NASA Astrophysics Data System (ADS)
Simon, Richard M.; Farkas, George
Nationally representative data from the National Education Longitudinal Study are used to investigate why males (rather than females) and children of parents with advanced degrees (rather than those from less-educated parents) are more highly represented among physical science bachelor's degrees and graduate students. Parental education is measured by three categories: neither parent has a bachelor's degree, at least one parent has a bachelor's degree, or at least one parent has a degree beyond the bachelor's. Physical science is defined as students majoring in physics, engineering, mathematics, or computer science. The effects of mathematics achievement and effects not accounted for by mathematics achievement (what the authors call "recruitment" effects) are isolated for parental education categories and for sex, allowing inequality in physical science degree attainment to be decomposed into portions due to achievement and portions due to recruitment. Additionally, the results from logistic regressions predicting the attainment of a bachelor's degree in physical science as well as the pursuit of a graduate degree in physical science are presented. It is found that for parental education categories, the gaps in physical science educational attainment are nearly entirely accounted for by differences in mathematics achievement, suggesting that if achievement could be equalized, physical science educational attainment differences among parental education categories would disappear. However, the sex gap in physical science educational attainment operates almost entirely independent of achievement effects, suggesting that if the mathematics achievement distributions of males and females were identical, the sex gap in physical science educational attainment would be unchanged from what it is today.
ERIC Educational Resources Information Center
American Academy of Physical Education, Washington, DC.
Ten papers that address the theoretical advances being made in various areas of specialization in physical education and exercise science are included in this volume of American Academy of Physical Education Papers. General trends are reviewed in selected areas, including the social sciences, the biological sciences, motor learning, curriculum and…
Science Education Research vs. Physics Education Research: A Structural Comparison
ERIC Educational Resources Information Center
Akarsu, Bayram
2010-01-01
The main goal of this article is to introduce physics education research (PER) to researchers in other fields. Topics include discussion of differences between science education research (SER) and physics education research (PER), physics educators, research design and methodology in physics education research and current research traditions and…
NASA Astrophysics Data System (ADS)
2014-03-01
Almost dry but never dull: ASE 2014 EuroPhysicsFun shows physics to Europe Institute of Physics for Africa (IOPfA) South Sudan Report October 2013 Celebrating the centenary of x-ray diffraction The Niels Bohr Institute—an EPS Historical Site Nordic Research Symposium on Science Education (NFSUN) 2014: inquiry-based science education in technology-rich environments Physics World Cup 2013
NASA Astrophysics Data System (ADS)
2013-03-01
Conference: Take a hold of Hands-on Science Meeting: Prize-winning physics-education talks are a highlight of the DPG spring meeting in Jena Event: Abstracts flow in for ICPE-EPEC 2013 Schools: A new Schools Physics Partnership in Oxfordshire Conference: 18th MPTL is forum for multimedia in education Meeting: Pursuing playful science with Science on Stage Forthcoming events
ERIC Educational Resources Information Center
Yilmaz, Aynur; Esenturk, Oguz Kaan; Demir, Gonul Tekkursun; Ilhan, Ekrem Levent
2017-01-01
It is to determine the perception of the gifted students who participate to "Science and Art Center" about "Physical Education Course" and "Physical Education Teachers" via metaphors. The working group of the research consists of 48 students who participate Science and Art Center in 2014-2015 school years. Among the…
ERIC Educational Resources Information Center
Kelani, Raphael R.; Gado, Issaou
2018-01-01
Following the calls of international conferences related to the teaching of science and technology, technology education (TE) was integrated as a component of physical sciences programmes in Benin, West Africa. This study investigates physical science teachers' attitudes towards the integration of TE topics in secondary school science curricula in…
... News & Meetings Science Education About NIGMS NIGMS Home > Science Education > Physical Trauma Physical Trauma Tagline (Optional) Middle/Main Content Area PDF Version (420 KB) Other Fact Sheets What is physical trauma? Physical trauma is ...
NASA Astrophysics Data System (ADS)
2012-03-01
Conference: Physics brings the community together Training: CERN trains physics teachers Education: World conference fosters physics collaborations Lecture: Physics education live at ASE Prize: Physics teacher wins first Moore medal Festival: European presidents patronize Science on Stage festival Videoconference: Videoconference brings Durban closer to the classroom
Measurement in Physical Education and Exercise Science: A Brief Report on 2017
ERIC Educational Resources Information Center
Myers, Nicholas D.; Lee, Seungmin; Kostelis, Kimberly T.
2018-01-01
The purpose of this annual report is to provide a summary of measurement in physical education and exercise science-related activities in 2017. A recent trend for an annual increase in manuscript submissions to measurement in physical education and exercise science continued in 2017. Twenty-nine countries were represented (i.e., corresponding…
Physics Education and STSE: Perspectives from the Literature
ERIC Educational Resources Information Center
MacLeod, Katarin
2013-01-01
Science, technology, society, and environment (STSE) education has recently received attention in educational research, policy, and science curricular development. Fewer strides have been made in examining the connections between STSE education and learning/teaching physics. Examples of moving STSE theory into practice within a physics classroom…
ERIC Educational Resources Information Center
Utter, Brian C.; Paulson, Scott A.; Almarode, John T.; Daniel, David B.
2018-01-01
We argue, based on a multi-year collaboration to develop a pedagogy course for physics majors by experts in physics, education, and the science of learning, that the process of teaching science majors about education and the science of learning, and evidence-based teaching methods in particular, requires conceptual change analogous to that…
ERIC Educational Resources Information Center
Merner, Laura; Tyler, John
2017-01-01
Using the National Center of Education Statistics' Integrated Postsecondary Education Data System (IPEDS), this report analyzes data on Native American recipients of bachelor's degrees among 16 physical science and engineering fields. Overall, Native Americans are earning physical science and engineering bachelor's degrees at lower rates than the…
NASA Astrophysics Data System (ADS)
2003-03-01
Mars: Express journey to Mars ASE 2003: Knocked out by meteorites Events: Sun-Earth Day ASE 2003: Fun Physics - popular as ever Appointments: Sykes to bring science to the people UK Science Education: The future's bright, the future's science ASE 2003: A grand finale for Catherine Teaching Resources: UK goes to the planets Cambridge Physics Update: Basement physics Conferences: Earth Science Teachers' Association Conference 2003 New Website: JESEI sets sail GIREP: Teacher education seminar Malaysia: Rewards for curriculum change Cambridge Physics Update: My boomerang will come back! Teaching Resources: Widening particiption through ideas and evidence with the University of Surrey Wales: First Ffiseg Events: Nuna: Solar car on tour Physics on Stage: Physics on Stage 3 embraces life Symposium: In what sense a nuclear 'debate'? Gifted and Talented: Able pupils experiencing challenging science Australia: ISS flies high Down Under
Teaching Science through Physical Education.
ERIC Educational Resources Information Center
Kumar, David; Whitehurst, Michael
1997-01-01
Physical education can serve as a vehicle for teaching science and make student understanding of certain personal health-related science concepts meaningful. Describes activities involving the musculoskeletal system, the nervous system, and the cardiovascular system. (DKM)
NASA Astrophysics Data System (ADS)
2001-09-01
EPS AWARD WINNERS Award for outreach to Physics Education authors; TEACHER TRAINING Helping teachers specialize in physics; AAPT SUMMER MEETING The science of light; AAPT SUMMER MEETING Do you believe in skepticism?; E-LEARNING Massive investment in Swedish online learning; UK SCIENCE YEAR News from Science Year; 11-16 CURRICULUM Naming the energy parts; TEACHER TRAINING Electronic Discussion Group for Trainee Teachers; PUBLICATIONS Physics on Course 2002; WALES Physics in Powys; HIGHER EDUCATION HE solutions to the physics teacher shortage; SCOTLAND The 27th Scottish Stirling Meeting; NORTHERN IRELAND Belfast physics teachers' meeting; SCOTLAND Physics Summer School, Edinburgh 2001; AAPT SUMMER MEETING Physics education research: massive growth; AAPT SUMMER MEETING Just-In-Time Teaching;
75 FR 62891 - Advisory Committee for Mathematical and Physical Sciences; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-13
... science and education activities within the Directorate for Mathematical and Physical Sciences. Agenda... NATIONAL SCIENCE FOUNDATION Advisory Committee for Mathematical and Physical Sciences; Notice of... Science Foundation announces the following meeting: Name: Directorate for Mathematical and Physical...
77 FR 64831 - Advisory Committee for Mathematical and Physical Sciences; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-23
... education activities within the Directorate for Mathematical and Physical Sciences. Agenda: Update on... NATIONAL SCIENCE FOUNDATION Advisory Committee for Mathematical and Physical Sciences; Notice of... Science Foundation announces the following meeting: Name: Mathematical and Physical Sciences Advisory...
ERIC Educational Resources Information Center
Palmer, David
This document contains an annotated bibliography aimed at the teaching of the physical sciences at the tertiary level to those who wish to become more informed about teaching related research evidence and undertake science education research. The bibliography offers an overview of teaching and learning in the physical sciences and key references…
NASA Astrophysics Data System (ADS)
2010-07-01
Music: Here comes science that rocks Student trip: Two views of the future of CERN Classroom: Researchers can motivate pupils Appointment: AstraZeneca trust appoints new director Multimedia: Physics Education comes to YouTube Competition: Students compete in European Union Science Olympiad 2010 Physics roadshow: Pupils see wonders of physics
The material co-construction of hard science fiction and physics
NASA Astrophysics Data System (ADS)
Hasse, Cathrine
2015-12-01
This article explores the relationship between hard science fiction and physics and a gendered culture of science. Empirical studies indicate that science fiction references might spur some students' interest in physics and help develop this interest throughout school, into a university education and even further later inspire the practice of doing science. There are many kinds of fiction within the science fiction genre. In the presented empirical exploration physics students seem particularly fond of what is called `hard science fiction': a particular type of science fiction dealing with technological developments (Hartwell and Cramer in The hard SF renaissance, Orb/TOR, New York, 2002). Especially hard science fiction as a motivating fantasy may, however, also come with a gender bias. The locally materialized techno-fantasies spurring dreams of the terraforming of planets like Mars and travels in time and space may not be shared by all physics students. Especially female students express a need for other concerns in science. The entanglement of physics with hard science fiction may thus help develop some students' interest in learning school physics and help create an interest for studying physics at university level. But research indicates that especially female students are not captured by the hard techno-fantasies to the same extent as some of their male colleagues. Other visions (e.g. inspired by soft science fiction) are not materialized as a resource in the local educational culture. It calls for an argument of how teaching science is also teaching cultural values, ethics and concerns, which may be gendered. Teaching materials, like the use of hard science fiction in education, may not just be (yet another) gender bias in science education but also carrier of particular visions for scientific endeavours.
77 FR 16076 - Advisory Committee for Mathematical and Physical Sciences; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-19
... education activities within the Directorate for Mathematical and Physical Sciences. Agenda Update on current... National Science Foundation Advisory Committee for Mathematical and Physical Sciences; Notice of... Science Foundation announces the following meeting: Name: Directorate for Mathematical and Physical...
Informal Science: Family Education, Experiences, and Initial Interest in Science
ERIC Educational Resources Information Center
Dabney, Katherine P.; Tai, Robert H.; Scott, Michael R.
2016-01-01
Recent research and public policy have indicated the need for increasing the physical science workforce through development of interest and engagement with informal and formal science, technology, engineering, and mathematics experiences. This study examines the association of family education and physical scientists' informal experiences in…
NASA Astrophysics Data System (ADS)
2013-09-01
Conference: The Big Bangor Day Meeting Lecture: Charterhouse plays host to a physics day Festival: Science on Stage festival 2013 arrives in Poland Event: Scottish Physics Teachers' Summer School Meeting: Researchers and educators meet at Lund University Conference: Exeter marks the spot Recognition: European Physical Society uncovers an historic site Education: Initial teacher education undergoes big changes Forthcoming events
Pre-Service Physics Teachers' Conceptions of Nature of Science
ERIC Educational Resources Information Center
Buaraphan, Khajornsak
2011-01-01
Understanding of NOS (nature of science) appears as a prerequisite of a scientifically literate person. Promoting adequate understanding of NOS in pre-service physics teachers is, therefore, an important task of science educators. Before doing that, science educators must have information concerning their pre-service teachers' conceptions of NOS.…
Quarked! - Adventures in Particle Physics Education
NASA Astrophysics Data System (ADS)
MacDonald, Teresa; Bean, Alice
2009-01-01
Particle physics is a subject that can send shivers down the spines of students and educators alike-with visions of long mathematical equations and inscrutable ideas. This perception, along with a full curriculum, often leaves this topic the road less traveled until the latter years of school. Particle physics, including quarks, is typically not introduced until high school or university.1,2 Many of these concepts can be made accessible to younger students when presented in a fun and engaging way. Informal science institutions are in an ideal position to communicate new and challenging science topics in engaging and innovative ways and offer a variety of educational enrichment experiences for students that support and enhance science learning.3 Quarked!™ Adventures in the Subatomic Universe, a National Science Foundation EPSCoR-funded particle physics education program, provides classroom programs and online educational resources.
NASA Astrophysics Data System (ADS)
2012-07-01
Festival: Science on stage deadline approaches Conference: Welsh conference attracts teachers Data: New phase of CERN openlab tackles exascale IT challenges for science Meeting: German Physical Society holds its physics education spring meeting Conference: Association offers golden opportunity in Norway Competition: So what's the right answer then?
An Integrated Earth Science, Astronomy, and Physics Course for Elementary Education Majors
ERIC Educational Resources Information Center
Plotnick, Roy E.; Varelas, Maria; Fan, Qian
2009-01-01
Physical World is a one-semester course designed for elementary education majors, that integrates earth science, astronomy, and physics. The course is part of a four-course set that explores science concepts, processes, and skills, along with the nature of scientific practice, that are included in state and national standards for elementary school…
NASA Astrophysics Data System (ADS)
Chen, Jean Chi-Jen
Physics is fundamental for science, engineering, medicine, and for understanding many phenomena encountered in people's daily lives. The purpose of this study was to investigate the relationships between student success in college-level introductory physics courses and various educational and background characteristics. The primary variables of this study were gender, high school mathematics and science preparation, preference and perceptions of learning physics, and performance in introductory physics courses. Demographic characteristics considered were age, student grade level, parents' occupation and level of education, high school senior grade point average, and educational goals. A Survey of Learning Preference and Perceptions was developed to collect the information for this study. A total of 267 subjects enrolled in six introductory physics courses, four algebra-based and two calculus-based, participated in the study conducted during Spring Semester 2002. The findings from the algebra-based physics courses indicated that participant's educational goal, high school senior GPA, father's educational level, mother's educational level, and mother's occupation in the area of science, engineering, or computer technology were positively related to performance while participant age was negatively related. Biology preparation, mathematics preparation, and additional mathematics and science preparation in high school were also positively related to performance. The relationships between the primary variables and performance in calculus-based physics courses were limited to high school senior year GPA and high school physics preparation. Findings from all six courses indicated that participant's educational goal, high school senior GPA, father's educational level, and mother's occupation in the area of science, engineering, or computer technology, high school preparation in mathematics, biology, and the completion of additional mathematics and science courses were positively related to performance. No significant performance differences were found between male and female students. However, there were significant gender differences in physics learning perceptions. Female participants tended to try to understand physics materials and relate the physics problems to real world situations while their male counterparts tended to rely on rote learning and equation application. This study found that participants performed better by trying to understand the physics material and relate physics problems to real world situations. Participants who relied on rote learning did not perform well.
ERIC Educational Resources Information Center
Ministry of Education, Science, and Culture, Tokyo (Japan).
This annual publication introduces Japan's educational policies in education, science, sports, and culture. Part 1, "Trends in Education Reform," discusses fundamental concepts in educational reform. Part 2, "Mental and Physical Health and Sports," includes two chapters. Chapter 1, "Health and Sports into the Future,"…
Moments of astronomy education in Bucharest
NASA Astrophysics Data System (ADS)
Rusu, Mircea V.; Stavinschi, Magda
2008-09-01
Selection from past astronomy education, activities, textbooks and curricula will be presented. Didactic aspects and comparison with physics education will be exemplified. The astronomy/science education along the time in Romania was roughly divided in four directions: very broad information texts for everybody, popular science, school textbooks, science fictions and astronomy/science literature, and exemplified using original texts. All categories were intended to extend literacy in science, but in different ways. The trends for different periods were outlined. The teaching of astronomy and astrophysics in high school and universities, with special attention to the Faculty of Physic from University of Bucharest are presented. Suggestions for future improvement of both related fields, physics and astronomy, will be one of the outcomes of our communication.
NASA Astrophysics Data System (ADS)
2012-05-01
Education: Physics Education Networks meeting has global scale Competition: Competition seeks the next Brian Cox Experiment: New measurement of neutrino time-of-flight consistent with the speed of light Event: A day for all those who teach physics Conference: Students attend first Anglo-Japanese international science conference Celebration: Will 2015 be the 'Year of Light'? Teachers: Challenging our intuition in spectacular fashion: the fascinating world of quantum physics awaits Research: Science sharpens up sport Learning: Kittinger and Baumgartner: on a mission to the edge of space International: London International Youth Science Forum calls for leading young scientists Competition: Physics paralympian challenge needs inquisitive, analytical, artistic and eloquent pupils Forthcoming events
ERIC Educational Resources Information Center
Bischoff, Paul J.; Castendyk, Devin; Gallagher, Hugh; Schaumloffel, John; Labroo, Sunil
2008-01-01
Now in its fifth year, PR[superscript 2]EPS is a National Science Foundation funded initiative designed to recruit high school students to attend college majoring in the physical sciences, including engineering and secondary science education, and to help ensure their retention within these programs until graduation. A central feature of the…
Curriculum Process in Science Education
NASA Astrophysics Data System (ADS)
Adamčíková, Veronika; Tarábek, Paul
2010-07-01
Physics/science education in the communicative conception is defined as the continuous transfer of the knowledge and methods of physics into the minds of individuals who have not participated in creating them. This process, called the educational communication of physics/science, is performed by various educational agents—teachers, curriculum makers, textbook designers, university teachers and does not mean only a simple transfer of information, but it also involves teaching and instruction at all levels of the school system, the study, learning, and cognition of pupils, students and all other learners, the assessment and evaluation of learning outcomes, curriculum composition and design, the production of textbooks and other means of educational communication and, in addition, university education and the further training of teachers. The educational communication is carried out by the curriculum process of physics/science, which is a sequence of variant forms of curriculum mutually interconnected by curriculum transformations. The variant forms of curriculum are as follows: conceptual curriculum, intended curriculum, project (written) curriculum, operational curriculum, implemented curriculum, and attained curriculum.
ERIC Educational Resources Information Center
McDermott, Lillian C.
2013-01-01
Research on the learning and teaching of science is an important field for scholarly inquiry by faculty in science departments. Such research has proved to be an efficient means for improving the effectiveness of instruction in physics. A basic topic in introductory physics is used to illustrate how discipline-based education research has helped…
NASA Astrophysics Data System (ADS)
2001-11-01
IRELAND New courses for high-tech Ireland; SCIENCE YEAR Science Year launched with a jump; THE NETHERLANDS School science teachers face uncertainty; KOREA Embedding physics in a cultural context; TEACHING RESOURCES Teacher, get your hook; ICT RESOURCES Stock-take of ICT progress; INTERNET Teachers to test-drive new physics gateway; NEW ZEALAND Physics is valued in New Zealand; JAPAN Advancing Physics in Japan; HIGHER EDUCATION Networking works in Cologne; INSTITUTE MATTERS IoP demands a better deal for physics teachers; AUSTRALIA Physics numbers decline: educators blame the low impact curriculum; SCIENCE FOR THE PUBLIC More than sixty seconds in Glasgow; INTERNET A gift selection of papers from IoP; TEACHING STYLES I know what you did last summer;
Fermilab Science Education Office - Field Trips, Study Units and Workshops
World - Life Sciences (K-5) Phriendly Physics Program - Blog - Physical Sciences (3-5) The Prairie - Our Heartland - Life Sciences 6-9 (6-8) Energy and Ecosystems - Life Sciences (6-9) Beauty and Charm - Physical
Undergraduate Research in Physics as an Educational Tool
NASA Astrophysics Data System (ADS)
Hakim, Toufic M.; Garg, Shila
2001-03-01
The National Science Foundation's 1996 report "Shaping the Future: New Expectations for Undergraduate Education in Science, Mathematics, Engineering and Technology" urged that in order to improve SME&T education, decisive action must be taken so that "all students have access to excellent undergraduate education in science .... and all students learn these subjects by direct experience with the methods and processes of inquiry." Research-related educational activities that integrate education and research have been shown to be valuable in improving the quality of education and enhancing the number of majors in physics departments. Student researchers develop a motivation to continue in science and engineering through an appreciation of how science is done and the excitement of doing frontier research. We will address some of the challenges of integrating research into the physics undergraduate curriculum effectively. The departmental and institutional policies and infrastructure required to help prepare students for this endeavor will be discussed as well as sources of support and the establishment of appropriate evaluation procedures.
The Blame Game in the Science Preparation of Future Teachers
NASA Astrophysics Data System (ADS)
Stein, Fredrick
2003-10-01
Who is responsible for the general lack of science preparation in our newly certified K-12 teachers? If it is true that teachers "teach as they were taught," then we must look to the college and university departments. The American Physical Society (APS), in partnership with the American Association of Physics Teachers (AAPT) and the American Institute of Physics (AIP), has initiated PhysTEC in concert with national reports calling for the improvement of K-12 science teaching. PhysTEC aims to help physics and education faculty work together to provide an education for future teachers that emphasizes a student-centered, hands-on, inquiry-based approach to learning science. An update of the first two years of the project will be given. Program components include: (1) A long-term, active collaboration between the physics and education departments; (2) A full-time Teacher-in-Residence (TIR) program that provides for a local K-12 science teacher to become a full-time participant in assisting faculty with both team-teaching and course revisions; (3) The redesign of content and pedagogy of targeted physics and education courses; and (4) The establishment of a Induction and mentoring program novice science teachers. This includes the participation of physics faculty in increasing and improving a wide array of school experiences. http://www.phystec.org/
Reimagining professional competence in physical education
Ennis, Catherine D.
2015-01-01
Physical educators have critical roles to play in assisting communities and schools to increase physical activity for all citizens. They can assist classroom teachers in increasing physical activity in the academic school day and can serve as school wellness directors to increase the amount of physical activity students and school staff members receive during the day. Additionally, physical educators can implement innovative approaches to physical education curricula to enhance students’ opportunities to be active and to learn concepts to assist them to be physically active now and for a lifetime. When implementing evidence-based approaches to physical education, teachers need to teach the curriculum coherently and with fidelity. New programs such as Science, PE, & Me! and the Science of Healthful Living provide opportunities for students to examine the effects of exercise on their bodies in a physically active, learning-oriented approach to physical education. PMID:26617976
The "Earth Physics" Workshops Offered by the Earth Science Education Unit
ERIC Educational Resources Information Center
Davies, Stephen
2012-01-01
Earth science has a part to play in broadening students' learning experience in physics. The Earth Science Education Unit presents a range of (free) workshops to teachers and trainee teachers, suggesting how Earth-based science activities, which show how we understand and use the planet we live on, can easily be slotted into normal science…
Models in Science Education: Applications of Models in Learning and Teaching Science
ERIC Educational Resources Information Center
Ornek, Funda
2008-01-01
In this paper, I discuss different types of models in science education and applications of them in learning and teaching science, in particular physics. Based on the literature, I categorize models as conceptual and mental models according to their characteristics. In addition to these models, there is another model called "physics model" by the…
Science as Myth in Physical Education.
ERIC Educational Resources Information Center
Kirk, David
Scientization is a process that refers to the mythologies that are generated around the practices of working scientists. This paper discusses how science works on popular consciousness and how particular occupational groups use science to legitimatize their discipline, specifically in physical education. Two examples are presented to illustrate…
Teaching the nature of physics through art: a new art of teaching
NASA Astrophysics Data System (ADS)
Colletti, Leonardo
2018-01-01
Science and art are traditionally represented as two disciplines with completely divergent goals, methods, and public. It has been claimed that, if rightly addressed, science and art education could mutually support each other. In this paper I propose the recurrent reference to certain famous paintings during the ordinary progress of physics courses in secondary schools, in order to convey, in a memorable way, some basic features of physics methodology. For an understanding of the overall characteristics of science should be regarded as one of the crucial goals of physics education. As a part of a general education, the forgetting of physics concepts may be acceptable, but failing to grasp the very nature of science is not. Images may help in conveying the nature of science, especially for humanities-oriented students. Moreover, famous paintings, with their familiarity and availability, are a valid tool in facilitating this.
NASA Astrophysics Data System (ADS)
Dabney, Katherine Patricia Traudel
Science, technology, engineering, and mathematics (STEM) education has become a critical focus in the United States due to economic concerns and public policy (National Academy of Sciences, 2007; U.S. Department of Education, 2006). Part of this focus has been an emphasis on encouraging and evaluating career choice and persistence factors among underrepresented groups such as females in the physical sciences (Hill et al., 2010; National Academy of Sciences, 2007). The majority of existing STEM research studies compare women to men, yet a paucity of research exists that examines what differentiates female career choice within the physical sciences. In light of these research trends and recommendations, this study examines the following questions: 1. On average, do females who select chemistry or physics doctoral programs differ in their reported personal motivations and background factors prior to entering the field? 2. Do such variables as racial and ethnic background, age, highest level of education completed by guardians/parents, citizenship status, family interest in science, first interest in general science, first interest in the physical sciences, average grades in high school and undergraduate studies in the physical sciences, and experiences in undergraduate physical science courses explain a significant amount of variance in female physical scientists' years to Ph.D. completion? These questions are analyzed using variables from the Project Crossover Survey dataset through a subset of female physical science doctoral students and scientists. Logistic regression analyses are performed to uncover what differentiates women in the physical sciences based on their background, interest, academic achievement, and experiences ranging prior to elementary school through postsecondary education. Significant variables that positively predict a career choice in chemistry or physics include content specific high school and undergraduate academic achievement and positive undergraduate experiences. Two multiple regression models, one composed of female chemists and one of female physicists, examine significant predictors that positively associated with time to doctoral degree completion. The models account for little differentiation in the outcome of time to doctoral completion. In addition, significant predictors are based on demographic and achievement factors that were not paralleled in the two multiple regressions.
ERIC Educational Resources Information Center
TERC, Cambridge, MA.
This educator's guide discusses whether there is water on the planet Mars. The activities, written for grades 9-12, concern physical, earth, and space sciences. By experimenting with water as it changes state and investigating some effects of air pressure, students not only learn core ideas in physical science but can also deduce the water…
Experts' Views on Using History and Philosophy of Science in the Practice of Physics Instruction
NASA Astrophysics Data System (ADS)
Galili, Igal; Hazan, Amnon
This study examines the views of a representative sample of experts in physics, physics education and history and philosophy of science (HPS) on the incorporation of HPS based materials in physics instruction. The obtained spectrum of views addresses three areas: the rationale to include HPS, the most appropriate ways of doing so, and anticipated difficulties in such a new educational approach. The elicited views, interpreted and categorized, reflect the attitude of the community of science educators in Israeli colleges and universities with regard to the subject. The constructed profiles indicate low awareness of the recent changes in the understanding of learning and the role of HPS in the light of these changes. Such knowledge can guide the activities of those who devote their efforts to constructing and implementing learning materials utilizing HPS contents in science education.
Science Education: The New Humanity?
ERIC Educational Resources Information Center
Douglas, John H.
1973-01-01
Summarizes science education trends, problems, and controversies at the elementary, secondary, and higher education levels beginning with the Physical Science Study Committee course, and discusses the present status concerning the application of the Fourth Revolution to the education system. (CC)
Primary and Secondary School Science.
ERIC Educational Resources Information Center
Educational Documentation and Information, 1984
1984-01-01
This 344-item annotated bibliography presents overview of science teaching in following categories: science education; primary school science; integrated science teaching; teaching of biology, chemistry, physics, earth/space science; laboratory work; computer technology; out-of-school science; science and society; science education at…
ERIC Educational Resources Information Center
Türer, Betül; Kunt, Halil
2015-01-01
In this research, we aim to review relationship between prospective science teachers' attitudes against science education (physics, chemistry, biology, laboratory) and their self-efficacy. Population of the research constitutes 497 students studying Science Education in Department of Elementary Education in Celal Bayar University Faculty of…
Educational Outreach at CASPER
NASA Astrophysics Data System (ADS)
Hyde, Truell; Smith, Bernard; Carmona-Reyes, Jorge
2007-11-01
The CASPER Educational Outreach program with support from the Department of Education, the Department of Labor and the National Science Foundation advances physics education through a variety of avenues including CASPER's REU / RET program, High School Scholars Program, spiral curriculum development program and the CASPER Physics Circus. These programs impact K-12 teachers and students providing teachers with curriculum, supporting hands-on material and support for introducing plasma and basic physical science into the classroom. The most visible of the CASPER outreach programs is the Physics Circus, created during the 1999-2000 school year and funded since that time through two large grants from the Department of Education. The Physics Circus is part of GEAR UP Waco (Gaining Early Awareness and Readiness for Undergraduate Programs) and was originally one of 185 grants awarded nationwide by the U. S. Department of Education in 1999 to help 200,000 disadvantaged children prepare for and gain a pathway to undergraduate programs. The CASPER Physics Circus is composed of intense science explorations, physics demonstrations, hands-on interactive displays, theatrical performances, and excellent teaching experiences. Examples and efficacy data from the above will be discussed.
Ideas Exchange: What Is the Role of Dance in the Secondary Physical Education Program?
ERIC Educational Resources Information Center
Lorenzi, David G. (Comp.)
2010-01-01
This article presents ideas and views of educators regarding the role of dance in the secondary physical education program. One educator believes that dance education is an excellent complement to the traditional physical education program at the secondary level. Another educator defines physical education as the "art and science of human…
Feminist Teaching in University Physical Education Programs.
ERIC Educational Resources Information Center
Bain, Linda L.; And Others
1991-01-01
Examines feminist teaching in university physical education. Three articles describe the personal experiences of physical educators who try to teach in ways that promote equality. The articles focus on social diversity and justice and feminist pedagogy in the sport sciences and physical education. (SM)
Preparing Science Teachers for the future
NASA Astrophysics Data System (ADS)
Stein, Fredrick
2002-04-01
What will teachers need in the future to be successful? What will "successful" mean in the future? Are the teaching approaches learned 40 years ago still relevant for tomorrow's classrooms? Will technology really change the way physics is taught (K-16)? Will we close the performance gap between students of differing ethnicity? Are schools of education rising to the challenge to answer these questions? Can college and university physics departments rise to the challenge of presenting physics to all students in an engaging manner? What can the APS, in partnership with AAPT and AIP, do to find the answers and provide strategies to improve the science preparation of future teachers? PhysTEC aims to help physics and education faculty work together to provide an education for future teachers that emphasizes a student-centered, hands-on, inquiry-based approach to learning science. The compelling evidence produced from Physics Education Research warrants this approach. A National Science Foundation grant of 5.76 million and a 498 thousand grant from the Fund for the Improvement of Postsecondary Education support PhysTEC, its partners and activities. http://www.phystec.org/
Fermilab Education High School Tours
three weeks before the date of the tour using the tour request form. Physical Science Tours include @fnal.gov Physical Science Tours Amanda Early, Education Office Fermilab, MS226 P.O. Box 500 Batavia, IL
ERIC Educational Resources Information Center
Huang, Shaobo; Mejia, Joel Alejandro; Becker, Kurt; Neilson, Drew
2015-01-01
Improving high school physics teaching and learning is important to the long-term success of science, technology, engineering, and mathematics (STEM) education. Efforts are currently in place to develop an understanding of science among high school students through formal and informal educational experiences in engineering design activities…
Analysing the Problems of Science Teachers That They Encounter While Teaching Physics Education
ERIC Educational Resources Information Center
Demir, Cihat; Sincar, Burhan; Çelik, Ridvan
2015-01-01
Even though physical science is very important in our daily lives, it is insufficiently understood by students. In order for students to get a better physical education, the teachers who have given physics lesson should first eliminated the problems that they face during the teaching process. The aim of this survey is to specify the matters…
NASA Astrophysics Data System (ADS)
2001-01-01
MASTERCLASSES Researchers help motivate school students; HIGHER EDUCATION Undergraduate physics inquiry launched Sir Peter; PUBLIC UNDERSTANDING OF SCIENCE Chemists take the lead to get science groups pulling together; RESEARCH FRONTIERS Spintronic Chips; LOWER SECONDARY CURRICULUM Why do we teach physics? TEACHING COMMUNITY e-Teachers; AWARDS Nobel Prize; HIGHER EDUCATION Project Phoenics; PARTICLE PHYSICS LEP Closure; TEACHER TRAINING Training salary fails to attract recruits; EVENTS Physics moves into the spotlight
NASA Astrophysics Data System (ADS)
2002-05-01
Physics on Stage: Physics on the political stage Women in Physics: Allez les girls! Curriculum: Students want ethics debate in school science Physics on Stage: Buzzing around the tulips Events: GIREP 2002 Competition: Schumacher in the shower! Higher Education: Universities consider conceptual physics courses Resources: Evaluation of Advancing Physics Research Frontiers: Physics Teachers @ CERN 2002 UK Curriculum: Preparing useful citizens China: Changing the approach NSTA Annual Convention: Innovations and simplicity Europe: European Community Science and Society Action Plan Citizenship: ASE-Wellcome Trust citizenship education initiative
NASA Central Operation of Resources for Educators (CORE): Educational Materials Catalog
NASA Technical Reports Server (NTRS)
1999-01-01
This catalog contains order information for video cassettes with topics such as: aeronautics, earth science, weather, space exploration/satellites, life sciences, energy, living in space, manned spaceflight, social sciences, space art, space sciences, technology education and utilization, and mathematics/physics.
NASA Astrophysics Data System (ADS)
Kumar, David D.; Morris, John D.
2005-12-01
A multiple regression analysis of the relationship between prospective teachers' scientific understanding and Gender, Education Level (High School, College), Courses in Science (Biology, Chemistry, Physics, Earth Science, Astronomy, and Agriculture), Attitude Towards Science, and Attitude Towards Mathematics is reported. Undergraduate elementary science students ( N = 176) in an urban doctoral-level university in the United States participated in this study. The results of this study showed Gender, completion of courses in High School Chemistry and Physics, College Chemistry and Physics, and Attitudes Toward Mathematics and Science significantly correlated with scientific understanding. Based on a regression model, Gender, and College Chemistry and Physics experiences added significant predictive accuracy to scientific understanding among prospective elementary teachers compared to the other variables.
ERIC Educational Resources Information Center
Mlangeni, Angstone Noel J. Thembachako; Chiotha, Sosten Staphael
2015-01-01
A study was conducted to investigate factors that affect students' poor performance in physical science examinations at Malawi School Certificate of Education and Junior Certificate of Education levels in Community day secondary schools (CDSS) in Lilongwe Rural West Education District in Malawi. Students' performance was collected from schools'…
Biomechanical Concepts for the Physical Educator
ERIC Educational Resources Information Center
Strohmeyer, H. Scott
2004-01-01
The concepts and principles of biomechanics are familiar to the teacher of physical science as well as to the physical educator. The difference between the two instructors, however, is that one knows the language of science and the other provides an experientially rich environment to support acquisition of these concepts and principles. Use of…
Science Education in Two-Year Colleges: Physics.
ERIC Educational Resources Information Center
Mooney, William T., Jr.
Physics instruction is examined as revealed in a study of science education at two-year colleges which involved a review of the literature, an analysis of the catalogs and class schedules of 175 representative institutions, and a survey of 45 physics instructors. Each of the two parts of the report reviews pertinent literature, reports study…
Bringing Physics, Synchrotron Light and Probing Neutrons to the Public: A Collaborative Outreach
ERIC Educational Resources Information Center
Micklavzina, Stanley; Almqvist, Monica; Sörensen, Stacey L.
2014-01-01
Stanley Micklavzina, a US physics educator on sabbatical, teams up with a Swedish national research laboratory, a synchrotron radiation experimental group and a university science centre to develop and create educational and public outreach projects. Descriptions of the physics, science centre displays and public demonstrations covering the…
NASA Astrophysics Data System (ADS)
Chin, Chi-Chin
2005-10-01
Scientific literacy and attitudes toward science play an important role in human daily lives. The purpose of this study was to investigate whether first-year pre-service teachers in colleges in Taiwan have a satisfactory level of scientific literacy. The domains of scientific literacy selected in this study include: (1) science content; (2) the interaction between science, technology and society (STS); (3) the nature of science; and (4) attitudes toward science. In this study, the instruments used were Chinese translations of the Test of Basic Scientific Literacy (TBSL) and the Test of Science-related Attitudes. Elementary education majors (n = 141) and science education majors (n = 138) from four teachers’ colleges responded to these instruments. The statistical results from the tests revealed that, in general, the basic scientific literacy of first-year pre-service teachers was at a satisfactory level. Of the six scales covered in this study, the pre-service teachers displayed the highest literacy in health science, STS, and life science. Literacy in the areas of the nature of science and earth science was rated lowest. The results also showed that science education majors scored significantly higher in physical science, life science, nature of science, science content, and the TBSL than elementary science majors. Males performed better than females in earth science, life science, science content, and the TBSL. Next, elementary education majors responded with more “don’t know” responses than science education majors. In general, the pre-service teachers were moderately positive in terms of attitudes toward science while science education majors had more positive attitudes toward science. There was no significant difference in attitudes between genders. Previous experience in science indicated more positive attitudes toward science. The results from stepwise regression revealed that STS, the nature of science, and attitudes toward science could explain 50.6% and 60.2% variance in science content in elementary education and science education majors, respectively. For science education majors, the first three scales—the nature of science, health science and physical science—determined basic scientific literacy. However, for elementary education majors, the top three factors were physical science, life science and the nature of science. Based on these results, several strategies for developing the professional abilities of science teachers have been recommended for inclusion in pre-service programs.
ERIC Educational Resources Information Center
Fiasca, Michael Aldo
Compared, for selected outcomes, were integrated chemistry-physics courses with chemistry and physics courses taught separately. Three classes studying integrated Physical Science Study Committee (PSSC)-Chemical Bond Approach (CBA), and three classes studying integrated Physical Science Study Committee-Chemical Education Materials Study (CHEMS)…
NASA Astrophysics Data System (ADS)
2001-05-01
LINKS WITH PRIMARY SCIENCE SAD Physics; PHYSICS RESEARCH In a hurry...; PHYSICS COMMUNITY Scottish Stirling Meeting; PHYSICS AT CONGRESS Global warming forecasts rise in skin cancer; EVENTS 2001 SET week; E-MAIL DISCUSSIONS Learning in science; STUDENT ACTIVITY Paperclip Physics; CURRICULUM DEVELOPMENT Perspectives on Science; AWARDS Award for causing chaos; PHYSICS AT CONGRESS Physics and public heath: Do electrical power lines cause cancer? HIGHER EDUCATION First-year course development; INTERSCHOOL COLLABORATION Monitoring geomagnetic storms; CURRICULUM DEVELOPMENT UK course goes international; PHYSICS IN SCIENCE YEAR Website launched
Science Anxiety and Gender in Students Taking General Education Science Courses
ERIC Educational Resources Information Center
Udo, M. K.; Ramsey, G. P.; Mallow, J. V.
2004-01-01
Earlier studies [Mallow, J. V. (1994). Gender-related science anxiety: A first binational study. "Journal of Science Education and Technology" 3: 227-238; Udo, M. K., Ramsey, G. P., Reynolds-Alpert, S., and Mallow, J. V. (2001). Does physics teaching affect gender-based science anxiety? "Journal of Science Education and Technology" 10: 237-247] of…
ERIC Educational Resources Information Center
Forsman, Jonas; Moll, Rachel; Linder, Cedric
2014-01-01
The viability of using complexity science in physics education research (PER) is exemplified by (1) situating central tenets of student persistence research in complexity science and (2) drawing on the methods that become available from this to illustrate analyzing the structural aspects of students' networked interactions as an important dynamic…
Science Curriculum Guide, Level 3.
ERIC Educational Resources Information Center
Newark School District, DE.
The third of four levels in a K-12 science curriculum is outlined. In Level 3 (grades 6-8), science areas include life science, earth science, and physical science (physics and chemistry). Conveniently listed are page locations for educational and instructional objectives, cross-referenced to science area (i.e., life science, animals, genetics)…
NASA Astrophysics Data System (ADS)
Hasegawa, Makoto
A project team "Rika-Kobo" organized by university students has actively performed various science education activities at primary and secondary schools and other educational facilities as well as in science events in local areas. The activities of this student project team are related to various fields of physics and sciences. In order to provide more attractive activities, the student members prepare original experiment tools and easily-understandable presentation and explanation. Through such activities, the members can have opportunities of obtaining new knowledge and refreshing their already-obtained understandings in related fields of physics and sciences. They can also have chances of improving their skills and abilities such as presentation, problem-finding and solving, which are useful for realizing their career development. The activities of the student project team have been also welcomed by children, parents, teachers and other people in local areas because the activities provide them with opportunities of knowing and learning new knowledge in physics and sciences.
A college of science: Bridging the gap between school and university
NASA Astrophysics Data System (ADS)
Rutherford, Margaret; Zietsman, Aletta
1992-12-01
Many tertiary institutions in South Africa have implemented schemes to help redress the unfair school educational system. This paper describes one such initiative to increase access and success of educationally disadvantaged students in science. The background of the College of Science and the success of its first intake of students is described with an emphasis on the physics component of the physical sciences course. Sixty six percent of the students passed all three courses in their first year with the most educationally disadvantaged showing the greatest gains.
"Teaching Physics as one of the humanities": The history of (harvard) project Physics, 1961-1970
NASA Astrophysics Data System (ADS)
Meshoulam, David
In the United States after World War II, science had come to occupy a central place in the minds of policy makers, scientists, and the public. Negotiating different views between these groups proved a difficult task and spilled into debates over the role and scope of science education. To examine this process, this dissertation traces the history of Harvard Project Physics (HPP), a high-school physics curriculum from the 1960s that incorporated a humanistic and historical approach to teaching science. The narrative begins with the rise of General Education in the 1940s. Under the leadership of Harvard president James Conant, faculty at Harvard developed several Natural Science courses that connected science to history as a way to teach students about science and its relationship to culture. By the late 1950s this historical approach faced resistance from scientists who viewed it as misrepresenting their disciplines and called for students to learn specialized subject matter. With the support of the National Science Foundation (NSF), in the early 1960s scientists' vision of science education emerged in high-school classrooms across the country. By the mid 1960s, with the passage of the Civil Rights Act, the Elementary and Secondary Education Act, and the Daddario Amendment to the NSF, the political and education landscape began to change. These laws transformed the goals of two of the NSF and the Office of Education (USOE). These organizations faced demands to work together to develop projects that would speak to domestic concerns over equity and diversity. Their first joint educational venture was HPP. In order to succeed, HPP had to speak to the needs of disciplinary-minded scientists at the NSF, equity-minded educators at the USOE, and results-focused politicians in Congress. This work argues that HPP succeeded because it met the needs of these various stakeholders regarding the roles of science and education in American society.
