Sample records for physically based approach

  1. The Functioning of Context-Based Physics Instruction in Higher Education

    ERIC Educational Resources Information Center

    Tural, Guner

    2014-01-01

    The effects of the context-based approach have been discussed in educational settings as one of the innovative instructional approaches. Many countries throughout the world have implemented context-based physics projects or programs to make physics more relevant to students' lives. This paper examined the effects of context-based physics…

  2. The Effectiveness of the Brain Based Teaching Approach in Enhancing Scientific Understanding of Newtonian Physics among Form Four Students

    ERIC Educational Resources Information Center

    Saleh, Salmiza

    2012-01-01

    The aim of this study was to assess the effectiveness of Brain Based Teaching Approach in enhancing students' scientific understanding of Newtonian Physics in the context of Form Four Physics instruction. The technique was implemented based on the Brain Based Learning Principles developed by Caine & Caine (1991, 2003). This brain compatible…

  3. Approach-Method Interaction: The Role of Teaching Method on the Effect of Context-Based Approach in Physics Instruction

    ERIC Educational Resources Information Center

    Pesman, Haki; Ozdemir, Omer Faruk

    2012-01-01

    The purpose of this study is to explore not only the effect of context-based physics instruction on students' achievement and motivation in physics, but also how the use of different teaching methods influences it (interaction effect). Therefore, two two-level-independent variables were defined, teaching approach (contextual and non-contextual…

  4. Evidence-based intervention in physical activity: lessons from around the world.

    PubMed

    Heath, Gregory W; Parra, Diana C; Sarmiento, Olga L; Andersen, Lars Bo; Owen, Neville; Goenka, Shifalika; Montes, Felipe; Brownson, Ross C

    2012-07-21

    Promotion of physical activity is a priority for health agencies. We searched for reviews of physical activity interventions, published between 2000 and 2011, and identified effective, promising, or emerging interventions from around the world. The informational approaches of community-wide and mass media campaigns, and short physical activity messages targeting key community sites are recommended. Behavioural and social approaches are effective, introducing social support for physical activity within communities and worksites, and school-based strategies that encompass physical education, classroom activities, after-school sports, and active transport. Recommended environmental and policy approaches include creation and improvement of access to places for physical activity with informational outreach activities, community-scale and street-scale urban design and land use, active transport policy and practices, and community-wide policies and planning. Thus, many approaches lead to acceptable increases in physical activity among people of various ages, and from different social groups, countries, and communities.

  5. Evidence-based intervention in physical activity: lessons from around the world

    PubMed Central

    Heath, Gregory W; Parra, Diana C; Sarmiento, Olga L; Andersen, Lars Bo; Owen, Neville; Goenka, Shifalika; Montes, Felipe; Brownson, Ross C

    2016-01-01

    Promotion of physical activity is a priority for health agencies. We searched for reviews of physical activity interventions, published between 2000 and 2011, and identified effective, promising, or emerging interventions from around the world. The informational approaches of community-wide and mass media campaigns, and short physical activity messages targeting key community sites are recommended. Behavioural and social approaches are effective, introducing social support for physical activity within communities and worksites, and school-based strategies that encompass physical education, classroom activities, after-school sports, and active transport. Recommended environmental and policy approaches include creation and improvement of access to places for physical activity with informational outreach activities, community-scale and street-scale urban design and land use, active transport policy and practices, and community-wide policies and planning. Thus, many approaches lead to acceptable increases in physical activity among people of various ages, and from different social groups, countries, and communities. PMID:22818939

  6. Physics-Based Hazard Assessment for Critical Structures Near Large Earthquake Sources

    NASA Astrophysics Data System (ADS)

    Hutchings, L.; Mert, A.; Fahjan, Y.; Novikova, T.; Golara, A.; Miah, M.; Fergany, E.; Foxall, W.

    2017-09-01

    We argue that for critical structures near large earthquake sources: (1) the ergodic assumption, recent history, and simplified descriptions of the hazard are not appropriate to rely on for earthquake ground motion prediction and can lead to a mis-estimation of the hazard and risk to structures; (2) a physics-based approach can address these issues; (3) a physics-based source model must be provided to generate realistic phasing effects from finite rupture and model near-source ground motion correctly; (4) wave propagations and site response should be site specific; (5) a much wider search of possible sources of ground motion can be achieved computationally with a physics-based approach; (6) unless one utilizes a physics-based approach, the hazard and risk to structures has unknown uncertainties; (7) uncertainties can be reduced with a physics-based approach, but not with an ergodic approach; (8) computational power and computer codes have advanced to the point that risk to structures can be calculated directly from source and site-specific ground motions. Spanning the variability of potential ground motion in a predictive situation is especially difficult for near-source areas, but that is the distance at which the hazard is the greatest. The basis of a "physical-based" approach is ground-motion syntheses derived from physics and an understanding of the earthquake process. This is an overview paper and results from previous studies are used to make the case for these conclusions. Our premise is that 50 years of strong motion records is insufficient to capture all possible ranges of site and propagation path conditions, rupture processes, and spatial geometric relationships between source and site. Predicting future earthquake scenarios is necessary; models that have little or no physical basis but have been tested and adjusted to fit available observations can only "predict" what happened in the past, which should be considered description as opposed to prediction. We have developed a methodology for synthesizing physics-based broadband ground motion that incorporates the effects of realistic earthquake rupture along specific faults and the actual geology between the source and site.

  7. The Analysis of Physics Learning in Senior High School of Semarang Based on The Scientific Approach and Assessment

    NASA Astrophysics Data System (ADS)

    Hardyanti, R. C.; Hartono; Fianti

    2018-03-01

    Physics Learning in Curriculum of 2013 is closely related to the implementation of scientific approach and authentic assessment in learning. This study aims to analyze the implementation of scientific approaches and authentic assessment in physics learning, as well as to analyze the constraints of scientific approach and authentic assessment in physics learning. The data collection techniques used in this study are questionnaires, observations, interviews, and documentation. The calculation results used are percentage techniques and analyzed by using qualitative descriptive approach. Based on the results of research and discussion, the implementation of physics learning based on the scientific approach goes well with the percentage of 84.60%. Physical learning activity based on authentic assessment also goes well with the percentage of 88%. The results of the percentage of scientific approaches and authentic assessment approaches are less than 100%. It shows that there are obstacles to the implementation of the scientific approach and the constraints of authentic assessment. The obstacles to the implementation of scientific approach include time, heavy load of material, input or ability of learners, the willingness of learners in asking questions, laboratory support, and the ability of students to process data. While the obstacles to the implementation of authentic assessment include the limited time for carrying out of authentic assessment, the components of the criteria in carrying out the authentic assessment, the lack of discipline in administering the administration, the difficulty of changing habits in carrying out the assessment from traditional assessment to the authentic assessment, the obstacle to process the score in accordance with the format Curriculum of 2013.

  8. The comparative effectiveness of a team-based versus group-based physical activity intervention for cancer survivors.

    PubMed

    Carter, Cindy L; Onicescu, Georgiana; Cartmell, Kathleen B; Sterba, Katherine R; Tomsic, James; Alberg, Anthony J

    2012-08-01

    Physical activity benefits cancer survivors, but the comparative effectiveness of a team-based delivery approach remains unexplored. The hypothesis tested was that a team-based physical activity intervention delivery approach has added physical and psychological benefits compared to a group-based approach. A team-based sport accessible to survivors is dragon boating, which requires no previous experience and allows for diverse skill levels. In a non-randomized trial, cancer survivors chose between two similarly structured 8-week programs, a dragon boat paddling team (n = 68) or group-based walking program (n = 52). Three separate intervention rounds were carried out in 2007-2008. Pre-post testing measured physical and psychosocial outcomes. Compared to walkers, paddlers had significantly greater (all p < 0.01) team cohesion, program adherence/attendance, and increased upper-body strength. For quality-of-life outcomes, both interventions were associated with pre-post improvements, but with no clear-cut pattern of between-intervention differences. These hypothesis-generating findings suggest that a short-term, team-based physical activity program (dragon boat paddling) was associated with increased cohesion and adherence/attendance. Improvements in physical fitness and psychosocial benefits were comparable to a traditional, group-based walking program. Compared to a group-based intervention delivery format, the team-based intervention delivery format holds promise for promoting physical activity program adherence/attendance in cancer survivors.

  9. Assessing the Effectiveness of Studio Physics in Introductory-Level Courses at Georgia State University

    NASA Astrophysics Data System (ADS)

    Upton, Brianna; Evans, John; Morrow, Cherilynn; Thoms, Brian

    2009-11-01

    Previous studies have shown that many students have misconceptions about basic concepts in physics. Moreover, it has been concluded that one of the challenges lies in the teaching methodology. To address this, Georgia State University has begun teaching studio algebra-based physics. Although many institutions have implemented studio physics, most have done so in calculus-based sequences. The effectiveness of the studio approach in an algebra-based introductory physics course needs further investigation. A 3-semester study assessing the effectiveness of studio physics in an algebra-based physics sequence has been performed. This study compares the results of student pre- and post-tests using the Force Concept Inventory. Using the results from this assessment tool, we will discuss the effectiveness of the studio approach to teaching physics at GSU.

  10. Combining self-help and professional help to minimize barriers to physical activity in persons with multiple sclerosis: a trial of the "Blue Prescription" approach in New Zealand.

    PubMed

    Mulligan, Hilda; Treharne, Gareth J; Hale, Leigh A; Smith, Cath

    2013-06-01

    Increasing participation in physical activity is a goal for many health care providers working with persons with disability. In order to reduce the physical and social barriers to participation, there is a need to develop approaches that integrate self-help with professional help for autonomous yet supported health promotion. This study reports on an innovative program, entitled the "Blue Prescription approach", in which physical therapists work collaboratively with persons with a disability to promote community-based physical activity participation. We trialed this collaborative approach with two physical therapists and 27 participants with multiple sclerosis (MS) over a three month period. We gathered qualitative data from four sources: (i) individual interviews with our participants, (ii) individual interviews with the physical therapists, (iii) clinical notes, and (iv) Advisory Group meeting notes. We then analyzed these data for categories to inform the content and resources required for delivery of the approach. For most participants, the Blue Prescription approach facilitated regular engagement in the physical activity of their choice. The Advisory Group provided advice to help solve individual contexts that presented as challenges to participants. Based on review of interview transcripts, we identified four strategies or issues to inform the further development of Blue Prescription. Evidence indicated that the Blue Prescription approach can provide a collaborative and flexible way for physical therapists to work with individuals with MS, to increase participation in community-based physical activity. To further develop the approach, there is a need to address issues related to the use of standardized measures and develop strategies to train physical therapists in collaborative approaches for promotion of physical activity.The integration of self-help and professional help provided by the Blue Prescription approach appeared to result in successful promotion of physical activity in persons with MS. Additional testing is required to examine its efficacy in other health care systems, in conditions beyond MS, and in terms of its economic impact.Video Abstract available (see Video, Supplemental Digital Content 1, http://links.lww.com/JNPT/A46) for more insights from the authors.

