptions about surface reflectance, whereas the Deep Blue method uses ancillary global database of surface reflectance composed from minimal monthly measurements with Rayleigh correction. Both algorithms use Lambertian surface model. The surface-related assumptions in the aerosol retrievals may affect subsequent atmospheric correction in unintended way. For example, the Dark Target algorithm uses an empirical relationship to predict SR in the Blue (B3) and Red (B1) bands from the 2.1 m channel (B7) for the purpose of aerosol retrieval. Obviously, the subsequent atmospheric correction will produce the same SR in the red and blue bands as predicted, i.e. an empirical function of 2.1. In other words, the spectral, spatial and temporal variability of surface reflectance in the Blue and Red bands appears borrowed from band B7. This may have certain implications for the vegetation and global carbon analysis because the chlorophyll-sensing bands B1, B3 are effectively substituted in terms of variability by band B7, which is sensitive to the plant liquid water. This chapter describes a new recently developed generic aerosol-surface retrieval algorithm for MODIS. The Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm simultaneously retrieves AOT and surface bi-directional reflection factor (BRF) using the time series of MODIS measurements.

  20. A Simple and Universal Aerosol Retrieval Algorithm for Landsat Series Images Over Complex Surfaces

    NASA Astrophysics Data System (ADS)

    Wei, Jing; Huang, Bo; Sun, Lin; Zhang, Zhaoyang; Wang, Lunche; Bilal, Muhammad

    2017-12-01

    Operational aerosol optical depth (AOD) products are available at coarse spatial resolutions from several to tens of kilometers. These resolutions limit the application of these products for monitoring atmospheric pollutants at the city level. Therefore, a simple, universal, and high-resolution (30 m) Landsat aerosol retrieval algorithm over complex urban surfaces is developed. The surface reflectance is estimated from a combination of top of atmosphere reflectance at short-wave infrared (2.22 μm) and Landsat 4-7 surface reflectance climate data records over densely vegetated areas and bright areas. The aerosol type is determined using the historical aerosol optical properties derived from the local urban Aerosol Robotic Network (AERONET) site (Beijing). AERONET ground-based sun photometer AOD measurements from five sites located in urban and rural areas are obtained to validate the AOD retrievals. Terra MODerate resolution Imaging Spectrometer Collection (C) 6 AOD products (MOD04) including the dark target (DT), the deep blue (DB), and the combined DT and DB (DT&DB) retrievals at 10 km spatial resolution are obtained for comparison purposes. Validation results show that the Landsat AOD retrievals at a 30 m resolution are well correlated with the AERONET AOD measurements (R2 = 0.932) and that approximately 77.46% of the retrievals fall within the expected error with a low mean absolute error of 0.090 and a root-mean-square error of 0.126. Comparison results show that Landsat AOD retrievals are overall better and less biased than MOD04 AOD products, indicating that the new algorithm is robust and performs well in AOD retrieval over complex surfaces. The new algorithm can provide continuous and detailed spatial distributions of AOD during both low and high aerosol loadings.

  1. Comparison of a single-view and a double-view aerosol optical depth retrieval algorithm

    NASA Astrophysics Data System (ADS)

    Henderson, Bradley G.; Chylek, Petr

    2003-11-01

    We compare the results of a single-view and a double-view aerosol optical depth (AOD) retrieval algorithm applied to image pairs acquired over NASA Stennis Space Center, Mississippi. The image data were acquired by the Department of Energy's (DOE) Multispectral Thermal Imager (MTI), a pushbroom satellite imager with 15 bands from the visible to the thermal infrared. MTI has the ability to acquire imagery in pairs in which the first image is a near-nadir view and the second image is off-nadir with a zenith angle of approximately 60°. A total of 15 image pairs were used in the analysis. For a given image pair, AOD retrieval is performed twice---once using a single-view algorithm applied to the near-nadir image, then again using a double-view algorithm. Errors for both retrievals are computed by comparing the results to AERONET AOD measurements obtained at the same time and place. The single-view algorithm showed an RMS error about the mean of 0.076 in AOD units, whereas the double-view algorithm showed a modest improvement with an RMS error of 0.06. The single-view errors show a positive bias which is presumed to be a result of the empirical relationship used to determine ground reflectance in the visible. A plot of AOD error of the double-view algorithm versus time shows a noticeable trend which is interpreted to be a calibration drift. When this trend is removed, the RMS error of the double-view algorithm drops to 0.030. The single-view algorithm qualitatively appears to perform better during the spring and summer whereas the double-view algorithm seems to be less sensitive to season.

  2. SEOM's Sentinel-3/OLCI' project CAWA: advanced GRASP aerosol retrieval

    NASA Astrophysics Data System (ADS)

    Dubovik, Oleg; litvinov, Pavel; Huang, Xin; Aspetsberger, Michael; Fuertes, David; Brockmann, Carsten; Fischer, Jürgen; Bojkov, Bojan

    2016-04-01

    The CAWA "Advanced Clouds, Aerosols and WAter vapour products for Sentinel-3/OLCI" ESA-SEOM project aims on the development of advanced atmospheric retrieval algorithms for the Sentinel-3/OLCI mission, and is prepared using Envisat/MERIS and Aqua/MODIS datasets. This presentation discusses mainly CAWA aerosol product developments and results. CAWA aerosol retrieval uses recently developed GRASP algorithm (Generalized Retrieval of Aerosol and Surface Properties) algorithm described by Dubovik et al. (2014). GRASP derives extended set of atmospheric parameters using multi-pixel concept - a simultaneous fitting of a large group of pixels under additional a priori constraints limiting the time variability of surface properties and spatial variability of aerosol properties. Over land GRASP simultaneously retrieves properties of both aerosol and underlying surface even over bright surfaces. GRAPS doesn't use traditional look-up-tables and performs retrieval as search in continuous space of solution. All radiative transfer calculations are performed as part of the retrieval. The results of comprehensive sensitivity tests, as well as results obtained from real Envisat/MERIS data will be presented. The tests analyze various aspects of aerosol and surface reflectance retrieval accuracy. In addition, the possibilities of retrieval improvement by means of implementing synergetic inversion of a combination of OLCI data with observations by SLSTR are explored. Both the results of numerical tests, as well as the results of processing several years of Envisat/MERIS data illustrate demonstrate reliable retrieval of AOD (Aerosol Optical Depth) and surface BRDF. Observed retrieval issues and advancements will be discussed. For example, for some situations we illustrate possibilities of retrieving aerosol absorption - property that hardly accessible from satellite observations with no multi-angular and polarimetric capabilities.

  3. Regarding retrievals of methane in the atmosphere from IASI/Metop spectra and their comparison with ground-based FTIR measurements data

    NASA Astrophysics Data System (ADS)

    Khamatnurova, M. Yu.; Gribanov, K. G.; Zakharov, V. I.; Rokotyan, N. V.; Imasu, R.

    2017-11-01

    The algorithm for atmospheric methane distribution retrieval in atmosphere from IASI spectra has been developed. The feasibility of Levenberg-Marquardt method for atmospheric methane total column amount retrieval from the spectra measured by IASI/METOP modified for the case of lack of a priori covariance matrices for methane vertical profiles is studied in this paper. Method and algorithm were implemented into software package together with iterative estimation of a posteriori covariance matrices and averaging kernels for each individual retrieval. This allows retrieval quality selection using the properties of both types of matrices. Methane (XCH4) retrieval by Levenberg-Marquardt method from IASI/METOP spectra is presented in this work. NCEP/NCAR reanalysis data provided by ESRL (NOAA, Boulder, USA) were taken as initial guess. Surface temperature, air temperature and humidity vertical profiles are retrieved before methane vertical profile retrieval. The data retrieved from ground-based measurements at the Ural Atmospheric Station and data of L2/IASI standard product were used for the verification of the method and results of methane retrieval from IASI/METOP spectra.

  4. Phase retrieval via incremental truncated amplitude flow algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Quanbing; Wang, Zhifa; Wang, Linjie; Cheng, Shichao

    2017-10-01

    This paper considers the phase retrieval problem of recovering the unknown signal from the given quadratic measurements. A phase retrieval algorithm based on Incremental Truncated Amplitude Flow (ITAF) which combines the ITWF algorithm and the TAF algorithm is proposed. The proposed ITAF algorithm enhances the initialization by performing both of the truncation methods used in ITWF and TAF respectively, and improves the performance in the gradient stage by applying the incremental method proposed in ITWF to the loop stage of TAF. Moreover, the original sampling vector and measurements are preprocessed before initialization according to the variance of the sensing matrix. Simulation experiments verified the feasibility and validity of the proposed ITAF algorithm. The experimental results show that it can obtain higher success rate and faster convergence speed compared with other algorithms. Especially, for the noiseless random Gaussian signals, ITAF can recover any real-valued signal accurately from the magnitude measurements whose number is about 2.5 times of the signal length, which is close to the theoretic limit (about 2 times of the signal length). And it usually converges to the optimal solution within 20 iterations which is much less than the state-of-the-art algorithms.

  5. Intercomparison of Eight Forward 1D Vector Radiative Transfer Models, with the Performance of Satellite Aerosol Remote Sensing Algorithms in Mind

    NASA Astrophysics Data System (ADS)

    Davis, Anthony B.; Kalashnikova, Olga V.; Diner, David J.; Garay, Michael J.; Lyapustin, Alexei I.; Korkin, Sergey V.; Martonchik, John V.; Natraj, Vijay; Sanghavi, Suniti V.; Xu, Feng; Zhai, Pengwang; Rozanov, Vladimir V.; Kokhanovsky, Alexander A.

    2014-05-01

    Quantification and characterization of the omnipresent atmospheric aerosol by remote sensing methods is key to answering many challenging questions in atmospheric science, in climate modeling and in air quality monitoring foremost. In recent years, accurate measurement of the state of polarization of photon fluxes at optical sensors in the visible and near-IR spectrum has been hailed as a very promising approach to aerosol remote sensing. Consequently, there has been a flurry of activity in polarized or 'vector' radiative transfer (vRT) model development. This covers the multiple scattering and ground reflection aspects of sensor signal prediction that complement single-particle scattering computation, and lies at the core of all physics-based retrieval algorithms. One can legitimately ask: What level of model fidelity (representativeness of natural scenes) and what computational accuracy should be achieved for this task in view of the practical constraints that apply? These constraints are, at a minimum: (i) the desired accuracy of the retrieved aerosol properties, (ii) observational uncertainties, and (iii) operational efficiency requirements as determined by throughput. We offer a rational and balanced approach to address these questions and illustrate it with a systematic inter-comparison of the performance of a diverse set of 1D vRT models using a small but representative set of test cases. This 'JPL' benchmarking suite of cases is naturally divided into two parts. First the emphasis is on stratified atmospheres with a continuous mixture of molecular and aerosol scattering and absorption over a black surface, with the corresponding pure cases treated for diagnostic purposes. Then the emphasis shifts to the variety of surfaces, both polarizing and not, that can be encountered in real observations and may confuse the aerosol retrieval algorithm if not properly treated.

  6. Smithsonian Astrophysical Observatory Ozone Mapping and Profiler Suite (SAO OMPS) formaldehyde retrieval

    NASA Astrophysics Data System (ADS)

    González Abad, Gonzalo; Vasilkov, Alexander; Seftor, Colin; Liu, Xiong; Chance, Kelly

    2016-07-01

    This paper presents our new formaldehyde (H2CO) retrievals, obtained from spectra recorded by the nadir instrument of the Ozone Mapping and Profiler Suite (OMPS) flown on board NASA's Suomi National Polar-orbiting Partnership (SUOMI-NPP) satellite. Our algorithm is similar to the one currently in place for the production of NASA's Ozone Monitoring Instrument (OMI) operational H2CO product. We are now able to produce a set of long-term data from two different instruments that share a similar concept and a similar retrieval approach. The ongoing overlap period between OMI and OMPS offers a perfect opportunity to study the consistency between both data sets. The different spatial and spectral resolution of the instruments is a source of discrepancy in the retrievals despite the similarity of the physic assumptions of the algorithm. We have concluded that the reduced spectral resolution of OMPS in comparison with OMI is not a significant obstacle in obtaining good-quality retrievals. Indeed, the improved signal-to-noise ratio of OMPS with respect to OMI helps to reduce the noise of the retrievals performed using OMPS spectra. However, the size of OMPS spatial pixels imposes a limitation in the capability to distinguish particular features of H2CO that are discernible with OMI. With root mean square (RMS) residuals ˜ 5 × 10-4 for individual pixels we estimate the detection limit to be about 7.5 × 1015 molecules cm-2. Total vertical column density (VCD) errors for individual pixels range between 40 % for pixels with high concentrations to 100 % or more for pixels with concentrations at or below the detection limit. We compare different OMI products (SAO OMI v3.0.2 and BIRA OMI v14) with our OMPS product using 1 year of data, between September 2012 and September 2013. The seasonality of the retrieved slant columns is captured similarly by all products but there are discrepancies in the values of the VCDs. The mean biases among the two OMI products and our OMPS product are 23 % between OMI SAO and OMPS SAO and 28 % between OMI BIRA and OMPS SAO for eight selected regions.

  7. Complex amplitude reconstruction by iterative amplitude-phase retrieval algorithm with reference

    NASA Astrophysics Data System (ADS)

    Shen, Cheng; Guo, Cheng; Tan, Jiubin; Liu, Shutian; Liu, Zhengjun

    2018-06-01

    Multi-image iterative phase retrieval methods have been successfully applied in plenty of research fields due to their simple but efficient implementation. However, there is a mismatch between the measurement of the first long imaging distance and the sequential interval. In this paper, an amplitude-phase retrieval algorithm with reference is put forward without additional measurements or priori knowledge. It gets rid of measuring the first imaging distance. With a designed update formula, it significantly raises the convergence speed and the reconstruction fidelity, especially in phase retrieval. Its superiority over the original amplitude-phase retrieval (APR) method is validated by numerical analysis and experiments. Furthermore, it provides a conceptual design of a compact holographic image sensor, which can achieve numerical refocusing easily.

  8. Evaluation of Aerosol Pollution Determination From MODIS Satellite Retrievals for Semi-Arid Reno, NV, USA with In-Situ Measurements

    NASA Astrophysics Data System (ADS)

    Loria-Salazar, S. Marcela

    The aim of the present work is to carry out a detailed analysis of ground and columnar aerosol properties obtained by in-situ Photoacoustic and Integrated Nephelometer (PIN), Cimel CE-318 sunphotometer and MODIS instrument onboard Aqua and Terra satellites, for semi-arid Reno, Nevada, USA in the local summer months of 2012. Satellite determination of local aerosol pollution is desirable because of the potential for broad spatial and temporal coverage. However, retrieval of quantitative measures of air pollution such as Aerosol Optical Depth (AOD) from satellite measurements is challenging because of the underlying surface albedo being heterogeneous in space and time. Therefore, comparisons of satellite retrievals with measurements from ground-based sun photometers are crucial for validation, testing, and further development of instruments and retrieval algorithms. Ground-based sunphotometry and in-situ ground observations show that seasonal weather changes and fire plumes have great influence on the atmosphere aerosol optics. The Apparent Optical Height (AOH) follows the shape of the development of the Convective Boundary Layer (CBL) when fire conditions were not present. However, significant fine particle optical depth was inferred beyond the CBL thereby complicating the use of remote sensing measurements for near-ground aerosol pollution measurements. A meteorological analysis was performed to help diagnose the nature of the aerosols above Reno. The calculation of a Zephyr index and back trajectory analysis demonstrated that a local circulation often induces aerosol transport from Northern CA over the Sierra Nevada Mountains that doubles the Aerosol Optical Depth (AOD) at 500 nm. Sunphotometer measurements were used as a `ground truth' for satellite retrievals to evaluate the current state of the science retrievals in this challenging location. Satellite retrieved for AOD showed the presence of wild fires in Northern CA during August. AOD retrieved using the "dark-target algorithm" may be unrealistically high over the Great Basin. Low correlation was found between AERONET AOD and dark-target algorithm AOD retrievals from Aqua and Terra during June and July. During fire conditions the dark-target algorithm AOD values correlated better with AERONET measurements in August. Use of the Deep-blue algorithm for MODIS data to retrieve AOD did not provide enough points to compare with AERONET in June and July. In August, AOD from deep-blue and AERONET retrievals exhibited low correlation. AEE from MODIS products and AERONET exhibited low correlation during every month. Apparently satellite AOD retrievals need much improvement for areas like semi-arid Reno.

  9. Phase retrieval based wavefront sensing experimental implementation and wavefront sensing accuracy calibration

    NASA Astrophysics Data System (ADS)

    Mao, Heng; Wang, Xiao; Zhao, Dazun

    2009-05-01

    As a wavefront sensing (WFS) tool, Baseline algorithm, which is classified as the iterative-transform algorithm of phase retrieval, estimates the phase distribution at pupil from some known PSFs at defocus planes. By using multiple phase diversities and appropriate phase unwrapping methods, this algorithm can accomplish reliable unique solution and high dynamic phase measurement. In the paper, a Baseline algorithm based wavefront sensing experiment with modification of phase unwrapping has been implemented, and corresponding Graphical User Interfaces (GUI) software has also been given. The adaptability and repeatability of Baseline algorithm have been validated in experiments. Moreover, referring to the ZYGO interferometric results, the WFS accuracy of this algorithm has been exactly calibrated.

  10. A Bayesian approach to microwave precipitation profile retrieval

    NASA Technical Reports Server (NTRS)

    Evans, K. Franklin; Turk, Joseph; Wong, Takmeng; Stephens, Graeme L.

    1995-01-01

    A multichannel passive microwave precipitation retrieval algorithm is developed. Bayes theorem is used to combine statistical information from numerical cloud models with forward radiative transfer modeling. A multivariate lognormal prior probability distribution contains the covariance information about hydrometeor distribution that resolves the nonuniqueness inherent in the inversion process. Hydrometeor profiles are retrieved by maximizing the posterior probability density for each vector of observations. The hydrometeor profile retrieval method is tested with data from the Advanced Microwave Precipitation Radiometer (10, 19, 37, and 85 GHz) of convection over ocean and land in Florida. The CP-2 multiparameter radar data are used to verify the retrieved profiles. The results show that the method can retrieve approximate hydrometeor profiles, with larger errors over land than water. There is considerably greater accuracy in the retrieval of integrated hydrometeor contents than of profiles. Many of the retrieval errors are traced to problems with the cloud model microphysical information, and future improvements to the algorithm are suggested.

  11. Evaluation of rainfall retrievals from SEVIRI reflectances over West Africa using TRMM-PR and CMORPH

    NASA Astrophysics Data System (ADS)

    Wolters, E. L. A.; van den Hurk, B. J. J. M.; Roebeling, R. A.

    2011-02-01

    This paper describes the evaluation of the KNMI Cloud Physical Properties - Precipitation Properties (CPP-PP) algorithm over West Africa. The algorithm combines condensed water path (CWP), cloud phase (CPH), cloud particle effective radius (re), and cloud-top temperature (CTT) retrievals from visible, near-infrared and thermal infrared observations of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard the Meteosat Second Generation (MSG) satellites to estimate rain occurrence frequency and rain rate. For the 2005 and 2006 monsoon seasons, it is investigated whether the CPP-PP algorithm is capable of retrieving rain occurrence frequency and rain rate over West Africa with sufficient accuracy, using Tropical Monsoon Measurement Mission Precipitation Radar (TRMM-PR) as reference. As a second goal, it is assessed whether SEVIRI is capable of monitoring the seasonal and daytime evolution of rainfall during the West African monsoon (WAM), using Climate Prediction Center Morphing Technique (CMORPH) rainfall observations. The SEVIRI-detected rainfall area agrees well with TRMM-PR, with the areal extent of rainfall by SEVIRI being ~10% larger than from TRMM-PR. The mean retrieved rain rate from CPP-PP is about 8% higher than from TRMM-PR. Examination of the TRMM-PR and CPP-PP cumulative frequency distributions revealed that differences between CPP-PP and TRMM-PR are generally within +/-10%. Relative to the AMMA rain gauge observations, CPP-PP shows very good agreement up to 5 mm h-1. However, at higher rain rates (5-16 mm h-1) CPP-PP overestimates compared to the rain gauges. With respect to the second goal of this paper, it was shown that both the accumulated precipitation and the seasonal progression of rainfall throughout the WAM is in good agreement with CMORPH, although CPP-PP retrieves higher amounts in the coastal region of West Africa. Using latitudinal Hovmüller diagrams, a fair correspondence between CPP-PP and CMORPH was found, which is reflected by high correlation coefficients (~0.7) for both rain rate and rain occurrence frequency. The daytime cycle of rainfall from CPP-PP shows distinctly different patterns for three different regions in West Africa throughout the WAM, with a decrease in dynamical range of rainfall near the Inter Tropical Convergence Zone (ITCZ). The dynamical range as retrieved from CPP-PP is larger than that from CMORPH. It is suggested that this results from both the better spatio-temporal resolution of SEVIRI, as well as from thermal infrared radiances being partly used by CMORPH, which likely smoothes the daytime precipitation signal, especially in case of cold anvils from convective systems. The promising results show that the CPP-PP algorithm, taking advantage of the high spatio-temporal resolution of SEVIRI, is of added value for monitoring daytime precipitation patterns in tropical areas.

  12. Detecting Thin Cirrus in Multiangle Imaging Spectroradiometer Aerosol Retrievals

    NASA Technical Reports Server (NTRS)

    Pierce, Jeffrey R.; Kahn, Ralph A.; Davis, Matt R.; Comstock, Jennifer M.

    2010-01-01

    Thin cirrus clouds (optical depth (OD) < 03) are often undetected by standard cloud masking in satellite aerosol retrieval algorithms. However, the Mu]tiangle Imaging Spectroradiometer (MISR) aerosol retrieval has the potential to discriminate between the scattering phase functions of cirrus and aerosols, thus separating these components. Theoretical tests show that MISR is sensitive to cirrus OD within Max{0.05 1 20%l, similar to MISR's sensitivity to aerosol OD, and MISR can distinguish between small and large crystals, even at low latitudes, where the range of scattering angles observed by MISR is smallest. Including just two cirrus components in the aerosol retrieval algorithm would capture typical MISR sensitivity to the natural range of cinus properties; in situations where cirrus is present but the retrieval comparison space lacks these components, the retrieval tends to underestimate OD. Generally, MISR can also distinguish between cirrus and common aerosol types when the proper cirrus and aerosol optical models are included in the retrieval comparison space and total column OD is >-0.2. However, in some cases, especially at low latitudes, cirrus can be mistaken for some combinations of dust and large nonabsorbing spherical aerosols, raising a caution about retrievals in dusty marine regions when cirrus is present. Comparisons of MISR with lidar and Aerosol Robotic Network show good agreement in a majority of the cases, but situations where cirrus clouds have optical depths >0.15 and are horizontally inhomogeneous on spatial scales shorter than 50 km pose difficulties for cirrus retrieval using the MISR standard aerosol algorithm..

  13. Remote sensing of cirrus cloud vertical size profile using MODIS data

    NASA Astrophysics Data System (ADS)

    Wang, Xingjuan; Liou, K. N.; Ou, Steve S. C.; Mace, G. G.; Deng, M.

    2009-05-01

    This paper describes an algorithm for inferring cirrus cloud top and cloud base effective particle sizes and cloud optical thickness from the Moderate Resolution Imaging Spectroradiometer (MODIS) 0.645, 1.64 and 2.13, and 3.75 μm band reflectances/radiances. This approach uses a successive minimization method based on a look-up library of precomputed reflectances/radiances from an adding-doubling radiative transfer program, subject to corrections for Rayleigh scattering at the 0.645 μm band, above-cloud water vapor absorption, and 3.75 μm thermal emission. The algorithmic accuracy and limitation of the retrieval method were investigated by synthetic retrievals subject to the instrument noise and the perturbation of input parameters. The retrieval algorithm was applied to three MODIS cirrus scenes over the Atmospheric Radiation Measurement Program's southern Great Plain site, north central China, and northeast Asia. The reliability of retrieved cloud optical thicknesses and mean effective particle sizes was evaluated by comparison with MODIS cloud products and qualitatively good correlations were obtained for all three cases, indicating that the performance of the vertical sizing algorithm is comparable with the MODIS retrieval program. Retrieved cloud top and cloud base ice crystal effective sizes were also compared with those derived from the collocated ground-based millimeter wavelength cloud radar for the first case and from the Cloud Profiling Radar onboard CloudSat for the other two cases. Differences between retrieved and radar-derived cloud properties are discussed in light of assumptions made in the collocation process and limitations in radar remote sensing characteristics.

  14. Performance analysis of algorithms for retrieval of magnetic resonance images for interactive teleradiology

    NASA Astrophysics Data System (ADS)

    Atkins, M. Stella; Hwang, Robert; Tang, Simon

    2001-05-01

    We have implemented a prototype system consisting of a Java- based image viewer and a web server extension component for transmitting Magnetic Resonance Images (MRI) to an image viewer, to test the performance of different image retrieval techniques. We used full-resolution images, and images compressed/decompressed using the Set Partitioning in Hierarchical Trees (SPIHT) image compression algorithm. We examined the SPIHT decompression algorithm using both non- progressive and progressive transmission, focusing on the running times of the algorithm, client memory usage and garbage collection. We also compared the Java implementation with a native C++ implementation of the non- progressive SPIHT decompression variant. Our performance measurements showed that for uncompressed image retrieval using a 10Mbps Ethernet, a film of 16 MR images can be retrieved and displayed almost within interactive times. The native C++ code implementation of the client-side decoder is twice as fast as the Java decoder. If the network bandwidth is low, the high communication time for retrieving uncompressed images may be reduced by use of SPIHT-compressed images, although the image quality is then degraded. To provide diagnostic quality images, we also investigated the retrieval of up to 3 images on a MR film at full-resolution, using progressive SPIHT decompression. The Java-based implementation of progressive decompression performed badly, mainly due to the memory requirements for maintaining the image states, and the high cost of execution of the Java garbage collector. Hence, in systems where the bandwidth is high, such as found in a hospital intranet, SPIHT image compression does not provide advantages for image retrieval performance.

  15. Quantifying Vegetation Biophysical Variables from Imaging Spectroscopy Data: A Review on Retrieval Methods

    NASA Astrophysics Data System (ADS)

    Verrelst, Jochem; Malenovský, Zbyněk; Van der Tol, Christiaan; Camps-Valls, Gustau; Gastellu-Etchegorry, Jean-Philippe; Lewis, Philip; North, Peter; Moreno, Jose

    2018-06-01

    An unprecedented spectroscopic data stream will soon become available with forthcoming Earth-observing satellite missions equipped with imaging spectroradiometers. This data stream will open up a vast array of opportunities to quantify a diversity of biochemical and structural vegetation properties. The processing requirements for such large data streams require reliable retrieval techniques enabling the spatiotemporally explicit quantification of biophysical variables. With the aim of preparing for this new era of Earth observation, this review summarizes the state-of-the-art retrieval methods that have been applied in experimental imaging spectroscopy studies inferring all kinds of vegetation biophysical variables. Identified retrieval methods are categorized into: (1) parametric regression, including vegetation indices, shape indices and spectral transformations; (2) nonparametric regression, including linear and nonlinear machine learning regression algorithms; (3) physically based, including inversion of radiative transfer models (RTMs) using numerical optimization and look-up table approaches; and (4) hybrid regression methods, which combine RTM simulations with machine learning regression methods. For each of these categories, an overview of widely applied methods with application to mapping vegetation properties is given. In view of processing imaging spectroscopy data, a critical aspect involves the challenge of dealing with spectral multicollinearity. The ability to provide robust estimates, retrieval uncertainties and acceptable retrieval processing speed are other important aspects in view of operational processing. Recommendations towards new-generation spectroscopy-based processing chains for operational production of biophysical variables are given.

  16. Estimating vertical profiles of water-cloud droplet effective radius from SWIR satellite measurements via a statistical model derived from CloudSat observations

    NASA Astrophysics Data System (ADS)

    Nagao, T. M.; Murakami, H.; Nakajima, T. Y.

    2017-12-01

    This study proposes an algorithm to estimate vertical profiles of cloud droplet effective radius (CDER-VP) for water clouds from shortwave infrared (SWIR) measurements of Himawari-8/AHI via a statistical model of CDER-VP derived from CloudSat observation. Several similar algorithms in previous studies utilize a spectral radiance matching on the assumption of simultaneous observations of CloudSat and Aqua/MODIS. However, our algorithm does not assume simultaneous observations with CloudSat. First, in advance, a database (DB) of CDER-VP is prepared by the following procedure: TOA radiances at 0.65, 2.3 and 10.4-μm bands of the AHI are simulated using CDER-VP and cloud optical depth vertical profile (COD-VP) contained in the CloudSat 2B-CWC-RVOD and 2B-TAU products. Cloud optical thickness (COT), Column-CDER and cloud top height (CTH) are retrieved from the simulated radiances using a traditional retrieval algorithm with vertically homogeneous cloud model (1-SWIR VHC method). The CDER-VP is added to the DB by using the COT and Column-CDER retrievals as a key of the DB. Then by using principal component (PC) analysis, up to three PC vectors of the CDER-VPs in the DB are extracted. Next, the algorithm retrieves CDER-VP from actual AHI measurements by the following procedure: First, COT, Column-CDER and CTH are retrieved from TOA radiances at 0.65, 2.3 and 10.4-μm bands of the AHI using by 1-SWIR VHC method. Then, the PC vectors of CDER-VP is fetched from the DB using the COT and Column-CDER retrievals as the key of the DB. Finally, using coefficients of the PC vectors of CDER-VP as variables for retrieval, CDER-VP, COT and CTH are retrieved from TOA radiances at 0.65, 1.6, 2.3, 3.9 and 10.4-μm bands of the AHI based on optimal estimation method with iterative radiative transfer calculation. The simulation result showed the CDER-VP retrieval errors were almost smaller than 3 - 4 μm. The CDER retrieval errors at the cloud base were almost larger than the others (e.g. CDER at cloud top), especially when COT and CDER was large. The tendency can be explained by less sensitivities of SWIRs to CDER at cloud base. Additionally, as a case study, this study will attempt to apply the algorithm to the AHI's high-frequency observations, and to interpret the time series of the CDER-VP retrievals in terms of temporal evolution of water clouds.

  17. Accuracy Assessment of Aqua-MODIS Aerosol Optical Depth Over Coastal Regions: Importance of Quality Flag and Sea Surface Wind Speed

    NASA Technical Reports Server (NTRS)

    Anderson, J. C.; Wang, J.; Zeng, J.; Petrenko, M.; Leptoukh, G. G.; Ichoku, C.

    2012-01-01

    Coastal regions around the globe are a major source for anthropogenic aerosols in the atmosphere, but the underlying surface characteristics are not favorable for the Moderate Resolution Imaging Spectroradiometer (MODIS) algorithms designed for retrieval of aerosols over dark land or open-ocean surfaces. Using data collected from 62 coastal stations worldwide from the Aerosol Robotic Network (AERONET) from approximately 2002-2010, accuracy assessments are made for coastal aerosol optical depth (AOD) retrieved from MODIS aboard Aqua satellite. It is found that coastal AODs (at 550 nm) characterized respectively by the MODIS Dark Land (hereafter Land) surface algorithm, the Open-Ocean (hereafter Ocean) algorithm, and AERONET all exhibit a log-normal distribution. After filtering by quality flags, the MODIS AODs respectively retrieved from the Land and Ocean algorithms are highly correlated with AERONET (with R(sup 2) is approximately equal to 0.8), but only the Land algorithm AODs fall within the expected error envelope greater than 66% of the time. Furthermore, the MODIS AODs from the Land algorithm, Ocean algorithm, and combined Land and Ocean product show statistically significant discrepancies from their respective counterparts from AERONET in terms of mean, probability density function, and cumulative density function, which suggest a need for future improvement in retrieval algorithms. Without filtering with quality flag, the MODIS Land and Ocean AOD dataset can be degraded by 30-50% in terms of mean bias. Overall, the MODIS Ocean algorithm overestimates the AERONET coastal AOD by 0.021 for AOD less than 0.25 and underestimates it by 0.029 for AOD greater than 0.25. This dichotomy is shown to be related to the ocean surface wind speed and cloud contamination effects on the satellite aerosol retrieval. The Modern Era Retrospective-Analysis for Research and Applications (MERRA) reveals that wind speeds over the global coastal region 25 (with a mean and median value of 2.94 meters per second and 2.66 meters per second, respectively) are often slower than 6 meters per second assumed in the MODIS Ocean algorithm. As a result of high correlation (R(sup 2) greater than 0.98) between the bias in binned MODIS AOD and the corresponding binned wind speed over the coastal sea surface, an empirical scheme for correcting the bias of AOD retrieved from the MODIS Ocean algorithm is formulated and is shown to be effective over the majority of the coastal AERONET stations, and hence can be used in future analysis of AOD trend and MODIS AOD data assimilation.

  18. Cloud-property retrieval using merged HIRS and AVHRR data

    NASA Technical Reports Server (NTRS)

    Baum, Bryan A.; Wielicki, Bruce A.; Minnis, Patrick; Parker, Lindsay

    1992-01-01

    A technique is developed that uses a multispectral, multiresolution method to improve the overall retrieval of mid- to high-level cloud properties by combining HIRS sounding channel data with higher spatial resolution AVHRR radiometric data collocated with the HIRS footprint. Cirrus cloud radiative and physical properties are determined using satellite data, surface-based measurements provided by rawinsondes and lidar, and aircraft-based lidar data collected during the First International Satellite Cloud Climatology Program Regional Experiment in Wisconsin during the months of October and November 1986. HIRS cloud-height retrievals are compared to ground-based lidar and aircraft lidar when possible. Retrieved cloud heights are found to have close agreement with lidar for thin cloud, but are higher than lidar for optically thick cloud. The results of the reflectance-emittance relationships derived are compared to theoretical scattering model results for both water-droplet spheres and randomly oriented hexagonal ice crystals. It is found that the assumption of 10-micron water droplets is inadequate to describe the reflectance-emittance relationship for the ice clouds seen here. Use of this assumption would lead to lower cloud heights using the ISCCP approach. The theoretical results show that use of hexagonal ice crystal phase functions could lead to much improved results for cloud retrieval algorithms using a bispectral approach.

  19. Phase retrieval by coherent modulation imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fucai; Chen, Bo; Morrison, Graeme R.

    Phase retrieval is a long-standing problem in imaging when only the intensity of the wavefield can be recorded. Coherent diffraction imaging (CDI) is a lensless technique that uses iterative algorithms to recover amplitude and phase contrast images from diffraction intensity data. For general samples, phase retrieval from a single diffraction pattern has been an algorithmic and experimental challenge. Here we report a method of phase retrieval that uses a known modulation of the sample exit-wave. This coherent modulation imaging (CMI) method removes inherent ambiguities of CDI and uses a reliable, rapidly converging iterative algorithm involving three planes. It works formore » extended samples, does not require tight support for convergence, and relaxes dynamic range requirements on the detector. CMI provides a robust method for imaging in materials and biological science, while its single-shot capability will benefit the investigation of dynamical processes with pulsed sources, such as X-ray free electron laser.« less

  20. Phase retrieval by coherent modulation imaging

    DOE PAGES

    Zhang, Fucai; Chen, Bo; Morrison, Graeme R.; ...

    2016-11-18

    Phase retrieval is a long-standing problem in imaging when only the intensity of the wavefield can be recorded. Coherent diffraction imaging (CDI) is a lensless technique that uses iterative algorithms to recover amplitude and phase contrast images from diffraction intensity data. For general samples, phase retrieval from a single diffraction pattern has been an algorithmic and experimental challenge. Here we report a method of phase retrieval that uses a known modulation of the sample exit-wave. This coherent modulation imaging (CMI) method removes inherent ambiguities of CDI and uses a reliable, rapidly converging iterative algorithm involving three planes. It works formore » extended samples, does not require tight support for convergence, and relaxes dynamic range requirements on the detector. CMI provides a robust method for imaging in materials and biological science, while its single-shot capability will benefit the investigation of dynamical processes with pulsed sources, such as X-ray free electron laser.« less

  1. Columnar aerosol properties over oceans by combining surface and aircraft measurements: sensitivity analysis.

    PubMed

    Zhang, T; Gordon, H R

    1997-04-20

    We report a sensitivity analysis for the algorithm presented by Gordon and Zhang [Appl. Opt. 34, 5552 (1995)] for inverting the radiance exiting the top and bottom of the atmosphere to yield the aerosol-scattering phase function [P(?)] and single-scattering albedo (omega(0)). The study of the algorithm's sensitivity to radiometric calibration errors, mean-zero instrument noise, sea-surface roughness, the curvature of the Earth's atmosphere, the polarization of the light field, and incorrect assumptions regarding the vertical structure of the atmosphere, indicates that the retrieved omega(0) has excellent stability even for very large values (~2) of the aerosol optical thickness; however, the error in the retrieved P(?) strongly depends on the measurement error and on the assumptions made in the retrieval algorithm. The retrieved phase functions in the blue are usually poor compared with those in the near infrared.

  2. Phase retrieval by coherent modulation imaging.

    PubMed

    Zhang, Fucai; Chen, Bo; Morrison, Graeme R; Vila-Comamala, Joan; Guizar-Sicairos, Manuel; Robinson, Ian K

    2016-11-18

    Phase retrieval is a long-standing problem in imaging when only the intensity of the wavefield can be recorded. Coherent diffraction imaging is a lensless technique that uses iterative algorithms to recover amplitude and phase contrast images from diffraction intensity data. For general samples, phase retrieval from a single-diffraction pattern has been an algorithmic and experimental challenge. Here we report a method of phase retrieval that uses a known modulation of the sample exit wave. This coherent modulation imaging method removes inherent ambiguities of coherent diffraction imaging and uses a reliable, rapidly converging iterative algorithm involving three planes. It works for extended samples, does not require tight support for convergence and relaxes dynamic range requirements on the detector. Coherent modulation imaging provides a robust method for imaging in materials and biological science, while its single-shot capability will benefit the investigation of dynamical processes with pulsed sources, such as X-ray free-electron lasers.

  3. DOLPHIn—Dictionary Learning for Phase Retrieval

    NASA Astrophysics Data System (ADS)

    Tillmann, Andreas M.; Eldar, Yonina C.; Mairal, Julien

    2016-12-01

    We propose a new algorithm to learn a dictionary for reconstructing and sparsely encoding signals from measurements without phase. Specifically, we consider the task of estimating a two-dimensional image from squared-magnitude measurements of a complex-valued linear transformation of the original image. Several recent phase retrieval algorithms exploit underlying sparsity of the unknown signal in order to improve recovery performance. In this work, we consider such a sparse signal prior in the context of phase retrieval, when the sparsifying dictionary is not known in advance. Our algorithm jointly reconstructs the unknown signal - possibly corrupted by noise - and learns a dictionary such that each patch of the estimated image can be sparsely represented. Numerical experiments demonstrate that our approach can obtain significantly better reconstructions for phase retrieval problems with noise than methods that cannot exploit such "hidden" sparsity. Moreover, on the theoretical side, we provide a convergence result for our method.

  4. The CREW intercomparison of SEVIRI cloud retrievals

    NASA Astrophysics Data System (ADS)

    Hamann, U.; Walther, A.; Bennartz, R.; Thoss, A.; Meirink, J. M.; Roebeling, R.

    2012-12-01

    About 70% of the earth's surface is covered with clouds. They strongly influence the radiation balance and the water cycle of the earth. Hence the detailed monitoring of cloud properties - such as cloud fraction, cloud top temperature, cloud particle size, and cloud water path - is important to understand the role of clouds in the weather and the climate system. The remote sensing with passive sensors is an essential mean for the global observation of the cloud parameters, but is nevertheless challenging. This presentation focuses on the inter-comparison and validation of cloud physical properties retrievals from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) onboard METEOSAT. For this study we use retrievals from 12 state-of-art algorithms (Eumetsat, KNMI, NASA Langley, NASA Goddard, University Madison/Wisconsin, DWD, DLR, Meteo-France, KMI, FU Berlin, UK MetOffice) that are made available through the common database of the CREW (Cloud Retrieval Evaluation Working) group. Cloud detection, cloud top phase, height, and temperature, as well as optical properties and water path are validated with CLOUDSAT, CALIPSO, MISR, and AMSR-E measurements. Special emphasis is given to challenging retrieval conditions. Semi-transparent clouds over the earth's surface or another cloud layer modify the measured brightness temperature and increase the retrieval uncertainty. The consideration of the three-dimensional radiative effects is especially important for large viewing angles and broken cloud fields. Aerosols might be misclassified as cloud and may increase the retrieval uncertainty, too. Due to the availability of the high number of sophisticated retrieval datasets, the advantages of different retrieval approaches can be examined and suggestions for future retrieval developments can be made. We like to thank Eumetsat for sponsoring the CREW project including this work.nstitutes that participate in the CREW project.

  5. An introduction to the theory of ptychographic phase retrieval methods

    NASA Astrophysics Data System (ADS)

    Konijnenberg, Sander

    2017-12-01

    An overview of several ptychographic phase retrieval methods and the theory behind them is presented. By looking into the theory behind more basic single-intensity pattern phase retrieval methods, a theoretical framework is provided for analyzing ptychographic algorithms. Extensions of ptychographic algorithms that deal with issues such as partial coherence, thick samples, or uncertainties of the probe or probe positions are also discussed. This introduction is intended for scientists and students without prior experience in the field of phase retrieval or ptychography to quickly get introduced to the theory, so that they can put the more specialized literature in context more easily.

  6. Retrieval of aerosol optical properties using MERIS observations: Algorithm and some first results.

    PubMed

    Mei, Linlu; Rozanov, Vladimir; Vountas, Marco; Burrows, John P; Levy, Robert C; Lotz, Wolfhardt

    2017-08-01

    The MEdium Resolution Imaging Spectrometer (MERIS) instrument on board ESA Envisat made measurements from 2002 to 2012. Although MERIS was limited in spectral coverage, accurate Aerosol Optical Thickness (AOT) from MERIS data are retrieved by using appropriate additional information. We introduce a new AOT retrieval algorithm for MERIS over land surfaces, referred to as eXtensible Bremen AErosol Retrieval (XBAER). XBAER is similar to the "dark-target" (DT) retrieval algorithm used for Moderate-resolution Imaging Spectroradiometer (MODIS), in that it uses a lookup table (LUT) to match to satellite-observed reflectance and derive the AOT. Instead of a global parameterization of surface spectral reflectance, XBAER uses a set of spectral coefficients to prescribe surface properties. In this manner, XBAER is not limited to dark surfaces (vegetation) and retrieves AOT over bright surface (desert, semiarid, and urban areas). Preliminary validation of the MERIS-derived AOT and the ground-based Aerosol Robotic Network (AERONET) measurements yield good agreement, the resulting regression equation is y = (0.92 × ± 0.07) + (0.05 ± 0.01) and Pearson correlation coefficient of R = 0.78. Global monthly means of AOT have been compared from XBAER, MODIS and other satellite-derived datasets.