ERIC Educational Resources Information Center
Blansdorf, Klaus, Ed.
The Institut fur die Padagogik der Naturwissenschaften (IPN) is the research institute for science education, with a national function in the Federal Republic of Germany. The IPN consists of biology education, chemistry education, physics education, educational science, research methodology/statistics, and administration/general services…
Emerging Technologies in Physics Education
ERIC Educational Resources Information Center
Krusberg, Zosia A. C.
2007-01-01
Three emerging technologies in physics education are evaluated from the interdisciplinary perspective of cognitive science and physics education research. The technologies--Physlet Physics, the Andes Intelligent Tutoring System (ITS), and Microcomputer-Based Laboratory (MBL) Tools--are assessed particularly in terms of their potential at promoting…
Bringing Inquiry Science to K-5 Classrooms
NASA Astrophysics Data System (ADS)
Schachtel, Paula L.; Messina, D. L.; McDermott, L. C.
2006-12-01
As a science coach in the Seattle School District, I am responsible for helping other elementary teachers teach science. For several years, I have been participating in a program that consists of intensive NSF Summer Institutes and an ongoing academic-year Continuation Course. Teachers in this program work through modules in Physics by Inquiry, a research-based curriculum developed by the Physics Education Group at the University of Washington.1 I will discuss how this type of professional development has deepened my understanding of topics in physical science, helped me to teach science by inquiry to my own students, and enabled me to assist my colleagues in implementing inquiry science in their K-5 classrooms. Sponsored by Lillian C. McDermott. 1. A research-based curriculum developed by L.C. McDermott and the Physics Education Group at the University of Washington, Physics by Inquiry, New York, NY, John Wiley & Sons, Inc. (1996.)
ERIC Educational Resources Information Center
Hazari, Zahra; Tai, Robert H.; Sadler, Philip M.
2007-01-01
The attrition of females studying physics after high school is a growing concern to the science education community. Most undergraduate science programs require introductory physics coursework. Thus, success in introductory physics is usually necessary for students to progress to higher levels of science study. Success also influences attitudes;…
Task Force on Teacher Education in Physics: Findings and Recommendations
NASA Astrophysics Data System (ADS)
Otero, Valerie
2010-03-01
In response to the national crisis in science education, including low performance in high school physical science and a critical shortage of highly qualified physics teachers, a National Task Force was convened to investigate the state of physics education in the United States. The Task Force spent one year collecting data from over 900 universities and conducting site visits at 13 universities that were identified as ``high producers'' of physics teachers. The final report of the Task Force will be published early in 2010 and will highlight the findings and recommendations that resulted from the study. In this presentation, the main findings and recommendations will be presented along with selected case studies that illustrate exemplary practices in physics and education departments.
ERIC Educational Resources Information Center
Magnus, Douglas Leslie
This research was conducted to compare the learning which occurred in a preservice elementary education course using two teaching-learning methods (teacher-directed instruction and student self-directed study). Areas investigated were: (1) knowledge of physical science content, (2) development and application of the processes of science, (3)…
ERIC Educational Resources Information Center
Biggins, David R.; Henderson, Ian
1978-01-01
Explains that understanding of science is vital to effective changes in science education. Discusses Thomas Kuhn's writings on the physical sciences and argues that Kuhn provides a better understanding of science education than do earlier models of science, although Kuhn's model fails to connect science with other social processes and interests.…
The Material Co-Construction of Hard Science Fiction and Physics
ERIC Educational Resources Information Center
Hasse, Cathrine
2015-01-01
This article explores the relationship between hard science fiction and physics and a gendered culture of science. Empirical studies indicate that science fiction references might spur some students' interest in physics and help develop this interest throughout school, into a university education and even further later inspire the practice of…
Adapting to a Changing World--Challenges and Opportunities in Undergraduate Physics Education
ERIC Educational Resources Information Center
National Academies Press, 2013
2013-01-01
"Adapting to a Changing World" was commissioned by the National Science Foundation to examine the present status of undergraduate physics education, including the state of physics education research, and, most importantly, to develop a series of recommendations for improving physics education that draws from the knowledge we have about…
ERIC Educational Resources Information Center
Crouch, Catherine H.; Wisittanawat, Panchompoo; Cai, Ming; Renninger, K. Ann
2018-01-01
In response to national calls for improved physical sciences education for students pursuing careers in the life sciences and medicine, reformed introductory physics for life sciences (IPLS) courses are being developed. This exploratory study is among the first to assess the effect of an IPLS course on students' attitudes, interest, and…
The Use of Cylindrical Lenses in Easy Experiments for Physics Education and the Magic Arts
ERIC Educational Resources Information Center
Bednarek, Stanislaw; Krysiak, Jerzy
2011-01-01
The purpose of this article is to present the properties of cylindrical lenses and provide some examples of their use in easy school physics experiments. Such experiments could be successfully conducted in the context of science education, in fun experiments that teach physics and in science fair projects, or used to entertain an audience by…
A Physics Course for Non-Physical Science Teachers
NASA Astrophysics Data System (ADS)
Cottle, Paul D.
1997-11-01
A two semester introductory physics sequence exclusively for undergraduates and graduate students in science education who were not seeking certification in physics was taught at Florida State for the first time in 1996-97. The course emphasized building understanding in both qualitative and quantitative aspects of physics through group learning approaches to laboratories and written problem assignments, assessments which required detailed written explanations, and frequent interactions between the instructor and individual students. This talk will briefly outline the structure of the course and some of the more interesting observations made by the group of science education graduate students and faculty who evaluated aspects of the course.
NASA Astrophysics Data System (ADS)
Schwab, Josiah; Roth, Nathaniel; Berkeley Compass Project
2015-01-01
The Berkeley Compass Project is a self-formed group of graduate and undergraduate students in the physical sciences at UC Berkeley. Our goals are to improve undergraduate physics education, provide opportunities for professional development, and increase retention of students from populations typically underrepresented in the physical sciences. Graduate students, together with upper-level undergraduates, design and run all Compass programs. We strive to create a community of educators that incorporates best practices from the science education literature. Along the way, we develop experience in curriculum development, fundraising, grant writing, interfacing with university administration, and other aspects of running an effective organization. Our experience in Compass leaves us better poised to be successful researchers, teachers, and mentors.
ERIC Educational Resources Information Center
Kulgemeyer, Christoph; Schecker, Horst
2014-01-01
This paper gives an overview of research on modelling science competence in German science education. Since the first national German educational standards for physics, chemistry and biology education were released in 2004 research projects dealing with competences have become prominent strands. Most of this research is about the structure of…
Preparing Physics and Chemistry Teachers at the University of Arizona
NASA Astrophysics Data System (ADS)
Novodvorsky, Ingrid
2006-04-01
Beginning in 2000, science majors at the University of Arizona who wish to teach in middle or high schools have enrolled in the College of Science Teacher Preparation Program (CoS TPP). Students in the program take General Education courses, content courses, and science pedagogy courses that make them eligible for teacher certification. Students can remain in their science degree programs, and take the required science pedagogy courses, or they can enroll in a BS in Science Education degree that includes the pedagogy courses, with concentrations available in Biology, Chemistry, Earth Science, and Physics. Science educators from six different departments, two permanent Adjunct Instructors, and two Teachers in Residence teach the program's courses. (One of the Teachers in Residence is supported by the PhysTEC project.) Most of the pedagogy courses include field experiences in area science classrooms; the program works with some 115 mentor teachers from throughout the Tucson area, who host preservice teachers in their field experiences. In the first six years of the program, 14 program graduates have been chemistry and physics teachers. This compares to a total of six chemistry and physics teachers produced by the College of Education program in the four years preceding the creation of the CoS TPP. In this presentation, I will describe the unique features of the courses that prospective chemistry and physics teachers take and the field experiences in which they participate. In addition, I will describe how PhysTEC-supplied resources have been used to improve the program, and the ways in which we are assessing the program's success.
Wang, Ming-Te; Chow, Angela; Degol, Jessica Lauren; Eccles, Jacquelynne Sue
2017-08-01
Students' motivational beliefs about learning physical science are critical for achieving positive educational outcomes. In this study, we incorporated expectancy-value theory to capture the heterogeneity of adolescents' motivational trajectories in physics and chemistry from seventh to twelfth grade and linked these trajectories to science-related outcomes. We used a cross-sequential design based on three different cohorts of adolescents (N = 699; 51.5 % female; 95 % European American; M ages for youngest, middle, and oldest cohorts at the first wave = 13.2, 14.1, and 15.3 years) coming from ten public secondary schools. Although many studies claim that physical science motivation declines on average over time, we identified seven differential motivational trajectories of ability self-concept and task values, and found associations of these trajectories with science achievement, advanced science course taking, and science career aspirations. Adolescents' ability self-concept and task values in physics and chemistry were also positively related and interlinked over time. Examining how students' motivational beliefs about physical science develop in secondary school offers insight into the capacity of different groups of students to successfully adapt to their changing educational environments.
Physical Science Day: Design, Implementation, and Assessment
ERIC Educational Resources Information Center
Zeng, Liang; Cunningham, Mark A.; Tidrow, Steven C.; Smith, K. Christopher; Contreras, Jerry
2016-01-01
Physical Science Day at The University of Texas--Pan American (UTPA), in collaboration with the Edinburg Consolidated Independent School District, has been designed, developed and implemented to address an identified fundamental shortcoming in our educational process within this primarily (90+%) Hispanic serving border region. Physical Science Day…
The Intersections of Science and Practice: Examples From FitnessGram® Programming.
Welk, Gregory J
2017-12-01
The FitnessGram® program has provided teachers with practical tools to enhance physical education programming. A key to the success of the program has been the systematic application of science to practice. Strong research methods have been used to develop assessments and standards for use in physical education, but consideration has also been given to ensure that programming meets the needs of teachers, students, parents, and other stakeholders. This essay summarizes some of these complex and nuanced intersections between science and practice with the FitnessGram® program. The commentaries are organized into 5 brief themes: science informing practice; practice informing science; balancing science and practice; promoting evidence-based practice; and the integration of science and practice. The article draws on personal experiences with the FitnessGram® program and is prepared based on comments shared during the 37th Annual C. H. McCloy Research Lecture at the 2017 SHAPE America - Society of Health and Physical Educators Convention.
Assessment for Effective Intervention: Enrichment Science Academic Program
NASA Astrophysics Data System (ADS)
Sasson, Irit; Cohen, Donita
2013-10-01
Israel suffers from a growing problem of socio-economic gaps between those who live in the center of the country and residents of outlying areas. As a result, there is a low level of accessibility to higher education among the peripheral population. The goal of the Sidney Warren Science Education Center for Youth at Tel-Hai College is to strengthen the potential of middle and high school students and encourage them to pursue higher education, with an emphasis on majoring in science and technology. This study investigated the implementation and evaluation of the enrichment science academic program, as an example of informal learning environment, with an emphasis on physics studies. About 500 students conducted feedback survey after participating in science activities in four domains: biology, chemistry, physics, and computer science. Results indicated high level of satisfaction among the students. No differences were found with respect to gender excluding in physics with a positive attitudes advantage among boys. In order to get a deeper understanding of this finding, about 70 additional students conducted special questionnaires, both 1 week before the physics enrichment day and at the end of that day. Questionnaires were intended to assess both their attitudes toward physics and their knowledge and conceptions of the physical concept "pressure." We found that the activity moderately improved boys' attitudes toward physics, but that girls displayed decreased interest in and lower self-efficacy toward physics. Research results were used to the improvement of the instructional design of the physics activity demonstrating internal evaluation process for effective intervention.
Math and Movement: Practical Ways to Incorporate Math into Physical Education
ERIC Educational Resources Information Center
Wade, Marcia
2016-01-01
Each year, physical educators are asked to incorporate even more math, language arts, science and social studies into their curriculum. The challenge is how to do this without sacrificing the essential health and life skills provided by a quality physical education program. One program, Math & Movement, is a great aid for physical educators to…
Education Research in Physical Therapy: Visions of the Possible.
Jensen, Gail M; Nordstrom, Terrence; Segal, Richard L; McCallum, Christine; Graham, Cecilia; Greenfield, Bruce
2016-12-01
Education research has been labeled the "hardest science" of all, given the challenges of teaching and learning in an environment encompassing a mixture of social interactions, events, and problems coupled with a persistent belief that education depends more on common sense than on disciplined knowledge and skill. The American Educational Research Association specifies that education research-as a scientific field of study-examines teaching and learning processes that shape educational outcomes across settings and that a learning process takes place throughout a person's life. The complexity of learning and learning environments requires not only a diverse array of research methods but also a community of education researchers committed to exploring critical questions in the education of physical therapists. Although basic science research and clinical research in physical therapy have continued to expand through growth in the numbers of funded physical therapist researchers, the profession still lacks a robust and vibrant community of education researchers. In this perspective article, the American Council of Academic Physical Therapy Task Force on Education Research proposes a compelling rationale for building a much-needed foundation for education research in physical therapy, including a set of recommendations for immediate action. © 2016 American Physical Therapy Association.
A sociohistorical examination of George Herbert Mead's approach to science education.
Edwards, Michelle L
2016-07-01
Although George Herbert Mead is widely known for his social psychological work, his views on science education also represent a significant, yet sometimes overlooked contribution. In a speech delivered in March 1906 entitled "The Teaching of Science in College," Mead calls for cultural courses on the sciences, such as sociology of science or history of science courses, to increase the relevancy of natural and physical science courses for high school and university students. These views reflect Mead's perspective on a number of traditional dualisms, including objectivity versus subjectivity and the social sciences versus natural and physical sciences. Taking a sociohistorical outlook, I identify the context behind Mead's approach to science education, which includes three major influences: (1) German intellectual thought and the Methodenstreit debate, (2) pragmatism and Darwin's theory of evolution, and (3) social reform efforts in Chicago and the General Science Movement. © The Author(s) 2014.
Knowledge about Sport and Exercise Science
ERIC Educational Resources Information Center
Leal, Acácia Gonçalves Ferreira; Vancini, Rodrigo Luiz; Gentil, Paulo; Benedito-Silva, Ana Amélia; da Silva, Antonio Carlos; Campos, Mário Hebling; Andrade, Marilia Santos; de Lira, Claudio Andre Barbosa
2018-01-01
Purpose: The purpose of this paper was to assess the knowledge on sport and exercise science held by a sample of Brazilian physiotherapists, nutritionists and physical educators. Design/methodology/approach: A cross-sectional research design was used. The answers given by 1,147 professionals (300 physiotherapists, 705 physical educators and 142…
Education for Today's Ecological Crisis
ERIC Educational Resources Information Center
Singer, S. Fred
1970-01-01
Describes the university's role in providing education for the ecological crisis, and divides environmental sciences into two major areas: basic and applied. Proposes a curriculum leading to a B.S. degree in physics consisting of a two-year honor physics program followed by specialization in environmental and planetary sciences (EPS). (PR)
Learning Science-Based Fitness Knowledge in Constructivist Physical Education
ERIC Educational Resources Information Center
Sun, Haichun; Chen, Ang; Zhu, Xihe; Ennis, Catherine D.
2012-01-01
Teaching fitness-related knowledge has become critical in developing children's healthful living behavior. The purpose of this study was to examine the effects of a science-based, constructivist physical education curriculum on learning fitness knowledge critical to healthful living in elementary school students. The schools (N = 30) were randomly…
Science and the Physically Handicapped.
ERIC Educational Resources Information Center
Ricker, Kenneth S.
1979-01-01
The integration of physically (sensory and orthopedic) handicapped students into science classes creates a complex problem for science educators. Suggestions are offered for teacher preparation and for the development of specialized materials and modifications for instructional strategies. (JMF)
Implementing an Imaginative Unit: Wonders of the Water Cycle
ERIC Educational Resources Information Center
Hrennikoff, Margo
2006-01-01
The grade three curriculum set out by the British Columbia Ministry of Education has four categories for science: Processes of Science, Life Science, Physical Science, and Earth and Space Science. Within each of these categories there are numerous topics to teach. For example, the physical science curriculum requires students to learn about…
Fermilab Education: Physicists
Search Education and Outreach: Resources and Opportunties for Fermilab employees and Users A variety of resources and opportunities are available for physicists interested in education and outreach (For general Data (6Â12) Physical Science/Physics Instructional Resources (KÂ12) US Particle Physics Education and
The earth in technological balance
NASA Astrophysics Data System (ADS)
Stout, Dorothy L.
1998-08-01
The K-12 National Science Education Standards have been developed and published by the National Research Council (1995)to "improve scientific literacy across the nation to prepare our students to be scientifically literate". The Standards stress that a quality science education requires an "active learning" approach to science inquiry within the areas of science teaching, professional development, assessment, science content, science education programs and science education systems. In this time of increasing technological advance, the equal treatment of earth and space science alongside biology, physics and chemistry bodes well for the future.
Physical Sciences in a College of Education
ERIC Educational Resources Information Center
Bunton, M. H. H.
1970-01-01
Describes the objectives and contents of a physical science course for preservice teachers in a teacher's college in England. The course extends over three years, emphasizes physical science concepts, and is laboratory oriented. Discusses how the topics of spectroscopy and crystallography are treated in the course. The syllabus is included. (LC)
ERIC Educational Resources Information Center
Zahur, Rubina; Barton, Angela Calabrese; Upadhyay, Bhaskar Raj
2002-01-01
Discusses the purpose of science education for children of the very poor classes in caste-oriented developing countries such as Pakistan. Presents a case study of one teacher educator whose beliefs and practices sharply deviated from the norm--she believes that science education ought to be about empowering students to make physical and political…
A Preliminary Statement on Research in Science Education
ERIC Educational Resources Information Center
Novak, Joseph D.
2003-01-01
Research work in science education is a special area of scholarship within the scientific enterprise. The scientific enterprise ranks with the arts and religion as one of the major areas of human endeavor. Science education can be classified within science, albeit it stands as a poor cousin when compared with physics, biology and other fields. The…
A Rationale for Building a Comprehensive Science Program for Inner-City Education.
ERIC Educational Resources Information Center
Martin, Charles Arthur
The intent of this dissertation was to develop a science curriculum from an inner-city perspective. Five units and a rationale for inner-city education are included. The units include both physical and biological science topics. The units are as follows: (1) Rationale for Building a Comprehensive Science Program for Inner-City Education; (2) With…
Was Aristotle an Exponent of Antiscientific Mumbo-Jumbo?
ERIC Educational Resources Information Center
Koznjak, Boris
2012-01-01
During the past few decades, a wide consensus has been reached in the community of science educators that it is almost unimaginable to conduct a quality science education without including the history and philosophy of science in some form in the science curriculum, and this is especially the case for physics education (Matthews 1994). However, in…
Fostering Eroticism in Science Education to Promote Erotic Generosities for the Ocean-Other
ERIC Educational Resources Information Center
Luther, Rachel
2013-01-01
Despite the increase in marine science curriculum in secondary schools, marine science is not generally required curricula and has been largely deemphasized or ignored in relation to earth science, biology, chemistry, and physics. I call for the integration and implementation of marine science more fully in secondary science education through…
Tsai, Chin-Chung
2006-01-01
Many educational psychologists believe that students' beliefs about the nature of knowledge, called epistemological beliefs, play an essential role in their learning process. Educators also stress the importance of helping students develop a better understanding of the nature of knowledge. The tentative and creative nature of science is often highlighted by contemporary science educators. However, few previous studies have investigated students' views of more specific knowledge domains, such as biology and physics. Consequently, this study developed a questionnaire to assess students' views specifically about the tentative and creative nature of biology and physics. From a survey of 428 Taiwanese high school adolescents, this study found that although students showed an understanding of the tentative and creative nature of biology and physics, they expressed stronger agreement as to the tentativeness of biology than that of physics. In addition, male students tended to agree more than did females that physics had tentative and creative features and that biology had tentative features. Also, students with more years of science education tended to show more agreement regarding the creative nature of physics and biology than those with fewer years.
Physical Science Rocks! Outreach for Elementary Students
ERIC Educational Resources Information Center
McKone, Kevin
2010-01-01
Students at Copiah-Lincoln Community College (Co-Lin) have been hesitant to take courses in the physical sciences, mostly because of a lack of exposure to them in K-12 or a bad experience in this area. The college is addressing this need by exposing students to the physical sciences early on in their education. The science division at Co-Lin has…
ERIC Educational Resources Information Center
Kulgemeyer, Christoph
2014-01-01
Hans Niedderer has contributed a lot to German physics education research. His work includes quantitative and qualitative studies about topics like the learning of physics concepts or the history and philosophy of science in science teaching, he has worked on theoretical issues as well as on textbooks. But it is not only his work that is…
The Utility of a Physics Education in Science Policy
NASA Astrophysics Data System (ADS)
Roberts, Drew
2016-03-01
In order for regulators to create successful policies on technical issues, ranging from environmental protection to distribution of national Grant money, the scientific community must play an integral role in the legislative process. Through a summer-long internship with the Science, Space, and Technology Committee of the U.S. House of Representatives, I have learned that skills developed while pursuing an undergraduate degree in physics are very valuable in the policy realm. My physics education provided me the necessary tools to bridge the goals of the scientific and political communities. The need for effective comprehension and communication of technical subjects provides an important opportunity for individuals with physics degrees to make substantial contributions to government policy. Science policy should be encouraged as one of the many career pathways for physics students. Society of Physics Students, John and Jane Mather Foundation for Science and the Arts.
The Next Generation Science Standards: A Focus on Physical Science
ERIC Educational Resources Information Center
Krajcik, Joe
2013-01-01
This article describes ways to adapt U.S. science curriculum to the U.S. National Research Council (NRC) "Framework for K-12 Science Education" and "Next Generation of Science Standards" (NGSS), noting their focus on teaching the physical sciences. The overall goal of the Framework and NGSS is to help all learners develop the…
ERIC Educational Resources Information Center
Singleton, Ellen
2009-01-01
Canadian physical educators have fought long and hard to be recognized as legitimate contributors to school curricula. In claiming alliances with discourses of medicine and morality, science and psychology, proponents of physical education have sought to be recognized and validated within the educational milieu. These claims have fundamentally…
West German Education in the Global Village
1993-04-01
GeschichwlEdbode) with additional studies in religion (Refigiotarehre), art (K/auterfehumg), music ( Musik ), physical education (Leiberuebumgen...chemistry (OChmie) and bioklgy (Bioiogie) instead of general science. Additional studies include religion, art, music , physical education...religion, English, history, biology and chemistry, music , and physical education but adds a required choice between three different major course
Pupils' Attitudes to Science. A Review of Research.
ERIC Educational Resources Information Center
Ormerod, M. B.; Duckworth, D.
This review of research into pupils' attitudes toward science cites significant British and American studies. Research studies appear under one of nine headings: (1) Attitude measurement in science education, (2) Differences between biology and the physical sciences, (3) The difficulty of the physical sciences and its causes, (4) The early age of…
ERIC Educational Resources Information Center
Mason, Andrew J.; Bertram, Charles A.
2018-01-01
When considering performing an Introductory Physics for Life Sciences course transformation for one's own institution, life science majors' achievement goals are a necessary consideration to ensure the pedagogical transformation will be effective. However, achievement goals are rarely an explicit consideration in physics education research topics…
The impetus theory: Between history of physics and science education
NASA Astrophysics Data System (ADS)
Giannetto, Enrico
1993-09-01
Through a physical, historical and epistemological analysis it is shown how much is wrong with the idea that relates impetus theory to a “non-grown-up” physical and epistemological conception. Indeed, it yields that impetus theory of Buridan and Oresme can be formalised and can furnish us a “natural”, “non-violent” interpretation of (classical) mechanics as well as a more general, physical hermeneutics of the world. Then, the possible relevance of impetus theory for science education is strongly pointed out.
A Trial of Physics Education for Liberal Arts Students Using the Advancing Physics
NASA Astrophysics Data System (ADS)
Ochi, Nobuaki
A new approach to physics education for liberal arts students was performed in a Japanese university. The Advancing Physics, a modern textbook developed by the Institute of Physics, was employed as the base of this approach. The textbook includes a variety of modern topics about science and technology with beautiful pictures, while the use of math is kept to a minimum. From results of the questionnaire after one-semester lectures, it turned out that students' interest in science and technology rose substantially. On the other hand, there were some difficulties in lecturing, mathematical techniques in particular, which should be modified by the next trial. This result is an indication of a potential of the Advancing Physics for liberal arts education.
Optical Science Discovery Program: Pre-College Outreach and So Much More
NASA Astrophysics Data System (ADS)
Deutsch, Miriam
2010-03-01
Recruiting and retaining women into the physical sciences is an ongoing struggle for universities, with the gap between men and women in physics remaining strong. Research shows a precipitous drop in female participation in the physical sciences around the 7th grade year of primary education, where girls begin losing interest during middle school, the drain continuing throughout high school with another significant drop at the bachelors level. To combat the loss of women in the physical sciences, the Oregon Center for Optics at the University of Oregon has created the Optical Science Discovery Program (OSDP), a precollege outreach program that targets girls in middle and high school. This program uses optical sciences as the medium through which girls explore experimental science. The program consists of a one-week intensive summer camp, a mentored monthly science club, summer internships and mentoring opportunities for camp alumni. By utilizing media often at the core of teenage life (e.g. Facebook, MySpace) we also aim to interact with program participants in a familiar and informal environment. Mentoring of OSDP activities is carried out by faculty and students of all levels. This in turn allows other education and outreach efforts at the University of Oregon to incorporate OSDP activities into their own, contributing to our broader university goals of surmounting barriers to higher education and creating a more scientifically literate populace. This talk will describe the OSDP program and its incorporation into the broader spectrum of outreach and education efforts.
NASA Astrophysics Data System (ADS)
Farhangi, Sanaz
2017-03-01
In this paper I argue for using the concept of contribution to activity to understand student engagement with science education and its transformational potential in formal settings. Drawing on transformative activist stance, I explain contribution as how individuals take part in and transform collective practices according to their own life agendas and get transformed themselves. As contribution to science education is a concept based on transformation, not adaptation, it can be especially informative when examining how underrepresented students in science can be more engaged in science education and eventually science. Using survey, interview and group conversations, and field observations in an undergraduate physics course, I put forward Zoey's case to illustrate my argument and show how her contribution to the activities in the course initiated change in the activity among her peers.
NASA Astrophysics Data System (ADS)
Adare, A.; Afanasiev, S.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Al-Bataineh, H.; Al-Ta'ani, H.; Alexander, J.; Alfred, M.; Andrews, K. R.; Angerami, A.; Aoki, K.; Apadula, N.; Aphecetche, L.; Appelt, E.; Aramaki, Y.; Armendariz, R.; Aronson, S. H.; Asai, J.; Asano, H.; Aschenauer, E. C.; Atomssa, E. T.; Averbeck, R.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Bai, X.; Baksay, G.; Baksay, L.; Baldisseri, A.; Bandara, N. S.; Bannier, B.; Barish, K. N.; Barnes, P. D.; Bassalleck, B.; Basye, A. T.; Bathe, S.; Batsouli, S.; Baublis, V.; Baumann, C.; Baumgart, S.; Bazilevsky, A.; Beaumier, M.; Beckman, S.; Belikov, S.; Belmont, R.; Ben-Benjamin, J.; Bennett, R.; Berdnikov, A.; Berdnikov, Y.; Bhom, J. H.; Bickley, A. A.; Bing, X.; Black, D.; Blau, D. S.; Boissevain, J. G.; Bok, J. S.; Borel, H.; Boyle, K.; Brooks, M. L.; Broxmeyer, D.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Bunce, G.; Butsyk, S.; Camacho, C. M.; Campbell, S.; Caringi, A.; Castera, P.; Chang, B. S.; Chang, W. C.; Charvet, J.-L.; Chen, C.-H.; Chernichenko, S.; Chi, C. Y.; Chiba, J.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choi, S.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chung, P.; Churyn, A.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cleven, C. R.; Cole, B. A.; Comets, M. P.; Conesa del Valle, Z.; Connors, M.; Constantin, P.; Cronin, N.; Crossette, N.; Csanád, M.; Csörgő, T.; Dahms, T.; Dairaku, S.; Danchev, I.; Das, K.; Datta, A.; Daugherity, M. S.; David, G.; Dayananda, M. K.; Deaton, M. B.; DeBlasio, K.; Dehmelt, K.; Delagrange, H.; Denisov, A.; d'Enterria, D.; Deshpande, A.; Desmond, E. J.; Dharmawardane, K. V.; Dietzsch, O.; Ding, L.; Dion, A.; Do, J. H.; Donadelli, M.; Drapier, O.; Drees, A.; Drees, K. A.; Dubey, A. K.; Durham, J. M.; Durum, A.; Dutta, D.; Dzhordzhadze, V.; D'Orazio, L.; Edwards, S.; Efremenko, Y. V.; Egdemir, J.; Ellinghaus, F.; Emam, W. S.; Engelmore, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Eyser, K. O.; Fadem, B.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Fraenkel, Z.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fujiwara, K.; Fukao, Y.; Fusayasu, T.; Gadrat, S.; Gainey, K.; Gal, C.; Gallus, P.; Garg, P.; Garishvili, A.; Garishvili, I.; Ge, H.; Giordano, F.; Glenn, A.; Gong, H.; Gong, X.; Gonin, M.; Gosset, J.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grim, G.; Grosse Perdekamp, M.; Gu, Y.; Gunji, T.; Guo, L.; Guragain, H.; Gustafsson, H.-Å.; Hachiya, T.; Hadj Henni, A.; Haegemann, C.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamblen, J.; Han, R.; Han, S. Y.; Hanks, J.; Harada, H.; Harper, C.; Hartouni, E. P.; Haruna, K.; Hasegawa, S.; Hashimoto, K.; Haslum, E.; Hayano, R.; Hayashi, S.; He, X.; Heffner, M.; Hemmick, T. K.; Hester, T.; Hiejima, H.; Hill, J. C.; Hobbs, R.; Hohlmann, M.; Hollis, R. S.; Holzmann, W.; Homma, K.; Hong, B.; Horaguchi, T.; Hori, Y.; Hornback, D.; Hoshino, T.; Huang, J.; Huang, S.; Ichihara, T.; Ichimiya, R.; Ide, J.; Iinuma, H.; Ikeda, Y.; Imai, K.; Imazu, Y.; Imrek, J.; Inaba, M.; Inoue, Y.; Iordanova, A.; Isenhower, D.; Isenhower, L.; Ishihara, M.; Isinhue, A.; Isobe, T.; Issah, M.; Isupov, A.; Ivanischev, D.; Ivanishchev, D.; Iwanaga, Y.; Jacak, B. V.; Javani, M.; Jeon, S. J.; Jezghani, M.; Jia, J.; Jiang, X.; Jin, J.; Jinnouchi, O.; John, D.; Johnson, B. M.; Jones, T.; Joo, E.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kajihara, F.; Kametani, S.; Kamihara, N.; Kamin, J.; Kanda, S.; Kaneta, M.; Kaneti, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kanou, H.; Kapustinsky, J.; Karatsu, K.; Kasai, M.; Kawall, D.; Kawashima, M.; Kazantsev, A. V.; Kempel, T.; Key, J. A.; Khachatryan, V.; Khandai, P. K.; Khanzadeev, A.; Kihara, K.; Kijima, K. M.; Kikuchi, J.; Kim, A.; Kim, B. I.; Kim, C.; Kim, D. H.; Kim, D. J.; Kim, E.; Kim, E.-J.; Kim, H.-J.; Kim, H. J.; Kim, K.-B.; Kim, M.; Kim, S. H.; Kim, Y.-J.; Kim, Y. K.; Kinney, E.; Kiriluk, K.; Kiss, Á.; Kistenev, E.; Kiyomichi, A.; Klatsky, J.; Klay, J.; Klein-Boesing, C.; Kleinjan, D.; Kline, P.; Koblesky, T.; Kochenda, L.; Kochetkov, V.; Kofarago, M.; Komatsu, Y.; Komkov, B.; Konno, M.; Koster, J.; Kotchetkov, D.; Kotov, D.; Kozlov, A.; Král, A.; Kravitz, A.; Krizek, F.; Kubart, J.; Kunde, G. J.; Kurihara, N.; Kurita, K.; Kurosawa, M.; Kweon, M. J.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Layton, D.; Lebedev, A.; Lee, B.; Lee, D. M.; Lee, G. H.; Lee, J.; Lee, K.; Lee, K. B.; Lee, K. S.; Lee, M. K.; Lee, S. H.; Lee, S. R.; Lee, T.; Leitch, M. J.; Leite, M. A. L.; Leitgab, M.; Leitner, E.; Lenzi, B.; Lewis, B.; Li, X.; Lichtenwalner, P.; Liebing, P.; Lim, S. H.; Linden Levy, L. A.; Liška, T.; Litvinenko, A.; Liu, H.; Liu, M. X.; Love, B.; Luechtenborg, R.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Ma, M.; Malakhov, A.; Malik, M. D.; Manion, A.; Manko, V. I.; Mannel, E.; Mao, Y.; Maruyama, T.; Mašek, L.; Masui, H.; Masumoto, S.; Matathias, F.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Means, N.; Meles, A.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Midori, J.; Mignerey, A. C.; Mikeš, P.; Miki, K.; Miller, A. J.; Miller, T. E.; Milov, A.; Mioduszewski, S.; Mishra, D. K.; Mishra, M.; Mitchell, J. T.; Mitrovski, M.; Miyachi, Y.; Miyasaka, S.; Mizuno, S.; Mohanty, A. K.; Montuenga, P.; Moon, H. J.; Moon, T.; Morino, Y.; Morreale, A.; Morrison, D. P.; Moskowitz, M.; Motschwiller, S.; Moukhanova, T. V.; Mukhopadhyay, D.; Murakami, T.; Murata, J.; Mwai, A.; Nagae, T.; Nagamiya, S.; Nagata, Y.; Nagle, J. L.; Naglis, M.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nam, S.; Nattrass, C.; Nederlof, A.; Netrakanti, P. K.; Newby, J.; Nguyen, M.; Nihashi, M.; Niida, T.; Norman, B. E.; Nouicer, R.; Novak, T.; Novitzky, N.; Nukariya, A.; Nyanin, A. S.; Oakley, C.; Obayashi, H.; O'Brien, E.; Oda, S. X.; Ogilvie, C. A.; Ohnishi, H.; Oide, H.; Oka, M.; Okada, K.; Omiwade, O. O.; Onuki, Y.; Orjuela Koop, J. D.; Oskarsson, A.; Ouchida, M.; Ozaki, H.; Ozawa, K.; Pak, R.; Pal, D.; Palounek, A. P. T.; Pantuev, V.; Papavassiliou, V.; Park, B. H.; Park, I. H.; Park, J.; Park, S.; Park, S. K.; Park, W. J.; Pate, S. F.; Patel, L.; Patel, M.; Pei, H.; Peng, J.-C.; Pereira, H.; Perepelitsa, D. V.; Perera, G. D. N.; Peresedov, V.; Peressounko, D. Yu.; Perry, J.; Petti, R.; Pinkenburg, C.; Pinson, R.; Pisani, R. P.; Proissl, M.; Purschke, M. L.; Purwar, A. K.; Qu, H.; Rak, J.; Rakotozafindrabe, A.; Ravinovich, I.; Read, K. F.; Rembeczki, S.; Reuter, M.; Reygers, K.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richardson, E.; Riveli, N.; Roach, D.; Roche, G.; Rolnick, S. D.; Romana, A.; Rosati, M.; Rosen, C. A.; Rosendahl, S. S. E.; Rosnet, P.; Rowan, Z.; Rubin, J. G.; Rukoyatkin, P.; Ružička, P.; Rykov, V. L.; Ryu, M. S.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sakai, S.; Sakashita, K.; Sakata, H.; Sako, H.; Samsonov, V.; Sano, M.; Sano, S.; Sarsour, M.; Sato, S.; Sato, T.; Savastio, M.; Sawada, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seele, J.; Seidl, R.; Sekiguchi, Y.; Semenov, A. Yu.; Semenov, V.; Sen, A.; Seto, R.; Sett, P.; Sexton, A.; Sharma, D.; Shaver, A.; Shein, I.; Shevel, A.; Shibata, T.-A.; Shigaki, K.; Shim, H. H.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Silvestre, C.; Sim, K. S.; Singh, B. K.; Singh, C. P.; Singh, V.; Skolnik, M.; Skutnik, S.; Slunečka, M.; Sodre, T.; Solano, S.; Soldatov, A.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Soumya, M.; Sourikova, I. V.; Sparks, N. A.; Staley, F.; Stankus, P. W.; Steinberg, P.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Stone, M. R.; Sugitate, T.; Suire, C.; Sukhanov, A.; Sumita, T.; Sun, J.; Sziklai, J.; Tabaru, T.; Takagi, S.; Takagui, E. M.; Takahara, A.; Taketani, A.; Tanabe, R.; Tanaka, Y.; Taneja, S.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tarján, P.; Tennant, E.; Themann, H.; Thomas, D.; Thomas, T. L.; Timilsina, A.; Todoroki, T.; Togawa, M.; Toia, A.; Tojo, J.; Tomášek, L.; Tomášek, M.; Tomita, Y.; Torii, H.; Towell, M.; Towell, R.; Towell, R. S.; Tram, V.-N.; Tserruya, I.; Tsuchimoto, Y.; Tsuji, T.; Utsunomiya, K.; Vale, C.; Valle, H.; van Hecke, H. W.; Vargyas, M.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Vinogradov, A. A.; Virius, M.; Voas, B.; Vossen, A.; Vrba, V.; Vznuzdaev, E.; Wagner, M.; Walker, D.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Wei, R.; Wessels, J.; Whitaker, S.; White, S. N.; Winter, D.; Wolin, S.; Wood, J. P.; Woody, C. L.; Wright, R. M.; Wysocki, M.; Xia, B.; Xie, W.; Xue, L.; Yalcin, S.; Yamaguchi, Y. L.; Yamaura, K.; Yang, R.; Yanovich, A.; Yasin, Z.; Ying, J.; Yokkaichi, S.; Yoo, J. S.; Yoon, I.; You, Z.; Young, G. R.; Younus, I.; Yushmanov, I. E.; Zajc, W. A.; Zaudtke, O.; Zelenski, A.; Zhang, C.; Zhou, S.; Zimányi, J.; Zolin, L.
2014-12-01
We thank the staff of the Collider-Accelerator and Physics Departments at Brookhaven National Laboratory and the staff of the other PHENIX participating institutions for their vital contributions. We acknowledge support from the Office of Nuclear Physics in the Office of Science of the Department of Energy, the National Science Foundation, a sponsored research grant from Renaissance Technologies LLC, Abilene Christian University Research Council, Research Foundation of SUNY, and Dean of the College of Arts and Sciences, Vanderbilt University (USA), Ministry of Education, Culture, Sports, Science, and Technology and the Japan Society for the Promotion of Science (Japan), Conselho Nacional de Desenvolvimento Científico e Tecnológico and Fundação de Amparo à Pesquisa do Estado de São Paulo (Brazil), Natural Science Foundation of China, (People's Republic of China), Ministry of Science, Education, and Sports (Croatia), Ministry of Education, Youth and Sports (Czech Republic), Centre National de la Recherche Scientifique, Commissariat à l'Énergie Atomique, and Institut National de Physique Nucléaire et de Physique des Particules (France), Bundesministerium für Bildung und Forschung, Deutscher Akademischer Austausch Dienst, and Alexander von Humboldt Stiftung (Germany), OTKA NK 101 428 grant and the Ch. Simonyi Fund (Hungary), Department of Atomic Energy and Department of Science and Technology (India), Israel Science Foundation (Israel), National Research Foundation and WCU program of the Ministry Education Science and Technology (Republic of Korea), Physics Department, Lahore University of Management Sciences (Pakistan), Ministry of Education and Science, Russian Academy of Sciences, Federal Agency of Atomic Energy (Russia), VR and Wallenberg Foundation (Sweden), the US Civilian Research and Development Foundation for the Independent States of the Former Soviet Union, and the US-Israel Binational Science Foundation.