  11. Safe Maneuvering Envelope Estimation Based on a Physical Approach

    NASA Technical Reports Server (NTRS)

    Lombaerts, Thomas J. J.; Schuet, Stefan R.; Wheeler, Kevin R.; Acosta, Diana; Kaneshige, John T.

    2013-01-01

    This paper discusses a computationally efficient algorithm for estimating the safe maneuvering envelope of damaged aircraft. The algorithm performs a robust reachability analysis through an optimal control formulation while making use of time scale separation and taking into account uncertainties in the aerodynamic derivatives. This approach differs from others since it is physically inspired. This more transparent approach allows interpreting data in each step, and it is assumed that these physical models based upon flight dynamics theory will therefore facilitate certification for future real life applications.

  12. A Project-Based Learning Approach to Teaching Physics for Pre-Service Elementary School Teacher Education Students

    ERIC Educational Resources Information Center

    Goldstein, Olzan

    2016-01-01

    This paper describes the impact of the project-based learning (PBL) approach on learning and teaching physics from the perspective of pre-service elementary school teacher education students and an instructor. This approach promoted meaningful learning (mainly in the scope of projects), higher motivation, and active involvement of students in…

  13. Hydrological modelling in forested systems | Science ...

    EPA Pesticide Factsheets

    This chapter provides a brief overview of forest hydrology modelling approaches for answering important global research and management questions. Many hundreds of hydrological models have been applied globally across multiple decades to represent and predict forest hydrological processes. The focus of this chapter is on process-based models and approaches, specifically 'forest hydrology models'; that is, physically based simulation tools that quantify compartments of the forest hydrological cycle. Physically based models can be considered those that describe the conservation of mass, momentum and/or energy. The purpose of this chapter is to provide a brief overview of forest hydrology modeling approaches for answering important global research and management questions. The focus of this chapter is on process-based models and approaches, specifically “forest hydrology models”, i.e., physically-based simulation tools that quantify compartments of the forest hydrological cycle.

  14. BAC-end sequence-based SNPs and Bin mapping for rapid integration of physical and genetic maps in apple.

    PubMed

    Han, Yuepeng; Chagné, David; Gasic, Ksenija; Rikkerink, Erik H A; Beever, Jonathan E; Gardiner, Susan E; Korban, Schuyler S

    2009-03-01

    A genome-wide BAC physical map of the apple, Malus x domestica Borkh., has been recently developed. Here, we report on integrating the physical and genetic maps of the apple using a SNP-based approach in conjunction with bin mapping. Briefly, BAC clones located at ends of BAC contigs were selected, and sequenced at both ends. The BAC end sequences (BESs) were used to identify candidate SNPs. Subsequently, these candidate SNPs were genetically mapped using a bin mapping strategy for the purpose of mapping the physical onto the genetic map. Using this approach, 52 (23%) out of 228 BESs tested were successfully exploited to develop SNPs. These SNPs anchored 51 contigs, spanning approximately 37 Mb in cumulative physical length, onto 14 linkage groups. The reliability of the integration of the physical and genetic maps using this SNP-based strategy is described, and the results confirm the feasibility of this approach to construct an integrated physical and genetic maps for apple.

  15. Coherent Teaching and Need-Based Learning in Science: An Approach to Teach Engineering Students in Basic Physics Courses

    ERIC Educational Resources Information Center

    Kurki-Suonio, T.; Hakola, A.

    2007-01-01

    In the present paper, we propose an alternative, based on constructivism, to the conventional way of teaching basic physics courses at the university level. We call this approach "coherent teaching" and the underlying philosophy of teaching science and engineering "need-based learning". We have been applying this philosophy in…

  16. A combined treatment approach emphasizing impairment-based manual physical therapy for plantar heel pain: a case series.

    PubMed

    Young, Brian; Walker, Michael J; Strunce, Joseph; Boyles, Robert

    2004-11-01

    Case series. To describe an impairment-based physical therapy treatment approach for 4 patients with plantar heel pain. There is limited evidence from clinical trials on which to base treatment decision making for plantar heel pain. Four patients completed a course of physical therapy based on an impairment-based model. All patients received manual physical therapy and stretching. Two patients were also treated with custom orthoses, and 1 patient received an additional strengthening program. Outcome measures included a numeric pain rating scale (NPRS) and self-reported functional status. Symptom duration ranged from 6 to 52 weeks (mean duration+/-SD, 33+/-19 weeks). Treatment duration ranged from 8 to 49 days (mean duration+/-SD, 23+/-18 days), with number of treatment sessions ranging from 2 to 7 (mode, 3). All 4 patients reported a decrease in NPRS scores from an average (+/-SD) of 5.8+/-2.2 to 0 (out of 10) during previously painful activities. Additionally, all patients returned to prior activity levels. In this case series, patients with plantar heel pain treated with an impairment-based physical therapy approach emphasizing manual therapy demonstrated complete pain relief and full return to activities. Further research is necessary to determine the effectiveness of impairment-based physical therapy interventions for patients with plantar heel pain/plantar fasciitis.

  17. Test on the Effectiveness of the Sum over Paths Approach in Favoring the Construction of an Integrated Knowledge of Quantum Physics in High School

    ERIC Educational Resources Information Center

    Malgieri, Massimiliano; Onorato, Pasquale; De Ambrosis, Anna

    2017-01-01

    In this paper we present the results of a research-based teaching-learning sequence on introductory quantum physics based on Feynman's sum over paths approach in the Italian high school. Our study focuses on students' understanding of two founding ideas of quantum physics, wave particle duality and the uncertainty principle. In view of recent…

  18. Efficacy of Using Internet-Based Interventions for Physical Activity Promotion in a Hong Kong Secondary School: An Action Research Approach

    ERIC Educational Resources Information Center

    Sum, Raymond Kim Wai; Leung, Elean Fung Lin

    2016-01-01

    The purpose of this study was to examine the effectiveness of an Internet-based behavioral intervention for physical activity (PA) promotion among secondary school students. It was hypothesized that the Internet-based PA promotion program could increase the PA levels of secondary school students. The action research approach together with…

  19. A Physics-Based Engineering Approach to Predict the Cross Section for Advanced SRAMs

    NASA Astrophysics Data System (ADS)

    Li, Lei; Zhou, Wanting; Liu, Huihua

    2012-12-01

    This paper presents a physics-based engineering approach to estimate the heavy ion induced upset cross section for 6T SRAM cells from layout and technology parameters. The new approach calculates the effects of radiation with junction photocurrent, which is derived based on device physics. The new and simple approach handles the problem by using simple SPICE simulations. At first, the approach uses a standard SPICE program on a typical PC to predict the SPICE-simulated curve of the collected charge vs. its affected distance from the drain-body junction with the derived junction photocurrent. And then, the SPICE-simulated curve is used to calculate the heavy ion induced upset cross section with a simple model, which considers that the SEU cross section of a SRAM cell is more related to a “radius of influence” around a heavy ion strike than to the physical size of a diffusion node in the layout for advanced SRAMs in nano-scale process technologies. The calculated upset cross section based on this method is in good agreement with the test results for 6T SRAM cells processed using 90 nm process technology.

  20. Reconstructing Macroeconomics Based on Statistical Physics

    NASA Astrophysics Data System (ADS)

    Aoki, Masanao; Yoshikawa, Hiroshi

    We believe that time has come to integrate the new approach based on statistical physics or econophysics into macroeconomics. Toward this goal, there must be more dialogues between physicists and economists. In this paper, we argue that there is no reason why the methods of statistical physics so successful in many fields of natural sciences cannot be usefully applied to macroeconomics that is meant to analyze the macroeconomy comprising a large number of economic agents. It is, in fact, weird to regard the macroeconomy as a homothetic enlargement of the representative micro agent. We trust the bright future of the new approach to macroeconomies based on statistical physics.

  1. Geomorphological Fieldwork

    USGS Publications Warehouse

    Thornbush, Mary J; Allen, Casey D; Fitzpatrick, Faith A.

    2014-01-01

    Geomorphological Fieldwork addresses a topic that always remains popular within the geosciences and environmental science. More specifically, the volume conveys a growing legacy of field-based learning for young geomorphologists that can be used as a student book for field-based university courses and postgraduate research requiring fieldwork or field schools. The editors have much experience of field-based learning within geomorphology and extend this to physical geography. The topics covered are relevant to basic geomorphology as well as applied approaches in environmental and cultural geomorphology. The book integrates a physical-human approach to geography, but focuses on physical geography and geomorphology from an integrated field-based geoscience perspective.

  2. A Game-Based Approach to an Entire Physical Chemistry Course

    ERIC Educational Resources Information Center

    Daubenfeld, Thorsten; Zenker, Dietmar

    2015-01-01

    We designed, implemented, and evaluated a game-based learning approach to increase student motivation and achievement for an undergraduate physical chemistry course. By focusing only on the most important game aspects, the implementation was realized with a production ratio of 1:8 (study load in hours divided by production effort in hours).…

  3. Using a Dual Safeguard Web-Based Interactive Teaching Approach in an Introductory Physics Class

    ERIC Educational Resources Information Center

    Li, Lie-Ming; Li, Bin; Luo, Ying

    2015-01-01

    We modified the Just-in-Time Teaching approach and developed a dual safeguard web-based interactive (DGWI) teaching system for an introductory physics course. The system consists of four instructional components that improve student learning by including warm-up assignments and online homework. Student and instructor activities involve activities…

  4. Cost-effectiveness of a classification-based system for sub-acute and chronic low back pain.

    PubMed

    Apeldoorn, Adri T; Bosmans, Judith E; Ostelo, Raymond W; de Vet, Henrica C W; van Tulder, Maurits W

    2012-07-01

    Identifying relevant subgroups in patients with low back pain (LBP) is considered important to guide physical therapy practice and to improve outcomes. The aim of the present study was to assess the cost-effectiveness of a modified version of Delitto's classification-based treatment approach compared with usual physical therapy care in patients with sub-acute and chronic LBP with 1 year follow-up. All patients were classified using the modified version of Delitto's classification-based system and then randomly assigned to receive either classification-based treatment or usual physical therapy care. The main clinical outcomes measured were; global perceived effect, intensity of pain, functional disability and quality of life. Costs were measured from a societal perspective. Multiple imputations were used for missing data. Uncertainty surrounding cost differences and incremental cost-effectiveness ratios was estimated using bootstrapping. Cost-effectiveness planes and cost-effectiveness acceptability curves were estimated. In total, 156 patients were included. The outcome analyses showed a significantly better outcome on global perceived effect favoring the classification-based approach, and no differences between the groups on pain, disability and quality-adjusted life-years. Mean total societal costs for the classification-based group were 2,287, and for the usual physical therapy care group 2,020. The difference was 266 (95% CI -720 to 1,612) and not statistically significant. Cost-effectiveness analyses showed that the classification-based approach was not cost-effective in comparison with usual physical therapy care for any clinical outcome measure. The classification-based treatment approach as used in this study was not cost-effective in comparison with usual physical therapy care in a population of patients with sub-acute and chronic LBP.