  7. a New Algorithm for the Aod Inversion from Noaa/avhrr Data

    NASA Astrophysics Data System (ADS)

    Sun, L.; Li, R.; Yu, H.

    2018-04-01

    The advanced very high resolution radiometer (AVHRR) data from the National Oceanic and Atmospheric Administration satellite is one of the earliest data applied in aerosol research. The dense dark vegetation (DDV) algorithm is a popular method for the present land aerosol retrieval. One of the most crucial steps in the DDV algorithm with AVHRR data is estimating the land surface reflectance (LSR). However, LSR cannot be easily estimated because of the lack of a 2.13 μm band. In this article, the moderate resolution imaging spectroradiometer (MODIS) vegetation index product (MYD13) is introduced to support the estimation of AVHRR LSR. The relationship between MODIS NDVI and the AVHRR LSR of the visible band is analysed to retrieve aerosol optical depth (AOD) from AVHRR data. Retrieval experiments are carried out in mid-eastern America. The AOD data from AErosol RObotic NETwork (AERONET) measurements are used to evaluate the aerosol retrieval from AVHRR data, the results indicate that about 74 % of the retrieved AOD are within the expected error range of ±(0.05 + 0.2), and a cross comparison of the AOD retrieval results with the MODIS aerosol product (MYD04) shows that the AOD datasets have a similar spatial distribution.

  8. The role of cloud contamination, aerosol layer height and aerosol model in the assessment of the OMI near-UV retrievals over the ocean

    NASA Astrophysics Data System (ADS)

    Gassó, Santiago; Torres, Omar

    2016-07-01

    Retrievals of aerosol optical depth (AOD) at 388 nm over the ocean from the Ozone Monitoring Instrument (OMI) two-channel near-UV algorithm (OMAERUV) have been compared with independent AOD measurements. The analysis was carried out over the open ocean (OMI and MODerate-resolution Imaging Spectrometer (MODIS) AOD comparisons) and over coastal and island sites (OMI and AERONET, the AErosol RObotic NETwork). Additionally, a research version of the retrieval algorithm (using MODIS and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) information as constraints) was utilized to evaluate the sensitivity of the retrieval to different assumed aerosol properties. Overall, the comparison resulted in differences (OMI minus independent measurements) within the expected levels of uncertainty for the OMI AOD retrievals (0.1 for AOD < 0.3, 30 % for AOD > 0.3). Using examples from case studies with outliers, the reasons that led to the observed differences were examined with specific purpose to determine whether they are related to instrument limitations (i.e., pixel size, calibration) or algorithm assumptions (such as aerosol shape, aerosol height). The analysis confirms that OMAERUV does an adequate job at rejecting cloudy scenes within the instrument's capabilities. There is a residual cloud contamination in OMI pixels with quality flag 0 (the best conditions for aerosol retrieval according to the algorithm), resulting in a bias towards high AODs in OMAERUV. This bias is more pronounced at low concentrations of absorbing aerosols (AOD 388 nm ˜ < 0.5). For higher aerosol loadings, the bias remains within OMI's AOD uncertainties. In pixels where OMAERUV assigned a dust aerosol model, a fraction of them (< 20 %) had retrieved AODs significantly lower than AERONET and MODIS AODs. In a case study, a detailed examination of the aerosol height from CALIOP and the AODs from MODIS, along with sensitivity tests, was carried out by varying the different assumed parameters in the retrieval (imaginary index of refraction, size distribution, aerosol height, particle shape). It was found that the spherical shape assumption for dust in the current retrieval is the main cause of the underestimate. In addition, it is demonstrated in an example how an incorrect assumption of the aerosol height can lead to an underestimate. Nevertheless, this is not as significant as the effect of particle shape. These findings will be incorporated in a future version of the retrieval algorithm.

  9. An incremental DPMM-based method for trajectory clustering, modeling, and retrieval.

    PubMed

    Hu, Weiming; Li, Xi; Tian, Guodong; Maybank, Stephen; Zhang, Zhongfei

    2013-05-01

    Trajectory analysis is the basis for many applications, such as indexing of motion events in videos, activity recognition, and surveillance. In this paper, the Dirichlet process mixture model (DPMM) is applied to trajectory clustering, modeling, and retrieval. We propose an incremental version of a DPMM-based clustering algorithm and apply it to cluster trajectories. An appropriate number of trajectory clusters is determined automatically. When trajectories belonging to new clusters arrive, the new clusters can be identified online and added to the model without any retraining using the previous data. A time-sensitive Dirichlet process mixture model (tDPMM) is applied to each trajectory cluster for learning the trajectory pattern which represents the time-series characteristics of the trajectories in the cluster. Then, a parameterized index is constructed for each cluster. A novel likelihood estimation algorithm for the tDPMM is proposed, and a trajectory-based video retrieval model is developed. The tDPMM-based probabilistic matching method and the DPMM-based model growing method are combined to make the retrieval model scalable and adaptable. Experimental comparisons with state-of-the-art algorithms demonstrate the effectiveness of our algorithm.

  10. Application of the LSQR algorithm in non-parametric estimation of aerosol size distribution

    NASA Astrophysics Data System (ADS)

    He, Zhenzong; Qi, Hong; Lew, Zhongyuan; Ruan, Liming; Tan, Heping; Luo, Kun

    2016-05-01

    Based on the Least Squares QR decomposition (LSQR) algorithm, the aerosol size distribution (ASD) is retrieved in non-parametric approach. The direct problem is solved by the Anomalous Diffraction Approximation (ADA) and the Lambert-Beer Law. An optimal wavelength selection method is developed to improve the retrieval accuracy of the ASD. The proposed optimal wavelength set is selected by the method which can make the measurement signals sensitive to wavelength and decrease the degree of the ill-condition of coefficient matrix of linear systems effectively to enhance the anti-interference ability of retrieval results. Two common kinds of monomodal and bimodal ASDs, log-normal (L-N) and Gamma distributions, are estimated, respectively. Numerical tests show that the LSQR algorithm can be successfully applied to retrieve the ASD with high stability in the presence of random noise and low susceptibility to the shape of distributions. Finally, the experimental measurement ASD over Harbin in China is recovered reasonably. All the results confirm that the LSQR algorithm combined with the optimal wavelength selection method is an effective and reliable technique in non-parametric estimation of ASD.

  11. Evolutionary Computing Methods for Spectral Retrieval

    NASA Technical Reports Server (NTRS)

    Terrile, Richard; Fink, Wolfgang; Huntsberger, Terrance; Lee, Seugwon; Tisdale, Edwin; VonAllmen, Paul; Tinetti, Geivanna

    2009-01-01

    A methodology for processing spectral images to retrieve information on underlying physical, chemical, and/or biological phenomena is based on evolutionary and related computational methods implemented in software. In a typical case, the solution (the information that one seeks to retrieve) consists of parameters of a mathematical model that represents one or more of the phenomena of interest. The methodology was developed for the initial purpose of retrieving the desired information from spectral image data acquired by remote-sensing instruments aimed at planets (including the Earth). Examples of information desired in such applications include trace gas concentrations, temperature profiles, surface types, day/night fractions, cloud/aerosol fractions, seasons, and viewing angles. The methodology is also potentially useful for retrieving information on chemical and/or biological hazards in terrestrial settings. In this methodology, one utilizes an iterative process that minimizes a fitness function indicative of the degree of dissimilarity between observed and synthetic spectral and angular data. The evolutionary computing methods that lie at the heart of this process yield a population of solutions (sets of the desired parameters) within an accuracy represented by a fitness-function value specified by the user. The evolutionary computing methods (ECM) used in this methodology are Genetic Algorithms and Simulated Annealing, both of which are well-established optimization techniques and have also been described in previous NASA Tech Briefs articles. These are embedded in a conceptual framework, represented in the architecture of the implementing software, that enables automatic retrieval of spectral and angular data and analysis of the retrieved solutions for uniqueness.

  12. Fast Simulators for Satellite Cloud Optical Centroid Pressure Retrievals, 1. Evaluation of OMI Cloud Retrievals

    NASA Technical Reports Server (NTRS)

    Joiner, J.; Vasilkov, A. P.; Gupta, Pawan; Bhartia, P. K.; Veefkind, Pepijn; Sneep, Maarten; deHaan, Johan; Polonsky, Igor; Spurr, Robert

    2011-01-01

    We have developed a relatively simple scheme for simulating retrieved cloud optical centroid pressures (OCP) from satellite solar backscatter observations. We have compared simulator results with those from more detailed retrieval simulators that more fully account for the complex radiative transfer in a cloudy atmosphere. We used this fast simulator to conduct a comprehensive evaluation of cloud OCPs from the two OMI algorithms using collocated data from CloudSat and Aqua MODIS, a unique situation afforded by the A-train formation of satellites. We find that both OMI algorithms perform reasonably well and that the two algorithms agree better with each other than either does with the collocated CloudSat data. This indicates that patchy snow/ice, cloud 3D, and aerosol effects not simulated with the CloudSat data are affecting both algorithms similarly. We note that the collocation with CloudSat occurs mainly on the East side of OMI's swath. Therefore, we are not able to address cross-track biases in OMI cloud OCP retrievals. Our fast simulator may also be used to simulate cloud OCP from output generated by general circulation models (GCM) with appropriate account of cloud overlap. We have implemented such a scheme and plan to compare OMI data with GCM output in the near future.

  13. Facing the phase problem in Coherent Diffractive Imaging via Memetic Algorithms.

    PubMed

    Colombo, Alessandro; Galli, Davide Emilio; De Caro, Liberato; Scattarella, Francesco; Carlino, Elvio

    2017-02-09

    Coherent Diffractive Imaging is a lensless technique that allows imaging of matter at a spatial resolution not limited by lens aberrations. This technique exploits the measured diffraction pattern of a coherent beam scattered by periodic and non-periodic objects to retrieve spatial information. The diffracted intensity, for weak-scattering objects, is proportional to the modulus of the Fourier Transform of the object scattering function. Any phase information, needed to retrieve its scattering function, has to be retrieved by means of suitable algorithms. Here we present a new approach, based on a memetic algorithm, i.e. a hybrid genetic algorithm, to face the phase problem, which exploits the synergy of deterministic and stochastic optimization methods. The new approach has been tested on simulated data and applied to the phasing of transmission electron microscopy coherent electron diffraction data of a SrTiO 3 sample. We have been able to quantitatively retrieve the projected atomic potential, and also image the oxygen columns, which are not directly visible in the relevant high-resolution transmission electron microscopy images. Our approach proves to be a new powerful tool for the study of matter at atomic resolution and opens new perspectives in those applications in which effective phase retrieval is necessary.

  14. Development of MODIS data-based algorithm for retrieving sea surface temperature in coastal waters.

    PubMed

    Wang, Jiao; Deng, Zhiqiang

    2017-06-01

    A new algorithm was developed for retrieving sea surface temperature (SST) in coastal waters using satellite remote sensing data from Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Aqua platform. The new SST algorithm was trained using the Artificial Neural Network (ANN) method and tested using 8 years of remote sensing data from MODIS Aqua sensor and in situ sensing data from the US coastal waters in Louisiana, Texas, Florida, California, and New Jersey. The ANN algorithm could be utilized to map SST in both deep offshore and particularly shallow nearshore waters at the high spatial resolution of 1 km, greatly expanding the coverage of remote sensing-based SST data from offshore waters to nearshore waters. Applications of the ANN algorithm require only the remotely sensed reflectance values from the two MODIS Aqua thermal bands 31 and 32 as input data. Application results indicated that the ANN algorithm was able to explaining 82-90% variations in observed SST in US coastal waters. While the algorithm is generally applicable to the retrieval of SST, it works best for nearshore waters where important coastal resources are located and existing algorithms are either not applicable or do not work well, making the new ANN-based SST algorithm unique and particularly useful to coastal resource management.

  15. Optimal estimation retrieval of aerosol microphysical properties from SAGE~II satellite observations in the volcanically unperturbed lower stratosphere

    NASA Astrophysics Data System (ADS)

    Wurl, D.; Grainger, R. G.; McDonald, A. J.; Deshler, T.

    2010-05-01

    Stratospheric aerosol particles under non-volcanic conditions are typically smaller than 0.1 μm. Due to fundamental limitations of the scattering theory in the Rayleigh limit, these tiny particles are hard to measure by satellite instruments. As a consequence, current estimates of global aerosol properties retrieved from spectral aerosol extinction measurements tend to be strongly biased. Aerosol surface area densities, for instance, are observed to be about 40% smaller than those derived from correlative in situ measurements (Deshler et al., 2003). An accurate knowledge of the global distribution of aerosol properties is, however, essential to better understand and quantify the role they play in atmospheric chemistry, dynamics, radiation and climate. To address this need a new retrieval algorithm was developed, which employs a nonlinear Optimal Estimation (OE) method to iteratively solve for the monomodal size distribution parameters which are statistically most consistent with both the satellite-measured multi-wavelength aerosol extinction data and a priori information. By thus combining spectral extinction measurements (at visible to near infrared wavelengths) with prior knowledge of aerosol properties at background level, even the smallest particles are taken into account which are practically invisible to optical remote sensing instruments. The performance of the OE retrieval algorithm was assessed based on synthetic spectral extinction data generated from both monomodal and small-mode-dominant bimodal sulphuric acid aerosol size distributions. For monomodal background aerosol, the new algorithm was shown to fairly accurately retrieve the particle sizes and associated integrated properties (surface area and volume densities), even in the presence of large extinction uncertainty. The associated retrieved uncertainties are a good estimate of the true errors. In the case of bimodal background aerosol, where the retrieved (monomodal) size distributions naturally differ from the correct bimodal values, the associated surface area (A) and volume densities (V) are, nevertheless, fairly accurately retrieved, except at values larger than 1.0 μm2 cm-3 (A) and 0.05 μm3 cm-3 (V), where they tend to underestimate the true bimodal values. Due to the limited information content in the SAGE II spectral extinction measurements this kind of forward model error cannot be avoided here. Nevertheless, the retrieved uncertainties are a good estimate of the true errors in the retrieved integrated properties, except where the surface area density exceeds the 1.0 μm2 cm-3 threshold. When applied to near-global SAGE II satellite extinction measured in 1999 the retrieved OE surface area and volume densities are observed to be larger by, respectively, 20-50% and 10-40% compared to those estimates obtained by the SAGE~II operational retrieval algorithm. An examination of the OE algorithm biases with in situ data indicates that the new OE aerosol property estimates tend to be more realistic than previous estimates obtained from remotely sensed data through other retrieval techniques. Based on the results of this study we therefore suggest that the new Optimal Estimation retrieval algorithm is able to contribute to an advancement in aerosol research by considerably improving current estimates of aerosol properties in the lower stratosphere under low aerosol loading conditions.

  16. Numerical phase retrieval from beam intensity measurements in three planes

    NASA Astrophysics Data System (ADS)

    Bruel, Laurent

    2003-05-01

    A system and method have been developed at CEA to retrieve phase information from multiple intensity measurements along a laser beam. The device has been patented. Commonly used devices for beam measurement provide phase and intensity information separately or with a rather poor resolution whereas the MIROMA method provides both at the same time, allowing direct use of the results in numerical models. Usual phase retrieval algorithms use two intensity measurements, typically the image plane and the focal plane (Gerschberg-Saxton algorithm) related by a Fourier transform, or the image plane and a lightly defocus plane (D.L. Misell). The principal drawback of such iterative algorithms is their inability to provide unambiguous convergence in all situations. The algorithms can stagnate on bad solutions and the error between measured and calculated intensities remains unacceptable. If three planes rather than two are used, the data redundancy created confers to the method good convergence capability and noise immunity. It provides an excellent agreement between intensity determined from the retrieved phase data set in the image plane and intensity measurements in any diffraction plane. The method employed for MIROMA is inspired from GS algorithm, replacing Fourier transforms by a beam-propagating kernel with gradient search accelerating techniques and special care for phase branch cuts. A fast one dimensional algorithm provides an initial guess for the iterative algorithm. Applications of the algorithm on synthetic data find out the best reconstruction planes that have to be chosen. Robustness and sensibility are evaluated. Results on collimated and distorted laser beams are presented.

  17. Total ozone column derived from GOME and SCIAMACHY using KNMI retrieval algorithms: Validation against Brewer measurements at the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Antón, M.; Kroon, M.; López, M.; Vilaplana, J. M.; Bañón, M.; van der A, R.; Veefkind, J. P.; Stammes, P.; Alados-Arboledas, L.

    2011-11-01

    This article focuses on the validation of the total ozone column (TOC) data set acquired by the Global Ozone Monitoring Experiment (GOME) and the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) satellite remote sensing instruments using the Total Ozone Retrieval Scheme for the GOME Instrument Based on the Ozone Monitoring Instrument (TOGOMI) and Total Ozone Retrieval Scheme for the SCIAMACHY Instrument Based on the Ozone Monitoring Instrument (TOSOMI) retrieval algorithms developed by the Royal Netherlands Meteorological Institute. In this analysis, spatially colocated, daily averaged ground-based observations performed by five well-calibrated Brewer spectrophotometers at the Iberian Peninsula are used. The period of study runs from January 2004 to December 2009. The agreement between satellite and ground-based TOC data is excellent (R2 higher than 0.94). Nevertheless, the TOC data derived from both satellite instruments underestimate the ground-based data. On average, this underestimation is 1.1% for GOME and 1.3% for SCIAMACHY. The SCIAMACHY-Brewer TOC differences show a significant solar zenith angle (SZA) dependence which causes a systematic seasonal dependence. By contrast, GOME-Brewer TOC differences show no significant SZA dependence and hence no seasonality although processed with exactly the same algorithm. The satellite-Brewer TOC differences for the two satellite instruments show a clear and similar dependence on the viewing zenith angle under cloudy conditions. In addition, both the GOME-Brewer and SCIAMACHY-Brewer TOC differences reveal a very similar behavior with respect to the satellite cloud properties, being cloud fraction and cloud top pressure, which originate from the same cloud algorithm (Fast Retrieval Scheme for Clouds from the Oxygen A-Band (FRESCO+)) in both the TOSOMI and TOGOMI retrieval algorithms.

  18. New approach to the retrieval of AOD and its uncertainty from MISR observations over dark water

    NASA Astrophysics Data System (ADS)

    Witek, Marcin L.; Garay, Michael J.; Diner, David J.; Bull, Michael A.; Seidel, Felix C.

    2018-01-01

    A new method for retrieving aerosol optical depth (AOD) and its uncertainty from Multi-angle Imaging SpectroRadiometer (MISR) observations over dark water is outlined. MISR's aerosol retrieval algorithm calculates cost functions between observed and pre-simulated radiances for a range of AODs (from 0.0 to 3.0) and a prescribed set of aerosol mixtures. The previous version 22 (V22) operational algorithm considered only the AOD that minimized the cost function for each aerosol mixture and then used a combination of these values to compute the final, best estimate AOD and associated uncertainty. The new approach considers the entire range of cost functions associated with each aerosol mixture. The uncertainty of the reported AOD depends on a combination of (a) the absolute values of the cost functions for each aerosol mixture, (b) the widths of the cost function distributions as a function of AOD, and (c) the spread of the cost function distributions among the ensemble of mixtures. A key benefit of the new approach is that, unlike the V22 algorithm, it does not rely on empirical thresholds imposed on the cost function to determine the success or failure of a particular mixture. Furthermore, a new aerosol retrieval confidence index (ARCI) is established that can be used to screen high-AOD retrieval blunders caused by cloud contamination or other factors. Requiring ARCI ≥ 0.15 as a condition for retrieval success is supported through statistical analysis and outperforms the thresholds used in the V22 algorithm. The described changes to the MISR dark water algorithm will become operational in the new MISR aerosol product (V23), planned for release in 2017.

  19. New Approach to the Retrieval of AOD and its Uncertainty from MISR Observations Over Dark Water

    NASA Astrophysics Data System (ADS)

    Witek, M. L.; Garay, M. J.; Diner, D. J.; Bull, M. A.; Seidel, F.

    2017-12-01

    A new method for retrieving aerosol optical depth (AOD) and its uncertainty from Multi-angle Imaging SpectroRadiometer (MISR) observations over dark water is outlined. MISR's aerosol retrieval algorithm calculates cost functions between observed and pre-simulated radiances for a range of AODs (from 0.0 to 3.0) and a prescribed set of aerosol mixtures. The previous Version 22 (V22) operational algorithm considered only the AOD that minimized the cost function for each aerosol mixture, then used a combination of these values to compute the final, "best estimate" AOD and associated uncertainty. The new approach considers the entire range of cost functions associated with each aerosol mixture. The uncertainty of the reported AOD depends on a combination of a) the absolute values of the cost functions for each aerosol mixture, b) the widths of the cost function distributions as a function of AOD, and c) the spread of the cost function distributions among the ensemble of mixtures. A key benefit of the new approach is that, unlike the V22 algorithm, it does not rely on arbitrary thresholds imposed on the cost function to determine the success or failure of a particular mixture. Furthermore, a new Aerosol Retrieval Confidence Index (ARCI) is established that can be used to screen high-AOD retrieval blunders caused by cloud contamination or other factors. Requiring ARCI≥0.15 as a condition for retrieval success is supported through statistical analysis and outperforms the thresholds used in the V22 algorithm. The described changes to the MISR dark water algorithm will become operational in the new MISR aerosol product (V23), planned for release in 2017.

  20. Broadband Phase Retrieval for Image-Based Wavefront Sensing

    NASA Technical Reports Server (NTRS)

    Dean, Bruce H.

    2007-01-01

    A focus-diverse phase-retrieval algorithm has been shown to perform adequately for the purpose of image-based wavefront sensing when (1) broadband light (typically spanning the visible spectrum) is used in forming the images by use of an optical system under test and (2) the assumption of monochromaticity is applied to the broadband image data. Heretofore, it had been assumed that in order to obtain adequate performance, it is necessary to use narrowband or monochromatic light. Some background information, including definitions of terms and a brief description of pertinent aspects of image-based phase retrieval, is prerequisite to a meaningful summary of the present development. Phase retrieval is a general term used in optics to denote estimation of optical imperfections or aberrations of an optical system under test. The term image-based wavefront sensing refers to a general class of algorithms that recover optical phase information, and phase-retrieval algorithms constitute a subset of this class. In phase retrieval, one utilizes the measured response of the optical system under test to produce a phase estimate. The optical response of the system is defined as the image of a point-source object, which could be a star or a laboratory point source. The phase-retrieval problem is characterized as image-based in the sense that a charge-coupled-device camera, preferably of scientific imaging quality, is used to collect image data where the optical system would normally form an image. In a variant of phase retrieval, denoted phase-diverse phase retrieval [which can include focus-diverse phase retrieval (in which various defocus planes are used)], an additional known aberration (or an equivalent diversity function) is superimposed as an aid in estimating unknown aberrations by use of an image-based wavefront-sensing algorithm. Image-based phase-retrieval differs from such other wavefront-sensing methods, such as interferometry, shearing interferometry, curvature wavefront sensing, and Shack-Hartmann sensing, all of which entail disadvantages in comparison with image-based methods. The main disadvantages of these non-image based methods are complexity of test equipment and the need for a wavefront reference.

  1. Retrieval Lesson Learned from NAST-I Hyperspectral Data

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Smith, William L.; Liu, Xu; Larar, Allen M.; Mango, Stephen A.

    2007-01-01

    The retrieval lesson learned is important to many current and future hyperspectral remote sensors. Validated retrieval algorithms demonstrate the advancement of hyperspectral remote sensing capabilities to be achieved with current and future satellite instruments.

  2. Verification, improvement and application of aerosol optical depths in China Part 1: Inter-comparison of NPP-VIIRS and Aqua-MODIS

    NASA Astrophysics Data System (ADS)

    Wei, Jing; Sun, Lin; Huang, Bo; Bilal, Muhammad; Zhang, Zhaoyang; Wang, Lunche

    2018-02-01

    The objective of this study is to evaluate typical aerosol optical depth (AOD) products in China, which experienced seriously increasing atmospheric particulate pollution. For this, the Aqua-MODerate resolution Imaging Spectroradiometer (MODIS) AOD products (MYD04) at 10 km spatial resolution and Visible Infrared Imaging Radiometer Suite (VIIRS) Environmental Data Record (EDR) AOD product at 6 km resolution for different Quality Flags (QF) are obtained for validation against AErosol RObotic NETwork (AERONET) AOD measurements during 2013-2016. Results show that VIIRS EDR similarly Dark Target (DT) and MODIS DT algorithms perform worse with only 45.36% and 45.59% of the retrievals (QF = 3) falling within the Expected Error (EE, ±(0.05 + 15%)) compared to the Deep Blue (DB) algorithm (69.25%, QF ≥ 2). The DT retrievals perform poorly over the Beijing-Tianjin-Hebei (BTH) and Yangtze-River-Delta (YRD) regions, which significantly overestimate the AOD observations, but the performance is better over the Pearl-River-Delta (PRD) region than DB retrievals, which seriously under-estimate the AOD loadings. It is not surprising that the DT algorithm performs better over vegetated areas, while the DB algorithm performs better over bright areas mainly depends on the accuracy of surface reflectance estimation over different land use types. In general, the sensitivity of aerosol to apparent reflectance reduces by about 34% with an increasing surface reflectance by 0.01. Moreover, VIIRS EDR and MODIS DT algorithms perform overall better in the winter as 64.53% and 72.22% of the retrievals are within the EE but with less retrievals. However, the DB algorithm performs worst (57.17%) in summer mainly affected by the vegetation growth but there are overall high accuracies with more than 62% of the collections falling within the EE in other three seasons. Results suggest that the quality assurance process can help improve the overall data quality for MYD04 DB retrievals, but it is not always true for VIIRS EDR and MYD04 DT AOD retrievals.

  3. Cross Validation of Rain Drop Size Distribution between GPM and Ground Based Polarmetric radar

    NASA Astrophysics Data System (ADS)

    Chandra, C. V.; Biswas, S.; Le, M.; Chen, H.

    2017-12-01

    Dual-frequency precipitation radar (DPR) on board the Global Precipitation Measurement (GPM) core satellite has reflectivity measurements at two independent frequencies, Ku- and Ka- band. Dual-frequency retrieval algorithms have been developed traditionally through forward, backward, and recursive approaches. However, these algorithms suffer from "dual-value" problem when they retrieve medium volume diameter from dual-frequency ratio (DFR) in rain region. To this end, a hybrid method has been proposed to perform raindrop size distribution (DSD) retrieval for GPM using a linear constraint of DSD along rain profile to avoid "dual-value" problem (Le and Chandrasekar, 2015). In the current GPM level 2 algorithm (Iguchi et al. 2017- Algorithm Theoretical Basis Document) the Solver module retrieves a vertical profile of drop size distributionn from dual-frequency observations and path integrated attenuations. The algorithm details can be found in Seto et al. (2013) . On the other hand, ground based polarimetric radars have been used for a long time to estimate drop size distributions (e.g., Gorgucci et al. 2002 ). In addition, coincident GPM and ground based observations have been cross validated using careful overpass analysis. In this paper, we perform cross validation on raindrop size distribution retrieval from three sources, namely the hybrid method, the standard products from the solver module and DSD retrievals from ground polarimetric radars. The results are presented from two NEXRAD radars located in Dallas -Fort Worth, Texas (i.e., KFWS radar) and Melbourne, Florida (i.e., KMLB radar). The results demonstrate the ability of DPR observations to produce DSD estimates, which can be used subsequently to generate global DSD maps. References: Seto, S., T. Iguchi, T. Oki, 2013: The basic performance of a precipitation retrieval algorithm for the Global Precipitation Measurement mission's single/dual-frequency radar measurements. IEEE Transactions on Geoscience and Remote Sensing, 51(12), 5239-5251. Gorgucci, E., Chandrasekar, V., Bringi, V. N., and Scarchilli, G.: Estimation of Raindrop Size Distribution Parameters from Polarimetric Radar Measurements, J. Atmos. Sci., 59, 2373-2384, doi:10.1175/1520-0469(2002)0592.0.CO;2, 2002.

  4. Validation and Comparison of AATRS AOD L2 Products over China

    NASA Astrophysics Data System (ADS)

    Che, Yahui; Xue, Yong; Guang, Jie; Guo, Jianping; Li, Ying

    2016-04-01

    The Advanced Along-Track Scanning Radiometer (AATSR) aboard on ENVISAT has been used to observe the Earth for more than 10 years since than 2002. One of main applications of AATSR instrument is to observe atmospheric aerosol, especially in retrieval of aerosol optical depth (AOD), taking advantage of its dual-view that helps to separate the contribution of aerosol from top of atmosphere reflectance (A. A. Kokhanovsky and de Leeuw, 2009). The project of Aerosol_CCI, as part of European Space Agency's Climate Change Initiative (CCI), has released new AATSR aerosol AOD products by the of 2015, including the SU v4.21 product from Swansea algorithm, ADV v2.3 product from the ATSR-2/AATSR dual view aerosol retrieval algorithm (ADV) and ORAC v03.04 product from the Oxford-RAL Retrieval of Aerosol and Cloud algorithm. The previous versions of these three AOD level 2 (L2) products in 2008 have been validated over mainland China (Che and Xue, 2015). In this paper, we validated these AATSR AOD products with latest versions in mainland China in 2007, 2008 and 2010 by the means of comparison with the AErosol RObotic NETwork (AERONET) and the China Aerosol Remote Sensing Network (CARSNET). The combination of AERONET and CARSNET helps to make up for the disadvantages of small number and uneven distribution of AEROENT cites. The validation results show different performance of these AOD products over China. The performances of SU and ADV products seem to be the same with close correlation coefficient (CC) about 08~0.9 and root mean square (RMS) within 0.15 in all three years, and sensitive to high AOD values (AOD >1): more AODs and more underestimated. However, these two products do exist difference, which is that the SU algorithm retrieves more high AODs, leading to more space-time validation matches with ground-based data. The ORAC algorithm is different from the others, it can be not only used to retrieve low AODs but also high AODs over different landcover types. Even though ORAC algorithm has ability in retrieving AODs in different values, it shows largest uncertainty in retrieving different AODs.

  5. The TOMS V9 Algorithm for OMPS Nadir Mapper Total Ozone: An Enhanced Design That Ensures Data Continuity

    NASA Astrophysics Data System (ADS)

    Haffner, D. P.; McPeters, R. D.; Bhartia, P. K.; Labow, G. J.

    2015-12-01

    The TOMS V9 total ozone algorithm will be applied to the OMPS Nadir Mapper instrument to supersede the exisiting V8.6 data product in operational processing and re-processing for public release. Becuase the quality of the V8.6 data is already quite high, enchancements in V9 are mainly with information provided by the retrieval and simplifcations to the algorithm. The design of the V9 algorithm has been influenced by improvements both in our knowledge of atmospheric effects, such as those of clouds made possible by studies with OMI, and also limitations in the V8 algorithms applied to both OMI and OMPS. But the namesake instruments of the TOMS algorithm are substantially more limited in their spectral and noise characterisitics, and a requirement of our algorithm is to also apply the algorithm to these discrete band spectrometers which date back to 1978. To achieve continuity for all these instruments, the TOMS V9 algorithm continues to use radiances in discrete bands, but now uses Rodgers optimal estimation to retrieve a coarse profile and provide uncertainties for each retrieval. The algorithm remains capable of achieving high accuracy results with a small number of discrete wavelengths, and in extreme cases, such as unusual profile shapes and high solar zenith angles, the quality of the retrievals is improved. Despite the intended design to use limited wavlenegths, the algorithm can also utilitze additional wavelengths from hyperspectral sensors like OMPS to augment the retreival's error detection and information content; for example SO2 detection and correction of Ring effect on atmospheric radiances. We discuss these and other aspects of the V9 algorithm as it will be applied to OMPS, and will mention potential improvements which aim to take advantage of a synergy with OMPS Limb Profiler and Nadir Mapper to further improve the quality of total ozone from the OMPS instrument.

  6. A new randomized Kaczmarz based kernel canonical correlation analysis algorithm with applications to information retrieval.

    PubMed

    Cai, Jia; Tang, Yi

    2018-02-01

    Canonical correlation analysis (CCA) is a powerful statistical tool for detecting the linear relationship between two sets of multivariate variables. Kernel generalization of it, namely, kernel CCA is proposed to describe nonlinear relationship between two variables. Although kernel CCA can achieve dimensionality reduction results for high-dimensional data feature selection problem, it also yields the so called over-fitting phenomenon. In this paper, we consider a new kernel CCA algorithm via randomized Kaczmarz method. The main contributions of the paper are: (1) A new kernel CCA algorithm is developed, (2) theoretical convergence of the proposed algorithm is addressed by means of scaled condition number, (3) a lower bound which addresses the minimum number of iterations is presented. We test on both synthetic dataset and several real-world datasets in cross-language document retrieval and content-based image retrieval to demonstrate the effectiveness of the proposed algorithm. Numerical results imply the performance and efficiency of the new algorithm, which is competitive with several state-of-the-art kernel CCA methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Development of GK-2A cloud optical and microphysical properties retrieval algorithm

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Yum, S. S.; Um, J.

    2017-12-01

    Cloud and aerosol radiative forcing is known to be one of the the largest uncertainties in climate change prediction. To reduce this uncertainty, remote sensing observation of cloud radiative and microphysical properties have been used since 1970s and the corresponding remote sensing techniques and instruments have been developed. As a part of such effort, Geo-KOMPSAT-2A (Geostationary Korea Multi-Purpose Satellite-2A, GK-2A) will be launched in 2018. On the GK-2A, the Advanced Meteorological Imager (AMI) is primary instrument which have 3 visible, 3 near-infrared, and 10 infrared channels. To retrieve optical and microphysical properties of clouds using AMI measurements, the preliminary version of new cloud retrieval algorithm for GK-2A was developed and several validation tests were conducted. This algorithm retrieves cloud optical thickness (COT), cloud effective radius (CER), liquid water path (LWP), and ice water path (IWP), so we named this algorithm as Daytime Cloud Optical thickness, Effective radius and liquid and ice Water path (DCOEW). The DCOEW uses cloud reflectance at visible and near-infrared channels as input data. An optimal estimation (OE) approach that requires appropriate a-priori values and measurement error information is used to retrieve COT and CER. LWP and IWP are calculated using empirical relationships between COT/CER and cloud water path that were determined previously. To validate retrieved cloud properties, we compared DCOEW output data with other operational satellite data. For COT and CER validation, we used two different data sets. To compare algorithms that use cloud reflectance at visible and near-IR channels as input data, MODIS MYD06 cloud product was selected. For the validation with cloud products that are based on microwave measurements, COT(2B-TAU)/CER(2C-ICE) data retrieved from CloudSat cloud profiling radar (W-band, 94 GHz) was used. For cloud water path validation, AMSR-2 Level-3 Cloud liquid water data was used. Detailed results will be shown at the conference.

  8. The impact of aerosol vertical distribution on aerosol optical depth retrieval using CALIPSO and MODIS data: Case study over dust and smoke regions

    NASA Astrophysics Data System (ADS)

    Wu, Yerong; de Graaf, Martin; Menenti, Massimo

    2017-08-01

    Global quantitative aerosol information has been derived from MODerate Resolution Imaging SpectroRadiometer (MODIS) observations for decades since early 2000 and widely used for air quality and climate change research. However, the operational MODIS Aerosol Optical Depth (AOD) products Collection 6 (C6) can still be biased, because of uncertainty in assumed aerosol optical properties and aerosol vertical distribution. This study investigates the impact of aerosol vertical distribution on the AOD retrieval. We developed a new algorithm by considering dynamic vertical profiles, which is an adaptation of MODIS C6 Dark Target (C6_DT) algorithm over land. The new algorithm makes use of the aerosol vertical profile extracted from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) measurements to generate an accurate top of the atmosphere (TOA) reflectance for the AOD retrieval, where the profile is assumed to be a single layer and represented as a Gaussian function with the mean height as single variable. To test the impact, a comparison was made between MODIS DT and Aerosol Robotic Network (AERONET) AOD, over dust and smoke regions. The results show that the aerosol vertical distribution has a strong impact on the AOD retrieval. The assumed aerosol layers close to the ground can negatively bias the retrievals in C6_DT. Regarding the evaluated smoke and dust layers, the new algorithm can improve the retrieval by reducing the negative biases by 3-5%.

  9. The ESA Cloud CCI project: Generation of Multi Sensor consistent Cloud Properties with an Optimal Estimation Based Retrieval Algorithm

    NASA Astrophysics Data System (ADS)

    Jerg, M.; Stengel, M.; Hollmann, R.; Poulsen, C.

    2012-04-01

    The ultimate objective of the ESA Climate Change Initiative (CCI) Cloud project is to provide long-term coherent cloud property data sets exploiting and improving on the synergetic capabilities of past, existing, and upcoming European and American satellite missions. The synergetic approach allows not only for improved accuracy and extended temporal and spatial sampling of retrieved cloud properties better than those provided by single instruments alone but potentially also for improved (inter-)calibration and enhanced homogeneity and stability of the derived time series. Such advances are required by the scientific community to facilitate further progress in satellite-based climate monitoring, which leads to a better understanding of climate. Some of the primary objectives of ESA Cloud CCI Cloud are (1) the development of inter-calibrated radiance data sets, so called Fundamental Climate Data Records - for ESA and non ESA instruments through an international collaboration, (2) the development of an optimal estimation based retrieval framework for cloud related essential climate variables like cloud cover, cloud top height and temperature, liquid and ice water path, and (3) the development of two multi-annual global data sets for the mentioned cloud properties including uncertainty estimates. These two data sets are characterized by different combinations of satellite systems: the AVHRR heritage product comprising (A)ATSR, AVHRR and MODIS and the novel (A)ATSR - MERIS product which is based on a synergetic retrieval using both instruments. Both datasets cover the years 2007-2009 in the first project phase. ESA Cloud CCI will also carry out a comprehensive validation of the cloud property products and provide a common data base as in the framework of the Global Energy and Water Cycle Experiment (GEWEX). The presentation will give an overview of the ESA Cloud CCI project and its goals and approaches and then continue with results from the Round Robin algorithm comparison exercise carried out at the beginning of the project which included three algorithms. The purpose of the exercise was to assess and compare existing cloud retrieval algorithms in order to chose one of them as backbone of the retrieval system and also identify areas of potential improvement and general strengths and weaknesses of the algorithm. Furthermore the presentation will elaborate on the optimal estimation algorithm subsequently chosen to derive the heritage product and which is presently further developed and will be employed for the AVHRR heritage product. The algorithm's capabilities to coherently and simultaneously process all radiative input and yield retrieval parameters together with associated uncertainty estimates will be presented together with first results for the heritage product. In the course of the project the algorithm is being developed into a freely and publicly available community retrieval system for interested scientists.

  10. SMOS first results over land

    NASA Astrophysics Data System (ADS)

    Kerr, Yann; Waldteufel, Philippe; Cabot, François; Richaume, Philippe; Jacquette, Elsa; Bitar, Ahmad Al; Mamhoodi, Ali; Delwart, Steven; Wigneron, Jean-Pierre

    2010-05-01

    The Soil Moisture and Ocean Salinity (SMOS) mission is ESA's (European Space Agency ) second Earth Explorer Opportunity mission, launched in November 2009. It is a joint programme between ESA CNES (Centre National d'Etudes Spatiales) and CDTI (Centro para el Desarrollo Tecnologico Industrial). SMOS carries a single payload, an L-band 2D interferometric radiometer in the 1400-1427 MHz protected band. This wavelength penetrates well through the atmosphere and hence the instrument probes the Earth surface emissivity. Surface emissivity can then be related to the moisture content in the first few centimeters of soil, and, after some surface roughness and temperature corrections, to the sea surface salinity over ocean. In order to prepare the data use and dissemination, the ground segment will produce level 1 and 2 data. Level 1 consists mainly of angular brightness temperatures while level 2 consists of geophysical products. In this context, a group of institutes prepared the soil moisture and ocean salinity Algorithm Theoretical Basis documents (ATBD) to be used to produce the operational algorithm. The principle of the soil moisture retrieval algorithm is based on an iterative approach which aims at minimizing a cost function given by the sum of the squared weighted differences between measured and modelled brightness temperature (TB) data, for a variety of incidence angles. This is achieved by finding the best suited set of the parameters which drive the direct TB model, e.g. soil moisture (SM) and vegetation characteristics. Despite the simplicity of this principle, the main reason for the complexity of the algorithm is that SMOS "pixels" can correspond to rather large, inhomogeneous surface areas whose contribution to the radiometric signal is difficult to model. Moreover, the exact description of pixels, given by a weighting function which expresses the directional pattern of the SMOS interferometric radiometer, depends on the incidence angle. The goal is to retrieve soil moisture over fairly large and thus inhomogeneous areas. The retrieval is carried out at nodes of a fixed Earth surface grid. To achieve this purpose, after checking input data quality and ingesting auxiliary data, the retrieval process per se can be initiated. This cannot be done blindly as the direct model will be dependent upon surface characteristics. It is thus necessary to first assess what is the dominant land use of a node. For this, an average weighing function (MEAN_WEF) which takes into account the "antenna"pattern is run over the high resolution land use map to assess the dominant cover type. This is used to drive the decision tree which, step by step, selects the type of model to be used as per surface conditions. All this being said and done the retrieval procedure starts if all the conditions are satisfied, ideally to retrieve 3 parameters over the dominant class (the so-called rich retrieval). If the algorithm does not converge satisfactorily, a new trial is made with less floating parameters ("poorer retrieval") until either results are satisfactory or the algorithm is considered to fail. The retrieval algorithm also delivers whenever possible a dielectric constant parameter (using the-so called cardioid approach). Finally, once the retrieval converged, it is possible to compute the brightness temperature at a given fixed angle (42.5°) using the selected forward models applied to the set of parameters obtained at the end of the retrieval process. So the output product of the level 2 soil moisture algorithm should be node position, soil moisture, dielectric constants, computed brightness temperature at 42.5°, flags and quality indices. During the presentation we will describe in more details the algorithm and accompanying work in particular decision tree principle and characteristics, the auxiliary data used and the special and "exotic"cases. We will also be more explicit on the algorithm validation and verification through the data collected during the commissioning phase. The main hurdle being working in spite of spurious signals (RFI) on some areas of the globe.

  11. HALOE Algorithm Improvements for Upper Tropospheric Sounding

    NASA Technical Reports Server (NTRS)

    McHugh, Martin J.; Gordley, Larry L.; Russell, James M., III; Hervig, Mark E.