NASA Astrophysics Data System (ADS)
Adare, A.; Afanasiev, S.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Al-Bataineh, H.; Al-Ta'ani, H.; Alexander, J.; Alfred, M.; Andrews, K. R.; Angerami, A.; Aoki, K.; Apadula, N.; Aphecetche, L.; Appelt, E.; Aramaki, Y.; Armendariz, R.; Aronson, S. H.; Asai, J.; Asano, H.; Aschenauer, E. C.; Atomssa, E. T.; Averbeck, R.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Bai, X.; Baksay, G.; Baksay, L.; Baldisseri, A.; Bandara, N. S.; Bannier, B.; Barish, K. N.; Barnes, P. D.; Barnes, P. D.; Bassalleck, B.; Basye, A. T.; Bathe, S.; Batsouli, S.; Baublis, V.; Baumann, C.; Baumgart, S.; Bazilevsky, A.; Beaumier, M.; Beckman, S.; Belikov, S.; Belmont, R.; Ben-Benjamin, J.; Bennett, R.; Berdnikov, A.; Berdnikov, Y.; Bhom, J. H.; Bickley, A. A.; Bing, X.; Black, D.; Blau, D. S.; Boissevain, J. G.; Bok, J.; Bok, J. S.; Borel, H.; Boyle, K.; Brooks, M. L.; Broxmeyer, D.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Bunce, G.; Butsyk, S.; Camacho, C. M.; Campbell, S.; Caringi, A.; Castera, P.; Chang, B. S.; Chang, W. C.; Charvet, J.-L.; Chen, C.-H.; Chernichenko, S.; Chi, C. Y.; Chiba, J.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choi, S.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chung, P.; Churyn, A.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cleven, C. R.; Cole, B. A.; Comets, M. P.; Conesa del Valle, Z.; Connors, M.; Constantin, P.; Cronin, N.; Crossette, N.; Csanád, M.; Csörgő, T.; Dahms, T.; Dairaku, S.; Danchev, I.; Das, K.; Datta, A.; Daugherity, M. S.; David, G.; Dayananda, M. K.; Deaton, M. B.; DeBlasio, K.; Dehmelt, K.; Delagrange, H.; Denisov, A.; d'Enterria, D.; Deshpande, A.; Desmond, E. J.; Dharmawardane, K. V.; Dietzsch, O.; Ding, L.; Dion, A.; Do, J. H.; Donadelli, M.; Drapier, O.; Drees, A.; Drees, K. A.; Dubey, A. K.; Durham, J. M.; Durum, A.; Dutta, D.; Dzhordzhadze, V.; D'Orazio, L.; Edwards, S.; Efremenko, Y. V.; Egdemir, J.; Ellinghaus, F.; Emam, W. S.; Engelmore, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Eyser, K. O.; Fadem, B.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Fraenkel, Z.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fujiwara, K.; Fukao, Y.; Fusayasu, T.; Gadrat, S.; Gainey, K.; Gal, C.; Gallus, P.; Garg, P.; Garishvili, A.; Garishvili, I.; Ge, H.; Giordano, F.; Glenn, A.; Gong, H.; Gong, X.; Gonin, M.; Gosset, J.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grim, G.; Grosse Perdekamp, M.; Gu, Y.; Gunji, T.; Guo, L.; Guragain, H.; Gustafsson, H.-Å.; Hachiya, T.; Hadj Henni, A.; Haegemann, C.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamblen, J.; Han, R.; Han, S. Y.; Hanks, J.; Harada, H.; Harper, C.; Hartouni, E. P.; Haruna, K.; Hasegawa, S.; Hashimoto, K.; Haslum, E.; Hayano, R.; Hayashi, S.; He, X.; Heffner, M.; Hemmick, T. K.; Hester, T.; Hiejima, H.; Hill, J. C.; Hobbs, R.; Hohlmann, M.; Hollis, R. S.; Holzmann, W.; Homma, K.; Hong, B.; Horaguchi, T.; Hori, Y.; Hornback, D.; Hoshino, T.; Huang, J.; Huang, S.; Ichihara, T.; Ichimiya, R.; Ide, J.; Iinuma, H.; Ikeda, Y.; Imai, K.; Imazu, Y.; Imrek, J.; Inaba, M.; Inoue, Y.; Iordanova, A.; Isenhower, D.; Isenhower, L.; Ishihara, M.; Isinhue, A.; Isobe, T.; Issah, M.; Isupov, A.; Ivanischev, D.; Ivanishchev, D.; Iwanaga, Y.; Jacak, B. V.; Javani, M.; Jeon, S. J.; Jezghani, M.; Jia, J.; Jiang, X.; Jin, J.; Jinnouchi, O.; John, D.; Johnson, B. M.; Jones, T.; Joo, E.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kajihara, F.; Kametani, S.; Kamihara, N.; Kamin, J.; Kanda, S.; Kaneta, M.; Kaneti, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kanou, H.; Kapustinsky, J.; Karatsu, K.; Kasai, M.; Kawall, D.; Kawashima, M.; Kazantsev, A. V.; Kempel, T.; Key, J. A.; Khachatryan, V.; Khandai, P. K.; Khanzadeev, A.; Kihara, K.; Kijima, K. M.; Kikuchi, J.; Kim, A.; Kim, B. I.; Kim, C.; Kim, D. H.; Kim, D. J.; Kim, E.; Kim, E.-J.; Kim, H.-J.; Kim, H. J.; Kim, K.-B.; Kim, M.; Kim, S. H.; Kim, Y.-J.; Kim, Y. K.; Kinney, E.; Kiriluk, K.; Kiss, Á.; Kistenev, E.; Kiyomichi, A.; Klatsky, J.; Klay, J.; Klein-Boesing, C.; Kleinjan, D.; Kline, P.; Koblesky, T.; Kochenda, L.; Kochetkov, V.; Kofarago, M.; Komatsu, Y.; Komkov, B.; Konno, M.; Koster, J.; Kotchetkov, D.; Kotov, D.; Kozlov, A.; Král, A.; Kravitz, A.; Krizek, F.; Kubart, J.; Kunde, G. J.; Kurihara, N.; Kurita, K.; Kurosawa, M.; Kweon, M. J.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Layton, D.; Lebedev, A.; Lee, B.; Lee, D. M.; Lee, G. H.; Lee, J.; Lee, K.; Lee, K. B.; Lee, K. S.; Lee, M. K.; Lee, S. H.; Lee, S. R.; Lee, T.; Leitch, M. J.; Leite, M. A. L.; Leitgab, M.; Leitner, E.; Lenzi, B.; Lewis, B.; Li, X.; Lichtenwalner, P.; Liebing, P.; Lim, S. H.; Linden Levy, L. A.; Liška, T.; Litvinenko, A.; Liu, H.; Liu, M. X.; Love, B.; Luechtenborg, R.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Maai, M.; Malakhov, A.; Malik, M. D.; Manion, A.; Manko, V. I.; Mannel, E.; Mao, Y.; Maruyama, T.; Mašek, L.; Masui, H.; Masumoto, S.; Matathias, F.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Means, N.; Meles, A.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Midori, J.; Mignerey, A. C.; Mikeš, P.; Miki, K.; Miller, A. J.; Miller, T. E.; Milov, A.; Mioduszewski, S.; Mishra, D. K.; Mishra, M.; Mitchell, J. T.; Mitrovski, M.; Miyachi, Y.; Miyasaka, S.; Mizuno, S.; Mohanty, A. K.; Montuenga, P.; Moon, H. J.; Moon, T.; Morino, Y.; Morreale, A.; Morrison, D. P.; Moskowitz, M.; Motschwiller, S.; Moukhanova, T. V.; Mukhopadhyay, D.; Murakami, T.; Murata, J.; Mwai, A.; Nagae, T.; Nagamiya, S.; Nagata, Y.; Nagle, J. L.; Naglis, M.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nam, S.; Nattrass, C.; Nederlof, A.; Netrakanti, P. K.; Newby, J.; Nguyen, M.; Nihashi, M.; Niida, T.; Norman, B. E.; Nouicer, R.; Novak, T.; Novitzky, N.; Nukariya, A.; Nyanin, A. S.; Oakley, C.; Obayashi, H.; O'Brien, E.; Oda, S. X.; Ogilvie, C. A.; Ohnishi, H.; Oide, H.; Oka, M.; Okada, K.; Omiwade, O. O.; Onuki, Y.; Orjuela Koop, J. D.; Oskarsson, A.; Ouchida, M.; Ozaki, H.; Ozawa, K.; Pak, R.; Pal, D.; Palounek, A. P. T.; Pantuev, V.; Papavassiliou, V.; Park, B. H.; Park, I. H.; Park, J.; Park, S.; Park, S. K.; Park, W. J.; Pate, S. F.; Patel, L.; Patel, M.; Pei, H.; Peng, J.-C.; Pereira, H.; Perepelitsa, D. V.; Perera, G. D. N.; Peresedov, V.; Peressounko, D. Yu.; Perry, J.; Petti, R.; Pinkenburg, C.; Pinson, R.; Pisani, R. P.; Proissl, M.; Purschke, M. L.; Purwar, A. K.; Qu, H.; Rak, J.; Rakotozafindrabe, A.; Ravinovich, I.; Read, K. F.; Rembeczki, S.; Reuter, M.; Reygers, K.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richardson, E.; Riveli, N.; Roach, D.; Roche, G.; Rolnick, S. D.; Romana, A.; Rosati, M.; Rosen, C. A.; Rosendahl, S. S. E.; Rosnet, P.; Rowan, Z.; Rubin, J. G.; Rukoyatkin, P.; Ružička, P.; Rykov, V. L.; Ryu, M. S.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sakai, S.; Sakashita, K.; Sakata, H.; Sako, H.; Samsonov, V.; Sano, M.; Sano, S.; Sarsour, M.; Sato, S.; Sato, T.; Savastio, M.; Sawada, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seele, J.; Seidl, R.; Sekiguchi, Y.; Semenov, A. Yu.; Semenov, V.; Sen, A.; Seto, R.; Sett, P.; Sexton, A.; Sharma, D.; Shaver, A.; Shein, I.; Shevel, A.; Shibata, T.-A.; Shigaki, K.; Shim, H. H.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Silvestre, C.; Sim, K. S.; Singh, B. K.; Singh, C. P.; Singh, V.; Skolnik, M.; Skutnik, S.; Slunečka, M.; Sodre, T.; Solano, S.; Soldatov, A.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Soumya, M.; Sourikova, I. V.; Sparks, N. A.; Staley, F.; Stankus, P. W.; Steinberg, P.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Stone, M. R.; Sugitate, T.; Suire, C.; Sukhanov, A.; Sumita, T.; Sun, J.; Sziklai, J.; Tabaru, T.; Takagi, S.; Takagui, E. M.; Takahara, A.; Taketani, A.; Tanabe, R.; Tanaka, Y.; Taneja, S.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tarján, P.; Tennant, E.; Themann, H.; Thomas, D.; Thomas, T. L.; Timilsina, A.; Todoroki, T.; Togawa, M.; Toia, A.; Tojo, J.; Tomášek, L.; Tomášek, M.; Tomita, Y.; Torii, H.; Towell, M.; Towell, R.; Towell, R. S.; Tram, V.-N.; Tserruya, I.; Tsuchimoto, Y.; Tsuji, T.; Utsunomiya, K.; Vale, C.; Valle, H.; van Hecke, H. W.; Vargyas, M.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Vinogradov, A. A.; Virius, M.; Voas, B.; Vossen, A.; Vrba, V.; Vznuzdaev, E.; Wagner, M.; Walker, D.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Wei, R.; Wessels, J.; Whitaker, S.; White, S. N.; Winter, D.; Wolin, S.; Wood, J. P.; Woody, C. L.; Wright, R. M.; Wysocki, M.; Xia, B.; Xie, W.; Xue, L.; Yalcin, S.; Yamaguchi, Y. L.; Yamaura, K.; Yang, R.; Yanovich, A.; Yasin, Z.; Ying, J.; Yokkaichi, S.; Yoo, J. S.; Yoon, I.; You, Z.; Young, G. R.; Younus, I.; Yushmanov, I. E.; Zajc, W. A.; Zaudtke, O.; Zelenski, A.; Zhang, C.; Zhou, S.; Zimányi, J.; Zolin, L.
2014-11-01
We thank the staff of the Collider-Accelerator and Physics Departments at Brookhaven National Laboratory and the staff of the other PHENIX participating institutions for their vital contributions. We acknowledge support from the Office of Nuclear Physics in the Office of Science of the Department of Energy, the National Science Foundation, a sponsored research grant from Renaissance Technologies LLC, Abilene Christian University Research Council, Research Foundation of SUNY, and Dean of the College of Arts and Sciences, Vanderbilt University (USA), Ministry of Education, Culture, Sports, Science, and Technology and the Japan Society for the Promotion of Science (Japan), Conselho Nacional de Desenvolvimento Científico e Tecnológico and Fundaç ao de Amparo à Pesquisa do Estado de São Paulo (Brazil), Natural Science Foundation of China (People's Republic of China), Ministry of Science, Education, and Sports (Croatia), Ministry of Education, Youth and Sports (Czech Republic), Centre National de la Recherche Scientifique, Commissariat à l'Énergie Atomique, and Institut National de Physique Nucléaire et de Physique des Particules (France), Bundesministerium für Bildung und Forschung, Deutscher Akademischer Austausch Dienst, and Alexander von Humboldt Stiftung (Germany), OTKA NK 101 428 grant and the Ch. Simonyi Fund (Hungary), Department of Atomic Energy and Department of Science and Technology (India), Israel Science Foundation (Israel), National Research Foundation and WCU program of the Ministry Education Science and Technology (Korea), Physics Department, Lahore University of Management Sciences (Pakistan), Ministry of Education and Science, Russian Academy of Sciences, Federal Agency of Atomic Energy (Russia), VR and Wallenberg Foundation (Sweden), the US Civilian Research and Development Foundation for the Independent States of the Former Soviet Union, and the US-Israel Binational Science Foundation.
NASA Astrophysics Data System (ADS)
Qu, Jing Cheng
1998-11-01
This dissertation records the historical paths of Chinese physicists educated in Germany and America, explores their representative achievements in modern physics that have not been recognized by Chinese scholars, and provides sociological analyses of their contributions to China's higher education. We have found that Chinese students of physics in Germany and America were not passive recipients of Western science, but active contributors. They were also crucial contributors to science education and important scientific projects upon their return to China. Chapter One briefly describes physics knowledge in ancient China and introduces the transplantation of modern science and technology to China. Three distinct historical periods have been identified. In Chapter Two and Chapter Three, 30 Chinese physicists educated in Germany and 89 in America have been investigated. This research analyzes the significant achievements of these physicists. It also examines the political changes, the social background, and other factors impacting on their studies in the two countries. The selected cases in the two chapters are Li Fo-ki, Chinese physics students in Berlin, Werner Heisenberg and his Chinese students, Max Born and his Chinese students, Robert Millikan and Chinese physicists, the first two Chinese physicists from Harvard, and the Science Society of China. Chapter Four explores the geographical distribution, education and careers, return and expatriation, and the social influence exerted by these Chinese physicists. Statistical compilation and quantitative analyses comprise the basic methodology. In terms of two periods and two generations, this dissertation explores the physicists' contributions to the development of modern science in China and to education in China. Significant cases from Beijing University, Qinghua University, and Yanjing University are analyzed. The last chapter, Chapter Five, concludes that some of the achievements of these Chinese physicists were critical steps in modern physics even though China remained domestically rather weak in the development of modern science. Returning to China, most of them became pioneers and active contributors to modern science and to higher education in China. They comprised the majority of the physics community of China and played a leading role in the formation of modern science in China. After 1949, China continued to benefit from the contributions of these physicists. China independently constructed an atomic bomb in 1964 and a hydrogen bomb in 1967. In 1970, China successfully launched a man-made satellite. The Chinese physicists trained in Western countries constituted the main research force behind these projects.
Science at Fermilab Fermilab and the Higgs Boson Frontiers of Particle Physics Experiments & Projects Frontiers of Particle Physics Benefits to Society Contacting Fermilab General Contact Information Email -12 Programs Lederman Science Center Saturday Morning Physics Cooperative Education Program
Paradigms and Postmodernism in Science and Science Education.
ERIC Educational Resources Information Center
Pushkin, David B.
Science, particularly the physical sciences, has undergone several paradigm shifts during history. The modernistic and mechanistic world that was viewed through the lens of Newton's laws no longer offers valid answers to present-day questions. This paper examines four themes: the evolution of physics, the evolution of chemistry, the evolution of…
ERIC Educational Resources Information Center
Cetinkaya, Turan; Kirtepe, Abdurrahman; Ugurlu, Fatih Mehmet
2018-01-01
The aim of this research is to determine the attitudes of the students who are studying in the physical education and sports departments towards the teaching profession. 244 students attending Ahi Evran University School of Physical Education and Sports and Firat University Sports Sciences Faculty Physical Education and Sport Teacher Training,…
75 FR 57298 - Proposal Review Panel for Physics; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-20
... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Physics; Notice of Meeting In accordance... announces the following meeting. Name: University of Notre Dame Site Visit in Physics (1208). Date and Time..., Program Director for Physics Education and Disciplinary Research, National Science Foundation, 4201 Wilson...
Physics teaching in developing countries
NASA Astrophysics Data System (ADS)
Talisayon, V. M.
1984-05-01
The need for endogeneous learning materials that will relate physics to the student's culture and environment spurred countries like India, Thailand, The Philippines and Indonesia to develop their own physics curriculum materials and laboratory equipment. Meagre resources and widespread poverty necessitated the development of laboratory materials from everyday items, recycled materials and other low-cost or no-cost local materials. The process of developing learning materials for one's teaching-learning needs in physics and the search from within for solutions to one's problems contribute in no small measure to the development of self-reliance in physics teaching of a developing country. Major concerns of developing countries are food supply, livelihood, health, nutrition and growth of economy. At the level of the student and his family, food, health, and livelihood are also primary concerns. Many physics teaching problems can be overcome on a large scale, given political support and national will. In countries where national leadership recognises that science and technology developed is essential to national development and that science education in turn is crucial to science and technology development, scarce resources can be allocated to science education. In developing countries where science education receives little or no political support, the most important resource in the physics classroom is the physics teacher. A highly motivated and adequately trained teacher can rise above the constraining circumstances of paucity of material resources and government apathy. In developing countries the need is great for self-reliance in physics teaching at the country level, and more importantly at the teacher level.
The use of cylindrical lenses in easy experiments for physics education and the magic arts
NASA Astrophysics Data System (ADS)
Bednarek, Stanisław; Krysiak, Jerzy
2011-09-01
The purpose of this article is to present the properties of cylindrical lenses and provide some examples of their use in easy school physics experiments. Such experiments could be successfully conducted in the context of science education, in fun experiments that teach physics and in science fair projects, or used to entertain an audience by staging tricks, effects or illusions of seemingly impossible or supernatural feats.
Impact of Informal Science Education on Children's Attitudes About Science
NASA Astrophysics Data System (ADS)
Wulf, Rosemary; Mayhew, Laurel M.; Finkelstein, Noah D.
2010-10-01
The JILA Physics Frontier Center Partnerships for Informal Science Education in the Community (PISEC) provides informal afterschool inquiry-based science teaching opportunities for university participants with children typically underrepresented in science. We focus on the potential for this program to help increase children's interest in science, mathematics, and engineering and their understanding of the nature of science by validating the Children's Attitude Survey, which is based on the Colorado Learning Attitudes about Science Survey [1] and designed to measure shifts in children's attitudes about science and the nature of science. We present pre- and post-semester results for several semesters of the PISEC program, and demonstrate that, unlike most introductory physics courses in college, our after-school informal science programs support and promote positive attitudes about science.
Jensen, Gail M; Hack, Laurita M; Nordstrom, Terrence; Gwyer, Janet; Mostrom, Elizabeth
2017-09-01
This perspective shares recommendations that draw from (1) the National Study of Excellence and Innovation in Physical Therapist Education research findings and a conceptual model of excellence in physical therapist education, (2) the Carnegie Foundation's Preparation for the Professions Program (PPP), and (3) research in the learning sciences. The 30 recommendations are linked to the dimensions described in the conceptual model for excellence in physical therapist education: Culture of Excellence, Praxis of Learning, and Organizational Structures and Resources. This perspective proposes a transformative call for reform framed across 3 core categories: (1) creating a culture of excellence, leadership, and partnership, (2) advancing the learning sciences and understanding and enacting the social contract, and (3) implementing organizational imperatives. Similar to the Carnegie studies, this perspective identifies action items (9) that should be initiated immediately in a strategic and systematic way by the major organizational stakeholders in physical therapist education. These recommendations and action items provide a transformative agenda for physical therapist education, and thus the profession, in meeting the changing needs of society through higher levels of excellence. © 2017 American Physical Therapy Association.
Enriching Gender in Physics Education Research: A Binary Past and a Complex Future
ERIC Educational Resources Information Center
Traxler, Adrienne L.; Cid, Ximena C.; Blue, Jennifer; Barthelemy, Ramón
2016-01-01
In this article, we draw on previous reports from physics, science education, and women's studies to propose a more nuanced treatment of gender in physics education research (PER). A growing body of PER examines gender differences in participation, performance, and attitudes toward physics. We have three critiques of this work: (i) it does not…
ERIC Educational Resources Information Center
Evans, John; Penney, Dawn
2008-01-01
Background: This paper develops an analysis of how "educability" and "physical ability" are socially configured through the practices of physical education (PE) in schools. We pursue this interest as part of a broader project, shared by many in the wider community of social science researchers in PE, to better understand how…
ERIC Educational Resources Information Center
Singer, Susan R.; Nielsen, Natalie R.; Schweingruber, Heidi A.
2012-01-01
The National Science Foundation funded a synthesis study on the status, contributions, and future direction of discipline-based education research (DBER) in physics, biological sciences, geosciences, and chemistry. DBER combines knowledge of teaching and learning with deep knowledge of discipline-specific science content. It describes the…
ERIC Educational Resources Information Center
Singh, Gurmukh
2012-01-01
The present article is primarily targeted for the advanced college/university undergraduate students of chemistry/physics education, computational physics/chemistry, and computer science. The most recent software system such as MS Visual Studio .NET version 2010 is employed to perform computer simulations for modeling Bohr's quantum theory of…
ERIC Educational Resources Information Center
Hastie, Peter Andrew
2013-01-01
The purpose of this article is to describe the outcomes of a parallel curriculum project between life sciences and physical education. Throughout a 6-week period, students in grades two through five became members of teams that represented different animal species and biomes, and concurrently participated in a season of gymnastics skills and…
Competing Obesity Discourses and Critical Challenges for Health and Physical Educators
ERIC Educational Resources Information Center
Pringle, Richard; Pringle, Dixie
2012-01-01
Health and physical education teachers have become subject to epistemological and ethical tensions associated with competing obesity and physical activity discourses. The dominating obesity discourse, underpinned by truth claims from science, encourages educators to pathologise fatness, treat exercise as a medicine and survey student activity…
Come Fly with Me! Exploring Science 7-9 through Aviation/Aerospace Concepts.
ERIC Educational Resources Information Center
Housel, David C.; Housel, Doreen K. M.
This guide contains 67 activities dealing with various aerospace/aviation education concepts. The activities are presented in units related to physical science, earth science, and life science. In addition, there is a section related to student involvement in the space shuttle programs. The physical science unit (activities 1-23) focuses on the…
Science Education & Advocacy: Tools to Support Better Education Policies
NASA Astrophysics Data System (ADS)
O'Donnell, Christine; Cunningham, B.; Hehn, J. G.
2014-01-01
Education is strongly affected by federal and local policies, such as testing requirements and program funding, and many scientists and science teachers are increasingly interested in becoming more engaged with the policy process. To address this need, I worked with the American Association of Physics Teachers (AAPT) --- a professional membership society of scientists and science teachers that is dedicated to enhancing the understanding and appreciation of physics through teaching --- to create advocacy tools for its members to use, including one-page leave-behinds, guides for meeting with policymakers, and strategies for framing issues. In addition, I developed a general tutorial to aid AAPT members in developing effective advocacy strategies to support better education policies. This work was done through the Society for Physics Students (SPS) Internship program, which provides a range of opportunities for undergraduates, including research, education and public outreach, and public policy. In this presentation, I summarize these new advocacy tools and their application to astronomy education issues.
Preparing prospective physics teachers to teach integrated science in junior high school
NASA Astrophysics Data System (ADS)
Wiyanto; Hartono; Nugroho, S. E.
2018-03-01
The physics education study program especially prepares its students to teach physics in senior high school, however in reality many its graduates have become science teachers in junior high school. Therefore introducing integrated science to prospective physics teachers is important, because based on the curriculum, science in the junior high school should be taught integratedly. This study analyzed integrated science teaching materials that developed by prospective physics teachers. Results from this study showed that majority of the integration materials that developed by the prospective physics teachers focused on topic with an overlapping concept or theme as connecting between two or three subjects.
Physics Teacher Use of the History of Science
ERIC Educational Resources Information Center
Winrich, Charles
2013-01-01
The School of Education and the Department of Physics at Boston University offer a sequence of 10 two-credit professional development courses through the Improving the Teaching of Physics (ITOP) project. The ITOP courses combine physics content, readings from the physics education research (PER) literature, and the conceptual history of physics…
Bush, Seth D; Rudd, James A; Stevens, Michael T; Tanner, Kimberly D; Williams, Kathy S
2016-01-01
Globally, calls for the improvement of science education are frequent and fervent. In parallel, the phenomenon of having Science Faculty with Education Specialties (SFES) within science departments appears to have grown in recent decades. In the context of an interview study of a randomized, stratified sample of SFES from across the United States, we discovered that most SFES interviewed (82%) perceived having professional impacts in the realm of improving undergraduate science education, more so than in research in science education or K-12 science education. While SFES reported a rich variety of efforts towards improving undergraduate science education, the most prevalent reported impact by far was influencing the teaching practices of their departmental colleagues. Since college and university science faculty continue to be hired with little to no training in effective science teaching, the seeding of science departments with science education specialists holds promise for fostering change in science education from within biology, chemistry, geoscience, and physics departments.
2016-01-01
Globally, calls for the improvement of science education are frequent and fervent. In parallel, the phenomenon of having Science Faculty with Education Specialties (SFES) within science departments appears to have grown in recent decades. In the context of an interview study of a randomized, stratified sample of SFES from across the United States, we discovered that most SFES interviewed (82%) perceived having professional impacts in the realm of improving undergraduate science education, more so than in research in science education or K-12 science education. While SFES reported a rich variety of efforts towards improving undergraduate science education, the most prevalent reported impact by far was influencing the teaching practices of their departmental colleagues. Since college and university science faculty continue to be hired with little to no training in effective science teaching, the seeding of science departments with science education specialists holds promise for fostering change in science education from within biology, chemistry, geoscience, and physics departments. PMID:26954776
Will the No Child Left Behind Act Promote Direct Instruction of Science?
NASA Astrophysics Data System (ADS)
Hake, Richard
2005-03-01
Education research in physics at the high school and undergraduate level strongly suggests that interactive engagement enhances students' conceptual understanding much more than traditional Direct Science Instruction (DSI). Similar conclusions can be drawn from K-8 science-education research. Nevertheless, DSI predominates in CA because of the DSI- orientation of the CA State Board of Education and Curriculum Commission [1]. Likewise the U.S. Dept. of Education's (USDE's): (a) DSI-orientation as demonstrated by its recent national-education summit showcasing of the research of Klahr and Nigam [2]; and (b) science achievement testing starting in 2007; threatens to promote DSI nationwide. It might be hoped that NRC's expert science education committees will steer the USDE away from promoting DSI, the antithesis of the NRC's own recommendations for inquiry methods. [1] R.R. Hake. ``Direct Science Instruction Suffers a Setback in California - Or Does It?" (2004), <ł http://www.physics.indiana.edu/˜hake/DirInstSetback-041104f.pdf>. [2] Klahr, D. & M. Nigam. 2004. ``The equivalence of learning paths in early science instruction: effects of direct instruction and discovery learning" (2004),
Listening is therapy: Patient interviewing from a pain science perspective.
Diener, Ina; Kargela, Mark; Louw, Adriaan
2016-07-01
The interview of a patient attending physical therapy is the cornerstone of the physical examination, diagnosis, plan of care, prognosis, and overall efficacy of the therapeutic experience. A thorough, skilled interview drives the objective tests and measures chosen, as well as provides context for the interpretation of those tests and measures, during the physical examination. Information from the interview powerfully influences the treatment modalities chosen by the physical therapist (PT) and thus also impacts the overall outcome and prognosis of the therapy sessions. Traditional physical therapy focuses heavily on biomedical information to educate people about their pain, and this predominant model focusing on anatomy, biomechanics, and pathoanatomy permeates the interview and physical examination. Although this model may have a significant effect on people with acute, sub-acute or postoperative pain, this type of examination may not only gather insufficient information regarding the pain experience and suffering, but negatively impact a patient's pain experience. In recent years, physical therapy treatment for pain has increasingly focused on pain science education, with increasing evidence of pain science education positively affecting pain, disability, pain catastrophization, movement limitations, and overall healthcare cost. In line with the ever-increasing focus of pain science in physical therapy, it is time for the examination, both subjective and objective, to embrace a biopsychosocial approach beyond the realm of only a biomedical approach. A patient interview is far more than "just" collecting information. It also is a critical component to establishing an alliance with a patient and a fundamental first step in therapeutic neuroscience education (TNE) for patients in pain. This article highlights the interview process focusing on a pain science perspective as it relates to screening patients, establishing psychosocial barriers to improvement, and pain mechanism assessment.
Science and Politics in the Philosophy of Science of Popper, Polanyi, and Kuhn
NASA Astrophysics Data System (ADS)
Nye, Mary Jo
2006-05-01
The names of Karl Popper, Michael Polanyi, and Thomas Kuhn are well-known among scientists and among historians and philosophers of science. Around 1960 they published books that excited considerable discussion because of their independent rejection of the philosophical tradition that uses simple empiricism or positivism to differentiate science from religion, metaphysics, ideology, or pseudo-science. Popper's original field of expertise was scientific education and psychology. Polanyi had a distinguished career in physical chemistry and chemical physics, while Kuhn worked briefly in solid-state physics before turning to the philosophy of science. Their descriptions of scientific practices and values have roots not only in their scientific educations and experiences, but also in the political questions of their time. This paper focuses on political dimensions in the philosophical work of these three twentieth-century figures.
On ``The Congressional Fellowship as an Ethnographic Extravaganza''
NASA Astrophysics Data System (ADS)
Narasimhan, T. N.
2006-06-01
Josh Trapani's emerging experience as an AGU Congressional Fellow (Eos, 87(7), 76, 2006) is educational. Spectacular developments in the physical sciences tempt us to believe that finer and finer dissection of matter and sophisticated manipulation of molecules will soon enable us to control nature at will. Increasing knowledge, though, about the Earth and its interconnected biological systems makes us skeptical about the enthusiastic vision of physical sciences. Living things, unlike the nonliving things that are the concern of physical sciences, possess the attribute of `behavior,' associated with `mind' and `instinct.'. Trapani's ethnographic extravaganza is merely a subset of behavior, which lies beyond the scope of relativity, quantum mechanics, or thermodynamics. Rationally, one would expect that with its fine program of liberal education, congressional fellowships, and prestigious academies of sciences, the United States will enjoy a most harmonious interrelationship between science and national policies. Such rational thinking, a reflection of our training in the physical sciences, is valid in the case of inanimate things that are faithfully subject to physical laws. When on occasion we feel dismayed at a lack of harmony between what science tells us and how national policies take shape, we would do well to be reminded by Trapani's ethnographic extravaganza that `behavior' of even the most technologically advanced living things transcends the rationality of the physical sciences.
2009-06-01
mote interactions among K12 school systems; 2- and 4-year colleges and universities; informal science education organizations; . . . to promote... Science Center Proposal As ‘ informal ’ education centers i.e., Science and Technology Centers provide learn- ing outside the classroom that enhances...and complements ‘formal’ (classroom-based) learning. Informal science education uses visual, auditory, physical interactions, and ac- tivities to
Developing Mathematical Concepts through Orientation and Mobility
ERIC Educational Resources Information Center
Smith, Derrick W.
2006-01-01
The National Council for Teachers of Mathematics (NCTM; 2000) encourages students to experience mathematics in multiple contexts, including science, history, physical education, business sciences, and agricultural sciences. All educators, including professionals such as orientation and mobility specialists who work with students who are visually…
34 CFR 691.17 - Determination of eligible majors.
Code of Federal Regulations, 2010 CFR
2010-07-01
... majors in the physical, life, or computer sciences, mathematics, technology, engineering, critical... EDUCATION, DEPARTMENT OF EDUCATION ACADEMIC COMPETITIVENESS GRANT (ACG) AND NATIONAL SCIENCE AND MATHEMATICS... years of study in mathematics and three years of study in the sciences, with a laboratory component in...
34 CFR 691.17 - Determination of eligible majors.
Code of Federal Regulations, 2011 CFR
2011-07-01
... majors in the physical, life, or computer sciences, mathematics, technology, engineering, critical... EDUCATION, DEPARTMENT OF EDUCATION (CONTINUED) ACADEMIC COMPETITIVENESS GRANT (ACG) AND NATIONAL SCIENCE AND... years of study in mathematics and three years of study in the sciences, with a laboratory component in...
34 CFR 691.17 - Determination of eligible majors.
Code of Federal Regulations, 2014 CFR
2014-07-01
... majors in the physical, life, or computer sciences, mathematics, technology, engineering, critical... EDUCATION, DEPARTMENT OF EDUCATION (CONTINUED) ACADEMIC COMPETITIVENESS GRANT (ACG) AND NATIONAL SCIENCE AND... years of study in mathematics and three years of study in the sciences, with a laboratory component in...
34 CFR 691.17 - Determination of eligible majors.
Code of Federal Regulations, 2012 CFR
2012-07-01
... majors in the physical, life, or computer sciences, mathematics, technology, engineering, critical... EDUCATION, DEPARTMENT OF EDUCATION (CONTINUED) ACADEMIC COMPETITIVENESS GRANT (ACG) AND NATIONAL SCIENCE AND... years of study in mathematics and three years of study in the sciences, with a laboratory component in...
34 CFR 691.17 - Determination of eligible majors.
Code of Federal Regulations, 2013 CFR
2013-07-01
... majors in the physical, life, or computer sciences, mathematics, technology, engineering, critical... EDUCATION, DEPARTMENT OF EDUCATION (CONTINUED) ACADEMIC COMPETITIVENESS GRANT (ACG) AND NATIONAL SCIENCE AND... years of study in mathematics and three years of study in the sciences, with a laboratory component in...
Innovative science within and against a culture of achievement
NASA Astrophysics Data System (ADS)
Carlone, Heidi B.
2003-05-01
As science educators struggle to reform science education, we need a better understanding of the conundrums associated with the ways educators enact innovative science within and against the academic, rigorous, and elite sociohistorical constructions of science. I ethnographically investigated the meanings of an innovative, reform-based curriculum (Active Physics) in various micro (classroom) and macro (school and community) contexts. I conducted the study in a high school serving primarily upper middle class students, the majority of whom (97%) planned to attend college. I explored how meanings of the curriculum transformed as the curriculum traveled across space and time. While certain aspects of the context enabled innovative science (e.g., support from the administration, pressure to serve a wider range of students), other aspects of the context constrained the potential of the curriculum (e.g., the need to establish for students, parents, and administrators the legitimacy of Active Physics as real and rigorous physics). Using practice theory to understand the influence of context and agency in shaping school science practice, this study demonstrates the potential for viewing meanings of science in local settings as partially fluid entities, sometimes reproducing and sometimes contesting sociohistorical legacies.
Integrating Mathematics into the Introductory Biology Laboratory Course
ERIC Educational Resources Information Center
White, James D.; Carpenter, Jenna P.
2008-01-01
Louisiana Tech University has an integrated science curriculum for its mathematics, chemistry, physics, computer science, biology-research track and secondary mathematics and science education majors. The curriculum focuses on the calculus sequence and introductory labs in biology, physics, and chemistry. In the introductory biology laboratory…
The New Millennium and an Education That Captures the Basic Spirit of Science.
ERIC Educational Resources Information Center
Bybee, Rodger W.
This document discusses reflections of the old and new millennium on education that capture the basic spirit of science. The explanation includes basic scientific ideas in physical sciences, earth systems, solar system and space; living systems; basic scientific thinking; the basic distinction between science and technology; basic connections…
Use of Future Scenarios as a Pedagogical Approach for Science Teacher Education
ERIC Educational Resources Information Center
Paige, Kathryn; Lloyd, David
2016-01-01
Futures studies is usually a transdisciplinary study and as such embraces the physical world of the sciences and system sciences and the subjective world of individuals and cultures, as well as the time dimension--past, present and futures. Science education, where student interests, opportunities and challenges often manifest themselves, can…
NASA Astrophysics Data System (ADS)
2002-09-01
11-14 Curriculum: Supporting Physics Teaching (11-14) Europe: Sci-tech couldn't be without it! Art-Science: Makrolab in Mountain Year Digital Curriculum: Should the BBC learn from the past? Scotland: Teachers get Rocket Science Malaysia: Controversy over the language medium for science teaching UK Science: Next stage of Science Year announced Special Educational Needs: Science for special needs students Folk Physics: Good vibrations Environment: IoM3 - a move towards sustainability? UK Primary Science: The threat of afternoon science
ERIC Educational Resources Information Center
Alameda, Miriam Wood; Whitehead, James R.
2015-01-01
Stigmatization consequent to anti-fat bias (AFB) may affect the services people who are obese receive from health professionals, including physical education and exercise science (PEX) professionals. In this study, we compared AFB levels of American and Mexican PEX students and Mexican athletes. We also investigated if socially desirable (SD)…
Teaching physics as a service subject
NASA Astrophysics Data System (ADS)
Lowe, T. L.; Hayes, M.
1986-07-01
At South Glamorgan Institute of Higher Education physics is taught over a wide range of courses. In addition to the more conventional courses found in science, technology and education faculties there is a physics input into areas such as beauty therapy, applied biology, catering, chiropody, dental technology, environmental health, food technology, hairdressing, human-movement studies, industrial design, applied life sciences, marine technology, medical laboratory science, physiological measurement, nursing and speech therapy. Due to the fundamental differences in emphasis required when teaching physics as a 'minor' subject on these types of courses, and since the authors have no courses which lead to a 'major' physics qualification, it is necessary to develop a rational strategy for teaching physics as a 'service' subject. If this is not achieved then staff satisfaction and student interest are likely to suffer. They describe their strategy.
An Inquiry-Based Approach to Teaching Space Weather to Undergraduate Non-Science Majors
NASA Astrophysics Data System (ADS)
Cade, W. B., III
2016-12-01
Undergraduate Space Weather education is an important component of creating a society that is knowledgeable about space weather and its societal impacts. The space physics community has made great strides in providing academic education for students, typically physics and engineering majors, who are interested in pursuing a career in the space sciences or space weather. What is rarely addressed, however, is providing a broader space weather education to undergraduate students as a whole. To help address this gap, I have created an introductory space weather course for non-science majors, with the idea of expanding exposure to space weather beyond the typical physics and engineering students. The philosophy and methodologies used in this course will be presented, as well as the results of the first attempts to teach it. Using an approach more tailored to the non-scientist, courses such as this can be an effective means of broadening space weather education and outreach.
ERIC Educational Resources Information Center
Finn, Kevin E.; McInnis, Kyle J.
2014-01-01
Many children get little to no regular physical education during the school day. National recommendations call for schools to offer physical activity as part of planned academic lessons that teach math, language arts, science, and other subjects through movement. The purpose of this study was to analyze the student and teacher perceptions of the…
ERIC Educational Resources Information Center
Keohane, K. W.; And Others
1976-01-01
Reprints four lectures which were presented in the plenary session on "New science and old cultures" at the international conference on physics education at Edinburgh, Scotland, July 29 - August 6, 1975. In particular, the relationship between science education and the culture of underdeveloped nations is discussed. (CP)
``But you're just a physics booster!'' -- Why political advocacy for high school physics is crucial
NASA Astrophysics Data System (ADS)
Cottle, Paul
2010-10-01
There is no shortage of research-based arguments supporting the importance of high school physics. A study from the University of South Florida demonstrates the importance of high school physics for the preparation of future STEM professionals [1]. A white paper from the National Academy of Education [2] states that the usual biology-chemistry-physics sequence in high school is ``out of order'' and points out that students in 9th grade biology classes are taught concepts that make no sense to them because they ``know little about atoms and next to nothing about the chemistry and physics that can help them make sense of these structures and their functions.'' Nevertheless, in Florida the high school physics-taking rate has been declining for several years and a large fraction of the International Baccalaureate programs do not even offer IB Physics. I will argue that physicists must collectively advocate in the political arena for the expansion and improvement of high school physics. I will also provide a few examples of collective actions by scientists that may have influenced the formulation of the new high school graduation requirements in Florida. Finally, I will argue that we must lobby our colleagues in the Colleges of Education to devote their scarce resources to recruiting and training teachers in the physical sciences. [4pt] [1] W. Tyson, R. Lee, K.M. Borman, and M.A. Hanson, {Journal of Education for Students Placed at Risk} 12, 243 (2007). [0pt] [2] National Academy of Education White Paper ``Science and Mathematics Education,'' (http://www.naeducation.org/Science/and/Mathematics/Education/White/Paper.pdf).
A Community of Scientists and Educators: The Compass Project at UC Berkeley
NASA Astrophysics Data System (ADS)
Roth, Nathaniel; Schwab, Josiah
2016-01-01
The Berkeley Compass Project is a self-formed group of graduate and undergraduate students in the physical sciences at the University of California, Berkeley. Its goals are to improve undergraduate physics education, provide opportunities for professional development, and increase retention of students from populations underrepresented in the physical sciences. For undergraduate students, the core Compass experience consists of a summer program and several seminar courses. These programs are designed to foster a diverse, collaborative student community in which students engage in authentic research practices and regular self-reflection. Graduate students, together with upper-level undergraduates, design and run all Compass programs. Compass strives to incorporate best practices from the science education literature. Experiences in Compass leave participants poised to be successful students researchers, teachers, and mentors.
ERIC Educational Resources Information Center
Çetin, Oguz
2017-01-01
The purpose of this research is to comparatively investigate the efficacy levels of pre-service science (Science, Biology, Physics, and Chemistry) teachers enrolled at the Undergraduate Program of Science Teacher Education and Pedagogical Formation Program. A total of 275 pre-service teachers who were studying in different programmes in the…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2012
2012-01-01
This report presents results of the National Assessment of Educational Progress (NAEP) U.S. science assessment in 2011. A representative sample of 122,000 eighth-graders participated in the 2011 NAEP science assessment, which is designed to measure students' knowledge and abilities in the areas of physical science, life science, and Earth and…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
45 CFR 605.47 - Nonacademic services.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION NONDISCRIMINATION... Postsecondary Education § 605.47 Nonacademic services. (a) Physical education and athletics. (1) In providing physical education courses and athletics and similar aid, benefits, or services to any of its students, a...
45 CFR 605.47 - Nonacademic services.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION NONDISCRIMINATION... Postsecondary Education § 605.47 Nonacademic services. (a) Physical education and athletics. (1) In providing physical education courses and athletics and similar aid, benefits, or services to any of its students, a...
45 CFR 605.47 - Nonacademic services.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION NONDISCRIMINATION... Postsecondary Education § 605.47 Nonacademic services. (a) Physical education and athletics. (1) In providing physical education courses and athletics and similar aid, benefits, or services to any of its students, a...
NASA Astrophysics Data System (ADS)
Hanuscin, Deborah L.
This research examined the development of practicing K--8 teachers' views of the nature of science (NOS) within a physical science content course. Reforms in science education have called for the teaching of science as inquiry. In order to achieve the vision of the reforms, teachers must understand science, both a body of knowledge and as a process, but also the very nature of science itself-or the values and assumptions inherent in the construction of scientific knowledge. NOS has been deemed a critical component of scientific literacy, with implications for making informed decisions about scientific claims. Research has indicated that despite the emphasis of reforms, teachers generally do not possess accurate views of NOS. Recent work in science education has led to the recommendation that efforts undertaken within teacher education programs to improve teachers' understanding of NOS can be enhanced through relevant coursework in other academic areas, including the sciences. The purpose of this dissertation was to provide an empirical basis for this recommendation, by examining the development of teachers' views of NOS within a physical science content course. To this end, the researcher employed qualitative methodology including participant observation, interview, document analysis, and questionnaire to assess teacher participants' views of the nature of science and the impact of their experience in the content course on these views. As a result of this research, implications for both the course design and science teacher education have been described. In addition, various aspects of the community of practice that characterizes the classroom that inhibit the development of understandings about the nature of science are identified. It is argued that instruction in NOS should be approached from the perspective that builds bridges between the communities of practice of learners and of scientists.