  5. Educational Analysis of a First Year Engineering Physics Experiment on Standing Waves: Based on the ACELL Approach

    ERIC Educational Resources Information Center

    Bhathal, Ragbir; Sharma, Manjula D.; Mendez, Alberto

    2010-01-01

    This paper describes an educational analysis of a first year physics experiment on standing waves for engineering students. The educational analysis is based on the ACELL (Advancing Chemistry by Enhancing Learning in the Laboratory) approach which includes a statement of educational objectives and an analysis of student learning experiences. The…

  6. Identifying Predictors of Physics Item Difficulty: A Linear Regression Approach

    ERIC Educational Resources Information Center

    Mesic, Vanes; Muratovic, Hasnija

    2011-01-01

    Large-scale assessments of student achievement in physics are often approached with an intention to discriminate students based on the attained level of their physics competencies. Therefore, for purposes of test design, it is important that items display an acceptable discriminatory behavior. To that end, it is recommended to avoid extraordinary…

  7. Partnering with Youth to Map Their Neighborhood Environments: A Multi-Layered GIS Approach

    PubMed Central

    Topmiller, Michael; Jacquez, Farrah; Vissman, Aaron T.; Raleigh, Kevin; Miller-Francis, Jenni

    2014-01-01

    Mapping approaches offer great potential for community-based participatory researchers interested in displaying youth perceptions and advocating for change. We describe a multi-layered approach for gaining local knowledge of neighborhood environments that engages youth as co-researchers and active knowledge producers. By integrating geographic information systems (GIS) with environmental audits, an interactive focus group, and sketch mapping, the approach provides a place-based understanding of physical activity resources from the situated experience of youth. Youth report safety and a lack of recreational resources as inhibiting physical activity. Maps reflecting youth perceptions aid policy-makers in making place-based improvements for youth neighborhood environments. PMID:25423245

  8. Models Based Practices in Physical Education: A Sociocritical Reflection

    ERIC Educational Resources Information Center

    Landi, Dillon; Fitzpatrick, Katie; McGlashan, Hayley

    2016-01-01

    In this paper, we reflect on models-based practices in physical education using a sociocritical lens. Drawing links between neoliberal moves in education, and critical approaches to the body and physicality, we take a view that models are useful tools that are worth integrating into physical education, but we are apprehensive to suggest they…

  9. Initial Outcomes of a Participatory-Based, Competency-Building Approach to Increasing Physical Education Teachers' Physical Activity Promotion and Students' Physical Activity: A Pilot Study

    ERIC Educational Resources Information Center

    Weaver, R. Glenn; Webster, Collin A.; Beets, Michael W.; Brazendale, Keith; Chandler, Jessica; Schisler, Lauren; Aziz, Mazen

    2018-01-01

    This study examined the initial effects of a participatory-based, competency-/skill-building professional development workshop for physical education (PE) teachers on the use of physical activity (PA) promotion practices (e.g., eliminating lines, small-sided games) and students' moderate-to-vigorous physical activity (MVPA). A total of 823…

  10. Physics-based approach to haptic display

    NASA Technical Reports Server (NTRS)

    Brown, J. Michael; Colgate, J. Edward

    1994-01-01

    This paper addresses the implementation of complex multiple degree of freedom virtual environments for haptic display. We suggest that a physics based approach to rigid body simulation is appropriate for hand tool simulation, but that currently available simulation techniques are not sufficient to guarantee successful implementation. We discuss the desirable features of a virtual environment simulation, specifically highlighting the importance of stability guarantees.

  11. Physical Therapy in the Treatment of Central Pain Mechanisms for Female Sexual Pain.

    PubMed

    Vandyken, Carolyn; Hilton, Sandra

    2017-01-01

    The complexity of female sexual pain requires an interdisciplinary approach. Physical therapists trained in pelvic health conditions are well positioned to be active members of an interdisciplinary team addressing the assessment and treatment of female sexual pain. Changes within physical therapy practice in the last ten years have resulted in significant utilization of pelvic floor muscle relaxation and manual therapy techniques to address a variety of pelvic pain conditions, including female sexual pain. However, sexual pain is a complex issue giving credence to the necessity of addressing all of the drivers of the pain experience- biological, psychological and social. This review aims to reconcile current pain science with a plan for integrating a biopsychosocial approach into the evaluation and subsequent treatment for female sexual pain for physical therapists. A literature review of the important components of skilled physical therapy interventions is presented including the physical examination, pain biology education, cognitive behavioral influences in treatment design, motivational interviewing as an adjunct to empathetic practice, and the integration of non-threatening movement and mindfulness into treatment. A single case study is used to demonstrate the biopsychosocial framework utilized in this approach. Appropriate measures for assessing psychosocial factors are readily available and inform a reasoned approach for physical therapy design that addresses both peripheral and central pain mechanisms. Decades of research support the integration of a biopsychosocial approach in the treatment of complex pain, including female sexual pain. It is reasonable for physical therapists to utilize evidence based strategies such as CBT, pain biology education, Mindfulness Based Stress Reduction (MBSR), yoga and imagery based exercises to address the biopsychosocial components of female sexual pain. Copyright © 2016 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  12. Neighborhoods on the move: a community-based participatory research approach to promoting physical activity.

    PubMed

    Suminski, Richard R; Petosa, Rick L; Jones, Larry; Hall, Lisa; Poston, Carlos W

    2009-01-01

    There is a scientific and practical need for high-quality effectiveness studies of physical activity interventions in "real-world" settings. To use a community-based participatory research (CBPR) approach to develop, implement, operate, and evaluate an intervention for promoting physical activity called Neighborhoods on the Move. Two communities with similar physical and social characteristics participated in this study. One community was involved in Neighborhoods on the Move; the other (comparison community) participated only in the assessments. Academic personnel and residents/organizations in the Neighborhoods on the Move community worked together to create a community environment that was more conducive for physical activity. Pre- and posttest data on new initiatives promoting physical activity, existing physical activity initiatives, and business policies supporting physical activity were collected simultaneously in both communities. The success of the CBPR approach was evidenced by several developments, including substantial resident involvement and the formation of a leadership committee, marketing campaign, and numerous community partnerships. The number of businesses with policies promoting physical activity and breadth of existing physical activity initiatives (participants, activities, hours) increased substantially more in the Neighborhoods on the Move community than in the comparison community. A total of sixty new initiatives promoting physical activity were implemented in the Neighborhoods on the Move community during the intervention. The CBPR approach is an effective strategy for inducing environmental changes that promote physical activity. Additional research is needed to assess the portability and sustainability of Neighborhoods on the Move.

  13. Feasibility Study of Comprehensive School Physical Activity Programs in Appalachian Communities: The McDowell CHOICES Project

    ERIC Educational Resources Information Center

    Jones, Emily M.; Taliaferro, Andrea R.; Elliott, Eloise M.; Bulger, Sean M.; Kristjansson, Alfgeir L.; Neal, William; Allar, Ishonté

    2014-01-01

    Increasing rates of childhood obesity has prompted calls for comprehensive approaches to school-based physical activity (PA). The purpose of this study was to evaluate the feasibility of comprehensive school physical activity program (CSPAP) development and related contextual issues within a rural Appalachian county using a Systems Approach. A…

  14. Interdisciplinary Mathematics-Physics Approaches to Teaching the Concept of Angle in Elementary School

    ERIC Educational Resources Information Center

    Munier, Valerie; Merle, Helene

    2009-01-01

    The present study takes an interdisciplinary mathematics-physics approach to the acquisition of the concept of angle by children in Grades 3-5. This paper first presents the theoretical framework we developed, then we analyse the concept of angle and the difficulties pupils have with it. Finally, we report three experimental physics-based teaching…

  15. Simulation-Based Performance Assessment: An Innovative Approach to Exploring Understanding of Physical Science Concepts

    ERIC Educational Resources Information Center

    Gale, Jessica; Wind, Stefanie; Koval, Jayma; Dagosta, Joseph; Ryan, Mike; Usselman, Marion

    2016-01-01

    This paper illustrates the use of simulation-based performance assessment (PA) methodology in a recent study of eighth-grade students' understanding of physical science concepts. A set of four simulation-based PA tasks were iteratively developed to assess student understanding of an array of physical science concepts, including net force,…

  16. The influence of HOPE VI neighborhood revitalization on neighborhood-based physical activity: A mixed-methods approach.

    PubMed

    Dulin-Keita, Akilah; Clay, Olivio; Whittaker, Shannon; Hannon, Lonnie; Adams, Ingrid K; Rogers, Michelle; Gans, Kim

    2015-08-01

    This study uses a mixed methods approach to 1) identify surrounding residents' perceived expectations for Housing Opportunities for People Everywhere (HOPE VI) policy on physical activity outcomes and to 2) quantitatively examine the odds of neighborhood-based physical activity pre-/post-HOPE VI in a low socioeconomic status, predominantly African American community in Birmingham, Alabama. To address aim one, we used group concept mapping which is a structured approach for data collection and analyses that produces pictures/maps of ideas. Fifty-eight residents developed statements about potential influences of HOPE VI on neighborhood-based physical activity. In the quantitative study, we examined whether these potential influences increased the odds of neighborhood walking/jogging. We computed block entry logistic regression models with a larger cohort of residents at baseline (n = 184) and six-months (n = 142, 77% retention; n = 120 for all informative variables). We examined perceived neighborhood disorder (perceived neighborhood disorder scale), walkability and aesthetics (Neighborhood Environment Walkability Scale) and HOPE VI-related community safety and safety for physical activity as predictors. During concept mapping, residents generated statements that clustered into three distinct concepts, "Increased Leisure Physical Activity," "Safe Play Areas," and "Generating Health Promoting Resources." The quantitative analyses indicated that changes in neighborhood walkability increased the odds of neighborhood-based physical activity (p = 0.04). When HOPE VI-related safety for physical activity was entered into the model, it was associated with increased odds of physical activity (p = 0.04). Walkability was no longer statistically significant. These results suggest that housing policies that create walkable neighborhoods and that improve perceptions of safety for physical activity may increase neighborhood-based physical activity. However, the longer term impacts of neighborhood-level policies on physical activity require more longitudinal evidence to determine whether increased participation in physical activity is sustained. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Theory versus practice at implementation of inquiry-based approaches into physics education

    NASA Astrophysics Data System (ADS)

    Pfefferová, Miriam Spodniaková; Raganová, Janka; Hruška, Martin; Holec, Stanislav

    2017-01-01

    At present a lot of ideas for student inquiry-based activities accompanied with methodical remarks and instructions for teachers exist and can be used at physics lessons at lower and upper secondary levels. A need of the use of the teaching methods that support an independent student work as well as active learning approaches has been reflected also in the Slovak state educational program at various educational levels. Experiences of teachers who have used inquiry-based approaches in the classrooms are often in the contrary with expectations of these didactical trends. The paper aims to compare the theory and the practice of the implementation of inquiry-based activities in physics teaching. Practical experience was gained implementing activities for science education developed within the Chain Reaction project running at Matej Bel University Banska Bystrica. Opinions of teachers were investigated with the help of questionnaires, evaluation meetings and structured interviews. Their analysis identified many problems that the teachers had met during the implementation of the inquiry-based approaches in their teaching, as well as benefits of those activities for development of student competences.