    1999-01-01

    This report details the ongoing efforts by GATS, Inc., in conjunction with Hampton University and University of Wyoming, in NASA's Mission to Planet Earth UARS Science Investigator Program entitled "HALOE Algorithm Improvements for Upper Tropospheric Soundings." The goal of this effort is to develop and implement major inversion and processing improvements that will extend HALOE measurements further into the troposphere. In particular, O3, H2O, and CH4 retrievals may be extended into the middle troposphere, and NO, HCl and possibly HF into the upper troposphere. Key areas of research being carried out to accomplish this include: pointing/tracking analysis; cloud identification and modeling; simultaneous multichannel retrieval capability; forward model improvements; high vertical-resolution gas filter channel retrievals; a refined temperature retrieval; robust error analyses; long-term trend reliability studies; and data validation. The current (first-year) effort concentrates on the pointer/tracker correction algorithms, cloud filtering and validation, and multi-channel retrieval development. However, these areas are all highly coupled, so progress in one area benefits from and sometimes depends on work in others.

  12. HALOE Algorithm Improvements for Upper Tropospheric Sounding

    NASA Technical Reports Server (NTRS)

    Thompson, Robert Earl; McHugh, Martin J.; Gordley, Larry L.; Hervig, Mark E.; Russell, James M., III; Douglass, Anne (Technical Monitor)

    2001-01-01

    This report details the ongoing efforts by GATS, Inc., in conjunction with Hampton University and University of Wyoming, in NASA's Mission to Planet Earth Upper Atmospheric Research Satellite (UARS) Science Investigator Program entitled 'HALOE Algorithm Improvements for Upper Tropospheric Sounding.' The goal of this effort is to develop and implement major inversion and processing improvements that will extend Halogen Occultation Experiment (HALOE) measurements further into the troposphere. In particular, O3, H2O, and CH4 retrievals may be extended into the middle troposphere, and NO, HCl and possibly HF into the upper troposphere. Key areas of research being carried out to accomplish this include: pointing/tracking analysis; cloud identification and modeling; simultaneous multichannel retrieval capability; forward model improvements; high vertical-resolution gas filter channel retrievals; a refined temperature retrieval; robust error analyses; long-term trend reliability studies; and data validation. The current (first year) effort concentrates on the pointer/tracker correction algorithms, cloud filtering and validation, and multichannel retrieval development. However, these areas are all highly coupled, so progress in one area benefits from and sometimes depends on work in others.

  13. Phase Retrieval from Modulus Using Homeomorphic Signal Processing and the Complex Cepstrum: An Algorithm for Lightning Protection Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, G A

    2004-06-08

    In general, the Phase Retrieval from Modulus problem is very difficult. In this report, we solve the difficult, but somewhat more tractable case in which we constrain the solution to a minimum phase reconstruction. We exploit the real-and imaginary part sufficiency properties of the Fourier and Hilbert Transforms of causal sequences to develop an algorithm for reconstructing spectral phase given only spectral modulus. The algorithm uses homeomorphic signal processing methods with the complex cepstrum. The formal problem of interest is: Given measurements of only the modulus {vert_bar}H(k){vert_bar} (no phase) of the Discrete Fourier Transform (DFT) of a real, finite-length, stable,more » causal time domain signal h(n), compute a minimum phase reconstruction {cflx h}(n) of the signal. Then compute the phase of {cflx h}(n) using a DFT, and exploit the result as an estimate of the phase of h(n). The development of the algorithm is quite involved, but the final algorithm and its implementation are very simple. This work was motivated by a Phase Retrieval from Modulus Problem that arose in LLNL Defense Sciences Engineering Division (DSED) projects in lightning protection for buildings. The measurements are limited to modulus-only spectra from a spectrum analyzer. However, it is desired to perform system identification on the building to compute impulse responses and transfer functions that describe the amount of lightning energy that will be transferred from the outside of the building to the inside. This calculation requires knowledge of the entire signals (both modulus and phase). The algorithm and software described in this report are proposed as an approach to phase retrieval that can be used for programmatic needs. This report presents a brief tutorial description of the mathematical problem and the derivation of the phase retrieval algorithm. The efficacy of the theory is demonstrated using simulated signals that meet the assumptions of the algorithm. We see that for the noiseless case, the reconstructions are extremely accurate. When moderate to heavy simulated white Gaussian noise was added, the algorithm performance remained reasonably robust, especially in the low frequency part of the spectrum, which is the part of most interest for lightning protection. Limitations of the algorithm include the following: (1) It does not account for noise in the given spectral modulus. Fortunately, the lightning protection signals of interest generally have a reasonably high signal-to-noise ratio (SNR). (2) The DFT length N must be even and larger than the length of the nonzero part of the measured signals. These constraints are simple to meet in practice. (3) Regardless of the properties of the actual signal h(n), the phase retrieval results are constrained to have the minimum phase property. In most problems of practical interest, these assumptions are very reasonable and probably valid. They are reasonable assumptions for Lightning Protection applications. Proposed future work includes (a) Evaluating the efficacy of the algorithm with real Lightning Protection signals from programmatic applications, (b) Performing a more rigorous analysis of noise effects, (c) Using the algorithm along with advanced system identification algorithms to estimate impulse responses and transfer functions, (d) Developing algorithms to deal with measured partial (truncated) spectral moduli, and (e) R & D of phase retrieval algorithms that specifically deal with general (not necessarily minimum phase) signals, and noisy spectral moduli.« less

  14. New temperature and pressure retrieval algorithm for high-resolution infrared solar occultation spectroscopy: analysis and validation against ACE-FTS and COSMIC

    NASA Astrophysics Data System (ADS)

    Olsen, Kevin S.; Toon, Geoffrey C.; Boone, Chris D.; Strong, Kimberly

    2016-03-01

    Motivated by the initial selection of a high-resolution solar occultation Fourier transform spectrometer (FTS) to fly to Mars on the ExoMars Trace Gas Orbiter, we have been developing algorithms for retrieving volume mixing ratio vertical profiles of trace gases, the primary component of which is a new algorithm and software for retrieving vertical profiles of temperature and pressure from the spectra. In contrast to Earth-observing instruments, which can rely on accurate meteorological models, a priori information, and spacecraft position, Mars retrievals require a method with minimal reliance on such data. The temperature and pressure retrieval algorithms developed for this work were evaluated using Earth-observing spectra from the Atmospheric Chemistry Experiment (ACE) FTS, a solar occultation instrument in orbit since 2003, and the basis for the instrument selected for a Mars mission. ACE-FTS makes multiple measurements during an occultation, separated in altitude by 1.5-5 km, and we analyse 10 CO2 vibration-rotation bands at each altitude, each with a different usable altitude range. We describe the algorithms and present results of their application and their comparison to the ACE-FTS data products. The Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) provides vertical profiles of temperature up to 40 km with high vertical resolution. Using six satellites and GPS radio occultation, COSMIC's data product has excellent temporal and spatial coverage, allowing us to find coincident measurements with ACE with very tight criteria: less than 1.5 h and 150 km. We present an intercomparison of temperature profiles retrieved from ACE-FTS using our algorithm, that of the ACE Science Team (v3.5), and from COSMIC. When our retrievals are compared to ACE-FTS v3.5, we find mean differences between -5 and +2 K and that our retrieved profiles have no seasonal or zonal biases but do have a warm bias in the stratosphere and a cold bias in the mesosphere. When compared to COSMIC, we do not observe a warm/cool bias and mean differences are between -4 and +1 K. COSMIC comparisons are restricted to below 40 km, where our retrievals have the best agreement with ACE-FTS v3.5. When comparing ACE-FTS v3.5 to COSMIC we observe a cold bias in COSMIC of 0.5 K, and mean differences are between -0.9 and +0.6 K.

  15. Cloud, Aerosol, and Volcanic Ash Retrievals Using ASTR and SLSTR with ORAC

    NASA Astrophysics Data System (ADS)

    McGarragh, Gregory; Poulsen, Caroline; Povey, Adam; Thomas, Gareth; Christensen, Matt; Sus, Oliver; Schlundt, Cornelia; Stapelberg, Stefan; Stengel, Martin; Grainger, Don

    2015-12-01

    The Optimal Retrieval of Aerosol and Cloud (ORAC) is a generalized optimal estimation system that retrieves cloud, aerosol and volcanic ash parameters using satellite imager measurements in the visible to infrared. Use of the same algorithm for different sensors and parameters leads to consistency that facilitates inter-comparison and interaction studies. ORAC currently supports ATSR, AVHRR, MODIS and SEVIRI. In this proceeding we discuss the ORAC retrieval algorithm applied to ATSR data including the retrieval methodology, the forward model, uncertainty characterization and discrimination/classification techniques. Application of ORAC to SLSTR data is discussed including the additional features that SLSTR provides relative to the ATSR heritage. The ORAC level 2 and level 3 results are discussed and an application of level 3 results to the study of cloud/aerosol interactions is presented.

  16. Comparison Spatial Pattern of Land Surface Temperature with Mono Window Algorithm and Split Window Algorithm: A Case Study in South Tangerang, Indonesia

    NASA Astrophysics Data System (ADS)

    Bunai, Tasya; Rokhmatuloh; Wibowo, Adi

    2018-05-01

    In this paper, two methods to retrieve the Land Surface Temperature (LST) from thermal infrared data supplied by band 10 and 11 of the Thermal Infrared Sensor (TIRS) onboard the Landsat 8 is compared. The first is mono window algorithm developed by Qin et al. and the second is split window algorithm by Rozenstein et al. The purpose of this study is to perform the spatial distribution of land surface temperature, as well as to determine more accurate algorithm for retrieving land surface temperature by calculated root mean square error (RMSE). Finally, we present comparison the spatial distribution of land surface temperature by both of algorithm, and more accurate algorithm is split window algorithm refers to the root mean square error (RMSE) is 7.69° C.

  17. Physics-Based GOES Product for Use in NREL's National Solar Radiation Database: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sengupta, Manajit; Habte, Aron; Gotseff, Peter

    The Global Solar Insolation Project (GSIP) is an operational physical model from the National Oceanic and Atmospheric Administration (NOAA) that computes global horizontal radiation (GHI) using the visible and infrared channel measurements from geostationary operational environmental satellites (GOES). GSIP uses a two-stage scheme that retrieves cloud properties and uses those properties in the Satellite Algorithm for Surface Radiation Budget (SASRAB) model to calculate surface radiation. The National Renewable Energy Laboratory, University of Wisconsin, and NOAA have recently collaborated to adapt GSIP to create a high-temporal and spatial resolution data set. The data sets are currently being incorporated into the widelymore » used National Solar Radiation Data Base.« less

  18. Current Sounding Capability From Satellite Meteorological Observation With Ultraspectral Infrared Instruments

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Liu, Xu; Larar, Allen M.

    2008-01-01

    Ultraspectral resolution infrared spectral radiance obtained from near nadir observations provide atmospheric, surface, and cloud property information. The intent of the measurement of tropospheric thermodynamic state and trace abundances is the initialization of climate models and the monitoring of air quality. The NPOESS Airborne Sounder Testbed-Interferometer (NAST-I), designed to support the development of future satellite temperature and moisture sounders, aboard high altitude aircraft has been collecting data throughout many field campaigns. An advanced retrieval algorithm developed with NAST-I is now applied to satellite data collected with the Atmospheric InfraRed Sounder (AIRS) on the Aqua satellite launched on 4 May 2002 and the Infrared Atmospheric Sounding Interferometer (IASI) on the MetOp satellite launched on October 19, 2006. These instruments possess an ultra-spectral resolution, for example, both IASI and NAST-I have 0.25 cm-1 and a spectral coverage from 645 to 2760 cm-1. The retrieval algorithm with a fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. The physical inversion scheme has been developed, dealing with cloudy as well as cloud-free radiance observed with ultraspectral infrared sounders, to simultaneously retrieve surface, atmospheric thermodynamic, and cloud microphysical parameters. A fast radiative transfer model, which applies to the clouded atmosphere, is used for atmospheric profile and cloud parameter retrieval. A one-dimensional (1-d) variational multi-variable inversion solution is used to improve an iterative background state defined by an eigenvector-regression-retrieval. The solution is iterated in order to account for non-linearity in the 1-d variational solution. It is shown that relatively accurate temperature and moisture retrievals can be achieved below optically thin clouds. For optically thick clouds, accurate temperature and moisture profiles down to cloud top level are obtained. For both optically thin and thick cloud situations, the cloud top height can be retrieved with relatively high accuracy (i.e., error less than 1 km). Retrievals of atmospheric soundings, surface properties, and cloud microphysical properties with the AIRS and IASI observations are obtained and presented. These retrievals are further inter-compared with those obtained from airborne FTS system, such as the NPOESS Airborne Sounder Testbed? Interferometer (NAST I), dedicated dropsondes, radiosondes, and ground based Raman Lidar. The capabilities of satellite ultra-spectral sounder such as the AIRS and IASI are investigated. These advanced satellite ultraspectral infrared instruments are now playing an important role in satellite meteorological observation for numerical weather prediction.

  19. Wind velocity profile reconstruction from intensity fluctuations of a plane wave propagating in a turbulent atmosphere.

    PubMed

    Banakh, V A; Marakasov, D A

    2007-08-01

    Reconstruction of a wind profile based on the statistics of plane-wave intensity fluctuations in a turbulent atmosphere is considered. The algorithm for wind profile retrieval from the spatiotemporal spectrum of plane-wave weak intensity fluctuations is described, and the results of end-to-end computer experiments on wind profiling based on the developed algorithm are presented. It is shown that the reconstructing algorithm allows retrieval of a wind profile from turbulent plane-wave intensity fluctuations with acceptable accuracy.

  20. Propagation based phase retrieval of simulated intensity measurements using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Kemp, Z. D. C.

    2018-04-01

    Determining the phase of a wave from intensity measurements has many applications in fields such as electron microscopy, visible light optics, and medical imaging. Propagation based phase retrieval, where the phase is obtained from defocused images, has shown significant promise. There are, however, limitations in the accuracy of the retrieved phase arising from such methods. Sources of error include shot noise, image misalignment, and diffraction artifacts. We explore the use of artificial neural networks (ANNs) to improve the accuracy of propagation based phase retrieval algorithms applied to simulated intensity measurements. We employ a phase retrieval algorithm based on the transport-of-intensity equation to obtain the phase from simulated micrographs of procedurally generated specimens. We then train an ANN with pairs of retrieved and exact phases, and use the trained ANN to process a test set of retrieved phase maps. The total error in the phase is significantly reduced using this method. We also discuss a variety of potential extensions to this work.

  1. A High-Resolution Aerosol Retrieval Method for Urban Areas Using MISR Data

    NASA Astrophysics Data System (ADS)

    Moon, T.; Wang, Y.; Liu, Y.; Yu, B.

    2012-12-01

    Satellite-retrieved Aerosol Optical Depth (AOD) can provide a cost-effective way to monitor particulate air pollution without using expensive ground measurement sensors. One of the current state-of-the-art AOD retrieval method is NASA's Multi-angle Imaging SpectroRadiometer (MISR) operational algorithm, which has the spatial resolution of 17.6 km x 17.6 km. While the MISR baseline scheme already leads to exciting research opportunities to study particle compositions at regional scale, its spatial resolution is too coarse for analyzing urban areas where the AOD level has stronger spatial variations. We develop a novel high-resolution AOD retrieval algorithm that still uses MISR's radiance observations but has the resolution of 4.4km x 4.4km. We achieve the high resolution AOD retrieval by implementing a hierarchical Bayesian model and Monte-Carlo Markov Chain (MCMC) inference method. Our algorithm not only improves the spatial resolution, but also extends the coverage of AOD retrieval and provides with additional composition information of aerosol components that contribute to the AOD. We validate our method using the recent NASA's DISCOVER-AQ mission data, which contains the ground measured AOD values for Washington DC and Baltimore area. The validation result shows that, compared to the operational MISR retrievals, our scheme has 41.1% more AOD retrieval coverage for the DISCOVER-AQ data points and 24.2% improvement in mean-squared error (MSE) with respect to the AERONET ground measurements.

  2. Investigating the Use of a Simplified Aerosol Parameterization in Space-Based XCO2 Retrievals from OCO-2

    NASA Astrophysics Data System (ADS)

    Nelson, R. R.; O'Dell, C.

    2017-12-01

    The primary goal of OCO-2 is to use hyperspectral measurements of reflected near-infrared sunlight to retrieve the column-averaged dry-air mole fraction of carbon dioxide (XCO2) with high accuracy. This is only possible for measurements of scenes nearly free of optically thick clouds and aerosols. As some cloud or aerosol contamination will always be present, the OCO-2 retrieval algorithm includes clouds and aerosols as retrieved properties in its state vector. Information content analyses demonstrate that there are only 2-6 pieces of information about aerosols in the OCO-2 radiances. However, the upcoming OCO-2 algorithm (B8) attempts to retrieve 9 aerosol parameters; this over-fitting can hinder convergence and produce multiple solutions. In this work, we develop a simplified cloud and aerosol parameterization that intelligently reduces the number of retrieved parameters to 5 by only retrieving information about two aerosol layers: a lower tropospheric layer and an upper tropospheric / stratospheric layer. We retrieve the optical depth of each layer and the height of the lower tropospheric layer. Each of these layers contains a mixture of fine and coarse mode aerosol. In comparisons between OCO-2 XCO2 estimates and validation sources including TCCON, this scheme performs about as well as the more complicated OCO-2 retrieval algorithm, but has the potential benefits of more interpretable aerosol results, faster convergence, less nonlinearity, and greater throughput. We also investigate the dependence of our results on the optical properties of the fine and coarse mode aerosol types, such as their effective radii and the environmental relative humidity.

  3. Results from CrIS-ATMS Obtained Using the AIRS Science Team Retrieval Methodology

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Kouvaris, Louis C.; Iredell, Lena

    2013-01-01

    AIRS was launched on EOS Aqua in May 2002, together with AMSU-A and HSB (which subsequently failed early in the mission), to form a next generation polar orbiting infrared and microwave atmospheric sounding system. AIRS/AMSU had two primary objectives. The first objective was to provide real-time data products available for use by the operational Numerical Weather Prediction Centers in a data assimilation mode to improve the skill of their subsequent forecasts. The second objective was to provide accurate unbiased sounding products with good spatial coverage that are used to generate stable multi-year climate data sets to study the earth's interannual variability, climate processes, and possibly long-term trends. AIRS/AMSU data for all time periods are now being processed using the state of the art AIRS Science Team Version-6 retrieval methodology. The Suomi-NPP mission was launched in October 2011 as part of a sequence of Low Earth Orbiting satellite missions under the "Joint Polar Satellite System" (JPSS). NPP carries CrIS and ATMS, which are advanced infra-red and microwave atmospheric sounders that were designed as follow-ons to the AIRS and AMSU instruments. The main objective of this work is to assess whether CrIS/ATMS will be an adequate replacement for AIRS/AMSU from the perspective of the generation of accurate and consistent long term climate data records, or if improved instruments should be developed for future flight. It is critical for CrIS/ATMS to be processed using an algorithm similar to, or at least comparable to, AIRS Version-6 before such an assessment can be made. We have been conducting research to optimize products derived from CrIS/ATMS observations using a scientific approach analogous to the AIRS Version-6 retrieval algorithm. Our latest research uses Version-5.70 of the CrIS/ATMS retrieval algorithm, which is otherwise analogous to AIRS Version-6, but does not yet contain the benefit of use of a Neural-Net first guess start-up system which significantly improved results of AIRS Version-6. Version-5.70 CrIS/ATMS temperature profile and surface skin temperature retrievals are of very good quality, and are better than AIRS Version-5 retrievals, but are still significantly poorer than those of AIRS Version-6. CrIS/ATMS retrievals should improve when a Neural-Net start-up system is ready for use. We also examined CrIS/ATMS retrievals generated by NOAA using their NUCAPS retrieval algorithm, which is based on earlier versions of the AIRS Science Team retrieval algorithms. We show that the NUCAPS algorithm as currently configured is not well suited for climate monitoring purposes.

  4. Classification of Aerosol Retrievals from Spaceborne Polarimetry Using a Multiparameter Algorithm

    NASA Technical Reports Server (NTRS)

    Russell, Philip B.; Kacenelenbogen, Meloe; Livingston, John M.; Hasekamp, Otto P.; Burton, Sharon P.; Schuster, Gregory L.; Johnson, Matthew S.; Knobelspiesse, Kirk D.; Redemann, Jens; Ramachandran, S.; hide

    2013-01-01

    In this presentation, we demonstrate application of a new aerosol classification algorithm to retrievals from the POLDER-3 polarimter on the PARASOL spacecraft. Motivation and method: Since the development of global aerosol measurements by satellites and AERONET, classification of observed aerosols into several types (e.g., urban-industrial, biomass burning, mineral dust, maritime, and various subtypes or mixtures of these) has proven useful to: understanding aerosol sources, transformations, effects, and feedback mechanisms; improving accuracy of satellite retrievals and quantifying assessments of aerosol radiative impacts on climate.

  5. Three-dimensional propagation in near-field tomographic X-ray phase retrieval

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruhlandt, Aike, E-mail: aruhlan@gwdg.de; Salditt, Tim

    An extension of phase retrieval algorithms for near-field X-ray (propagation) imaging to three dimensions is presented, enhancing the quality of the reconstruction by exploiting previously unused three-dimensional consistency constraints. This paper presents an extension of phase retrieval algorithms for near-field X-ray (propagation) imaging to three dimensions, enhancing the quality of the reconstruction by exploiting previously unused three-dimensional consistency constraints. The approach is based on a novel three-dimensional propagator and is derived for the case of optically weak objects. It can be easily implemented in current phase retrieval architectures, is computationally efficient and reduces the need for restrictive prior assumptions, resultingmore » in superior reconstruction quality.« less

  6. Performance of the Falling Snow Retrieval Algorithms for the Global Precipitation Measurement (GPM) Mission

    NASA Technical Reports Server (NTRS)

    Skofronick-Jackson, Gail; Munchak, Stephen J.; Ringerud, Sarah

    2016-01-01

    Retrievals of falling snow from space represent an important data set for understanding the Earth's atmospheric, hydrological, and energy cycles, especially during climate change. Estimates of falling snow must be captured to obtain the true global precipitation water cycle, snowfall accumulations are required for hydrological studies, and without knowledge of the frozen particles in clouds one cannot adequately understand the energy and radiation budgets. While satellite-based remote sensing provides global coverage of falling snow events, the science is relatively new and retrievals are still undergoing development with challenges remaining). This work reports on the development and testing of retrieval algorithms for the Global Precipitation Measurement (GPM) mission Core Satellite, launched February 2014.

  7. CrIS/ATMS Retrievals Using the Latest AIRS/AMSU Retrieval Methodology

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Kouvaris, Louis C.; Blaisdell, John; Iredell, Lena

    2015-01-01

    This research is being done under the NPP Science Team Proposal: Analysis of CrISATMS Using an AIRS Version 6-like Retrieval Algorithm Objective: Generate a long term CrISATMS level-3 data set that is consistent with that of AIRSAMSU Approach: Adapt the currently operational AIRS Science Team Version-6 Retrieval Algorithm, or an improved version of it, for use with CrISATMS data. Metric: Generate monthly mean level-3 CrISATMS climate data sets and evaluate the results by comparison of monthly mean AIRSAMSU and CrISATMS products, and more significantly, their inter-annual differences and, eventually, anomaly time series. The goal is consistency between the AIRSAMSU and CrISATMS climate data sets.

  8. Simultaneous Retrieval of Temperature, Water Vapor and Ozone Atmospheric Profiles from IASI: Compression, De-noising, First Guess Retrieval and Inversion Algorithms

    NASA Technical Reports Server (NTRS)

    Aires, F.; Rossow, W. B.; Scott, N. A.; Chedin, A.; Hansen, James E. (Technical Monitor)

    2001-01-01

    A fast temperature water vapor and ozone atmospheric profile retrieval algorithm is developed for the high spectral resolution Infrared Atmospheric Sounding Interferometer (IASI) space-borne instrument. Compression and de-noising of IASI observations are performed using Principal Component Analysis. This preprocessing methodology also allows, for a fast pattern recognition in a climatological data set to obtain a first guess. Then, a neural network using first guess information is developed to retrieve simultaneously temperature, water vapor and ozone atmospheric profiles. The performance of the resulting fast and accurate inverse model is evaluated with a large diversified data set of radiosondes atmospheres including rare events.

  9. Improving medical record retrieval for validation studies in Medicare data.

    PubMed

    Wright, Nicole C; Delzell, Elizabeth S; Smith, Wilson K; Xue, Fei; Auroa, Tarun; Curtis, Jeffrey R

    2017-04-01

    The purpose of the study is to describe medical record retrieval for a study validating claims-based algorithms used to identify seven adverse events of special interest (AESI) in a Medicare population. We analyzed 2010-2011 Medicare claims of women with postmenopausal osteoporosis and men ≥65 years of age in the Medicare 5% national sample. The final cohorts included beneficiaries covered continuously for 12+ months by Medicare parts A, B, and D and not enrolled in Medicare Advantage before starting follow-up. We identified beneficiaries using each AESI algorithm and randomly selected 400 women and 100 men with each AESI for medical record retrieval. The Centers for Medicare and Medicaid Services provided beneficiary contact information, and we requested medical records directly from providers, without patient contact. We selected 3331 beneficiaries (women: 2272; men: 559) for whom we requested 3625 medical records. Overall, we received 1738 [47.9% (95%CI 46.3%, 49.6%)] of the requested medical records. We observed small differences in the characteristics of the total population with AESIs compared with those randomly selected for retrieval; however, no differences were seen between those selected and those retrieved. We retrieved 54.7% of records requested from hospitals compared with 26.3% of records requested from physician offices (p < 0.001). Retrieval did not differ by sex or vital status of the beneficiaries. Our national medical record validation study of claims-based algorithms produced a modest retrieval rate. The medical record procedures outlined in this paper could have led to the improved retrieval from our previous medical record retrieval study. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Cloud cover detection combining high dynamic range sky images and ceilometer measurements

    NASA Astrophysics Data System (ADS)

    Román, R.; Cazorla, A.; Toledano, C.; Olmo, F. J.; Cachorro, V. E.; de Frutos, A.; Alados-Arboledas, L.

    2017-11-01

    This paper presents a new algorithm for cloud detection based on high dynamic range images from a sky camera and ceilometer measurements. The algorithm is also able to detect the obstruction of the sun. This algorithm, called CPC (Camera Plus Ceilometer), is based on the assumption that under cloud-free conditions the sky field must show symmetry. The symmetry criteria are applied depending on ceilometer measurements of the cloud base height. CPC algorithm is applied in two Spanish locations (Granada and Valladolid). The performance of CPC retrieving the sun conditions (obstructed or unobstructed) is analyzed in detail using as reference pyranometer measurements at Granada. CPC retrievals are in agreement with those derived from the reference pyranometer in 85% of the cases (it seems that this agreement does not depend on aerosol size or optical depth). The agreement percentage goes down to only 48% when another algorithm, based on Red-Blue Ratio (RBR), is applied to the sky camera images. The retrieved cloud cover at Granada and Valladolid is compared with that registered by trained meteorological observers. CPC cloud cover is in agreement with the reference showing a slight overestimation and a mean absolute error around 1 okta. A major advantage of the CPC algorithm with respect to the RBR method is that the determined cloud cover is independent of aerosol properties. The RBR algorithm overestimates cloud cover for coarse aerosols and high loads. Cloud cover obtained only from ceilometer shows similar results than CPC algorithm; but the horizontal distribution cannot be obtained. In addition, it has been observed that under quick and strong changes on cloud cover ceilometers retrieve a cloud cover fitting worse with the real cloud cover.

  11. Monitoring carbon dioxide from space: Retrieval algorithm and flux inversion based on GOSAT data and using CarbonTracker-China

    NASA Astrophysics Data System (ADS)

    Yang, Dongxu; Zhang, Huifang; Liu, Yi; Chen, Baozhang; Cai, Zhaonan; Lü, Daren

    2017-08-01

    Monitoring atmospheric carbon dioxide (CO2) from space-borne state-of-the-art hyperspectral instruments can provide a high precision global dataset to improve carbon flux estimation and reduce the uncertainty of climate projection. Here, we introduce a carbon flux inversion system for estimating carbon flux with satellite measurements under the support of "The Strategic Priority Research Program of the Chinese Academy of Sciences—Climate Change: Carbon Budget and Relevant Issues". The carbon flux inversion system is composed of two separate parts: the Institute of Atmospheric Physics Carbon Dioxide Retrieval Algorithm for Satellite Remote Sensing (IAPCAS), and CarbonTracker-China (CT-China), developed at the Chinese Academy of Sciences. The Greenhouse gases Observing SATellite (GOSAT) measurements are used in the carbon flux inversion experiment. To improve the quality of the IAPCAS-GOSAT retrieval, we have developed a post-screening and bias correction method, resulting in 25%-30% of the data remaining after quality control. Based on these data, the seasonal variation of XCO2 (column-averaged CO2 dry-air mole fraction) is studied, and a strong relation with vegetation cover and population is identified. Then, the IAPCAS-GOSAT XCO2 product is used in carbon flux estimation by CT-China. The net ecosystem CO2 exchange is -0.34 Pg C yr-1 (±0.08 Pg C yr-1), with a large error reduction of 84%, which is a significant improvement on the error reduction when compared with in situ-only inversion.

  12. Spectral Retrieval of Latent Heating Profiles from TRMM PR data. Part 3; Moistening Estimates over Tropical Ocean Regions

    NASA Technical Reports Server (NTRS)

    Shige, S.; Takayabu, Y.; Tao, W.-K.

    2007-01-01

    The global hydrological cycle is central to the Earth's climate system, with rainfall and the physics of precipitation formation acting as the key links in the cycle. Two-thirds of global rainfall occurs in the tropics with the associated latent heating (LH) accounting for threefourths of the total heat energy available to the Earth's atmosphere. In the last decade, it has been established that standard products of LH from satellite measurements, particularly TRMM measurements, would be a valuable resource for scientific research and applications. Such products would enable new insights and investigations concerning the complexities of convection system life cycles, the diabatic heating controls and feedbacks related to rne-sosynoptic circulations and their forecasting, the relationship of tropical patterns of LH to the global circulation and climate, and strategies for improving cloud parameterizations In environmental prediction models. However, the LH and water vapor profile or budget (called the apparent moisture sink, or Q2) is closely related. This paper presented the development of an algorithm for retrieving Q2 using 'TRMM precipitation radar. Since there is no direct measurement of LH and Q2, the validation of algorithm usually applies a method called consistency check. Consistency checking involving Cloud Resolving Model (CRM)-generated LH and 42 profiles and algorithm-reconstructed is a useful step in evaluating the performance of a given algorithm. In this process, the CRM simulation of a time-dependent precipitation process (multiple-day time series) is used to obtain the required input parameters for a given algorithm. The algorithm is then used to "econsti-LKth"e heating and moisture profiles that the CRM simulation originally produced, and finally both sets of conformal estimates (model and algorithm) are compared each other. The results indicate that discrepancies between the reconstructed and CM-simulated profiles for Q2, especially at low levels, are larger than those for latent heat. Larger discrepancies in Q2 at low levels are due to moistening for non-precipitating region that algorithm cannot reconstruct. Nevertheless, the algorithm-reconstructed total Q2 profiles are in good agreement with the CRM-simulated ones.

  13. Assessment of Mixed-Layer Height Estimation from Single-wavelength Ceilometer Profiles

    PubMed Central

    Knepp, Travis N.; Szykman, James J.; Long, Russell; Duvall, Rachelle M.; Krug, Jonathan; Beaver, Melinda; Cavender, Kevin; Kronmiller, Keith; Wheeler, Michael; Delgado, Ruben; Hoff, Raymond; Berkoff, Timothy; Olson, Erik; Clark, Richard; Wolfe, Daniel; Van Gilst, David; Neil, Doreen

    2018-01-01

    Differing boundary/mixed-layer height measurement methods were assessed in moderately-polluted and clean environments, with a focus on the Vaisala CL51 ceilometer. This intercomparison was performed as part of ongoing measurements at the Chemistry And Physics of the Atmospheric Boundary Layer Experiment (CAPABLE) site in Hampton, Virginia and during the 2014 Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field campaign that took place in and around Denver, Colorado. We analyzed CL51 data that were collected via two different methods (BLView software, which applied correction factors, and simple terminal emulation logging) to determine the impact of data collection methodology. Further, we evaluated the STRucture of the ATmosphere (STRAT) algorithm as an open-source alternative to BLView (note that the current work presents an evaluation of the BLView and STRAT algorithms and does not intend to act as a validation of either). Filtering criteria were defined according to the change in mixed-layer height (MLH) distributions for each instrument and algorithm and were applied throughout the analysis to remove high-frequency fluctuations from the MLH retrievals. Of primary interest was determining how the different data-collection methodologies and algorithms compare to each other and to radiosonde-derived boundary-layer heights when deployed as part of a larger instrument network. We determined that data-collection methodology is not as important as the processing algorithm and that much of the algorithm differences might be driven by impacts of local meteorology and precipitation events that pose algorithm difficulties. The results of this study show that a common processing algorithm is necessary for LIght Detection And Ranging (LIDAR)-based MLH intercomparisons, and ceilometer-network operation and that sonde-derived boundary layer heights are higher (10–15% at mid-day) than LIDAR-derived mixed-layer heights. We show that averaging the retrieved MLH to 1-hour resolution (an appropriate time scale for a priori data model initialization) significantly improved correlation between differing instruments and differing algorithms. PMID:29682087

  14. Statistically Optimized Inversion Algorithm for Enhanced Retrieval of Aerosol Properties from Spectral Multi-Angle Polarimetric Satellite Observations

    NASA Technical Reports Server (NTRS)

    Dubovik, O; Herman, M.; Holdak, A.; Lapyonok, T.; Taure, D.; Deuze, J. L.; Ducos, F.; Sinyuk, A.

    2011-01-01

    The proposed development is an attempt to enhance aerosol retrieval by emphasizing statistical optimization in inversion of advanced satellite observations. This optimization concept improves retrieval accuracy relying on the knowledge of measurement error distribution. Efficient application of such optimization requires pronounced data redundancy (excess of the measurements number over number of unknowns) that is not common in satellite observations. The POLDER imager on board the PARASOL microsatellite registers spectral polarimetric characteristics of the reflected atmospheric radiation at up to 16 viewing directions over each observed pixel. The completeness of such observations is notably higher than for most currently operating passive satellite aerosol sensors. This provides an opportunity for profound utilization of statistical optimization principles in satellite data inversion. The proposed retrieval scheme is designed as statistically optimized multi-variable fitting of all available angular observations obtained by the POLDER sensor in the window spectral channels where absorption by gas is minimal. The total number of such observations by PARASOL always exceeds a hundred over each pixel and the statistical optimization concept promises to be efficient even if the algorithm retrieves several tens of aerosol parameters. Based on this idea, the proposed algorithm uses a large number of unknowns and is aimed at retrieval of extended set of parameters affecting measured radiation.

  15. Performance Evaluation of Machine Learning Methods for Leaf Area Index Retrieval from Time-Series MODIS Reflectance Data

    PubMed Central

    Wang, Tongtong; Xiao, Zhiqiang; Liu, Zhigang

    2017-01-01

    Leaf area index (LAI) is an important biophysical parameter and the retrieval of LAI from remote sensing data is the only feasible method for generating LAI products at regional and global scales. However, most LAI retrieval methods use satellite observations at a specific time to retrieve LAI. Because of the impacts of clouds and aerosols, the LAI products generated by these methods are spatially incomplete and temporally discontinuous, and thus they cannot meet the needs of practical applications. To generate high-quality LAI products, four machine learning algorithms, including back-propagation neutral network (BPNN), radial basis function networks (RBFNs), general regression neutral networks (GRNNs), and multi-output support vector regression (MSVR) are proposed to retrieve LAI from time-series Moderate Resolution Imaging Spectroradiometer (MODIS) reflectance data in this study and performance of these machine learning algorithms is evaluated. The results demonstrated that GRNNs, RBFNs, and MSVR exhibited low sensitivity to training sample size, whereas BPNN had high sensitivity. The four algorithms performed slightly better with red, near infrared (NIR), and short wave infrared (SWIR) bands than red and NIR bands, and the results were significantly better than those obtained using single band reflectance data (red or NIR). Regardless of band composition, GRNNs performed better than the other three methods. Among the four algorithms, BPNN required the least training time, whereas MSVR needed the most for any sample size. PMID:28045443

  16. Performance Evaluation of Machine Learning Methods for Leaf Area Index Retrieval from Time-Series MODIS Reflectance Data.

    PubMed

    Wang, Tongtong; Xiao, Zhiqiang; Liu, Zhigang

    2017-01-01

    Leaf area index (LAI) is an important biophysical parameter and the retrieval of LAI from remote sensing data is the only feasible method for generating LAI products at regional and global scales. However, most LAI retrieval methods use satellite observations at a specific time to retrieve LAI. Because of the impacts of clouds and aerosols, the LAI products generated by these methods are spatially incomplete and temporally discontinuous, and thus they cannot meet the needs of practical applications. To generate high-quality LAI products, four machine learning algorithms, including back-propagation neutral network (BPNN), radial basis function networks (RBFNs), general regression neutral networks (GRNNs), and multi-output support vector regression (MSVR) are proposed to retrieve LAI from time-series Moderate Resolution Imaging Spectroradiometer (MODIS) reflectance data in this study and performance of these machine learning algorithms is evaluated. The results demonstrated that GRNNs, RBFNs, and MSVR exhibited low sensitivity to training sample size, whereas BPNN had high sensitivity. The four algorithms performed slightly better with red, near infrared (NIR), and short wave infrared (SWIR) bands than red and NIR bands, and the results were significantly better than those obtained using single band reflectance data (red or NIR). Regardless of band composition, GRNNs performed better than the other three methods. Among the four algorithms, BPNN required the least training time, whereas MSVR needed the most for any sample size.

  17. Desert Dust Satellite Retrieval Intercomparison

    NASA Technical Reports Server (NTRS)

    Carboni, E.; Thomas, G. E.; Sayer, A. M.; Siddans, R.; Poulsen, C. A.; Grainger, R. G.; Ahn, C.; Antoine, D.; Bevan, S.; Braak, R.; hide

    2012-01-01

    This work provides a comparison of satellite retrievals of Saharan desert dust aerosol optical depth (AOD) during a strong dust event through March 2006. In this event, a large dust plume was transported over desert, vegetated, and ocean surfaces. The aim is to identify and understand the differences between current algorithms, and hence improve future retrieval algorithms. The satellite instruments considered are AATSR, AIRS, MERIS, MISR, MODIS, OMI, POLDER, and SEVIRI. An interesting aspect is that the different algorithms make use of different instrument characteristics to obtain retrievals over bright surfaces. These include multi-angle approaches (MISR, AATSR), polarisation measurements (POLDER), single-view approaches using solar wavelengths (OMI, MODIS), and the thermal infrared spectral region (SEVIRI, AIRS). Differences between instruments, together with the comparison of different retrieval algorithms applied to measurements from the same instrument, provide a unique insight into the performance and characteristics of the various techniques employed. As well as the intercomparison between different satellite products, the AODs have also been compared to co-located AERONET data. Despite the fact that the agreement between satellite and AERONET AODs is reasonably good for all of the datasets, there are significant differences between them when compared to each other, especially over land. These differences are partially due to differences in the algorithms, such as as20 sumptions about aerosol model and surface properties. However, in this comparison of spatially and temporally averaged data, at least as significant as these differences are sampling issues related to the actual footprint of each instrument on the heterogeneous aerosol field, cloud identification and the quality control flags of each dataset.

  18. Accuracy of Geophysical Parameters Derived from AIRS/AMSU as a Function of Fractional Cloud Cover

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Barnet, Chris; Blaisdell, John; Iredell, Lena; Keita, Fricky; Kouvaris, Lou; Molnar, Gyula; Chahine, Moustafa

    2005-01-01

    AIRS was launched on EOS Aqua on May 4,2002, together with AMSU A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. The sounding goals of AIRS are to produce 1 km tropospheric layer mean temperatures with an rms error of 1K, and layer precipitable water with an rms error of 20%, in cases with up to 80% effective cloud cover. The basic theory used to analyze AIRS/AMSU/HSB data in the presence of clouds, called the at-launch algorithm, was described previously. Pre-launch simulation studies using this algorithm indicated that these results should be achievable. Some modifications have been made to the at-launch retrieval algorithm as described in this paper. Sample fields of parameters retrieved from AIRS/AMSU/HSB data are presented and validated as a function of retrieved fractional cloud cover. As in simulation, the degradation of retrieval accuracy with increasing cloud cover is small. HSB failed in February 2005, and consequently HSB channel radiances are not used in the results shown in this paper. The AIRS/AMSU retrieval algorithm described in this paper, called Version 4, become operational at the Goddard DAAC in April 2005 and is being used to analyze near-real time AIRS/AMSU data. Historical AIRS/AMSU data, going backwards from March 2005 through September 2002, is also being analyzed by the DAAC using the Version 4 algorithm.

  19. Impact of an inferior vena cava filter retrieval algorithm on filter retrieval rates in a cancer population.

    PubMed

    Litwin, Robert J; Huang, Steven Y; Sabir, Sharjeel H; Hoang, Quoc B; Ahrar, Kamran; Ahrar, Judy; Tam, Alda L; Mahvash, Armeen; Ensor, Joe E; Kroll, Michael; Gupta, Sanjay

    2017-09-01

    Our primary purpose was to assess the impact of an inferior vena cava filter retrieval algorithm in a cancer population. Because cancer patients are at persistently elevated risk for development of venous thromboembolism (VTE), our secondary purpose was to assess the incidence of recurrent VTE in patients who underwent filter retrieval. Patients with malignant disease who had retrievable filters placed at a tertiary care cancer hospital from August 2010 to July 2014 were retrospectively studied. A filter retrieval algorithm was established in August 2012. Patients and referring physicians were contacted in the postintervention period when review of the medical record indicated that filter retrieval was clinically appropriate. Patients were classified into preintervention (August 2010-July 2012) and postintervention (August 2012-July 2014) study cohorts. Retrieval rates and clinical pathologic records were reviewed. Filter retrieval was attempted in 34 (17.4%) of 195 patients in the preintervention cohort and 66 (32.8%) of 201 patients in the postintervention cohort (P < .01). The median time to filter retrieval in the preintervention and postintervention cohorts was 60 days (range, 20-428 days) and 107 days (range, 9-600 days), respectively (P = .16). In the preintervention cohort, 49 of 195 (25.1%) patients were lost to follow-up compared with 24 of 201 (11.9%) patients in the postintervention cohort (P < .01). Survival was calculated from the date of filter placement to death, when available. The overall survival for patients whose filters were retrieved was longer compared with the overall survival for patients whose filters were not retrieved (P < .0001). Of the 80 patients who underwent successful filter retrieval, two patients (2.5%) suffered from recurrent VTE (n = 1 nonfatal pulmonary embolism; n = 1 deep venous thrombosis). Both patients were treated with anticoagulation without filter replacement. Inferior vena cava filter retrieval rates can be significantly increased in patients with malignant disease with a low rate (2.5%) of recurrent VTE after filter retrieval. Copyright © 2017 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  20. Intercomparison of snow depth retrievals over Arctic sea ice from radar data acquired by Operation IceBridge

    NASA Astrophysics Data System (ADS)

    Kwok, Ron; Kurtz, Nathan T.; Brucker, Ludovic; Ivanoff, Alvaro; Newman, Thomas; Farrell, Sinead L.; King, Joshua; Howell, Stephen; Webster, Melinda A.; Paden, John; Leuschen, Carl; MacGregor, Joseph A.; Richter-Menge, Jacqueline; Harbeck, Jeremy; Tschudi, Mark

    2017-11-01

    Since 2009, the ultra-wideband snow radar on Operation IceBridge (OIB; a NASA airborne mission to survey the polar ice covers) has acquired data in annual campaigns conducted during the Arctic and Antarctic springs. Progressive improvements in radar hardware and data processing methodologies have led to improved data quality for subsequent retrieval of snow depth. Existing retrieval algorithms differ in the way the air-snow (a-s) and snow-ice (s-i) interfaces are detected and localized in the radar returns and in how the system limitations are addressed (e.g., noise, resolution). In 2014, the Snow Thickness On Sea Ice Working Group (STOSIWG) was formed and tasked with investigating how radar data quality affects snow depth retrievals and how retrievals from the various algorithms differ. The goal is to understand the limitations of the estimates and to produce a well-documented, long-term record that can be used for understanding broader changes in the Arctic climate system. Here, we assess five retrieval algorithms by comparisons with field measurements from two ground-based campaigns, including the BRomine, Ozone, and Mercury EXperiment (BROMEX) at Barrow, Alaska; a field program by Environment and Climate Change Canada at Eureka, Nunavut; and available climatology and snowfall from ERA-Interim reanalysis. The aim is to examine available algorithms and to use the assessment results to inform the development of future approaches. We present results from these assessments and highlight key considerations for the production of a long-term, calibrated geophysical record of springtime snow thickness over Arctic sea ice.