The Status of Physics 12 in BC: Reflections from UBC Science Teacher Candidates.
ERIC Educational Resources Information Center
Nashon, Samson Madera
As part of attempts to find out why few high school science students take Physics 12, this case study sought University of British Columbia (UBC) science teacher educators' perspectives on the topic. A survey method employing questionnaires and interviews as part of the study was used to elicit science teacher candidates' perspectives. Forty-five…
ERIC Educational Resources Information Center
Crosby, Glenn; And Others
A group of scientists and science educators of Washington State University has developed and pilot tested an integrated physical science program designed for preservice elementary school teachers. This document includes the syllabus and class materials for the Chemistry block of the physical science courses developed by the group. Included are…
ERIC Educational Resources Information Center
Holbrow, C. H.
1983-01-01
A course was developed to teach physics concepts and to help students understand mathematics, the nature and role of engineers and engineering in society, and to distinguish between science/technology from pseudo-science. Includes course goals/content, mechanics, start-up, and long-term projects. (JN)
ERIC Educational Resources Information Center
Webster, Gary
A group of scientists and science educators at Washington State University has developed and pilot tested an integrated physical science program designed for preservice elementary school teachers. This document includes the syllabus and class materials for the Geology block of the physical science courses developed by the group. Included are…
ERIC Educational Resources Information Center
Lutz, Julie H.; Orlich, Donald C.
A group of scientists and science educators at Washington State University has developed and pilot tested an integrated physical science program designed for preservice elementary school teachers. This document includes the syllabus and class materials for the Astronomy block of the physical science courses developed by the group. Included are…
The effects of calculator-based laboratories on standardized test scores
NASA Astrophysics Data System (ADS)
Stevens, Charlotte Bethany Rains
Nationwide, the goal of providing a productive science and math education to our youth in today's educational institutions is centering itself around the technology being utilized in these classrooms. In this age of digital technology, educational software and calculator-based laboratories (CBL) have become significant devices in the teaching of science and math for many states across the United States. Among the technology, the Texas Instruments graphing calculator and Vernier Labpro interface, are among some of the calculator-based laboratories becoming increasingly popular among middle and high school science and math teachers in many school districts across this country. In Tennessee, however, it is reported that this type of technology is not regularly utilized at the student level in most high school science classrooms, especially in the area of Physical Science (Vernier, 2006). This research explored the effect of calculator based laboratory instruction on standardized test scores. The purpose of this study was to determine the effect of traditional teaching methods versus graphing calculator teaching methods on the state mandated End-of-Course (EOC) Physical Science exam based on ability, gender, and ethnicity. The sample included 187 total tenth and eleventh grade physical science students, 101 of which belonged to a control group and 87 of which belonged to the experimental group. Physical Science End-of-Course scores obtained from the Tennessee Department of Education during the spring of 2005 and the spring of 2006 were used to examine the hypotheses. The findings of this research study suggested the type of teaching method, traditional or calculator based, did not have an effect on standardized test scores. However, the students' ability level, as demonstrated on the End-of-Course test, had a significant effect on End-of-Course test scores. This study focused on a limited population of high school physical science students in the middle Tennessee Putnam County area. The study should be reproduced in various school districts in the state of Tennessee to compare the findings.
Reform in science education: Then and now
NASA Astrophysics Data System (ADS)
Haber-Schaim, Uri
1998-05-01
In discussions about science education, we often hear and read references to two eras of reform: the first associated with launching of Sputnik in October of 1957 and the second prompted by the publication of Nation at Risk in 1983. Having been deeply involved in the first science project of the first era, namely the Physical Science Study Committee (PSSC) course in physics, now in its seventh edition, and following today's activities closely, I will try to describe the "what's" and "how's" of the PSSC as a representative of the first era and to compare them with today's reform.
ERIC Educational Resources Information Center
United Nations Educational, Scientific, and Cultural Organization, Paris (France). Div. of Marine Sciences.
A group of marine science education educators from several countries were requested to provide guidelines for the education and training of marine scientists and formulate recommended curricula in the following disciplines: marine biology (including fisheries biology), physical oceanography, and marine geology. Included in the report are: (1)…
In the foot steps of Madame Curie: A cross-case study of female undergraduate physics majors
NASA Astrophysics Data System (ADS)
Jaladanki, Vani Savithri
Females are disproportionately underrepresented in STEM (science, technology, engineering, and mathematics) majors. Further, the number of females who take physics in college has declined. While female students make up 61% of graduates in biological sciences and 50% in chemistry, the proportion of women completing physics degrees is only 21% (Sawtelle, 2011). In order to improve women's access to science and engineering education, research must focus on personal and environmental factors that motivate them to select these fields (AAUW, 2010). The purpose of this study was to explore how the educational experiences of three female undergraduate physics majors contribute to their current dispositions toward, interest in, and pursuit of physics as a major at a large southern research university. This qualitative study employs symbolic interactionism (Blumer, 1969) as its methodological framework and social cognitive career theory (Lent, Brown, & Hackett, 2002) as its theoretical framework. Case study methods (Yin, 2006) were implemented to investigate the experiences of three participants. The primary sources of data included critical incident interviews (Flanagan, 1954), photographs, documents, object elicitations, and the researcher's reflections. Narrative and arts-based techniques were employed to analyze and represent data. Findings are presented as co-constructed narratives of the participants' journeys to becoming undergraduate physics majors. Three major themes emerged from the cross case analysis: carving new spaces, authoring an empowered self, and show me you care and so will I. The direct experiences of engaging with science at a young age and social persuasions of family members, teachers, and peers strongly influenced the participants' interest in and pursuit of physics. Their current dispositions to physics result from vicarious experiences with professors and peers in combination with the social persuasions of the latter. This study informs science educators in general, and physics educators in particular, about how to motivate and enable female students to engage with physics and possibly pursue it as a career choice. Three major implications for practice were suggested: teach science as a vibrant field, enable students to understand failure as an opportunity to succeed, and shift the focus from competition to collaboration.
NASA Astrophysics Data System (ADS)
2001-03-01
PHYSICS AT ASE Warm welcome for new-look Physics Education; TEACHING COMMUNITY Conference in the Netherlands; RESEARCH Evidence based practice; PHYSICS AT ASE Teacher of Physics Awards; PHYSICS AT ASE Festival encourages science teachers; AWARDS Bragg Medal; PHYSICS AT ASE Meteorites are cool! PUBLIC UNDERSTANDING March 2001 - a science odyssey; WEB RESOURCES New website launched to support the gifted and talented; PHYSICS TEACHING A Fun lesson; RESEARCH FRONTIERS Are cell phones safe? OBITUARY Roy Schofield 1924-2000
A Guide to Federal Funding in the Physical and Mathematical Sciences.
ERIC Educational Resources Information Center
Ficklen, Myra
This guide provides summaries of federal programs in the physical and mathematical sciences of interest to colleges and universities. Programs from the following federal agencies are included: National Science Foundation; Department of Energy; Environmental Protection Agency; Office of Education; Department of Interior; Smithsonian Institution;…
Vectors on the Basketball Court
ERIC Educational Resources Information Center
Bergman, Daniel
2010-01-01
An Idea Bank published in the April/May 2009 issue of "The Science Teacher" describes an experiential physics lesson on vectors and vector addition (Brown 2009). Like its football predecessor, the basketball-based investigation presented in this Idea Bank addresses National Science Education Standards Content B, Physical Science, 9-12 (NRC 1996)…
Exemplary Programs in Physics, Chemistry, Biology, and Earth Science.
ERIC Educational Resources Information Center
Yager, Robert E., Ed.
The 1982 Search for Excellence in Science Education project has identified 50 exemplary programs in physics, chemistry, biology, and earth science. Descriptions of four of these programs and the criteria used in their selection are presented. The first section reviews the direction established by Project Synthesis in searching for exemplary…
Medrela-Kuder, Ewa
2011-01-01
The aim of the study was the evaluation of a dietary habits profile and physical activity of Physiotherapy and Technical & Computer Science students. The research involved a group of 174 non-full-time students of higher education institutions in Krakow aged between 22 and 27. 81 students of the surveyed studied Physiotherapy at the University of Physical Education, whereas 93 followed a course in Technical & Computer Science at the Pedagogical University. In this project a diagnostic survey method was used. The study revealed that the lifestyle of university youth left much to be desired. Dietary errors were exemplified by irregular meals intake, low consumption of fish, milk and dairy, snacking between meals on high calorie products with a poor nutrient content. With regard to physical activity, Physiotherapy students were characterised by more positive attitudes than those from Technical & Computer Science. Such physical activity forms as swimming, team sports, cycling and strolling were declared by the surveyed the most frequently. Health-oriented education should be introduced in such a way as to improve the knowledge pertaining to a health-promoting lifestyle as a means of prevention of numerous diseases.
NASA Astrophysics Data System (ADS)
Crotty, Ann
Science is a part of all students' education, PreK-12. Preparing students for a more scientifically and technologically complex world requires the best possible education including the deliberate inclusion and full contributions of all students, especially an underrepresented group: females in science. In the United States, as elsewhere in the world, the participation of girls and women in science education and professional careers in science is limited, particularly in the physical sciences (National Academy of Sciences [NAS], 2006). The goal of this research study is to gain a better understanding of the perspectives and perceptions of girls and women, both science educators and students, related to gender and participation in science at the time of an important course: high school chemistry. There is a rich body of research literature in science education that addresses gender studies post---high school, but less research that recognizes the affective voices of practicing female science teachers and students at the high school level (Bianchini, Cavazos, & Helms, 2000; Brown & Gilligan, 1992; Gilligan, 1982). Similarly, little is known with regard to how female students and teachers navigate their educational, personal, and professional experiences in science, or how they overcome impediments that pose limits on their participation in science, particularly the physical sciences. This exploratory study focuses on capturing voices (Brown & Gilligan, 1992; Gilligan, 1982) of high school chemistry students and teachers from selected urban and suburban learning communities in public schools in the Capital Region of New York State. Through surveys, interviews, and focus groups, this qualitative study explores the intersection of the students' and teachers' experiences with regard to the following questions: (1) How do female chemistry teachers view the role gender has played in their professional and personal lives as they have pursued education, degree status, and professional careers in science? (2) How do female chemistry students perceive their educational experiences in science? Implications of the study serve to inform and raise the awareness of science educators and other stakeholders about improving and enhancing the participation of females in science (National Science Foundation [NSF], 2002; National Research Council [NRC], 2006).
The Complementary Teaching of Physics and Music Acoustics - The Science of Sound
NASA Astrophysics Data System (ADS)
Milicevic, D.; Markusev, D.; Nesic, Lj.; Djordjevic, G.
2007-04-01
The results of some up-to-date solutions referring to teaching physics as a part of educational reform in Serbia, can be negative in a great deal to content and scope of teaching process which has existed so far. Basic course and characteristics of those solutions mean decreasing the number of classes of full-time physics teaching. Such tendencies are unjustified for many reasons, and the basic one is that physics is the foundation of understanding not only natural science, but also art and music (optics and acoustics respectively) and physical education (statics and dynamics). As a result of all this, there is necessity to have natural lessons of physics with the teachers of subjects such as music, art and physical education. The main objective of it is to conclude one good quality teaching cycle, and make student acquire new as well as revise their knowledge in different subjects.
Trends in Practical Work in German Science Education
ERIC Educational Resources Information Center
di Fuccia, David; Witteck, Torsten; Markic, Silvija; Eilks, Ingo
2012-01-01
By the 1970s a fundamental shift had taken place in German science education. This was a shift away from the learning of more-or-less isolated facts and facets in Biology, Chemistry, and Physics towards a restructuring of science teaching along the general principles of the respective science domains. The changes included also the addition of…
ERIC Educational Resources Information Center
Narum, Jeanne L., Ed.
In an era when the U.S. educational enterprise, particularly in mathematics, physical sciences, and engineering, has been found to be seriously flawed and has come under criticism from many different sectors, it is essential for science and mathematics educators from the nation's predominantly undergraduate institutions to take the lead in…
Th unnatural order of things: A history of the high school science sequence
NASA Astrophysics Data System (ADS)
Robbins, Dennis M.
Historical studies of US high school science education are rare. This study examines the historical origins of a unique characteristic of the secondary science curriculum, the Biology-Chemistry-Physics (B-C-P) order of courses. Statements from scientists, educators and the media claim that B-C-P has been the traditional curriculum sequence for over a century and can be traced back to the influential educational commission known as the Committee of Ten (CoT) of 1893. This study examines the history of the ordering of high school science subjects over the last 150 years. The reports and primary documents of important national educational commissions, such as the CoT, were searched for their recommendations on secondary science, particularly on course ordering. These recommendations were then compared to national, state and local statistical data on subject offerings and student enrollments to measure the effect of these national commissions on school policy. This study concludes that the Committee of Ten did not create B-P-C. The CoT made six recommendations, five placed Chemistry before Physics (P-C). One recommendation for C-P met with strong disagreement because it was thought an illogical order. Biology as a "uniform" course did not exist at this time and so the CoT made no recommendations for its grade placement. Statistical data shows that B-C-P evolved over many decades. From 1860 up to 1920 most schools used a P-C curriculum believing Physics was a foundational prerequisite of Chemistry. Biology was introduced in the early 1900s and it assumed a position before the physical sciences. Through the 1920s Chemistry and Physics were placed equally likely in 11th or 12 th grades and Biology was in the 10th grade. After World War II, B-C-P became the dominant pattern, exhibited in over 90% of schools. But up to this point in time no educational body or national commission had recommended B-C-P. The Biology-Chemistry-Physics order of courses is a product of many historical accidents and not the result of educational planning for the US high school curriculum.
Exploring ``Science As Culture'' Through The European Science Museums Astronomy And Museum Education
NASA Astrophysics Data System (ADS)
Lelingou, Dimitra; Varga, Benedek; Czár, Katalin; Sircar, Seema; Paterson, Allan; Lindsay, Lilian; Watson, Andy; Croly, Christopher
2010-01-01
The Hellenic Physical Society is a scientific association with an intensive action in the field of education, which is governed by the philosophy that the relationship between science and society must be interactive. For this reason the Hellenic Physical Society is a partner of the European Grundtvig Lifelong Learning Project/Learning Partnerships, tilted: Exploring ``Science as Culture'' through the European Science Museums. The program numbered 07-GRCO1-GR04-00025-1 constitutes an educational collaboration between the Semmelweis Museum Library and archives of the History of Medicine of Hungary, which is the co-ordinator of the project, the Hellenic Physical Society (Greece) and the Aberdeen City Council Strategic Leadership of United Kingdom. During the first year that the european project was conducted, the Physics Museum of the greek aegean island of Chios, in collaboration with the Second Chance School of Chios, also took part. During the academic year 2008-2009, the Second Chance School of the Koridallos Prison of Athens is also taking part. The basic ideas, the design axes and the first results of the Grundtvig project will be developed in this presentation. This european partnership creates an educational programme consisting of science-related activities (such as seminars, lectures, presentations and in situ experimental activities), and prepares appropriate educational material for lifelong science learning, using innovative teaching methodologies and the European science museums' exhibits participating in this project, by making them centres of significant cultural contribution to science and society. Using the integrated approach of astronomy teaching as the central design axe in this programme, we highlight the cultural aspects of science education. From our educational intervention we develop educational tools for astronomy suitable for distance learning and making use of new technologies. The partnership is addressed to different age groups: museum visitors, museum educators, teachers involved in adult education, adult school students, financially and socially inferior groups, the general public. It aims at promoting innovative didactic lifelong procedures of informal forms of science education, through the proper utilization of the artifacts on display of the european science museums taking part, to the utilization of teaching procedures with the use of new technologies as didactic tools, to the forming of a cultural network of collaboration and to the creation of life-long learning teaching tools, so as to furhter promote the cultural dimension of scientific knowledge. In this paper a particular reference will be done to the development of a museum educational project of astronomy at the Adults Prisoners of the Second Chance School of Koridallos Prison of Athens and to the way that we try to insert elements of museum education inside the prison's school. Our main objective is to vivify the science museums. At the same time, we intend to share our experiences and relate our various fields of educational activity, so as to participating in this project. Finally, we intend to cultivate the cultural ideals and perceptions of European citizens, through the exploration of our common cultural past, to raise the awareness in our scientific-cultural heritage and to use this heritage as a powerful unifying field for us all.
ERIC Educational Resources Information Center
Merner, Laura
2014-01-01
This report examines the representation of Hispanics among bachelor's degree recipients in the physical sciences and engineering in the US. Hispanics have been increasing their representation across the physical sciences and engineering at an outstanding rate. More broadly, from 2002-2012 there has been a significant increase in…
ERIC Educational Resources Information Center
Larkin, Douglas B.
2016-01-01
This article examines the process of shifting to a "Physics First" sequence in science course offerings in three school districts in the United States. This curricular sequence reverses the more common U.S. high school sequence of biology/chemistry/physics, and has gained substantial support in the physics education community over the…
A Framework for Understanding Physics Instruction in Secondary and College Courses
ERIC Educational Resources Information Center
Blickenstaff, Jacob Clark
2010-01-01
The continued downward spiral of enrollment in physical sciences in the USA and Europe has science educators concerned on both sides of the Atlantic. Physics has been particularly hard-hit, with the percentage of students choosing to major in the subject at the lowest level in decades. University physics has a reputation as a difficult, abstract…
Physics First: Impact on SAT Math Scores
ERIC Educational Resources Information Center
Bouma, Craig E.
2013-01-01
Improving science, technology, engineering, and mathematics (STEM) education has become a national priority and the call to modernize secondary science has been heard. A Physics First (PF) program with the curriculum sequence of physics, chemistry, and biology (PCB) driven by inquiry- and project-based learning offers a viable alternative to the…
NASA Astrophysics Data System (ADS)
Akben, Nimet
2018-05-01
The interrelationship between mathematics and science education has frequently been emphasized, and common goals and approaches have often been adopted between disciplines. Improving students' problem-solving skills in mathematics and science education has always been given special attention; however, the problem-posing approach which plays a key role in mathematics education has not been commonly utilized in science education. As a result, the purpose of this study was to better determine the effects of the problem-posing approach on students' problem-solving skills and metacognitive awareness in science education. This was a quasi-experimental based study conducted with 61 chemistry and 40 physics students; a problem-solving inventory and a metacognitive awareness inventory were administered to participants both as a pre-test and a post-test. During the 2017-2018 academic year, problem-solving activities based on the problem-posing approach were performed with the participating students during their senior year in various university chemistry and physics departments throughout the Republic of Turkey. The study results suggested that structured, semi-structured, and free problem-posing activities improve students' problem-solving skills and metacognitive awareness. These findings indicated not only the usefulness of integrating problem-posing activities into science education programs but also the need for further research into this question.
Big physics quartet win government backing
NASA Astrophysics Data System (ADS)
Banks, Michael
2014-09-01
Four major physics-based projects are among 10 to have been selected by Japan’s Ministry of Education, Culture, Sports, Science and Technology for funding in the coming decade as part of its “roadmap” of big-science projects.
"Quod Erat Demonstrandum": Understanding and Explaining Equations in Physics Teacher Education
ERIC Educational Resources Information Center
Karam, Ricardo; Krey, Olaf
2015-01-01
In physics education, equations are commonly seen as calculation tools to solve problems or as concise descriptions of experimental regularities. In physical science, however, equations often play a much more important role associated with the formulation of theories to provide explanations for physical phenomena. In order to overcome this…
Gender and Physics: Feminist Philosophy and Science Education
ERIC Educational Resources Information Center
Rolin, Kristina
2008-01-01
Physics education reform movements should pay attention to feminist analyses of gender in the culture of physics for two reasons. One reason is that feminist analyses contribute to an understanding of a "chilly climate" women encounter in many physics university departments. Another reason is that feminist analyses reveal that certain styles of…
NASA Astrophysics Data System (ADS)
Kattoula, Ehsan Habib
Recent reform efforts in science education have culminated in National Science Education Standards (NSES), which include the nature of science and science inquiry themes across all grade levels. Consideration must be given to pre-service science teachers' nature of science conceptions and their perceived roles in implementing the nature of science in the science classroom. This qualitative study investigates how pre-service science teachers' views about the nature of science develop and change when learning a college physics unit on waves in an urban university. The study uses case study methodology with four pre-service science teachers as individual units of analysis. Data regarding the participants' views about the nature of science were collected before and after the instruction on the physics of waves unit. The research design used 'The Views of Nature of Science/Views of Scientific Inquiry-Physics Questionnaire' followed by structured interviews throughout the wave unit. In addition, the participants responded to daily questions that incorporated nature of science themes and constructed concept maps regarding the physics content and their nature of science understanding. After completing the VNOS/VOSI-PHYS questionnaire the pre-service science teachers' views of the nature of science were found to be mainly naive and transitional before the instruction. At the end of the wave unit instruction, the data indicated that conceptual change occurred in participants' nature of science views, shifting toward informed views. The findings of this study provide evidence that using explicit instruction with specific activities, such as experiments and concept mapping, shifted the pre-service science teachers' views away from naive and toward informed.
Practical Work in Ireland: A Time of Reform and Debate
ERIC Educational Resources Information Center
Kennedy, Declan
2012-01-01
This paper describes and discusses the role of practical work in science education in Ireland. The 2002 report of a government Task Force on the Physical Sciences, set up to consider the problems facing the teaching of the physical sciences in second-level schools in Ireland, has resulted in rapid reform of the science curriculum at both junior…
Transforming Introductory Physics for Life Scientists: Researching the consequences for students
NASA Astrophysics Data System (ADS)
Turpen, Chandra
2011-10-01
In response to policy documents calling for dramatic changes in pre-medical and biology education [1-3], the physics and biology education research groups at the University of Maryland are rethinking how to teach physics to life science majors. As an interdisciplinary team, we are drastically reconsidering the physics topics relevant for these courses. We are designing new in-class tasks to engage students in using physical principles to explain aspects of biological phenomena where the physical principles are of consequence to the biological systems. We will present examples of such tasks as well as preliminary data on how students engage in these tasks. Lastly, we will share some barriers encountered in pursuing meaningful interdisciplinary education.[4pt] Co-authors: Edward F. Redish and Julia Svaboda [4pt] [1] National Research Council, Bio2010: Transforming Undergraduate Education for Future Research Biologists (NAP, 2003).[0pt] [2] AAMC-HHMI committee, Scientific Foundations for Future Physicians (AAMC, 2009).[0pt] [3] American Association for the Advancement of Science, Vision and Change in Undergraduate Biology Education: A Call to Action (AAAS, 2009).
Chaos: A Topic for Interdisciplinary Education in Physics
ERIC Educational Resources Information Center
Bae, Saebyok
2009-01-01
Since society and science need interdisciplinary works, the interesting topic of chaos is chosen for interdisciplinary education in physics. The educational programme contains various university-level activities such as computer simulations, chaos experiment and team projects besides ordinary teaching. According to the participants, the programme…
Integration of physics and biology: synergistic undergraduate education for the 21st century.
Woodin, Terry; Vasaly, Helen; McBride, Duncan; White, Gary
2013-06-01
This is an exciting time to be a biologist. The advances in our field and the many opportunities to expand our horizons through interaction with other disciplines are intellectually stimulating. This is as true for people tasked with helping the field move forward through support of research and education projects that serve the nation's needs as for those carrying out that research and educating the next generation of biologists. So, it is a pleasure to contribute to this edition of CBE-Life Sciences Education. This column will cover three aspects of the interactions of physics and biology as seen from the viewpoint of four members of the Division of Undergraduate Education of the National Science Foundation. The first section places the material to follow in context. The second reviews some of the many interdisciplinary physics-biology projects we support. The third highlights mechanisms available for supporting new physics-biology undergraduate education projects based on ideas that arise, focusing on those needing and warranting outside support to come to fruition.
NASA Astrophysics Data System (ADS)
van Zee, Emily H.; Jansen, Henri; Winograd, Kenneth; Crowl, Michele; Devitt, Adam
2013-06-01
The ability to listen closely, speak clearly, write coherently, read with comprehension, and to create and critique media offerings in science contexts is essential for effective science teaching. How might instructors develop such abilities in a physics course for prospective elementary and middle school teachers? We describe here such a course, involving collaboration among physics, science education, and literacy faculty members and two graduate assistants. Meeting twice a week for 10 weeks, the course emphasized questioning, predicting, exploring, observing, discussing, writing, and reading in physical science contexts. We report common themes about aspects that fostered or hindered science and literacy learning, changes in views about science teaching and learning, and positive shifts in interest in science and intended teaching practices.
NASA Astrophysics Data System (ADS)
Quinn, Helen
2016-03-01
I make a distinction between science outreach work and science education work, and my stress in this talk will be on the latter, though I have done both. Using my own career in physics and education as an example, as well as some examples of the contributions of other physicists, I will discuss the variety of ways in which scientists can contribute to science education at the pre-college level. I will argue for the need for more scientists to undertake this work as a serious professional commitment. In order to do so effectively a scientist must take the time to learn about science education and research on learning, and about how the education systems and policies that one is trying to impact function and are controlled. While working with individual teachers and/or their students provides a valuable service to those individuals, working at the State and National policy level, or with those developing curriculum materials, professional development for teachers and assessment strategies aligned to the broadly adopted Next Generation Science Standards can have much broader impacts. These standards have been adopted by over 14 states and have strongly influenced the science standards of a number of others. I will talk about my role in developing the vision of ``three-dimensional'' science education embodied in those standards, explain the fundamental components of that vision, and discuss the work that still needs to be done to realize that vision over the coming years.
NASA Astrophysics Data System (ADS)
Hilton, John Martin
This study investigates why physical therapy assistant majors engage and perform better than elementary education majors in an inquiry-based conceptual physics course at Mid-Atlantic Community College. The students from each major are demographically similar, both courses are similar in depth and structure, and each course supports the students' program. However, there is an observed difference in the levels of engagement with the curriculum and performance on writing-based assessments between the two groups. To explore possible explanations for the difference, I examine students' affinity for science, their beliefs about the nature of science and scientific knowledge in the classroom, and their perception of the usefulness of science to their program. During semi-structured interviews, students from both majors displayed nearly identical weak affinities for science, epistemological beliefs, and uncertainty about the usefulness of the class. However, the physical therapy majors' ability to see the relevance of the physics course experience to their program enhanced their interest and motivation. In contrast, the elementary education students do not see connections between the course and their program, and do not see a purpose for their learning of physics content. To improve the program, I propose a two-pronged approach - designing a faded-scaffolded-inquiry approach for both classes, and developing a field-based/seminar class for the elementary education majors. The scaffolded inquiry will help both groups develop better orientations toward lab activities, and the structured observations and reflection will help the elementary group connect the material to their program.
NASA Astrophysics Data System (ADS)
Marlina, L.; Liliasari; Tjasyono, B.; Hendayana, S.
2017-02-01
The teacher is one important factor in the provision of education in schools. Therefore, improving the quality of education means we need to enhance the quality and the professionalism of teachers. We offer a solution through education and training of junior high school science teachers in developing the instructional design of Earth and Space Sciences (IPBA). IPBA is part of the science subjects which is given to students from elementary school to college. This research is a preliminary study of junior high school science teacher professionalism in creating instructional design IPBA. Mixed method design is used to design the research. Preliminary studies conducted on junior high school science teacher in one MGMPs in South Sumatera, and the respondent are 18 teachers from 13 schools. The educational background of science teachers who teach IPBA not only from physical education but also biology and agriculture. The result of preliminary study showed that the ratio of teachers who teach IPBA are 56% from physic education, 39% from biology, and 5% from agriculture. The subjects of IPBA that considered difficult by teachers are the distribution of sun, moon, and satellite motion; specific processes in lithosphere and atmosphere; and the correlation between lithosphere and atmosphere with the environment. The teachers also face difficulty in preparing media, choosing the right methods in teaching IPBA.
ERIC Educational Resources Information Center
Rodrigues, Cae; Payne, Phillip G.
2017-01-01
'Environmentalizing' curriculum in Brazil is a worthy goal of global educational reform for sustainability but is challenging given the limits to rational change thesis already argued in critical social science and post-structural deconstructionism. The federal government mandate to environmentalize undergraduate physical education programs poses…
[Secondary Career Education Activities: Health and Physical Education.
ERIC Educational Resources Information Center
Radford City Schools, VA.
The guide is one of a series developed in a pilot project to integrate career education concepts with subject matter in secondary grades. The units are designed to reveal career orientation aspects of traditional topics within five major subject areas: English, social studies, mathematics, science, and health and physical education. The lesson…
ERIC Educational Resources Information Center
Fletcher, Tim; Bullock, Shawn M.
2012-01-01
As beginning teacher educators we aimed to examine our pedagogical approaches for engaging teacher candidates in thinking about physical literacy and scientific literacy, respectively. We employed self-study research methodologies to explore our literacy practices and developing pedagogies of teacher education, the similarities and differences in…
ERIC Educational Resources Information Center
Bachman, Nancy J.; Bischoff, Paul J.; Gallagher, Hugh; Labroo, Sunil; Schaumloffel, John C.
2008-01-01
Now in its fourth year, PR[superscript 2]EPS is a National Science Foundation funded initiative designed to recruit high school students to attend college majoring in the physical sciences, including engineering and secondary science education, and to help ensure their retention within the program until graduation. A central feature of the…
[Secondary Career Education Activities: Science.
ERIC Educational Resources Information Center
Radford City Schools, VA.
The guide is one of a series developed in a pilot project to integrate career education concepts with subject matter in secondary grades. The units are designed to reveal career orientation aspects of traditional topics within five major subject areas: English, social studies, mathematics, science, and health and physical education. The lesson…
ERIC Educational Resources Information Center
Zeitschrift fur erziehungs--und socialwissenschaftliche Forschung (Journal for Education and Social Sciences Research), 1984
1984-01-01
Recognizing a growing globalization of nations and cultures, "Zeitschrift fur erziehungs--und sozialwissenchaftliche Forschung" brings together educational and social science research topics that address the interactions between education and society in their pedagogical, social, physical, economic, legal, and administrative dimensions.…
STEM education and Fermi problems
NASA Astrophysics Data System (ADS)
Holubova, Renata
2017-01-01
One of the research areas of Physics education is the study of the educational process. Investigations in this area are aimed for example on the teaching and learning process and its results. The conception of STEM education (Science, Technology, Engineering, and Mathematics) is discussed - it is one possible approach to the preparation of the curriculum and the focus on the educational process at basic and secondary schools. At schools in the Czech Republic STEM is much more realized by the application of interdisciplinary relations between subjects Physics-Nature-Technique. In both conceptions the aim is to support pupils' creativity, critical thinking, cross-curricular links. In this context the possibility of using Fermi problems in teaching Physics was discussed (as an interdisciplinary and constructivist activity). The aim of our research was the analysis of Fermi problems solving strategies, the ability of pupils to solve Fermi problems. The outcome of our analysis was to find out methods and teaching strategies which are important to use in teaching - how to solve qualitative and interdisciplinary tasks in physics. In this paper the theoretical basis of STEM education and Fermi problems will be presented. The outcome of our findings based on the research activities will be discussed so as our experiences from 10 years of Fermi problems competition that takes place at the Science Faculty, Palacky University in Olomouc. Changes in competencies of solving tasks by our students (from the point of view in terms of modern, activating teaching methods recommended by theory of Physics education and other science subjects) will be identified.
ERIC Educational Resources Information Center
Gard, Michael
2011-01-01
My purpose in this paper is to consider the relationship between, on the one hand, critical social science and, on the other hand, existing and emerging sciences of the body. Taking my lead from the sociologist, Steve Fuller, I discuss the ways in which some social scientists, both within and outside physical education and sport, have engaged with…
ERIC Educational Resources Information Center
Chasteen, Stephanie V.; Wilcox, Bethany; Caballero, Marcos D.; Perkins, Katherine K.; Pollock, Steven J.; Wieman, Carl E.
2015-01-01
In response to the need for a scalable, institutionally supported model of educational change, the Science Education Initiative (SEI) was created as an experiment in transforming course materials and faculty practices at two institutions--University of Colorado Boulder (CU) and University of British Columbia. We find that this departmentally…
The changing face of women in physics in Ghana
NASA Astrophysics Data System (ADS)
Andam, Aba Bentil; Amponsah, Paulina Ekua; Nsiah-Akoto, Irene; Gyamfi, Kwame; Hood, Christiana Odumah
2013-03-01
Ghana is said to be the first independent sub-Saharan African country outside South Africa to promote science education and the application of science in industrial and social development. It has long been recognized that many schools' science curricula extend the extracurricular activities of boys more than those of girls. In order to bridge this gap, efforts have been made to give girls extra assistance in the learning of science by exposing them to science activities through specific camps, road shows, exhibitions, and so on. The best known of such efforts is the Science, Technology, and Mathematics Education (STME) camps and clinics for girls, which started in Ghana 23 years ago. Since our attendance at the Third International Conference on Women in Physics in Seoul, Korea, a lot has been achieved to further improve female science education, and this credit goes to STME. The first female nuclear engineer from Ghana graduated from the University of Ghana in March 2010.
Inquiry-Based Practical Work in Physical Sciences: Equitable Access and Social Justice Issues
ERIC Educational Resources Information Center
Tsakeni, Maria
2018-01-01
Physical sciences education comes with high expectations for learners to be successfully placed in tertiary institutions in related fields, and developing countries' aspirations to develop advanced and specialised skills to drive economies. However, some of the prevailing instructional strategies in science classrooms work to marginalise learners.…
Teaching with Socio-Scientific Issues in Physical Science: Teacher and Students' Experiences
ERIC Educational Resources Information Center
Talens, Joy
2016-01-01
Socio-scientific issues (SSI) are recommended by many science educators worldwide for learners to acquire first hand experience to apply what they learned in class. This investigated experiences of teacher-researcher and students in using SSI in Physical Science, Second Semester, School Year 2012-2013. Latest and controversial news articles on…
Nuclear Science Outreach in the World Year of Physics
NASA Astrophysics Data System (ADS)
McMahan, Margaret
2006-04-01
The ability of scientists to articulate the importance and value of their research has become increasingly important in the present climate of declining budgets, and this is most critical in the field of nuclear science ,where researchers must fight an uphill battle against negative public perception. Yet nuclear science encompasses important technical and societal issues that should be of primary interest to informed citizens, and the need for scientists trained in nuclear techniques are important for many applications in nuclear medicine, national security and future energy sources. The NSAC Education Subcommittee Report [1] identified the need for a nationally coordinated effort in nuclear science outreach, naming as its first recommendation that `the highest priority for new investment in education be the creation by the DOE and NSF of a Center for Nuclear Science Outreach'. This talk will review the present status of public outreach in nuclear science and highlight some specific efforts that have taken place during the World Year of Physics. [1] Education in Nuclear Science: A Status Report and Recommendations for the Beginning of the 21^st Century, A Report of the DOE/NSF Nuclear Science Advisory Committee Subcommittee on Education, November 2004, http://www.sc.doe.gov/henp/np/nsac/docs/NSACCReducationreportfinal.pdf.
Promoting Pre-college Science Education
NASA Astrophysics Data System (ADS)
Taylor, P. L.; Lee, R. L.
2000-10-01
The Fusion Education Program, with continued support from DOE, has strengthened its interactions with educators in promoting pre-college science education for students. Projects aggressively pursued this year include an on-site, college credited, laboratory-based 10-day educator workshop on plasma and fusion science; completion of `Starpower', a fusion power plant simulation on interactive CD; expansion of scientist visits to classrooms; broadened participation in an internet-based science olympiad; and enhancements to the tours of the DIII-D Facility. In the workshop, twelve teachers used bench top devices to explore basic plasma physics. Also included were radiation experiments, computer aided drafting, techniques to integrate fusion science and technology in the classroom, and visits to a University Physics lab and the San Diego Supercomputer Center. Our ``Scientist in a Classroom'' program reached more than 2200 students at 20 schools. Our `Starpower' CD allows a range of interactive learning from the effects of electric and magnetic fields on charged particles to operation of a Tokamak-based power plant. Continuing tours of the DIII-D facility were attended by more than 800 students this past year.
Mission leverage education: NSU/NASA innovative undergraduate model
NASA Technical Reports Server (NTRS)
Chaudhury, S. Raj; Shaw, Paula R. D.
2005-01-01
The BEST Lab (Center for Excellence in Science Education), the Center for Materials Research (CMR), and the Chemistry, Mathematics, Physics, and Computer Science (CS) Departments at Norfolk State University (NSU) joined forces to implement MiLEN(2) IUM - an innovative approach tu integrate current and emerging research into the undergraduate curricula and train students on NASA-related fields. An Earth Observing System (EOS) mission was simulated where students are educated and trained in many aspects of Remote Sensing: detector physics and spectroscopy; signal processing; data conditioning, analysis, visualization; and atmospheric science. This model and its continued impact is expected to significantly enhance the quality of the Mathematics, Science, Engineering and Technology (MSET or SMET) educational experience and to inspire students from historically underrepresented groups to pursue careers in NASA-related fields. MiLEN(2) IUM will be applicable to other higher education institutions that are willing to make the commitment to this endeavor in terms of faculty interest and space.
NASA Astrophysics Data System (ADS)
Remskar, Maja; Gunde, Marta Klanjsek; Zeleznik, Nadja; Kralj, Veronika Iglic; Janzekovic, Helena; Gomboc, Andreja
2013-03-01
Slovenian female physicists have been organized in the "Neformalna Mreža Slovenskih Fizičark" (Informal Network of Female Physicists) since 2002. The network incorporates more than 120 women working in research, academia, government, and industry. In the last three years we have been active in promoting physics among young girls, educating the public on progress in nuclear science for peaceful use, public discussion on the situation of women in science, and distribution of the book Fizika, Moj Poklic (Physics, My Profession), published in 2007. We have a representative on the National Commission of Women in Science at the Ministry of Higher Education, Science and Technology. In the Commission we proposed a research survey with gender sensitivity on the current situation of researchers with PhD degrees, which was performed in 2010. Here we present the main results of this survey for respondents of both genders working in the natural sciences.
Philosophy of Science and Education
NASA Astrophysics Data System (ADS)
Jung, Walter
2012-08-01
This is a vast and vague topic. In order to do justice to it one has to write a book or maybe more than one. For it can be understood in quite different ways and on different levels For example you may think mainly of the historical aspect, that is how philosophy of science developed in the last hundred or so years and how its influence on education changed; you may think of quite different schools of philosophy, from Marxist or positivist to such exotic but at some places influential philosophic positions like that of Rudolph Steiner; of course, you may limit the subject to special fields like epistemology, theory of scientific methodology, or, what has become fashionable recently, sociology of knowledge which may have a considerable bearing on physics teaching (Collins and Shapin 1983; Jung 1985). Again we may think of the topic treated by a philosopher, a scientist, an educationalist, a teacher, which would mean quite a difference. I am trying here to speak as an educationalist, with the physics teacher in mind: this is my vocational perspective as someone who educates physics teachers. Of course, our main concern is the contribution of science, especially physics, to general education, which integrates many of the special topics mentioned. Philosophy of science comes in because it is not at all clear what science and physics is, and what of it should be taught, and how such chosen parts should be taught. I also take this opportunity to give an idea of the longstanding tradition of this discussion in Germany, connected with names like Wagenshein, Litt, Heisenberg and many others.
NASA Astrophysics Data System (ADS)
Lopez, Ramon E.
1997-03-01
This paper summarizes the conference presentations that specifically dealt with the role of the physics department in education of teachers, both before they begin teaching (pre-service) and during their careers (in-service). These presentations in general reflected a consensus that, as in the case of other students, instruction in pre-service and in-service courses should employ more active engagement techniques, both to improve student understanding and to model effective instruction, and that the appropriate use of technology can be a powerful aid to that end. Improvements made in standard introductory physics courses will impact most future secondary science teachers who, by and large, will have science degrees or take a significant amount of science courses. However, pre-service elementary teachers take few science courses and are often science phobic. This population represents the vast bulk of teachers who, if they have a good understanding of basic science, can engage children at the ages when they are most curious. Physics departments can play a valuable role in stimulating and sustaining reform of pre-college science teaching by being more involved in providing effective and appropriate instruction and models for inquiry to current and future elementary and secondary teachers.
ERIC Educational Resources Information Center
Prange, W. Werner; Bellinghausen, Carol R.
A directory of college television courseware lists offerings in curriculum areas such as: social sciences, biology, black studies, business, mathematics, sciences, computer science, consumer protection, creative arts, drug education, ecology, engineering, humanities, physics, nursing, nutrition, religion, and vocational education, etc. Each course…
Science 101: An Integrated, Inquiry-Oriented Science Course for Education Majors
ERIC Educational Resources Information Center
Edgcomb, Michelle; Britner, Shari L.; McConnaughay, Kelly; Wolffe, Robert
2008-01-01
Science 101 was designed by a multidisciplinary, multi-institutional team, with leadership from the Departments of Biology and Teacher Education, and participation by faculty in the Departments of Chemistry, Physics, and Mathematics, the College of Engineering, and master teachers from school districts in the state of Illinois. Their goal was to…
Empathy in Future Teachers of the Pedagogical and Technological University of Colombia
ERIC Educational Resources Information Center
Herrera Torres, Lucía; Buitrago Bonilla, Rafael Enrique; Avila Moreno, Aida Karina
2016-01-01
This study analyzes cognitive and emotional empathy in students who started their training at the Education Science Faculty of the Pedagogical and Technological University of Colombia. The sample was formed by 317 students enrolled in the study programs of Preschool, Plastic Arts, Natural Sciences, Physical Education, Philosophy, Computer Science,…
Predictors of Student Success in Entry-Level Science Courses
ERIC Educational Resources Information Center
Singh, Mamta K.