  18. A Model-Based Prognostics Approach Applied to Pneumatic Valves

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew J.; Goebel, Kai

    2011-01-01

    Within the area of systems health management, the task of prognostics centers on predicting when components will fail. Model-based prognostics exploits domain knowledge of the system, its components, and how they fail by casting the underlying physical phenomena in a physics-based model that is derived from first principles. Uncertainty cannot be avoided in prediction, therefore, algorithms are employed that help in managing these uncertainties. The particle filtering algorithm has become a popular choice for model-based prognostics due to its wide applicability, ease of implementation, and support for uncertainty management. We develop a general model-based prognostics methodology within a robust probabilistic framework using particle filters. As a case study, we consider a pneumatic valve from the Space Shuttle cryogenic refueling system. We develop a detailed physics-based model of the pneumatic valve, and perform comprehensive simulation experiments to illustrate our prognostics approach and evaluate its effectiveness and robustness. The approach is demonstrated using historical pneumatic valve data from the refueling system.

  19. Modern meta-heuristics based on nonlinear physics processes: A review of models and design procedures

    NASA Astrophysics Data System (ADS)

    Salcedo-Sanz, S.

    2016-10-01

    Meta-heuristic algorithms are problem-solving methods which try to find good-enough solutions to very hard optimization problems, at a reasonable computation time, where classical approaches fail, or cannot even been applied. Many existing meta-heuristics approaches are nature-inspired techniques, which work by simulating or modeling different natural processes in a computer. Historically, many of the most successful meta-heuristic approaches have had a biological inspiration, such as evolutionary computation or swarm intelligence paradigms, but in the last few years new approaches based on nonlinear physics processes modeling have been proposed and applied with success. Non-linear physics processes, modeled as optimization algorithms, are able to produce completely new search procedures, with extremely effective exploration capabilities in many cases, which are able to outperform existing optimization approaches. In this paper we review the most important optimization algorithms based on nonlinear physics, how they have been constructed from specific modeling of a real phenomena, and also their novelty in terms of comparison with alternative existing algorithms for optimization. We first review important concepts on optimization problems, search spaces and problems' difficulty. Then, the usefulness of heuristics and meta-heuristics approaches to face hard optimization problems is introduced, and some of the main existing classical versions of these algorithms are reviewed. The mathematical framework of different nonlinear physics processes is then introduced as a preparatory step to review in detail the most important meta-heuristics based on them. A discussion on the novelty of these approaches, their main computational implementation and design issues, and the evaluation of a novel meta-heuristic based on Strange Attractors mutation will be carried out to complete the review of these techniques. We also describe some of the most important application areas, in broad sense, of meta-heuristics, and describe free-accessible software frameworks which can be used to make easier the implementation of these algorithms.

  20. Using a participatory approach to the development of a school-based physical activity policy in an Indigenous community.

    PubMed

    Hogan, Lindsay; García Bengoechea, Enrique; Salsberg, Jon; Jacobs, Judi; King, Morrison; Macaulay, Ann C

    2014-12-01

    This study is part of a larger community-based participatory research (CBPR) project to develop, implement, and evaluate the physical activity component of a school-based wellness policy. The policy intervention is being carried out by community stakeholders and academic researchers within the Kahnawake Schools Diabetes Prevention Project, a well-established health promotion organization in the Indigenous community of Kahnawake, Quebec. We explored how a group of stakeholders develop a school physical activity policy in a participatory manner, and examined factors serving as facilitators and barriers to the development process. This case study was guided by an interpretive description approach and draws upon data from documentary analysis and participant observation. A CBPR approach allowed academic researchers and community stakeholders to codevelop a physical activity policy that is both evidence-based and contextually appropriate. The development process was influenced by a variety of barriers and facilitators including working within existing structures, securing appropriate stakeholders, and school contextual factors. This research offers a process framework that others developing school-based wellness policies may use with appropriate modifications based on local environments. © 2014, American School Health Association.

  1. Physics-based elastic image registration using splines and including landmark localization uncertainties.

    PubMed

    Wörz, Stefan; Rohr, Karl

    2006-01-01

    We introduce an elastic registration approach which is based on a physical deformation model and uses Gaussian elastic body splines (GEBS). We formulate an extended energy functional related to the Navier equation under Gaussian forces which also includes landmark localization uncertainties. These uncertainties are characterized by weight matrices representing anisotropic errors. Since the approach is based on a physical deformation model, cross-effects in elastic deformations can be taken into account. Moreover, we have a free parameter to control the locality of the transformation for improved registration of local geometric image differences. We demonstrate the applicability of our scheme based on 3D CT images from the Truth Cube experiment, 2D MR images of the brain, as well as 2D gel electrophoresis images. It turns out that the new scheme achieves more accurate results compared to previous approaches.

  2. Reimagining professional competence in physical education

    PubMed Central

    Ennis, Catherine D.

    2015-01-01

    Physical educators have critical roles to play in assisting communities and schools to increase physical activity for all citizens. They can assist classroom teachers in increasing physical activity in the academic school day and can serve as school wellness directors to increase the amount of physical activity students and school staff members receive during the day. Additionally, physical educators can implement innovative approaches to physical education curricula to enhance students’ opportunities to be active and to learn concepts to assist them to be physically active now and for a lifetime. When implementing evidence-based approaches to physical education, teachers need to teach the curriculum coherently and with fidelity. New programs such as Science, PE, & Me! and the Science of Healthful Living provide opportunities for students to examine the effects of exercise on their bodies in a physically active, learning-oriented approach to physical education. PMID:26617976

  3. Extended Hamiltonian approach to continuous tempering

    NASA Astrophysics Data System (ADS)

    Gobbo, Gianpaolo; Leimkuhler, Benedict J.

    2015-06-01

    We introduce an enhanced sampling simulation technique based on continuous tempering, i.e., on continuously varying the temperature of the system under investigation. Our approach is mathematically straightforward, being based on an extended Hamiltonian formulation in which an auxiliary degree of freedom, determining the effective temperature, is coupled to the physical system. The physical system and its temperature evolve continuously in time according to the equations of motion derived from the extended Hamiltonian. Due to the Hamiltonian structure, it is easy to show that a particular subset of the configurations of the extended system is distributed according to the canonical ensemble for the physical system at the correct physical temperature.

  4. Novel Research Approaches to Gauge Global Teacher Familiarity with Game-Based Teaching in Physical Education: An Exploratory #Twitter Analysis

    ERIC Educational Resources Information Center

    Pill, Shane; Harvey, Stephen; Hyndman, Brendon

    2017-01-01

    This paper examines the use of the microblogging platform Twitter as a tool for research in physical education. The research examined teacher use of game-based approaches (GBAs). A rolling Twitter conversation hosted over the course of 12 hours provided the data for the study. Participants were from 18 countries and they contributed on average…

  5. Comprehensive School-Based Physical Activity Promotion: A Review

    ERIC Educational Resources Information Center

    Erwin, Heather; Beighle, Aaron; Carson, Russell L.; Castelli, Darla M.

    2013-01-01

    Physical activity (PA) participation levels among youth remain well below national recommendations. Thus, a variety of strategies to promote youth PA have been advocated, including multifaceted, school-based approaches. One identified as having great potential is a comprehensive school physical activity program (CSPAP). The goal of a CSPAP is to…

  6. National approaches to promote sports and physical activity in adults with disabilities: examples from the Netherlands and Canada.

    PubMed

    Hoekstra, Femke; Roberts, Lynn; van Lindert, Caroline; Martin Ginis, Kathleen A; van der Woude, Lucas H V; McColl, Mary Ann

    2018-01-15

    This study described how the Dutch and Canadian governments promote high performance sports, recreational sports, and physical activity (PA) among adults with disabilities on a national level. An internet-based study was conducted to identify and select relevant documents and websites containing information about the national approach to promote disability sports and physical activities in the Netherlands and Canada. Both governments promote high performance sports in similar ways, but use different strategies to promote recreational sports and physical activities. The Dutch approach is characterized by using time-limited programs focusing on enhancement of sports infrastructure and inter-sector collaboration in which municipalities have key roles. The Canadian government promotes recreational sports in disabled populations by supporting programs via bilateral agreements with provinces and territories. Furthermore, the level of integration of disability sports into mainstream sports differs between countries. The findings of this study may inspire policy makers from different countries to learn from one another's policies in order to optimize national approaches to promote disability sports and PA on all levels. Implications for rehabilitation It is recommended for policy makers of national governments to develop and implement policy programs that promote sports and physical activities among people with disabilities because of its potential impact on functioning, participation, quality of life, and health. Insight into national approaches to promote sport and physical activities is relevant for rehabilitation practice to understand ongoing opportunities for people with disabilities to stay physically active after rehabilitation through participation in home and/or community-based sport and physical activities. It seems worthwhile to integrate activities to promote sport and physical activities in rehabilitation in such a way that it fits with the current governmental approach. It is recommended to set up international collaborations to develop and share knowledge about effective and sustainable national approaches to promote sports and physical activities among people with disabilities.

  7. The Practicality of Statistical Physics Handout Based on KKNI and the Constructivist Approach

    NASA Astrophysics Data System (ADS)

    Sari, S. Y.; Afrizon, R.

    2018-04-01

    Statistical physics lecture shows that: 1) the performance of lecturers, social climate, students’ competence and soft skills needed at work are in enough category, 2) students feel difficulties in following the lectures of statistical physics because it is abstract, 3) 40.72% of students needs more understanding in the form of repetition, practice questions and structured tasks, and 4) the depth of statistical physics material needs to be improved gradually and structured. This indicates that learning materials in accordance of The Indonesian National Qualification Framework or Kerangka Kualifikasi Nasional Indonesia (KKNI) with the appropriate learning approach are needed to help lecturers and students in lectures. The author has designed statistical physics handouts which have very valid criteria (90.89%) according to expert judgment. In addition, the practical level of handouts designed also needs to be considered in order to be easy to use, interesting and efficient in lectures. The purpose of this research is to know the practical level of statistical physics handout based on KKNI and a constructivist approach. This research is a part of research and development with 4-D model developed by Thiagarajan. This research activity has reached part of development test at Development stage. Data collection took place by using a questionnaire distributed to lecturers and students. Data analysis using descriptive data analysis techniques in the form of percentage. The analysis of the questionnaire shows that the handout of statistical physics has very practical criteria. The conclusion of this study is statistical physics handouts based on the KKNI and constructivist approach have been practically used in lectures.