  1. Calibration and Data Retrieval Algorithms for the NASA Langley/Ames Diode Laser Hygrometer for the NASA Trace-P Mission

    NASA Technical Reports Server (NTRS)

    Podolske, James R.; Sachse, Glen W.; Diskin, Glenn S.; Hipskino, R. Stephen (Technical Monitor)

    2002-01-01

    This paper describes the procedures and algorithms for the laboratory calibration and the field data retrieval of the NASA Langley / Ames Diode Laser Hygrometer as implemented during the NASA Trace-P mission during February to April 2000. The calibration is based on a NIST traceable dewpoint hygrometer using relatively high humidity and short pathlength. Two water lines of widely different strengths are used to increase the dynamic range of the instrument in the course of a flight. The laboratory results are incorporated into a numerical model of the second harmonic spectrum for each of the two spectral window regions using spectroscopic parameters from the HITRAN database and other sources, allowing water vapor retrieval at upper tropospheric and lower stratospheric temperatures and humidity levels. The data retrieval algorithm is simple, numerically stable, and accurate. A comparison with other water vapor instruments on board the NASA DC-8 and ER-2 aircraft is presented.

  2. The Role of Cloud Contamination, Aerosol Layer Height and Aerosol Model in the Assessment of the OMI Near-UV Retrievals Over the Ocean

    NASA Technical Reports Server (NTRS)

    Gasso, Santiago; Torres, Omar

    2016-01-01

    Retrievals of aerosol optical depth (AOD) at 388 nm over the ocean from the Ozone Monitoring Instrument (OMI) two-channel near-UV algorithm (OMAERUV) have been compared with independent AOD measurements. The analysis was carried out over the open ocean (OMI and MODerate-resolution Imaging Spectrometer (MODIS) AOD comparisons) and over coastal and island sites (OMI and AERONET, the AErosol RObotic NETwork). Additionally, a research version of the retrieval algorithm (using MODIS and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) information as constraints) was utilized to evaluate the sensitivity of the retrieval to different assumed aerosol properties. Overall, the comparison resulted in differences (OMI minus independent measurements) within the expected levels of uncertainty for the OMI AOD retrievals (0.1 for AOD less than 0.3, 30% for AOD greater than 0.3). Using examples from case studies with outliers, the reasons that led to the observed differences were examined with specific purpose to determine whether they are related to instrument limitations (i.e., pixel size, calibration) or algorithm assumptions (such as aerosol shape, aerosol height). The analysis confirms that OMAERUV does an adequate job at rejecting cloudy scenes within the instrument's capabilities. There is a residual cloud contamination in OMI pixels with quality flag 0 (the best conditions for aerosol retrieval according to the algorithm), resulting in a bias towards high AODs in OMAERUV. This bias is more pronounced at low concentrations of absorbing aerosols (AOD 388 nm approximately less than 0.5). For higher aerosol loadings, the bias remains within OMI's AOD uncertainties. In pixels where OMAERUV assigned a dust aerosol model, a fraction of them (less than 20 %) had retrieved AODs significantly lower than AERONET and MODIS AODs. In a case study, a detailed examination of the aerosol height from CALIOP and the AODs from MODIS, along with sensitivity tests, was carried out by varying the different assumed parameters in the retrieval (imaginary index of refraction, size distribution, aerosol height, particle shape). It was found that the spherical shape assumption for dust in the current retrieval is the main cause of the underestimate. In addition, it is demonstrated in an example how an incorrect assumption of the aerosol height can lead to an underestimate. Nevertheless, this is not as significant as the effect of particle shape. These findings will be incorporated in a future version of the retrieval algorithm.

  3. Does the Madden-Julian Oscillation influence aerosol variability?

    NASA Astrophysics Data System (ADS)

    Tian, Baijun; Waliser, Duane E.; Kahn, Ralph A.; Li, Qinbin; Yung, Yuk L.; Tyranowski, Tomasz; Geogdzhayev, Igor V.; Mishchenko, Michael I.; Torres, Omar; Smirnov, Alexander

    2008-06-01

    We investigate the modulation of aerosols by the Madden-Julian Oscillation (MJO) using multiple, global satellite aerosol products: aerosol index (AI) from the Total Ozone Mapping Spectrometer (TOMS) on Nimbus-7, and aerosol optical thickness (AOT) from the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua and the Advanced Very High Resolution Radiometer (AVHRR) on NOAA satellites. A composite MJO analysis indicates that large variations in the TOMS AI and MODIS/AVHRR AOT are found over the equatorial Indian and western Pacific Oceans where MJO convection is active, as well as the tropical Africa and Atlantic Ocean where MJO convection is weak but the background aerosol level is high. A strong inverse linear relationship between the TOMS AI and rainfall anomalies, but a weaker, less coherent positive correlation between the MODIS/AVHRR AOT and rainfall anomalies, were found. The MODIS/AVHRR pattern is consistent with ground-based Aerosol Robotic Network data. These results indicate that the MJO and its associated cloudiness, rainfall, and circulation variability systematically influence the variability in remote sensing aerosol retrieval results. Several physical and retrieval algorithmic factors that may contribute to the observed aerosol-rainfall relationships are discussed. Preliminary analysis indicates that cloud contamination in the aerosol retrievals is likely to be a major contributor to the observed relationships, although we cannot exclude possible contributions from other physical mechanisms. Future research is needed to fully understand these complex aerosol-rainfall relationships.

  4. Global Precipitation Estimates from Cross-Track Passive Microwave Observations Using a Physically-Based Retrieval Scheme

    NASA Technical Reports Server (NTRS)

    Kidd, Chris; Matsui, Toshi; Chern, Jiundar; Mohr, Karen; Kummerow, Christian; Randel, Dave

    2015-01-01

    The estimation of precipitation across the globe from satellite sensors provides a key resource in the observation and understanding of our climate system. Estimates from all pertinent satellite observations are critical in providing the necessary temporal sampling. However, consistency in these estimates from instruments with different frequencies and resolutions is critical. This paper details the physically based retrieval scheme to estimate precipitation from cross-track (XT) passive microwave (PM) sensors on board the constellation satellites of the Global Precipitation Measurement (GPM) mission. Here the Goddard profiling algorithm (GPROF), a physically based Bayesian scheme developed for conically scanning (CS) sensors, is adapted for use with XT PM sensors. The present XT GPROF scheme utilizes a model-generated database to overcome issues encountered with an observational database as used by the CS scheme. The model database ensures greater consistency across meteorological regimes and surface types by providing a more comprehensive set of precipitation profiles. The database is corrected for bias against the CS database to ensure consistency in the final product. Statistical comparisons over western Europe and the United States show that the XT GPROF estimates are comparable with those from the CS scheme. Indeed, the XT estimates have higher correlations against surface radar data, while maintaining similar root-mean-square errors. Latitudinal profiles of precipitation show the XT estimates are generally comparable with the CS estimates, although in the southern midlatitudes the peak precipitation is shifted equatorward while over the Arctic large differences are seen between the XT and the CS retrievals.

  5. Retrieval Accuracy Assessment with Gap Detection for Case 2 Waters Chla Algorithms

    NASA Astrophysics Data System (ADS)

    Salem, S. I.; Higa, H.; Kim, H.; Oki, K.; Oki, T.

    2016-12-01

    Inland lakes and coastal regions types of Case 2 Waters should be continuously and accurately monitored as the former contain 90% of the global liquid freshwater storage, while the latter provide most of the dissolved organic carbon (DOC) which is an important link in the global carbon cycle. The optical properties of Case 2 Waters are dominated by three optically active components: phytoplankton, non-algal particles (NAP) and color dissolved organic matter (CDOM). During the last three decades, researchers have proposed several algorithms to retrieve Chla concentration from the remote sensing reflectance. In this study, seven algorithms are assessed with various band combinations from multi and hyper-spectral data with linear, polynomial and power regression approaches. To evaluate the performance of the 43 algorithm combination sets, 500,000 remote sensing reflectance spectra are simulated with a wide range of concentrations for Chla, NAP and CDOM. The concentrations of Chla and NAP vary from 1-200 (mg m-3) and 1-200 (gm m-3), respectively, and the absorption of CDOM at 440 nm has the range of 0.1-10 (m-1). It is found that the three-band algorithm (665, 709 and 754 nm) with the quadratic polynomial (3b_665_QP) indicates the best overall performance. 3b_665_QP has the least error with a root mean square error (RMSE) of 0.2 (mg m-3) and a mean absolute relative error (MARE) of 0.7 %. The less accurate retrieval of Chla was obtained by the synthetic chlorophyll index algorithm with RMSE and MARE of 35.8 mg m-3 and 160.4 %, respectively. In general, Chla algorithms which incorporates 665 nm band or band tuning technique performs better than those with 680 nm. In addition, the retrieval accuracy of Chla algorithms with quadratic polynomial and power regression approaches are consistently better than the linear ones. By analyzing Chla versus NAP concentrations, the 3b_665_QP outperforms the other algorithms for all Chla concentrations and NAP concentrations above 40 gm m-3which accounts for 81.3 % of the total combinations of NAP and Chla. In conclusion, these findings provide a reference for algorithm selection based on constituents' concentrations and open the door for developing a classification scheme to retrieve Chla with higher accuracy.

  6. Retrievals of ice cloud microphysical properties of deep convective systems using radar measurements: Convective Cloud Microphysical Retrieval

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Jingjing; Dong, Xiquan; Xi, Baike

    This study presents new algorithms for retrieving ice cloud microphysical properties (ice water content (IWC) and median mass diameter (Dm)) for the stratiform and thick anvil regions of Deep Convective Systems (DCSs) using Next-Generation Radar (NEXRAD) reflectivity and recently developed empirical relationships from aircraft in situ measurements during the Midlatitude Continental Convective Clouds Experiment (MC3E). A classic DCS case on 20 May 2011 is used to compare the retrieved IWC profiles with other retrieval and cloud-resolving model simulations. The mean values of each retrieved and simulated IWC fall within one standard derivation of the other two. The statistical results frommore » six selected cases during MC3E show that the aircraft in situ derived IWC and Dm are 0.47 ± 0.29 g m-3 and 2.02 ± 1.3 mm, while the mean values of retrievals have a positive bias of 0.16 g m-3 (34%) and a negative bias of 0.39 mm (19%). To validate the newly developed retrieval algorithms from this study, IWC and Dm are performed with other DCS cases during Bow Echo and Mesoscale Convective Vortex Experiment (BAMEX) field campaign using composite gridded NEXRAD reflectivity and compared with in situ IWC and Dm from aircraft. A total of 64 1-min collocated aircraft and radar samples are available for comparisons, and the averages of radar retrieved and aircraft in situ measured IWCs are 1.22 g m-3 and 1.26 g m-3 with a correlation of 0.5, and their averaged Dm values are 2.15 and 1.80 mm. These comparisons have shown that the retrieval algorithms 45 developed during MC3E can retrieve similar ice cloud microphysical properties of DCS to aircraft in situ measurements during BAMEX with median errors of ~40% and ~25% for IWC and Dm retrievals, respectively. This is indicating our retrieval algorithms are suitable for other midlatitude continental DCS ice clouds, especially at stratiform rain and thick anvil regions. In addition, based on the averaged IWC and Dm values during MC3E and BAMEX, the DCS IWC values over midlatitude are significantly different, while their Dm values are close to each other. On the other hand, these DCS IWC and Dm values are 1-2 orders of magnitude larger than those of single-layered cirrus clouds over midlatitudes.« less

  7. Improved Algorithms for Accurate Retrieval of UV - Visible Diffuse Attenuation Coefficients in Optically Complex, Inshore Waters

    NASA Technical Reports Server (NTRS)

    Cao, Fang; Fichot, Cedric G.; Hooker, Stanford B.; Miller, William L.

    2014-01-01

    Photochemical processes driven by high-energy ultraviolet radiation (UVR) in inshore, estuarine, and coastal waters play an important role in global bio geochemical cycles and biological systems. A key to modeling photochemical processes in these optically complex waters is an accurate description of the vertical distribution of UVR in the water column which can be obtained using the diffuse attenuation coefficients of down welling irradiance (Kd()). The Sea UV Sea UVc algorithms (Fichot et al., 2008) can accurately retrieve Kd ( 320, 340, 380,412, 443 and 490 nm) in oceanic and coastal waters using multispectral remote sensing reflectances (Rrs(), Sea WiFS bands). However, SeaUVSeaUVc algorithms are currently not optimized for use in optically complex, inshore waters, where they tend to severely underestimate Kd(). Here, a new training data set of optical properties collected in optically complex, inshore waters was used to re-parameterize the published SeaUVSeaUVc algorithms, resulting in improved Kd() retrievals for turbid, estuarine waters. Although the updated SeaUVSeaUVc algorithms perform best in optically complex waters, the published SeaUVSeaUVc models still perform well in most coastal and oceanic waters. Therefore, we propose a composite set of SeaUVSeaUVc algorithms, optimized for Kd() retrieval in almost all marine systems, ranging from oceanic to inshore waters. The composite algorithm set can retrieve Kd from ocean color with good accuracy across this wide range of water types (e.g., within 13 mean relative error for Kd(340)). A validation step using three independent, in situ data sets indicates that the composite SeaUVSeaUVc can generate accurate Kd values from 320 490 nm using satellite imagery on a global scale. Taking advantage of the inherent benefits of our statistical methods, we pooled the validation data with the training set, obtaining an optimized composite model for estimating Kd() in UV wavelengths for almost all marine waters. This optimized composite set of SeaUVSeaUVc algorithms will provide the optical community with improved ability to quantify the role of solar UV radiation in photochemical and photobiological processes in the ocean.

  8. An optimal-estimation-based aerosol retrieval algorithm using OMI near-UV observations

    NASA Astrophysics Data System (ADS)

    Jeong, U.; Kim, J.; Ahn, C.; Torres, O.; Liu, X.; Bhartia, P. K.; Spurr, R. J. D.; Haffner, D.; Chance, K.; Holben, B. N.

    2016-01-01

    An optimal-estimation(OE)-based aerosol retrieval algorithm using the OMI (Ozone Monitoring Instrument) near-ultraviolet observation was developed in this study. The OE-based algorithm has the merit of providing useful estimates of errors simultaneously with the inversion products. Furthermore, instead of using the traditional look-up tables for inversion, it performs online radiative transfer calculations with the VLIDORT (linearized pseudo-spherical vector discrete ordinate radiative transfer code) to eliminate interpolation errors and improve stability. The measurements and inversion products of the Distributed Regional Aerosol Gridded Observation Network campaign in northeast Asia (DRAGON NE-Asia 2012) were used to validate the retrieved aerosol optical thickness (AOT) and single scattering albedo (SSA). The retrieved AOT and SSA at 388 nm have a correlation with the Aerosol Robotic Network (AERONET) products that is comparable to or better than the correlation with the operational product during the campaign. The OE-based estimated error represented the variance of actual biases of AOT at 388 nm between the retrieval and AERONET measurements better than the operational error estimates. The forward model parameter errors were analyzed separately for both AOT and SSA retrievals. The surface reflectance at 388 nm, the imaginary part of the refractive index at 354 nm, and the number fine-mode fraction (FMF) were found to be the most important parameters affecting the retrieval accuracy of AOT, while FMF was the most important parameter for the SSA retrieval. The additional information provided with the retrievals, including the estimated error and degrees of freedom, is expected to be valuable for relevant studies. Detailed advantages of using the OE method were described and discussed in this paper.

  9. Retrievals of ice cloud microphysical properties of deep convective systems using radar measurements

    NASA Astrophysics Data System (ADS)

    Tian, Jingjing; Dong, Xiquan; Xi, Baike; Wang, Jingyu; Homeyer, Cameron R.; McFarquhar, Greg M.; Fan, Jiwen

    2016-09-01

    This study presents newly developed algorithms for retrieving ice cloud microphysical properties (ice water content (IWC) and median mass diameter (Dm)) for the stratiform rain and thick anvil regions of deep convective systems (DCSs) using Next Generation Radar (NEXRAD) reflectivity and empirical relationships from aircraft in situ measurements. A typical DCS case (20 May 2011) during the Midlatitude Continental Convective Clouds Experiment (MC3E) is selected as an example to demonstrate the 4-D retrievals. The vertical distributions of retrieved IWC are compared with previous studies and cloud-resolving model simulations. The statistics from six selected cases during MC3E show that the aircraft in situ derived IWC and Dm are 0.47 ± 0.29 g m-3 and 2.02 ± 1.3 mm, while the mean values of retrievals have a positive bias of 0.19 g m-3 (40%) and negative bias of 0.41 mm (20%), respectively. To evaluate the new retrieval algorithms, IWC and Dm are retrieved for other DCSs observed during the Bow Echo and Mesoscale Convective Vortex Experiment (BAMEX) using NEXRAD reflectivity and compared with aircraft in situ measurements. During BAMEX, a total of 63, 1 min collocated aircraft and radar samples are available for comparisons, and the averages of radar retrieved and aircraft in situ measured IWC values are 1.52 g m-3 and 1.25 g m-3 with a correlation of 0.55, and their averaged Dm values are 2.08 and 1.77 mm. In general, the new retrieval algorithms are suitable for continental DCSs during BAMEX, especially within stratiform rain and thick anvil regions.

  10. An Optimal-Estimation-Based Aerosol Retrieval Algorithm Using OMI Near-UV Observations

    NASA Technical Reports Server (NTRS)

    Jeong, U; Kim, J.; Ahn, C.; Torres, O.; Liu, X.; Bhartia, P. K.; Spurr, R. J. D.; Haffner, D.; Chance, K.; Holben, B. N.

    2016-01-01

    An optimal-estimation(OE)-based aerosol retrieval algorithm using the OMI (Ozone Monitoring Instrument) near-ultraviolet observation was developed in this study. The OE-based algorithm has the merit of providing useful estimates of errors simultaneously with the inversion products. Furthermore, instead of using the traditional lookup tables for inversion, it performs online radiative transfer calculations with the VLIDORT (linearized pseudo-spherical vector discrete ordinate radiative transfer code) to eliminate interpolation errors and improve stability. The measurements and inversion products of the Distributed Regional Aerosol Gridded Observation Network campaign in northeast Asia (DRAGON NE-Asia 2012) were used to validate the retrieved aerosol optical thickness (AOT) and single scattering albedo (SSA). The retrieved AOT and SSA at 388 nm have a correlation with the Aerosol Robotic Network (AERONET) products that is comparable to or better than the correlation with the operational product during the campaign. The OEbased estimated error represented the variance of actual biases of AOT at 388 nm between the retrieval and AERONET measurements better than the operational error estimates. The forward model parameter errors were analyzed separately for both AOT and SSA retrievals. The surface reflectance at 388 nm, the imaginary part of the refractive index at 354 nm, and the number fine-mode fraction (FMF) were found to be the most important parameters affecting the retrieval accuracy of AOT, while FMF was the most important parameter for the SSA retrieval. The additional information provided with the retrievals, including the estimated error and degrees of freedom, is expected to be valuable for relevant studies. Detailed advantages of using the OE method were described and discussed in this paper.

  11. Retrieval of Ice Cloud Properties Using an Optimal Estimation Algorithm and MODIS Infrared Observations: 2. Retrieval Evaluation

    NASA Technical Reports Server (NTRS)

    Wang, Chenxi; Platnick, Steven; Zhang, Zhibo; Meyer, Kerry; Wind, Galina; Yang, Ping

    2016-01-01

    An infrared-based optimal estimation (OE-IR) algorithm for retrieving ice cloud properties is evaluated. Specifically, the implementation of the algorithm with MODerate resolution Imaging Spectroradiometer (MODIS) observations is assessed in comparison with the operational retrieval products from MODIS on the Aqua satellite (MYD06), Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), and the Imaging Infrared Radiometer (IIR); the latter two instruments fly on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite in the Afternoon Constellation (A-Train) with Aqua. The results show that OE-IR cloud optical thickness (tau) and effective radius (r(sub eff)) retrievals perform best for ice clouds having 0.5 < tau< 7 and r(sub eff) < 50microns. For global ice clouds, the averaged retrieval uncertainties of tau and r(sub eff) are 19% and 33%, respectively. For optically thick ice clouds with tau larger than 10, however, the tau and r(sub eff) retrieval uncertainties can exceed 30% and 50%, respectively. For ice cloud top height (h), the averaged global uncertainty is 0.48km. Relatively large h uncertainty (e.g., > 1km) occurs for tau < 0.5. Analysis of 1month of the OE-IR retrievals shows large tau and r(sub eff) uncertainties in storm track regions and the southern oceans where convective clouds are frequently observed, as well as in high-latitude regions where temperature differences between the surface and cloud top are more ambiguous. Generally, comparisons between the OE-IR and the operational products show consistent tau and h retrievals. However, obvious differences between the OE-IR and the MODIS Collection 6 r(sub eff) are found.

  12. Sensitivity of Marine Warm Cloud Retrieval Statistics to Algorithm Choices: Examples from MODIS Collection 6

    NASA Technical Reports Server (NTRS)

    Platnick, Steven; Wind, Galina; Zhang, Zhibo; Ackerman, Steven A.; Maddux, Brent

    2012-01-01

    The optical and microphysical structure of warm boundary layer marine clouds is of fundamental importance for understanding a variety of cloud radiation and precipitation processes. With the advent of MODIS (Moderate Resolution Imaging Spectroradiometer) on the NASA EOS Terra and Aqua platforms, simultaneous global/daily 1km retrievals of cloud optical thickness and effective particle size are provided, as well as the derived water path. In addition, the cloud product (MOD06/MYD06 for MODIS Terra and Aqua, respectively) provides separate effective radii results using the l.6, 2.1, and 3.7 m spectral channels. Cloud retrieval statistics are highly sensitive to how a pixel identified as being "notclear" by a cloud mask (e.g., the MOD35/MYD35 product) is determined to be useful for an optical retrieval based on a 1-D cloud model. The Collection 5 MODIS retrieval algorithm removed pixels associated with cloud'edges as well as ocean pixels with partly cloudy elements in the 250m MODIS cloud mask - part of the so-called Clear Sky Restoral (CSR) algorithm. Collection 6 attempts retrievals for those two pixel populations, but allows a user to isolate or filter out the populations via CSR pixel-level Quality Assessment (QA) assignments. In this paper, using the preliminary Collection 6 MOD06 product, we present global and regional statistical results of marine warm cloud retrieval sensitivities to the cloud edge and 250m partly cloudy pixel populations. As expected, retrievals for these pixels are generally consistent with a breakdown of the ID cloud model. While optical thickness for these suspect pixel populations may have some utility for radiative studies, the retrievals should be used with extreme caution for process and microphysical studies.

  13. SCIAMACHY and FTS CO2 Retrievals Using the OCO Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Boesch, Hartmut; Buchwitz, M.; Sen, Bhaswar; Toon, Geoffrey C.; Washenfelder, Rebecca A.; Wennberg, Paul O.

    2005-01-01

    The Orbiting Carbon Observatory (OCO) mission will make the first global, space-based measurements of atmospheric C02 with the precision and coverage needed to characterize C02 sources and sinks on regional scales. OCO will make spectrally and spatially highly resolved measurements of reflected sunlight in the 02A -band and two near-infrared C02 bands. To test the OCO retrieval algorithm, SCIAMACHY and ground-based Fourier Transform Spectrometer (FTS) measurements at Park Falls, Wisconsin have been analyzed. Good agreement between SCIAMACHY and FTS C02 columns has been found with SCIAMACHY showing a much larger scatter than FTS measurements. Both SCIAMACHY and FTS overestimate the surface pressure by a few percent which significantly impacts retrieved C02 columns.

  14. Cloud Properties and Radiative Heating Rates for TWP

    DOE Data Explorer

    Comstock, Jennifer

    2013-11-07

    A cloud properties and radiative heating rates dataset is presented where cloud properties retrieved using lidar and radar observations are input into a radiative transfer model to compute radiative fluxes and heating rates at three ARM sites located in the Tropical Western Pacific (TWP) region. The cloud properties retrieval is a conditional retrieval that applies various retrieval techniques depending on the available data, that is if lidar, radar or both instruments detect cloud. This Combined Remote Sensor Retrieval Algorithm (CombRet) produces vertical profiles of liquid or ice water content (LWC or IWC), droplet effective radius (re), ice crystal generalized effective size (Dge), cloud phase, and cloud boundaries. The algorithm was compared with 3 other independent algorithms to help estimate the uncertainty in the cloud properties, fluxes, and heating rates (Comstock et al. 2013). The dataset is provided at 2 min temporal and 90 m vertical resolution. The current dataset is applied to time periods when the MMCR (Millimeter Cloud Radar) version of the ARSCL (Active Remotely-Sensed Cloud Locations) Value Added Product (VAP) is available. The MERGESONDE VAP is utilized where temperature and humidity profiles are required. Future additions to this dataset will utilize the new KAZR instrument and its associated VAPs.

  15. Comparison of SMOS and SMAP Soil Moisture Retrieval Approaches Using Tower-based Radiometer Data over a Vineyard Field

    NASA Technical Reports Server (NTRS)

    Miernecki, Maciej; Wigneron, Jean-Pierre; Lopez-Baeza, Ernesto; Kerr, Yann; DeJeu, Richard; DeLannoy, Gabielle J. M.; Jackson, Tom J.; O'Neill, Peggy E.; Shwank, Mike; Moran, Roberto Fernandez; hide

    2014-01-01

    The objective of this study was to compare several approaches to soil moisture (SM) retrieval using L-band microwave radiometry. The comparison was based on a brightness temperature (TB) data set acquired since 2010 by the L-band radiometer ELBARA-II over a vineyard field at the Valencia Anchor Station (VAS) site. ELBARA-II, provided by the European Space Agency (ESA) within the scientific program of the SMOS (Soil Moisture and Ocean Salinity) mission, measures multiangular TB data at horizontal and vertical polarization for a range of incidence angles (30-60). Based on a three year data set (2010-2012), several SM retrieval approaches developed for spaceborne missions including AMSR-E (Advanced Microwave Scanning Radiometer for EOS), SMAP (Soil Moisture Active Passive) and SMOS were compared. The approaches include: the Single Channel Algorithm (SCA) for horizontal (SCA-H) and vertical (SCA-V) polarizations, the Dual Channel Algorithm (DCA), the Land Parameter Retrieval Model (LPRM) and two simplified approaches based on statistical regressions (referred to as 'Mattar' and 'Saleh'). Time series of vegetation indices required for three of the algorithms (SCA-H, SCA-V and Mattar) were obtained from MODIS observations. The SM retrievals were evaluated against reference SM values estimated from a multiangular 2-Parameter inversion approach. The results obtained with the current base line algorithms developed for SMAP (SCA-H and -V) are in very good agreement with the reference SM data set derived from the multi-angular observations (R2 around 0.90, RMSE varying between 0.035 and 0.056 m3m3 for several retrieval configurations). This result showed that, provided the relationship between vegetation optical depth and a remotely-sensed vegetation index can be calibrated, the SCA algorithms can provide results very close to those obtained from multi-angular observations in this study area. The approaches based on statistical regressions provided similar results and the best accuracy was obtained with the Saleh methods based on either bi-angular or bipolarization observations (R2 around 0.93, RMSE around 0.035 m3m3). The LPRM and DCA algorithms were found to be slightly less successful in retrieving the 'reference' SM time series (R2 around 0.75, RMSE around 0.055 m3m3). However, the two above approaches have the great advantage of not requiring any model calibrations previous to the SM retrievals.

  16. High Vertically Resolved Atmospheric and Surface/Cloud Parameters Retrieved with Infrared Atmospheric Sounding Interferometer (IASI)

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Liu, Xu; Larar, Allen M.; Smith, WIlliam L.; Taylor, Jonathan P.; Schluessel, Peter; Strow, L. Larrabee; Mango, Stephen A.

    2008-01-01

    The Joint Airborne IASI Validation Experiment (JAIVEx) was conducted during April 2007 mainly for validation of the IASI on the MetOp satellite. IASI possesses an ultra-spectral resolution of 0.25/cm and a spectral coverage from 645 to 2760/cm. Ultra-spectral resolution infrared spectral radiance obtained from near nadir observations provide atmospheric, surface, and cloud property information. An advanced retrieval algorithm with a fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. This physical inversion scheme has been developed, dealing with cloudy as well as cloud-free radiance observed with ultraspectral infrared sounders, to simultaneously retrieve surface, atmospheric thermodynamic, and cloud microphysical parameters. A fast radiative transfer model, which applies to the cloud-free and/or clouded atmosphere, is used for atmospheric profile and cloud parameter retrieval. A one-dimensional (1-d) variational multi-variable inversion solution is used to improve an iterative background state defined by an eigenvector-regression-retrieval. The solution is iterated in order to account for non-linearity in the 1-d variational solution. It is shown that relatively accurate temperature and moisture retrievals are achieved below optically thin clouds. For optically thick clouds, accurate temperature and moisture profiles down to cloud top level are obtained. For both optically thin and thick cloud situations, the cloud top height can be retrieved with relatively high accuracy (i.e., error < 1 km). Preliminary retrievals of atmospheric soundings, surface properties, and cloud optical/microphysical properties with the IASI observations are obtained and presented. These retrievals will be further inter-compared with those obtained from airborne FTS system, such as the NPOESS Airborne Sounder Testbed - Interferometer (NAST-I), dedicated dropsondes, radiosondes, and ground based Raman Lidar. The capabilities of satellite ultra-spectral sounder such as the IASI are investigated indicating a high vertical structure of atmosphere is retrieved.

  17. Retrieving cloud, dust and ozone abundances in the Martian atmosphere using SPICAM/UV nadir spectra

    NASA Astrophysics Data System (ADS)

    Willame, Y.; Vandaele, A. C.; Depiesse, C.; Lefèvre, F.; Letocart, V.; Gillotay, D.; Montmessin, F.

    2017-08-01

    We present the retrieval algorithm developed to analyse nadir spectra from SPICAM/UV aboard Mars-Express. The purpose is to retrieve simultaneously several parameters of the Martian atmosphere and surface: the dust optical depth, the ozone total column, the cloud opacity and the surface albedo. The retrieval code couples the use of an existing complete radiative transfer code, an inversion method and a cloud detection algorithm. We describe the working principle of our algorithm and the parametrisation used to model the required absorption, scattering and reflection processes of the solar UV radiation that occur in the Martian atmosphere and at its surface. The retrieval method has been applied on 4 Martian years of SPICAM/UV data to obtain climatologies of the different quantities under investigation. An overview of the climatology is given for each species showing their seasonal and spatial distributions. The results show a good qualitative agreement with previous observations. Quantitative comparisons of the retrieved dust optical depths indicate generally larger values than previous studies. Possible shortcomings in the dust modelling (altitude profile) have been identified and may be part of the reason for this difference. The ozone results are found to be influenced by the presence of clouds. Preliminary quantitative comparisons show that our retrieved ozone columns are consistent with other results when no ice clouds are present, and are larger for the cases with clouds at high latitude. Sensitivity tests have also been performed showing that the use of other a priori assumptions such as the altitude distribution or some scattering properties can have an important impact on the retrieval.

  18. Combined Radar-Radiometer Surface Soil Moisture and Roughness Estimation

    NASA Technical Reports Server (NTRS)

    Akbar, Ruzbeh; Cosh, Michael H.; O'Neill, Peggy E.; Entekhabi, Dara; Moghaddam, Mahta

    2017-01-01

    A robust physics-based combined radar-radiometer, or Active-Passive, surface soil moisture and roughness estimation methodology is presented. Soil moisture and roughness retrieval is performed via optimization, i.e., minimization, of a joint objective function which constrains similar resolution radar and radiometer observations simultaneously. A data-driven and noise-dependent regularization term has also been developed to automatically regularize and balance corresponding radar and radiometer contributions to achieve optimal soil moisture retrievals. It is shown that in order to compensate for measurement and observation noise, as well as forward model inaccuracies, in combined radar-radiometer estimation surface roughness can be considered a free parameter. Extensive Monte-Carlo numerical simulations and assessment using field data have been performed to both evaluate the algorithms performance and to demonstrate soil moisture estimation. Unbiased root mean squared errors (RMSE) range from 0.18 to 0.03 cm3cm3 for two different land cover types of corn and soybean. In summary, in the context of soil moisture retrieval, the importance of consistent forward emission and scattering development is discussed and presented.

  19. An analysis of errors in special sensor microwave imager evaporation estimates over the global oceans

    NASA Technical Reports Server (NTRS)

    Esbensen, S. K.; Chelton, D. B.; Vickers, D.; Sun, J.

    1993-01-01

    The method proposed by Liu (1984) is used to estimate monthly averaged evaporation over the global oceans from 1 yr of special sensor microwave imager (SDSM/I) data. Intercomparisons involving SSM/I and in situ data are made over a wide range of oceanic conditions during August 1987 and February 1988 to determine the source of errors in the evaporation estimates. The most significant spatially coherent evaporation errors are found to come from estimates of near-surface specific humidity, q. Systematic discrepancies of over 2 g/kg are found in the tropics, as well as in the middle and high latitudes. The q errors are partitioned into contributions from the parameterization of q in terms of the columnar water vapor, i.e., the Liu q/W relationship, and from the retrieval algorithm for W. The effects of W retrieval errors are found to be smaller over most of the global oceans and due primarily to the implicitly assumed vertical structures of temperature and specific humidity on which the physically based SSM/I retrievals of W are based.

  20. On the remote sensing of cloud properties from satellite infrared sounder data

    NASA Technical Reports Server (NTRS)

    Yeh, H. Y. M.

    1984-01-01

    A method for remote sensing of cloud parameters by using infrared sounder data has been developed on the basis of the parameterized infrared transfer equation applicable to cloudy atmospheres. The method is utilized for the retrieval of the cloud height, amount, and emissivity in 11 micro m region. Numerical analyses and retrieval experiments have been carried out by utilizing the synthetic sounder data for the theoretical study. The sensitivity of the numerical procedures to the measurement and instrument errors are also examined. The retrieved results are physically discussed and numerically compared with the model atmospheres. Comparisons reveal that the recovered cloud parameters agree reasonably well with the pre-assumed values. However, for cases when relatively thin clouds and/or small cloud fractional cover within a field of view are present, the recovered cloud parameters show considerable fluctuations. Experiments on the proposed algorithm are carried out utilizing High Resolution Infrared Sounder (HIRS/2) data of NOAA 6 and TIROS-N. Results of experiments show reasonably good comparisons with the surface reports and GOES satellite images.

  1. Measurement Matrix Design for Phase Retrieval Based on Mutual Information

    NASA Astrophysics Data System (ADS)

    Shlezinger, Nir; Dabora, Ron; Eldar, Yonina C.

    2018-01-01

    In phase retrieval problems, a signal of interest (SOI) is reconstructed based on the magnitude of a linear transformation of the SOI observed with additive noise. The linear transform is typically referred to as a measurement matrix. Many works on phase retrieval assume that the measurement matrix is a random Gaussian matrix, which, in the noiseless scenario with sufficiently many measurements, guarantees invertability of the transformation between the SOI and the observations, up to an inherent phase ambiguity. However, in many practical applications, the measurement matrix corresponds to an underlying physical setup, and is therefore deterministic, possibly with structural constraints. In this work we study the design of deterministic measurement matrices, based on maximizing the mutual information between the SOI and the observations. We characterize necessary conditions for the optimality of a measurement matrix, and analytically obtain the optimal matrix in the low signal-to-noise ratio regime. Practical methods for designing general measurement matrices and masked Fourier measurements are proposed. Simulation tests demonstrate the performance gain achieved by the proposed techniques compared to random Gaussian measurements for various phase recovery algorithms.

  2. Combined Radar-Radiometer Surface Soil Moisture and Roughness Estimation.

    PubMed

    Akbar, Ruzbeh; Cosh, Michael H; O'Neill, Peggy E; Entekhabi, Dara; Moghaddam, Mahta

    2017-07-01

    A robust physics-based combined radar-radiometer, or Active-Passive, surface soil moisture and roughness estimation methodology is presented. Soil moisture and roughness retrieval is performed via optimization, i.e., minimization, of a joint objective function which constrains similar resolution radar and radiometer observations simultaneously. A data-driven and noise-dependent regularization term has also been developed to automatically regularize and balance corresponding radar and radiometer contributions to achieve optimal soil moisture retrievals. It is shown that in order to compensate for measurement and observation noise, as well as forward model inaccuracies, in combined radar-radiometer estimation surface roughness can be considered a free parameter. Extensive Monte-Carlo numerical simulations and assessment using field data have been performed to both evaluate the algorithm's performance and to demonstrate soil moisture estimation. Unbiased root mean squared errors (RMSE) range from 0.18 to 0.03 cm3/cm3 for two different land cover types of corn and soybean. In summary, in the context of soil moisture retrieval, the importance of consistent forward emission and scattering development is discussed and presented.

  3. Using High-Resolution Airborne Remote Sensing to Study Aerosol Near Clouds

    NASA Technical Reports Server (NTRS)

    Levy, Robert; Munchak, Leigh; Mattoo, Shana; Marshak, Alexander; Wilcox, Eric; Gao, Lan; Yorks, John; Platnick, Steven

    2016-01-01

    The horizontal space in between clear and cloudy air is very complex. This so-called twilight zone includes activated aerosols that are not quite clouds, thin cloud fragments that are not easily observable, and dying clouds that have not quite disappeared. This is a huge challenge for satellite remote sensing, specifically for retrieval of aerosol properties. Identifying what is cloud versus what is not cloud is critically important for attributing radiative effects and forcings to aerosols. At the same time, the radiative interactions between clouds and the surrounding media (molecules, surface and aerosols themselves) will contaminate retrieval of aerosol properties, even in clear skies. Most studies on aerosol cloud interactions are relevant to moderate resolution imagery (e.g. 500 m) from sensors such as MODIS. Since standard aerosol retrieval algorithms tend to keep a distance (e.g. 1 km) from the nearest detected cloud, it is impossible to evaluate what happens closer to the cloud. During Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS), the NASA ER-2 flew with the enhanced MODIS Airborne Simulator (eMAS), providing MODIS-like spectral observations at high (50 m) spatial resolution. We have applied MODIS-like aerosol retrieval for the eMAS data, providing new detail to characterization of aerosol near clouds. Interpretation and evaluation of these eMAS aerosol retrievals is aided by independent MODIS-like cloud retrievals, as well as profiles from the co-flying Cloud Physics Lidar (CPL). Understanding aerosolcloud retrieval at high resolution will lead to better characterization and interpretation of long-term, global products from lower resolution (e.g.MODIS) satellite retrievals.

  4. Estimating surface soil moisture from SMAP observations using a Neural Network technique.

    PubMed

    Kolassa, J; Reichle, R H; Liu, Q; Alemohammad, S H; Gentine, P; Aida, K; Asanuma, J; Bircher, S; Caldwell, T; Colliander, A; Cosh, M; Collins, C Holifield; Jackson, T J; Martínez-Fernández, J; McNairn, H; Pacheco, A; Thibeault, M; Walker, J P

    2018-01-01

    A Neural Network (NN) algorithm was developed to estimate global surface soil moisture for April 2015 to March 2017 with a 2-3 day repeat frequency using passive microwave observations from the Soil Moisture Active Passive (SMAP) satellite, surface soil temperatures from the NASA Goddard Earth Observing System Model version 5 (GEOS-5) land modeling system, and Moderate Resolution Imaging Spectroradiometer-based vegetation water content. The NN was trained on GEOS-5 soil moisture target data, making the NN estimates consistent with the GEOS-5 climatology, such that they may ultimately be assimilated into this model without further bias correction. Evaluated against in situ soil moisture measurements, the average unbiased root mean square error (ubRMSE), correlation and anomaly correlation of the NN retrievals were 0.037 m 3 m -3 , 0.70 and 0.66, respectively, against SMAP core validation site measurements and 0.026 m 3 m -3 , 0.58 and 0.48, respectively, against International Soil Moisture Network (ISMN) measurements. At the core validation sites, the NN retrievals have a significantly higher skill than the GEOS-5 model estimates and a slightly lower correlation skill than the SMAP Level-2 Passive (L2P) product. The feasibility of the NN method was reflected by a lower ubRMSE compared to the L2P retrievals as well as a higher skill when ancillary parameters in physically-based retrievals were uncertain. Against ISMN measurements, the skill of the two retrieval products was more comparable. A triple collocation analysis against Advanced Microwave Scanning Radiometer 2 (AMSR2) and Advanced Scatterometer (ASCAT) soil moisture retrievals showed that the NN and L2P retrieval errors have a similar spatial distribution, but the NN retrieval errors are generally lower in densely vegetated regions and transition zones.

  5. (abstract) Using an Inversion Algorithm to Retrieve Parameters and Monitor Changes over Forested Areas from SAR Data

    NASA Technical Reports Server (NTRS)

    Moghaddam, Mahta

    1995-01-01

    In this work, the application of an inversion algorithm based on a nonlinear opimization technique to retrieve forest parameters from multifrequency polarimetric SAR data is discussed. The approach discussed here allows for retrieving and monitoring changes in forest parameters in a quantative and systematic fashion using SAR data. The parameters to be inverted directly from the data are the electromagnetic scattering properties of the forest components such as their dielectric constants and size characteristics. Once these are known, attributes such as canopy moisture content can be obtained, which are useful in the ecosystem models.