2009-01-01
Although the educational evaluation process is useful and valuable and is supported by the Higher Education Act, a strong research base for program evaluation of college entry-level science courses is still lacking. Studies in science disciplines such as, biology, chemistry, and physics have addressed various affective and demographic factors and…
Critical Thinking in Physical Geography: Linking Concepts of Content and Applicability
ERIC Educational Resources Information Center
Wolf, Joy; Stanton, Michael; Gellott, Laura
2010-01-01
This study investigates critical thinking in a Physical Geography course and illustrates how students can understand physical geography in the context of their world. As a general education science course, most students are in non-science disciplines and feel disconnected from the material. By using exercises that challenge learning and concept…
A Seven-Year Longitudinal Study of the Research Outcomes for the CASPER Physics Circus
NASA Astrophysics Data System (ADS)
Carmona-Reyes, Jorge; Land-Zandstra, Anna; Stark, Gary; Tarman, Lisa; Menefee, Matt; Wang, Li; Cook, Mike; Schmoke, Jimmy; Matthews, Lorin; Hyde, Truell
2014-10-01
The CASPER Physics Circus was specifically designed to increase student interest in science, technology, engineering and mathematics (STEM) careers where the current generation of scientists and engineers is rapidly approaching retirement age. The Physics Circus followed Waco and LaVega ISD students starting in the sixth grade and ending in the twelfth grade with this cohort group attending the Physics Circus event on the Baylor University campus, interacting with CASPER graduate students and participating in hands-on instructional activities. The event was designed as an informal learning environment intervention and operated under the discovery, project and guided-inquiry base framework wrapped in a learner-center ideology. Participating students were allowed to experiment with hands-on manipulatives while interacting with physicists, science educators and graduate students in both STEM and science education fields. Professional Development was also a part of the Physics Circus for all science teachers within the cohort. This paper presents the results of a seven-year longitudinal study on the Physics Circus and presents future plans to expand the program's effectiveness and impact.
NASA Astrophysics Data System (ADS)
Seeley, Lane
2008-05-01
The United States faces a critical shortage of qualified physics and physical science teachers. The number of high school students taking physics is increasing but the number of physics majors pursuing careers in pre-college teaching is not nearly sufficient to meet the demand. College and university physics departments have content expertise and ready access to potential future teachers of physics. In order to address the crisis in physics and physical science education, APS, AAPT, and AIP have developed the PhysTEC project. Seattle Pacific University is one of six fully funded PhysTEC sites. The PhysTEC project also supports a coalition of more than one hundred institutions that are committed to improving K-12 physics and physical science education. This talk will describe the national PhysTEC project along with our local PhysTEC program. We will explore ways in which physics departments can more fully integrate the preparation of pre-college physics teachers within existing departmental priorities. We will discuss opportunities for regional partnerships between 2-year and 4-year colleges, school districts, and teacher preparation programs. We will also highlight ways in which our research on the learning and teaching of physics informs the development of tools that teachers and teacher educators can use to diagnose student ideas and to design subsequent instruction that capitalizes on these ideas. In collaboration with Stamatis Vokos, Seattle Pacific University and Pam Kraus, Facet Innovations LLC.
ERIC Educational Resources Information Center
Oon, Pey-Tee; Subramaniam, R.
2015-01-01
This study explored an under-researched area in science education--the university programmes preferred by high school students who take physical science subjects and the reasons that matter in their preferences. A total of 1,071 upper secondary and pre-university students in Singapore, who take physical science subjects among their range of…
ERIC Educational Resources Information Center
de Berg, Kevin Charles
2014-01-01
Physical Chemistry's birth was fraught with controversy, a controversy about electrolyte solution chemistry which has much to say about how scientific knowledge originates, matures, and responds to challenges. This has direct implications for the way our students are educated in physical chemistry in particular and science in general. The…
NASA Astrophysics Data System (ADS)
Chasteen, Stephanie V.; Wilcox, Bethany; Caballero, Marcos D.; Perkins, Katherine K.; Pollock, Steven J.; Wieman, Carl E.
2015-12-01
[This paper is part of the Focused Collection on Upper Division Physics Courses.] In response to the need for a scalable, institutionally supported model of educational change, the Science Education Initiative (SEI) was created as an experiment in transforming course materials and faculty practices at two institutions—University of Colorado Boulder (CU) and University of British Columbia. We find that this departmentally focused model of change, which includes an explicit focus on course transformation as supported by a discipline-based postdoctoral education specialist, was generally effective in impacting courses and faculty across the institution. In CU's Department of Physics, the SEI effort focused primarily on upper-division courses, creating high-quality course materials, approaches, and assessments, and demonstrating an impact on student learning. We argue that the SEI implementation in the CU Physics Department, as compared to that in other departments, achieved more extensive impacts on specific course materials, and high-quality assessments, due to guidance by the physics education research group—but with more limited impact on the departmental faculty as a whole. We review the process and progress of the SEI Physics at CU and reflect on lessons learned in the CU Physics Department in particular. These results are useful in considering both institutional and faculty-led models of change and course transformation.
NASA Astrophysics Data System (ADS)
Koc, Isil
The present study was conducted to investigate the extent to which preservice elementary teachers held alternative conceptions in fundamental elementary science concepts from earth/space science, life science, and physical science along with their self-efficacy beliefs about science teaching and to determine the relationship between these two issues. Eighty-six preservice elementary education majors enrolled in the four sections of the course titled "07E:162 Methods Elementary School Science" offered in the Science Education Center, College of Education, the University of Iowa during the 2005-2006 academic year participated in this study. Twelve preservice elementary teachers participated in follow-up interviews. Data were collected through the use of Alternative Conceptions in Science Instrument constructed by Schoon and Boone (1998), Science Teaching Efficacy Belief Instrument (STEBI-B) constructed by Enochs and Riggs (1990), a participant information form, and through utilization of interviews. The results from the alternative conception instrument indicated that the majority of preservice elementary teachers held a number of alternative conceptions with most being in the physical sciences followed by earth/space, and then life science. Various sources of alternative conceptions emerged during the interview sessions. Participants mainly cited science teachers, science textbooks, and previous science experiences as sources of their alternative conceptions. On the other hand, the analysis of the self-efficacy instrument and follow-up interviews revealed generally positive self-efficacy beliefs. Findings from the study also confirmed that science courses completed in high school and college do not seem to have influenced participants' number and types of alternative conceptions regarding earth/space science, life science, and physical science and self-efficacy beliefs about science teaching. The results also indicate that participants with the lowest number of alternative conceptions regarding earth/space science, physical science, and life science have a relatively high personal science teaching efficacy. Overall, the results of the study regarding self-efficacy beliefs propose that consideration be given to identification and modification of preservice elementary teachers' science alternative conceptions if they are expected to teach science effectively.
Factors that encourage females to pursue physical science careers: Testing five common hypotheses
NASA Astrophysics Data System (ADS)
Hazari, Zahra; Potvin, Geoff; Lock, Robynne M.; Lung, Florin; Sadler, Philip M.; Sonnert, Gerhard
2012-03-01
There are many hypotheses regarding factors that may encourage female students to pursue careers in the physical sciences. Using Propensity Score Matching (PSM) on national data (n=7505) drawn from the Persistence Research in Science and Engineering (PRiSE) project, we test five commonly held beliefs including having a single-sex physics class, having a female physics teacher, having female scientist guest speakers in physics class, discussing the work of women scientists in physics class, and discussing the under-representation of women in physics class. The effect of these experiences is compared for female students who are matched on several factors, including parental education, prior science/math interests, and academic background, thereby controlling for the effect of many confounding variables.
ERIC Educational Resources Information Center
Summerfield, Liane, Ed.
The information systems/centers listed in this guide are organized into the following five sections according to their area of concentration: (1) Education/Special Education; (2) the Sciences; (3) Physical Education, Recreation, and Related Areas; (4) Products and Services for Handicapped Consumers; and (5) Other. The systems and centers have also…
ERIC Educational Resources Information Center
Reeves, Todd D.; Marbach-Ad, Gili
2016-01-01
Most discipline-based education researchers (DBERs) were formally trained in the methods of scientific disciplines such as biology, chemistry, and physics, rather than social science disciplines such as psychology and education. As a result, DBERs may have never taken specific courses in the social science research methodology--either quantitative…
ERIC Educational Resources Information Center
Stewart, Phillip Michael, Jr.
2013-01-01
Games in science education is emerging as a popular topic of scholarly inquiry. The National Research Council recently published a report detailing a research agenda for games and science education entitled "Learning Science Through Computer Games and Simulations" (2011). The report recommends moving beyond typical proof-of-concept…
ERIC Educational Resources Information Center
Crane, Jean; Rains, Annette
1996-01-01
Presents six curriculum guides for art, physical education, reading/language arts, science, and social studies. Each guide identifies library media skills objectives; curriculum objectives; grade levels; print and nonprint resources; instructional roles; the activity; and procedures for completion, evaluation, and follow-up activities. (AEF)
ERIC Educational Resources Information Center
Morse, Margaret; And Others
The appendix to the report of the minimum objective system of the Hinesburg Elementary School (Vermont) includes objectives for science, physical education, music, and library skills, from the kindergarten through grade 6 levels. Most objectives are presented in the format of condition (or task), student behavior, and criteria. Also included are…
NASA Technical Reports Server (NTRS)
2004-01-01
The session "Engaging K-12 Educators, Students, and the General Public in Space Science Exploration" included the following reports:Training Informal Educators Provides Leverage for Space Science Education and Public Outreach; Teacher Leaders in Research Based Science Education: K-12 Teacher Retention, Renewal, and Involvement in Professional Science; Telling the Tale of Two Deserts: Teacher Training and Utilization of a New Standards-based, Bilingual E/PO Product; Lindstrom M. M. Tobola K. W. Stocco K. Henry M. Allen J. S. McReynolds J. Porter T. T. Veile J. Space Rocks Tell Their Secrets: Space Science Applications of Physics and Chemistry for High School and College Classes -- Update; Utilizing Mars Data in Education: Delivering Standards-based Content by Exposing Educators and Students to Authentic Scientific Opportunities and Curriculum; K. E. Little Elementary School and the Young Astronaut Robotics Program; Integrated Solar System Exploration Education and Public Outreach: Theme, Products and Activities; and Online Access to the NEAR Image Collection: A Resource for Educators and Scientists.
Engagement with physics across diverse festival audiences
NASA Astrophysics Data System (ADS)
Roche, Joseph; Stanley, Jessica; Davis, Nicola
2016-07-01
Science shows provide a method of introducing large public audiences to physics concepts in a nonformal learning environment. While these shows have the potential to provide novel means of educational engagement, it is often difficult to measure that engagement. We present a method of producing an interactive physics show that seeks to provide effective and measurable audience engagement. We share our results from piloting this method at a leading music and arts festival as well as a science festival. This method also facilitated the collection of opinions and feedback directly from the audience which helps explore the benefits and limitations of this type of nonformal engagement in physics education.
ERIC Educational Resources Information Center
Rentzos, Ioannis
2005-01-01
The contents of the Greek magazine "Physicos Cosmos" include science popularization, teaching proposals, and issues of educational concern. The magazine is addressed to teachers of physics and, consequently, to grammar-school pupils/students. Its articles ranged, in general, from short texts taken from physical sciences to more specialized…
The Role of Humor in Learning Physics: A Study of Undergraduate Students
ERIC Educational Resources Information Center
Berge, Maria
2017-01-01
We all know that they do it, but what do students laugh "about" when learning science together? Although research has shown that students do use humor when they learn science, the role of humor in science education has received little attention. In this study, undergraduate students' laughter during collaborative work in physics has been…
ERIC Educational Resources Information Center
Sadler, Philip M.; Sonnert, Gerhard; Coyle, Harold P.; Cook-Smith, Nancy; Miller, Jaimie L.
2013-01-01
This study examines the relationship between teacher knowledge and student learning for 9,556 students of 181 middle school physical science teachers. Assessment instruments based on the National Science Education Standards with 20 items in common were administered several times during the school year to both students and their teachers. For items…
ERIC Educational Resources Information Center
Ennis, Catherine D.
2007-01-01
The author discusses a line of research examining the acquisition, organization, and use of knowledge associated with conceptual change in which she is engaged at the University of Maryland. It builds on foundational research by scholars in science, mathematics, and reading education as well as in motor learning and physical education pedagogy,…
The Important Role of Physics in Industry and Economic Development
NASA Astrophysics Data System (ADS)
Alvarado, Igor
2012-10-01
Good Physics requires good education. Good education translates into good Physics professionals. The process starts early with Science, Technology, Engineering and Mathematics (STEM) education programs for Middle and High-School students. Then it continues with competitive higher education programs (2 years and 4 years) at colleges and universities designed to satisfy the needs of industry and academia. The research work conducted by graduate students in Physics (and Engineering Physics) frequently translates into new discoveries and innovations that have direct impact in society (e.g. Proton Cancer Therapy). Some of the major and largest scientific experiments in the world today are physics-centered (e.g. Large Hadron Collider-LHC) that generate employment and business opportunities for thousands of scientists, academic research groups and companies from around the world. New superconducting magnets and advanced materials that have resulted from previous research in physics are commonly used in these extreme experiments. But not all physicists will end up working at these large high-energy physics experiments, universities or National Laboratories (e.g. Fermilab); industry requires new generations of (industrial) physicists in such sectors as semiconductor, energy, space, life sciences, defense and advanced manufacturing. This work presents an industry perspective about the role of Physics in economic development and the need for a collaborative Academic-Industry approach for a more effective translational research. A series of examples will be presented with emphasis in the measurement, control, diagnostics and computing capabilities needed to translate the science (physics) into innovations and practical solutions that can benefit society as a whole.
Teaching the history of science in physics classrooms—the story of the neutrino
NASA Astrophysics Data System (ADS)
Demirci, Neset
2016-07-01
Because there is little connection between physics concepts and real life, most students find physics very difficult. In this frontline I have provided a timely link of the historical development using the basic story of neutrino physics and integrated this into introductory modern physics courses in high schools or in higher education. In this way an instructor may be able to build on students’ curiosity in order to enhance the curriculum with some remarkable new physics. Using the history of science in the classroom shapes and improves students’ views and knowledge of the nature of science and increase students’ interest in physics.
Russell Hulse, the First Binary Pulsar, and Science Education
physics research. In 1977, Hulse changed fields from astrophysics to plasma physics and joined the Plasma discoverer of the first binary pulsar and co-recipient of the 1993 Nobel Prize in physics, will affiliate with The University of Texas at Dallas (UTD) as a visiting professor of physics and of science and math
NASA Astrophysics Data System (ADS)
Urquhart, M. L.; Hairston, M.
2008-12-01
As with all NASA missions, the Coupled Ion Neutral Dynamics Investigation (CINDI) is required to have an education and public outreach program (E/PO). Through our partnership between the University of Texas at Dallas William B. Hanson Center for Space Sciences and Department of Science/Mathematics Education, the decision was made early on to design our educational outreach around the needs of teachers. In the era of high-stakes testing and No Child Left Behind, materials that do not meet the content and process standards teachers must teach cannot be expected to be integrated into classroom instruction. Science standards, both state and National, were the fundamental drivers behind the designs of our curricular materials, professional development opportunities for teachers, our target grade levels, and even our popular informal educational resource, the "Cindi in Space" comic book. The National Science Education Standards include much more than content standards, and our E/PO program was designed with this knowledge in mind as well. In our presentation we will describe how we came to our approach for CINDI E/PO, and how we have been successful in our efforts to have CINDI materials and key concepts make the transition into middle school classrooms. We will also present on our newest materials and high school physics students and professional development for their teachers.
NASA Astrophysics Data System (ADS)
Tai, Robert H.
Current science educational practice is coming under heavy criticism based on the dismaying results of the Third International Mathematics and Science Study of 1998, the latest in a series of large scale surveys; and from research showing the appallingly low representation of females in science-related fields. These critical evaluations serve to draw attention to science literacy in general and lack of persistence among females in particular, two issues that relate closely to the "preparation for future study" goal held by many high school science teachers. In other words, these teachers often seek to promote future success and to prevent future failure in their students' academic careers. This thesis studies the connection between the teaching practices recommended by reformers and researchers for high school teachers, and their students' subsequent college physics performance. The teaching practices studied were: laboratory experiences, class discussion experiences, content coverage, and reliance on textbooks. This study analyzed a survey of 1500 students from 16 different lecture-format college physics courses at 14 different universities. Using hierarchical linear modeling, this study accounted for course-level variables (Calculus-based/Non-calculus course type, professor's gender, and university selectivity). This study controlled for the student's parents education, high school science/mathematics achievement, high school calculus background, and racial background. In addition, the interactions between gender and both pedagogical/curricular and course-level variables were analyzed. The results indicated that teaching fewer topics in greater depth in high school physics appeared to be helpful to college physics students. An interaction between college course type and content coverage showed that students in Calculus-based physics reaped even greater benefits from a depth-oriented curriculum. Also students with fewer labs per month in high school physics appeared to perform better in college physics than did students with many more labs per month. The only significant interaction was between gender and Calculus-based/Non-calculus college course type. Females appeared to do better on average than their males counterparts in Non-calculus physics, but this trend is clearly reversed for Calculus-based physics. This is a disturbing result for educators who have worked to promote persistence among women in engineering and science research. Recommendations are included for high school physics teachers, students and their parents, and college physics instructors.
76 FR 43673 - Renewal of Department of Defense Federal Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-21
... environmental sciences, education, research management, international and security affairs, health physics, health sciences, or social sciences, with due regard given to the equitable representation of scientists...
2012 National Survey of Science and Mathematics Education: Status of High School Physics
ERIC Educational Resources Information Center
Banilower, Eric R.
2013-01-01
The 2012 National Survey of Science and Mathematics Education was designed to provide up-to-date information and to identify trends in the areas of teacher background and experience, curriculum and instruction, and the availability and use of instructional resources. A total of 7,752 science and mathematics teachers in schools across the United…
ERIC Educational Resources Information Center
Dabney, Katherine Patricia Traudel
2012-01-01
Science, technology, engineering, and mathematics (STEM) education has become a critical focus in the United States due to economic concerns and public policy (National Academy of Sciences, 2007; U.S. Department of Education, 2006). Part of this focus has been an emphasis on encouraging and evaluating career choice and persistence factors among…
ERIC Educational Resources Information Center
MacLeod, Katarin
2014-01-01
Science, Technology, Society and Environment (STSE) education has received attention in educational research, policy, and science curricula development, yet less advancement has been made in moving theory into practice. There are many examples of STSE-based teaching in science at the elementary and secondary levels, yet little has focused…
ERIC Educational Resources Information Center
Przybylla, Mareen; Romeike, Ralf
2014-01-01
Physical computing covers the design and realization of interactive objects and installations and allows students to develop concrete, tangible products of the real world, which arise from the learners' imagination. This can be used in computer science education to provide students with interesting and motivating access to the different topic…
Are Grades 10-12 Physical Sciences Teachers Equipped to Teach Physics?
ERIC Educational Resources Information Center
Basson, Ilsa; Kriek, Jeanne
2012-01-01
South African schools have been confronted with educational reform since the mid-nineties and the process is still continuing. The concomitant changes put a very high demand on physical sciences teachers and also have an impact on teacher behaviour. The purpose of this study was to probe whether teachers could be considered equipped to teach the…
NASA Astrophysics Data System (ADS)
President Ronald Reagan has announced his intention to nominate Richard S. Nicholson as assistant director of the National Science Foundation (NSF) for mathematical and physical sciences. Nicholson has been acting deputy director and staff director of NSF since 1983.A research chemist by training, Nicholson was an associate professor of chemistry at Michigan State University before joining NSF in 1970. He served in a number of capacities at NSF, including executive director of the National Science Board commission on precollege education in mathematics, science, and technology, deputy assistant director for the mathematical and physical sciences, and senior planning officer for mathematical and physical sciences. The nomination is subject to Senate confirmation.
Physical and virtual laboratories in science and engineering education.
de Jong, Ton; Linn, Marcia C; Zacharia, Zacharias C
2013-04-19
The world needs young people who are skillful in and enthusiastic about science and who view science as their future career field. Ensuring that we will have such young people requires initiatives that engage students in interesting and motivating science experiences. Today, students can investigate scientific phenomena using the tools, data collection techniques, models, and theories of science in physical laboratories that support interactions with the material world or in virtual laboratories that take advantage of simulations. Here, we review a selection of the literature to contrast the value of physical and virtual investigations and to offer recommendations for combining the two to strengthen science learning.
Normal Science Education and Its Dangers: The Case of School Chemistry.
ERIC Educational Resources Information Center
Van Berkel, Berry; De Vos, Wobbe; Verdonk, Adri H.; Pilot, Albert
2000-01-01
Attempts to solve the problem of hidden structure in school chemistry. Argues that normal chemistry education is isolated from common sense, everyday life and society, the history and philosophy of science, technology, school physics, and chemical research. (Author/CCM)
The Crisis in High-School Physics Education: Overview of the Problem.
ERIC Educational Resources Information Center
Layman, John W.
1983-01-01
Discusses the current crisis in science education, focusing on declining physics enrollments and physics teacher shortages. Indicates that the present situation is the culmination of a long trend, interrupted only weakly in the sputnik era, and that the state of the economy may provide a new context for examining the issues. (JN)
Physical Attacks: An Analysis of Teacher Characteristics Using the Schools and Staffing Survey
ERIC Educational Resources Information Center
Williams, Thomas O., Jr.; Ernst, Jeremy V.
2016-01-01
This study investigated physical attacks as reported by public school teachers on the most recent Schools and Staffing Survey (SASS) from the National Center for Education Statistics administered by the Institute of Educational Sciences. For this study, characteristics of teachers who responded affirmatively to having been physically attacked in…
Exploring Sun-Earth Connections: A Physical Science Program for (K-8)Teachers
NASA Astrophysics Data System (ADS)
Michels, D. J.; Pickert, S. M.; Thompson, J. L.; Montrose, C. J.
2003-12-01
An experimental, inquiry-based physical science curriculum for undergraduate, pre-service K-8 teachers is under development at the Catholic University of America in collaboration with the Solar Physics Branch of the Naval Research Laboratory and NASA's Sun-Earth Connection missions. This is a progress report. The current, stunningly successful exploratory phase in Sun-Earth Connection (SEC) physics, sparked by SOHO, Yohkoh, TRACE, and other International Solar Terrestrial Physics (ISTP) and Living With a Star (LWS) programs, has provided dynamic, visually intuitive data that can be used for teaching basic physical concepts such as the properties of gravitational and electromagnetic fields which are manifest in beautiful imagery of the astrophysical plasmas of the solar atmosphere and Earth's auroras. Through a team approach capitalizing on the combined expertise of the Catholic University's departments of Education and Physics and of NRL solar researchers deeply involved in SEC missions we have laid out a program that will teach non-science-major undergraduates a very limited number of physical science concepts but in such a way as to develop for each one both a formal understanding and an intuitive grasp that will instill confidence, spark interest and scientific curiosity and, ideally, inspire a habit of lifetime inquiry and professional growth. A three-semester sequence is planned. The first semester will be required of incoming Education freshmen. The second and third semesters will be of such a level as to satisfy the one-year science requirement for non-science majors in the College of Arts and Sciences. The approach as adopted will integrate physics content and educational methods, with each concept introduced through inquiry-based, hands-on investigation using methods and materials directly applicable to K-8 teaching situations (Exploration Phase). The topic is further developed through discussion, demonstration and lecture, introducing such mathematical formulations as are necessary to express the concept clearly (Invention Phase). To further clarify the concept, exercises will be carried out using Web-accessible SEC mission data to develop facility in use of the mathematical formulations, stimulate a sense of participation in ongoing research, and expand on ways to introduce future pupils to the excitement of real-world exploration (Expansion Phase).
NASA Astrophysics Data System (ADS)
2011-07-01
WE RECOMMEND Fun Fly Stick Science Kit Fun fly stick introduces electrostatics to youngsters Special Relativity Text makes a useful addition to the study of relativity as an undergraduate LabVIEWTM 2009 Education Edition LabVIEW sets industry standard for gathering and analysing data, signal processing, instrumentation design and control, and automation and robotics Edison and Ford Winter Estates Thomas Edison's home is open to the public The Computer History Museum Take a walk through technology history at this computer museum WORTH A LOOK Fast Car Physics Book races through physics Beautiful Invisible The main subject of this book is theoretical physics Quantum Theory Cannot Hurt You A guide to physics on the large and small scale Chaos: The Science of Predictable Random Motion Book explores the mathematics behind chaotic behaviour Seven Wonders of the Universe A textual trip through the wonderful universe HANDLE WITH CARE Marie Curie: A Biography Book fails to capture Curie's science WEB WATCH Web clips to liven up science lessons
Promoting Physical Activity and Science Learning in an Outdoor Education Program
ERIC Educational Resources Information Center
Finn, Kevin E.; Yan, Zi; McInnis, Kyle J.
2018-01-01
Outdoor education programs have been shown to have a positive effect on the educational, physical and emotional development of youth. They are increasingly being used to foster a sense of community in schools and to provide students with learning opportunities related to the environment. This article describes an integrated outdoor education…
"Reverse Engineering" in Introductory Physics Education
ERIC Educational Resources Information Center
Badraslioglu, Duruhan
2016-01-01
One of the intermediate goals of STEM education has been turning our students into problem solvers and critical thinkers who are equipped with better scientific analysis skills. In light of this initiative, it is imperative that we, the educators, modify the way we teach classic introductory physics topics, and in the long run all sciences, and…
ERIC Educational Resources Information Center
Dresselhaus, Mildred S.
A number of problems exist in society which require the cooperation of physical and social scientists. One of these problems is the current crisis in science education. There are several aspects to this problem, including the declining interest of students in math and science at a time when functioning in our society requires more, not less,…
NASA Astrophysics Data System (ADS)
Hoffman, Michelle Diane
This thesis is a history of science education reform in Ontario, from 1880 to 1940. It examines successive eras of science education reform in secondary (pre-university) schools, including the rise of laboratory science; the spread of general science programs; and efforts to teach science "humanistically." This research considers the rhetorical strategies employed by scientists and educators to persuade educational policymakers and the public about the value and purpose of science education. Their efforts hinged in large part on building a moral framework for school science, which they promoted an essential stimulus to students' mental development and a check on the emotive influence of literature and the arts. These developments are placed in international context by examining how educational movements conceived in other places, especially the United States and Britain, were filtered and transformed in the distinct educational context of Ontario. Finally, the sometimes-blurry boundaries between "academic" science education and technical education are explored, most notably in Ontario in the late nineteenth century, when science education was undergoing a rapid, driven expansion in the province's high schools. This research contributes to a relatively recent body of literature that promotes a greater appreciation of pre-college science education -- an area that has often been overlooked in favour of higher education and the training of specialists -- as an important window onto the public perception of science.
Cognitive Science: Problem Solving And Learning For Physics Education
NASA Astrophysics Data System (ADS)
Ross, Brian H.
2007-11-01
Cognitive Science has focused on general principles of problem solving and learning that might be relevant for physics education research. This paper examines three selected issues that have relevance for the difficulty of transfer in problem solving domains: specialized systems of memory and reasoning, the importance of content in thinking, and a characterization of memory retrieval in problem solving. In addition, references to these issues are provided to allow the interested researcher entries to the literatures.
NASA Astrophysics Data System (ADS)
McCaughey, J.; Chong, E.
2011-12-01
Singapore has a long tradition of geography education at the secondary and Junior College levels (ages 12-18). Although most geography teachers teach both human and physical geography, many of them have received more extensive university training in human geography. The Earth Obervatory of Singapore (EOS), a newly established research institute at Nanyang Technological University (NTU), is building an education and outreach program to integrate its research across formal and informal education. We are collaborating with the Singapore Ministry of Education to enhance the earth-science content and inquiry basis of physical geography education in Singapore classrooms. EOS is providing input to national curriculum, textbook materials, and teaching resources, as well as providing inquiry-based field seminars and workshops for inservice teachers. An upcoming 5-year "Our Dynamic Earth" exhibit at the Science Centre Singapore will be a centerpoint of outreach to younger students, their teachers and parents, and to the community at large. On a longer time scale, the upcoming undergraduate program in earth science at NTU, the first of its kind in Singapore, will provide a stream of earth scientists into the geography teaching workforce. Developing ties between EOS and the National Institute of Education will further enhance teacher training. With a highly centralized curriculum, small land area, high-performing student population, and key stakeholders eager to collaborate with EOS, Singapore presents an unusual opportunity to impact classrooms on a national scale.
Workshop II: Physics Education
NASA Astrophysics Data System (ADS)
Horton, Renee; Milner-Bolotin, Marina
2015-12-01
Participants in the Physics Education Workshop at the 5th IUPAP International Conference on Women in Physics heard about, among other topics, a study exploring why students have difficulty with concepts related to magnetism (and whether explicitly evoking gender affects the results), work in Europe to develop materials to help teachers implement inquiry-based science education, and the use of peer instruction and online collaboration to help teacher-candidates develop questioning skills.
ERIC Educational Resources Information Center
Ahtee, Maija, Ed.; Bjorkqvist, Ole, Ed.; Pehkonen, Erkki, Ed.; Vatanen, Virpi, Ed.
This book contains selected research papers presented at seminars held throughout the year 2000 in Finland by members of the Finnish Association for Research in Mathematics and Science Education (FARMSE) and students at the Finnish Graduate School of Mathematics, Physics, and Chemistry Education. This volume also contains papers professor Laurence…
Chaos Theory and Its Application to Education: Mehmet Akif Ersoy University Case
ERIC Educational Resources Information Center
Akmansoy, Vesile; Kartal, Sadik
2014-01-01
Discussions have arisen regarding the application of the new paradigms of chaos theory to social sciences as compared to physical sciences. This study examines what role chaos theory has within the education process and what effect it has by describing the views of university faculty regarding chaos and education. The participants in this study…
Helping Teachers Teach Plasma Physics
NASA Astrophysics Data System (ADS)
Correll, Donald
2008-11-01
Lawrence Livermore National Laboratory's E/O program in Fusion Science and Plasma Physics now includes both `pre-service' as well as `in-service' high school science teacher professional development activities. Teachers are instructed and mentored by `master teachers' and LLNL plasma researchers working in concert. The Fusion/Plasma E/O program exploits a unique science education partnership that exists between LLNL's Science Education Program and the UC Davis Edward Teller Education Center. For `in-service' teachers, the Fusion & Astrophysics Teacher Research Academy (TRA) has four levels of workshops that are designed to give in-service high school science teachers experience in promoting and conducting research, most notably in the filed of plasma spectroscopy. Participating teachers in all four TRA levels may earn up to ten units of graduate credit from Cal-State University East Bay, and may apply these units toward a Masters of Science in Education. For `pre-service' teachers, the Science Teacher and Researcher (STAR) program, as a partnership with the California State University System, includes attracting undergraduate science majors to teaching careers by allowing them to pursue professional identities as both a research scientist as well as a science teacher. Participating `pre-service' STAR students are provided research internships at LLNL and work closely with the `in-service' TRA teachers. Results from the continuum `pre-service' to `in-service' science teacher professional development programs will be presented.
NASA Astrophysics Data System (ADS)
Soe, Kumi; Motohashi, Mitsuya; Niwa, Masaaki; Tamaki, Akira
Abstract Our research group engages in activities for promoting science education among children. A characteristic of our science curriculum is that it comprises two parts. To elaborate, a requirement of our science curriculum is that before proceeding to a handcrafting activity, students take part in experiments and observe the physical phenomena related to the object that they construct in the second part. We believe that our science class, which comprises two phases of education, can further stimulate students' interest in science because they not only engage in handcrafting of objects, but also learn the underlying principles and structures of these objects.
Teaching the Teachers: Physical Science for the Non-Scientific
NASA Astrophysics Data System (ADS)
Michels, D. J.; Pickert, S. M.; Montrose, C. J.; Thompson, J. L.
2004-12-01
The Catholic University of America, in collaboration with the Solar Physics Branch of the Naval Research Laboratory and the Goddard Space Flight Center, has begun development of an experimental, inquiry-driven and standards-referenced physical science course for undergraduate, pre-service K-8 teachers. The course is team-taught by faculty from the University's Departments of Education and Physics and NRL solar physics research personnel. Basic physical science concepts are taught in the context of the Sun and Sun-Earth Connections, through direct observation, web-based solar data, and images and movies from ongoing space missions. The Sun can illuminate, in ways that cannot be duplicated with comparable clarity in the laboratory, the basics of magnetic and gravitational force fields, Newton's Laws, and light and optics. The immediacy of the connection to ongoing space research and live mission data serves as well to inspire student interest and curiosity. Teaching objectives include pedagogical methods, especially hands-on and observational experiences appropriate to the physics content and the K-8 classroom. The CUA Program, called TOPS! (Top Teachers of Physical Science!) has completed its first year of classroom experience; the first few batches of Program graduates should be in K-8 classrooms in time to capitalize on the motivational opportunities offered by the 2007-2008 IHY and IPY. We present data on the attitudinal and scientific progress of fifteen pre-service Early Childhood and Elementary Education majors as they experienced, many for the first time, the marvels of attractive and repulsive forces, live observations of solar system dynamics, access to real-time satellite data and NASA educational resources.
NASA Astrophysics Data System (ADS)
Turlo, Jozefina
2010-02-01
It is well known that students' interest in physics and technical subjects decreased dramatically in the USA and Europe during the recent years. Why did this happen?? Does the problem lie in wider socio-cultural changes, and the ways in which young people in developed countries now live and wish to shape their lives? Or is it due to failings within science education itself? To answer these questions the Nuffield Foundation (UK) took a decision to examine the actual state of art in science education in Europe and as the result a special Committee in January 2008 published a Report to the Nuffield Foundation on: ``Science Education in Europe: Critical Reflections.'' The main messages of this report are: There are shortcomings in curriculum, pedagogy, assessment and especially in science teacher competencies, but the deeper problem is one of the fundamental purpose. School science education, has never provided a satisfactory education for the majority. Now the evidence is that it is failing in its original purpose, to provide a route into science for future scientists. In such a context, to do nothing is not an option! Thus, there will be some recommendations and conclusions elaborated by the experienced European team of science educators (19) under supervision of Prof. Osborne and Dr. Dillon described, discussed and commented. But as far as the enhancement of ``scientific literacy'' of students and society is concerned, I believe that teachers, in the first place, are the real ``driving force'' of educational change in schools and in the society. Though education of teachers in Europe is very diversified, some patterns can be observed, some trends and examples of good practice identified, and on these I am going to reflect. )
Secondary Physical Science Teachers' Conceptions of Science Teaching in a Context of Change
NASA Astrophysics Data System (ADS)
Taylor, Dale L.; Booth, Shirley
2015-05-01
Pre-service teachers enter initial teacher education programmes with conceptions of teaching gleaned from their own schooling. These conceptions, which include teachers' beliefs, may be resistant to change, which is a challenge in contexts where teacher educators hope that teachers will teach in ways different from their own schooling. Conceptions of teaching found in different cultural and disciplinary contexts have contextual differences but have resonances with the results of research into teacher beliefs. Our sample of eight South African secondary physical science teachers was schooled in a system which encouraged knowledge transmission, but they were prepared in their initial teacher education for a learner-centred approach. After they had taught for a few years, we explored their conceptions of science teaching, using phenomenographic interviews. Four conceptions emerged inductively from the analysis: transferring science knowledge from mind to mind; transferring problematic science knowledge from mind to mind; creating space for learning science knowledge and creating space for learning problematic science knowledge. Internally these conceptions are constituted by three dimensions of variation: the nature of the science knowledge to be learnt, the role of the students and the role of the teacher. Media and practical work play different roles in the external horizon of these conceptions. These conceptions reflect the disciplinary context as well as the emphases of the sample's initial teacher education programme. This suggests that initial teacher education can significantly shape teachers' conceptions of teaching.
(re)producing Good Science Students: Girls' Participation in High School Physics
NASA Astrophysics Data System (ADS)
Carlone, Heidi B.
In this ethnographic study, the author describes the meanings of science and science student in a physics classroom in an upper-middle-class high school and the ways girls participated within these meanings. The classroom practices reproduced prototypical meanings of science (as authoritative) and science student (as "dutiful"). The results highlight girls' embrace of prototypical school science. Yet at the end of the school year, the girls did not consider themselves "science people," nor did they want to pursue physics further. The author's interpretation of these results takes seriously girls' agency in producing the meaning of the physics class (as a way to polish one's transcript) and draws attention to the promoted identities (prototypical good student identities) in the classroom. The author argues that students' agency in resisting or accepting the practices, identities, and knowledge of school science is worth understanding for the improvement of science education.
Students from Pueblo Triumph in Colorado Science Bowl
questions about physics, math, biology, astronomy, chemistry, computers and the earth sciences, students science and math. The competition has evolved into one of the Energy Department's premier educational
Students from Aurora Triumph in Denver Regional Science Bowl
questions about physics, math, biology, astronomy, chemistry, computers and the earth sciences, students science and math. The competition has evolved into one of the Energy Department's premier educational
Plasma Physics/Fusion Energy Education at the Liberty Science Center
NASA Astrophysics Data System (ADS)
Zwicker, Andrew; Delooper, John; Carpe, Andy; Amara, Joe; Butnick, Nancy; Lynch, Ellen; Osowski, Jeff
2007-11-01
The Liberty Science Center (LSC) is the largest (300,000 sq. ft.) education resource in the New Jersey-New York City region. A major 109 million expansion and renewal was recently completed. Accordingly, PPPL has expanded the science education collaboration with the Center into three innovative, hands-on programs. On the main floor, a new fusion exhibit is one of the focuses of ``Energy Quest.'' This includes a DC glow discharge tube with a permanent external magnet allowing visitors to manipulate the plasma while reading information on plasma creation and fusion energy. In the section of LSC dedicated to intensive science investigations (20,000 sq. ft) we have added ``Live from NSTX'' which will give students an opportunity to connect via video-conferencing to the NSTX control room during plasma operations. A prototype program was completed in May, 2007 with three high school physics classes and will be expanded when NSTX resumes operation. Finally, a plasma physics laboratory in this area will have a fully functioning, research-grade plasma source that will allow long-term visitors an opportunity to perform experiments in plasma processing, plasma spectroscopy, and dusty plasmas.
Science education as a civil right: Urban schools and opportunity-to-learn considerations
NASA Astrophysics Data System (ADS)
Tate, William
2001-11-01
In this article I make the case that urban science education is a civil rights issue and that to effectively address it as such we must shift from arguments for civil rights as shared physical space in schools to demands for high-quality academic preparation that includes the opportunity to learn science. The argument is organized into two sections: first, a review of the school desegregation literature to make the case that urban science education for all is a civil rights issue; and second, an examination and critique of opportunity-to-learn literature, including an analysis of three opportunity-to-learn constructs to illustrate their potential as civil rights tools in science education.
Students' Mathematical Modeling of Motion
ERIC Educational Resources Information Center
Marshall, Jill A.; Carrejo, David J.
2008-01-01
We present results of an investigation of university students' development of mathematical models of motion in a physical science course for preservice teachers and graduate students in science and mathematics education. Although some students were familiar with the standard concepts of position, velocity, and acceleration from physics classes,…
Impacting university physics students through participation in informal science
NASA Astrophysics Data System (ADS)
Hinko, Kathleen; Finkelstein, Noah D.
2013-01-01
Informal education programs organized by university physics departments are a popular means of reaching out to communities and satisfying grant requirements. The outcomes of these programs are often described in terms of broader impacts on the community. Comparatively little attention, however, has been paid to the influence of such programs on those students facilitating the informal science programs. Through Partnerships for Informal Science Education in the Community (PISEC) at the University of Colorado Boulder, undergraduate and graduate physics students coach elementary and middle school children during an inquiry-based science afterschool program. As part of their participation in PISEC, university students complete preparation in pedagogy, communication and diversity, engage with children on a weekly basis and provide regular feedback about the program. We present findings that indicate these experiences improve the ability of university students to communicate in everyday language and positively influence their perspectives on teaching and learning.
ERIC Educational Resources Information Center
Stoney, Sheila M.; Reid, Margaret I.
A 1-year project was conducted to explore ways and suggest possible strategies by which Further Education staff in Great Britain can help improve women's participation, progress, and attainment in physical science and technology, particularly at technician and craft levels. Data were collected by a questionnaire survey of heads of science and…
ERIC Educational Resources Information Center
Ng, Wan; Nguyen, Van Thanh
2006-01-01
Making science relevant in students' learning is an important aspect of science education. This involves the ability to draw in examples from daily contexts to begin with the learning or to apply concepts learnt into familiar everyday phenomena that students observe and experience around them. Another important aspect of science education is the…
NASA Astrophysics Data System (ADS)
Campbell, Nancy S.
This executive position paper examines the critical shortage of Delaware high school science teachers and Delaware Technical & Community College's possible role in addressing this shortage. A concise analysis of economic and political implications of the science teacher shortage is presented. The following topics were researched and evaluated: the specific science teacher needs for Delaware school districts; the science teacher education program offerings at Delaware universities and colleges; the Alternative Route to Teacher Certification (ARTC); and the state of Delaware's scholarship response to the need. Recommendations for Delaware Tech's role include the development and implementation of two new Associate of Arts of Teaching programs in physics secondary science education and chemistry secondary science education.
NASA Astrophysics Data System (ADS)
1999-07-01
`Prospering through science' is the theme of this year's British Association Annual Festival of Science, taking place in Sheffield on 13-17 September 1999. This unique event for people with a professional or lay interest in science will be exploring how advances in many fields of science and engineering can provide opportunities to ensure prosperity through improving the quality of life and creating new wealth. Under the heading Creating economic prosperity will be talks on `Chips in a changing world', `From Big Bang to eternity - understanding the Cosmos', `Making money with physics' and `In the material world'. Building scientific awareness and understanding will comprise sessions on `Science education in the new century - challenges and opportunities', `IT - a mixed blessing' and `Exploration Earth'. Working towards a sustainable environment will examine `Energy for the 21st century: what are the choices?', whilst Learning from the past includes the topic `Retrospects and Prospects - two forums for science education'. Plenary lectures will cover the Hubble Space Telescope, New business, and Antibiotics and Resistance, and there will be student quiz and comedy nights, a careers event as well as many other social activities. As plans progress, the programme will be updated on the British Association's website at www.britassoc.org.uk but further details may also be obtained from the British Association for the Advancement of Science, 23 Savile Row, London W1X 2NB (tel: 0171 973 3500, fax: 0171 973 3051). Leeds University will be host to the next Annual Meeting of the Association for Science Education, being held on 6-8 January 2000. As in previous years, the main conference entitled `Forging the future in science education' will be preceded by an international programme of meetings on current issues and developments for all science educators. There will be the usual well-balanced mix of talks, practical workshops, academic lectures, exhibitions, courses, visits and social events, including the Physics Education lecture to be given this year by Institute of Physics Publishing's Journals Director, Professor Robert Brown. Programmes for the meeting will be available in September and full details can be obtained from the Conference Office, ASE, College Lane, Hatfield AL10 9AA (fax: +44 (0) 1707 266532, e-mail: mbrookman@ase.org.uk).