  8. Can We Practically Bring Physics-based Modeling Into Operational Analytics Tools?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granderson, Jessica; Bonvini, Marco; Piette, Mary Ann

    We present that analytics software is increasingly used to improve and maintain operational efficiency in commercial buildings. Energy managers, owners, and operators are using a diversity of commercial offerings often referred to as Energy Information Systems, Fault Detection and Diagnostic (FDD) systems, or more broadly Energy Management and Information Systems, to cost-effectively enable savings on the order of ten to twenty percent. Most of these systems use data from meters and sensors, with rule-based and/or data-driven models to characterize system and building behavior. In contrast, physics-based modeling uses first-principles and engineering models (e.g., efficiency curves) to characterize system and buildingmore » behavior. Historically, these physics-based approaches have been used in the design phase of the building life cycle or in retrofit analyses. Researchers have begun exploring the benefits of integrating physics-based models with operational data analytics tools, bridging the gap between design and operations. In this paper, we detail the development and operator use of a software tool that uses hybrid data-driven and physics-based approaches to cooling plant FDD and optimization. Specifically, we describe the system architecture, models, and FDD and optimization algorithms; advantages and disadvantages with respect to purely data-driven approaches; and practical implications for scaling and replicating these techniques. Finally, we conclude with an evaluation of the future potential for such tools and future research opportunities.« less

  9. Problem Solving: Physics Modeling-Based Interactive Engagement

    ERIC Educational Resources Information Center

    Ornek, Funda

    2009-01-01

    The purpose of this study was to investigate how modeling-based instruction combined with an interactive-engagement teaching approach promotes students' problem solving abilities. I focused on students in a calculus-based introductory physics course, based on the matter and interactions curriculum of Chabay & Sherwood (2002) at a large state…

  10. An industrial educational laboratory at Ducati Foundation: narrative approaches to mechanics based upon continuum physics

    NASA Astrophysics Data System (ADS)

    Corni, Federico; Fuchs, Hans U.; Savino, Giovanni

    2018-02-01

    This is a description of the conceptual foundations used for designing a novel learning environment for mechanics implemented as an Industrial Educational Laboratory - called Fisica in Moto (FiM) - at the Ducati Foundation in Bologna. In this paper, we will describe the motivation for and design of the conceptual approach to mechanics used in the lab - as such, the paper is theoretical in nature. The goal of FiM is to provide an approach to the teaching of mechanics based upon imaginative structures found in continuum physics suitable to engineering and science. We show how continuum physics creates models of mechanical phenomena by using momentum and angular momentum as primitive quantities. We analyse this approach in terms of cognitive linguistic concepts such as conceptual metaphor and narrative framing of macroscopic physical phenomena. The model discussed here has been used in the didactical design of the actual lab and raises questions for an investigation of student learning of mechanics in a narrative setting.

  11. Teaching Middle School Physical Education: A Standards-Based Approach for Grades 5-8. Second Edition.

    ERIC Educational Resources Information Center

    Mohnsen, Bonnie S.

    This book provides a blueprint for developing environment, curriculum, instruction, and assessment based on high quality physical education guidelines. There are 17 chapters in four parts. Part 1, "Prepare for Your Journey," includes (1) "Physical Education in a Changing World"; (2) "Reform Efforts in the Middle…

  12. A Data Based Gymnasium: A Systematic Approach to Physical Education for the Handicapped.

    ERIC Educational Resources Information Center

    Dunn, John M.; And Others

    The authors describe a data based physical education curriculum designed for low incidence severely handicapped students by Oregon State University in conjunction with Teaching Research. Chapter 1 provides a brief introduction to the physical education curriculum and the Teaching Research model with emphasis placed on the importance of…

  13. Effective Teaching Methods--Project-based Learning in Physics

    ERIC Educational Resources Information Center

    Holubova, Renata

    2008-01-01

    The paper presents results of the research of new effective teaching methods in physics and science. It is found out that it is necessary to educate pre-service teachers in approaches stressing the importance of the own activity of students, in competences how to create an interdisciplinary project. Project-based physics teaching and learning…

  14. Model-Based Anomaly Detection for a Transparent Optical Transmission System

    NASA Astrophysics Data System (ADS)

    Bengtsson, Thomas; Salamon, Todd; Ho, Tin Kam; White, Christopher A.

    In this chapter, we present an approach for anomaly detection at the physical layer of networks where detailed knowledge about the devices and their operations is available. The approach combines physics-based process models with observational data models to characterize the uncertainties and derive the alarm decision rules. We formulate and apply three different methods based on this approach for a well-defined problem in optical network monitoring that features many typical challenges for this methodology. Specifically, we address the problem of monitoring optically transparent transmission systems that use dynamically controlled Raman amplification systems. We use models of amplifier physics together with statistical estimation to derive alarm decision rules and use these rules to automatically discriminate between measurement errors, anomalous losses, and pump failures. Our approach has led to an efficient tool for systematically detecting anomalies in the system behavior of a deployed network, where pro-active measures to address such anomalies are key to preventing unnecessary disturbances to the system's continuous operation.

  15. A Scientific Approach To STEM Education

    DTIC Science & Technology

    2011-06-16

    T My Physics graduate students -- Why excellence in physics courses≠ competence in physics research ? Two years in lab transforms? approached as...learned? (100’s of courses/yr) improved methods average trad. Cal Poly instruction 2. Multiple instructors facilitating same established set of student ...Intro biology Univ. of Wash.– similar research - based instruction •All students improve •Underrepresented students improve more (+1/3 letter grade

  16. Becoming the Physical Activity Champion: Empowerment through Social Marketing

    ERIC Educational Resources Information Center

    Colquitt, Gavin; Alfonso, Moya L.; Walker, Ashley

    2014-01-01

    Physical education teachers can champion their profession through marketing the importance of physical activity to children and families in the communities they serve. Social marketing, a consumer-based approach to behavior change, is an excellent choice for physical education teachers who want to "sell" physical activity to their…

  17. Recommendations for a culturally relevant Internet-based tool to promote physical activity among overweight young African American women, Alabama, 2010-2011.

    PubMed

    Durant, Nefertiti H; Joseph, Rodney P; Cherrington, Andrea; Cuffee, Yendelela; Knight, BernNadette; Lewis, Dwight; Allison, Jeroan J

    2014-01-16

    Innovative approaches are needed to promote physical activity among young adult overweight and obese African American women. We sought to describe key elements that African American women desire in a culturally relevant Internet-based tool to promote physical activity among overweight and obese young adult African American women. A mixed-method approach combining nominal group technique and traditional focus groups was used to elicit recommendations for the development of an Internet-based physical activity promotion tool. Participants, ages 19 to 30 years, were enrolled in a major university. Nominal group technique sessions were conducted to identify themes viewed as key features for inclusion in a culturally relevant Internet-based tool. Confirmatory focus groups were conducted to verify and elicit more in-depth information on the themes. Twenty-nine women participated in nominal group (n = 13) and traditional focus group sessions (n = 16). Features that emerged to be included in a culturally relevant Internet-based physical activity promotion tool were personalized website pages, diverse body images on websites and in videos, motivational stories about physical activity and women similar to themselves in size and body shape, tips on hair care maintenance during physical activity, and online social support through social media (eg, Facebook, Twitter). Incorporating existing social media tools and motivational stories from young adult African American women in Internet-based tools may increase the feasibility, acceptability, and success of Internet-based physical activity programs in this high-risk, understudied population.

  18. A Bayesian approach for parameter estimation and prediction using a computationally intensive model

    DOE PAGES

    Higdon, Dave; McDonnell, Jordan D.; Schunck, Nicolas; ...

    2015-02-05

    Bayesian methods have been successful in quantifying uncertainty in physics-based problems in parameter estimation and prediction. In these cases, physical measurements y are modeled as the best fit of a physics-based modelmore » $$\\eta (\\theta )$$, where θ denotes the uncertain, best input setting. Hence the statistical model is of the form $$y=\\eta (\\theta )+\\epsilon ,$$ where $$\\epsilon $$ accounts for measurement, and possibly other, error sources. When nonlinearity is present in $$\\eta (\\cdot )$$, the resulting posterior distribution for the unknown parameters in the Bayesian formulation is typically complex and nonstandard, requiring computationally demanding computational approaches such as Markov chain Monte Carlo (MCMC) to produce multivariate draws from the posterior. Although generally applicable, MCMC requires thousands (or even millions) of evaluations of the physics model $$\\eta (\\cdot )$$. This requirement is problematic if the model takes hours or days to evaluate. To overcome this computational bottleneck, we present an approach adapted from Bayesian model calibration. This approach combines output from an ensemble of computational model runs with physical measurements, within a statistical formulation, to carry out inference. A key component of this approach is a statistical response surface, or emulator, estimated from the ensemble of model runs. We demonstrate this approach with a case study in estimating parameters for a density functional theory model, using experimental mass/binding energy measurements from a collection of atomic nuclei. Lastly, we also demonstrate how this approach produces uncertainties in predictions for recent mass measurements obtained at Argonne National Laboratory.« less

  19. Developing Students' Ideas about Lens Imaging: Teaching Experiments with an Image-Based Approach

    ERIC Educational Resources Information Center

    Grusche, Sascha

    2017-01-01

    Lens imaging is a classic topic in physics education. To guide students from their holistic viewpoint to the scientists' analytic viewpoint, an image-based approach to lens imaging has recently been proposed. To study the effect of the image-based approach on undergraduate students' ideas, teaching experiments are performed and evaluated using…

  20. The Effectiveness of Brain-Based Teaching Approach in Dealing with the Problems of Students' Conceptual Understanding and Learning Motivation towards Physics

    ERIC Educational Resources Information Center

    Saleh, Salmiza

    2012-01-01

    Teachers of science-based education in Malaysian secondary schools, especially those in the field of physics, often find their students facing huge difficulties in dealing with conceptual ideas in physics, resulting thus in a lack of interest towards the subject. The aim of this study was to assess the effectiveness of the Brain-Based Teaching…

  1. Measuring physical and mental health using the SF-12: implications for community surveys of mental health.

    PubMed

    Windsor, Timothy D; Rodgers, Bryan; Butterworth, Peter; Anstey, Kaarin J; Jorm, Anthony F

    2006-09-01

    The effects of using different approaches to scoring the SF-12 summary scales of physical and mental health were examined with a view to informing the design and interpretation of community-based survey research. Data from a population-based study of 7485 participants in three cohorts aged 20-24, 40-44 and 60-64 years were used to examine relationships among measures of physical and mental health calculated from the same items using the SF-12 and RAND-12 approaches to scoring, and other measures of chronic physical conditions and psychological distress. A measure of physical health constructed using the RAND-12 scoring showed a monotonic negative association with psychological distress as measured by the Goldberg depression and anxiety scales. However, a non-monotonic association was evident in the relationship between SF-12 physical health scores and distress, with very high SF-12 physical health scores corresponding with high levels of distress. These relationships highlight difficulties in interpretation that can arise when using the SF-12 summary scales in some analytical contexts. It is recommended that community surveys that measure physical and mental functioning using the SF-12 items generate summary scores using the RAND-12 protocol in addition to the SF-12 approach. In general, researchers should be wary of using factor scores based on orthogonal rotation, which assumes that measures are uncorrelated, to represent constructs that have an actual association.