  6. Extended capture range for focus-diverse phase retrieval in segmented aperture systems using geometrical optics.

    PubMed

    Jurling, Alden S; Fienup, James R

    2014-03-01

    Extending previous work by Thurman on wavefront sensing for segmented-aperture systems, we developed an algorithm for estimating segment tips and tilts from multiple point spread functions in different defocused planes. We also developed methods for overcoming two common modes for stagnation in nonlinear optimization-based phase retrieval algorithms for segmented systems. We showed that when used together, these methods largely solve the capture range problem in focus-diverse phase retrieval for segmented systems with large tips and tilts. Monte Carlo simulations produced a rate of success better than 98% for the combined approach.

  7. Evaluating cloud retrieval algorithms with the ARM BBHRP framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mlawer,E.; Dunn,M.; Mlawer, E.

    2008-03-10

    Climate and weather prediction models require accurate calculations of vertical profiles of radiative heating. Although heating rate calculations cannot be directly validated due to the lack of corresponding observations, surface and top-of-atmosphere measurements can indirectly establish the quality of computed heating rates through validation of the calculated irradiances at the atmospheric boundaries. The ARM Broadband Heating Rate Profile (BBHRP) project, a collaboration of all the working groups in the program, was designed with these heating rate validations as a key objective. Given the large dependence of radiative heating rates on cloud properties, a critical component of BBHRP radiative closure analysesmore » has been the evaluation of cloud microphysical retrieval algorithms. This evaluation is an important step in establishing the necessary confidence in the continuous profiles of computed radiative heating rates produced by BBHRP at the ARM Climate Research Facility (ACRF) sites that are needed for modeling studies. This poster details the continued effort to evaluate cloud property retrieval algorithms within the BBHRP framework, a key focus of the project this year. A requirement for the computation of accurate heating rate profiles is a robust cloud microphysical product that captures the occurrence, height, and phase of clouds above each ACRF site. Various approaches to retrieve the microphysical properties of liquid, ice, and mixed-phase clouds have been processed in BBHRP for the ACRF Southern Great Plains (SGP) and the North Slope of Alaska (NSA) sites. These retrieval methods span a range of assumptions concerning the parameterization of cloud location, particle density, size, shape, and involve different measurement sources. We will present the radiative closure results from several different retrieval approaches for the SGP site, including those from Microbase, the current 'reference' retrieval approach in BBHRP. At the NSA, mixed-phase clouds and cloud with a low optical depth are prevalent; the radiative closure studies using Microbase demonstrated significant residuals. As an alternative to Microbase at NSA, the Shupe-Turner cloud property retrieval algorithm, aimed at improving the partitioning of cloud phase and incorporating more constrained, conditional microphysics retrievals, also has been evaluated using the BBHRP data set.« less

  8. Quantifying the Climate-Scale Accuracy of Satellite Cloud Retrievals

    NASA Astrophysics Data System (ADS)

    Roberts, Y.; Wielicki, B. A.; Sun-Mack, S.; Minnis, P.; Liang, L.; Di Girolamo, L.

    2014-12-01

    Instrument calibration and cloud retrieval algorithms have been developed to minimize retrieval errors on small scales. However, measurement uncertainties and assumptions within retrieval algorithms at the pixel level may alias into decadal-scale trends of cloud properties. We first, therefore, quantify how instrument calibration changes could alias into cloud property trends. For a perfect observing system the climate trend accuracy is limited only by the natural variability of the climate variable. Alternatively, for an actual observing system, the climate trend accuracy is additionally limited by the measurement uncertainty. Drifts in calibration over time may therefore be disguised as a true climate trend. We impose absolute calibration changes to MODIS spectral reflectance used as input to the CERES Cloud Property Retrieval System (CPRS) and run the modified MODIS reflectance through the CPRS to determine the sensitivity of cloud properties to calibration changes. We then use these changes to determine the impact of instrument calibration changes on trend uncertainty in reflected solar cloud properties. Secondly, we quantify how much cloud retrieval algorithm assumptions alias into cloud optical retrieval trends by starting with the largest of these biases: the plane-parallel assumption in cloud optical thickness (τC) retrievals. First, we collect liquid water cloud fields obtained from Multi-angle Imaging Spectroradiometer (MISR) measurements to construct realistic probability distribution functions (PDFs) of 3D cloud anisotropy (a measure of the degree to which clouds depart from plane-parallel) for different ISCCP cloud types. Next, we will conduct a theoretical study with dynamically simulated cloud fields and a 3D radiative transfer model to determine the relationship between 3D cloud anisotropy and 3D τC bias for each cloud type. Combining these results provides distributions of 3D τC bias by cloud type. Finally, we will estimate the change in frequency of occurrence of cloud types between two decades and will have the information needed to calculate the total change in 3D optical thickness bias between two decades. If we uncover aliases in this study, the results will motivate the development and rigorous testing of climate specific cloud retrieval algorithms.

  9. An Intelligent Pictorial Information System

    NASA Astrophysics Data System (ADS)

    Lee, Edward T.; Chang, B.

    1987-05-01

    In examining the history of computer application, we discover that early computer systems were developed primarily for applications related to scientific computation, as in weather prediction, aerospace applications, and nuclear physics applications. At this stage, the computer system served as a big calculator to perform, in the main, manipulation of numbers. Then it was found that computer systems could also be used for business applications, information storage and retrieval, word processing, and report generation. The history of computer application is summarized in Table I. The complexity of pictures makes picture processing much more difficult than number and alphanumerical processing. Therefore, new techniques, new algorithms, and above all, new pictorial knowledge, [1] are needed to overcome the limitatins of existing computer systems. New frontiers in designing computer systems are the ways to handle the representation,[2,3] classification, manipulation, processing, storage, and retrieval of pictures. Especially, the ways to deal with similarity measures and the meaning of the word "approximate" and the phrase "approximate reasoning" are an important and an indispensable part of an intelligent pictorial information system. [4,5] The main objective of this paper is to investigate the mathematical foundation for the effective organization and efficient retrieval of pictures in similarity-directed pictorial databases, [6] based on similarity retrieval techniques [7] and fuzzy languages [8]. The main advantage of this approach is that similar pictures are stored logically close to each other by using quantitative similarity measures. Thus, for answering queries, the amount of picture data needed to be searched can be reduced and the retrieval time can be improved. In addition, in a pictorial database, very often it is desired to find pictures (or feature vectors, histograms, etc.) that are most similar to or most dissimilar [9] to a test picture (or feature vector). Using similarity measures, one can not only store similar pictures logically or physically close to each other in order to improve retrieval or updating efficiency, one can also use such similarity measures to answer fuzzy queries involving nonexact retrieval conditions. In this paper, similarity directed pictorial databases involving geometric figures, chromosome images, [10] leukocyte images, cardiomyopathy images, and satellite images [11] are presented as illustrative examples.

  10. Microwave Observations of Precipitation and the Atmosphere

    NASA Technical Reports Server (NTRS)

    Staelin, David H.; Rosenkranz, Philip W.

    2004-01-01

    This research effort had three elements devoted to improving satellite-derived passive microwave retrievals of precipitation rate: morphological rain-rate retrievals, warm rain retrievals, and extension of a study of geostationary satellite options. The morphological precipitation-rate retrieval method uses for the first time the morphological character of the observed storm microwave spectra. The basic concept involves: 1) retrieval of point rainfall rates using current algorithms, 2) using spatial feature vectors of the observations over segmented multi-pixel storms to estimate the integrated rainfall rate for that storm (cu m/s), and 3) normalization of the point rain-rate retrievals to ensure consistency with the storm-wide retrieval. This work is ongoing, but two key steps have been completed: development of a segmentation algorithm for defining spatial regions corresponding to single storms for purposes of estimation, and reduction of some of the data from NAST-M that will be used to support this research going forward. The warm rain retrieval method involved extension of Aquai/AIRS/AMSU/HSB algorithmic work on cloud water retrievals. The central concept involves the fact that passive microwave cloud water retrievals over approx. 0.4 mm are very likely associated with precipitation. Since glaciated precipitation is generally detected quite successfully using scattering signatures evident in the surface-blind 54- and 183-GHz bands, this new method complements the first by permitting precipitation retrievals of non-glaciated events. The method is most successful over ocean, but has detected non-glaciated convective cells over land, perhaps in their early formative stages. This work will require additional exploration and validation prior to publication. Passive microwave instrument configurations for use in geostationary orbit were studied. They employ parabolic reflectors between 2 and 4 meters in diameter, and frequencies up to approx.430 GHz; this corresponds to nadir spot diameters as small as 10 km.

  11. Convective and Stratiform Precipitation Processes and their Relationship to Latent Heating

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Lang, Steve; Zeng, Xiping; Shige, Shoichi; Takayabu, Yukari

    2009-01-01

    The global hydrological cycle is central to the Earth's climate system, with rainfall and the physics of its formation acting as the key links in the cycle. Two-thirds of global rainfall occurs in the Tropics. Associated with this rainfall is a vast amount of heat, which is known as latent heat. It arises mainly due to the phase change of water vapor condensing into liquid droplets; three-fourths of the total heat energy available to the Earth's atmosphere comes from tropical rainfall. In addition, fresh water provided by tropical rainfall and its variability exerts a large impact upon the structure and motions of the upper ocean layer. An improved convective -stratiform heating (CSH) algorithm has been developed to obtain the 3D structure of cloud heating over the Tropics based on two sources of information: 1) rainfall information, namely its amount and the fraction due to light rain intensity, observed directly from the Precipitation Radar (PR) on board the TRMM satellite and 2) synthetic cloud physics information obtained from cloud-resolving model (CRM) simulations of cloud systems. The cloud simulations provide details on cloud processes, specifically latent heating, eddy heat flux convergence and radiative heating/cooling, that. are not directly observable by satellite. The new CSH algorithm-derived heating has a noticeably different heating structure over both ocean and land regions compared to the previous CSH algorithm. One of the major differences between new and old algorithms is that the level of maximum cloud heating occurs 1 to 1.5 km lower in the atmosphere in the new algorithm. This can effect the structure of the implied air currents associated with the general circulation of the atmosphere in the Tropics. The new CSH algorithm will be used provide retrieved heating data to other heating algorithms to supplement their performance.

  12. X-Ray Phase Imaging for Breast Cancer Detection

    DTIC Science & Technology

    2012-09-01

    the Gerchberg-Saxton algorithm in the Fresnel diffraction regime, and is much more robust against image noise than the TIE-based method. For details...developed efficient coding with the software modules for the image registration, flat-filed correction , and phase retrievals. In addition, we...X, Liu H. 2010. Performance analysis of the attenuation-partition based iterative phase retrieval algorithm for in-line phase-contrast imaging

  13. Estimates of Single Sensor Error Statistics for the MODIS Matchup Database Using Machine Learning

    NASA Astrophysics Data System (ADS)

    Kumar, C.; Podesta, G. P.; Minnett, P. J.; Kilpatrick, K. A.

    2017-12-01

    Sea surface temperature (SST) is a fundamental quantity for understanding weather and climate dynamics. Although sensors aboard satellites provide global and repeated SST coverage, a characterization of SST precision and bias is necessary for determining the suitability of SST retrievals in various applications. Guidance on how to derive meaningful error estimates is still being developed. Previous methods estimated retrieval uncertainty based on geophysical factors, e.g. season or "wet" and "dry" atmospheres, but the discrete nature of these bins led to spatial discontinuities in SST maps. Recently, a new approach clustered retrievals based on the terms (excluding offset) in the statistical algorithm used to estimate SST. This approach resulted in over 600 clusters - too many to understand the geophysical conditions that influence retrieval error. Using MODIS and buoy SST matchups (2002 - 2016), we use machine learning algorithms (recursive and conditional trees, random forests) to gain insight into geophysical conditions leading to the different signs and magnitudes of MODIS SST residuals (satellite SSTs minus buoy SSTs). MODIS retrievals were first split into three categories: < -0.4 C, -0.4 C ≤ residual ≤ 0.4 C, and > 0.4 C. These categories are heavily unbalanced, with residuals > 0.4 C being much less frequent. Performance of classification algorithms is affected by imbalance, thus we tested various rebalancing algorithms (oversampling, undersampling, combinations of the two). We consider multiple features for the decision tree algorithms: regressors from the MODIS SST algorithm, proxies for temperature deficit, and spatial homogeneity of brightness temperatures (BTs), e.g., the range of 11 μm BTs inside a 25 km2 area centered on the buoy location. These features and a rebalancing of classes led to an 81.9% accuracy when classifying SST retrievals into the < -0.4 C and -0.4 C ≤ residual ≤ 0.4 C categories. Spatial homogeneity in BTs consistently appears as a very important variable for classification, suggesting that unidentified cloud contamination still is one of the causes leading to negative SST residuals. Precision and accuracy of error estimates from our decision tree classifier are enhanced using this knowledge.

  14. Error Analyses of the North Alabama Lightning Mapping Array (LMA)

    NASA Technical Reports Server (NTRS)

    Koshak, W. J.; Solokiewicz, R. J.; Blakeslee, R. J.; Goodman, S. J.; Christian, H. J.; Hall, J. M.; Bailey, J. C.; Krider, E. P.; Bateman, M. G.; Boccippio, D. J.

    2003-01-01

    Two approaches are used to characterize how accurately the North Alabama Lightning Mapping Array (LMA) is able to locate lightning VHF sources in space and in time. The first method uses a Monte Carlo computer simulation to estimate source retrieval errors. The simulation applies a VHF source retrieval algorithm that was recently developed at the NASA-MSFC and that is similar, but not identical to, the standard New Mexico Tech retrieval algorithm. The second method uses a purely theoretical technique (i.e., chi-squared Curvature Matrix theory) to estimate retrieval errors. Both methods assume that the LMA system has an overall rms timing error of 50ns, but all other possible errors (e.g., multiple sources per retrieval attempt) are neglected. The detailed spatial distributions of retrieval errors are provided. Given that the two methods are completely independent of one another, it is shown that they provide remarkably similar results, except that the chi-squared theory produces larger altitude error estimates than the (more realistic) Monte Carlo simulation.

  15. Using Ground-Based Measurements and Retrievals to Validate Satellite Data

    NASA Technical Reports Server (NTRS)

    Dong, Xiquan

    2002-01-01

    The proposed research is to use the DOE ARM ground-based measurements and retrievals as the ground-truth references for validating satellite cloud results and retrieving algorithms. This validation effort includes four different ways: (1) cloud properties on different satellites, therefore different sensors, TRMM VIRS and TERRA MODIS; (2) cloud properties at different climatic regions, such as DOE ARM SGP, NSA, and TWP sites; (3) different cloud types, low and high level cloud properties; and (4) day and night retrieving algorithms. Validation of satellite-retrieved cloud properties is very difficult and a long-term effort because of significant spatial and temporal differences between the surface and satellite observing platforms. The ground-based measurements and retrievals, only carefully analyzed and validated, can provide a baseline for estimating errors in the satellite products. Even though the validation effort is so difficult, a significant progress has been made during the proposed study period, and the major accomplishments are summarized in the follow.

  16. Accuracy of Geophysical Parameters Derived from AIRS/AMSU as a Function of Fractional Cloud Cover

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Barnet, Chris; Blaisdell, John; Iredell, Lena; Keita, Fricky; Kouvaris, Lou; Molnar, Gyula; Chahine, Moustafa

    2006-01-01

    AIRS was launched on EOS Aqua on May 4,2002, together with AMSU A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. The sounding goals of AIRS are to produce 1 km tropospheric layer mean temperatures with an rms error of lK, and layer precipitable water with an rms error of 20 percent, in cases with up to 80 percent effective cloud cover. The basic theory used to analyze Atmospheric InfraRed Sounder/Advanced Microwave Sounding Unit/Humidity Sounder Brazil (AIRS/AMSU/HSB) data in the presence of clouds, called the at-launch algorithm, was described previously. Pre-launch simulation studies using this algorithm indicated that these results should be achievable. Some modifications have been made to the at-launch retrieval algorithm as described in this paper. Sample fields of parameters retrieved from AIRS/AMSU/HSB data are presented and validated as a function of retrieved fractional cloud cover. As in simulation, the degradation of retrieval accuracy with increasing cloud cover is small and the RMS accuracy of lower tropospheric temperature retrieved with 80 percent cloud cover is about 0.5 K poorer than for clear cases. HSB failed in February 2003, and consequently HSB channel radiances are not used in the results shown in this paper. The AIRS/AMSU retrieval algorithm described in this paper, called Version 4, become operational at the Goddard DAAC (Distributed Active Archive Center) in April 2003 and is being used to analyze near-real time AIRS/AMSU data. Historical AIRS/AMSU data, going backwards from March 2005 through September 2002, is also being analyzed by the DAAC using the Version 4 algorithm.

  17. Retrieval and Validation of aerosol optical properties from AHI measurements: impact of surface reflectance assumption

    NASA Astrophysics Data System (ADS)

    Lim, H.; Choi, M.; Kim, J.; Go, S.; Chan, P.; Kasai, Y.

    2017-12-01

    This study attempts to retrieve the aerosol optical properties (AOPs) based on the spectral matching method, with using three visible and one near infrared channels (470, 510, 640, 860nm). This method requires the preparation of look-up table (LUT) approach based on the radiative transfer modeling. Cloud detection is one of the most important processes for guaranteed quality of AOPs. Since the AHI has several infrared channels, which are very advantageous for cloud detection, clouds can be removed by using brightness temperature difference (BTD) and spatial variability test. The Yonsei Aerosol Retrieval (YAER) algorithm is basically utilized on a dark surface, therefore a bright surface (e.g., desert, snow) should be removed first. Then we consider the characteristics of the reflectance of land and ocean surface using three visible channels. The known surface reflectivity problem in high latitude area can be solved in this algorithm by selecting appropriate channels through improving tests. On the other hand, we retrieved the AOPs by obtaining the visible surface reflectance using NIR to normalized difference vegetation index short wave infrared (NDVIswir) relationship. ESR tends to underestimate urban and cropland area, we improved the visible surface reflectance considering urban effect. In this version, ocean surface reflectance is using the new cox and munk method which considers ocean bidirectional reflectance distribution function (BRDF). Input of this method has wind speed, chlorophyll, salinity and so on. Based on validation results with the sun-photometer measurement in AErosol Robotic NETwork (AERONET), we confirm that the quality of Aerosol Optical Depth (AOD) from the YAER algorithm is comparable to the product from the Japan Aerospace Exploration Agency (JAXA) retrieval algorithm. Our future update includes a consideration of improvement land surface reflectance by hybrid approach, and non-spherical aerosols. This will improve the quality of YAER algorithm more, particularly retrieval for the dust particle over the bright surface in East Asia.

  18. A Well-Calibrated Ocean Algorithm for Special Sensor Microwave/Imager

    NASA Technical Reports Server (NTRS)

    Wentz, Frank J.

    1997-01-01

    I describe an algorithm for retrieving geophysical parameters over the ocean from special sensor microwave/imager (SSM/I) observations. This algorithm is based on a model for the brightness temperature T(sub B) of the ocean and intervening atmosphere. The retrieved parameters are the near-surface wind speed W, the columnar water vapor V, the columnar cloud liquid water L, and the line-of-sight wind W(sub LS). I restrict my analysis to ocean scenes free of rain, and when the algorithm detects rain, the retrievals are discarded. The model and algorithm are precisely calibrated using a very large in situ database containing 37,650 SSM/I overpasses of buoys and 35,108 overpasses of radiosonde sites. A detailed error analysis indicates that the T(sub B) model rms accuracy is between 0.5 and 1 K and that the rms retrieval accuracies for wind, vapor, and cloud are 0.9 m/s, 1.2 mm, and 0.025 mm, respectively. The error in specifying the cloud temperature will introduce an additional 10% error in the cloud water retrieval. The spatial resolution for these accuracies is 50 km. The systematic errors in the retrievals are smaller than the rms errors, being about 0.3 m/s, 0.6 mm, and 0.005 mm for W, V, and L, respectively. The one exception is the systematic error in wind speed of -1.0 m/s that occurs for observations within +/-20 deg of upwind. The inclusion of the line-of-sight wind W(sub LS) in the retrieval significantly reduces the error in wind speed due to wind direction variations. The wind error for upwind observations is reduced from -3.0 to -1.0 m/s. Finally, I find a small signal in the 19-GHz, horizontal polarization (h(sub pol) T(sub B) residual DeltaT(sub BH) that is related to the effective air pressure of the water vapor profile. This information may be of some use in specifying the vertical distribution of water vapor.

  19. Towards improving the NASA standard soil moisture retrieval algorithm and product

    NASA Astrophysics Data System (ADS)

    Mladenova, I. E.; Jackson, T. J.; Njoku, E. G.; Bindlish, R.; Cosh, M. H.; Chan, S.

    2013-12-01

    Soil moisture mapping using passive-based microwave remote sensing techniques has proven to be one of the most effective ways of acquiring reliable global soil moisture information on a routine basis. An important step in this direction was made by the launch of the Advanced Microwave Scanning Radiometer on the NASA's Earth Observing System Aqua satellite (AMSR-E). Along with the standard NASA algorithm and operational AMSR-E product, the easy access and availability of the AMSR-E data promoted the development and distribution of alternative retrieval algorithms and products. Several evaluation studies have demonstrated issues with the standard NASA AMSR-E product such as dampened temporal response and limited range of the final retrievals and noted that the available global passive-based algorithms, even though based on the same electromagnetic principles, produce different results in terms of accuracy and temporal dynamics. Our goal is to identify the theoretical causes that determine the reduced sensitivity of the NASA AMSR-E product and outline ways to improve the operational NASA algorithm, if possible. Properly identifying the underlying reasons that cause the above mentioned features of the NASA AMSR-E product and differences between the alternative algorithms requires a careful examination of the theoretical basis of each approach. Specifically, the simplifying assumptions and parametrization approaches adopted by each algorithm to reduce the dimensionality of unknowns and characterize the observing system. Statistically-based error analyses, which are useful and necessary, provide information on the relative accuracy of each product but give very little information on the theoretical causes, knowledge that is essential for algorithm improvement. Thus, we are currently examining the possibility of improving the standard NASA AMSR-E global soil moisture product by conducting a thorough theoretically-based review of and inter-comparisons between several well established global retrieval techniques. A detailed discussion focused on the theoretical basis of each approach and algorithms sensitivity to assumptions and parametrization approaches will be presented. USDA is an equal opportunity provider and employer.

  20. Effects of daily, high spatial resolution a priori profiles of satellite-derived NOx emissions

    NASA Astrophysics Data System (ADS)

    Laughner, J.; Zare, A.; Cohen, R. C.

    2016-12-01

    The current generation of space-borne NO2 column observations provides a powerful method of constraining NOx emissions due to the spatial resolution and global coverage afforded by the Ozone Monitoring Instrument (OMI). The greater resolution available in next generation instruments such as TROPOMI and the capabilities of geosynchronous platforms TEMPO, Sentinel-4, and GEMS will provide even greater capabilities in this regard, but we must apply lessons learned from the current generation of retrieval algorithms to make the best use of these instruments. Here, we focus on the effect of the resolution of the a priori NO2 profiles used in the retrieval algorithms. We show that for an OMI retrieval, using daily high-resolution a priori profiles results in changes in the retrieved VCDs up to 40% when compared to a retrieval using monthly average profiles at the same resolution. Further, comparing a retrieval with daily high spatial resolution a priori profiles to a more standard one, we show that emissions derived increase by 100% when using the optimized retrieval.

  1. An Anomaly Correlation Skill Score for the Evaluation of the Performance of Hyperspectral Infrared Sounders

    NASA Technical Reports Server (NTRS)

    Aumann, Hartmut H.; Manning, Evan; Barnet, Chris; Maddy, Eric; Blackwell, William

    2009-01-01

    With the availability of very accurate forecasts, the metric of accuracy alone for the evaluation of the performance of a retrieval system can produce misleading results. A useful characterization of the quality of a retrieval system and its potential to contribute to an improved weather forecast is its skill, which we define as the ability to make retrievals of geophysical parameters which are closer to the truth than the six hour forecast, when the truth differs significantly from the forecast. We illustrate retrieval skill using one day of AMSU and AIRS data with three different retrieval algorithms, which result in retrievals for more than 90% of the potential retrievals under clear and cloudy conditions. Two of the three algorithms have better than 1 K rms "RAOB quality" accuracy on the troposphere, but only one has skill between 900 and 100 mb. AIRS was launched on the EOS Aqua spacecraft in May 2002 into a 705 km polar sun-synchronous orbit with accurately maintained 1:30 PM ascending node. Essentially uninterrupted data are freely available since September 2002.

  2. MAX-DOAS retrieval of aerosol extinction properties in Madrid, Spain

    NASA Astrophysics Data System (ADS)

    Wang, Shanshan; Cuevas, Carlos A.; Frieß, Udo; Saiz-Lopez, Alfonso

    2017-04-01

    We present Multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements performed in the urban environment of Madrid, Spain, from March to September 2015. The O4 absorption in the ultraviolet (UV) spectral region was used to retrieve the aerosol extinction profile using an inversion algorithm. The results show a good agreement between the hourly retrieved aerosol optical depth (AOD) and the correlative Aerosol Robotic Network (AERONET) product. Higher AODs are found in the summer season due to the more frequent occurrence of Saharan dust intrusions. The surface aerosol extinction coefficient as retrieved by the MAX-DOAS measurements was also compared to in situ PM2:5 concentrations. The level of agreement between both measurements indicates that the MAX-DOAS retrieval has the ability to characterize the extinction of aerosol particles near the surface. The retrieval algorithm was also used to study a case of severe dust intrusion on 12 May 2015. The capability of the MAX-DOAS retrieval to recognize the dust event including an elevated particle layer is investigated along with air mass back-trajectory analysis.

  3. Phytoplankton pigment concentrations in the Middle Atlantic Bight - Comparison of ship determinations and CZCS estimates. [Coastal Zone Color Scanner

    NASA Technical Reports Server (NTRS)

    Gordon, H. R.; Brown, J. W.; Clark, D. K.; Brown, O. B.; Evans, R. H.; Broenkow, W. W.

    1983-01-01

    The processing algorithms used for relating the apparent color of the ocean observed with the Coastal-Zone Color Scanner on Nimbus-7 to the concentration of phytoplankton pigments (principally the pigment responsible for photosynthesis, chlorophyll-a) are developed and discussed in detail. These algorithms are applied to the shelf and slope waters of the Middle Atlantic Bight and also to Sargasso Sea waters. In all, four images are examined, and the resulting pigment concentrations are compared to continuous measurements made along ship tracks. The results suggest that over the 0.08-1.5 mg/cu m range, the error in the retrieved pigment concentration is of the order of 30-40% for a variety of atmospheric turbidities. In three direct comparisons between ship-measured and satellite-retrieved values of the water-leaving radiance, the atmospheric correction algorithm retrieved the water-leaving radiance with an average error of about 10%. This atmospheric correction algorithm does not require any surface measurements for its application.

  4. Retrieval of chlorophyll from remote-sensing reflectance in the china seas.

    PubMed

    He, M X; Liu, Z S; Du, K P; Li, L P; Chen, R; Carder, K L; Lee, Z P

    2000-05-20

    The East China Sea is a typical case 2 water environment, where concentrations of phytoplankton pigments, suspended matter, and chromophoric dissolved organic matter (CDOM) are all higher than those in the open oceans, because of the discharge from the Yangtze River and the Yellow River. By using a hyperspectral semianalytical model, we simulated a set of remote-sensing reflectance for a variety of chlorophyll, suspended matter, and CDOM concentrations. From this simulated data set, a new algorithm for the retrieval of chlorophyll concentration from remote-sensing reflectance is proposed. For this method, we took into account the 682-nm spectral channel in addition to the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) channels. When this algorithm was applied to a field data set, the chlorophyll concentrations retrieved through the new algorithm were consistent with field measurements to within a small error of 18%, in contrast with that of 147% between the SeaWiFS ocean chlorophyll 2 algorithm and the in situ observation.

  5. Algorithm theoretical baseline for formaldehyde retrievals from S5P TROPOMI and from the QA4ECV project

    NASA Astrophysics Data System (ADS)

    De Smedt, Isabelle; Theys, Nicolas; Yu, Huan; Danckaert, Thomas; Lerot, Christophe; Compernolle, Steven; Van Roozendael, Michel; Richter, Andreas; Hilboll, Andreas; Peters, Enno; Pedergnana, Mattia; Loyola, Diego; Beirle, Steffen; Wagner, Thomas; Eskes, Henk; van Geffen, Jos; Folkert Boersma, Klaas; Veefkind, Pepijn

    2018-04-01

    On board the Copernicus Sentinel-5 Precursor (S5P) platform, the TROPOspheric Monitoring Instrument (TROPOMI) is a double-channel, nadir-viewing grating spectrometer measuring solar back-scattered earthshine radiances in the ultraviolet, visible, near-infrared, and shortwave infrared with global daily coverage. In the ultraviolet range, its spectral resolution and radiometric performance are equivalent to those of its predecessor OMI, but its horizontal resolution at true nadir is improved by an order of magnitude. This paper introduces the formaldehyde (HCHO) tropospheric vertical column retrieval algorithm implemented in the S5P operational processor and comprehensively describes its various retrieval steps. Furthermore, algorithmic improvements developed in the framework of the EU FP7-project QA4ECV are described for future updates of the processor. Detailed error estimates are discussed in the light of Copernicus user requirements and needs for validation are highlighted. Finally, verification results based on the application of the algorithm to OMI measurements are presented, demonstrating the performances expected for TROPOMI.

  6. Multi-sensor measurements of mixed-phase clouds above Greenland

    NASA Astrophysics Data System (ADS)

    Stillwell, Robert A.; Shupe, Matthew D.; Thayer, Jeffrey P.; Neely, Ryan R.; Turner, David D.

    2018-04-01

    Liquid-only and mixed-phase clouds in the Arctic strongly affect the regional surface energy and ice mass budgets, yet much remains unknown about the nature of these clouds due to the lack of intensive measurements. Lidar measurements of these clouds are challenged by very large signal dynamic range, which makes even seemingly simple tasks, such as thermodynamic phase classification, difficult. This work focuses on a set of measurements made by the Clouds Aerosol Polarization and Backscatter Lidar at Summit, Greenland and its retrieval algorithms, which use both analog and photon counting as well as orthogonal and non-orthogonal polarization retrievals to extend dynamic range and improve overall measurement quality and quantity. Presented here is an algorithm for cloud parameter retrievals that leverages enhanced dynamic range retrievals to classify mixed-phase clouds. This best guess retrieval is compared to co-located instruments for validation.

  7. Improved Surface and Tropospheric Temperatures Determined Using Only Shortwave Channels: The AIRS Science Team Version-6 Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John; Iredell, Lena

    2011-01-01

    The Goddard DISC has generated products derived from AIRS/AMSU-A observations, starting from September 2002 when the AIRS instrument became stable, using the AIRS Science Team Version-5 retrieval algorithm. The AIRS Science Team Version-6 retrieval algorithm will be finalized in September 2011. This paper describes some of the significant improvements contained in the Version-6 retrieval algorithm, compared to that used in Version-5, with an emphasis on the improvement of atmospheric temperature profiles, ocean and land surface skin temperatures, and ocean and land surface spectral emissivities. AIRS contains 2378 spectral channels covering portions of the spectral region 650 cm(sup -1) (15.38 micrometers) - 2665 cm(sup -1) (3.752 micrometers). These spectral regions contain significant absorption features from two CO2 absorption bands, the 15 micrometers (longwave) CO2 band, and the 4.3 micrometers (shortwave) CO2 absorption band. There are also two atmospheric window regions, the 12 micrometer - 8 micrometer (longwave) window, and the 4.17 micrometer - 3.75 micrometer (shortwave) window. Historically, determination of surface and atmospheric temperatures from satellite observations was performed using primarily observations in the longwave window and CO2 absorption regions. According to cloud clearing theory, more accurate soundings of both surface skin and atmospheric temperatures can be obtained under partial cloud cover conditions if one uses observations in longwave channels to determine coefficients which generate cloud cleared radiances R(sup ^)(sub i) for all channels, and uses R(sup ^)(sub i) only from shortwave channels in the determination of surface and atmospheric temperatures. This procedure is now being used in the AIRS Version-6 Retrieval Algorithm. Results are presented for both daytime and nighttime conditions showing improved Version-6 surface and atmospheric soundings under partial cloud cover.

  8. Characterization of Properties of Earth Atmosphere from Multi-Angular Polarimetric Observations of Polder/Parasol Using GRASP Algorithm

    NASA Astrophysics Data System (ADS)

    Dubovik, O.; Litvinov, P.; Lapyonok, T.; Ducos, F.; Fuertes, D.; Huang, X.; Torres, B.; Aspetsberger, M.; Federspiel, C.

    2014-12-01

    The POLDER imager on board of the PARASOL micro-satellite is the only satellite polarimeter provided ~ 9 years extensive record of detailed polarmertic observations of Earth atmosphere from space. POLDER / PARASOL registers spectral polarimetric characteristics of the reflected atmospheric radiation at up to 16 viewing directions over each observed pixel. Such observations have very high sensitivity to the variability of the properties of atmosphere and underlying surface and can not be adequately interpreted using look-up-table retrieval algorithms developed for analyzing mono-viewing intensity only observations traditionally used in atmospheric remote sensing. Therefore, a new enhanced retrieval algorithm GRASP (Generalized Retrieval of Aerosol and Surface Properties) has been developed and applied for processing of PARASOL data. GRASP relies on highly optimized statistical fitting of observations and derives large number of unknowns for each observed pixel. The algorithm uses elaborated model of the atmosphere and fully accounts for all multiple interactions of scattered solar light with aerosol, gases and the underlying surface. All calculations are implemented during inversion and no look-up tables are used. The algorithm is very flexible in utilization of various types of a priori constraints on the retrieved characteristics and in parameterization of surface - atmosphere system. It is also optimized for high performance calculations. The results of the PARASOL data processing will be presented with the emphasis on the discussion of transferability and adaptability of the developed retrieval concept for processing polarimetric observations of other planets. For example, flexibility and possible alternative in modeling properties of aerosol polydisperse mixtures, particle composition and shape, reflectance of surface, etc. will be discussed.

  9. Comparison of NASA Team2 and AES-York Ice Concentration Algorithms Against Operational Ice Charts From the Canadian Ice Service

    NASA Technical Reports Server (NTRS)

    Shokr, Mohammed; Markus, Thorsten

    2006-01-01

    Ice concentration retrieved from spaceborne passive-microwave observations is a prime input to operational sea-ice-monitoring programs, numerical weather prediction models, and global climate models. Atmospheric Environment Service (AES)- York and the Enhanced National Aeronautics and Space Administration Team (NT2) are two algorithms that calculate ice concentration from Special Sensor Microwave/Imager observations. This paper furnishes a comparison between ice concentrations (total, thin, and thick types) output from NT2 and AES-York algorithms against the corresponding estimates from the operational analysis of Radarsat images in the Canadian Ice Service (CIS). A new data fusion technique, which incorporates the actual sensor's footprint, was developed to facilitate this study. Results have shown that the NT2 and AES-York algorithms underestimate total ice concentration by 18.35% and 9.66% concentration counts on average, with 16.8% and 15.35% standard deviation, respectively. However, the retrieved concentrations of thin and thick ice are in much more discrepancy with the operational CIS estimates when either one of these two types dominates the viewing area. This is more likely to occur when the total ice concentration approaches 100%. If thin and thick ice types coexist in comparable concentrations, the algorithms' estimates agree with CIS'S estimates. In terms of ice concentration retrieval, thin ice is more problematic than thick ice. The concept of using a single tie point to represent a thin ice surface is not realistic and provides the largest error source for retrieval accuracy. While AES-York provides total ice concentration in slightly more agreement with CIS'S estimates, NT2 provides better agreement in retrieving thin and thick ice concentrations.

  10. Next Generation of Air Quality Measurements from Geo Orbits: Breaking The Temporal Barrier

    NASA Astrophysics Data System (ADS)

    Gupta, P.; Levy, R. C.; Mattoo, S.; Remer, L.; Heidinger, A.

    2017-12-01

    NASA's dark target (DT) aerosol algorithm provides operational retrieval of atmospheric aerosols from multiple polar orbiting satellites. The DT algorithm, initially developed for MODIS observations, has been continuously improved since the first MODIS launch in early 2000. Now, we are adapting the DT algorithm to retrieve on new-generation geostationary (GEO) sensors, including the Advanced Himawari Imager (AHI) on Japan's Himawari-8 (H8) satellite and Advanced Baseline Imager (ABI) on NOAA's GOES-16 (or GOES-R). H8 is a weather geostationary satellite operating since July 2015, and AHI observes earth-atmosphere system over the Asia-Pacific region at spatial resolutions of 1km or less. GOES-R is launched in Nov 2016 and provides high temporal resolution observations over Americas. With 16 spectral channels, including 7 bands that observe similar wavelengths as the MODIS bands used for DT aerosol retrieval. Most exciting, however, is that both ABI and AHI provides full disk observations every 10-15 minutes and zoom mode observations every 30 second to 2.5 minutes. Therefore, spectral, spatial and temporal resolution observations from these GEO satellites provide opportunity to monitor atmospheric aerosols in the region, plus a new capability to monitor aerosol transport and aerosol/cloud diurnal cycles. In this paper, we will introduce retrieval results from AHI using the DT algorithm during the KORUS-AQ field campaign during summer 2016. These results are evaluated against surface measurements (e.g. AERONET). . We will also discuss, its potential applications in monitoring diurnal cycles of urban pollution, smoke and dust in the region. The same DT algorithm will also be adapted to retrieve aerosol properties using GOES-16 over Americas.

  11. Basic firefly algorithm for document clustering

    NASA Astrophysics Data System (ADS)

    Mohammed, Athraa Jasim; Yusof, Yuhanis; Husni, Husniza

    2015-12-01

    The Document clustering plays significant role in Information Retrieval (IR) where it organizes documents prior to the retrieval process. To date, various clustering algorithms have been proposed and this includes the K-means and Particle Swarm Optimization. Even though these algorithms have been widely applied in many disciplines due to its simplicity, such an approach tends to be trapped in a local minimum during its search for an optimal solution. To address the shortcoming, this paper proposes a Basic Firefly (Basic FA) algorithm to cluster text documents. The algorithm employs the Average Distance to Document Centroid (ADDC) as the objective function of the search. Experiments utilizing the proposed algorithm were conducted on the 20Newsgroups benchmark dataset. Results demonstrate that the Basic FA generates a more robust and compact clusters than the ones produced by K-means and Particle Swarm Optimization (PSO).

  12. Semantic-based surveillance video retrieval.

    PubMed

    Hu, Weiming; Xie, Dan; Fu, Zhouyu; Zeng, Wenrong; Maybank, Steve

    2007-04-01

    Visual surveillance produces large amounts of video data. Effective indexing and retrieval from surveillance video databases are very important. Although there are many ways to represent the content of video clips in current video retrieval algorithms, there still exists a semantic gap between users and retrieval systems. Visual surveillance systems supply a platform for investigating semantic-based video retrieval. In this paper, a semantic-based video retrieval framework for visual surveillance is proposed. A cluster-based tracking algorithm is developed to acquire motion trajectories. The trajectories are then clustered hierarchically using the spatial and temporal information, to learn activity models. A hierarchical structure of semantic indexing and retrieval of object activities, where each individual activity automatically inherits all the semantic descriptions of the activity model to which it belongs, is proposed for accessing video clips and individual objects at the semantic level. The proposed retrieval framework supports various queries including queries by keywords, multiple object queries, and queries by sketch. For multiple object queries, succession and simultaneity restrictions, together with depth and breadth first orders, are considered. For sketch-based queries, a method for matching trajectories drawn by users to spatial trajectories is proposed. The effectiveness and efficiency of our framework are tested in a crowded traffic scene.

  13. The US-DOE ARM/ASR Effort in Quantifying Uncertainty in Ground-Based Cloud Property Retrievals (Invited)

    NASA Astrophysics Data System (ADS)

    Xie, S.; Protat, A.; Zhao, C.

    2013-12-01

    One primary goal of the US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program is to obtain and retrieve cloud microphysical properties from detailed cloud observations using ground-based active and passive remote sensors. However, there is large uncertainty in the retrieved cloud property products. Studies have shown that the uncertainty could arise from instrument limitations, measurement errors, sampling errors, retrieval algorithm deficiencies in assumptions, as well as inconsistent input data and constraints used by different algorithms. To quantify the uncertainty in cloud retrievals, a scientific focus group, Quantification of Uncertainties In Cloud Retrievals (QUICR), was recently created by the DOE Atmospheric System Research (ASR) program. This talk will provide an overview of the recent research activities conducted within QUICR and discuss its current collaborations with the European cloud retrieval community and future plans. The goal of QUICR is to develop a methodology for characterizing and quantifying uncertainties in current and future ARM cloud retrievals. The Work at LLNL was performed under the auspices of the U. S. Department of Energy (DOE), Office of Science, Office of Biological and Environmental Research by Lawrence Livermore National Laboratory under contract No. DE-AC52-07NA27344. LLNL-ABS-641258.

  14. On the Simulation of Sea States with High Significant Wave Height for the Validation of Parameter Retrieval Algorithms for Future Altimetry Missions

    NASA Astrophysics Data System (ADS)

    Kuschenerus, Mieke; Cullen, Robert

    2016-08-01

    To ensure reliability and precision of wave height estimates for future satellite altimetry missions such as Sentinel 6, reliable parameter retrieval algorithms that can extract significant wave heights up to 20 m have to be established. The retrieved parameters, i.e. the retrieval methods need to be validated extensively on a wide range of possible significant wave heights. Although current missions require wave height retrievals up to 20 m, there is little evidence of systematic validation of parameter retrieval methods for sea states with wave heights above 10 m. This paper provides a definition of a set of simulated sea states with significant wave height up to 20 m, that allow simulation of radar altimeter response echoes for extreme sea states in SAR and low resolution mode. The simulated radar responses are used to derive significant wave height estimates, which can be compared with the initial models, allowing precision estimations of the applied parameter retrieval methods. Thus we establish a validation method for significant wave height retrieval for sea states causing high significant wave heights, to allow improved understanding and planning of future satellite altimetry mission validation.

  15. Relevance feedback for CBIR: a new approach based on probabilistic feature weighting with positive and negative examples.