Physics as a Part of Liberal Education
NASA Astrophysics Data System (ADS)
Evans, James
2001-05-01
The natural sciences once had a distinguished place among the liberal arts. Indeed, the arts degree at the medieval university was a science major's degree. The quadrivium (arithmetic, geometry, harmonics and astronomy) represented a conscious revival of the school curriculum of late antiquity, which had deep roots in Platonism. In the Middle Ages, all who aspired to enter the higher faculties (theology, medicine, law) had first to take a science degree. This was because scientific education mattered--it offered something essential for understanding both the world of nature and the world of man. When in the twelfth century the lost works of Aristotle were recovered, university professors risked excommunication in order to teach the new philosophy of nature. Aristotle's physics and cosmology passionately mattered, and within a century they had won a place in the core curriculum. A few centuries later, the followers of Descartes risked their careers to get Aristotle back out of the curriculum and Descartes in. Despite the supposed primacy of science in our own day, it has been a long while since comparable battles were waged over a curriculum of physics. In a profound way, the sciences matter less to the broader culture than they once did. In this talk I shall address the question of how this came to be and what purpose physics might have in a program of liberal education.
Predictors of gender achievement in physical science at the secondary level
NASA Astrophysics Data System (ADS)
Kozlenko, Brittany Hunter
This study used the 2009 National Assessment of Educational Progress (NAEP) science restricted data-set for twelfth graders. The NAEP data used in this research study is derived from a sample group of 11,100 twelfth grade students that represented a national population of over 3,000,000 twelfth grade students enrolled in science in the United States in 2009. The researcher chose the NAEP data set because it provided a national sample using uniform questions. This study investigated how the factors of socioeconomic status (SES), parental education level, mode of instruction, and affective disposition affect twelfth grade students' physical science achievement levels in school for the sample population and subgroups for gender. The factors mode of instruction and affective disposition were built through factor analysis based on available questions from the student surveys. All four factors were found to be significant predictors of physical science achievement for the sample population. NAEP exams are administered to a national sample that represents the population of American students enrolled in public and private schools. This was a non-experimental study that adds to the literature on factors that impact physical science for both genders. A gender gap is essentially nonexistent at the fourth grade level but appears at the eighth grade level in science based on information from NAEP (NCES, 1997). The results of the study can be used to make recommendation for policy change to diminish this gender gap in the future. Educators need to be using research to make instructional decisions; research-based instruction helps all students.
Libros de Ciencias en Espanol: A Selection of Recent Science Trade Books in Spanish.
ERIC Educational Resources Information Center
Schon, Isabel
2001-01-01
Introduces a list of trade books written in Spanish that can be used for science education. Categorizes the list under five headings for the very young, biology, general science, physical science, and technology. (YDS)
Sparking Women's Interest in Physics through Science Education
NASA Astrophysics Data System (ADS)
Merali, Aliya; Wissel, S. A.; Ortiz, M.; Morgan, J. T.; Zwicker, A.
2011-10-01
As of 2010, less than 10% of the members of the APS division of plasma physics are female. Data from a 2005 AIP publication indicate that a lack of female presence in physics exists as early as high school and is perpetuated throughout the educational careers of women. Of the undergraduate programs run by PPPL, 16% of participants are female, and only 11% of participants that continue on to graduate school are female. In an effort to increase the exposure of young women to physics, we have expanded existing programs and initiated new programs such as a mentorship program and an energy focused essay contest. The goal of these programs is to bridge the gap between young and established women in science in order to increase young women's interest in the field of physics and thus increase the likelihood that they will continue on to study higher-level physics. Using data collected from participant surveys we have assessed the short-term effectiveness of PPPL programs in influencing young women to pursue careers in science and plasma physics. Ivie and Ray. AIP Publication Number R-430.02 (February 2005)
Code of Federal Regulations, 2011 CFR
2011-07-01
... physical, life, or computer sciences, mathematics, technology, engineering, or a critical foreign language..., DEPARTMENT OF EDUCATION (CONTINUED) ACADEMIC COMPETITIVENESS GRANT (ACG) AND NATIONAL SCIENCE AND MATHEMATICS...
Code of Federal Regulations, 2013 CFR
2013-07-01
... physical, life, or computer sciences, mathematics, technology, engineering, or a critical foreign language..., DEPARTMENT OF EDUCATION (CONTINUED) ACADEMIC COMPETITIVENESS GRANT (ACG) AND NATIONAL SCIENCE AND MATHEMATICS...
Code of Federal Regulations, 2012 CFR
2012-07-01
... physical, life, or computer sciences, mathematics, technology, engineering, or a critical foreign language..., DEPARTMENT OF EDUCATION (CONTINUED) ACADEMIC COMPETITIVENESS GRANT (ACG) AND NATIONAL SCIENCE AND MATHEMATICS...
Code of Federal Regulations, 2014 CFR
2014-07-01
... physical, life, or computer sciences, mathematics, technology, engineering, or a critical foreign language..., DEPARTMENT OF EDUCATION (CONTINUED) ACADEMIC COMPETITIVENESS GRANT (ACG) AND NATIONAL SCIENCE AND MATHEMATICS...
NASA Astrophysics Data System (ADS)
2000-10-01
CERN, ESA and ESO Put Physics On Stage [1] Summary Can you imagine how much physics is in a simple match of ping-pong, in throwing a boomerang, or in a musical concert? Physics is all around us and governs our lives. The World-Wide Web and mobile communication are only two examples of technologies that have rapidly found their way from science into the everyday life. [Go to Physics On Stage Website at CERN] But who is going to maintain these technologies and develop new ones in the future? Probably not young Europeans, as recent surveys show a frightening decline of interest in physics and technology among Europe's citizens, especially schoolchildren. Fewer and fewer young people enrol in physics courses at university. The project "Physics on Stage" tackles this problem head on. An international festival of 400 physics educators from 22 European countries [2] gather at CERN in Geneva from 6 to 10 November to show how fascinating and entertaining physics can be . In a week-long event innovative methods of teaching physics and demonstrations of the fun that lies in physics are presented in a fair, in 10 spectacular performances, and presentations. Workshops on 14 key themes will give the delegates - teachers, professors, artists and other physics educators - the chance to discuss and come up with solutions for the worrying situation of disenchantment with Science in Europe. The European Science and Technology Week 2000 "Physics on Stage" is a joint project organised by the European Organisation for Nuclear Research (CERN) , the European Space Agency (ESA) and the European Southern Observatory (ESO) , Europe's leading physics research organisations. This is the first time that these three organisations have worked together in such close collaboration to catalyse a change in attitude towards science and technology education. Physics on Stage is funded in part by the European Commission and happens as an event in the European Science and Technology Week 2000, an initiative of the EC to raise public awareness of science and technology. Other partners are the European Physical Society (EPS) and the European Association for Astronomy Education (EAAE). European Commissioner Busquin to Visit Physics On Stage On Thursday, November 9, Philippe Busquin , Commissioner for Research, European Commission, Prof. Luciano Maiani , Director-General of CERN, Antonio Rodota , Director-General of ESA, Dr. Catherine Cesarsky , Director-General of ESO, and Dr. Achilleas Mitsos , Director-General of the Research DG in the European Commission, will participate in the activities of the Physics on Stage Festival. On this occasion, Commissioner Busquin will address conference delegates and the Media on the importance of Science and of innovative science and technology education. The Festival Each of the more than 400 delegates of the festival has been selected during the course of the year by committees in each of the 22 countries for outstanding projects promoting science. For example, a group of Irish physics teachers and their students will give a concert on instruments made exclusively of plumbing material, explaining the physics of sound at the same time. A professional theatre company from Switzerland stages a play on antimatter. Or two young Germans invite spectators to their interactive physics show where they juggle, eat fire and perform stunning physics experiments on stage. The colourful centrepiece of this week is the Physics Fair. Every country has its own stands where delegates show their projects, programmes or experiments and gain inspiration from the exhibits from other countries. Physics on Stage is a unique event. Nothing like it has ever happened in terms of international exchange, international collaboration and state of the art science and technology education methods. The Nobel prizewinners of 2030 are at school today. What ideas can Europe's teachers put forward to boost their interest in science? An invitation to the media We invite journalists to take part in this both politically and visually interesting event. We expect many useful results from this exchange of experience, there will a large choice of potential interview partners and of course uncountable images and impressions. Please fill in the form below and fax it back to CERN under +41 22 7850247. Go to the Webpage http://www.cern.ch/pos to find out all about Physics on Stage Festival at CERN. The main "Physics on Stage" web address is: http://www.estec.esa.nl/outreach/pos There is also a Physics On Stage webpage at ESO Notes [1] This is a joint Press Release by the European Organization for Nuclear Research (CERN) , the European Space Agency (ESA) and the European Southern Observatory (ESO). [2] The 22 countries are the member countries of at least one of the participating organisations or the European Union: Austria, Belgium, Bulgaria, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Luxembourg, the Netherlands, Norway, Poland, Portugal, the Slovak Republic, Spain, Sweden, Switzerland, United Kingdom.
NASA Astrophysics Data System (ADS)
Glesener, G. B.; Vican, L.
2015-12-01
Physical analog models and demonstrations can be effective educational tools for helping instructors teach abstract concepts in the Earth, planetary, and space sciences. Reducing the learning challenges for students using physical analog models and demonstrations, however, can often increase instructors' workload and budget because the cost and time needed to produce and maintain such curriculum materials is substantial. First, this presentation describes a working model for the Modeling and Educational Demonstrations Laboratory Curriculum Materials Center (MEDL-CMC) to support instructors' use of physical analog models and demonstrations in the science classroom. The working model is based on a combination of instructional resource models developed by the Association of College & Research Libraries and by the Physics Instructional Resource Association. The MEDL-CMC aims to make the curriculum materials available for all science courses and outreach programs within the institution where the MEDL-CMC resides. The sustainability and value of the MEDL-CMC comes from its ability to provide and maintain a variety of physical analog models and demonstrations in a wide range of science disciplines. Second, the presentation then reports on the development, progress, and future of the MEDL-CMC at the University of California Los Angeles (UCLA). Development of the UCLA MEDL-CMC was funded by a grant from UCLA's Office of Instructional Development and is supported by the Department of Earth, Planetary, and Space Sciences. Other UCLA science departments have recently shown interest in the UCLA MEDL-CMC services, and therefore, preparations are currently underway to increase our capacity for providing interdepartmental service. The presentation concludes with recommendations and suggestions for other institutions that wish to start their own MEDL-CMC in order to increase educational effectiveness and decrease instructor workload. We welcome an interuniversity collaboration to further develop the MEDL-CMC model.
ERIC Educational Resources Information Center
Pan, Edward A.
2013-01-01
Science, technology, engineering, and mathematics (STEM) education is a national focus. Engineering education, as part of STEM education, needs to adapt to meet the needs of the nation in a rapidly changing world. Using computer-based visualization tools and corresponding 3D printed physical objects may help nontraditional students succeed in…
CLASS Shifts in Modeling Instruction
NASA Astrophysics Data System (ADS)
Brewe, Eric; Kramer, Laird; O'Brien, George
2008-10-01
Among the most surprising findings in Physics Education Research is the lack of positive results on attitudinal measures, such as Colorado Learning Attitudes about Science Survey (CLASS) and Maryland Physics Expectations Survey (MPEX). The uniformity with which physics teaching manages to negatively shift attitudes toward physics learning is striking. Strategies which have been shown to improve learning, such as interactive engagement and studio format classes, provide more authentic science experiences for students, yet do not produce positive attitudinal results. Florida International University's Physics Education Research Group has implemented Modeling Instruction in University Physics classes. Using the CLASS as a pre/post measure has shown attitudinal improvements through both semesters of the introductory physics sequence. In this paper, we report positive shifts on the CLASS in two sections of Modeling Physics, one in Mechanics (N=30) and one in Electricity and Magnetism, (N=31) and examine how these results reflect on Modeling Instruction.
ERIC Educational Resources Information Center
Galle, Gillian; Meredith, Dawn
2014-01-01
A few years ago we began to revamp our introductory physics course for life science students. We knew that this cohort would be less prepared and less adventurous mathematically than engineering, physical science, or mathematics majors. Moreover, from our own experience and the mathematics education literature, we knew that trigonometry would be…
Urban Elementary STEM Initiative
ERIC Educational Resources Information Center
Parker, Carolyn; Abel, Yolanda; Denisova, Ekaterina
2015-01-01
The new standards for K-12 science education suggest that student learning should be more integrated and should focus on crosscutting concepts and core ideas from the areas of physical science, life science, Earth/space science, and engineering/technology. This paper describes large-scale, urban elementary-focused science, technology, engineering,…
ERIC Educational Resources Information Center
Moulton, Jackie
2006-01-01
This paper describes how a second grade science unit on penguins became the ideal content to integrate with the physical education curriculum. The movement experiences reinforced the information students learned about penguins and helped students to gain a deeper understanding of penguin behaviors. Together, the physical education teacher and the…
Teacher candidates' beliefs about including socioscientific issues in physics and chemistry
NASA Astrophysics Data System (ADS)
Barrett, Sarah Elizabeth
Teaching science for social justice involves a deliberate effort to reconstruct society into something more equitable and just. Introducing socioscientific issues (SSI) into science is one strategy toward this end. However, research indicates that SSI are rarely discussed in the physical sciences even though they exist. This may be due to the beliefs of chemistry and physics teachers with respect to what belongs in these subjects. If we wish to begin to influence these beliefs through initial teacher education, it is essential for teacher educators to understand the origins of these beliefs. In this qualitative study 12 teacher candidates were interviewed at 3 points during a 9 month teacher education program: at the beginning of the course (in September), after the first practicum (in November) and after the second practicum (in March). Teacher candidates' beliefs did not change significantly from the beginning of the study to the end. They displayed varying degrees of commitment to including SSI in their teaching. Based on their (a) conception of the ethics of science, (b) goals for science education, (c) idea of the place of ethics in science (education), and (d) beliefs about including SSI, the teacher candidates were divided into four groups. Four archetypes were derived: "Model Scientist/Engineer", "Model Individual", "Model Teacher", and "Model Citizen". Since these groups are archetypes, none of the participants fits into the categories perfectly but individual teacher candidates demonstrated more characteristics of one archetype than others. Only the 3 Model Citizens were committed to including SSI in their teaching while the others placed the priority on preparing students for the next level of schooling. A model was developed to serve as a microgeneology of teacher candidates' beliefs about including SSI in their teaching. It traced their beliefs from (a) life experiences to (b) conception of ethics and nature of science to (c) goals for science education to (d) inclusion or non-inclusion of SSI. Based on the archetypes, current beliefs were extrapolated into future beliefs. How teacher educators could use this model to influence the future beliefs of their students is discussed.
NASA Astrophysics Data System (ADS)
Dabney, Katherine P.; Tai, Robert H.
2014-06-01
The majority of existing science, technology, engineering, and mathematics (STEM) research studies compare women to men, yet a paucity of research exists that examines what differentiates female career choice within the physical sciences. In light of these research trends and recommendations, this study examines the following question: On average, do females who select physics as compared to chemistry doctoral programs differ in their reported personal motivations and background factors prior to entering the field? This question is analyzed using variables from the Project Crossover Survey data set through a subset of female physical science doctoral students and scientists (n =1137). A logistic regression analysis and prototypical odds ratio uncover what differentiates women in the physical sciences based on their academic achievement and experiences ranging from high school through undergraduate education. Results indicate that females who have negative undergraduate chemistry experiences as well as higher grades and positive experiences in undergraduate physics are more likely to pursue a career in physics as opposed to chemistry. Conclusions suggest that a greater emphasis should be placed on the classroom experiences that are provided to females in gateway physics courses. Analyses show that women are not a single entity that should only be examined as a whole group or in comparison to men. Instead women can be compared to one another to see what influences their differences in educational experiences and career choice in STEM-based fields as well as other academic areas of study.
The Physics Force Physics for Ages 6 to 106
NASA Astrophysics Data System (ADS)
Dahlberg, E. D.; Falco, C.; Schuller, I. K.
2006-12-01
The presentation will provide highlights of The Physics Force, a superb outreach program of the University of Minnesota. The Force connects the University to K-12 education (students, teachers, and parents) and the general public. Its purpose is to increase both the number of students interested in pursuing science and math related careers, and for students and the public to have an increased general interest in science. The majority of attendees are k-6 students. The stated mission is to show that Science is Fun, Science is Interesting, and Science is Understandable. Growing over fifteen years, the attendance now averages more than 30,000/year students, teachers, and the general public. In the last three years, more than 2% of the total population of Minnesota attended a performance. The Physics Force is simultaneously entertaining and educational. Performances consist of quick paced demos that follow the physics; meaning the experiments are orchestrated to build on each other and teach a physics concept with little explanation provided (but with humor added). They have also gained national and international recognition. They performed at Disney's Epcot Center, have been on the extremely successful German public TV program Knoff-Hoff and were selected as one of the APS outreach programs for the World Year of Physics. In an attempt to make their presence at a school more lasting and for those schools they couldn't visit, The Physics Circus pre and post show materials and videos of most of the demonstrations are available on the web (http://www.physics.umn.edu/outreach/pforce/) (click on Physics Circus).
Through the eyes of aspiring scientists: Mexican Americans in pursuit of the PhD
NASA Astrophysics Data System (ADS)
Heimlich, Scott Matthew
This qualitative study expands the current knowledge base behind why undergraduates pursue a doctorate in the life and physical sciences, specifically with regard to Mexican Americans. Hispanics make up approximately 11.7% of the United States population, with Mexican Americans comprising almost two-thirds of this total. In 1998, of the 9,683 doctorates awarded to U.S. citizens and permanent residents in the life (biological) and physical sciences, 75 went to Mexican Americans (54 to males, 21 to females). Mexican Americans are severely underrepresented in U.S. doctoral programs in the life and physical sciences, as well as at earlier points in the U.S. educational system. A key aim of this study was to understand the underrepresentation of this population in science, and listen to Mexican Americans currently pursuing their science doctorate discuss their aspirations and experiences. In depth interviews were conducted with twelve Mexican American doctoral students in the life and physical sciences, all currently attending the same competitive research university in California. A comparison of the backgrounds of these twelve students, along with their impetus for pursuing a graduate education, is presented. In depth portraits that chronicle the experiences of five of these students is also included. This study found that a student's personal drive, career aspirations, enjoyment of science and research in addition to the scientist lifestyle were important variables in the decision to pursue a science doctorate. Involvement in research as an undergraduate was highlighted as a crucial factor in introducing and ultimately exciting students about research careers and graduate school, and many of these students participated in organizations at the undergraduate level, often targeted towards groups underrepresented in the sciences, that promoted scientific research and careers. Members of the educational system, peers, and family all played important roles at various times in supporting these students in their educational and career aspirations. No one factor was found to be essential to the pursuit of the doctorate, and each student's perspective on their experiences was truly unique as they discussed both their struggles and supports, and shared their evolving aspirations toward science.
Solar Thermal Energy Exploitation: An Opportunity to Enhance Conceptual Learning in Physics
NASA Astrophysics Data System (ADS)
Rodrigues, M. A.; Cravino, J. P.; Liberato, M. L. R.
2010-05-01
In a society mainly driven by Science and Technology it is becoming consensual the idea that scientific education should include three components: Education in Science, Education about Science and Education through Science. Some authors suggest that, in education, everyday objects should be used to illustrate scientific issues (e.g. Andrée, 2005). Thus the goal of this study is two-fold: first, to develop a teaching and learning strategy, in the framework of Education for Sustainable Development (ESD), concerning the renewable energy issue, while showing the importance of using everyday situations in the improvement of students' motivation in Physics learning. Energy is the core concept in this study. Energy conservation includes the concepts applied to sustainable balance between environment and the energy availability and use. Dias et al. (2004) stress that education is one of the best ways to transform the human behavior for the rational use of energy, which represents a long-term investment. In this work students become aware and recognize the importance and value of energy in everyday life, they identify energy transfer and transformation processes, confirm energy availability, relating these topics to present human needs and climate change issues. A didactic model of a solar thermal panel has thus been built, using cheap, common materials, by 15-16 year-old Physics students, from a Portuguese secondary school. Students had to plan the experiments, in small groups, to identify and estimate physical magnitudes and to explore how to maximize the solar thermal panel efficiency. The experimental activities took place in the school's playground, in a place where there were no obstacles to capturing solar radiation. Finally, students had to deal with experimental data acquisition and analysis, they had to prepare a report, as well as to answer a survey, to evaluate their learning success. Results show that students appreciated the proposed themes and activities, while having significant learning,namely in terms of conceptual evolution on concepts such as thermodynamic systems and energy transfer. We believe that these kinds of proposals contribute to improve students' literacy and knowledge in Science, to strengthen the student-teacher relationship, while contributing to raising conscious citizens. References Andrée, M. (2005). Ways of Using ‘Everyday Life' in the Science Classroom. Research and the Quality of Science Education 107-116. Dias, R. A., Mattos, C. R., & Balestieri, J. A. P. (2004). Energy education: breaking up the rational energy use barriers. Energy Policy, 32(11), 1339-1347.
Candidates for office 2004-2006
NASA Astrophysics Data System (ADS)
Timothy L. Killeen. AGU member since 1981. Director of the National Center for Atmospheric Research (NCAR); Senior Scientist, High Altitude Observatory; Adjunct Professor, University of Michigan. Major areas of interest include space physics and aeronomy remote sensing, and interdisciplinary science education. B.S., Physics and Astronomy (first class honors), 1972, University College London; Ph.D., Atomic and Molecular Physics, 1975, University College London. University of Michigan: Researcher and Professor of Atmospheric, Oceanic, and Space Sciences, 1978-2000 Director of the Space Physics Research Laboratory 1993-1998 Associate Vice-President for Research, 1997-2000. Visiting senior scientist at NASA Goddard Space Flight Center, 1992. Program Committee, American Association for the Advancement of Science; Council Member, American Meteorological Society; Editor-in-Chief, Journal of Atmospheric and Solar-Terrestrial Physics; Chair, Jerome K.Weisner National Policy Symposium on the Integration of Research and Education, 1999. Authored over 140 publications, 57 in AGU journals. Significant publications include: Interaction of low energy positrons with gaseous atoms and molecules, Atomic Physics, 4, 1975; Energetics and dynamics of the thermosphere, Reviews of Geophysics, 1987; The upper mesosphere and lower thermosphere, AGU Geophysical Monograph, 1995, Excellence in Teaching and Research awards, College of Engineering, University of Michigan; recipient of two NASA Achievement Awards; former chair, NASA Space Physics Subcommittee; former chair, National Science Foundation (NSF) Coupling, Energetics and Dynamics of Atmospheric Regions (CEDAR) program; former member, NSF Advisory Committee for Geosciences, and chair of NSF's Atmospheric Sciences Subcommittee, 1999-2002 member, NASA Earth Science Enterprise Advisory Committee; member of various National Academy of Science/National Research Council Committees; cochair, American Association for the Advancement of Science National Meeting, 2003. AGU service includes: term as associate editor of Journal of Geophysical Research-Space Physics; chair, Panel on International Space Station; Global Climate Change Panel; Federal Budget Review Committee; member of AGU Program, Public Information, Awards, and Public Affairs committees; Chapman Conference Convener and Monograph editor; Section Secretary and Program Chair, Space and Planetary Relations Section; President of Space Physics and Aeronomy Section; AGU Council Member.
NASA Astrophysics Data System (ADS)
Vickers, Ken
2005-03-01
The education and training of the workforce needed to assure global competitiveness of American industry in high technology areas, along with the proper role of various disciplines in that educational process, is currently being re-examined. Several academic areas in science and engineering have reported results from such studies that revealed several broad themes of educational need that span and cross the boundaries of science and engineering. They included greater attention to and the development of team-building skills, personal or interactive skills, creative ability, and a business or entrepreneurial where-with-all. We will report in this paper the results of a fall 2000 Department of Education FIPSE grant to implement changes in its graduate physics program to address these issues. The proposal goal was to produce next-generation physics graduate students that are trained to evaluate and overcome complex technical problems by their participation in courses emphasizing the commercialization of technology research. To produce next-generation physics graduates who have learned to work with their student colleagues for their mutual success in an industrial-like group setting. And finally, to produce graduates who can lead interdisciplinary groups in solving complex problems in their career field.
Revitalizing Support for the Physical Sciences: The American Competitiveness Initiative
NASA Astrophysics Data System (ADS)
Rooney, Peter
2006-11-01
In January 2006, during his State of the Union Address, President Bush announced a renewed commitment on the part of his Administration to funding math and science education, and science and engineering research. Two weeks later, in February 2006, the President submitted his budget request to Congress, including The American Competitiveness Initiative (ACI), a budget initiative that proposes to double federal investments in fundamental research in the physical sciences at three civilian science agencies---the Office of Science in the Department of Energy, the National Science Foundation (NSF), and the National Institute of Standards and Technology (NIST)---over ten years. To date, ACI has fared well in Congress. The House of Representatives has already approved the increases for the Office of Science (up 14 percent), NSF (up 8 percent), and NIST (core laboratory research and infrastructure up 24 percent). Key Senate Subcommittees have approved similar increases. Of equal significance to the budget proposal, the President's pronouncements represent an effort to change the public perception of the value of science. This is the capstone of a fifteen-year effort on the part of the scientific community, including the American Physical Society, to develop a new rationale for funding physical science research in the post-Cold War era. 30 years of economic research suggests there is a strong correlation between the government investments in education and research, particularly physical science and engineering research, and future economic performance. The President made this connection explicit for the public in his State of the Union Address and in subsequent speeches and town hall meetings. The author will discuss these trends and the outlook for ACI going forward.
NASA Astrophysics Data System (ADS)
Deb, Pradip
2010-07-01
As a fundamental basis of all natural science and technology, Physics is the key subject in many science teaching institutions around the world. Physics teaching and learning is the most important issue today—because of its complexity and fast growing applications in many new fields. The laws of Physics are global—but teaching and learning methods of Physics are very different among countries and cultures. When I first came in Australia for higher education about 11 years ago with an undergraduate and a graduate degree in Physics from a university of Bangladesh, I found the Physics education system in Australia is very different to what I have experienced in Bangladesh. After having two graduate degrees from two Australian universities and gaining few years experience in Physics teaching in Australian universities, I compare the two different types of Physics education experiences in this paper and tried to find the answer of the question—does it all depend on the resources or internal culture of the society or both. Undergraduate and graduate level Physics syllabi, resources and teaching methods, examination and assessment systems, teacher-student relationships, and research cultures are discussed and compared with those in Australia.
The Learning Assistant Model for Science Teacher Recruitment and Preparation
NASA Astrophysics Data System (ADS)
Otero, Valerie
2006-04-01
There is a shortage of high quality physical science teachers in the United States. In 2001, less than 50% of teachers who taught physics held a major or minor in physics or physics education (Neuschatz & McFarling, 2003). Studies point to content knowledge as one of the two factors that is positively correlated with teacher quality. However, those directly responsible for the science content preparation of teachers, specifically science research faculty, are rarely involved in focused efforts to improve teacher quality or to create alternative paths for becoming a teacher. What role should science research faculty play in the recruitment and preparation of science teachers? How might teacher recruitment and preparation be conceived so that science research faculty members' participation in these efforts is not at odds with the traditional scientific research foci of science research departments? To address this issue, we have coupled our teacher recruitment and preparation efforts with our efforts for transforming our large-enrollment, undergraduate science courses. This is achieved through the undergraduate Learning Assistant (LA) program, where talented mathematics and science majors are hired to assist in transforming large enrollment courses to student-centered, collaborative environments. These LAs are the target of our teacher recruitment efforts. Science research faculty, in collaboration with faculty from the school of education have established a community that supports LAs in making decisions to explore K12 teaching as a career option. Fifteen percent of the LAs who have participated in this program have entered teaching credential programs and now plan to become K12 teachers. An added effect of this program is that research faculty have developed skills and knowledge regarding inquiry-based and student-centered pedagogy and theories of student learning. The Learning Assistant program has led to increased subject matter knowledge among learning assistants, increased interest in K-12 teaching as a career, and increased appreciation and understanding of student-centered and inquiry-based learning. Data to support these claims will be presented. Neuschatz, M. & McFarling, M. (2003). Broadning the Base: High School Physics Education at the Turn of a New Century, AIP Report No. R-439.
A Transformative Model for Undergraduate Quantitative Biology Education
ERIC Educational Resources Information Center
Usher, David C.; Driscoll, Tobin A.; Dhurjati, Prasad; Pelesko, John A.; Rossi, Louis F.; Schleiniger, Gilberto; Pusecker, Kathleen; White, Harold B.
2010-01-01
The "BIO2010" report recommended that students in the life sciences receive a more rigorous education in mathematics and physical sciences. The University of Delaware approached this problem by (1) developing a bio-calculus section of a standard calculus course, (2) embedding quantitative activities into existing biology courses, and (3)…
Agricultural Education Science Activity--Nos. GGEB 1-2.
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. Agricultural Curriculum Materials Service.
This packet contains two science learning activities that can be used in agricultural education courses. The first activity, "Using Ethanol as a Solvent," is intended to help students describe the characteristics of a solvent, to enhance student observational skills dealing with physical changes, and to demonstrate the acid or alkaline…
Developing Students' Futures Thinking in Science Education
ERIC Educational Resources Information Center
Jones, Alister; Buntting, Cathy; Hipkins, Rose; McKim, Anne; Conner, Lindsey; Saunders, Kathy
2012-01-01
Futures thinking involves a structured exploration into how society and its physical and cultural environment could be shaped in the future. In science education, an exploration of socio-scientific issues offers significant scope for including such futures thinking. Arguments for doing so include increasing student engagement, developing students'…
Differences across Academic Subjects in Teachers' Attitudes about Professional Development
ERIC Educational Resources Information Center
Torff, Bruce; Byrnes, Katherine
2011-01-01
A survey study examined how attitudes about professional development (PD) vary among teachers of different subjects. Elementary teachers were more supportive of PD than health and physical education, social studies, and science teachers; special education teachers were more supportive of PD than social studies and science teachers; and five…
ERIC Educational Resources Information Center
Fomichova, Kseniya; Kazama, Futaba; Misonou, Taku
2014-01-01
This study analyses and evaluates the impact of two recent (2001 and 2010) education reforms on Ukrainian secondary schools, and, in particular, on science subjects (physics, chemistry, biology and Earth science), in terms of the structural, quantitative and qualitative characteristics of the reformed disciplines. It also examines societal…
Theater in Physics Teacher Education
ERIC Educational Resources Information Center
van den Berg, Ed
2009-01-01
Ten years ago I sat down with the first batch of students in our science/math teacher education program in the Philippines, then third-year students, and asked them what they could do for the opening of the new science building. One of them pulled a stack of papers out of his bag and put it in front of me: a complete script for a science play!…
ERIC Educational Resources Information Center
Caussarieu, Aude; Tiberghien, Andrée
2017-01-01
The understanding of measurement is related to the understanding of the nature of science--one of the main goals of current international science teaching at all levels of education. This case study explores how a first-year university physics course deals with measurement uncertainties in the light of an epistemological analysis of measurement.…
Science Anxiety and Gender in Students Taking General Education Science Courses
NASA Astrophysics Data System (ADS)
Udo, M. K.; Ramsey, G. P.; Mallow, J. V.
2004-12-01
Earlier studies [Mallow, J. V. (1994). Gender-related science anxiety: A first binational study. Journal of Science Education and Technology 3: 227-238; Udo, M. K., Ramsey, G. P., Reynolds-Alpert, S., and Mallow, J. V. (2001). Does physics teaching affect gender-based science anxiety? Journal of Science Education and Technology 10: 237-247] of science anxiety in various student cohorts suggested that nonscience majors were highly science anxious (SA), regardless of what science courses they were taking. In this study, we investigated science anxiety in a cohort consisting mostly of nonscience majors taking general education science courses. Regression analysis shows that the leading predictors of science anxiety are (i) nonscience anxiety and (ii) gender, as they were for different cohorts in the earlier studies. We confirm earlier findings that females are more SA than males. Chi-square analysis of acute science anxiety shows an amplification of these differences. We found statistically significant levels of science anxiety in humanities and social science students of both genders, and gender differences in science anxiety, despite the fact that the students were all enrolled in general education science courses specifically designed for nonscience majors. We found acute levels of anxiety in several groups, especially education, nursing, and business majors. We describe specific interventions to alleviate science anxiety.
Vilia, Paulo N; Candeias, Adelinda A; Neto, António S; Franco, Maria Da Glória S; Melo, Madalena
2017-01-01
Science education plays a critical role as political priority due to its fundamental importance in engaging students to pursue technological careers considered essential in modern societies, in order to face scientific development challenges. High-level achievement on science education and positive attitudes toward science constitutes a crucial challenge for formal education. Several studies indicate close relationships between students' attitudes, cognitive abilities, and academic achievement. The main purpose of this study is to analyze the impact of student's attitudes toward the school discipline of Physics and Chemistry and their reasoning abilities on academic achievement on that school subject, among Portuguese 9th grade students using the data collected during the Project Academic Performance and Development: a longitudinal study on the effects of school transitions in Portuguese students (PTDC/CPE-CED/104884/2008). The participants were 470 students (267 girls - 56.8% and 203 boys - 43.2%), aged 14-16 years old (μ = 14.3 ± 0.58). The attitude data were collected using the Attitude toward Physics-Chemistry Questionnaire (ATPCQ) and, the Reasoning Test Battery (RTB) was used to assess the students reasoning abilities. Achievement was measured using the students' quarterly (9-week) grades in the physics and chemistry subject. The relationships between the attitude dimensions toward Physics-chemistry and the reasoning dimensions and achievement in each of the three school terms were assessed by multiple regression stepwise analyses and standardized regression coefficients (β), calculated with IBM SPSS Statistics 21 software. Both variables studied proved to be significant predictor variables of school achievement. The models obtained from the use of both variables were always stronger accounting for higher proportions of student's grade variations. The results show that ATPCQ and RTB had a significantly positive relationship with student's achievement in Physics-chemistry, indicating that both attitudinal and cognitive variables should be taken into account on science education as well as in educative intervention.
Vilia, Paulo N.; Candeias, Adelinda A.; Neto, António S.; Franco, Maria Da Glória S.; Melo, Madalena
2017-01-01
Science education plays a critical role as political priority due to its fundamental importance in engaging students to pursue technological careers considered essential in modern societies, in order to face scientific development challenges. High-level achievement on science education and positive attitudes toward science constitutes a crucial challenge for formal education. Several studies indicate close relationships between students’ attitudes, cognitive abilities, and academic achievement. The main purpose of this study is to analyze the impact of student’s attitudes toward the school discipline of Physics and Chemistry and their reasoning abilities on academic achievement on that school subject, among Portuguese 9th grade students using the data collected during the Project Academic Performance and Development: a longitudinal study on the effects of school transitions in Portuguese students (PTDC/CPE-CED/104884/2008). The participants were 470 students (267 girls – 56.8% and 203 boys – 43.2%), aged 14–16 years old (μ = 14.3 ± 0.58). The attitude data were collected using the Attitude toward Physics-Chemistry Questionnaire (ATPCQ) and, the Reasoning Test Battery (RTB) was used to assess the students reasoning abilities. Achievement was measured using the students’ quarterly (9-week) grades in the physics and chemistry subject. The relationships between the attitude dimensions toward Physics-chemistry and the reasoning dimensions and achievement in each of the three school terms were assessed by multiple regression stepwise analyses and standardized regression coefficients (β), calculated with IBM SPSS Statistics 21 software. Both variables studied proved to be significant predictor variables of school achievement. The models obtained from the use of both variables were always stronger accounting for higher proportions of student’s grade variations. The results show that ATPCQ and RTB had a significantly positive relationship with student’s achievement in Physics-chemistry, indicating that both attitudinal and cognitive variables should be taken into account on science education as well as in educative intervention. PMID:28701978
NASA Astrophysics Data System (ADS)
Höttecke, Dietmar; Silva, Cibelle Celestino
2011-03-01
Teaching and learning with history and philosophy of science (HPS) has been, and continues to be, supported by science educators. While science education standards documents in many countries also stress the importance of teaching and learning with HPS, the approach still suffers from ineffective implementation in school science teaching. In order to better understand this problem, an analysis of the obstacles of implementing HPS into classrooms was undertaken. The obstacles taken into account were structured in four groups: 1. culture of teaching physics, 2. teachers' skills, epistemological and didactical attitudes and beliefs, 3. institutional framework of science teaching, and 4. textbooks as fundamental didactical support. Implications for more effective implementation of HPS are presented, taking the social nature of educational systems into account.
VDOE :: Standards of Learning (SOL) and Testing
Health History & Social Science Family Life Fine Arts Foreign Language Mathematics Physical Education the end of each grade or course in English, mathematics, science, history/social science and other subjects. SOL tests in reading, writing, mathematics, science and history/social science measure the
Brains--Computers--Machines: Neural Engineering in Science Classrooms
ERIC Educational Resources Information Center
Chudler, Eric H.; Bergsman, Kristen Clapper
2016-01-01
Neural engineering is an emerging field of high relevance to students, teachers, and the general public. This feature presents online resources that educators and scientists can use to introduce students to neural engineering and to integrate core ideas from the life sciences, physical sciences, social sciences, computer science, and engineering…
What History of Science, How Much, and Why?
ERIC Educational Resources Information Center
Russell, Thomas L.
1981-01-01
Summarizes positions regarding the role of the history of science in science education since 1950. Also considers the present state of research on attitudes toward science. Discusses data from Harvard Project Physics, a curriculum project making significant use of history of science materials. Makes recommendations regarding teaching, materials…
ERIC Educational Resources Information Center
Menon, Deepika; Sadler, Troy D.
2018-01-01
Self-efficacy beliefs play a major role in determining teachers' science teaching practices and have been a topic of great interest in the area of preservice science teacher education. This qualitative study investigated factors that influenced preservice elementary teachers' science teaching self-efficacy beliefs in a physical science content…
"Physics and Life" - Teachers Meet Scientists at Major EIROforum Event [
NASA Astrophysics Data System (ADS)
2003-11-01
More than 400 selected delegates from 22 European countries will take part in "Physics on Stage 3" , organised by the EIROforum [1] research organisations (CERN, EFDA, EMBL, ESA, ESO, ESRF, ILL) at the ESA ESTEC site (Noordwijk, The Netherlands). It is the culmination of a year-long educational programme and is a central event during the EC-sponsored European Science and Technology Week (November 8-15, 2003). Following the vastly successful preceeding events in 2000 and 2002, the main theme this year is "Physics and Life", reflecting the decision to broaden the Physics on Stage activities to encompass more of the natural sciences within an interdisciplinary approach. As before, European teachers, scientists, curricula organisers and others connected to the national education systems in Europe will gather with the main goal of exploring solutions to stimulate the interest of young people in science, by means of exciting and innovative teaching methods and materials. The rich one-week programme has many components: spectacular and original performances by students and professional actors, intensive encounters at a central fair where each country will present the latest developments from its teaching community at their stands, workshops about a host of crucial themes related to the central mission of this programme, seminars where EIROforum scientists and experienced high school teachers get together to discuss new teaching opportunities based on the latest results from front-line research projects at Europe's leading science centres, as well as a publishers fair that will also serve as an international exchange for new educational materials. A mystery cultural event will surprise everyone with its originality. And last but not least, the annual European Science Teaching Awards - the highest distinction in this field - will be presented at the end of the meeting. "Physics on Stage" is a joint project organised by EIROforum, together with the European Physical Society (EPS) and the European Association for Astronomy Education (EAAE) . The project is funded in part by the European Commission and takes place under the auspices of the European Science and Technology Week 2003. It is directed by the EIROforum Working Group on Outreach that brings together key members of the seven organisations' respective outreach departments. The "Physics on Stage 3" festival will be opened on Monday, November 10, by His Royal Highness, Prince Johan Friso of the Netherlands. Among the distinguished guests will also be Her Excellency, Mrs. Maria van der Hoeven, the Dutch Minister of Education, Culture and Science, as well as several Directors-General of the EIROforum organisations. This "Physics on Stage 3" festival is the most visible event within a year-long programme with the very active involvement of National Committees in two dozen European countries, each of which organised national events or competitions, during which the 400 delegates to the festival were selected for their outstanding projects to promote science teaching. Among the many entries, for example, two young physicists from Germany focus on the beauty of physical phenomena, producing fractals and demonstrating the "Theremin", the only musical instrument played without being touched. In another demonstration, a team from the UK explore the nature of sound and the theme of genetics through drama, music and physical theatre. In this third international festival of physics education, biological and biochemical themes will also play a major role. As usual, the colourful centrepiece of the week is the Fair. Every country has its own stand where delegates show their new, exciting and surprising projects, innovative software, elegant experiments, etc. In this highly inspiring atmosphere, the teachers exchange practical experience and insights, learning from each other and preparing themselves to bring back to their respective countries a rich harvest of new ideas and inspiration for better teaching of science. "Physics on Stage 3" is thus a unique international event, both in terms of international exchange, opportunities for collaboration, as well as encounters between the still all too separate worlds of school education and state-of-the-art science and technology. The organisers cordially invite journalists to take part in this spectacular event, an extraordinary opportunity in political as well as in cultural, scientific and visual terms.
The creation of science projects in the physics teachers preparation
NASA Astrophysics Data System (ADS)
Horváthová, Daniela; Rakovská, Mária; Zelenický, Ľubomír
2017-01-01
Terms - project, projecting and the method of projecting - are nowadays frequently used in different relations. Those terms, especially as methods (of a cognitive process), are also transferred to the educational process. Before a new educational method comes to practice, the teacher should be familiar with it and preferably when it is done so during his university studies. An optional subject called Physics in a system of science subjects has been included into physics curricula for students of the fourth year of their studies at the Faculty of Science of Constantine the Philosopher University in Nitra. Its task is to make students aware of ways how to coordinate knowledge and instructions presented in these subjects through analysis of curricula and textbooks. As a part of their seminars students are asked to create integrated tasks and experiments which can be assessed from the point of view of either physics or chemistry or biology and which can motivate pupils and form their complex view on various phenomena in the nature. Therefore the article discusses theoretical and also practical questions related to experience that originates from placing the mentioned method and the subject Physics in a system of science subjects into the preparation of a natural sciences teacher in our workplace.
"Here, There, and Everywhere": Connecting Science Across The Universe
NASA Astrophysics Data System (ADS)
Watzke, Megan; Slane, P. O.; Arcand, K. K.; Lestition, K.; Edmonds, P.; Tucker, W. H.