  2. Development of a measurement approach to assess time children participate in organized sport, active travel, outdoor active play, and curriculum-based physical activity.

    PubMed

    Borghese, Michael M; Janssen, Ian

    2018-03-22

    Children participate in four main types of physical activity: organized sport, active travel, outdoor active play, and curriculum-based physical activity. The objective of this study was to develop a valid approach that can be used to concurrently measure time spent in each of these types of physical activity. Two samples (sample 1: n = 50; sample 2: n = 83) of children aged 10-13 wore an accelerometer and a GPS watch continuously over 7 days. They also completed a log where they recorded the start and end times of organized sport sessions. Sample 1 also completed an outdoor time log where they recorded the times they went outdoors and a description of the outdoor activity. Sample 2 also completed a curriculum log where they recorded times they participated in physical activity (e.g., physical education) during class time. We describe the development of a measurement approach that can be used to concurrently assess the time children spend participating in specific types of physical activity. The approach uses a combination of data from accelerometers, GPS, and activity logs and relies on merging and then processing these data using several manual (e.g., data checks and cleaning) and automated (e.g., algorithms) procedures. In the new measurement approach time spent in organized sport is estimated using the activity log. Time spent in active travel is estimated using an existing algorithm that uses GPS data. Time spent in outdoor active play is estimated using an algorithm (with a sensitivity and specificity of 85%) that was developed using data collected in sample 1 and which uses all of the data sources. Time spent in curriculum-based physical activity is estimated using an algorithm (with a sensitivity of 78% and specificity of 92%) that was developed using data collected in sample 2 and which uses accelerometer data collected during class time. There was evidence of excellent intra- and inter-rater reliability of the estimates for all of these types of physical activity when the manual steps were duplicated. This novel measurement approach can be used to estimate the time that children participate in different types of physical activity.

  3. Understanding the experience of initiating community-based physical activity and social support by people with serious mental illness: a systematic review using a meta-ethnographic approach.

    PubMed

    Quirk, Helen; Crank, Helen; Harrop, Deborah; Hock, Emma; Copeland, Robert

    2017-10-25

    People with long-term serious mental illness live with severe and debilitating symptoms that can negatively influence their health and quality of life, leading to outcomes such as premature mortality, morbidity and obesity. An interplay of social, behavioural, biological and psychological factors is likely to contribute to their poor physical health. Participating in regular physical activity could bring symptomatic improvements, weight loss benefits, enhanced wellbeing and when undertaken in a community-based group setting can yield additional, important social support benefits. Yet poor uptake of physical activity by people with serious mental illness is a problem. This review will systematically search, appraise and synthesise the existing evidence that has explored the experience of community-based physical activity initiation and key features of social support within these contexts by adults with schizophrenia, bipolar affective disorder, major depressive disorder or psychosis using the meta-ethnography approach. This new understanding may be key in designing more acceptable and effective community-based group PA programmes that meet patients' need and expectations. This will be a systematic review of qualitative studies using the meta-ethnography approach. The following databases will be searched: ASSIA, CINAHL, Cochrane Central Register of Controlled Trials, EMBASE, Health Technology Assessment Database, MEDLINE, PsycINFO, Sociological Abstracts, SPORTDiscus and Web of Science. Grey literature will also be sought. Eligible studies will use qualitative methodology; involve adults (≥18 years) with schizophrenia, bipolar affective disorder, major depressive disorder or psychosis; will report community-based group physical activity; and capture the experience of physical activity initiation and key features of social support from the perspective of the participant. Study selection and assessment of quality will be performed by two reviewers. Data will be extracted by one reviewer, tabled, and checked for accuracy by the second reviewer. The meta-ethnography approach by Noblit and Hare (Meta-ethnography: synthesizing qualitative studies 11, 1988) will be used to synthesise the data. This systematic review is expected to provide new insights into the experience of community-based group physical activity initiation for adults who have a serious mental illness to inform person-centred improvements to the management of serious mental illness through physical activity. The protocol has been registered on the International Prospective Register of Systematic Reviews (PROSPERO) on 22/03/2017; (registration number CRD42017059948 ).

  4. Physical agents used in the management of chronic pain by physical therapists.

    PubMed

    Allen, Roger J

    2006-05-01

    Evidence supporting the use of specific physical agents in the management of chronic pain conditions is not definitive; it is largely incomplete and sometimes contradictory. However, the use of agents in chronic pain management programs is common. Within the broad use of physical agents, they are rarely the sole modality of treatment. A 1995 American Physical Therapy Association position statement asserts that "Without documentation which justifies the necessity of the exclusive use of physical agents/modalities, the use of physical agents/modalities, in the absence of other skilled therapeutic or educational intervention, should not be considered physical therapy". Physical agents may serve as useful adjunctive modalities of pain relief or to enhance the effectiveness of other elements in therapy geared toward resolution of movement impairments and restoration of physical function. Given that a conclusive aggregate of findings is unlikely to exist for all permutations of patient conditions, combined with interacting therapeutic modalities, an evidence-based approach to pain management is not always possible or beneficial to the patient. In the face of inconclusive evidence, a theory-based approach may help determine if the therapeutic effect ofa given physical agent has the possibility of being a useful clinical tool in the context of treating a particular patient's mechanism of pain generation. Until controlled efficacy findings are definitive, careful individual patient response monitoring of thoughtful theoretical application of adjunctive physical agents may be a prudent approach to the management of chronic pain.

  5. On Practising in Physical Education: Outline for a Pedagogical Model

    ERIC Educational Resources Information Center

    Aggerholm, K.; Standal, O.; Barker, D. M.; Larsson, H.

    2018-01-01

    Background: Models-based approaches to physical education have in recent years developed as a way for teachers and students to concentrate on a manageable number of learning objectives, and align pedagogical approaches with learning subject matter and context. This paper draws on Hannah Arendt's account of "vita activa" to map existing…

  6. "Slow Science": Building Scientific Concepts in Physics in High School

    ERIC Educational Resources Information Center

    Bigozzi, Lucia; Tarchi, Christian; Falsini, Paola; Fiorentini, Carlo

    2014-01-01

    In this study, a progressive-learning approach to physics, based on knowledge-building pedagogy, was compared to a content-centered approach in which explanations, experiments, and discussions are centered on the transmission of knowledge. Forty-six students attending the first year of high school participated in this study over a whole school…

  7. Inquiry-Based Learning Approach in Physical Education: Stimulating and Engaging Students in Physical and Cognitive Learning

    ERIC Educational Resources Information Center

    Østergaard, Lars Domino

    2016-01-01

    Inquiry is an approach that promotes engagement, motivation and learning, and which involves use of cognitive knowledge, bodily experience and communicative skills. Usually the inquiry method with skills like observations, planning, investigations, experimenting and drawing conclusions is related to natural sciences, but this paper describes an…

  8. Real-time physics-based 3D biped character animation using an inverted pendulum model.

    PubMed

    Tsai, Yao-Yang; Lin, Wen-Chieh; Cheng, Kuangyou B; Lee, Jehee; Lee, Tong-Yee

    2010-01-01

    We present a physics-based approach to generate 3D biped character animation that can react to dynamical environments in real time. Our approach utilizes an inverted pendulum model to online adjust the desired motion trajectory from the input motion capture data. This online adjustment produces a physically plausible motion trajectory adapted to dynamic environments, which is then used as the desired motion for the motion controllers to track in dynamics simulation. Rather than using Proportional-Derivative controllers whose parameters usually cannot be easily set, our motion tracking adopts a velocity-driven method which computes joint torques based on the desired joint angular velocities. Physically correct full-body motion of the 3D character is computed in dynamics simulation using the computed torques and dynamical model of the character. Our experiments demonstrate that tracking motion capture data with real-time response animation can be achieved easily. In addition, physically plausible motion style editing, automatic motion transition, and motion adaptation to different limb sizes can also be generated without difficulty.

  9. Promotion of Physical Activity of Adolescents by Skill-Based Health Education

    ERIC Educational Resources Information Center

    Simbar, Masoumeh; Aarabi, Zeinab; Keshavarz, Zohreh; Ramezani-Tehrani, Fahimeh; Baghestani, Ahmad Reza

    2017-01-01

    Purpose: Insufficient physical activity leads to an increase in chronic diseases. Skills-based health education methods are supposed to be more successful than traditional methods to promote healthy behaviors. Skills-based health education is an approach to create healthy lifestyles and skills using participatory methods. The purpose of this paper…

  10. Recommendations for a Culturally Relevant Internet-Based Tool to Promote Physical Activity Among Overweight Young African American Women, Alabama, 2010–2011

    PubMed Central

    Joseph, Rodney P.; Cherrington, Andrea; Cuffee, Yendelela; Knight, BernNadette; Lewis, Dwight; Allison, Jeroan J.

    2014-01-01

    Introduction Innovative approaches are needed to promote physical activity among young adult overweight and obese African American women. We sought to describe key elements that African American women desire in a culturally relevant Internet-based tool to promote physical activity among overweight and obese young adult African American women. Methods A mixed-method approach combining nominal group technique and traditional focus groups was used to elicit recommendations for the development of an Internet-based physical activity promotion tool. Participants, ages 19 to 30 years, were enrolled in a major university. Nominal group technique sessions were conducted to identify themes viewed as key features for inclusion in a culturally relevant Internet-based tool. Confirmatory focus groups were conducted to verify and elicit more in-depth information on the themes. Results Twenty-nine women participated in nominal group (n = 13) and traditional focus group sessions (n = 16). Features that emerged to be included in a culturally relevant Internet-based physical activity promotion tool were personalized website pages, diverse body images on websites and in videos, motivational stories about physical activity and women similar to themselves in size and body shape, tips on hair care maintenance during physical activity, and online social support through social media (eg, Facebook, Twitter). Conclusion Incorporating existing social media tools and motivational stories from young adult African American women in Internet-based tools may increase the feasibility, acceptability, and success of Internet-based physical activity programs in this high-risk, understudied population. PMID:24433625

  11. Active Learning Strategies in Physics Teaching

    ERIC Educational Resources Information Center

    Karamustafaoglu, Orhan

    2009-01-01

    The purpose of this study was to determine physics teachers' opinions about student-centered activities applicable in physics teaching and learning in context. A case study approach was used in this research. First, semi-structured interviews were carried out with 6 physics teachers. Then, a questionnaire was developed based on the data obtained…

  12. Pre-Service Physics Teachers’ Problem-solving Skills in Projectile Motion Concept

    NASA Astrophysics Data System (ADS)

    Sutarno, S.; Setiawan, A.; Kaniawati, I.; Suhandi, A.