    PubMed

    Kherfi, Mohammed Lamine; Ziou, Djemel

    2006-04-01

    In content-based image retrieval, understanding the user's needs is a challenging task that requires integrating him in the process of retrieval. Relevance feedback (RF) has proven to be an effective tool for taking the user's judgement into account. In this paper, we present a new RF framework based on a feature selection algorithm that nicely combines the advantages of a probabilistic formulation with those of using both the positive example (PE) and the negative example (NE). Through interaction with the user, our algorithm learns the importance he assigns to image features, and then applies the results obtained to define similarity measures that correspond better to his judgement. The use of the NE allows images undesired by the user to be discarded, thereby improving retrieval accuracy. As for the probabilistic formulation of the problem, it presents a multitude of advantages and opens the door to more modeling possibilities that achieve a good feature selection. It makes it possible to cluster the query data into classes, choose the probability law that best models each class, model missing data, and support queries with multiple PE and/or NE classes. The basic principle of our algorithm is to assign more importance to features with a high likelihood and those which distinguish well between PE classes and NE classes. The proposed algorithm was validated separately and in image retrieval context, and the experiments show that it performs a good feature selection and contributes to improving retrieval effectiveness.

  16. Multiangle Imaging Spectroradiometer (MISR) Global Aerosol Optical Depth Validation Based on 2 Years of Coincident Aerosol Robotic Network (AERONET) Observations

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.; Gaitley, Barbara J.; Martonchik, John V.; Diner, David J.; Crean, Kathleen A.; Holben, Brent

    2005-01-01

    Performance of the Multiangle Imaging Spectroradiometer (MISR) early postlaunch aerosol optical thickness (AOT) retrieval algorithm is assessed quantitatively over land and ocean by comparison with a 2-year measurement record of globally distributed AERONET Sun photometers. There are sufficient coincident observations to stratify the data set by season and expected aerosol type. In addition to reporting uncertainty envelopes, we identify trends and outliers, and investigate their likely causes, with the aim of refining algorithm performance. Overall, about 2/3 of the MISR-retrieved AOT values fall within [0.05 or 20% x AOT] of Aerosol Robotic Network (AERONET). More than a third are within [0.03 or 10% x AOT]. Correlation coefficients are highest for maritime stations (approx.0.9), and lowest for dusty sites (more than approx.0.7). Retrieved spectral slopes closely match Sun photometer values for Biomass burning and continental aerosol types. Detailed comparisons suggest that adding to the algorithm climatology more absorbing spherical particles, more realistic dust analogs, and a richer selection of multimodal aerosol mixtures would reduce the remaining discrepancies for MISR retrievals over land; in addition, refining instrument low-light-level calibration could reduce or eliminate a small but systematic offset in maritime AOT values. On the basis of cases for which current particle models are representative, a second-generation MISR aerosol retrieval algorithm incorporating these improvements could provide AOT accuracy unprecedented for a spaceborne technique.

  17. Snowfall Rate Retrieval using NPP ATMS Passive Microwave Measurements

    NASA Technical Reports Server (NTRS)

    Meng, Huan; Ferraro, Ralph; Kongoli, Cezar; Wang, Nai-Yu; Dong, Jun; Zavodsky, Bradley; Yan, Banghua; Zhao, Limin

    2014-01-01

    Passive microwave measurements at certain high frequencies are sensitive to the scattering effect of snow particles and can be utilized to retrieve snowfall properties. Some of the microwave sensors with snowfall sensitive channels are Advanced Microwave Sounding Unit (AMSU), Microwave Humidity Sounder (MHS) and Advance Technology Microwave Sounder (ATMS). ATMS is the follow-on sensor to AMSU and MHS. Currently, an AMSU and MHS based land snowfall rate (SFR) product is running operationally at NOAA/NESDIS. Based on the AMSU/MHS SFR, an ATMS SFR algorithm has been developed recently. The algorithm performs retrieval in three steps: snowfall detection, retrieval of cloud properties, and estimation of snow particle terminal velocity and snowfall rate. The snowfall detection component utilizes principal component analysis and a logistic regression model. The model employs a combination of temperature and water vapor sounding channels to detect the scattering signal from falling snow and derive the probability of snowfall (Kongoli et al., 2014). In addition, a set of NWP model based filters is also employed to improve the accuracy of snowfall detection. Cloud properties are retrieved using an inversion method with an iteration algorithm and a two-stream radiative transfer model (Yan et al., 2008). A method developed by Heymsfield and Westbrook (2010) is adopted to calculate snow particle terminal velocity. Finally, snowfall rate is computed by numerically solving a complex integral. The ATMS SFR product is validated against radar and gauge snowfall data and shows that the ATMS algorithm outperforms the AMSU/MHS SFR.

  18. Sensitivity of Multiangle Imaging to the Optical and Microphysical Properties of Biomass Burning Aerosols

    NASA Technical Reports Server (NTRS)

    Chen, Wei-Ting; Kahn, Ralph A.; Nelson, David; Yau, Kevin; Seinfeld, John H.

    2008-01-01

    The treatment of biomass burning (BB) carbonaceous particles in the Multiangle Imaging SpectroRadiometer (MISR) Standard Aerosol Retrieval Algorithm is assessed, and algorithm refinements are suggested, based on a theoretical sensitivity analysis and comparisons with near-coincident AERONET measurements at representative BB sites. Over the natural ranges of BB aerosol microphysical and optical properties observed in past field campaigns, patterns of retrieved Aerosol Optical Depth (AOD), particle size, and single scattering albedo (SSA) are evaluated. On the basis of the theoretical analysis, assuming total column AOD of 0.2, over a dark, uniform surface, MISR can distinguish two to three groups in each of size and SSA, except when the assumed atmospheric particles are significantly absorbing (mid-visible SSA approx.0.84), or of medium sizes (mean radius approx.0.13 pin); sensitivity to absorbing, medium-large size particles increases considerably when the assumed column AOD is raised to 0.5. MISR Research Aerosol Retrievals confirm the theoretical results, based on coincident AERONET inversions under BB-dominated conditions. When BB is externally mixed with dust in the atmosphere, dust optical model and surface reflection uncertainties, along with spatial variability, contribute to differences between the Research Retrievals and AERONET. These results suggest specific refinements to the MISR Standard Aerosol Algorithm complement of component particles and mixtures. They also highlight the importance for satellite aerosol retrievals of surface reflectance characterization, with accuracies that can be difficult to achieve with coupled surface-aerosol algorithms in some higher AOD situations.

  19. An Expressive and Efficient Language for XML Information Retrieval.

    ERIC Educational Resources Information Center

    Chinenyanga, Taurai Tapiwa; Kushmerick, Nicholas

    2002-01-01

    Discusses XML and information retrieval and describes a query language, ELIXIR (expressive and efficient language for XML information retrieval), with a textual similarity operator that can be used for similarity joins. Explains the algorithm for answering ELIXIR queries to generate intermediate relational data. (Author/LRW)

  20. 3D model retrieval method based on mesh segmentation

    NASA Astrophysics Data System (ADS)

    Gan, Yuanchao; Tang, Yan; Zhang, Qingchen

    2012-04-01

    In the process of feature description and extraction, current 3D model retrieval algorithms focus on the global features of 3D models but ignore the combination of global and local features of the model. For this reason, they show less effective performance to the models with similar global shape and different local shape. This paper proposes a novel algorithm for 3D model retrieval based on mesh segmentation. The key idea is to exact the structure feature and the local shape feature of 3D models, and then to compares the similarities of the two characteristics and the total similarity between the models. A system that realizes this approach was built and tested on a database of 200 objects and achieves expected results. The results show that the proposed algorithm improves the precision and the recall rate effectively.

  1. Improved parallel data partitioning by nested dissection with applications to information retrieval.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, Michael M.; Chevalier, Cedric; Boman, Erik Gunnar

    The computational work in many information retrieval and analysis algorithms is based on sparse linear algebra. Sparse matrix-vector multiplication is a common kernel in many of these computations. Thus, an important related combinatorial problem in parallel computing is how to distribute the matrix and the vectors among processors so as to minimize the communication cost. We focus on minimizing the total communication volume while keeping the computation balanced across processes. In [1], the first two authors presented a new 2D partitioning method, the nested dissection partitioning algorithm. In this paper, we improve on that algorithm and show that it ismore » a good option for data partitioning in information retrieval. We also show partitioning time can be substantially reduced by using the SCOTCH software, and quality improves in some cases, too.« less

  2. Simultaneous inversion of multiple land surface parameters from MODIS optical-thermal observations

    NASA Astrophysics Data System (ADS)

    Ma, Han; Liang, Shunlin; Xiao, Zhiqiang; Shi, Hanyu

    2017-06-01

    Land surface parameters from remote sensing observations are critical in monitoring and modeling of global climate change and biogeochemical cycles. Current methods for estimating land surface variables usually focus on individual parameters separately even from the same satellite observations, resulting in inconsistent products. Moreover, no efforts have been made to generate global products from integrated observations from the optical to Thermal InfraRed (TIR) spectrum. Particularly, Middle InfraRed (MIR) observations have received little attention due to the complexity of the radiometric signal, which contains both reflected and emitted radiation. In this paper, we propose a unified algorithm for simultaneously retrieving six land surface parameters - Leaf Area Index (LAI), Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), land surface albedo, Land Surface Emissivity (LSE), Land Surface Temperature (LST), and Upwelling Longwave radiation (LWUP) by exploiting MODIS visible-to-TIR observations. We incorporate a unified physical radiative transfer model into a data assimilation framework. The MODIS visible-to-TIR time series datasets include the daily surface reflectance product and MIR-to-TIR surface radiance, which are atmospherically corrected from the MODIS data using the Moderate Resolution Transmittance program (MODTRAN, ver. 5.0). LAI was first estimated using a data assimilation method that combines MODIS daily reflectance data and a LAI phenology model, and then the LAI was input to the unified radiative transfer model to simulate spectral surface reflectance and surface emissivity for calculating surface broadband albedo and emissivity, and FAPAR. LST was estimated from the MIR-TIR surface radiance data and the simulated emissivity, using an iterative optimization procedure. Lastly, LWUP was estimated using the LST and surface emissivity. The retrieved six parameters were extensively validated across six representative sites with different biome types, and compared with MODIS, GLASS, and GlobAlbedo land surface products. The results demonstrate that the unified inversion algorithm can retrieve temporally complete and physically consistent land surface parameters, and provides more accurate estimates of surface albedo, LST, and LWUP than existing products, with R2 values of 0.93 and 0.62, RMSE of 0.029 and 0.037, and BIAS values of 0.016 and 0.012 for the retrieved and MODIS albedo products, respectively, compared with field albedo measurements; R2 values of 0.95 and 0.93, RMSE of 2.7 and 4.2 K, and BIAS values of -0.6 and -2.7 K for the retrieved and MODIS LST products, respectively, compared with field LST measurements; and R2 values of 0.93 and 0.94, RMSE of 18.2 and 22.8 W/m2, and BIAS values of -2.7 and -14.6 W/m2 for the retrieved and MODIS LWUP products, respectively, compared with field LWUP measurements.

  3. Development and Testing of the New Surface LER Climatology for OMI UV Aerosol Retrievals

    NASA Technical Reports Server (NTRS)

    Gupta, Pawan; Torres, Omar; Jethva, Hiren; Ahn, Changwoo

    2014-01-01

    Ozone Monitoring Instrument (OMI) onboard Aura satellite retrieved aerosols properties using UV part of solar spectrum. The OMI near UV aerosol algorithm (OMAERUV) is a global inversion scheme which retrieves aerosol properties both over ocean and land. The current version of the algorithm makes use of TOMS derived Lambertian Equivalent Reflectance (LER) climatology. A new monthly climatology of surface LER at 354 and 388 nm have been developed. This will replace TOMS LER (380 nm and 354nm) climatology in OMI near UV aerosol retrieval algorithm. The main objectives of this study is to produce high resolution (quarter degree) surface LER sets as compared to existing one degree TOMS surface LERs, to product instrument and wavelength consistent surface climatology. Nine years of OMI observations have been used to derive monthly climatology of surface LER. MODIS derived aerosol optical depth (AOD) have been used to make aerosol corrections on OMI wavelengths. MODIS derived BRDF adjusted reflectance product has been also used to capture seasonal changes in the surface characteristics. Finally spatial and temporal averaging techniques have been used to fill the gaps around the globes, especially in the regions with consistent cloud cover such as Amazon. After implementation of new surface data in the research version of algorithm, comparisons of AOD and single scattering albedo (SSA) have been performed over global AERONET sites for year 2007. Preliminary results shows improvements in AOD retrievals globally but more significance improvement were observed over desert and bright locations. We will present methodology of deriving surface data sets and will discuss the observed changes in retrieved aerosol properties with respect to reference AERONET measurements.

  4. Aerosol Retrievals from Proposed Satellite Bistatic Lidar Observations: Algorithm and Information Content

    NASA Astrophysics Data System (ADS)

    Alexandrov, M. D.; Mishchenko, M. I.

    2017-12-01

    Accurate aerosol retrievals from space remain quite challenging and typically involve solving a severely ill-posed inverse scattering problem. We suggested to address this ill-posedness by flying a bistatic lidar system. Such a system would consist of formation flying constellation of a primary satellite equipped with a conventional monostatic (backscattering) lidar and an additional platform hosting a receiver of the scattered laser light. If successfully implemented, this concept would combine the measurement capabilities of a passive multi-angle multi-spectral polarimeter with the vertical profiling capability of a lidar. Thus, bistatic lidar observations will be free of deficiencies affecting both monostatic lidar measurements (caused by the highly limited information content) and passive photopolarimetric measurements (caused by vertical integration and surface reflection).We present a preliminary aerosol retrieval algorithm for a bistatic lidar system consisting of a high spectral resolution lidar (HSRL) and an additional receiver flown in formation with it at a scattering angle of 165 degrees. This algorithm was applied to synthetic data generated using Mie-theory computations. The model/retrieval parameters in our tests were the effective radius and variance of the aerosol size distribution, complex refractive index of the particles, and their number concentration. Both mono- and bimodal aerosol mixtures were considered. Our algorithm allowed for definitive evaluation of error propagation from measurements to retrievals using a Monte Carlo technique, which involves random distortion of the observations and statistical characterization of the resulting retrieval errors. Our tests demonstrated that supplementing a conventional monostatic HSRL with an additional receiver dramatically increases the information content of the measurements and allows for a sufficiently accurate characterization of tropospheric aerosols.

  5. Assessment of SMOS Soil Moisture Retrieval Parameters Using Tau-Omega Algorithms for Soil Moisture Deficit Estimation

    NASA Technical Reports Server (NTRS)

    Srivastava, Prashant K.; Han, Dawei; Rico-Ramirez, Miguel A.; O'Neill, Peggy; Islam, Tanvir; Gupta, Manika

    2014-01-01

    Soil Moisture and Ocean Salinity (SMOS) is the latest mission which provides flow of coarse resolution soil moisture data for land applications. However, the efficient retrieval of soil moisture for hydrological applications depends on optimally choosing the soil and vegetation parameters. The first stage of this work involves the evaluation of SMOS Level 2 products and then several approaches for soil moisture retrieval from SMOS brightness temperature are performed to estimate Soil Moisture Deficit (SMD). The most widely applied algorithm i.e. Single channel algorithm (SCA), based on tau-omega is used in this study for the soil moisture retrieval. In tau-omega, the soil moisture is retrieved using the Horizontal (H) polarisation following Hallikainen dielectric model, roughness parameters, Fresnel's equation and estimated Vegetation Optical Depth (tau). The roughness parameters are empirically calibrated using the numerical optimization techniques. Further to explore the improvement in retrieval models, modifications have been incorporated in the algorithms with respect to the sources of the parameters, which include effective temperatures derived from the European Center for Medium-Range Weather Forecasts (ECMWF) downscaled using the Weather Research and Forecasting (WRF)-NOAH Land Surface Model and Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) while the s is derived from MODIS Leaf Area Index (LAI). All the evaluations are performed against SMD, which is estimated using the Probability Distributed Model following a careful calibration and validation integrated with sensitivity and uncertainty analysis. The performance obtained after all those changes indicate that SCA-H using WRF-NOAH LSM downscaled ECMWF LST produces an improved performance for SMD estimation at a catchment scale.

  6. New capabilities for characterizing smoke and dust aerosol over land using MODIS

    NASA Astrophysics Data System (ADS)

    Levy, R. C.; Remer, L. A.

    2006-12-01

    Smoke and dust aerosol have different chemical, optical and physical properties and both types affect many processes within the climate system. As earth's surface and atmosphere are continuously altered by natural and anthropogenic processes, the emission and presumably the effects of these aerosols are also changing. Thus it is necessary to observe and characterize aerosols on a global and climatic scale. While MODIS has been reporting characteristics of smoke and dust aerosol over land and ocean since shortly after Terra launch, the uncertainties in the over-land retrieval have been larger than expected. To better characterize different aerosol types closer to their source regions with greater accuracy, we have developed a new operational algorithm for retrieving aerosol properties over dark land surfaces from MODIS-observed visible (VIS) and infrared (IR) reflectance. Like earlier versions, this algorithm estimates the total loading (aerosol optical depth-τ) and relative weighting of fine (non-dust) and coarse (dust) -dominated aerosol to the total τ (fine weighting-η) over dark land surfaces. However, the fundamental mathematics and major assumptions have been overhauled. The new algorithm performs simultaneous multi-channel inversion that includes information about coarse aerosol in the IR channels, while assuming a fine-tuned relationship between VIS and IR surface reflectances, that is itself a function of scattering angle and vegetation condition. Finally, the suite of expected aerosol optical models described by the lookup table have been revised to closer resemble the AERONET climatology, including for smoke and dust aerosol. Beginning in April 2006, this algorithm has been used for forward processing and backward re- processing of the entire MODIS dataset observed from both Terra and Aqua. "Collection 5" products were completed for Aqua reprocessing by July 2006 and should be complete for Terra by December 2006. In this study, we used the complete Aqua dataset (July 2002-Aug 2006) and two years of Terra (2005-Aug 2006) data to evaluate the products in regions known to be dominated by smoke and/or dust. We compared with sunphotometer data at selected AERONET sites and found improved τ retrievals,within prescribed accuracy.

  7. Space-based near-infrared CO2 measurements: Testing the Orbiting Carbon Observatory retrieval algorithm and validation concept using SCIAMACHY observations over Park Falls, Wisconsin

    NASA Astrophysics Data System (ADS)

    BöSch, H.; Toon, G. C.; Sen, B.; Washenfelder, R. A.; Wennberg, P. O.; Buchwitz, M.; de Beek, R.; Burrows, J. P.; Crisp, D.; Christi, M.; Connor, B. J.; Natraj, V.; Yung, Y. L.

    2006-12-01

    Space-based measurements of reflected sunlight in the near-infrared (NIR) region promise to yield accurate and precise observations of the global distribution of atmospheric CO2. The Orbiting Carbon Observatory (OCO) is a future NASA mission, which will use this technique to measure the column-averaged dry air mole fraction of CO2 ? with the precision and accuracy needed to quantify CO2 sources and sinks on regional scales (˜1000 × 1000 km2) and to characterize their variability on seasonal timescales. Here, we have used the OCO retrieval algorithm to retrieve ? and surface pressure from space-based Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) measurements and from coincident ground-based Fourier transform spectrometer (FTS) measurements of the O2 A band at 0.76 μm and the 1.58 μm CO2 band for Park Falls, Wisconsin. Even after accounting for a systematic error in our representation of the O2 absorption cross sections, we still obtained a positive bias between SCIAMACHY and FTS ? retrievals of ˜3.5%. Additionally, the retrieved surface pressures from SCIAMACHY systematically underestimate measurements of a calibrated pressure sensor at the FTS site. These findings lead us to speculate about inadequacies in the forward model of our retrieval algorithm. By assuming a 1% intensity offset in the O2 A band region for the SCIAMACHY ? retrieval, we significantly improved the spectral fit and achieved better consistency between SCIAMACHY and FTS ? retrievals. We compared the seasonal cycle of ? at Park Falls from SCIAMACHY and FTS retrievals with calculations of the Model of Atmospheric Transport and Chemistry/Carnegie-Ames-Stanford Approach (MATCH/CASA) and found a good qualitative agreement but with MATCH/CASA underestimating the measured seasonal amplitude. Furthermore, since SCIAMACHY observations are similar in viewing geometry and spectral range to those of OCO, this study represents an important test of the OCO retrieval algorithm and validation concept using NIR spectra measured from space. Finally, we argue that significant improvements in precision and accuracy could be obtained from a dedicated CO2 instrument such as OCO, which has much higher spectral and spatial resolutions than SCIAMACHY. These measurements would then provide critical data for improving our understanding of the carbon cycle and carbon sources and sinks.

  8. High Resolution Imaging Using Phase Retrieval. Volume 2

    DTIC Science & Technology

    1991-10-01

    aberrations of the telescope. It will also correct aberrations due to atmospheric turbulence for a ground- based telescope, and can be used with several other...retrieval algorithm, based on the Ayers/Dainty blind deconvolution algorithm, was also developed. A new methodology for exploring the uniqueness of phase...Simulation Experiments ..................... 42 3.3.1 Initial Simulations with Noisy Modulus Data ..... 45 3.3.2 Simulations of a Space- Based Amplitude

  9. Adaptive optics compensation of orbital angular momentum beams with a modified Gerchberg-Saxton-based phase retrieval algorithm

    NASA Astrophysics Data System (ADS)

    Chang, Huan; Yin, Xiao-li; Cui, Xiao-zhou; Zhang, Zhi-chao; Ma, Jian-xin; Wu, Guo-hua; Zhang, Li-jia; Xin, Xiang-jun

    2017-12-01

    Practical orbital angular momentum (OAM)-based free-space optical (FSO) communications commonly experience serious performance degradation and crosstalk due to atmospheric turbulence. In this paper, we propose a wave-front sensorless adaptive optics (WSAO) system with a modified Gerchberg-Saxton (GS)-based phase retrieval algorithm to correct distorted OAM beams. We use the spatial phase perturbation (SPP) GS algorithm with a distorted probe Gaussian beam as the only input. The principle and parameter selections of the algorithm are analyzed, and the performance of the algorithm is discussed. The simulation results show that the proposed adaptive optics (AO) system can significantly compensate for distorted OAM beams in single-channel or multiplexed OAM systems, which provides new insights into adaptive correction systems using OAM beams.

  10. Two-Channel Satellite Retrievals of Aerosol Properties: An Overview

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.

    1999-01-01

    In order to reduce current uncertainties in the evaluation of the direct and indirect effects of tropospheric aerosols on climate on the global scale, it has been suggested to apply multi-channel retrieval algorithms to the full period of existing satellite data. This talk will outline the methodology of interpreting two-channel satellite radiance data over the ocean and describe a detailed analysis of the sensitivity of retrieved aerosol parameters to the assumptions made in different retrieval algorithms. We will specifically address the calibration and cloud screening issues, consider the suitability of existing satellite data sets to detecting short- and long-term regional and global changes, compare preliminary results obtained by several research groups, and discuss the prospects of creating an advanced retroactive climatology of aerosol optical thickness and size over the oceans.

  11. Scalable Integrated Region-Based Image Retrieval Using IRM and Statistical Clustering.

    ERIC Educational Resources Information Center

    Wang, James Z.; Du, Yanping

    Statistical clustering is critical in designing scalable image retrieval systems. This paper presents a scalable algorithm for indexing and retrieving images based on region segmentation. The method uses statistical clustering on region features and IRM (Integrated Region Matching), a measure developed to evaluate overall similarity between images…

  12. Web Image Retrieval Using Self-Organizing Feature Map.

    ERIC Educational Resources Information Center

    Wu, Qishi; Iyengar, S. Sitharama; Zhu, Mengxia

    2001-01-01

    Provides an overview of current image retrieval systems. Describes the architecture of the SOFM (Self Organizing Feature Maps) based image retrieval system, discussing the system architecture and features. Introduces the Kohonen model, and describes the implementation details of SOFM computation and its learning algorithm. Presents a test example…

  13. The Operational MODIS Cloud Optical and Microphysical Property Product: Overview of the Collection 6 Algorithm and Preliminary Results

    NASA Technical Reports Server (NTRS)

    Platnick, Steven; King, Michael D.; Wind, Galina; Amarasinghe, Nandana; Marchant, Benjamin; Arnold, G. Thomas

    2012-01-01

    Operational Moderate Resolution Imaging Spectroradiometer (MODIS) retrievals of cloud optical and microphysical properties (part of the archived products MOD06 and MYD06, for MODIS Terra and Aqua, respectively) are currently being reprocessed along with other MODIS Atmosphere Team products. The latest "Collection 6" processing stream, which is expected to begin production by summer 2012, includes updates to the previous cloud retrieval algorithm along with new capabilities. The 1 km retrievals, based on well-known solar reflectance techniques, include cloud optical thickness, effective particle radius, and water path, as well as thermodynamic phase derived from a combination of solar and infrared tests. Being both global and of high spatial resolution requires an algorithm that is computationally efficient and can perform over all surface types. Collection 6 additions and enhancements include: (i) absolute effective particle radius retrievals derived separately from the 1.6 and 3.7 !-lm bands (instead of differences relative to the standard 2.1 !-lm retrieval), (ii) comprehensive look-up tables for cloud reflectance and emissivity (no asymptotic theory) with a wind-speed interpolated Cox-Munk BRDF for ocean surfaces, (iii) retrievals for both liquid water and ice phases for each pixel, and a subsequent determination of the phase based, in part, on effective radius retrieval outcomes for the two phases, (iv) new ice cloud radiative models using roughened particles with a specified habit, (v) updated spatially-complete global spectral surface albedo maps derived from MODIS Collection 5, (vi) enhanced pixel-level uncertainty calculations incorporating additional radiative error sources including the MODIS L1 B uncertainty index for assessing band and scene-dependent radiometric uncertainties, (v) and use of a new 1 km cloud top pressure/temperature algorithm (also part of MOD06) for atmospheric corrections and low cloud non-unity emissivity temperature adjustments.

  14. Development of a harmonised multi sensor retrieval scheme for HCHO within the Quality Assurance For Essential Climate Variables (QA4ECV) project

    NASA Astrophysics Data System (ADS)

    De Smedt, Isabelle; Richter, Andreas; Beirle, Steffen; Danckaert, Thomas; Van Roozendael, Michel; Yu, Huan; Bösch, Tim; Hilboll, Andreas; Peters, Enno; Doerner, Steffen; Wagner, Thomas; Wang, Yang; Lorente, Alba; Eskes, Henk; Van Geffen, Jos; Boersma, Folkert

    2016-04-01

    One of the main goals of the QA4ECV project is to define community best-practices for the generation of multi-decadal ECV data records from satellite instruments. QA4ECV will develop retrieval algorithms for the Land ECVs surface albedo, leaf area index (LAI), and fraction of active photosynthetic radiation (fAPAR), as well as for the Atmosphere ECV ozone and aerosol precursors nitrogen dioxide (NO2), formaldehyde (HCHO), and carbon monoxide (CO). Here we assess best practices and provide recommendations for the retrieval of HCHO. Best practices are established based on (1) a detailed intercomparison exercise between the QA4ECV partner's for each specific algorithm processing steps, (2) the feasibility of implementation, and (3) the requirement to generate consistent multi-sensor multi-decadal data records. We propose a fitting window covering the 328.5-346 nm spectral interval for the morning sensors (GOME, SCIAMACHY and GOME-2) and an extension to 328.5-359 nm for OMI and GOME-2, allowed by improved quality of the recorded spectra. A high level of consistency between group algorithms is found when the retrieval settings are carefully aligned. However, the retrieval of slant columns is highly sensitive to any change in the selected settings. The use of a mean background radiance as DOAS reference spectrum allows for a stabilization of the retrievals. A background correction based on the reference sector method is recommended for implementation in the QA4ECV HCHO algorithm as it further reduces retrieval uncertainties. HCHO AMFs using different radiative transfer codes show a good overall consistency when harmonized settings are used. As for NO2, it is proposed to use a priori HCHO profiles from the TM5 model. These are provided on a 1°x1° latitude-longitude grid.

  15. A passive microwave technique for estimating rainfall and vertical structure information from space. Part 2: Applications to SSM/I data

    NASA Technical Reports Server (NTRS)

    Kummerow, Christian; Giglio, Louis

    1994-01-01

    A multi channel physical approach for retrieving rainfall and its vertical structure from Special Sensor Microwave/Imager (SSM/I) observations is examined. While a companion paper was devoted exclusively to the description of the algorithm, its strengths, and its limitations, the main focus of this paper is to report on the results, applicability, and expected accuraciesfrom this algorithm. Some examples are given that compare retrieved results with ground-based radar data from different geographical regions to illustrate the performance and utility of the algorithm under distinct rainfall conditions. More quantitative validation is accomplished using two months of radar data from Darwin, Australia, and the radar network over Japan. Instantaneous comparisons at Darwin indicate that root-mean-square errors for 1.25 deg areas over water are 0.09 mm/h compared to the mean rainfall value of 0.224 mm/h while the correlation exceeds 0.9. Similar results are obtained over the Japanese validation site with rms errors of 0.615 mm/h compared to the mean of 0.0880 mm/h and a correlation of 0.9. Results are less encouraging over land with root-mean-square errors somewhat larger than the mean rain rates and correlations of only 0.71 and 0.62 for Darwin and Japan, respectively. These validation studies are further used in combination with the theoretical treatment of expected accuracies developed in the companion paper to define error estimates on a broader scale than individual radar sites from which the errors may be analyzed. Comparisons with simpler techniques that are based on either emission or scattering measurements are used to illustrate the fact that the current algorithm, while better correlated with the emission methods over water, cannot be reduced to either of these simpler methods.

  16. Atmospheric Correction Algorithm for Hyperspectral Remote Sensing of Ocean Color from Space

    DTIC Science & Technology

    2000-02-20

    Existing atmospheric correction algorithms for multichannel remote sensing of ocean color from space were designed for retrieving water-leaving...atmospheric correction algorithm for hyperspectral remote sensing of ocean color with the near-future Coastal Ocean Imaging Spectrometer. The algorithm uses

  17. An Algorithm for Retrieving Land Surface Temperatures Using VIIRS Data in Combination with Multi-Sensors

    PubMed Central

    Xia, Lang; Mao, Kebiao; Ma, Ying; Zhao, Fen; Jiang, Lipeng; Shen, Xinyi; Qin, Zhihao

    2014-01-01

    A practical algorithm was proposed to retrieve land surface temperature (LST) from Visible Infrared Imager Radiometer Suite (VIIRS) data in mid-latitude regions. The key parameter transmittance is generally computed from water vapor content, while water vapor channel is absent in VIIRS data. In order to overcome this shortcoming, the water vapor content was obtained from Moderate Resolution Imaging Spectroradiometer (MODIS) data in this study. The analyses on the estimation errors of vapor content and emissivity indicate that when the water vapor errors are within the range of ±0.5 g/cm2, the mean retrieval error of the present algorithm is 0.634 K; while the land surface emissivity errors range from −0.005 to +0.005, the mean retrieval error is less than 1.0 K. Validation with the standard atmospheric simulation shows the average LST retrieval error for the twenty-three land types is 0.734 K, with a standard deviation value of 0.575 K. The comparison between the ground station LST data indicates the retrieval mean accuracy is −0.395 K, and the standard deviation value is 1.490 K in the regions with vegetation and water cover. Besides, the retrieval results of the test data have also been compared with the results measured by the National Oceanic and Atmospheric Administration (NOAA) VIIRS LST products, and the results indicate that 82.63% of the difference values are within the range of −1 to 1 K, and 17.37% of the difference values are within the range of ±2 to ±1 K. In a conclusion, with the advantages of multi-sensors taken fully exploited, more accurate results can be achieved in the retrieval of land surface temperature. PMID:25397919

  18. Evaluation and application of an algorithm for atmospheric profiling continuity from Aqua to Suomi-NPP

    NASA Astrophysics Data System (ADS)

    Lipton, A.; Moncet, J. L.; Lynch, R.; Payne, V.; Alvarado, M. J.

    2016-12-01

    We will present results from an algorithm that is being developed to produce climate-quality atmospheric profiling earth system data records (ESDRs) for application to data from hyperspectral sounding instruments, including the Atmospheric InfraRed Sounder (AIRS) on EOS Aqua and the Cross-track Infrared Sounder (CrIS) on Suomi-NPP, along with their companion microwave sounders, AMSU and ATMS, respectively. The ESDR algorithm uses an optimal estimation approach and the implementation has a flexible, modular software structure to support experimentation and collaboration. Data record continuity benefits from the fact that the same algorithm can be applied to different sensors, simply by providing suitable configuration and data files. For analysis of satellite profiles over multi-decade periods, a concern is that the algorithm could respond inadequately to climate change if it uses a static background as a retrieval constraint, leading to retrievals that underestimate secular changes over extended periods of time and become biased toward an outdated climatology. We assessed the ability of our algorithm to respond appropriately to changes in temperature and water vapor profiles associated with climate change and, in particular, on the impact of using a climatological background in retrievals when the climatology is not static. We simulated a scenario wherein our algorithm processes 30 years of data from CrIS and ATMS (CrIMSS) with a static background based on data from the start of the 30-year period. We performed simulations using products from Coupled Model Intercomparison Project 5 (CMIP5), and in particular the "representative concentration pathways" midrange emissions (RCP4.5) scenario from the GISS-E2-R model. We will present results indicating that regularization using empirical orthogonal functions (EOFs) from a 30-year outdated covariance had a negligible effect on results. For temperature, the secular change is represented with high fidelity with the CrIMSS retrievals. For water vapor, an outdated background adds distortion to the secular moistening trend in the troposphere only above 300 mb, where the sensor information content is less than at lower levels. We will also present results illustrating the consistency between retrievals from near-simultaneous AIRS and CrIMSS measurements.

  19. Evaluation of Long-term Aerosol Data Records from SeaWiFS over Land and Ocean

    NASA Astrophysics Data System (ADS)

    Bettenhausen, C.; Hsu, C.; Jeong, M.; Huang, J.

    2010-12-01

    Deserts around the globe produce mineral dust aerosols that may then be transported over cities, across continents, or even oceans. These aerosols affect the Earth’s energy balance through direct and indirect interactions with incoming solar radiation. They also have a biogeochemical effect as they deliver scarce nutrients to remote ecosystems. Large dust storms regularly disrupt air traffic and are a general nuisance to those living in transport regions. In the past, measuring dust aerosols has been incomplete at best. Satellite retrieval algorithms were limited to oceans or vegetated surfaces and typically neglected desert regions due to their high surface reflectivity in the mid-visible and near-infrared wavelengths, which have been typically used for aerosol retrievals. The Deep Blue aerosol retrieval algorithm was developed to resolve these shortcomings by utilizing the blue channels from instruments such as the Sea-Viewing Wide-Field-of-View Sensor (SeaWiFS) and the Moderate Resolution Imaging Spectroradiometer (MODIS) to infer aerosol properties over these highly reflective surfaces. The surface reflectivity of desert regions is much lower in the blue channels and thus it is easier to separate the aerosol and surface signals than at the longer wavelengths used in other algorithms. More recently, the Deep Blue algorithm has been expanded to retrieve over vegetated surfaces and oceans as well. A single algorithm can now follow dust from source to sink. In this work, we introduce the SeaWiFS instrument and the Deep Blue aerosol retrieval algorithm. We have produced global aerosol data records over land and ocean from 1997 through 2009 using the Deep Blue algorithm and SeaWiFS data. We describe these data records and validate them with data from the Aerosol Robotic Network (AERONET). We also show the relative performance compared to the current MODIS Deep Blue operational aerosol data in desert regions. The current results are encouraging and this dataset will be useful to future studies in understanding the effects of dust aerosols on global processes, long-term aerosol trends, quantifying dust emissions, transport, and inter-annual variability.

  20. Single-intensity-recording optical encryption technique based on phase retrieval algorithm and QR code

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-peng; Zhang, Shuai; Liu, Hong-zhao; Qin, Yi

    2014-12-01

    Based on phase retrieval algorithm and QR code, a new optical encryption technology that only needs to record one intensity distribution is proposed. In this encryption process, firstly, the QR code is generated from the information to be encrypted; and then the generated QR code is placed in the input plane of 4-f system to have a double random phase encryption. For only one intensity distribution in the output plane is recorded as the ciphertext, the encryption process is greatly simplified. In the decryption process, the corresponding QR code is retrieved using phase retrieval algorithm. A priori information about QR code is used as support constraint in the input plane, which helps solve the stagnation problem. The original information can be recovered without distortion by scanning the QR code. The encryption process can be implemented either optically or digitally, and the decryption process uses digital method. In addition, the security of the proposed optical encryption technology is analyzed. Theoretical analysis and computer simulations show that this optical encryption system is invulnerable to various attacks, and suitable for harsh transmission conditions.

  1. New approaches to removing cloud shadows and evaluating the 380 nm surface reflectance for improved aerosol optical thickness retrievals from the GOSAT/TANSO-Cloud and Aerosol Imager

    NASA Astrophysics Data System (ADS)

    Fukuda, Satoru; Nakajima, Teruyuki; Takenaka, Hideaki; Higurashi, Akiko; Kikuchi, Nobuyuki; Nakajima, Takashi Y.; Ishida, Haruma

    2013-12-01

    satellite aerosol retrieval algorithm was developed to utilize a near-ultraviolet band of the Greenhouse gases Observing SATellite/Thermal And Near infrared Sensor for carbon Observation (GOSAT/TANSO)-Cloud and Aerosol Imager (CAI). At near-ultraviolet wavelengths, the surface reflectance over land is smaller than that at visible wavelengths. Therefore, it is thought possible to reduce retrieval error by using the near-ultraviolet spectral region. In the present study, we first developed a cloud shadow detection algorithm that uses first and second minimum reflectances of 380 nm and 680 nm based on the difference in Rayleigh scattering contribution for these two bands. Then, we developed a new surface reflectance correction algorithm, the modified Kaufman method, which uses minimum reflectance data at 680 nm and the NDVI to estimate the surface reflectance at 380 nm. This algorithm was found to be particularly effective at reducing the aerosol effect remaining in the 380 nm minimum reflectance; this effect has previously proven difficult to remove owing to the infrequent sampling rate associated with the three-day recursion period of GOSAT and the narrow CAI swath of 1000 km. Finally, we applied these two algorithms to retrieve aerosol optical thicknesses over a land area. Our results exhibited better agreement with sun-sky radiometer observations than results obtained using a simple surface reflectance correction technique using minimum radiances.

  2. Towards a long-term global aerosol optical depth record: applying a consistent aerosol retrieval algorithm to MODIS and VIIRS-observed reflectance

    NASA Astrophysics Data System (ADS)

    Levy, R. C.; Munchak, L. A.; Mattoo, S.; Patadia, F.; Remer, L. A.; Holz, R. E.

    2015-10-01

    To answer fundamental questions about aerosols in our changing climate, we must quantify both the current state of aerosols and how they are changing. Although NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) sensors have provided quantitative information about global aerosol optical depth (AOD) for more than a decade, this period is still too short to create an aerosol climate data record (CDR). The Visible Infrared Imaging Radiometer Suite (VIIRS) was launched on the Suomi-NPP satellite in late 2011, with additional copies planned for future satellites. Can the MODIS aerosol data record be continued with VIIRS to create a consistent CDR? When compared to ground-based AERONET data, the VIIRS Environmental Data Record (V_EDR) has similar validation statistics as the MODIS Collection 6 (M_C6) product. However, the V_EDR and M_C6 are offset in regards to global AOD magnitudes, and tend to provide different maps of 0.55 μm AOD and 0.55/0.86 μm-based Ångström Exponent (AE). One reason is that the retrieval algorithms are different. Using the Intermediate File Format (IFF) for both MODIS and VIIRS data, we have tested whether we can apply a single MODIS-like (ML) dark-target algorithm on both sensors that leads to product convergence. Except for catering the radiative transfer and aerosol lookup tables to each sensor's specific wavelength bands, the ML algorithm is the same for both. We run the ML algorithm on both sensors between March 2012 and May 2014, and compare monthly mean AOD time series with each other and with M_C6 and V_EDR products. Focusing on the March-April-May (MAM) 2013 period, we compared additional statistics that include global and gridded 1° × 1° AOD and AE, histograms, sampling frequencies, and collocations with ground-based AERONET. Over land, use of the ML algorithm clearly reduces the differences between the MODIS and VIIRS-based AOD. However, although global offsets are near zero, some regional biases remain, especially in cloud fields and over brighter surface targets. Over ocean, use of the ML algorithm actually increases the offset between VIIRS and MODIS-based AOD (to ~ 0.025), while reducing the differences between AE. We characterize algorithm retrievability through statistics of retrieval fraction. In spite of differences between retrieved AOD magnitudes, the ML algorithm will lead to similar decisions about "whether to retrieve" on each sensor. Finally, we discuss how issues of calibration, as well as instrument spatial resolution may be contributing to the statistics and the ability to create a consistent MODIS → VIIRS aerosol CDR.

  3. Towards a long-term global aerosol optical depth record: applying a consistent aerosol retrieval algorithm to MODIS and VIIRS-observed reflectance

    NASA Astrophysics Data System (ADS)

    Levy, R. C.; Munchak, L. A.; Mattoo, S.; Patadia, F.; Remer, L. A.; Holz, R. E.

    2015-07-01

    To answer fundamental questions about aerosols in our changing climate, we must quantify both the current state of aerosols and how they are changing. Although NASA's Moderate resolution Imaging Spectroradiometer (MODIS) sensors have provided quantitative information about global aerosol optical depth (AOD) for more than a decade, this period is still too short to create an aerosol climate data record (CDR). The Visible Infrared Imaging Radiometer Suite (VIIRS) was launched on the Suomi-NPP satellite in late 2011, with additional copies planned for future satellites. Can the MODIS aerosol data record be continued with VIIRS to create a consistent CDR? When compared to ground-based AERONET data, the VIIRS Environmental Data Record (V_EDR) has similar validation statistics as the MODIS Collection 6 (M_C6) product. However, the V_EDR and M_C6 are offset in regards to global AOD magnitudes, and tend to provide different maps of 0.55 μm AOD and 0.55/0.86 μm-based Ångstrom Exponent (AE). One reason is that the retrieval algorithms are different. Using the Intermediate File Format (IFF) for both MODIS and VIIRS data, we have tested whether we can apply a single MODIS-like (ML) dark-target algorithm on both sensors that leads to product convergence. Except for catering the radiative transfer and aerosol lookup tables to each sensor's specific wavelength bands, the ML algorithm is the same for both. We run the ML algorithm on both sensors between March 2012 and May 2014, and compare monthly mean AOD time series with each other and with M_C6 and V_EDR products. Focusing on the March-April-May (MAM) 2013 period, we compared additional statistics that include global and gridded 1° × 1° AOD and AE, histograms, sampling frequencies, and collocations with ground-based AERONET. Over land, use of the ML algorithm clearly reduces the differences between the MODIS and VIIRS-based AOD. However, although global offsets are near zero, some regional biases remain, especially in cloud fields and over brighter surface targets. Over ocean, use of the ML algorithm actually increases the offset between VIIRS and MODIS-based AOD (to ∼ 0.025), while reducing the differences between AE. We characterize algorithm retrievibility through statistics of retrieval fraction. In spite of differences between retrieved AOD magnitudes, the ML algorithm will lead to similar decisions about "whether to retrieve" on each sensor. Finally, we discuss how issues of calibration, as well as instrument spatial resolution may be contributing to the statistics and the ability to create a consistent MODIS → VIIRS aerosol CDR.