2013-04-01
"Here, There, and Everywhere" (HTE) is a program -- conceived and developed by the Chandra Education and Public Outreach group -- that consists of a series of exhibitions, posters, and supporting hands-on activities that utilize analogies in the teaching of science, engineering, and technology to provide multi-generational and family-friendly content in English and Spanish to small community centers, libraries, under-resourced small science centers. The purpose of the program is to connect crosscutting science content (in Earth, atmospheric and planetary sciences and astrophysics) with everyday phenomena, helping to demonstrate the universality of physical laws and the connection between our everyday world and the universe as a whole to members of the public who may not identify strongly with science. The program utilizes multimodal content delivery (physical exhibits and handouts, interpretive stations, facilitated activities for educators as well as online materials) hosted by under-served locations as identified by previous partnerships as well as through advertisement of opportunities.
Teacher content knowledge in the context of science education reform
NASA Astrophysics Data System (ADS)
Doby, Janice Kay
1997-12-01
The decline of science education in elementary schools has been well documented. While numerous efforts have been made for the purpose of reforming science education, most of those efforts have targeted science programs, assessment techniques, and setting national, state, and local standards, stressing teacher accountability for meeting those standards. However, inadequate science content knowledge of preservice teachers limits their ability to master effective teaching strategies, and also may foster negative attitudes toward science and science teaching. It is, therefore, highly unlikely that any significant reform in science education will be realized until this major underlying problem is addressed and resolved. The purpose of this study was to examine the effects of an experimental elementary science methods course, which employs the use of laser videodisc technology and instructional implications from cognitive science and instructional design, in terms of preservice teacher gains in Earth and physical science content knowledge and locus of control in science. The experimental elementary science methods course was compared to a more traditional approach to the same course which focused primarily on methods of teaching in the physical sciences and other science domains. The experimental and traditional groups were compared before and after treatment in terms of preservice teachers' content knowledge in Earth and physical science and locus ofcontrol in science. Results indicated that the experimental and traditional groups were comparable prior to treatment. The experimental group (89 preservice teachers) responded correctly to 45% of the items on the Elementary Science Concepts Test (ESCT) pretest and the traditional group (78 preservice teachers) responded correctly to 42% of the pretest items, the difference between groups being nonsignificant. Further, the experimental and traditional groups scored similarly on the pre-assessment of locus of control in science with scores on the Preservice Teacher Information and Science Opinion Questionnaire (ISOQ) of 162.12 and 163.65, respectively, the difference also being nonsignificant. The pre- and post-administrations of both the ESCT and ISOQ were all found to be statistically significant (F (4, 162) = 271.18343, p<0.05) in predicting group membership. Analyses of variance indicated significantly greater gains in Earth and physical science content knowledge (F (1,165) = 743.7746, p<0.025) and locus of control in science (F (1,165) = 45.7477, p<0.025) for the experimental group compared to the traditional group. A significant difference (F = (2,162) = 31.82279, p<0.05) was found between the combined effect of locus of control in science and Earth and physical science content knowledge in respect to treatment, indicating that the curriculum and instructional design of the experimental course significantly influenced preservice teachers' science content knowledge and locus of control in science. Suggestions for further research included: (a) determining whether the results of this present research may also apply to inservice teachers, (b) determining the effects of such preservice and inservice training on actual classroom practice, (c) relating increased science knowledge with improvement in science lesson planning and mastery of pedagogical skills, and (d) more detailed analysis of instructional implications from cognitive science and instructional design in regard to their application to the teaching of science (as well as other content areas).
"Physics and Life" for Europe's Science Teachers
NASA Astrophysics Data System (ADS)
2003-04-01
The EIROforum Contribution to the European Science and Technology Week 2003 [Physics on Stage 3 Logo] What do you know about modern science? Was your school science teacher inspiring and enthusiastic? Or was physics class a good time to take a nap? Unfortunately, many young Europeans don't have the fondest memories of science in school, and the result is a widespread disinterest and lack of understanding of science among adults. This has become a real problem - especially at a time when science is having a growing impact on our daily lives, and when society needs more scientists than ever! What can be done? Some of Europe's leading research organisations, scientists and teachers have put their heads together and come up with a unique approach called "Physics on Stage" . This will be the third year that these institutes, with substantial support from the European Commission, are running this project - attacking the problem at its roots. EIROforum and "Physics on Stage 3" [EIROforum Logo] "Physics On Stage 3" is based on the very successful "Physics On Stage" concept that was introduced in 2000. It is directed towards science teachers and students in Europe's secondary schools. It is a part of the year-long build-up to the European Science and Technology Week 2003 (3-9 November), an initiative by the European Commission, and is run by seven of Europe's leading Intergovernmental Research Organizations (the EIROforum) [1]. The project addresses the content and format of science teaching in European schools , seeking to improve the quality of teaching and to find new ways to stimulate pupils to take an interest in science. Innovative and inspirational science teaching is seen as a key component to attract young people to deal with scientific issues, whether or not they finally choose a career in science. Hence, "Physics On Stage 3" aims to stimulate the interest of young people through the school teachers, who can play a key role in reversing the trend of falling interest in science and current scientific research. The goals of "Physics On Stage 3" [EWST Logo] "Physics on Stage 3" also aims to facilitate the exchange of good practice and innovative ideas among Europe's science teachers and to provide a forum for a broad debate among educators, administrators and policy-makers about the key problems in science education today. Moreover, it will make available the considerable, combined expertise of the EIROforum organisations to the European scientific teaching community, in order to promote the introduction of "fresh" science into the curricula and thus to convey a more realistic image of modern science to the pupils. "Physics on Stage 3" is concerned with basic science and also with the cross-over between different science disciplines - a trend becoming more and more important in today's science, which is not normally reflected in school curricula. A key element of the programme is to give teachers an up-to-date "insiders'" view of what is happening in science and to tell them about new, highly-diverse and interesting career opportunities for their pupils. Theme of the activities The theme of "Physics on Stage" this year is "Physics and Life" , reflecting the decision to broaden the Physics on Stage activities to encompass all the natural sciences. Including other sciences will augment the already successful concept, introducing a mixture of cross-over projects that highlight the multidisciplinary aspects of modern science. Among the many subjects to be presented are radiation, physics and the environment, astrobiology (the search for life beyond earth), complex systems, self-organising systems, sports science, the medical applications of physics, mathematics and epidemiology, etc. The main elements National activities "Physics on Stage 3" has already started and National Steering Committees in 22 countries, composed of eminent science teachers, scientists, administrators and others involved in setting school curricula, are now preparing related programs in their countries. Through these national activities, outstanding individuals will be selected to represent their teachers' communities at the final international event, the "Physics on Stage 3" festival. A list of national contact points is attached below. International festival The high-profile "festival" during the European Science and Technology Week 2003 will stimulate the dissemination of successful education tools and methods, identify the most effective ways to support teachers and motivate novel developments in science education. It will take place at the ESA-ESTEC site in Noordwijk (The Netherlands), from November 8 - 15, 2003 . The climax of the event will be the presentation of the European Science Teaching Awards , in recognition of teaching excellence, inspiration and motivation of young people. Online Resource Archive An online archive of the best teaching materials and practices in Europe will be established, forming a unique 'resource centre', which will make available all of the interesting materials identified through the programme and provide a forum for exchange which will last well beyond the duration of the activity. More information Full information about "Physics on Stage 3" is available at the central website: www.physicsonstage.net From here there is also direct connection to the national websites and the many related activities all over Europe. Be sure to check the site at regular intervals for new information about the developments!
From Student of Physics to Historian of Science: T.S. Kuhn's Education and Early Career, 1940-1958
NASA Astrophysics Data System (ADS)
Hufbauer, Karl
2012-12-01
I first show that Kuhn came to have doubts about physics soon after entering college but did not make up his mind to leave the discipline until 1947-1948 when a close association with Harvard's President James B. Conant convinced him of the desirability of an alternative career in the history of science. I go on to maintain that it was realistic for Kuhn to prepare for such a career in essentially autodidactic ways both because he enjoyed Conant's patronage and because he could expect that his credentials in physics would be an asset in this relatively young interdisciplinary specialty. I then suggest that it was through his work as a teacher, researcher, and journeyman gatekeeper in the history of science that Kuhn gradually came to identify with the field. Finally, I argue that his training in physics, his teaching of general-education courses, and his hopes of influencing current philosophy of science helped shape his early practice as a historian of science. By way of epilogue, I briefly consider Kuhn's path from his tenuring at Berkeley in 1958 to the appearance of The Structure of Scientific Revolutions in 1962.
ERIC Educational Resources Information Center
Black, Paul, Ed.
This document is intended for anyone having the responsibility for the policy or the practice of examination and selection systems in physics, whether at the completion stages of secondary education, or the entrance stages of higher education. The book contains 13 chapters written by authors from 11 different countries. Each chapter was written…
ERIC Educational Resources Information Center
Gurbuz, Fatih
2016-01-01
The purpose of this research study is to explore pre-service science teachers' misconceptions on basic astronomy subjects and to examine the effect of micro teaching method supported by educational technologies on correcting misconceptions. This study is an action research. Semi- structured interviews were used in the study as a data collection…
ERIC Educational Resources Information Center
BOULIND, HENRY F.
THE DEVELOPMENT OF A NEW AND MORE ACCEPTABLE SCHEME OF TEACHING ELECTRICITY IS THE OBJECTIVE OF THE PHYSICS PANEL OF THE EDUCATION COMMITTEE OF THE ASSOCIATION FOR SCIENCE EDUCATION. IN CONTRAST TO THE "PARALLEL FIELD" APPROACH OF AN EARLIER PUBLICATION IN 1954, THE APPROACH IN THIS BOOK IS BASED ON RADIAL FIELDS, POINT CHARGES IN…
Patterns in Nature: Challenging Secondary Students to Learn about Physical Laws
ERIC Educational Resources Information Center
Taber, Keith S.
2011-01-01
Teaching about the nature of science is seen as a priority within science education, and has also been highlighted as a suitable context for challenging the most able ("gifted") learners at secondary school level. This article discusses a practical session designed to introduce the idea of physical (natural) laws. The session asks…
Making Physics Fun: Key Concepts, Classroom Activities, and Everyday Examples, Grades K-8
ERIC Educational Resources Information Center
Prigo, Robert
2007-01-01
Teaching physical science in the elementary and middle grades can be challenging for busy teachers faced with growing science demands and limited classroom resources. Robert Prigo provides fun and engaging activities using safe, available materials that educators can easily incorporate into lesson plans. Extensive examples, sample inquiry…
Educating Scientifically - Advances in Physics Education Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finkelstein, Noah
It is now fairly well documented that traditionally taught, large-scale introductory physics courses fail to teach our students the basics. In fact, often these same courses have been found to teach students things we do not want. Building on a tradition of research in physics, the physics education research community has been researching the effects of educational practice and reforms at the undergraduate level for many decades. From these efforts and those within the fields of education, cognitive science, and psychology we have learned a great deal about student learning and environments that support learning for an increasingly diverse populationmore » of students in the physics classroom. This talk will introduce some of the ideas from physics education research, discuss a variety of effective classroom practices/ surrounding educational structures, and begin to examine why these do (and do not) work. I will present both a survey of physics education research and some of the exciting theoretical and experimental developments emerging from the University of Colorado.« less
Educating Scientifically - Advances in Physics Education Research
Finkelstein, Noah [University of Colorado, Colorado, USA
2017-12-09
It is now fairly well documented that traditionally taught, large-scale introductory physics courses fail to teach our students the basics. In fact, often these same courses have been found to teach students things we do not want. Building on a tradition of research in physics, the physics education research community has been researching the effects of educational practice and reforms at the undergraduate level for many decades. From these efforts and those within the fields of education, cognitive science, and psychology we have learned a great deal about student learning and environments that support learning for an increasingly diverse population of students in the physics classroom. This talk will introduce some of the ideas from physics education research, discuss a variety of effective classroom practices/ surrounding educational structures, and begin to examine why these do (and do not) work. I will present both a survey of physics education research and some of the exciting theoretical and experimental developments emerging from the University of Colorado.
Propagation and Interaction of Edge Dislocation (Kink) in the Square Lattice
NASA Astrophysics Data System (ADS)
Jia, Li-Ping; Jasmina, T´; Duan, Wen-Shan
2015-04-01
Not Available Supported by the National Magnetic Confinement Fusion Science Program of China under Grant No 2014GB104002, the Strategic Priority Research Program of Chinese Academy of Sciences under Grant No XDA03030100, the National Natural Science Foundation of China under Grant Nos 11275156 and 11304324, the Open Project Program of State Key Laboratory of Theoretical Physics of Institute of Theoretical Physics of Chinese Academy of Sciences under Grant No Y4KF201CJ1, and the Serbian Ministry of Education and Science under Grant No III-45010.
Information-Technology Based Physics Education
NASA Astrophysics Data System (ADS)
Kim, J. S.; Lee, K. H.
2001-04-01
Developing countries emphasize expansion of the educated population but demand for quality improvement follows later. Current science education reform is driven in part by post cold war restructuring of the global economy and associated focus on the education of a more scientifically literate society, due to the industrial change from labor-intensive to high-technology type, and the societal change inherent in the present information era. Industry needs employees of broad and flexible background with inter disciplinary training, engineers with better physics training, and well trained physicists. Education researches have proved that active-learning based methods are superior to the traditional methods and the information technology (IT) has lot to offer in this. Use of IT for improving physics education is briefly discussed with prospects for collaboration in the Asia-Pacific region via Asian Physics Education Network (ASPEN), UNESCO University Foundation Course in Physics (UUFCP), etc.
Rethinking Technology-Enhanced Physics Teacher Education: From Theory to Practice
ERIC Educational Resources Information Center
Milner-Bolotin, Marina
2016-01-01
This article discusses how modern technology, such as electronic response systems, PeerWise system, data collection and analysis tools, computer simulations, and modeling software can be used in physics methods courses to promote teacher-candidates' professional competencies and their positive attitudes about mathematics and science education. We…
Disciplinary Literacy and Multimodal Text Design in Physical Education
ERIC Educational Resources Information Center
Chandler-Olcott, Kelly
2017-01-01
This article argues that scholarship on literacy in and across the disciplines has disproportionately focused on the core subjects of English, Mathematics, Science, and Social Studies rather than on "specialist" subjects such as Physical Education. This disparity in emphasis has provided little guidance to specialist teachers seeking to…
ERIC Educational Resources Information Center
Watkins, Jessica; Coffey, Janet E.; Redish, Edward F.; Cooke, Todd J.
2012-01-01
Educators and policy makers have advocated for reform of undergraduate biology education, calling for greater integration of mathematics and physics in the biology curriculum. While these calls reflect the increasingly interdisciplinary nature of biology research, crossing disciplinary boundaries in the classroom carries epistemological challenges…
Assessing Conceptual Knowledge for the Physics of Semiconductors
ERIC Educational Resources Information Center
Ene, Emanuela
2013-01-01
Following the trend in science and engineering education generated by the visible impact created by the Force Concept Inventory (FCI), the investigator developed a Physics of Semiconductors Concept Inventory (PSCI). PSCI fills the need of standardized concept tests for undergraduate education in photonics and electrical engineering. The structure…
It's NOT rocket science: rethinking our metaphors for research in health professions education.
Regehr, Glenn
2010-01-01
The health professional education community is struggling with a number of issues regarding the place and value of research in the field, including: the role of theory-building versus applied research; the relative value of generalisable versus contextually rich, localised solutions, and the relative value of local versus multi-institutional research. In part, these debates are limited by the fact that the health professional education community has become deeply entrenched in the notion of the physical sciences as presenting a model for 'ideal' research. The resulting emphasis on an 'imperative of proof' in our dominant research approaches has translated poorly to the domain of education, with a resulting denigration of the domain as 'soft' and 'unscientific' and a devaluing of knowledge acquired to date. Similarly, our adoption of the physical sciences''imperative of generalisable simplicity' has created difficulties for our ability to represent well the complexity of the social interactions that shape education and learning at a local level. Using references to the scientific paradigms associated with the physical sciences, this paper will reconsider the place of our current goals for education research in the production and evolution of knowledge within our community, and will explore the implications for enhancing the value of research in health professional education. Reorienting education research from its alignment with the imperative of proof to one with an imperative of understanding, and from the imperative of simplicity to an imperative of representing complexity well may enable a shift in research focus away from a problematic search for proofs of simple generalisable solutions to our collective problems, towards the generation of rich understandings of the complex environments in which our collective problems are uniquely embedded.
A Research-Based Science Teacher Education Program for a Competitive Tomorrow
NASA Astrophysics Data System (ADS)
Clary, R. M.; Hamil, B.; Beard, D. J.; Chevalier, D.; Dunne, J.; Saebo, S.
2009-12-01
A united commitment between the College of Education and the College of Arts and Sciences at Mississippi State University, in partnership with local high-need school districts, has the goal of increasing the number of highly qualified science teachers through authentic science research experiences. The departments of Geosciences, Biological Sciences, Chemistry, and Physics offer undergraduate pre-service teachers laboratory experiences in science research laboratories, including 1) paleontological investigations of Cretaceous environments, 2) NMR studies of the conformation of tachykinin peptides, 3) FHA domains as regulators of cell signaling in plants, 4) intermediate energy nuclear physics studies, and 5) computational studies of cyclic ketene acetals. Coordinated by the Department of Curriculum and Instruction, these research experiences involve extensive laboratory training in which the pre-teacher participants matriculate through a superior education curriculum prior to administrating their individual classrooms. Participants gain valuable experience in 1) performing literature searches and reviews; 2) planning research projects; 3) recording data; 4) presenting laboratory results effectively; and 5) writing professional scientific manuscripts. The research experience is available to pre-service teachers who are science education majors with a declared second major in a science (i.e., geology, biology, physics, or chemistry). Students are employed part-time in various science university laboratories, with work schedules arranged around their individual course loads. While the focus of this endeavor is upon undergraduate pre-service teachers, the researchers also target practicing science teachers from the local high-need school districts. A summer workshop provides practicing science teachers with a summative laboratory experience in several scientific disciplines. Practicing teachers also are provided lesson plans and ideas to transform their classrooms into active-learning environments which focus upon authentic research. Although in its first year, this program has resulted in several requests from workshop participants for additional information and researcher engagement for individual classrooms. The pre-service teachers are highly engaged, and some participants have presented research at peer-reviewed professional conferences. The goals for the enrolled pre-service and practicing teachers include the development of critical thinking problem-solving skills, and an increase in motivation and excitement for science teaching. The extensive science research background and enthusiasm should translate directly into Mississippi’s high-need science classrooms, and increase the number of K-12 students interested in STEM education as a major.
Teacher Turnover in Eight Cognate Areas: National Trends and Predictors.
ERIC Educational Resources Information Center
Boe, Erling E.; Bobbitt, Sharon A.; Cook, Lynne H.; Barkanic, Gema; Maislin, Greg
This report contains national trend and predictor data for the turnover of K-12 public school teachers in eight cognate areas: general elementary education; mathematics and science education; language education; social studies education; arts, physical, and health education; business and vocational education; other general education; and special…
NASA Astrophysics Data System (ADS)
Spencer, V. K.; Solie, D. J.
2010-12-01
Bush Physics for the 21st Century (BP21) is a distance education physics course offered through the Interior Aleutians Campus of the University of Alaska Fairbanks. It provides an opportunity for rural Alaskan high school and community college students, many of whom have no other access to advanced science courses, to earn university science credit. The curriculum is mathematically rigorous and includes a laboratory component to prepare students who wish to pursue science and technology careers. The laboratory component has been developed during the past 3 years. Students learn lab safety, basic laboratory technique, experiment components and group collaboration. Experiments have place-based themes and involve skills that translate to rural Alaska when possible. Preliminary data on the general effectiveness of the labs have been analyzed and used to improve the course.
Physical experience enhances science learning.
Kontra, Carly; Lyons, Daniel J; Fischer, Susan M; Beilock, Sian L
2015-06-01
Three laboratory experiments involving students' behavior and brain imaging and one randomized field experiment in a college physics class explored the importance of physical experience in science learning. We reasoned that students' understanding of science concepts such as torque and angular momentum is aided by activation of sensorimotor brain systems that add kinetic detail and meaning to students' thinking. We tested whether physical experience with angular momentum increases involvement of sensorimotor brain systems during students' subsequent reasoning and whether this involvement aids their understanding. The physical experience, a brief exposure to forces associated with angular momentum, significantly improved quiz scores. Moreover, improved performance was explained by activation of sensorimotor brain regions when students later reasoned about angular momentum. This finding specifies a mechanism underlying the value of physical experience in science education and leads the way for classroom practices in which experience with the physical world is an integral part of learning. © The Author(s) 2015.
NASA Astrophysics Data System (ADS)
Rahayu, P. P.; Masykuri, M.; Soeparmi
2018-04-01
Professional Physics teacher must be able to manage science learning process by associating science itself with the daily life. At first the teacher must have competency in the ability of science literacy. The target of this research is vocational school Physics teachers for the purpose to describe their ability on science literacy. This research is a survey research using test method. The test instrument is The NOSLiT by Wenning.Research results are: 1) Scientific Nomenclature : 38.46 %, 2) Basic experimental and observational abilities : 38.46 %, 3) Rules of scientific evidence : 0%, 4) Postulate science: 15.38%, 5) scientific disposition: 7. 69%.Conclusion: The result of each indicator shows that the ability of science literacy of vocational school Physics teachers has not met the expectations yet. It’s can be used as the reflection for education experts to improve their science literacy ability so that can be applied to the learning process that directly or indirectly will have an impact on improving the students’ science literacy.
Science Books, A Quarterly Review, Volume 8 Number 3.
ERIC Educational Resources Information Center
American Association for the Advancement of Science, Washington, DC.
This quarterly publication is intended to acquaint students and teachers with new trade books, textbooks, and reference works in the pure and applied sciences. A listing of detailed subject fields is provided including psychology, sociology, economics, education, physical sciences, natural sciences, engineering, agriculture, geography and…
ERIC Educational Resources Information Center
Kendig, Catherine
2013-01-01
Hasok Chang ("Sci Educ" 20:317-341, 2011) shows how the recovery of past experimental knowledge, the physical replication of historical experiments, and the extension of recovered knowledge can increase scientific understanding. These activities can also play an important role in both science and history and philosophy of science…
Curbing "Math Anxiety" with Galileo While Teaching Physicists, too
NASA Astrophysics Data System (ADS)
Schwartz, Brian P.
2006-12-01
Carthage College's introductory physics course caters to both freshmen in our program and students in general education. While "Understandings of Physics" is a conceptual overview of our discipline, physical science is necessarily quantitative. Galileo's "Dialogue Concerning the Two New Sciences" provides us with a novel way to teach the fundamentals of motion both to students who "fear" mathematics, as well as those who are adept at solving algebraic equations.
What Is Required In Uganda? The 2007 Report Of The Japan Sci-edu. Support Project
NASA Astrophysics Data System (ADS)
Uchida, Tatsuhiro
2010-07-01
The development of ability for technology and invention is required as self-sustaining growth of science and technology in Asian and African developing countries. Science education that connects to the real world is the required education for the self-sustaining growth. But in fact, it is very common to study for the entrance examination. According to C. Camilla, S. and Sjo/berg, [The Re-emergence of Values in the Science Curriculum. Rotterdam, 2007, Sense Publishers], Ugandan students are the most interested ones in science and technology (I would like to be a scientist, I would like to get a job in technology) in the world. Science education should mortgages future of youth. Especially science education of developing countries should be directly connected to the real world. Because they need a lot of engineers as skilled worker, we implemented physics education that was directly connected with manufacturing by the sci-edu. support project in Uganda. The best results were achieved by contrivance in spite of poverty area. Our education method gave one form of New Science Education in Asia and Africa.
"The Physics of Life," an Undergraduate General Education Biophysics Course
ERIC Educational Resources Information Center
Parthasarathy, Raghuveer
2015-01-01
Improving the scientific literacy of non-scientists is an important aim, both because of the ever-increasing impact of science on our lives and because understanding science enriches our experience of the natural world. One route to improving scientific literacy is via general education undergraduate courses--i.e. courses for students not majoring…
Secondary Physical Science Teachers' Conceptions of Science Teaching in a Context of Change
ERIC Educational Resources Information Center
Taylor, Dale L.; Booth, Shirley
2015-01-01
Pre-service teachers enter initial teacher education programmes with conceptions of teaching gleaned from their own schooling. These conceptions, which include teachers' beliefs, may be resistant to change, which is a challenge in contexts where teacher educators hope that teachers will teach in ways different from their own schooling. Conceptions…
ERIC Educational Resources Information Center
Ullrich, Heiner
2000-01-01
States that the educational mission of instruction in natural science is still not clearly defined. Explains that the unclear mission is revealed by the situation in instruction in physics today as well as by the scholastic achievement in this field. (CMK)
Using Analogies in Teaching Physics: A Study on Latvian Teachers' Views and Experience
ERIC Educational Resources Information Center
Jonane, Lolita
2015-01-01
The role of analogies as tools for teaching difficult science concepts has been widely discussed in science education. The application of analogies in the context of sustainable education involves richer potential. The purposeful use of appropriate analogies can facilitate analogical thinking and transfer skills, as well as develop abilities which…
NASA Astrophysics Data System (ADS)
1999-09-01
Physics teacher Andrew Morrison from High Pavement College in Nottingham has recently been appointed as Schools' officer for particle physics by the Particle Physics and Astronomy Research Council, as part of the Council's Public Understanding of Science programme. As well as his role as an experienced physics teacher, Andrew has acted as marketing manager for his college and chair of the Nottinghamshire section of the Association for Science Education. He will now be working two days each week in his new role with PPARC, acting as a link between the science education and research communities, helping researchers develop ideas for promoting particle physics and leading some specific new projects for the production of schools materials. Andrew can be contacted at High Pavement Sixth Form College, Gainsford Crescent, Nottingham NG5 5HT (tel: 0115 916 6165 or e-mail: morrison@innotts.co.uk). On the other side of the Atlantic, an 18 year-old student at Atlee High School in Mechanicsville, Virginia, USA was the recipient of the `1999 Young Scientist of the Year' award. Jakob Harmon submitted a project on magnetic levitation (maglev) in this extracurricular competition organized by PhysLINK.com, a leading Internet authority on physics and engineering education. The prize was a summer placement at Virginia Polytechnic Institute, Blacksburg, where Jakob continued his education in one of the most active maglev research and development groups in the USA. He also received science books and software as part of the award. The PhysLINK.com award was established to recognize, encourage and foster talented high school students in physics and engineering, with the prize being designed to fit the specific needs and aspirations of each individual winner. Details of next year's competition, along with Jakob's project and more about magnetic levitation can be viewed at www.physlink.com or by contacting Anton Skorucak of PhysLINK.com at 11271 Ventura Blvd #299, Studio City, CA 91606, USA (fax: (1) 818 985 2466, e-mail: info@physlink.com).
Recent Science Education Initiatives at the Princeton Plasma Physics Laboratory
NASA Astrophysics Data System (ADS)
Zwicker, Andrew; Dominguez, Arturo; Gershman, Sophia; Guilbert, Nick; Merali, Aliya; Ortiz, Deedee
2013-10-01
An integrated approach to program development and implementation has significantly enhanced a variety of Science Education initiatives for students and teachers. This approach involves combining the efforts of PPPL scientists, educators, research and education fellows, and collaborating non-profit organizations to provide meaningful educational experiences for students and teachers. Our undergraduate internship program continues to have outstanding success, with 72% of our participants going to graduate school and 45% concentrating in plasma physics. New partnerships have allowed us to increase the number of underrepresented students participating in mentored research opportunities. The number of participants in our Young Women's Conference increases significantly each year. Our Plasma Camp workshop, now in its 15th year, recruits outstanding teachers from around the country to create new plasma-centered curricula. Student research in the Science Education Laboratory concentrates on the development of a high-fidelity plasma speaker, a particle dropper for a dusty plasma experiment, microplasmas along liquid surfaces for a variety of applications, an Internet-controlled DC glow discharge source for students, and a Planeterrella for demonstrating the aurora and other space weather phenomenon for the general public.
Stereotyped: investigating gender in introductory science courses.
Lauer, Shanda; Momsen, Jennifer; Offerdahl, Erika; Kryjevskaia, Mila; Christensen, Warren; Montplaisir, Lisa
2013-01-01
Research in science education has documented achievement gaps between men and women in math and physics that may reflect, in part, a response to perceived stereotype threat. Research efforts to reduce achievement gaps by mediating the impact of stereotype threat have found success with a short values-affirmation writing exercise. In biology and biochemistry, however, little attention has been paid to the performance of women in comparison with men or perceptions of stereotype threat, despite documentation of leaky pipelines into professional and academic careers. We used methodologies developed in physics education research and cognitive psychology to 1) investigate and compare the performance of women and men across three introductory science sequences (biology, biochemistry, physics), 2) document endorsement of stereotype threat in these science courses, and 3) investigate the utility of a values-affirmation writing task in reducing achievement gaps. In our study, analysis of final grades and normalized learning gains on content-specific concept inventories reveals no achievement gap in the courses sampled, little stereotype threat endorsement, and no impact of the values-affirmation writing task on student performance. These results underscore the context-dependent nature of achievement gaps and stereotype threat and highlight calls to replicate education research across a range of student populations.
Stereotyped: Investigating Gender in Introductory Science Courses
Lauer, Shanda; Momsen, Jennifer; Offerdahl, Erika; Kryjevskaia, Mila; Christensen, Warren; Montplaisir, Lisa
2013-01-01
Research in science education has documented achievement gaps between men and women in math and physics that may reflect, in part, a response to perceived stereotype threat. Research efforts to reduce achievement gaps by mediating the impact of stereotype threat have found success with a short values-affirmation writing exercise. In biology and biochemistry, however, little attention has been paid to the performance of women in comparison with men or perceptions of stereotype threat, despite documentation of leaky pipelines into professional and academic careers. We used methodologies developed in physics education research and cognitive psychology to 1) investigate and compare the performance of women and men across three introductory science sequences (biology, biochemistry, physics), 2) document endorsement of stereotype threat in these science courses, and 3) investigate the utility of a values-affirmation writing task in reducing achievement gaps. In our study, analysis of final grades and normalized learning gains on content-specific concept inventories reveals no achievement gap in the courses sampled, little stereotype threat endorsement, and no impact of the values-affirmation writing task on student performance. These results underscore the context-dependent nature of achievement gaps and stereotype threat and highlight calls to replicate education research across a range of student populations. PMID:23463226
COMPRES Mineral Physics Educational Modules for Advanced Undergraduates and Graduate Students
NASA Astrophysics Data System (ADS)
Burnley, P. C.; Thomas, S.
2012-12-01
The Consortium for Materials Properties Research in Earth Sciences (COMPRES) is a community-based consortium whose goal is to advance and facilitate experimental high pressure research in the Earth Sciences. An important aspect of this goal is sharing our knowledge with the next generation of researchers. To facilitate this, we have created a group of web-based educational modules on mineral physics topics. The modules reside in the On Cutting Edge, Teaching Mineralogy collection on the Science Education Resource Center (SERC) website. Although the modules are designed to function as part of a full semester course, each module can also stand alone. Potential users of the modules include mineral physics faculty teaching "bricks and mortar" classes at their own institutions, or in distance education setting, mineralogy teachers interested in including supplementary material in their mineralogy class, undergraduates doing independent study projects and graduate students and colleagues in other sub-disciplines who wish to brush up on a mineral physics topic. We used the modules to teach an on-line course entitled "Introduction to Mineral Physics" during the spring 2012 semester. More than 20 students and postdocs as well as 15 faculty and senior scientists participated in the course which met twice weekly as a webinar. Recordings of faculty lectures and student-led discussions of journal articles are now available upon request and edited versions of the lectures will be incorporated into the educational modules. Our experience in creating the modules and the course indicates that the use of 1) community-generated internet-based resources and 2) webinars to enable shared teaching between faculty at different universities, has the potential to both enrich graduate education and create efficiencies for university faculty.;
ERIC Educational Resources Information Center
Clough, Michael P.
2011-01-01
With funding from the United States National Science Foundation, 30 historical short stories designed to teach science content and draw students' attention to the nature of science (NOS) have been created for post-secondary introductory astronomy, biology, chemistry, geology, and physics courses. The project rationale, story development and…
Taking a Scientific Approach to Science Teaching
NASA Astrophysics Data System (ADS)
Pollock, S.
2011-09-01
It is now well-documented that traditionally taught, large-scale introductory science courses often fail to teach our students the basics. In fact, these same courses have been found to teach students things we don't intend. Building on a tradition of research, the physics and astronomy education research communities have been investigating the effects of educational reforms at the undergraduate level for decades. Both within these scientific communities and in the fields of education, cognitive science, psychology, and other social sciences, we have learned a great deal about student learning and environments that support learning for an increasingly diverse population of students. This presentation will discuss a variety of effective classroom practices, (with an emphasis on peer instruction, "clickers," and small group activities), the surrounding educational structures, and examine assessments which indicate when and why these do (and sometimes do not) work. After a broad survey of education research, we will look at some of the exciting theoretical and experimental developments within this field that are being conducted at the University of Colorado. Throughout, we will consider research and practices that can be of value in both physics and astronomy classes, as well as applications to teaching in a variety of environments.
Admission Models for At-Risk Graduate Students in Different Academic Disciplines.
ERIC Educational Resources Information Center
Nelson, C. Van; Nelson, Jacquelyn S.; Malone, Bobby G.
In this study, models were constructed for eight academic areas, including applied sciences, communication sciences, education, physical sciences, life sciences, humanities and arts, psychology, and social sciences, to predict whether or not an at-risk graduate student would be successful in obtaining a master's degree. Records were available for…
Promoting Physical Science to Education Majors: Making Connections between Science and Teaching
ERIC Educational Resources Information Center
Korb, Michele A.; Sirola, Christopher; Climack, Rebecca
2005-01-01
Elementary teachers have been identified as the single most important influence on student's future attitudes and motivations toward science. Research indicates that K-8 science teachers emphasize memorization more than the exploration of questions or critical thought as a result of their college science experiences. The reasons students gradually…
34 CFR 691.1 - Scope and purpose.
Code of Federal Regulations, 2010 CFR
2010-07-01
... undergraduate students who are pursuing eligible majors in the physical, life, or computer sciences, mathematics..., DEPARTMENT OF EDUCATION ACADEMIC COMPETITIVENESS GRANT (ACG) AND NATIONAL SCIENCE AND MATHEMATICS ACCESS TO...
Particle Physics Education Sites
: top 4000 Years of Women in Science - history and biographies of prominent female scientists and biographies of prominent female scientists. African Americans in the Sciences - profiles from the
W.E. Henry Symposium compendium: The importance of magnetism in physics and material science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carwell, H.
This compendium contains papers presented at the W. E. Henry Symposium, The Importance of Magnetism in Physics and Material Science. The one-day symposium was conducted to recognize the achievements of Dr. Warren Elliot Henry as educator, scientist, and inventor in a career spanning almost 70 years. Dr. Henry, who is 88 years old, attended the symposium. Nobel Laureate, Dr. Glenn Seaborg, a friend and colleague for over 40 years, attended the event and shared his personal reminiscences. Dr. Seaborg is Associate Director-At-Large at the Lawrence Berkeley National Laboratory. The Compendium begins with three papers which demonstrate the ongoing importance ofmore » magnetism in physics and material science. Other contributions cover the highlights of Dr. Henry`s career as a researcher, educator, and inventor. Colleagues and former students share insights on the impact of Dr. Henry`s research in the field of magnetism, low temperature physics, and solid state physics; his influence on students as an educator; and his character, intellect and ingenuity, and passion for learning and teaching. They share a glimpse of the environment and times that molded him as a man, and the circumstances under which he made his great achievements despite the many challenges he faced.« less
MO-FG-BRB-02: Debater [medical physics education
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hazle, J.
Building on the energy and excitement of Washington DC in a presidential election year, AAPM will host its own Presidential Debate to better understand the views of the AAPM membership! Past presidents of the AAPM, Drs. Bayouth, Hazle, Herman, and Seibert, will debate hot topics in medical physics including issues facing education, professional practice, and the advancement of science. The moderators, Drs. Brock and Stern, will also draw in topics from Point-Counterpoint articles from the Medical Physics Journals. Wrapping up the debate, the audience will have the opportunity to question the candidates in a town hall format. At the conclusionmore » of this lively debate, the winner will be decided by the audience, so bring your Audience Response Units! Be part of Medical Physics - Decision 2016! Learning Objectives: Understand AAPM members’ views and opinions on issues facing medical physics education Learn AAPM members’ views and opinions on issues facing professional practice Identify AAPM members’ view and opinions on issues facing the advancement of science in medical physics J. Bayouth, Funding support from NCI;Scientific Advisory Board member - ViewRay.« less
MO-FG-BRB-00: AAPM Presidential Debate [medical physics education
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Building on the energy and excitement of Washington DC in a presidential election year, AAPM will host its own Presidential Debate to better understand the views of the AAPM membership! Past presidents of the AAPM, Drs. Bayouth, Hazle, Herman, and Seibert, will debate hot topics in medical physics including issues facing education, professional practice, and the advancement of science. The moderators, Drs. Brock and Stern, will also draw in topics from Point-Counterpoint articles from the Medical Physics Journals. Wrapping up the debate, the audience will have the opportunity to question the candidates in a town hall format. At the conclusionmore » of this lively debate, the winner will be decided by the audience, so bring your Audience Response Units! Be part of Medical Physics - Decision 2016! Learning Objectives: Understand AAPM members’ views and opinions on issues facing medical physics education Learn AAPM members’ views and opinions on issues facing professional practice Identify AAPM members’ view and opinions on issues facing the advancement of science in medical physics J. Bayouth, Funding support from NCI;Scientific Advisory Board member - ViewRay.« less
MO-FG-BRB-04: Debater [Medical physics education
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seibert, J.
Building on the energy and excitement of Washington DC in a presidential election year, AAPM will host its own Presidential Debate to better understand the views of the AAPM membership! Past presidents of the AAPM, Drs. Bayouth, Hazle, Herman, and Seibert, will debate hot topics in medical physics including issues facing education, professional practice, and the advancement of science. The moderators, Drs. Brock and Stern, will also draw in topics from Point-Counterpoint articles from the Medical Physics Journals. Wrapping up the debate, the audience will have the opportunity to question the candidates in a town hall format. At the conclusionmore » of this lively debate, the winner will be decided by the audience, so bring your Audience Response Units! Be part of Medical Physics - Decision 2016! Learning Objectives: Understand AAPM members’ views and opinions on issues facing medical physics education Learn AAPM members’ views and opinions on issues facing professional practice Identify AAPM members’ view and opinions on issues facing the advancement of science in medical physics J. Bayouth, Funding support from NCI;Scientific Advisory Board member - ViewRay.« less
MO-FG-BRB-01: Debater [medical physics education
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayouth, J.
Building on the energy and excitement of Washington DC in a presidential election year, AAPM will host its own Presidential Debate to better understand the views of the AAPM membership! Past presidents of the AAPM, Drs. Bayouth, Hazle, Herman, and Seibert, will debate hot topics in medical physics including issues facing education, professional practice, and the advancement of science. The moderators, Drs. Brock and Stern, will also draw in topics from Point-Counterpoint articles from the Medical Physics Journals. Wrapping up the debate, the audience will have the opportunity to question the candidates in a town hall format. At the conclusionmore » of this lively debate, the winner will be decided by the audience, so bring your Audience Response Units! Be part of Medical Physics - Decision 2016! Learning Objectives: Understand AAPM members’ views and opinions on issues facing medical physics education Learn AAPM members’ views and opinions on issues facing professional practice Identify AAPM members’ view and opinions on issues facing the advancement of science in medical physics J. Bayouth, Funding support from NCI;Scientific Advisory Board member - ViewRay.« less
MO-FG-BRB-03: Debater [medical physics education
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herman, M.
Building on the energy and excitement of Washington DC in a presidential election year, AAPM will host its own Presidential Debate to better understand the views of the AAPM membership! Past presidents of the AAPM, Drs. Bayouth, Hazle, Herman, and Seibert, will debate hot topics in medical physics including issues facing education, professional practice, and the advancement of science. The moderators, Drs. Brock and Stern, will also draw in topics from Point-Counterpoint articles from the Medical Physics Journals. Wrapping up the debate, the audience will have the opportunity to question the candidates in a town hall format. At the conclusionmore » of this lively debate, the winner will be decided by the audience, so bring your Audience Response Units! Be part of Medical Physics - Decision 2016! Learning Objectives: Understand AAPM members’ views and opinions on issues facing medical physics education Learn AAPM members’ views and opinions on issues facing professional practice Identify AAPM members’ view and opinions on issues facing the advancement of science in medical physics J. Bayouth, Funding support from NCI;Scientific Advisory Board member - ViewRay.« less
The Missing Curriculum in Physics Problem-Solving Education
NASA Astrophysics Data System (ADS)
Williams, Mobolaji
2018-05-01
Physics is often seen as an excellent introduction to science because it allows students to learn not only the laws governing the world around them, but also, through the problems students solve, a way of thinking which is conducive to solving problems outside of physics and even outside of science. In this article, we contest this latter idea and argue that in physics classes, students do not learn widely applicable problem-solving skills because physics education almost exclusively requires students to solve well-defined problems rather than the less-defined problems which better model problem solving outside of a formal class. Using personal, constructed, and the historical accounts of Schrödinger's development of the wave equation and Feynman's development of path integrals, we argue that what is missing in problem-solving education is practice in identifying gaps in knowledge and in framing these knowledge gaps as questions of the kind answerable using techniques students have learned. We discuss why these elements are typically not taught as part of the problem-solving curriculum and end with suggestions on how to incorporate these missing elements into physics classes.
Web-Based Instruction in Physics Courses
NASA Astrophysics Data System (ADS)
Wijekumar, V.
1998-05-01
The World Wide Web will be utilized to deliver instructional materials in physics courses in two cases. In one case, a set of physics courses will be entirely taught using WWW for high school science and mathematics teachers in the physics certification program. In the other case, the WWW will be used to enhance the linkage between the laboratory courses in medical physics, human physiology and clinical nursing courses for nursing students. This project links three departments in two colleges to enhance a project known as Integrated Computer System across the Health Science Curriculum. Partial support for this work was provided by the National Science Foundation's Division od Undergraduate Education through grant DUE # 9650793.
Journal of Undergraduate Research, Volume VIII, 2008
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stiner, K. S.; Graham, S.; Khan, M.
Th e Journal of Undergraduate Research (JUR) provides undergraduate interns the opportunity to publish their scientific innovation and to share their passion for education and research with fellow students and scientists. Fields in which these students worked include: Biology; Chemistry; Computer Science; Engineering; Environmental Science; General Sciences; Materials Sciences; Medical and Health Sciences; Nuclear Sciences; Physics; Science Policy; and Waste Management.