    2017-09-01

    This study is a preliminary research aiming at exploring pre-service physics teachers’ skills in applying the stage of problem-solving strategies. A total of 76 students of physics education study program at a college in Bengkulu Indonesia participated in the study. The skills on solving physics problems are being explored through exercises that demand the use of problem-solving strategies with several stages such as useful description, physics approach, specific application of physics, physics equation, mathematical procedures, and logical progression. Based on the results of data analysis, it is found that the pre-service physics teachers’ skills are in the moderate category for physics approach and mathematical procedural, and low category for the others. It was concluded that the pre-service physics teachers’ problem-solving skills are categorized low. It is caused by the learning of physics that has done less to practice problem-solving skills. The problems provided are only routine and poorly trained in the implementation of problem-solving strategies.The results of the research can be used as a reference for the importance of the development of physics learning based on higher order thinking skills.

  13. A Hybrid Physics-Based Data-Driven Approach for Point-Particle Force Modeling

    NASA Astrophysics Data System (ADS)

    Moore, Chandler; Akiki, Georges; Balachandar, S.

    2017-11-01

    This study improves upon the physics-based pairwise interaction extended point-particle (PIEP) model. The PIEP model leverages a physical framework to predict fluid mediated interactions between solid particles. While the PIEP model is a powerful tool, its pairwise assumption leads to increased error in flows with high particle volume fractions. To reduce this error, a regression algorithm is used to model the differences between the current PIEP model's predictions and the results of direct numerical simulations (DNS) for an array of monodisperse solid particles subjected to various flow conditions. The resulting statistical model and the physical PIEP model are superimposed to construct a hybrid, physics-based data-driven PIEP model. It must be noted that the performance of a pure data-driven approach without the model-form provided by the physical PIEP model is substantially inferior. The hybrid model's predictive capabilities are analyzed using more DNS. In every case tested, the hybrid PIEP model's prediction are more accurate than those of physical PIEP model. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1315138 and the U.S. DOE, NNSA, ASC Program, as a Cooperative Agreement under Contract No. DE-NA0002378.

  14. Computational studies of physical properties of Nb-Si based alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouyang, Lizhi

    2015-04-16

    The overall goal is to provide physical properties data supplementing experiments for thermodynamic modeling and other simulations such as phase filed simulation for microstructure and continuum simulations for mechanical properties. These predictive computational modeling and simulations may yield insights that can be used to guide materials design, processing, and manufacture. Ultimately, they may lead to usable Nb-Si based alloy which could play an important role in current plight towards greener energy. The main objectives of the proposed projects are: (1) developing a first principles method based supercell approach for calculating thermodynamic and mechanic properties of ordered crystals and disordered latticesmore » including solid solution; (2) application of the supercell approach to Nb-Si base alloy to compute physical properties data that can be used for thermodynamic modeling and other simulations to guide the optimal design of Nb-Si based alloy.« less

  15. Models-Based Practice: Great White Hope or White Elephant?

    ERIC Educational Resources Information Center

    Casey, Ashley

    2014-01-01

    Background: Many critical curriculum theorists in physical education have advocated a model- or models-based approach to teaching in the subject. This paper explores the literature base around models-based practice (MBP) and asks if this multi-models approach to curriculum planning has the potential to be the great white hope of pedagogical change…

  16. A Model-Based Approach to Support Validation of Medical Cyber-Physical Systems.

    PubMed

    Silva, Lenardo C; Almeida, Hyggo O; Perkusich, Angelo; Perkusich, Mirko

    2015-10-30

    Medical Cyber-Physical Systems (MCPS) are context-aware, life-critical systems with patient safety as the main concern, demanding rigorous processes for validation to guarantee user requirement compliance and specification-oriented correctness. In this article, we propose a model-based approach for early validation of MCPS, focusing on promoting reusability and productivity. It enables system developers to build MCPS formal models based on a library of patient and medical device models, and simulate the MCPS to identify undesirable behaviors at design time. Our approach has been applied to three different clinical scenarios to evaluate its reusability potential for different contexts. We have also validated our approach through an empirical evaluation with developers to assess productivity and reusability. Finally, our models have been formally verified considering functional and safety requirements and model coverage.

  17. A Model-Based Approach to Support Validation of Medical Cyber-Physical Systems

    PubMed Central

    Silva, Lenardo C.; Almeida, Hyggo O.; Perkusich, Angelo; Perkusich, Mirko

    2015-01-01

    Medical Cyber-Physical Systems (MCPS) are context-aware, life-critical systems with patient safety as the main concern, demanding rigorous processes for validation to guarantee user requirement compliance and specification-oriented correctness. In this article, we propose a model-based approach for early validation of MCPS, focusing on promoting reusability and productivity. It enables system developers to build MCPS formal models based on a library of patient and medical device models, and simulate the MCPS to identify undesirable behaviors at design time. Our approach has been applied to three different clinical scenarios to evaluate its reusability potential for different contexts. We have also validated our approach through an empirical evaluation with developers to assess productivity and reusability. Finally, our models have been formally verified considering functional and safety requirements and model coverage. PMID:26528982

  18. Two Formal Gas Models For Multi-Agent Sweeping and Obstacle Avoidance

    NASA Technical Reports Server (NTRS)

    Kerr, Wesley; Spears, Diana; Spears, William; Thayer, David

    2004-01-01

    The task addressed here is a dynamic search through a bounded region, while avoiding multiple large obstacles, such as buildings. In the case of limited sensors and communication, maintaining spatial coverage - especially after passing the obstacles - is a challenging problem. Here, we investigate two physics-based approaches to solving this task with multiple simulated mobile robots, one based on artificial forces and the other based on the kinetic theory of gases. The desired behavior is achieved with both methods, and a comparison is made between them. Because both approaches are physics-based, formal assurances about the multi-robot behavior are straightforward, and are included in the paper.

  19. Calibration of raw accelerometer data to measure physical activity: A systematic review.

    PubMed

    de Almeida Mendes, Márcio; da Silva, Inácio C M; Ramires, Virgílio V; Reichert, Felipe F; Martins, Rafaela C; Tomasi, Elaine

    2018-03-01

    Most of calibration studies based on accelerometry were developed using count-based analyses. In contrast, calibration studies based on raw acceleration signals are relatively recent and their evidences are incipient. The aim of the current study was to systematically review the literature in order to summarize methodological characteristics and results from raw data calibration studies. The review was conducted up to May 2017 using four databases: PubMed, Scopus, SPORTDiscus and Web of Science. Methodological quality of the included studies was evaluated using the Landis and Koch's guidelines. Initially, 1669 titles were identified and, after assessing titles, abstracts and full-articles, 20 studies were included. All studies were conducted in high-income countries, most of them with relatively small samples and specific population groups. Physical activity protocols were different among studies and the indirect calorimetry was the criterion measure mostly used. High mean values of sensitivity, specificity and accuracy from the intensity thresholds of cut-point-based studies were observed (93.7%, 91.9% and 95.8%, respectively). The most frequent statistical approach applied was machine learning-based modelling, in which the mean coefficient of determination was 0.70 to predict physical activity energy expenditure. Regarding the recognition of physical activity types, the mean values of accuracy for sedentary, household and locomotive activities were 82.9%, 55.4% and 89.7%, respectively. In conclusion, considering the construct of physical activity that each approach assesses, linear regression, machine-learning and cut-point-based approaches presented promising validity parameters. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Community-Based Recreational Football: A Novel Approach to Promote Physical Activity and Quality of Life in Prostate Cancer Survivors

    PubMed Central

    Bruun, Ditte Marie; Bjerre, Eik; Krustrup, Peter; Brasso, Klaus; Johansen, Christoffer; Rørth, Mikael; Midtgaard, Julie

    2014-01-01

    As the number of cancer survivors continues to increase, there is an increasing focus on management of the long-term consequences of cancer including health promotion and prevention of co-morbidity. Prostate cancer is the most frequent type of cancer type in men and causes increased risk of heart disease, diabetes and osteoporosis. Epidemiological evidence points to a positive effect of regular physical activity on all-cause and prostate cancer mortality and current clinical evidence supports the use of exercise in cancer rehabilitation. However, the external validity of existing exercise studies is limited and the majority of prostate cancer survivors remain sedentary. Hence, novel approaches to evaluate and promote physical activity are warranted. This paper presents the rationale behind the delivery and evaluation of community-based recreational football offered in existing football clubs under the Danish Football Association to promote quality of life and physical activity adherence in prostate cancer survivors. The RE-AIM framework will be applied to evaluate the impact of the intervention including outcomes both at the individual and organizational level. By introducing community-based sport environments, the study offers a novel approach in the strive towards sustained physical activity adherence and accessibility in prostate cancer survivors. PMID:24865394

  1. Physics-based Inverse Problem to Deduce Marine Atmospheric Boundary Layer Parameters

    DTIC Science & Technology

    2017-03-07

    please find the Final Technical Report with SF 298 for Dr. Erin E. Hackett’s ONR grant entitled Physics-based Inverse Problem to Deduce Marine...From- To) 07/03/2017 Final Technica l Dec 2012- Dec 2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Physics-based Inverse Problem to Deduce Marine...SUPPLEMENTARY NOTES 14. ABSTRACT This report describes research results related to the development and implementation of an inverse problem approach for

  2. Pre-Service Teachers' Approaches to a Historical Problem in Mechanics

    ERIC Educational Resources Information Center

    Malgieri, Massimiliano; Onorato, Pasquale; Mascheretti, Paolo; De Ambrosis, Anna

    2014-01-01

    In this paper we report on an activity sequence with a group of 29 pre-service physics teachers based on the reconstruction and analysis of a thought experiment that was crucial for Huygens' derivation of the formula for the centre of oscillation of a physical pendulum. The sequence starts with student teachers approaching the historical…

  3. Counselors and Physicians Providing Mental Health Services: An Integrated Approach

    ERIC Educational Resources Information Center

    Enochs, Wendy K; Young, Mark; Choate, Robert O.