  4. Latent Heating Retrievals Using the TRMM Precipitation Radar: A Multi-Seasonal Study

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Lang, S.; Meneghini, B.; Halverson, J.; Johnson, R.; Simpson, J.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The Goddard Convective-Stratiform Heating (CSH) algorithm is used to retrieve profiles of latent heating over the global tropics for a period of several months using TRMM precipitation radar data. The seasonal variation of heating over the tropics is then examined. The period of interest also coincides with several TRMM field campaigns that recently occurred over the South China Sea in 1998 (SCSMEX), Brazil in 1999 (TRMM-LBA), and in the central Pacific in 1999 (KWAJEX). Sounding diagnosed Q1 budgets from these experiments could provide a means of validating the retrieved profiles of latent heating from the CSH algorithm.

  5. ACMES: fast multiple-genome searches for short repeat sequences with concurrent cross-species information retrieval

    PubMed Central

    Reneker, Jeff; Shyu, Chi-Ren; Zeng, Peiyu; Polacco, Joseph C.; Gassmann, Walter

    2004-01-01

    We have developed a web server for the life sciences community to use to search for short repeats of DNA sequence of length between 3 and 10 000 bases within multiple species. This search employs a unique and fast hash function approach. Our system also applies information retrieval algorithms to discover knowledge of cross-species conservation of repeat sequences. Furthermore, we have incorporated a part of the Gene Ontology database into our information retrieval algorithms to broaden the coverage of the search. Our web server and tutorial can be found at http://acmes.rnet.missouri.edu. PMID:15215469

  6. MOD06 Optical and Microphysical Retrievals

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Platnick, Steven; Arnold, G. T.; Dinsick, J.; Gatebe, C. K.; Gray, M. A.; Hubanks, P. A.; Moody, E. G.; Wind, B.; Wind, G.

    2003-01-01

    Major efforts over the past six months included: (1) submission of MOD06 Optical and Microphysical Retrieval recompetition proposal, (2) delivery of a MODIS Atmosphere Level-3 update, (3) delivery of the MODIS Atmosphere s new combined Level-2 product, (4) development of an above-cloud precipitable water research algorithm and a multi-layer cloud detection algorithm, (5) continued development of a Fortran 90 version of the retrieval code for use with MAS as well as operational MODIS processing, (6) preliminary analysis of CRYSTAL-FACE field experiment in July 2002, (7) continued analysis of data obtained during the SAFARI 2000 dry season campaign in southern Africa, and the Arctic FIRE-ACE experiment.

  7. Modelling the Passive Microwave Signature from Land Surfaces: A Review of Recent Results and Application to the L-Band SMOS SMAP Soil Moisture Retrieval Algorithms

    NASA Technical Reports Server (NTRS)

    Wigneron, J.-P.; Jackson, T. J.; O'Neill, P.; De Lannoy, G.; De Rosnay, P.; Walker, J. P.; Ferrazzoli, P.; Mironov, V.; Bircher, S.; Grant, J. P.; hide

    2017-01-01

    Two passive microwave missions are currently operating at L-band to monitor surface soil moisture (SM) over continental surfaces. The SMOS sensor, based on an innovative interferometric technology enabling multi-angular signatures of surfaces to be measured, was launched in November 2009. The SMAP sensor, based on a large mesh reflector 6 m in diameter providing a conically scanning antenna beam with a surface incidence angle of 40deg, was launched in January of 2015. Over the last decade, an intense scientific activity has focused on the development of the SM retrieval algorithms for the two missions. This activity has relied on many field (mainly tower-based) and airborne experimental campaigns, and since 2010-2011, on the SMOS and Aquarius space-borne L-band observations. It has relied too on the use of numerical, physical and semi-empirical models to simulate the microwave brightness temperature of natural scenes for a variety of scenarios in terms of system configurations (polarization, incidence angle) and soil, vegetation and climate conditions. Key components of the inversion models have been evaluated and new parameterizations of the effects of the surface temperature, soil roughness, soil permittivity, and vegetation extinction and scattering have been developed. Among others, global maps of select radiative transfer parameters have been estimated very recently. Based on this intense activity, improvements of the SMOS and SMAP SM inversion algorithms have been proposed. Some of them have already been implemented, whereas others are currently being investigated. In this paper, we present a review of the significant progress which has been made over the last decade in this field of research with a focus on L-band, and a discussion on possible applications to the SMOS and SMAP soil moisture retrieval approaches.

  8. Inter-comparison between AIRS and IASI through Retrieved Parameters

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Smith, William L.; Taylor, Jonathan P.; Schluessel, Peter; Strow, L. Larrabee; Mango, Steve

    2008-01-01

    A State-of-the-art retrieval algorithm dealing with all-weather conditions has been applied to satellite/aircraft instruments retrieving cloud/surface and atmospheric conditions. High quality retrievals have been achieved from IASI data. Surface, cloud, and atmospheric structure and variation are well captured by IASI measurements and/or retrievals. The same retrieval algorithm is also applied to AIRS for retrieval inter-comparison. Both AIRS and IASI have a similar FOV size but AIRS has a higher horizontal resolution. AIRS data can be interpolated to IASI horizontal resolution for inter-comparison at the same geophysical locations, however a temporal variation between AIRS and IASI observations need to be considered. JAIVEx has employed aircraft to obtain the atmospheric variation filling the temporal gap between two satellites. First results show that both AIRS and IASI have a very similar vertical resolving power, atmospheric conditions are well captured by both instruments, and radiances are well calibrated. AIRS data shown in retrievals (e.g., surface emissivity and moisture) have a relatively higher noise level. Since the this type of retrieval is very sensitive to its radiance quality, retrieval products inter-comparison is an effective way to identify/compare their radiance quality, in terms of a combination of spectral resolution and noise level, and to assess instrument performance. Additional validation analyses are needed to provide more-definitive conclusions.

  9. Global Contrast Based Salient Region Detection.

    PubMed

    Cheng, Ming-Ming; Mitra, Niloy J; Huang, Xiaolei; Torr, Philip H S; Hu, Shi-Min

    2015-03-01

    Automatic estimation of salient object regions across images, without any prior assumption or knowledge of the contents of the corresponding scenes, enhances many computer vision and computer graphics applications. We introduce a regional contrast based salient object detection algorithm, which simultaneously evaluates global contrast differences and spatial weighted coherence scores. The proposed algorithm is simple, efficient, naturally multi-scale, and produces full-resolution, high-quality saliency maps. These saliency maps are further used to initialize a novel iterative version of GrabCut, namely SaliencyCut, for high quality unsupervised salient object segmentation. We extensively evaluated our algorithm using traditional salient object detection datasets, as well as a more challenging Internet image dataset. Our experimental results demonstrate that our algorithm consistently outperforms 15 existing salient object detection and segmentation methods, yielding higher precision and better recall rates. We also show that our algorithm can be used to efficiently extract salient object masks from Internet images, enabling effective sketch-based image retrieval (SBIR) via simple shape comparisons. Despite such noisy internet images, where the saliency regions are ambiguous, our saliency guided image retrieval achieves a superior retrieval rate compared with state-of-the-art SBIR methods, and additionally provides important target object region information.

  10. Assessment of diverse algorithms applied on MODIS Aqua and Terra data over land surfaces in Europe

    NASA Astrophysics Data System (ADS)

    Glantz, P.; Tesche, M.

    2012-04-01

    Beside an increase of greenhouse gases (e.g., carbon dioxide, methane and nitrous oxide) human activities (for instance fossil fuel and biomass burning) have lead to perturbation of the atmospheric content of aerosol particles. Aerosols exhibits high spatial and temporal variability in the atmosphere. Therefore, aerosol investigation for climate research and environmental control require the identification of source regions, their strength and aerosol type, which can be retrieved based on space-borne observations. The aim of the present study is to validate and evaluate AOT (aerosol optical thickness) and Ångström exponent, obtained with the SAER (Satellite AErosol Retrieval) algorithm for MODIS (MODerate resolution Imaging Spectroradiometer) Aqua and Terra calibrated level 1 data (1 km horizontal resolution at ground), against AERONET (AErosol RObotic NETwork) observations and MODIS Collection 5 (c005) standard product retrievals (10 km), respectively, over land surfaces in Europe for the seasons; early spring (period 1), mid spring (period 2) and summer (period 3). For several of the cases analyzed here the Aqua and Terra satellites passed the investigation area twice during a day. Thus, beside a variation in the sun elevation the satellite aerosol retrievals have also on a daily basis been performed with a significant variation in the satellite-viewing geometry. An inter-comparison of the two algorithms has also been performed. The validation with AERONET shows that the MODIS c005 retrieved AOT is, for the wavelengths 0.469 and 0.500 nm, on the whole within the expected uncertainty for one standard deviation of the MODIS retrievals over Europe (Δτ = ±0.05 ± 0.15τ). The SAER estimated AOT for the wavelength 0.443 nm also agree reasonable well with AERONET. Thus, the majority of the SAER AOT values are within the MODIS expected uncertainty range, although somewhat larger RMSD (root mean square deviation) occurs compared to the results obtained with the MODIS c005 algorithm. The discrepancy between SAERand AERONET AOT is, however, substantially larger for the wavelength 488 nm, which means that several of the AOT values are without the MODIS expected uncertainty range. Both algorithms are unable to estimate Ångström exponent accurately, although the MODIS c005 algorithm performs a better job. Based on the inter-comparison of the SAER and MODIS c005 algorithms it was found here that the former estimation of AOT is for values up to 1on the whole within the expected uncertainties for one standard deviation of the MODIS retrievals, considering both Aqua and Terra and periods 1 and 3. The latter also occurs for Aqua and period 2, while then for AOT values lower than 0.5. The present algorithms were, beside aerosols emitted from clean sources and continental sources in Europe, also applied with favor on aerosol particles transported from agricultural fires in Russia and Ukraine. The latter events were associated with high aerosol loadings, although probably with similar single scattering albedo as the days classified as clean. We also present observations performed with space borne and ground-based lidars in the area investigated. From the latter platforms the vertical distribution of aerosol extinction in the atmosphere can be measured. This study suggests that the present satellite retrievals of AOT, particularly obtained with the MODIS c005 algorithm, will, in combination with the lidar measurements, be very useful in validation of regional and climate models over Europe.

  11. SKL algorithm based fabric image matching and retrieval

    NASA Astrophysics Data System (ADS)

    Cao, Yichen; Zhang, Xueqin; Ma, Guojian; Sun, Rongqing; Dong, Deping

    2017-07-01

    Intelligent computer image processing technology provides convenience and possibility for designers to carry out designs. Shape analysis can be achieved by extracting SURF feature. However, high dimension of SURF feature causes to lower matching speed. To solve this problem, this paper proposed a fast fabric image matching algorithm based on SURF K-means and LSH algorithm. By constructing the bag of visual words on K-Means algorithm, and forming feature histogram of each image, the dimension of SURF feature is reduced at the first step. Then with the help of LSH algorithm, the features are encoded and the dimension is further reduced. In addition, the indexes of each image and each class of image are created, and the number of matching images is decreased by LSH hash bucket. Experiments on fabric image database show that this algorithm can speed up the matching and retrieval process, the result can satisfy the requirement of dress designers with accuracy and speed.

  12. Improvements to the swath-level near-surface atmospheric state parameter retrievals within the NRL Ocean Surface Flux System (NFLUX)

    NASA Astrophysics Data System (ADS)

    May, J. C.; Rowley, C. D.; Meyer, H.

    2017-12-01

    The Naval Research Laboratory (NRL) Ocean Surface Flux System (NFLUX) is an end-to-end data processing and assimilation system used to provide near-real-time satellite-based surface heat flux fields over the global ocean. The first component of NFLUX produces near-real-time swath-level estimates of surface state parameters and downwelling radiative fluxes. The focus here will be on the satellite swath-level state parameter retrievals, namely surface air temperature, surface specific humidity, and surface scalar wind speed over the ocean. Swath-level state parameter retrievals are produced from satellite sensor data records (SDRs) from four passive microwave sensors onboard 10 platforms: the Special Sensor Microwave Imager/Sounder (SSMIS) sensor onboard the DMSP F16, F17, and F18 platforms; the Advanced Microwave Sounding Unit-A (AMSU-A) sensor onboard the NOAA-15, NOAA-18, NOAA-19, Metop-A, and Metop-B platforms; the Advanced Technology Microwave Sounder (ATMS) sensor onboard the S-NPP platform; and the Advanced Microwave Scannin Radiometer 2 (AMSR2) sensor onboard the GCOM-W1 platform. The satellite SDRs are translated into state parameter estimates using multiple polynomial regression algorithms. The coefficients to the algorithms are obtained using a bootstrapping technique with all available brightness temperature channels for a given sensor, in addition to a SST field. For each retrieved parameter for each sensor-platform combination, unique algorithms are developed for ascending and descending orbits, as well as clear vs cloudy conditions. Each of the sensors produces surface air temperature and surface specific humidity retrievals. The SSMIS and AMSR2 sensors also produce surface scalar wind speed retrievals. Improvement is seen in the SSMIS retrievals when separate algorithms are used for the even and odd scans, with the odd scans performing better than the even scans. Currently, NFLUX treats all SSMIS scans as even scans. Additional improvement in all of the surface retrievals comes from using a 3-hourly SST field, as opposed to a daily SST field.

  13. Variable Sampling Mapping

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey, S.; Aronstein, David L.; Dean, Bruce H.; Lyon, Richard G.

    2012-01-01

    The performance of an optical system (for example, a telescope) is limited by the misalignments and manufacturing imperfections of the optical elements in the system. The impact of these misalignments and imperfections can be quantified by the phase variations imparted on light traveling through the system. Phase retrieval is a methodology for determining these variations. Phase retrieval uses images taken with the optical system and using a light source of known shape and characteristics. Unlike interferometric methods, which require an optical reference for comparison, and unlike Shack-Hartmann wavefront sensors that require special optical hardware at the optical system's exit pupil, phase retrieval is an in situ, image-based method for determining the phase variations of light at the system s exit pupil. Phase retrieval can be used both as an optical metrology tool (during fabrication of optical surfaces and assembly of optical systems) and as a sensor used in active, closed-loop control of an optical system, to optimize performance. One class of phase-retrieval algorithms is the iterative transform algorithm (ITA). ITAs estimate the phase variations by iteratively enforcing known constraints in the exit pupil and at the detector, determined from modeled or measured data. The Variable Sampling Mapping (VSM) technique is a new method for enforcing these constraints in ITAs. VSM is an open framework for addressing a wide range of issues that have previously been considered detrimental to high-accuracy phase retrieval, including undersampled images, broadband illumination, images taken at or near best focus, chromatic aberrations, jitter or vibration of the optical system or detector, and dead or noisy detector pixels. The VSM is a model-to-data mapping procedure. In VSM, fully sampled electric fields at multiple wavelengths are modeled inside the phase-retrieval algorithm, and then these fields are mapped to intensities on the light detector, using the properties of the detector and optical system, for comparison with measured data. Ultimately, this model-to-data mapping procedure enables a more robust and accurate way of incorporating the exit-pupil and image detector constraints, which are fundamental to the general class of ITA phase retrieval algorithms.

  14. Aerosol retrieval experiments in the ESA Aerosol_cci project

    NASA Astrophysics Data System (ADS)

    Holzer-Popp, T.; de Leeuw, G.; Martynenko, D.; Klüser, L.; Bevan, S.; Davies, W.; Ducos, F.; Deuzé, J. L.; Graigner, R. G.; Heckel, A.; von Hoyningen-Hüne, W.; Kolmonen, P.; Litvinov, P.; North, P.; Poulsen, C. A.; Ramon, D.; Siddans, R.; Sogacheva, L.; Tanre, D.; Thomas, G. E.; Vountas, M.; Descloitres, J.; Griesfeller, J.; Kinne, S.; Schulz, M.; Pinnock, S.

    2013-03-01

    Within the ESA Climate Change Initiative (CCI) project Aerosol_cci (2010-2013) algorithms for the production of long-term total column aerosol optical depth (AOD) datasets from European Earth Observation sensors are developed. Starting with eight existing pre-cursor algorithms three analysis steps are conducted to improve and qualify the algorithms: (1) a series of experiments applied to one month of global data to understand several major sensitivities to assumptions needed due to the ill-posed nature of the underlying inversion problem, (2) a round robin exercise of "best" versions of each of these algorithms (defined using the step 1 outcome) applied to four months of global data to identify mature algorithms, and (3) a comprehensive validation exercise applied to one complete year of global data produced by the algorithms selected as mature based on the round robin exercise. The algorithms tested included four using AATSR, three using MERIS and one using PARASOL. This paper summarizes the first step. Three experiments were conducted to assess the potential impact of major assumptions in the various aerosol retrieval algorithms. In the first experiment a common set of four aerosol components was used to provide all algorithms with the same assumptions. The second experiment introduced an aerosol property climatology, derived from a combination of model and sun photometer observations, as a priori information in the retrievals on the occurrence of the common aerosol components and their mixing ratios. The third experiment assessed the impact of using a common nadir cloud mask for AATSR and MERIS algorithms in order to characterize the sensitivity to remaining cloud contamination in the retrievals against the baseline dataset versions. The impact of the algorithm changes was assessed for one month (September 2008) of data qualitatively by visible analysis of monthly mean AOD maps and quantitatively by comparing global daily gridded satellite data against daily average AERONET sun photometer observations for the different versions of each algorithm. The analysis allowed an assessment of sensitivities of all algorithms which helped define the best algorithm version for the subsequent round robin exercise; all algorithms (except for MERIS) showed some, in parts significant, improvement. In particular, using common aerosol components and partly also a priori aerosol type climatology is beneficial. On the other hand the use of an AATSR-based common cloud mask meant a clear improvement (though with significant reduction of coverage) for the MERIS standard product, but not for the algorithms using AATSR.

  15. Analysis of CrIS ATMS and AIRS AMSU Data Using Scientifically Equivalent Retrieval Algorithms

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Kouvaris, Louis; Iredell, Lena; Blaisdell, John

    2016-01-01

    Monthly mean August 2014 Version-6.28 AIRS and CrIS products agree well with OMPS and CERES, and reasonably well with each other. Version-6.28 CrIS total precipitable water is biased dry compared to AIRS. AIRS and CrIS Version-6.36 water vapor products are both improved compared to Version-6.28. Version-6.36 AIRS and CrIS total precipitable water also shows improved agreement with each other. AIRS Version-6.36 total ozone agrees even better with OMPS than does AIRS Version-6.28, and gives reasonable results during polar winter where OMPS does not generate products. CrIS and ATMS are high spectral resolution IR and Microwave atmospheric sounders currently flying on the SNPP satellite, and are also scheduled for flight on future NPOESS satellites. CrIS/ATMS have similar sounding capabilities to those of the AIRS/AMSU sounder suite flying on EOS Aqua. The objective of this research is to develop and implement scientifically equivalent AIRS/AMSU and CrIS/ATMS retrieval algorithms with the goal of generating a continuous data record of AIRS/AMSU and CrIS/ATMS level-3 data products with a seamless transition between them in time. To achieve this, monthly mean AIRS/AMSU and CrIS/ATMS retrieved products, and more importantly their interannual differences, should show excellent agreement with each other. The currently operational AIRS Science Team Version-6 retrieval algorithm has generated 14 years of level-3 data products. A scientifically improved AIRS Version-7 retrieval algorithm is expected to become operational in 2017. We see significant improvements in water vapor and ozone in Version-7 retrieval methodology compared to Version-6.We are working toward finalization and implementation of scientifically equivalent AIRS/AMSU and CrIS/ATMS Version-7 retrieval algorithms to be used for the eventual processing of all AIRS/AMSU and CrIS/ATMS data. The latest version of our retrieval algorithm is Verison-6.36, which includes almost all the improvements we want in Version-7. Version-6.28 has been used to process both AIRS and CrIS data for August 2014. This poster compares August 2014 monthly mean Version-6.28 AIRS/AMSU and CrIS/ATMS products with each other, and also with monthly mean products obtained using AIRS Version-6. AIRS and CrIS results using Version-6.36 are presented for April 15, 2016. These demonstrate further improvements since Version-6.28. The new results also show improved agreement of Version-6.36 AIRS and CrIS products with each other. Version-6.36 is not yet optimized for CrIS ozone products.

  16. A modeling approach for aerosol optical depth analysis during forest fire events

    NASA Astrophysics Data System (ADS)

    Aube, Martin P.; O'Neill, Normand T.; Royer, Alain; Lavoue, David

    2004-10-01

    Measurements of aerosol optical depth (AOD) are important indicators of aerosol particle behavior. Up to now the two standard techniques used for retrieving AOD are; (i) sun photometry which provides measurements of high temporal frequency and sparse spatial frequency, and (ii) satellite based approaches such as DDV (Dense Dark Vegetation) based inversion algorithms which yield AOD over dark targets in remotely sensed imagery. Although the latter techniques allow AOD retrieval over appreciable spatial domains, the irregular spatial pattern of dark targets and the typically low repeat frequencies of imaging satellites exclude the acquisition of AOD databases on a continuous spatio-temporal basis. We attempt to fill gaps in spatio-temporal AOD measurements using a new assimilation methodology that links AOD measurements and the predictions of a particulate matter Transport Model. This modelling package (AODSEM V2.0 for Aerosol Optical Depth Spatio-temporal Evolution Model) uses a size and aerosol type segregated semi-Lagrangian trajectory algorithm driven by analysed meteorological data. Its novelty resides in the fact that the model evolution may be tied to both ground based and satellite level AOD measurement and all physical processes have been optimized to track this important and robust parameter. We applied this methodology to a significant smoke event that occurred over the eastern part of North America in July 2002.

  17. Assimilation of nontraditional datasets to improve atmospheric compensation

    NASA Astrophysics Data System (ADS)

    Kelly, Michael A.; Osei-Wusu, Kwame; Spisz, Thomas S.; Strong, Shadrian; Setters, Nathan; Gibson, David M.

    2012-06-01

    Detection and characterization of space objects require the capability to derive physical properties such as brightness temperature and reflectance. These quantities, together with trajectory and position, are often used to correlate an object from a catalogue of known characteristics. However, retrieval of these physical quantities can be hampered by the radiative obscuration of the atmosphere. Atmospheric compensation must therefore be applied to remove the radiative signature of the atmosphere from electro-optical (EO) collections and enable object characterization. The JHU/APL Atmospheric Compensation System (ACS) was designed to perform atmospheric compensation for long, slant-range paths at wavelengths from the visible to infrared. Atmospheric compensation is critically important for airand ground-based sensors collecting at low elevations near the Earth's limb. It can be demonstrated that undetected thin, sub-visual cirrus clouds in the line of sight (LOS) can significantly alter retrieved target properties (temperature, irradiance). The ACS algorithm employs non-traditional cirrus datasets and slant-range atmospheric profiles to estimate and remove atmospheric radiative effects from EO/IR collections. Results are presented for a NASA-sponsored collection in the near-IR (NIR) during hypersonic reentry of the Space Shuttle during STS-132.

  18. Bio-Optical and Remote Sensing Observations in Chesapeake Bay. Chapter 7

    NASA Technical Reports Server (NTRS)

    Harding, Lawrence W., Jr.; Magnuson, Andrea

    2003-01-01

    The high temporal and spatial resolution of satellite ocean color observations will prove invaluable for monitoring the health of coastal ecosystems where physical and biological variability demands sampling scales beyond that possible by ship. However, ocean color remote sensing of Case 2 waters is a challenging undertaking due to the optical complexity of the water. The focus of this SIMBIOS support has been to provide in situ optical measurements from Chesapeake Bay (CB) and adjacent mid-Atlantic bight (MAB) waters for use in algorithm development and validation efforts to improve the satellite retrieval of chlorophyll (chl a) in Case 2 waters. CB provides a valuable site for validation of data from ocean color sensors for a number of reasons. First, the physical dimensions of the Bay (> 6,500 km2) make retrievals from satellites with a spatial resolution of approx. 1 km (i.e., SeaWiFS) or less (i.e., MODIS) reasonable for most of the ecosystem. Second, CB is highly influenced by freshwater flow from major rivers, making it a classic Case 2 water body with significant concentrations of chlorophyll, particulates and chromophoric dissolved organic matter (CDOM) that highly impact the shape of reflectance spectra.

  19. Comparison of four machine learning algorithms for their applicability in satellite-based optical rainfall retrievals

    NASA Astrophysics Data System (ADS)

    Meyer, Hanna; Kühnlein, Meike; Appelhans, Tim; Nauss, Thomas

    2016-03-01

    Machine learning (ML) algorithms have successfully been demonstrated to be valuable tools in satellite-based rainfall retrievals which show the practicability of using ML algorithms when faced with high dimensional and complex data. Moreover, recent developments in parallel computing with ML present new possibilities for training and prediction speed and therefore make their usage in real-time systems feasible. This study compares four ML algorithms - random forests (RF), neural networks (NNET), averaged neural networks (AVNNET) and support vector machines (SVM) - for rainfall area detection and rainfall rate assignment using MSG SEVIRI data over Germany. Satellite-based proxies for cloud top height, cloud top temperature, cloud phase and cloud water path serve as predictor variables. The results indicate an overestimation of rainfall area delineation regardless of the ML algorithm (averaged bias = 1.8) but a high probability of detection ranging from 81% (SVM) to 85% (NNET). On a 24-hour basis, the performance of the rainfall rate assignment yielded R2 values between 0.39 (SVM) and 0.44 (AVNNET). Though the differences in the algorithms' performance were rather small, NNET and AVNNET were identified as the most suitable algorithms. On average, they demonstrated the best performance in rainfall area delineation as well as in rainfall rate assignment. NNET's computational speed is an additional advantage in work with large datasets such as in remote sensing based rainfall retrievals. However, since no single algorithm performed considerably better than the others we conclude that further research in providing suitable predictors for rainfall is of greater necessity than an optimization through the choice of the ML algorithm.

  20. Triple-frequency radar retrievals of snowfall properties from the OLYMPEX field campaign

    NASA Astrophysics Data System (ADS)

    Leinonen, J. S.; Lebsock, M. D.; Sy, O. O.; Tanelli, S.

    2017-12-01

    Retrieval of snowfall properties with radar is subject to significant errors arising from the uncertainties in the size and structure of snowflakes. Recent modeling and theoretical studies have shown that multi-frequency radars can potentially constrain the microphysical properties and thus reduce the uncertainties in the retrieved snow water content. So far, there have only been limited efforts to leverage the theoretical advances in actual snowfall retrievals. In this study, we have implemented an algorithm that retrieves the snowfall properties from triple-frequency radar data using the radar scattering properties from a combination of snowflake scattering databases, which were derived using numerical scattering methods. Snowflake number concentration, characteristic size and density are derived using a combination of optimal estimation and Kalman smoothing; the snow water content and other bulk properties are then derived from these. The retrieval framework is probabilistic and thus naturally provides error estimates for the retrieved quantities. We tested the retrieval algorithm using data from the APR3 airborne radar flown onboard the NASA DC-8 aircraft during the Olympic Mountain Experiment (OLYMPEX) in late 2015. We demonstrated consistent retrieval of snow properties and smooth transition from single- and dual-frequency retrievals to using all three frequencies simultaneously. The error analysis shows that the retrieval accuracy is improved when additional frequencies are introduced. We also compare the findings to in situ measurements of snow properties as well as measurements by polarimetric ground-based radar.

  1. PageRank without hyperlinks: Reranking with PubMed related article networks for biomedical text retrieval

    PubMed Central

    Lin, Jimmy

    2008-01-01

    Background Graph analysis algorithms such as PageRank and HITS have been successful in Web environments because they are able to extract important inter-document relationships from manually-created hyperlinks. We consider the application of these techniques to biomedical text retrieval. In the current PubMed® search interface, a MEDLINE® citation is connected to a number of related citations, which are in turn connected to other citations. Thus, a MEDLINE record represents a node in a vast content-similarity network. This article explores the hypothesis that these networks can be exploited for text retrieval, in the same manner as hyperlink graphs on the Web. Results We conducted a number of reranking experiments using the TREC 2005 genomics track test collection in which scores extracted from PageRank and HITS analysis were combined with scores returned by an off-the-shelf retrieval engine. Experiments demonstrate that incorporating PageRank scores yields significant improvements in terms of standard ranked-retrieval metrics. Conclusion The link structure of content-similarity networks can be exploited to improve the effectiveness of information retrieval systems. These results generalize the applicability of graph analysis algorithms to text retrieval in the biomedical domain. PMID:18538027

  2. A Survey of Stemming Algorithms in Information Retrieval

    ERIC Educational Resources Information Center

    Moral, Cristian; de Antonio, Angélica; Imbert, Ricardo; Ramírez, Jaime

    2014-01-01

    Background: During the last fifty years, improved information retrieval techniques have become necessary because of the huge amount of information people have available, which continues to increase rapidly due to the use of new technologies and the Internet. Stemming is one of the processes that can improve information retrieval in terms of…

  3. Engineering a Multi-Purpose Test Collection for Web Retrieval Experiments.

    ERIC Educational Resources Information Center

    Bailey, Peter; Craswell, Nick; Hawking, David

    2003-01-01

    Describes a test collection that was developed as a multi-purpose testbed for experiments on the Web in distributed information retrieval, hyperlink algorithms, and conventional ad hoc retrieval. Discusses inter-server connectivity, integrity of server holdings, inclusion of documents related to a wide spread of likely queries, and distribution of…

  4. Development, Validation, and Potential Enhancements to the Second-Generation Operational Aerosol Product at the National Environmental Satellite, Data, and Information Service of the National Oceanic and Atmospheric Administration

    NASA Technical Reports Server (NTRS)

    Stowe, Larry L.; Ignatov, Alexander M.; Singh, Ramdas R.

    1997-01-01

    A revised (phase 2) single-channel algorithm for aerosol optical thickness, tau(sup A)(sub SAT), retrieval over oceans from radiances in channel 1 (0.63 microns) of the Advanced Very High Resolution Radiometer (AVHRR) has been implemented at the National Oceanic and Atmospheric Administration's National Environmental Satellite Data and Information Service for the NOAA 14 satellite launched December 30, 1994. It is based on careful validation of its operational predecessor (phase 1 algorithm), implemented for NOAA 14 in 1989. Both algorithms scale the upward satellite radiances in cloud-free conditions to aerosol optical thickness using an updated radiative transfer model of the ocean and atmosphere. Application of the phase 2 algorithm to three matchup Sun-photometer and satellite data sets, one with NOAA 9 in 1988 and two with NOAA 11 in 1989 and 1991, respectively, show systematic error is less than 10%, with a random error of sigma(sub tau) approx. equal 0.04. First results of tau(sup A)(sub SAT) retrievals from NOAA 14 using the phase 2 algorithm, and from checking its internal consistency, are presented. The potential two-channel (phase 3) algorithm for the retrieval of an aerosol size parameter, such as the Junge size distribution exponent, by adding either channel 2 (0.83 microns) from the current AVHRR instrument, or a 1.6-microns channel to be available on the Tropical Rainfall Measurement Mission and the NOAA-KLM satellites by 1997 is under investigation. The possibility of using this additional information in the retrieval of a more accurate estimate of aerosol optical thickness is being explored.

  5. Improved Soundings and Error Estimates using AIRS/AMSU Data

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2006-01-01

    AIRS was launched on EOS Aqua on May 4, 2002, together with AMSU A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. The sounding goals of AIRS are to produce 1 km tropospheric layer mean temperatures with an rms error of 1 K, and layer precipitable water with an rms error of 20 percent, in cases with up to 80 percent effective cloud cover. The basic theory used to analyze AIRS/AMSU/HSB data in the presence of clouds, called the at-launch algorithm, and a post-launch algorithm which differed only in the minor details from the at-launch algorithm, have been described previously. The post-launch algorithm, referred to as AIRS Version 4.0, has been used by the Goddard DAAC to analyze and distribute AIRS retrieval products. In this paper we show progress made toward the AIRS Version 5.0 algorithm which will be used by the Goddard DAAC starting late in 2006. A new methodology has been developed to provide accurate case by case error estimates for retrieved geophysical parameters and for the channel by channel cloud cleared radiances used to derive the geophysical parameters from the AIRS/AMSU observations. These error estimates are in turn used for quality control of the derived geophysical parameters and clear column radiances. Improvements made to the retrieval algorithm since Version 4.0 are described as well as results comparing Version 5.0 retrieval accuracy and spatial coverage with those obtained using Version 4.0.

  6. Phase accumulation tracking algorithm for effective index retrieval of fishnet metamaterials and other resonant guided wave networks

    NASA Astrophysics Data System (ADS)

    Feigenbaum, Eyal; Hiszpanski, Anna M.

    2017-07-01

    A phase accumulation tracking (PAT) algorithm is proposed and demonstrated for the retrieval of the effective index of fishnet metamaterials (FMMs) in order to avoid the multi-branch uncertainty problem. This algorithm tracks the phase and amplitude of the dominant propagation mode across the FMM slab. The suggested PAT algorithm applies to resonant guided wave networks having only one mode that carries the light between the two slab ends, where the FMM is one example of this metamaterials sub-class. The effective index is a net effect of positive and negative accumulated phase in the alternating FMM metal and dielectric layers, with a negative effective index occurring when negative phase accumulation dominates.

  7. Estimating snow depth of alpine snowpack via airborne multifrequency passive microwave radiance observations: Colorado, USA

    NASA Astrophysics Data System (ADS)

    Kim, R. S.; Durand, M. T.; Li, D.; Baldo, E.; Margulis, S. A.; Dumont, M.; Morin, S.

    2017-12-01

    This paper presents a newly-proposed snow depth retrieval approach for mountainous deep snow using airborne multifrequency passive microwave (PM) radiance observation. In contrast to previous snow depth estimations using satellite PM radiance assimilation, the newly-proposed method utilized single flight observation and deployed the snow hydrologic models. This method is promising since the satellite-based retrieval methods have difficulties to estimate snow depth due to their coarse resolution and computational effort. Indeed, this approach consists of particle filter using combinations of multiple PM frequencies and multi-layer snow physical model (i.e., Crocus) to resolve melt-refreeze crusts. The method was performed over NASA Cold Land Processes Experiment (CLPX) area in Colorado during 2002 and 2003. Results showed that there was a significant improvement over the prior snow depth estimates and the capability to reduce the prior snow depth biases. When applying our snow depth retrieval algorithm using a combination of four PM frequencies (10.7,18.7, 37.0 and 89.0 GHz), the RMSE values were reduced by 48 % at the snow depth transects sites where forest density was less than 5% despite deep snow conditions. This method displayed a sensitivity to different combinations of frequencies, model stratigraphy (i.e. different number of layering scheme for snow physical model) and estimation methods (particle filter and Kalman filter). The prior RMSE values at the forest-covered areas were reduced by 37 - 42 % even in the presence of forest cover.

  8. Is searching full text more effective than searching abstracts?

    PubMed Central

    Lin, Jimmy

    2009-01-01

    Background With the growing availability of full-text articles online, scientists and other consumers of the life sciences literature now have the ability to go beyond searching bibliographic records (title, abstract, metadata) to directly access full-text content. Motivated by this emerging trend, I posed the following question: is searching full text more effective than searching abstracts? This question is answered by comparing text retrieval algorithms on MEDLINE® abstracts, full-text articles, and spans (paragraphs) within full-text articles using data from the TREC 2007 genomics track evaluation. Two retrieval models are examined: bm25 and the ranking algorithm implemented in the open-source Lucene search engine. Results Experiments show that treating an entire article as an indexing unit does not consistently yield higher effectiveness compared to abstract-only search. However, retrieval based on spans, or paragraphs-sized segments of full-text articles, consistently outperforms abstract-only search. Results suggest that highest overall effectiveness may be achieved by combining evidence from spans and full articles. Conclusion Users searching full text are more likely to find relevant articles than searching only abstracts. This finding affirms the value of full text collections for text retrieval and provides a starting point for future work in exploring algorithms that take advantage of rapidly-growing digital archives. Experimental results also highlight the need to develop distributed text retrieval algorithms, since full-text articles are significantly longer than abstracts and may require the computational resources of multiple machines in a cluster. The MapReduce programming model provides a convenient framework for organizing such computations. PMID:19192280

  9. Doppler Navigation System with a Non-Stabilized Antenna as a Sea-Surface Wind Sensor.

    PubMed

    Nekrasov, Alexey; Khachaturian, Alena; Veremyev, Vladimir; Bogachev, Mikhail

    2017-06-09

    We propose a concept of the utilization of an aircraft Doppler Navigation System (DNS) as a sea-surface wind sensor complementary to its normal functionality. The DNS with an antenna, which is non-stabilized physically to the local horizontal with x -configured beams, is considered. We consider the wind measurements by the DNS configured in the multi-beam scatterometer mode for a rectilinear flight scenario. The system feasibility and the efficiency of the proposed wind algorithm retrieval are supported by computer simulations. Finally, the associated limitations of the proposed approach are considered.

  10. A hybrid continuous-wave terahertz imaging system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolganova, Irina N., E-mail: in.dolganova@gmail.com; Zaytsev, Kirill I., E-mail: kirzay@gmail.ru; Metelkina, Anna A.

    2015-11-15

    A hybrid (active-passive mode) terahertz (THz) imaging system and an algorithm for imaging synthesis are proposed to enhance the THz image quality. The concept of image contrast is used to compare active and passive THz imaging. Combining the measurement of the self-emitted radiation of the object with the back-scattered source radiation measurement, it becomes possible to use the THz image to retrieve maximum information about the object. The experimental results confirm the advantages of hybrid THz imaging systems, which can be generalized for a wide range of applications in the material sciences, chemical physics, bio-systems, etc.

  11. Doppler Navigation System with a Non-Stabilized Antenna as a Sea-Surface Wind Sensor

    PubMed Central

    Nekrasov, Alexey; Khachaturian, Alena; Veremyev, Vladimir; Bogachev, Mikhail

    2017-01-01

    We propose a concept of the utilization of an aircraft Doppler Navigation System (DNS) as a sea-surface wind sensor complementary to its normal functionality. The DNS with an antenna, which is non-stabilized physically to the local horizontal with x-configured beams, is considered. We consider the wind measurements by the DNS configured in the multi-beam scatterometer mode for a rectilinear flight scenario. The system feasibility and the efficiency of the proposed wind algorithm retrieval are supported by computer simulations. Finally, the associated limitations of the proposed approach are considered. PMID:28598374

  12. Phase Reconstruction from FROG Using Genetic Algorithms[Frequency-Resolved Optical Gating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Omenetto, F.G.; Nicholson, J.W.; Funk, D.J.

    1999-04-12

    The authors describe a new technique for obtaining the phase and electric field from FROG measurements using genetic algorithms. Frequency-Resolved Optical Gating (FROG) has gained prominence as a technique for characterizing ultrashort pulses. FROG consists of a spectrally resolved autocorrelation of the pulse to be measured. Typically a combination of iterative algorithms is used, applying constraints from experimental data, and alternating between the time and frequency domain, in order to retrieve an optical pulse. The authors have developed a new approach to retrieving the intensity and phase from FROG data using a genetic algorithm (GA). A GA is a generalmore » parallel search technique that operates on a population of potential solutions simultaneously. Operators in a genetic algorithm, such as crossover, selection, and mutation are based on ideas taken from evolution.« less

  13. Learning Short Binary Codes for Large-scale Image Retrieval.

    PubMed

    Liu, Li; Yu, Mengyang; Shao, Ling

    2017-03-01

    Large-scale visual information retrieval has become an active research area in this big data era. Recently, hashing/binary coding algorithms prove to be effective for scalable retrieval applications. Most existing hashing methods require relatively long binary codes (i.e., over hundreds of bits, sometimes even thousands of bits) to achieve reasonable retrieval accuracies. However, for some realistic and unique applications, such as on wearable or mobile devices, only short binary codes can be used for efficient image retrieval due to the limitation of computational resources or bandwidth on these devices. In this paper, we propose a novel unsupervised hashing approach called min-cost ranking (MCR) specifically for learning powerful short binary codes (i.e., usually the code length shorter than 100 b) for scalable image retrieval tasks. By exploring the discriminative ability of each dimension of data, MCR can generate one bit binary code for each dimension and simultaneously rank the discriminative separability of each bit according to the proposed cost function. Only top-ranked bits with minimum cost-values are then selected and grouped together to compose the final salient binary codes. Extensive experimental results on large-scale retrieval demonstrate that MCR can achieve comparative performance as the state-of-the-art hashing algorithms but with significantly shorter codes, leading to much faster large-scale retrieval.

  14. An efficient approach for video information retrieval

    NASA Astrophysics Data System (ADS)

    Dong, Daoguo; Xue, Xiangyang

    2005-01-01

    Today, more and more video information can be accessed through internet, satellite, etc.. Retrieving specific video information from large-scale video database has become an important and challenging research topic in the area of multimedia information retrieval. In this paper, we introduce a new and efficient index structure OVA-File, which is a variant of VA-File. In OVA-File, the approximations close to each other in data space are stored in close positions of the approximation file. The benefit is that only a part of approximations close to the query vector need to be visited to get the query result. Both shot query algorithm and video clip algorithm are proposed to support video information retrieval efficiently. The experimental results showed that the queries based on OVA-File were much faster than that based on VA-File with small loss of result quality.

  15. Aerosol Size Distributions During ACE-Asia: Retrievals From Optical Thickness and Comparisons With In-situ Measurements

    NASA Astrophysics Data System (ADS)

    Kuzmanoski, M.; Box, M.; Box, G. P.; Schmidt, B.; Russell, P. B.; Redemann, J.; Livingston, J. M.; Wang, J.; Flagan, R. C.; Seinfeld, J. H.

    2002-12-01

    As part of the ACE-Asia experiment, conducted off the coast of China, Korea and Japan in spring 2001, measurements of aerosol physical, chemical and radiative characteristics were performed aboard the Twin Otter aircraft. Of particular importance for this paper were spectral measurements of aerosol optical thickness obtained at 13 discrete wavelengths, within 354-1558 nm wavelength range, using the AATS-14 sunphotometer. Spectral aerosol optical thickness can be used to obtain information about particle size distribution. In this paper, we use sunphotometer measurements to retrieve size distribution of aerosols during ACE-Asia. We focus on four cases in which layers influenced by different air masses were identified. Aerosol optical thickness of each layer was inverted using two different techniques - constrained linear inversion and multimodal. In the constrained linear inversion algorithm no assumption about the mathematical form of the distribution to be retrieved is made. Conversely, the multimodal technique assumes that aerosol size distribution is represented as a linear combination of few lognormal modes with predefined values of mode radii and geometric standard deviations. Amplitudes of modes are varied to obtain best fit of sum of optical thicknesses due to individual modes to sunphotometer measurements. In this paper we compare the results of these two retrieval methods. In addition, we present comparisons of retrieved size distributions with in situ measurements taken using an aerodynamic particle sizer and differential mobility analyzer system aboard the Twin Otter aircraft.