ERIC Educational Resources Information Center
Lubrica, Joel V.; Abiasen, Jovalson T.; Dolipas, Bretel B.; Ramos, Jennifer Lyn S.
2017-01-01
In this article, we present results of our endeavours as physics educators to facilitate and support pedagogical change and development in the educational system of a developing country, the Philippines. We have discovered that the interaction of junior high school (years 7-10) students with physics apparatus can influence students' interest in…
Opening the Mind's Eye to Science.
ERIC Educational Resources Information Center
Hassard, Jack
1982-01-01
Emphasizes the importance of imagination in scientific discovery and science education and identifies three processes which increase the richness of the visualization experience: relaxing, concentrating, and seeing. Suggests topics for guided experiences and example models for earth/space, life, and physical sciences. (DC)
Can the History of Science Contribute to Modelling in Physics Teaching?
NASA Astrophysics Data System (ADS)
Machado, Juliana; Braga, Marco Antônio Barbosa
2016-10-01
A characterization of the modelling process in science is proposed for science education, based on Mario Bunge's ideas about the construction of models in science. Galileo's Dialogues are analysed as a potentially fruitful starting point to implement strategies aimed at modelling in the classroom in the light of that proposal. It is argued that a modelling process for science education can be conceived as the evolution from phenomenological approaches towards more representational ones, emphasizing the role of abstraction and idealization in model construction. The shift of reference of theories—from sensible objects to conceptual objects—and the black-box models construction process, which are both explicitly presented features in Galileo's Dialogues, are indicated as highly relevant aspects for modelling in science education.
Progress and Prospect of Physics Research and Education in Taiwan
NASA Astrophysics Data System (ADS)
Raynien Kwo, J.
2010-03-01
Started about two decades ago, the global trend of shifting industrial manufacture power from western developed countries toward developing countries in Asia has in turn become the impetus in building up physical science and research in these areas. A very good example is the remarkable progress of physical research and education in Taiwan, in terms of quantity and quality. The continuous elevation of Taiwan's high education into graduate level plus the government's strong commitment to research and development on a level of 2.62 % GDP have led to an impressive physics program with an annual budget ˜32 million USD from National Science Council in supporting 568 PIs. The investigation scope encompasses high energy and astrophysics, nano and condensed matter, and semiconductor, optoelectronic physics, etc. The former is vigorously conducted via international collaborative efforts of LHC, KEK, ALMA, Pan-STARRS, etc. The latter is driven by vital Taiwan high tech industry mostly semiconductor IC and optoelectronics flourished during this period. The early trend of outflows of BS physics majors to western world for advanced studies has reversed dramatically. Nearly 80% of the BS students continue their MS and PhD degrees in Taiwan, attracted by lucrative job markets of high tech industry. In addition, healthy inflow of high-quality science manpower of well trained PhDs and senior scholars returning to homeland has strengthened the competitiveness. Overall, the physics community in Taiwan is thriving. The annual Physical Society meeting is expanding at a rate of 6%, reaching ˜1800 attendants and 1200 papers, and dedicated to promotions of female physicists and students. The publication quantity of Taiwan in top journals of PRs and PRL is ranked among top 20^th for all fields of physics, and ranked the 6^th in APL. Clearly Taiwan has now emerged as a strong power in applied science, not limited by its population size. Concerted efforts on scientific exchanges are being taken to connect to international societies. The bright outlook of physical science and its vital power in Taiwan is anticipated to provide a stimulus to benefit South East Asia, and have far-reaching impacts on China and worldwide.
Promoting Children's Understanding And Interest In Science Through Informal Science Education
NASA Astrophysics Data System (ADS)
Bartley, Jessica E.; Mayhew, Laurel M.; Finkelstein, Noah D.
2009-11-01
We present results from the University of Colorado's Partnership for Informal Science Education in the Community (PISEC) in which university participants work in afterschool programs on inquiry-based activities with primary school children from populations typically under represented in science. This university-community partnership is designed to positively impact youth, university students, and the institutions that support them while improving children's attitudes towards and understanding of science. Children worked through circuit activities adapted from the Physics and Everyday Thinking (PET) curriculum and demonstrated increased understanding of content area as well as favorable beliefs about science.
NASA Astrophysics Data System (ADS)
Machold, Dolf K.
1992-09-01
The paper points out that many students and adults are accustomed to solving problems in physics on the basis of everyday concepts; believing that these concepts are very successful, those students are not interested in concepts offered by science teaching. Furthermore, the teaching physics in terms of mathematical descriptions of problems is too early — students don't see the original problem, so they are not interested in solutions. One way to avoid these difficulties is M. Wagenschein's proposal of the ‘Exemplary-genetic Method’. This method and its principles are presented and illustrated with examples taken from history. On the basis of this method educational and pedagogical functions of teaching physics are developed. P.S.: Martin Wagenschein (1896 1989), Professor of physics education at the University of Tübingen, was concerned with finding new methods for successfully teaching science.
Code of Federal Regulations, 2010 CFR
2010-07-01
... identified by the Secretary under § 691.17(a), in one of the physical, life, or computer sciences..., DEPARTMENT OF EDUCATION ACADEMIC COMPETITIVENESS GRANT (ACG) AND NATIONAL SCIENCE AND MATHEMATICS ACCESS TO...
Continuity and Coherence in the Science Curriculum.
ERIC Educational Resources Information Center
James, E. O.
1988-01-01
Exposes concerns related to physics in the period of mandatory education levels. Discussed are primary science, the transition from primary to secondary, content and process, double award GSCE science, science and technology, and reform of GCE advanced level. Argues toward a reappraisal of the mechanism for curricular reform. (CW)
ERIC Educational Resources Information Center
Dekkers, John; Rouse, Fae
1977-01-01
Provides a detailed description of the three-year Foundational Approaches in Science Education curriculum developed at the University of Hawaii. The program utilizes a spiral approach with topics in ecology, physical science and relational study. Sample units and implementation suggestions are provided. (CP)
Preparation Model of Student Teacher Candidate in Developing Integrative Science Learning
ERIC Educational Resources Information Center
Wiyanto; Widiyatmoko, Arif
2016-01-01
According to 2013 Curriculum in Indonesia, science learning process in Junior High School is integrally held between physics, chemistry, biology, and earth science. To successfully implementing the 2013 Curriculum in school, the education institution which generates science teacher should prepare the student, so that they can develop integrative…
Theme-Based Project Learning: Design and Application of Convergent Science Experiments
ERIC Educational Resources Information Center
Chun, Man-Seog; Kang, Kwang Il; Kim, Young H.; Kim, Young Mee
2015-01-01
This case study aims to verify the benefits of theme-based project learning for convergent science experiments. The study explores the possibilities of enhancing creative, integrated and collaborative teaching and learning abilities in science-gifted education. A convergent project-based science experiment program of physics, chemistry and biology…
Resource Letter PCP-1: Pre-college Physics Curriculum Materials
ERIC Educational Resources Information Center
Paldy, Lester G.; Swartz, Clifford E.
1973-01-01
Presents a guide to 101 physics curriculum materials including improvement projects and related articles, reference books, commonly used textbooks, teaching aids, and science education periodicals. (CC)
NASA Astrophysics Data System (ADS)
Papadimitriou, Michael
The purpose of this phenomenological study was to describe the essential elements of the current science education experience as constructed by twelve female high school physics and advanced chemistry students. The expressed desired outcome was a description of the phenomenon from a participant point of view. Student recollections and interpretations of experiences were assessed for a twelve-week period. Data sources were student journals, autobiographies, interviews, focus group interviews and researcher observations. In addition, each participant completed the Test of Science Related Attitudes (Fraser, 1981) in order to create attitude profiles for triangulation with other data. While a wide range of aspects of the science education experience emerged, results showed that female students describe and interpret their science education experiences on the basis of actual interest in science, early science experiences, perception of ability, self-confidence, teacher attributes, parental and peer interaction, societal expectations, the nature of science, and gender. Of these factors, specifically, interest and curiosity, societal influence, the nature of science, lack of in-school experiences, the desire to help others, and general parent support were most impacting upon experience and the desire to continue science study. Moreover, the interaction of these factors is relevant. Very simply, early experiences are crucial to interest development. In general, parents can enhance this interest by providing science-related experiences. In the absence of early in-school experiences (i.e., which the participants reported), these out-of-school experiences become crucial. More importantly, quality instruction and parent and peer support are needed to foster science interest and to overcome the powerfully negative influence of society, the discriminatory nature of science, and the lack of experiences.
The Spiritual and Educational Dimensions of The New Science Movement.
ERIC Educational Resources Information Center
Walz-Michaels, Gerda
With the emergence in physics of relativity and quantum theories in the first decade of this century a paradigm shift took place from a predominantly mechanistic to a dynamic world view. This shift formed the basis of the New Science Movement, including the new physics, in the 1970s. The movement is international, interdisciplinary, dynamic, and…
Do General Physics Textbooks Discuss Scientists' Ideas about Atomic Structure? A Case in Korea
ERIC Educational Resources Information Center
Niaz, Mansoor; Kwon, Sangwoon; Kim, Nahyun; Lee, Gyoungho
2013-01-01
Research in science education has recognized the importance of teaching atomic structure within a history and philosophy of science perspective. The objective of this study is to evaluate general physics textbooks published in Korea based on the eight criteria developed in previous research. The result of this study shows that Korean general…
arXiv.org and Physics Education
ERIC Educational Resources Information Center
Ramlo, Susan
2007-01-01
The website arXiv.org (pronounced "archive") is a free online resource for full-text articles in the fields of physics, mathematics, computer science, nonlinear science, and quantitative biology that has existed for about 15 years. Available directly at http://www.arXiv.org, this e-print archive is searchable. As of Jan. 3, 2007, arXiv had open…
ERIC Educational Resources Information Center
Sax, Linda J.; Lehman, Kathleen J.; Barthelemy, Ramón S.; Lim, Gloria
2016-01-01
The dearth of women in science, technology, engineering, and math (STEM) fields has been lamented by scholars, administrators, policymakers, and the general public for decades, and the STEM gender gap is particularly pronounced in physics. While previous research has demonstrated that this gap is largely attributable to a lack of women pursuing…
Cognitive development in introductory physics: A research-based approach to curriculum reform
NASA Astrophysics Data System (ADS)
Teodorescu, Raluca Elena
This project describes the research on a classification of physics problems in the context of introductory physics courses. This classification, called the Taxonomy of Introductory Physics Problems (TIPP), relates physics problems to the cognitive processes required to solve them. TIPP was created for designing and clarifying educational objectives, for developing assessments that can evaluate individual component processes of the problem-solving process, and for guiding curriculum design in introductory physics courses, specifically within the context of a "thinking-skills" curriculum. TIPP relies on the following resources: (1) cognitive research findings adopted by physics education research, (2) expert-novice research discoveries acknowledged by physics education research, (3) an educational psychology taxonomy for educational objectives, and (4) various collections of physics problems created by physics education researchers or developed by textbook authors. TIPP was used in the years 2006--2008 to reform the first semester of the introductory algebra-based physics course (called Phys 11) at The George Washington University. The reform sought to transform our curriculum into a "thinking-skills" curriculum that trades "breadth for depth" by focusing on fewer topics while targeting the students' cognitive development. We employed existing research on the physics problem-solving expert-novice behavior, cognitive science and behavioral science findings, and educational psychology recommendations. Our pedagogy relies on didactic constructs such as the GW-ACCESS problem-solving protocol, learning progressions and concept maps that we have developed and implemented in our introductory physics course. These tools were designed based on TIPP. Their purpose is: (1) to help students build local and global coherent knowledge structures, (2) to develop more context-independent problem-solving abilities, (3) to gain confidence in problem solving, and (4) to establish connections between everyday phenomena and underlying physics concepts. We organize traditional and research-based physics problems such that students experience a gradual increase in complexity related to problem context, problem features and cognitive processes needed to solve the problem. The instructional environment that we designed allows for explicit monitoring, control and measurement of the cognitive processes exercised during the instruction period. It is easily adaptable to any kind of curriculum and can be readily adjusted throughout the semester. To assess the development of students' problem-solving abilities, we created rubrics that measure specific aspects of the thinking involved in physics problem solving. The Colorado Learning Attitudes about Science Survey (CLASS) was administered pre- and post-instruction to determine students' shift in dispositions towards learning physics. The Force Concept Inventory (FCI) was administered pre- and post-instruction to determine students' level of conceptual understanding. The results feature improvements in students' problem-solving abilities and in their attitudes towards learning physics.
NASA Astrophysics Data System (ADS)
Kobayashi, Akizo; Okiharu, Fumiko
2010-07-01
We are developing various modularized materials in physics education to overcome students' misconceptions by use of ICT, i.e. video analysis software and ultra-high-speed digital movies, motion detector, force sensors, current and voltage probes, temperature sensors etc. Furthermore, we also present some new modules of active learning approaches on electric circuit using high speed camera and voltage probes with milliseconds resolution. We are now especially trying to improve conceptual understanding by use of ICT devices with milliseconds resolution in various areas of physics education We give some modules of mass measurements by video analysis of collision phenomena by using high speed cameras—Casio EX-F1(1200 fps), EX-FH20(1000 fps) and EX-FC100/150(1000 fps). We present several new modules on collision phenomena to establish deeper understanding of conservation laws of momentum. We discuss some effective results of trial on a physics education training courses for science educators, and those for science teachers during the renewal years of teacher's license after every ten years in Japan. Finally, we discuss on some typical results of pre-test and post-test in our active learning approaches based on ICT, i.e. some evidence on improvements of physics education (increasing ratio of correct answer are 50%-level).
NASA Astrophysics Data System (ADS)
Kratasyk, Valentina; Sviderskaya, Irina; Sukovatskaya, Irina
2009-04-01
At the Siberian Federal University (SFU) a fusion of science and education is used to attract girls to physics. Historically, research and education activities are separated at most Russian universities. The universities and Ministry of Education of the Russian Federation are responsible for education. Due to the economic policy from 1995 to 2005, separation between research and education became stronger. It is not possible for a professor who delivers approximately 400 lectures and seminars a year to conduct scientific research. Lack of financial support has resulted in decreased research in Russia. To save Russian scientific potential and pass scientific research methodology to new generations, it is vital to combine all research and education bodies into a unified system. To improve universities, reform is actively being discussed and the creation of a "Federal University" is being promoted. SFU connects research and education, based on experience from Research Educational Centers organized and supported by grants from Russian and foreign foundations.
Cinema, Fermi Problems and General Education
ERIC Educational Resources Information Center
Efthimiou, C. J.; Llewellyn, R. A.
2007-01-01
During the past few years the authors have developed a new approach to the teaching of physical science, a general education course typically found in the curricula of nearly every college and university. This approach, called "Physics in Films" (Efthimiou and Llewellyn 2006 Phys. Teach. 44 28-33), uses scenes from popular films to illustrate…
Nutrition Super Stars [7th and 8th Grades].
ERIC Educational Resources Information Center
Houtkooper, Linda; And Others
This kit is designed to be used as part of health, science, physical education, and home economics education at the middle school level. It provides current information about and describes student learning activities in food, nutrition, physical fitness, and ecology. Class plans are offered for five lesson topics: (1) Food supplies nutrients,…
Setting and Within-Class Ability Grouping: A Survey of Practices in Physical Education
ERIC Educational Resources Information Center
Wilkinson, Shaun; Penney, Dawn; Allin, Linda
2016-01-01
Within the United Kingdom and internationally, the practice of separating pupils by ability endures as a characteristic feature of mathematics and science classrooms. Although there is extensive international research literature on ability grouping within classroom-based subjects, limited research exists in the context of physical education (PE).…
Learning While Exercising for Science Education in Augmented Reality among Adolescents
ERIC Educational Resources Information Center
Hsiao, Kuei-Fang; Chen, Nian-Shing; Huang, Shih-Yu
2012-01-01
Because of a shortage of physical exercise, concerns about adolescents have recently been raised in Taiwan. In educational environments where student exercise has been limited by scheduling constraints and the lack of physical exercise has become a vital problem, "learning while exercising" may be part of a possible solution. This study…
Exploration Station Brings AGU Science to Children and Parents
NASA Astrophysics Data System (ADS)
Cooper, Paul
2008-08-01
More than 20 families from the Fort Lauderdale, Fla., area attended AGU's pilot family science event, ``Exploration Station,'' held on 26 May as part of the 2008 Joint Assembly. During the event-which was organized by AGU's education staff, the Association for Astronomy Education, and the Solar Physics Division of the American Astronomical Association-children and parents had the opportunity to discuss science with researchers and to get involved with many hands-on activities.
NASA Astrophysics Data System (ADS)
Tsaparlis, Georgios; Hartzavalos, Sotiris; Nakiboğlu, Canan
2013-08-01
Nuclear science has uses and applications that are relevant and crucial for world peace and sustainable development, so knowledge of its basic concepts and topics should constitute an integral part of civic scientific literacy. We have used two newspaper articles that deal with uses of nuclear science that are directly relevant to life, society, economy, and international politics. One article discusses a new thermonuclear reactor, and the second one is about depleted uranium and its danger for health. 189 first-year undergraduate physics and primary education Greek students were given one of the two articles each, and asked to answer a number of accompanying questions dealing with knowledge that is part of the Greek high school curriculum. The study was repeated with 272 first-year undergraduate physics, physics education, science education, and primary education Turkish students. Acceptable or partially acceptable answers were provided on average by around 20 % of Greek and 11 % of Turkish students, while a large proportion (on the average, around 50 % of Greek and 27 % of Turkish students) abstained from answering the questions. These findings are disappointing, but should be seen in the light of the limited or no coverage of the relevant learning material in the Greek and the Turkish high-school programs. Student conceptual difficulties, misconceptions and implications for research and high school curricula are discussed.
NASA Astrophysics Data System (ADS)
Johnson, K. C.
1991-04-01
This issue of Energy and Technology Review discusses the various educational programs in which Lawrence Livermore National Laboratory (LLNL) participates or sponsors. LLNL has a long history of fostering educational programs for students from kindergarten through graduate school. A goal is to enhance the teaching of science, mathematics, and technology and thereby assist educational institutions to increase the pool of scientists, engineers, and technicians. LLNL programs described include: (1) contributions to the improvement of U.S. science education; (2) the LESSON program; (3) collaborations with Bay Area Science and Technology Education; (4) project HOPES; (5) lasers and fusion energy education; (6) a curriculum on global climate change; (7) computer and technology instruction at LLNL's Science Education Center; (8) the National Education Supercomputer Program; (9) project STAR; (10) the American Indian Program; (11) LLNL programs with historically Black colleges and Universities; (12) the Undergraduate Summer Institute on Contemporary Topics in Applied Science; (13) the National Physical Science Consortium: A Fellowship Program for Minorities and Women; (14) LLNL's participation with AWU; (15) the apprenticeship programs at LLNL; and (16) the future of LLNL's educational programs. An appendix lists all of LLNL's educational programs and activities. Contacts and their respective telephone numbers are given for all these programs and activities.
Code of Federal Regulations, 2010 CFR
2010-01-01
... be made available to CSREES upon request. Food and agricultural sciences means basic, applied, and... resources, forestry, and physical and social sciences, in the broadest sense of these terms, including but... experts or consultants, qualified by training and experience in particular fields of science, education...
NASA Astrophysics Data System (ADS)
Crouch, Catherine H.; Wisittanawat, Panchompoo; Cai, Ming; Renninger, K. Ann
2018-06-01
In response to national calls for improved physical sciences education for students pursuing careers in the life sciences and medicine, reformed introductory physics for life sciences (IPLS) courses are being developed. This exploratory study is among the first to assess the effect of an IPLS course on students' attitudes, interest, and performance. The IPLS course studied was the second semester of introductory physics, following a standard first semester course, allowing the outcomes of the same students in a standard course and in an IPLS course to be compared. In the IPLS course, each physics topic was introduced and elaborated in the context of a life science example, and developing students' skills in applying physics to life science situations was an explicitly stated course goal. Items from the Colorado Learning about Science Survey were used to assess change in students' attitudes toward and their interest in physics. Whereas the same students' attitudes declined during the standard first semester course, we found that students' attitudes toward physics hold steady or improve in the IPLS course. In particular, students with low initial interest in physics displayed greater increases in both attitudes and interest during the IPLS course than in the preceding standard course. We also find that in the IPLS course, students' interest in the life science examples is a better predictor of their performance than their pre-IPLS interest in physics. Our work suggests that the life science examples in the IPLS course can support the development of student interest in physics and positively influence their performance.
Mineral Physics Educational Modules for Advanced Undergraduates and Graduate Students
NASA Astrophysics Data System (ADS)
Burnley, P. C.; Thomas, S.; Honn, D. K.
2011-12-01
We are assembling a group of web-based educational modules for a course entitled "Introduction to Mineral Physics". Although the modules are designed to function as part of a full semester course, each module will also be able to stand alone. The modules are targeted at entry level graduate students and advanced undergraduate students. Learning outcomes for the course are being developed in consultation with educators throughout the mineral physics community. Potential users include mineral physicists teaching "bricks and mortar" graduate classes at their own institutions, mineral physicists teaching graduate classes in a distance education setting, mineralogy teachers interested in including supplementary material in their undergraduate mineralogy class, undergraduates doing independent study projects and graduate students and colleagues in other subdisciplines who wish to brush up on mineral physics topics. The modules reside on the Science Education Resource Center at Carleton College web site in the On the Cutting Edge - Teaching Mineralogy collection. Links to the materials will be posted on the Consortium for Materials Properties Research in Earth Sciences website. The modules will be piloted in a graduate level distance education course in mineral physics taught from UNLV during the spring 2012 semester. This course and others like it can address the current problems faced by faculty in state universities where rising minimum enrollments are making it difficult to teach a suitable graduate course to incoming students.
ERIC Educational Resources Information Center
Stern, Luli; Roseman, Jo Ellen
2004-01-01
The transfer of matter and energy from one organism to another and between organisms and their physical setting is a fundamental concept in life science. Not surprisingly, this concept is common to the "Benchmarks for Science Literacy" (American Association for the Advancement of Science, [1993]), the "National Science Education Standards"…
What Do Citation Patterns Reveal about the Outdoor Education Field? A Snapshot 2000-2013
ERIC Educational Resources Information Center
Brookes, Andrew; Stewart, Alistair
2016-01-01
This study considered what insights into outdoor education (OE) research and scholarship could be gleaned from citation indices and patterns. Citation indices have long been used as ranking tools in the physical sciences, and more recently have been used in humanities and social sciences. High citation measures indicate high research impact,…
ERIC Educational Resources Information Center
Ceberio, Mikel; Almudí, José Manuel; Franco, Ángel
2016-01-01
In recent years, interactive computer simulations have been progressively integrated in the teaching of the sciences and have contributed significant improvements in the teaching-learning process. Practicing problem-solving is a key factor in science and engineering education. The aim of this study was to design simulation-based problem-solving…
Is Science a Middle-Class Phenomenon? The SES Determinants of 16-19 Participation
ERIC Educational Resources Information Center
Gorard, Stephen; See, Beng Huat
2008-01-01
In the UK, as in several developed countries, concern has been expressed by interested commentators about the apparent decline of post-16 participation in the "hard" sciences (especially physics and chemistry). While formal full-time participation in 16-19 education and higher education has increased since the 1990s, both the relative and absolute…
ERIC Educational Resources Information Center
Cisneros-Cohernour, Edith J.; Lopez-Avila, Maria T.; Barrera-Bustillos, Maria E.
2007-01-01
This paper presents findings of a project aimed to improve the quality of science education in Southeast Mexico by the creation of a community of practice among scientists, researchers and teachers, involved in the design, implementation and evaluation of a professional development program for mathematics, chemistry, biology and physics secondary…
ERIC Educational Resources Information Center
Mohrman, Kathryn, Ed.
Curricular development in undergraduate programs in the biological, physical, and mathematical sciences at a number of colleges and universities are described. One common theme is the continuing interest in computers in higher education. As the student bodies of many campuses become more heterogeneous with increasing enrollments of minorities and…
Assessing Student Peer Dialogue in Collaborative Settings: A Window into Student Reasoning
ERIC Educational Resources Information Center
Stone, Antoinette
2013-01-01
The use of science classroom discourse analysis as a way to gain a better understanding of various student cognitive outcomes has a rich history in Science Education in general and Physics Education Research (PER) in particular. When students talk to each other in a collaborative peer instruction environment, such as in the CLASP classes…
Productive Learning: Science, Art, and Einstein's Relativity in Educational Reform
ERIC Educational Resources Information Center
Glazek, Stanislaw D.; Sarason, Seymour B.
2006-01-01
Why do people, college-bound or even in college, stay away in droves from courses in science, especially physics? Why do people know so little about the significance of Einstein's contributions which require dramatic changes in how we understand ourselves, our world, and the entire universe? Why have educational reforms failed? In this book, two…
Designing a Site to Embed and to Interact with Wolfram Alpha Widgets in Math and Sciences Courses
ERIC Educational Resources Information Center
Cepeda, Francisco Javier Delgado; Acosta, Ruben Dario Santiago
2014-01-01
This paper reports design and implementation outcomes at middle development advance of an educative program based on use and construction of widgets on Wolfram Alpha platform at higher education level for engineering and sciences areas. Widgets were based on Physics and Mathematics curricula under Project Oriented Learning and Blended Learning…
How Learning and Cognitive Science Can Improve Student Outcomes. Middle School Matters Program No. 1
ERIC Educational Resources Information Center
Graesser, Art; Rodriguez, Gina; Brasiel, Sarah J.
2013-01-01
There are research-based principles and practices from the learning and cognitive sciences that can be applied to all content areas in middle grades education to improve student outcomes. Even teachers of courses like Physical Education can consider these strategies for assisting students in remembering rules of sports, different sports…
The Nation's Report Card Science 2011 State Snapshot Report. Minnesota. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2012
2012-01-01
A representative sample of 122,000 eighth-graders participated in the 2011 National Assessment of Educational Progress (NAEP) science assessment, which is designed to measure students' knowledge and abilities in the areas of physical science, life science, and Earth and space sciences. This report covers the overall results, achievement level…
The Nation's Report Card Science 2011 State Snapshot Report. Pennsylvania. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2012
2012-01-01
A representative sample of 122,000 eighth-graders participated in the 2011 National Assessment of Educational Progress (NAEP) science assessment, which is designed to measure students' knowledge and abilities in the areas of physical science, life science, and Earth and space sciences. This report covers the overall results, achievement level…
ERIC Educational Resources Information Center
Contino, Julie; Anderson, O. Roger
2013-01-01
In New York State (NYS), Earth science teachers use the "National Science Education Standards" (NSES), the NYS "Learning Standards for Mathematics, Science and Technology" (NYS Standards), and the "Physical Setting/Earth Science Core Curriculum" (Core Curriculum) to create local curricula and daily lessons. In this…
The Nation's Report Card Science 2011 State Snapshot Report. Idaho. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2012
2012-01-01
A representative sample of 122,000 eighth-graders participated in the 2011 National Assessment of Educational Progress (NAEP) science assessment, which is designed to measure students' knowledge and abilities in the areas of physical science, life science, and Earth and space sciences. This report covers the overall results, achievement level…
The Nation's Report Card Science 2011 State Snapshot Report. New Hampshire. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2012
2012-01-01
A representative sample of 122,000 eighth-graders participated in the 2011 National Assessment of Educational Progress (NAEP) science assessment, which is designed to measure students' knowledge and abilities in the areas of physical science, life science, and Earth and space sciences. This report covers the overall results, achievement level…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
The Nation's Report Card Science 2011 State Snapshot Report. Hawaii. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2012
2012-01-01
A representative sample of 122,000 eighth-graders participated in the 2011 National Assessment of Educational Progress (NAEP) science assessment, which is designed to measure students' knowledge and abilities in the areas of physical science, life science, and Earth and space sciences. This report covers the overall results, achievement level…
A Possible Pathway for High School Science in a STEM World
ERIC Educational Resources Information Center
Sneider, Cary
2011-01-01
Today's high school science teachers find themselves in a period of transition. For the past decade there have been calls for replacing a narrow focus on science education--the traditional courses in physics, chemistry, biology, and Earth and space science--with a broader curriculum on STEM (that is, the four allied fields of science, technology,…
The Nation's Report Card Science 2011 State Snapshot Report. Wisconsin. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2012
2012-01-01
A representative sample of 122,000 eighth-graders participated in the 2011 National Assessment of Educational Progress (NAEP) science assessment, which is designed to measure students' knowledge and abilities in the areas of physical science, life science, and Earth and space sciences. This report covers the overall results, achievement level…
The Nation's Report Card Science 2011 State Snapshot Report. Ohio. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2012
2012-01-01
A representative sample of 122,000 eighth-graders participated in the 2011 National Assessment of Educational Progress (NAEP) science assessment, which is designed to measure students' knowledge and abilities in the areas of physical science, life science, and Earth and space sciences. This report covers the overall results, achievement level…
The Nation's Report Card Science 2011 State Snapshot Report. Iowa. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2012
2012-01-01
A representative sample of 122,000 eighth-graders participated in the 2011 National Assessment of Educational Progress (NAEP) science assessment, which is designed to measure students' knowledge and abilities in the areas of physical science, life science, and Earth and space sciences. This report covers the overall results, achievement level…
The Nation's Report Card Science 2011 State Snapshot Report. Rhode Island. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2012
2012-01-01
A representative sample of 122,000 eighth-graders participated in the 2011 National Assessment of Educational Progress (NAEP) science assessment, which is designed to measure students' knowledge and abilities in the areas of physical science, life science, and Earth and space sciences. This report covers the overall results, achievement level…
The Nation's Report Card Science 2011 State Snapshot Report. Maryland. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2012
2012-01-01
A representative sample of 122,000 eighth-graders participated in the 2011 National Assessment of Educational Progress (NAEP) science assessment, which is designed to measure students' knowledge and abilities in the areas of physical science, life science, and Earth and space sciences. This report covers the overall results, achievement level…
The Nation's Report Card Science 2011 State Snapshot Report. Georgia. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2012
2012-01-01
A representative sample of 122,000 eighth-graders participated in the 2011 National Assessment of Educational Progress (NAEP) science assessment, which is designed to measure students' knowledge and abilities in the areas of physical science, life science, and Earth and space sciences. This report covers the overall results, achievement level…
The Nation's Report Card Science 2011 State Snapshot Report. North Dakota. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2012
2012-01-01
A representative sample of 122,000 eighth-graders participated in the 2011 National Assessment of Educational Progress (NAEP) science assessment, which is designed to measure students' knowledge and abilities in the areas of physical science, life science, and Earth and space sciences. This report covers the overall results, achievement level…
The Nation's Report Card Science 2011 State Snapshot Report. Delaware. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2012
2012-01-01
A representative sample of 122,000 eighth-graders participated in the 2011 National Assessment of Educational Progress (NAEP) science assessment, which is designed to measure students' knowledge and abilities in the areas of physical science, life science, and Earth and space sciences. This report covers the overall results, achievement level…
The Nation's Report Card Science 2011 State Snapshot Report. Oklahoma. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2012
2012-01-01
A representative sample of 122,000 eighth-graders participated in the 2011 National Assessment of Educational Progress (NAEP) science assessment, which is designed to measure students' knowledge and abilities in the areas of physical science, life science, and Earth and space sciences. This report covers the overall results, achievement level…
The Nation's Report Card Science 2011 State Snapshot Report. Connecticut. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2012
2012-01-01
A representative sample of 122,000 eighth-graders participated in the 2011 National Assessment of Educational Progress (NAEP) science assessment, which is designed to measure students' knowledge and abilities in the areas of physical science, life science, and Earth and space sciences. This report covers the overall results, achievement level…
The Nation's Report Card Science 2011 State Snapshot Report. Kentucky. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2012
2012-01-01
A representative sample of 122,000 eighth-graders participated in the 2011 National Assessment of Educational Progress (NAEP) science assessment, which is designed to measure students' knowledge and abilities in the areas of physical science, life science, and Earth and space sciences. This report covers the overall results, achievement level…
The Nation's Report Card Science 2011 State Snapshot Report. Alabama. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2012
2012-01-01
A representative sample of 122,000 eighth-graders participated in the 2011 National Assessment of Educational Progress (NAEP) science assessment, which is designed to measure students' knowledge and abilities in the areas of physical science, life science, and Earth and space sciences. This report covers the overall results, achievement level…
The Nation's Report Card Science 2011 State Snapshot Report. South Dakota. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2012
2012-01-01
A representative sample of 122,000 eighth-graders participated in the 2011 National Assessment of Educational Progress (NAEP) science assessment, which is designed to measure students' knowledge and abilities in the areas of physical science, life science, and Earth and space sciences. This report covers the overall results, achievement level…
The Nation's Report Card Science 2011 State Snapshot Report. Nevada. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2012
2012-01-01
A representative sample of 122,000 eighth-graders participated in the 2011 National Assessment of Educational Progress (NAEP) science assessment, which is designed to measure students' knowledge and abilities in the areas of physical science, life science, and Earth and space sciences. This report covers the overall results, achievement level…
The Nation's Report Card Science 2011 State Snapshot Report. Alaska. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2012
2012-01-01
A representative sample of 122,000 eighth-graders participated in the 2011 National Assessment of Educational Progress (NAEP) science assessment, which is designed to measure students' knowledge and abilities in the areas of physical science, life science, and Earth and space sciences. This report covers the overall results, achievement level…
The Nation's Report Card Science 2011 State Snapshot Report. Arizona. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2012
2012-01-01
A representative sample of 122,000 eighth-graders participated in the 2011 National Assessment of Educational Progress (NAEP) science assessment, which is designed to measure students' knowledge and abilities in the areas of physical science, life science, and Earth and space sciences. This report covers the overall results, achievement level…
The Nation's Report Card Science 2011 State Snapshot Report. Vermont. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2012
2012-01-01
A representative sample of 122,000 eighth-graders participated in the 2011 National Assessment of Educational Progress (NAEP) science assessment, which is designed to measure students' knowledge and abilities in the areas of physical science, life science, and Earth and space sciences. This report covers the overall results, achievement level…
The Nation's Report Card Science 2011 State Snapshot Report. Michigan. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2012
2012-01-01
A representative sample of 122,000 eighth-graders participated in the 2011 National Assessment of Educational Progress (NAEP) science assessment, which is designed to measure students' knowledge and abilities in the areas of physical science, life science, and Earth and space sciences. This report covers the overall results, achievement level…
The Nation's Report Card Science 2011 State Snapshot Report. Montana. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2012
2012-01-01
A representative sample of 122,000 eighth-graders participated in the 2011 National Assessment of Educational Progress (NAEP) science assessment, which is designed to measure students' knowledge and abilities in the areas of physical science, life science, and Earth and space sciences. This report covers the overall results, achievement level…
The Nation's Report Card Science 2011 State Snapshot Report. Nebraska. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2012
2012-01-01
A representative sample of 122,000 eighth-graders participated in the 2011 National Assessment of Educational Progress (NAEP) science assessment, which is designed to measure students' knowledge and abilities in the areas of physical science, life science, and Earth and space sciences. This report covers the overall results, achievement level…
The Nation's Report Card Science 2011 State Snapshot Report. South Carolina. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2012
2012-01-01
A representative sample of 122,000 eighth-graders participated in the 2011 National Assessment of Educational Progress (NAEP) science assessment, which is designed to measure students' knowledge and abilities in the areas of physical science, life science, and Earth and space sciences. This report covers the overall results, achievement level…
The Nation's Report Card Science 2011 State Snapshot Report. Colorado. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2012
2012-01-01
A representative sample of 122,000 eighth-graders participated in the 2011 National Assessment of Educational Progress (NAEP) science assessment, which is designed to measure students' knowledge and abilities in the areas of physical science, life science, and Earth and space sciences. This report covers the overall results, achievement level…
The Nation's Report Card Science 2011 State Snapshot Report. California. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2012
2012-01-01
A representative sample of 122,000 eighth-graders participated in the 2011 National Assessment of Educational Progress (NAEP) science assessment, which is designed to measure students' knowledge and abilities in the areas of physical science, life science, and Earth and space sciences. This report covers the overall results, achievement level…
The Nation's Report Card Science 2011 State Snapshot Report. Missouri. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2012
2012-01-01
A representative sample of 122,000 eighth-graders participated in the 2011 National Assessment of Educational Progress (NAEP) science assessment, which is designed to measure students' knowledge and abilities in the areas of physical science, life science, and Earth and space sciences. This report covers the overall results, achievement level…
The Nation's Report Card Science 2011 State Snapshot Report. New Jersey. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2012
2012-01-01
A representative sample of 122,000 eighth-graders participated in the 2011 National Assessment of Educational Progress (NAEP) science assessment, which is designed to measure students' knowledge and abilities in the areas of physical science, life science, and Earth and space sciences. This report covers the overall results, achievement level…
The Nation's Report Card Science 2011 State Snapshot Report. Indiana. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2012
2012-01-01
A representative sample of 122,000 eighth-graders participated in the 2011 National Assessment of Educational Progress (NAEP) science assessment, which is designed to measure students' knowledge and abilities in the areas of physical science, life science, and Earth and space sciences. This report covers the overall results, achievement level…
The Nation's Report Card Science 2011 State Snapshot Report. Oregon. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2012
2012-01-01
A representative sample of 122,000 eighth-graders participated in the 2011 National Assessment of Educational Progress (NAEP) science assessment, which is designed to measure students' knowledge and abilities in the areas of physical science, life science, and Earth and space sciences. This report covers the overall results, achievement level…
The Nation's Report Card Science 2011 State Snapshot Report. Kansas. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2012
2012-01-01
A representative sample of 122,000 eighth-graders participated in the 2011 National Assessment of Educational Progress (NAEP) science assessment, which is designed to measure students' knowledge and abilities in the areas of physical science, life science, and Earth and space sciences. This report covers the overall results, achievement level…
The Nation's Report Card Science 2011 State Snapshot Report. Tennessee. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2012
2012-01-01
A representative sample of 122,000 eighth-graders participated in the 2011 National Assessment of Educational Progress (NAEP) science assessment, which is designed to measure students' knowledge and abilities in the areas of physical science, life science, and Earth and space sciences. This report covers the overall results, achievement level…
The Nation's Report Card Science 2011 State Snapshot Report. Louisiana. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2012
2012-01-01
A representative sample of 122,000 eighth-graders participated in the 2011 National Assessment of Educational Progress (NAEP) science assessment, which is designed to measure students' knowledge and abilities in the areas of physical science, life science, and Earth and space sciences. This report covers the overall results, achievement level…
The Nation's Report Card Science 2011 State Snapshot Report. New York. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2012
2012-01-01
A representative sample of 122,000 eighth-graders participated in the 2011 National Assessment of Educational Progress (NAEP) science assessment, which is designed to measure students' knowledge and abilities in the areas of physical science, life science, and Earth and space sciences. This report covers the overall results, achievement level…
The Nation's Report Card Science 2011 State Snapshot Report. Washington. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2012
2012-01-01
A representative sample of 122,000 eighth-graders participated in the 2011 National Assessment of Educational Progress (NAEP) science assessment, which is designed to measure students' knowledge and abilities in the areas of physical science, life science, and Earth and space sciences. This report covers the overall results, achievement level…
The Nation's Report Card Science 2011 State Snapshot Report. Illinois. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2012
2012-01-01
A representative sample of 122,000 eighth-graders participated in the 2011 National Assessment of Educational Progress (NAEP) science assessment, which is designed to measure students' knowledge and abilities in the areas of physical science, life science, and Earth and space sciences. This report covers the overall results, achievement level…
The Nation's Report Card Science 2011 State Snapshot Report. Massachusetts. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2012
2012-01-01
A representative sample of 122,000 eighth-graders participated in the 2011 National Assessment of Educational Progress (NAEP) science assessment, which is designed to measure students' knowledge and abilities in the areas of physical science, life science, and Earth and space sciences. This report covers the overall results, achievement level…
The Nation's Report Card Science 2011 State Snapshot Report. North Carolina. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2012
2012-01-01
A representative sample of 122,000 eighth-graders participated in the 2011 National Assessment of Educational Progress (NAEP) science assessment, which is designed to measure students' knowledge and abilities in the areas of physical science, life science, and Earth and space sciences. This report covers the overall results, achievement level…
The Nation's Report Card Science 2011 State Snapshot Report. Arkansas. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2012
2012-01-01
A representative sample of 122,000 eighth-graders participated in the 2011 National Assessment of Educational Progress (NAEP) science assessment, which is designed to measure students' knowledge and abilities in the areas of physical science, life science, and Earth and space sciences. This report covers the overall results, achievement level…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2012
2012-01-01
A representative sample of 122,000 eighth-graders participated in the 2011 National Assessment of Educational Progress (NAEP) science assessment, which is designed to measure students' knowledge and abilities in the areas of physical science, life science, and Earth and space sciences. This report covers the overall results, achievement level…
The Nation's Report Card Science 2011 State Snapshot Report. Mississippi. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2012
2012-01-01
A representative sample of 122,000 eighth-graders participated in the 2011 National Assessment of Educational Progress (NAEP) science assessment, which is designed to measure students' knowledge and abilities in the areas of physical science, life science, and Earth and space sciences. This report covers the overall results, achievement level…
The Nation's Report Card Science 2011 State Snapshot Report. New Mexico. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2012
2012-01-01
A representative sample of 122,000 eighth-graders participated in the 2011 National Assessment of Educational Progress (NAEP) science assessment, which is designed to measure students' knowledge and abilities in the areas of physical science, life science, and Earth and space sciences. This report covers the overall results, achievement level…
The Nation's Report Card Science 2011 State Snapshot Report. Maine. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2012
2012-01-01
A representative sample of 122,000 eighth-graders participated in the 2011 National Assessment of Educational Progress (NAEP) science assessment, which is designed to measure students' knowledge and abilities in the areas of physical science, life science, and Earth and space sciences. This report covers the overall results, achievement level…
The Nation's Report Card Science 2011 State Snapshot Report. Florida. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2012
2012-01-01
A representative sample of 122,000 eighth-graders participated in the 2011 National Assessment of Educational Progress (NAEP) science assessment, which is designed to measure students' knowledge and abilities in the areas of physical science, life science, and Earth and space sciences. This report covers the overall results, achievement level…
The Nation's Report Card Science 2011 State Snapshot Report. DoDEA. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2012
2012-01-01
A representative sample of 122,000 eighth-graders participated in the 2011 National Assessment of Educational Progress (NAEP) science assessment, which is designed to measure students' knowledge and abilities in the areas of physical science, life science, and Earth and space sciences. This report covers the overall results, achievement level…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…