  16. Experimental determination of pore shapes using phase retrieval from q -space NMR diffraction

    NASA Astrophysics Data System (ADS)

    Demberg, Kerstin; Laun, Frederik Bernd; Bertleff, Marco; Bachert, Peter; Kuder, Tristan Anselm

    2018-05-01

    This paper presents an approach to solving the phase problem in nuclear magnetic resonance (NMR) diffusion pore imaging, a method that allows imaging the shape of arbitrary closed pores filled with an NMR-detectable medium for investigation of the microstructure of biological tissue and porous materials. Classical q -space imaging composed of two short diffusion-encoding gradient pulses yields, analogously to diffraction experiments, the modulus squared of the Fourier transform of the pore image which entails an inversion problem: An unambiguous reconstruction of the pore image requires both magnitude and phase. Here the phase information is recovered from the Fourier modulus by applying a phase retrieval algorithm. This allows omitting experimentally challenging phase measurements using specialized temporal gradient profiles. A combination of the hybrid input-output algorithm and the error reduction algorithm was used with dynamically adapting support (shrinkwrap extension). No a priori knowledge on the pore shape was fed to the algorithm except for a finite pore extent. The phase retrieval approach proved successful for simulated data with and without noise and was validated in phantom experiments with well-defined pores using hyperpolarized xenon gas.

  17. Retrieving the Height of Smoke and Dust Aerosols by Synergistic Use of VIIRS, OMPS, and CALIOP Observations

    NASA Technical Reports Server (NTRS)

    Lee, Jaehwa; Hsu, N. Christina; Bettenhausen, Corey; Sayer, Andrew M.; Seftor, Colin J.; Jeong, Myeong-Jae

    2015-01-01

    Aerosol Single scattering albedo and Height Estimation (ASHE) algorithm was first introduced in Jeong and Hsu (2008) to provide aerosol layer height as well as single scattering albedo (SSA) for biomass burning smoke aerosols. One of the advantages of this algorithm was that the aerosol layer height can be retrieved over broad areas, which had not been available from lidar observations only. The algorithm utilized aerosol properties from three different satellite sensors, i.e., aerosol optical depth (AOD) and Ångström exponent (AE) from Moderate Resolution Imaging Spectroradiometer (MODIS), UV aerosol index (UVAI) from Ozone Monitoring Instrument (OMI), and aerosol layer height from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). Here, we extend the application of the algorithm to Visible Infrared Imaging Radiometer Suite (VIIRS) and Ozone Mapping and Profiler Suite (OMPS) data. We also now include dust layers as well as smoke. Other updates include improvements in retrieving the AOD of nonspherical dust from VIIRS, better determination of the aerosol layer height from CALIOP, and more realistic input aerosol profiles in the forward model for better accuracy.

  18. Experimental determination of pore shapes using phase retrieval from q-space NMR diffraction.

    PubMed

    Demberg, Kerstin; Laun, Frederik Bernd; Bertleff, Marco; Bachert, Peter; Kuder, Tristan Anselm

    2018-05-01

    This paper presents an approach to solving the phase problem in nuclear magnetic resonance (NMR) diffusion pore imaging, a method that allows imaging the shape of arbitrary closed pores filled with an NMR-detectable medium for investigation of the microstructure of biological tissue and porous materials. Classical q-space imaging composed of two short diffusion-encoding gradient pulses yields, analogously to diffraction experiments, the modulus squared of the Fourier transform of the pore image which entails an inversion problem: An unambiguous reconstruction of the pore image requires both magnitude and phase. Here the phase information is recovered from the Fourier modulus by applying a phase retrieval algorithm. This allows omitting experimentally challenging phase measurements using specialized temporal gradient profiles. A combination of the hybrid input-output algorithm and the error reduction algorithm was used with dynamically adapting support (shrinkwrap extension). No a priori knowledge on the pore shape was fed to the algorithm except for a finite pore extent. The phase retrieval approach proved successful for simulated data with and without noise and was validated in phantom experiments with well-defined pores using hyperpolarized xenon gas.

  19. Atmospheric correction over case 2 waters with an iterative fitting algorithm: relative humidity effects.

    PubMed

    Land, P E; Haigh, J D

    1997-12-20

    In algorithms for the atmospheric correction of visible and near-IR satellite observations of the Earth's surface, it is generally assumed that the spectral variation of aerosol optical depth is characterized by an Angström power law or similar dependence. In an iterative fitting algorithm for atmospheric correction of ocean color imagery over case 2 waters, this assumption leads to an inability to retrieve the aerosol type and to the attribution to aerosol spectral variations of spectral effects actually caused by the water contents. An improvement to this algorithm is described in which the spectral variation of optical depth is calculated as a function of aerosol type and relative humidity, and an attempt is made to retrieve the relative humidity in addition to aerosol type. The aerosol is treated as a mixture of aerosol components (e.g., soot), rather than of aerosol types (e.g., urban). We demonstrate the improvement over the previous method by using simulated case 1 and case 2 sea-viewing wide field-of-view sensor data, although the retrieval of relative humidity was not successful.

  20. Intelligent fuzzy approach for fast fractal image compression

    NASA Astrophysics Data System (ADS)

    Nodehi, Ali; Sulong, Ghazali; Al-Rodhaan, Mznah; Al-Dhelaan, Abdullah; Rehman, Amjad; Saba, Tanzila

    2014-12-01

    Fractal image compression (FIC) is recognized as a NP-hard problem, and it suffers from a high number of mean square error (MSE) computations. In this paper, a two-phase algorithm was proposed to reduce the MSE computation of FIC. In the first phase, based on edge property, range and domains are arranged. In the second one, imperialist competitive algorithm (ICA) is used according to the classified blocks. For maintaining the quality of the retrieved image and accelerating algorithm operation, we divided the solutions into two groups: developed countries and undeveloped countries. Simulations were carried out to evaluate the performance of the developed approach. Promising results thus achieved exhibit performance better than genetic algorithm (GA)-based and Full-search algorithms in terms of decreasing the number of MSE computations. The number of MSE computations was reduced by the proposed algorithm for 463 times faster compared to the Full-search algorithm, although the retrieved image quality did not have a considerable change.

  1. Detection of supercooled liquid water-topped mixed-phase clouds >from shortwave-infrared satellite observations

    NASA Astrophysics Data System (ADS)

    NOH, Y. J.; Miller, S. D.; Heidinger, A. K.

    2015-12-01

    Many studies have demonstrated the utility of multispectral information from satellite passive radiometers for detecting and retrieving the properties of cloud globally, which conventionally utilizes shortwave- and thermal-infrared bands. However, the satellite-derived cloud information comes mainly from cloud top or represents a vertically integrated property. This can produce a large bias in determining cloud phase characteristics, in particular for mixed-phase clouds which are often observed to have supercooled liquid water at cloud top but a predominantly ice phase residing below. The current satellite retrieval algorithms may report these clouds simply as supercooled liquid without any further information regarding the presence of a sub-cloud-top ice phase. More accurate characterization of these clouds is very important for climate models and aviation applications. In this study, we present a physical basis and preliminary results for the algorithm development of supercooled liquid-topped mixed-phase cloud detection using satellite radiometer observations. The detection algorithm is based on differential absorption properties between liquid and ice particles in the shortwave-infrared bands. Solar reflectance data in narrow bands at 1.6 μm and 2.25 μm are used to optically probe below clouds for distinction between supercooled liquid-topped clouds with and without an underlying mixed phase component. Varying solar/sensor geometry and cloud optical properties are also considered. The spectral band combination utilized for the algorithm is currently available on Suomi NPP Visible/Infrared Imaging Radiometer Suite (VIIRS), Himawari-8 Advanced Himawari Imager (AHI), and the future GOES-R Advance Baseline Imager (ABI). When tested on simulated cloud fields from WRF model and synthetic ABI data, favorable results were shown with reasonable threat scores (0.6-0.8) and false alarm rates (0.1-0.2). An ARM/NSA case study applied to VIIRS data also indicated promising potential of the algorithm.

  2. Sensitivity of Marine Warm Cloud Retrieval Statistics to Algorithm Choices: Examples from MODIS Collection 6

    NASA Astrophysics Data System (ADS)

    Platnick, S.; Wind, G.; Zhang, Z.; Ackerman, S. A.; Maddux, B. C.

    2012-12-01

    The optical and microphysical structure of warm boundary layer marine clouds is of fundamental importance for understanding a variety of cloud radiation and precipitation processes. With the advent of MODIS (Moderate Resolution Imaging Spectroradiometer) on the NASA EOS Terra and Aqua platforms, simultaneous global/daily 1km retrievals of cloud optical thickness and effective particle size are provided, as well as the derived water path. In addition, the cloud product (MOD06/MYD06 for MODIS Terra and Aqua, respectively) provides separate effective radii results using the 1.6, 2.1, and 3.7 μm spectral channels. Cloud retrieval statistics are highly sensitive to how a pixel identified as being "not-clear" by a cloud mask (e.g., the MOD35/MYD35 product) is determined to be useful for an optical retrieval based on a 1-D cloud model. The Collection 5 MODIS retrieval algorithm removed pixels associated with cloud edges (defined by immediate adjacency to "clear" MOD/MYD35 pixels) as well as ocean pixels with partly cloudy elements in the 250m MODIS cloud mask - part of the so-called Clear Sky Restoral (CSR) algorithm. Collection 6 attempts retrievals for those two pixel populations, but allows a user to isolate or filter out the populations via CSR pixel-level Quality Assessment (QA) assignments. In this paper, using the preliminary Collection 6 MOD06 product, we present global and regional statistical results of marine warm cloud retrieval sensitivities to the cloud edge and 250m partly cloudy pixel populations. As expected, retrievals for these pixels are generally consistent with a breakdown of the 1D cloud model. While optical thickness for these suspect pixel populations may have some utility for radiative studies, the retrievals should be used with extreme caution for process and microphysical studies.

  3. Characterizing the Vertical Distribution of Aerosols using Ground-based Multiwavelength Lidar Data

    NASA Astrophysics Data System (ADS)

    Ferrare, R. A.; Thorsen, T. J.; Clayton, M.; Mueller, D.; Chemyakin, E.; Burton, S. P.; Goldsmith, J.; Holz, R.; Kuehn, R.; Eloranta, E. W.; Marais, W.; Newsom, R. K.; Liu, X.; Sawamura, P.; Holben, B. N.; Hostetler, C. A.

    2016-12-01

    Observations of aerosol optical and microphysical properties are critical for developing and evaluating aerosol transport model parameterizations and assessing global aerosol-radiation impacts on climate. During the Combined HSRL And Raman lidar Measurement Study (CHARMS), we investigated the synergistic use of ground-based Raman lidar and High Spectral Resolution Lidar (HSRL) measurements to retrieve aerosol properties aloft. Continuous (24/7) operation of these co-located lidars during the ten-week CHARMS mission (mid-July through September 2015) allowed the acquisition of a unique, multiwavelength ground-based lidar dataset for studying aerosol properties above the Southern Great Plains (SGP) site. The ARM Raman lidar measured profiles of aerosol backscatter, extinction and depolarization at 355 nm as well as profiles of water vapor mixing ratio and temperature. The University of Wisconsin HSRL simultaneously measured profiles of aerosol backscatter, extinction and depolarization at 532 nm and aerosol backscatter at 1064 nm. Recent advances in both lidar retrieval theory and algorithm development demonstrate that vertically-resolved retrievals using such multiwavelength lidar measurements of aerosol backscatter and extinction can help constrain both the aerosol optical (e.g. complex refractive index, scattering, etc.) and microphysical properties (e.g. effective radius, concentrations) as well as provide qualitative aerosol classification. Based on this work, the NASA Langley Research Center (LaRC) HSRL group developed automated algorithms for classifying and retrieving aerosol optical and microphysical properties, demonstrated these retrievals using data from the unique NASA/LaRC airborne multiwavelength HSRL-2 system, and validated the results using coincident airborne in situ data. We apply these algorithms to the CHARMS multiwavelength (Raman+HSRL) lidar dataset to retrieve aerosol properties above the SGP site. We present some profiles of aerosol effective radius and concentration retrieved from the CHARMS data and compare column-average aerosol properties derived from the multiwavelength lidar aerosol retrievals to corresponding values retrieved from AERONET measurements.

  4. Improved Passive Microwave Algorithms for North America and Eurasia

    NASA Technical Reports Server (NTRS)

    Foster, James; Chang, Alfred; Hall, Dorothy

    1997-01-01

    Microwave algorithms simplify complex physical processes in order to estimate geophysical parameters such as snow cover and snow depth. The microwave radiances received at the satellite sensor and expressed as brightness temperatures are a composite of contributions from the Earth's surface, the Earth's atmosphere and from space. Owing to the coarse resolution inherent to passive microwave sensors, each pixel value represents a mixture of contributions from different surface types including deep snow, shallow snow, forests and open areas. Algorithms are generated in order to resolve these mixtures. The accuracy of the retrieved information is affected by uncertainties in the assumptions used in the radiative transfer equation (Steffen et al., 1992). One such uncertainty in the Chang et al., (1987) snow algorithm is that the snow grain radius is 0.3 mm for all layers of the snowpack and for all physiographic regions. However, this is not usually the case. The influence of larger grain sizes appears to be of more importance for deeper snowpacks in the interior of Eurasia. Based on this consideration and the effects of forests, a revised SMMR snow algorithm produces more realistic snow mass values. The purpose of this study is to present results of the revised algorithm (referred to for the remainder of this paper as the GSFC 94 snow algorithm) which incorporates differences in both fractional forest cover and snow grain size. Results from the GSFC 94 algorithm will be compared to the original Chang et al. (1987) algorithm and to climatological snow depth data as well.

  5. AIRS Version 6 Products and Data Services at NASA GES DISC

    NASA Astrophysics Data System (ADS)

    Ding, F.; Savtchenko, A. K.; Hearty, T. J.; Theobald, M. L.; Vollmer, B.; Esfandiari, E.

    2013-12-01

    The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) is the home of processing, archiving, and distribution services for data from the Atmospheric Infrared Sounder (AIRS) mission. The AIRS mission is entering its 11th year of global observations of the atmospheric state, including temperature and humidity profiles, outgoing longwave radiation, cloud properties, and trace gases. The GES DISC, in collaboration with the AIRS Project, released data from the Version 6 algorithm in early 2013. The new algorithm represents a significant improvement over previous versions in terms of greater stability, yield, and quality of products. Among the most substantial advances are: improved soundings of Tropospheric and Sea Surface Temperatures; larger improvements with increasing cloud cover; improved retrievals of surface spectral emissivity; near-complete removal of spurious temperature bias trends seen in earlier versions; substantially improved retrieval yield (i.e., number of soundings accepted for output) for climate studies; AIRS-Only retrievals with comparable accuracy to AIRS+AMSU (Advanced Microwave Sounding Unit) retrievals; and more realistic hemispheric seasonal variability and global distribution of carbon monoxide. The GES DISC is working to bring the distribution services up-to-date with these new developments. Our focus is on popular services, like variable subsetting and quality screening, which are impacted by the new elements in Version 6. Other developments in visualization services, such as Giovanni, Near-Real Time imagery, and a granule-map viewer, are progressing along with the introduction of the new data; each service presents its own challenge. This presentation will demonstrate the most significant improvements in Version 6 AIRS products, such as newly added variables (higher resolution outgoing longwave radiation, new cloud property products, etc.), the new quality control schema, and improved retrieval yields. We will also demonstrate the various distribution and visualization services for AIRS data products. The cloud properties, model physics, and water and energy cycles research communities are invited to take advantage of the improvements in Version 6 AIRS products and the various services at GES DISC which provide them.

  6. Ground Validation Assessments of GPM Core Observatory Science Requirements

    NASA Astrophysics Data System (ADS)

    Petersen, Walt; Huffman, George; Kidd, Chris; Skofronick-Jackson, Gail

    2017-04-01

    NASA Global Precipitation Measurement (GPM) Mission science requirements define specific measurement error standards for retrieved precipitation parameters such as rain rate, raindrop size distribution, and falling snow detection on instantaneous temporal scales and spatial resolutions ranging from effective instrument fields of view [FOV], to grid scales of 50 km x 50 km. Quantitative evaluation of these requirements intrinsically relies on GPM precipitation retrieval algorithm performance in myriad precipitation regimes (and hence, assumptions related to physics) and on the quality of ground-validation (GV) data being used to assess the satellite products. We will review GPM GV products, their quality, and their application to assessing GPM science requirements, interleaving measurement and precipitation physical considerations applicable to the approaches used. Core GV data products used to assess GPM satellite products include 1) two minute and 30-minute rain gauge bias-adjusted radar rain rate products and precipitation types (rain/snow) adapted/modified from the NOAA/OU multi-radar multi-sensor (MRMS) product over the continental U.S.; 2) Polarimetric radar estimates of rain rate over the ocean collected using the K-Pol radar at Kwajalein Atoll in the Marshall Islands and the Middleton Island WSR-88D radar located in the Gulf of Alaska; and 3) Multi-regime, field campaign and site-specific disdrometer-measured rain/snow size distribution (DSD), phase and fallspeed information used to derive polarimetric radar-based DSD retrievals and snow water equivalent rates (SWER) for comparison to coincident GPM-estimated DSD and precipitation rates/types, respectively. Within the limits of GV-product uncertainty we demonstrate that the GPM Core satellite meets its basic mission science requirements for a variety of precipitation regimes. For the liquid phase, we find that GPM radar-based products are particularly successful in meeting bias and random error requirements associated with retrievals of rain rate and required +/- 0.5 millimeter error bounds for mass-weighted mean drop diameter. Version-04 (V4) GMI GPROF radiometer-based rain rate products exhibit reasonable agreement with GV, but do not completely meet mission science requirements over the continental U.S. for lighter rain rates (e.g., 1 mm/hr) due to excessive random error ( 75%). Importantly, substantial corrections were made to the V4 GPROF algorithm and preliminary analysis of Version 5 (V5) rain products indicates more robust performance relative to GV. For the frozen phase and a modest GPM requirement to "demonstrate detection of snowfall", DPR products do successfully identify snowfall within the sensitivity and beam sampling limits of the DPR instrument ( 12 dBZ lower limit; lowest clutter-free bins). Similarly, the GPROF algorithm successfully "detects" falling snow and delineates it from liquid precipitation. However, the GV approach to computing falling-snow "detection" statistics is intrinsically tied to GPROF Bayesian algorithm-based thresholds of precipitation "detection" and model analysis temperature, and is not sufficiently tied to SWER. Hence we will also discuss ongoing work to establish the lower threshold SWER for "detection" using combined GV radar, gauge and disdrometer-based case studies.

  7. Determination of wavefront structure for a Hartmann wavefront sensor using a phase-retrieval method.

    PubMed

    Polo, A; Kutchoukov, V; Bociort, F; Pereira, S F; Urbach, H P

    2012-03-26

    We apply a phase retrieval algorithm to the intensity pattern of a Hartmann wavefront sensor to measure with enhanced accuracy the phase structure of a Hartmann hole array. It is shown that the rms wavefront error achieved by phase reconstruction is one order of magnitude smaller than the one obtained from a typical centroid algorithm. Experimental results are consistent with a phase measurement performed independently using a Shack-Hartmann wavefront sensor.

  8. Cloud and Radiation Studies during SAFARI 2000

    NASA Technical Reports Server (NTRS)

    Platnick, Steven; King, M. D.; Hobbs, P. V.; Osborne, S.; Piketh, S.; Bruintjes, R.; Lau, William K. M. (Technical Monitor)

    2001-01-01

    Though the emphasis of the Southern Africa Regional Science Initiative 2000 (SAFARI-2000) dry season campaign was largely on emission sources and transport, the assemblage of aircraft (including the high altitude NASA ER-2 remote sensing platform and the University of Washington CV-580, UK MRF C130, and South African Weather Bureau JRA in situ aircrafts) provided a unique opportunity for cloud studies. Therefore, as part of the SAFARI initiative, investigations were undertaken to assess regional aerosol-cloud interactions and cloud remote sensing algorithms. In particular, the latter part of the experiment concentrated on marine boundary layer stratocumulus clouds off the southwest coast of Africa. Associated with cold water upwelling along the Benguela current, the Namibian stratocumulus regime has received limited attention but appears to be unique for several reasons. During the dry season, outflow of continental fires and industrial pollution over this area can be extreme. From below, upwelling provides a rich nutrient source for phytoplankton (a source of atmospheric sulphur through DMS production as well as from decay processes). The impact of these natural and anthropogenic sources on the microphysical and optical properties of the stratocumulus is unknown. Continental and Indian Ocean cloud systems of opportunity were also studied during the campaign. Aircraft flights were coordinated with NASA Terra Satellite overpasses for synergy with the Moderate Resolution Imaging Spectroradiometer (MODIS) and other Terra instruments. An operational MODIS algorithm for the retrieval of cloud optical and physical properties (including optical thickness, effective particle radius, and water path) has been developed. Pixel-level MODIS retrievals (11 km spatial resolution at nadir) and gridded statistics of clouds in th SAFARI region will be presented. In addition, the MODIS Airborne Simulator flown on the ER-2 provided high spatial resolution retrievals (50 m at nadir). These retrievals will be discussed and compared with in situ observations.

  9. Characterization of Asian Dust Properties Near Source Region During ACE-Asia

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; Hsu, N. Christina; King, Michael D.; Kaufman, Yoram J.; Herman, Jay R.

    2004-01-01

    Asian dust typically originates in desert areas far from polluted urban regions. During transport, dust layers can interact with anthropogenic sulfate and soot aerosols from heavily polluted urban areas. Added to the complex effects of clouds and natural marine aerosols, dust particles reaching the marine environment can have drastically different properties than those from the source. Thus, understanding the unique temporal and spatial variations of Asian aerosols is of special importance in regional-to-global climate issues such as radiative forcing, the hydrological cycle, and primary biological productivity in the mid-Pacific Ocean. During ACE-Asia campaign, we have acquired ground- based (temporal) and satellite (spatial) measurements to infer aerosol physical/optical/radiative properties, column precipitable water amount, and surface reflectivity over this region. The inclusion of flux measurements permits the determination of aerosol radiative flux in addition to measurements of loading and optical depth. At the time of the Terra/MODIS, SeaWiFS, TOMS and other satellite overpasses, these ground-based observations can provide valuable data to compare with satellite retrievals over land. In this paper, we will demonstrate new capability of the Deep Blue algorithm to track the evolution of the Asian dust storm from sources to sinks. Although there are large areas often covered by clouds in the dust season in East Asia, this algorithm is able to distinguish heavy dust from clouds over the entire regions. Examination of the retrieved daily maps of dust plumes over East Asia clearly identifies the sources contributing to the dust loading in the atmosphe. We have compared the satellite retrieved aerosol optical thickness to the ground-based measurements and obtained a reasonable agreement between these two. Our results also indicate that there is a large difference in the retrieved value of spectral single scattering albedo of windblown dust between different sources in East Asia.

  10. Phase retrieval in generalized optical interferometry systems.

    PubMed

    Farriss, Wesley E; Fienup, James R; Malhotra, Tanya; Vamivakas, A Nick

    2018-02-05

    Modal analysis of an optical field via generalized interferometry (GI) is a novel technique that treats said field as a linear superposition of transverse modes and recovers the amplitudes of modal weighting coefficients. We use phase retrieval by nonlinear optimization to recover the phase of these modal weighting coefficients. Information diversity increases the robustness of the algorithm by better constraining the solution. Additionally, multiple sets of random starting phase values assist the algorithm in overcoming local minima. The algorithm was able to recover nearly all coefficient phases for simulated fields consisting of up to 21 superpositioned Hermite Gaussian modes from simulated data and proved to be resilient to shot noise.

  11. New-Generation NASA Aura Ozone Monitoring Instrument (OMI) Volcanic SO2 Dataset: Algorithm Description, Initial Results, and Continuation with the Suomi-NPP Ozone Mapping and Profiler Suite (OMPS)

    NASA Technical Reports Server (NTRS)

    Li, Can; Krotkov, Nickolay A.; Carn, Simon; Zhang, Yan; Spurr, Robert J. D.; Joiner, Joanna

    2017-01-01

    Since the fall of 2004, the Ozone Monitoring Instrument (OMI) has been providing global monitoring of volcanic SO2 emissions, helping to understand their climate impacts and to mitigate aviation hazards. Here we introduce a new-generation OMI volcanic SO2 dataset based on a principal component analysis (PCA) retrieval technique. To reduce retrieval noise and artifacts as seen in the current operational linear fit (LF) algorithm, the new algorithm, OMSO2VOLCANO, uses characteristic features extracted directly from OMI radiances in the spectral fitting, thereby helping to minimize interferences from various geophysical processes (e.g., O3 absorption) and measurement details (e.g., wavelength shift). To solve the problem of low bias for large SO2 total columns in the LF product, the OMSO2VOLCANO algorithm employs a table lookup approach to estimate SO2 Jacobians (i.e., the instrument sensitivity to a perturbation in the SO2 column amount) and iteratively adjusts the spectral fitting window to exclude shorter wavelengths where the SO2 absorption signals are saturated. To first order, the effects of clouds and aerosols are accounted for using a simple Lambertian equivalent reflectivity approach. As with the LF algorithm, OMSO2VOLCANO provides total column retrievals based on a set of predefined SO2 profiles from the lower troposphere to the lower stratosphere, including a new profile peaked at 13 km for plumes in the upper troposphere. Examples given in this study indicate that the new dataset shows significant improvement over the LF product, with at least 50% reduction in retrieval noise over the remote Pacific. For large eruptions such as Kasatochi in 2008 (approximately 1700 kt total SO2/ and Sierra Negra in 2005 (greater than 1100DU maximum SO2), OMSO2VOLCANO generally agrees well with other algorithms that also utilize the full spectral content of satellite measurements, while the LF algorithm tends to underestimate SO2. We also demonstrate that, despite the coarser spatial and spectral resolution of the Suomi National Polar-orbiting Partnership (Suomi-NPP) Ozone Mapping and Profiler Suite (OMPS) instrument, application of the new PCA algorithm to OMPS data produces highly consistent retrievals between OMI and OMPS. The new PCA algorithm is therefore capable of continuing the volcanic SO2 data record well into the future using current and future hyperspectral UV satellite instruments.

  12. Characterization and assessment of different algorithms for retrieval of mean square slopes from GNSS-R measurements

    NASA Astrophysics Data System (ADS)

    Clarizia, Maria Paola; Ruf, Christopher; Gommenginger, Christine

    2013-04-01

    Global Navigation Satellite System-Reflectometry (GNSS-R) exploits signals of opportunity from navigation constellations (e.g. GPS, GLONASS, Galileo), scattered by the surface of the ocean, to retrieve the surface wind and wave fields. GNSS-R represents a true innovation in remote sensing, and it is receiving a growing interest from the scientific community. Its main advantages lie in the dense space-time sampling capabilities, the ability of L-band signals to penetrate well through rain, and the possibility of simple, low-cost/low-power GNSS receivers. These recognized strengths of GNSS-R recently led to the approval of the NASA EV-2 Cyclone Global Navigation Satellite System (CYGNSS), a spaceborne mission focused on tropical cyclone (TC) inner core process studies. CYGNSS attempts to resolve the problem of inadequate observations and modeling of the inner core, which represents the principal deficiency with current TC intensity forecasts, and which can be overcome with GNSS-R. The present study focuses on the information content about the sea surface roughness and wind speed, that is contained in spaceborne GNSS-R Delay-Doppler Maps (DDMs). A number of algorithms for the retrieval of Mean Square Slopes (MSS) - representative of the surface roughness - are analyzed. These include existing algorithms based on least-square fitting procedures (e.g. 2D least-square fitting of DDMs, using the Zavorotny-Voronovich DDM theoretical model), or based on direct observables (e.g. DDM volume), as well as "new" algorithms, which make use of waveforms derived from the DDM, which have thusfar been unexploited (e.g. integrated delay and Doppler waveforms). The analysis is carried out using simulated DDMs generated by the mature forward model end-to-end simulator developed for CYGNSS. A comparison of the results obtained for different retrieval algorithms will be presented. In particular, the performance of the algorithms considered is investigated and characterized for the case of significant non-uniform wind field across the scattering area, such as will be encountered in and near tropical cyclones. The impact of each algorithm, as well as of other parameters (e.g. the extent of the DDM), on the sensitivity of the results to non-uniform winds will be presented. The results are directly relevant to CYGNSS, where the ultimate objective is to produce standard gridded maps of retrieved wind fields from raw DDM measurements. The value of this research is twofold, in that it addresses the choice of the best algorithms to retrieve MSS and ultimately wind speed in extreme and non-uniform wind conditions, and also provides a first assessment of the data compression requirements and strategies that will be applied to DDMs for the CYGNSS mission.

  13. Multilayer Cloud Detection with the MODIS Near-Infrared Water Vapor Absorption Band

    NASA Technical Reports Server (NTRS)

    Wind, Galina; Platnick, Steven; King, Michael D.; Hubanks, Paul A,; Pavolonis, Michael J.; Heidinger, Andrew K.; Yang, Ping; Baum, Bryan A.

    2009-01-01

    Data Collection 5 processing for the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the NASA Earth Observing System EOS Terra and Aqua spacecraft includes an algorithm for detecting multilayered clouds in daytime. The main objective of this algorithm is to detect multilayered cloud scenes, specifically optically thin ice cloud overlying a lower-level water cloud, that presents difficulties for retrieving cloud effective radius using single layer plane-parallel cloud models. The algorithm uses the MODIS 0.94 micron water vapor band along with CO2 bands to obtain two above-cloud precipitable water retrievals, the difference of which, in conjunction with additional tests, provides a map of where multilayered clouds might potentially exist. The presence of a multilayered cloud results in a large difference in retrievals of above-cloud properties between the CO2 and the 0.94 micron methods. In this paper the MODIS multilayered cloud algorithm is described, results of using the algorithm over example scenes are shown, and global statistics for multilayered clouds as observed by MODIS are discussed. A theoretical study of the algorithm behavior for simulated multilayered clouds is also given. Results are compared to two other comparable passive imager methods. A set of standard cloudy atmospheric profiles developed during the course of this investigation is also presented. The results lead to the conclusion that the MODIS multilayer cloud detection algorithm has some skill in identifying multilayered clouds with different thermodynamic phases

  14. Determination of water depth with high-resolution satellite imagery over variable bottom types

    USGS Publications Warehouse

    Stumpf, Richard P.; Holderied, Kristine; Sinclair, Mark

    2003-01-01

    A standard algorithm for determining depth in clear water from passive sensors exists; but it requires tuning of five parameters and does not retrieve depths where the bottom has an extremely low albedo. To address these issues, we developed an empirical solution using a ratio of reflectances that has only two tunable parameters and can be applied to low-albedo features. The two algorithms--the standard linear transform and the new ratio transform--were compared through analysis of IKONOS satellite imagery against lidar bathymetry. The coefficients for the ratio algorithm were tuned manually to a few depths from a nautical chart, yet performed as well as the linear algorithm tuned using multiple linear regression against the lidar. Both algorithms compensate for variable bottom type and albedo (sand, pavement, algae, coral) and retrieve bathymetry in water depths of less than 10-15 m. However, the linear transform does not distinguish depths >15 m and is more subject to variability across the studied atolls. The ratio transform can, in clear water, retrieve depths in >25 m of water and shows greater stability between different areas. It also performs slightly better in scattering turbidity than the linear transform. The ratio algorithm is somewhat noisier and cannot always adequately resolve fine morphology (structures smaller than 4-5 pixels) in water depths >15-20 m. In general, the ratio transform is more robust than the linear transform.

  15. Correction of Rayleigh Scattering Effects in Cloud Optical Thickness Retrievals

    NASA Technical Reports Server (NTRS)

    Wang, Meng-Hua; King, Michael D.

    1997-01-01

    We present results that demonstrate the effects of Rayleigh scattering on the 9 retrieval of cloud optical thickness at a visible wavelength (0.66 Am). The sensor-measured radiance at a visible wavelength (0.66 Am) is usually used to infer remotely the cloud optical thickness from aircraft or satellite instruments. For example, we find that without removing Rayleigh scattering effects, errors in the retrieved cloud optical thickness for a thin water cloud layer (T = 2.0) range from 15 to 60%, depending on solar zenith angle and viewing geometry. For an optically thick cloud (T = 10), on the other hand, errors can range from 10 to 60% for large solar zenith angles (0-60 deg) because of enhanced Rayleigh scattering. It is therefore particularly important to correct for Rayleigh scattering contributions to the reflected signal from a cloud layer both (1) for the case of thin clouds and (2) for large solar zenith angles and all clouds. On the basis of the single scattering approximation, we propose an iterative method for effectively removing Rayleigh scattering contributions from the measured radiance signal in cloud optical thickness retrievals. The proposed correction algorithm works very well and can easily be incorporated into any cloud retrieval algorithm. The Rayleigh correction method is applicable to cloud at any pressure, providing that the cloud top pressure is known to within +/- 100 bPa. With the Rayleigh correction the errors in retrieved cloud optical thickness are usually reduced to within 3%. In cases of both thin cloud layers and thick ,clouds with large solar zenith angles, the errors are usually reduced by a factor of about 2 to over 10. The Rayleigh correction algorithm has been tested with simulations for realistic cloud optical and microphysical properties with different solar and viewing geometries. We apply the Rayleigh correction algorithm to the cloud optical thickness retrievals from experimental data obtained during the Atlantic Stratocumulus Transition Experiment (ASTEX) conducted near the Azores in June 1992 and compare these results to corresponding retrievals obtained using 0.88 Am. These results provide an example of the Rayleigh scattering effects on thin clouds and further test the Rayleigh correction scheme. Using a nonabsorbing near-infrared wavelength lambda (0.88 Am) in retrieving cloud optical thickness is only applicable over oceans, however, since most land surfaces are highly reflective at 0.88 Am. Hence successful global retrievals of cloud optical thickness should remove Rayleigh scattering effects when using reflectance measurements at 0.66 Am.

  16. Space-Based Near-Infrared CO2 Measurements: Testing the Orbiting Carbon Observatory Retrieval Algorithm and Validation Concept Using SCIAMACHY Observations over Park Falls, Wisconsin

    NASA Technical Reports Server (NTRS)

    Bosch, H.; Toon, G. C.; Sen, B.; Washenfelder, R. A.; Wennberg, P. O.; Buchwitz, M.; deBeek, R.; Burrows, J. P.; Crisp, D.; Christi, M.; hide

    2006-01-01

    Space-based measurements of reflected sunlight in the near-infrared (NIR) region promise to yield accurate and precise observations of the global distribution of atmospheric CO2. The Orbiting Carbon Observatory (OCO) is a future NASA mission, which will use this technique to measure the column-averaged dry air mole fraction of CO2 (XCO2) with the precision and accuracy needed to quantify CO2 sources and sinks on regional scales (approx.1000 x 1000 sq km and to characterize their variability on seasonal timescales. Here, we have used the OCO retrieval algorithm to retrieve XCO2 and surface pressure from space-based Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) measurements and from coincident ground-based Fourier transform spectrometer (FTS) measurements of the O2 A band at 0.76 mm and the 1.58 mm CO2 band for Park Falls,Wisconsin. Even after accounting for a systematic error in our representation of the O2 absorption cross sections, we still obtained a positive bias between SCIAMACHY and FTS XCO2 retrievals of approx.3.5%. Additionally, the retrieved surface pressures from SCIAMACHY systematically underestimate measurements of a calibrated pressure sensor at the FTS site. These findings lead us to speculate about inadequacies in the forward model of our retrieval algorithm. By assuming a 1% intensity offset in the O2 A band region for the SCIAMACHY XCO2 retrieval, we significantly improved the spectral fit and achieved better consistency between SCIAMACHY and FTS XCO2 retrievals. We compared the seasonal cycle of XCO2 at Park Falls from SCIAMACHY and FTS retrievals with calculations of the Model of Atmospheric Transport and Chemistry/Carnegie-Ames-Stanford Approach (MATCH/CASA) and found a good qualitative agreement but with MATCH/CASA underestimating the measured seasonal amplitude. Furthermore, since SCIAMACHY observations are similar in viewing geometry and spectral range to those of OCO, this study represents an important test of the OCO retrieval algorithm and validation concept using NIR spectra measured from space. Finally, we argue that significant improvements in precision and accuracy could be obtained from a dedicated CO2 instrument such as OCO, which has much higher spectral and spatial resolutions than SCIAMACHY. These measurements would then provide critical data for improving our understanding of the carbon cycle and carbon sources and sinks.

  17. A Neural Network Model of Retrieval-Induced Forgetting

    ERIC Educational Resources Information Center

    Norman, Kenneth A.; Newman, Ehren L.; Detre, Greg

    2007-01-01

    Retrieval-induced forgetting (RIF) refers to the finding that retrieving a memory can impair subsequent recall of related memories. Here, the authors present a new model of how the brain gives rise to RIF in both semantic and episodic memory. The core of the model is a recently developed neural network learning algorithm that leverages regular…

  18. A novel method to improve MODIS AOD retrievals in cloudy pixels using an analog ensemble approach

    NASA Astrophysics Data System (ADS)

    Kumar, R.; Raman, A.; Delle Monache, L.; Alessandrini, S.; Cheng, W. Y. Y.; Gaubert, B.; Arellano, A. F.

    2016-12-01

    Particulate matter (PM) concentrations are one of the fundamental indicators of air quality. Earth orbiting satellite platforms acquire column aerosol abundance that can in turn provide information about the PM concentrations. One of the serious limitations of column aerosol retrievals from low earth orbiting satellites is that these algorithms are based on clear sky assumptions. They do not retrieve AOD in cloudy pixels. After filtering cloudy pixels, these algorithms also arbitrarily remove brightest and darkest 25% of remaining pixels over ocean and brightest and darkest 50% pixels over land to filter any residual contamination from clouds. This becomes a critical issue especially in regions that experience monsoon, like Asia and North America. In case of North America, monsoon season experiences wide variety of extreme air quality events such as fires in California and dust storms in Arizona. Assessment of these episodic events warrants frequent monitoring of aerosol observations from remote sensing retrievals. In this study, we demonstrate a method to fill in cloudy pixels in Moderate Imaging Resolution Spectroradiometer (MODIS) AOD retrievals based on ensembles generated using an analog-based approach (AnEn). It provides a probabilistic distribution of AOD in cloudy pixels using historical records of model simulations of meteorological predictors such as AOD, relative humidity, and wind speed, and past observational records of MODIS AOD at a given target site. We use simulations from a coupled community weather forecasting model with chemistry (WRF-Chem) run at a resolution comparable to MODIS AOD. Analogs selected from summer months (June, July) of 2011-2013 from model and corresponding observations are used as a training dataset. Then, missing AOD retrievals in cloudy pixels in the last 31 days of the selected period are estimated. Here, we use AERONET stations as target sites to facilitate comparison against in-situ measurements. We use two approaches to evaluate the estimated AOD: 1) by comparing against reanalysis AOD, 2) by inverting AOD to PM10 concentrations and then comparing those with measured PM10. AnEn is an efficient approach to generate an ensemble as it involves only one model run and provides an estimate of uncertainty that complies with the physical and chemical state of the atmosphere.

  19. Retrieval of Aerosol Optical Depth Under Thin Cirrus from MODIS: Application to an Ocean Algorithm

    NASA Technical Reports Server (NTRS)

    Lee, Jaehwa; Hsu, Nai-Yung Christina; Sayer, Andrew Mark; Bettenhausen, Corey

    2013-01-01

    A strategy for retrieving aerosol optical depth (AOD) under conditions of thin cirrus coverage from the Moderate Resolution Imaging Spectroradiometer (MODIS) is presented. We adopt an empirical method that derives the cirrus contribution to measured reflectance in seven bands from the visible to shortwave infrared (0.47, 0.55, 0.65, 0.86, 1.24, 1.63, and 2.12 µm, commonly used for AOD retrievals) by using the correlations between the top-of-atmosphere (TOA) reflectance at 1.38 micron and these bands. The 1.38 micron band is used due to its strong absorption by water vapor and allows us to extract the contribution of cirrus clouds to TOA reflectance and create cirrus-corrected TOA reflectances in the seven bands of interest. These cirrus-corrected TOA reflectances are then used in the aerosol retrieval algorithm to determine cirrus-corrected AOD. The cirrus correction algorithm reduces the cirrus contamination in the AOD data as shown by a decrease in both magnitude and spatial variability of AOD over areas contaminated by thin cirrus. Comparisons of retrieved AOD against Aerosol Robotic Network observations at Nauru in the equatorial Pacific reveal that the cirrus correction procedure improves the data quality: the percentage of data within the expected error +/-(0.03 + 0.05 ×AOD) increases from 40% to 80% for cirrus-corrected points only and from 80% to 86% for all points (i.e., both corrected and uncorrected retrievals). Statistical comparisons with Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) retrievals are also carried out. A high correlation (R = 0.89) between the CALIOP cirrus optical depth and AOD correction magnitude suggests potential applicability of the cirrus correction procedure to other MODIS-like sensors.

  20. Aerosol Airmass Type Mapping Over the Urban Mexico City Region From Space-based Multi-angle Imaging

    NASA Technical Reports Server (NTRS)

    Patadia, F.; Kahn, R. A.; Limbacher, J. A.; Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.

    2013-01-01

    Using Multi-angle Imaging SpectroRadiometer (MISR) and sub-orbital measurements from the 2006 INTEX-B/MILAGRO field campaign, in this study we explore MISR's ability to map different aerosol air mass types over the Mexico City metropolitan area. The aerosol air mass distinctions are based on shape, size and single scattering albedo retrievals from the MISR Research Aerosol Retrieval algorithm. In this region, the research algorithm identifies dust-dominated aerosol mixtures based on non-spherical particle shape, whereas spherical biomass burning and urban pollution particles are distinguished by particle size. Two distinct aerosol air mass types based on retrieved particle microphysical properties, and four spatially distributed aerosol air masses, are identified in the MISR data on 6 March 2006. The aerosol air mass type identification results are supported by coincident, airborne high-spectral-resolution lidar (HSRL) measurements. Aerosol optical depth (AOD) gradients are also consistent between the MISR and sub-orbital measurements, but particles having single-scattering albedo of approx. 0.7 at 558 nm must be included in the retrieval algorithm to produce good absolute AOD comparisons over pollution-dominated aerosol air masses. The MISR standard V22 AOD product, at 17.6 km resolution, captures the observed AOD gradients qualitatively, but retrievals at this coarse spatial scale and with limited spherical absorbing particle options underestimate AOD and do not retrieve particle properties adequately over this complex urban region. However, we demonstrate how AOD and aerosol type mapping can be accomplished with MISR data over complex urban regions, provided the retrieval is performed at sufficiently high spatial resolution, and with a rich enough set of aerosol components and mixtures.

Top