    2006-01-01

    The authors argue that there is a clear link between mental and physical health issues. A wellness-based approach to integrated health care, such as the one described in this article, may allow older clients to be empowered to make lifestyle changes that can improve the quality of their lives and reduce physical illness.

  4. West Virginia Physical Education Teacher Perceptions of State Mandated Fitnessgram® Testing and Application of Results

    ERIC Educational Resources Information Center

    Miller, William M.

    2013-01-01

    Background/Purpose: In response to concerns with increasing rates of childhood obesity, many states have enacted policies that affect physical education. A commonly used approach is state mandated fitness test administration in school-based settings. While this approach is widely debated throughout the literature, one area that lacks research is…

  5. An Approach to Develop Physics Student Teachers' Skills of Using Instructional Technology

    ERIC Educational Resources Information Center

    Devecioglu, Yasemin; Akdeniz, Ali Riza

    2008-01-01

    It is very important to develop student teachers' skills and knowledge during the pre-service teacher education process. In this study, the effectiveness of the approach in which student teachers' gained the skills of developing and using Teacher Guided Materials (TGMs) based on integration of technology on physics education in Special Teaching…

  6. Material Encounters with Mathematics: The Case for Museum Based Cross-Curricular Integration

    ERIC Educational Resources Information Center

    de Freitas, Elizabeth; Bentley, Sean J.

    2012-01-01

    This paper reports on research from a network of high school and museum partnerships designed to explore techniques for integrating mathematics and physics learning experiences during the first year of high school. The foundation of the curriculum is a problem-based, museum-based, and hands-on approach to mathematics and physics. In this paper, we…

  7. Using a Participatory Approach to the Development of a School-Based Physical Activity Policy in an Indigenous Community

    ERIC Educational Resources Information Center

    Hogan, Lindsay; Bengoechea, Enrique García; Salsberg, Jon; Jacobs, Judi; King, Morrison; Macaulay, Ann C.

    2014-01-01

    Background: This study is part of a larger community-based participatory research (CBPR) project to develop, implement, and evaluate the physical activity component of a school-based wellness policy. The policy intervention is being carried out by community stakeholders and academic researchers within the Kahnawake Schools Diabetes Prevention…

  8. Design of multiple representations e-learning resources based on a contextual approach for the basic physics course

    NASA Astrophysics Data System (ADS)

    Bakri, F.; Muliyati, D.

    2018-05-01

    This research aims to design e-learning resources with multiple representations based on a contextual approach for the Basic Physics Course. The research uses the research and development methods accordance Dick & Carey strategy. The development carried out in the digital laboratory of Physics Education Department, Mathematics and Science Faculty, Universitas Negeri Jakarta. The result of the process of product development with Dick & Carey strategy, have produced e-learning design of the Basic Physics Course is presented in multiple representations in contextual learning syntax. The appropriate of representation used in the design of learning basic physics include: concept map, video, figures, data tables of experiment results, charts of data tables, the verbal explanations, mathematical equations, problem and solutions example, and exercise. Multiple representations are presented in the form of contextual learning by stages: relating, experiencing, applying, transferring, and cooperating.

  9. Exploring problem-based cooperative learning in undergraduate physics labs: student perspectives

    NASA Astrophysics Data System (ADS)

    Bergin, S. D.; Murphy, C.; Shuilleabhain, A. Ni

    2018-03-01

    This study examines the potential of problem-based cooperative learning (PBCL) in expanding undergraduate physics students’ understanding of, and engagement with, the scientific process. Two groups of first-year physics students (n = 180) completed a questionnaire which compared their perceptions of learning science with their engagement in physics labs. One cohort completed a lab based on a PBCL approach, whilst the other completed the same experiment, using a more traditional, manual-based lab. Utilising a participant research approach, the questionnaire was co-constructed by researchers and student advisers from each cohort in order to improve shared meaning between researchers and participants. Analysis of students’ responses suggests that students in the PBCL cohort engaged more in higher-order problem-solving skills and evidenced a deeper understanding of the scientific process than students in the more traditional, manual-based cohort. However, the latter cohort responses placed more emphasis on accuracy and measurement in lab science than the PBCL cohort. The students in the PBCL cohort were also more positively engaged with their learning than their counterparts in the manual led group.

  10. Physics-based scoring of protein-ligand interactions: explicit polarizability, quantum mechanics and free energies.

    PubMed

    Bryce, Richard A

    2011-04-01

    The ability to accurately predict the interaction of a ligand with its receptor is a key limitation in computer-aided drug design approaches such as virtual screening and de novo design. In this article, we examine current strategies for a physics-based approach to scoring of protein-ligand affinity, as well as outlining recent developments in force fields and quantum chemical techniques. We also consider advances in the development and application of simulation-based free energy methods to study protein-ligand interactions. Fuelled by recent advances in computational algorithms and hardware, there is the opportunity for increased integration of physics-based scoring approaches at earlier stages in computationally guided drug discovery. Specifically, we envisage increased use of implicit solvent models and simulation-based scoring methods as tools for computing the affinities of large virtual ligand libraries. Approaches based on end point simulations and reference potentials allow the application of more advanced potential energy functions to prediction of protein-ligand binding affinities. Comprehensive evaluation of polarizable force fields and quantum mechanical (QM)/molecular mechanical and QM methods in scoring of protein-ligand interactions is required, particularly in their ability to address challenging targets such as metalloproteins and other proteins that make highly polar interactions. Finally, we anticipate increasingly quantitative free energy perturbation and thermodynamic integration methods that are practical for optimization of hits obtained from screened ligand libraries.

  11. Physical Activity Based Professional Development for Teachers: The Importance of Whole School Involvement

    ERIC Educational Resources Information Center

    Till, Jude; Ferkins, Lesley; Handcock, Phil

    2011-01-01

    Objective: This study sought to investigate teachers' perceptions of a physical activity-related professional development intervention. Design: Interview-based qualitative approach founded on the interpretive paradigm. Setting: Purposive selection of one high-rated independent, and one low-rated public primary school from Auckland, New Zealand.…

  12. Tool use in left-brain-damaged patients: Difficulties in reasoning but not in estimating the physical properties of objects.

    PubMed

    Faye, Alexandrine; Jacquin-Courtois, Sophie; Osiurak, François

    2018-03-01

    The purpose of this study was to deepen our understanding of the cognitive bases of human tool use based on the technical reasoning hypothesis (i.e., the reasoning-based approach). This approach assumes that tool use is supported by the ability to reason about an object's physical properties (e.g., length, weight, strength, etc.) to perform mechanical actions (e.g., lever). In this framework, an important issue is to understand whether left-brain-damaged (LBD) individuals with tool-use deficits are still able to estimate the physical object's properties necessary to use the tool. Eleven LBD patients and 12 control participants performed 3 original experimental tasks: Use-Length (visual evaluation of the length of a stick to bring down a target), Visual-Length (to visually compare objects of different lengths) and Addition-Length (to visually compare added lengths). Participants were also tested on conventional tasks: Familiar Tool Use and Mechanical Problem-Solving (novel tools). LBD patients had more difficulties than controls on both conventional tasks. No significant differences were observed for the 3 experimental tasks. These results extend the reasoning-based approach, stressing that it might not be the representation of length that is impaired in LBD patients, but rather the ability to generate mechanical actions based on physical object properties. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  13. A skeleton family generator via physics-based deformable models.

    PubMed

    Krinidis, Stelios; Chatzis, Vassilios

    2009-01-01

    This paper presents a novel approach for object skeleton family extraction. The introduced technique utilizes a 2-D physics-based deformable model that parameterizes the objects shape. Deformation equations are solved exploiting modal analysis, and proportional to model physical characteristics, a different skeleton is produced every time, generating, in this way, a family of skeletons. The theoretical properties and the experiments presented demonstrate that obtained skeletons match to hand-labeled skeletons provided by human subjects, even in the presence of significant noise and shape variations, cuts and tears, and have the same topology as the original skeletons. In particular, the proposed approach produces no spurious branches without the need of any known skeleton pruning method.

  14. Improvements to Fidelity, Generation and Implementation of Physics-Based Lithium-Ion Reduced-Order Models

    NASA Astrophysics Data System (ADS)

    Rodriguez Marco, Albert

    Battery management systems (BMS) require computationally simple but highly accurate models of the battery cells they are monitoring and controlling. Historically, empirical equivalent-circuit models have been used, but increasingly researchers are focusing their attention on physics-based models due to their greater predictive capabilities. These models are of high intrinsic computational complexity and so must undergo some kind of order-reduction process to make their use by a BMS feasible: we favor methods based on a transfer-function approach of battery cell dynamics. In prior works, transfer functions have been found from full-order PDE models via two simplifying assumptions: (1) a linearization assumption--which is a fundamental necessity in order to make transfer functions--and (2) an assumption made out of expedience that decouples the electrolyte-potential and electrolyte-concentration PDEs in order to render an approach to solve for the transfer functions from the PDEs. This dissertation improves the fidelity of physics-based models by eliminating the need for the second assumption and, by linearizing nonlinear dynamics around different constant currents. Electrochemical transfer functions are infinite-order and cannot be expressed as a ratio of polynomials in the Laplace variable s. Thus, for practical use, these systems need to be approximated using reduced-order models that capture the most significant dynamics. This dissertation improves the generation of physics-based reduced-order models by introducing different realization algorithms, which produce a low-order model from the infinite-order electrochemical transfer functions. Physics-based reduced-order models are linear and describe cell dynamics if operated near the setpoint at which they have been generated. Hence, multiple physics-based reduced-order models need to be generated at different setpoints (i.e., state-of-charge, temperature and C-rate) in order to extend the cell operating range. This dissertation improves the implementation of physics-based reduced-order models by introducing different blending approaches that combine the pre-computed models generated (offline) at different setpoints in order to produce good electrochemical estimates (online) along the cell state-of-charge, temperature and C-rate range.

  15. An Appreciative Inquiry Exploring Game Sense Teaching in Physical Education

    ERIC Educational Resources Information Center

    Pill, Shane

    2016-01-01

    This paper reports on research framed as a strengths-based appreciative inquiry (AI) into the use of a game sense (GS) approach for sport and games teaching in physical education (PE). The aim of this research was to find the elements which sustain teachers in the use of a GS approach. This is particularly pertinent given strong advocacy for GS as…

  16. Adapting evidence-based strategies to increase physical activity among African Americans, Hispanics, Hmong, and Native Hawaiians: a social marketing approach.

    PubMed

    Van Duyn, Mary Ann S; McCrae, Tarsha; Wingrove, Barbara K; Henderson, Kimberly M; Boyd, Jamie K; Kagawa-Singer, Marjorie; Ramirez, Amelie G; Scarinci-Searles, Isabel; Wolff, Lisa S; Penalosa, Tricia L; Maibach, Edward W

    2007-10-01

    Using a social marketing approach, we studied how best to adapt proven, evidence-based strategies to increase physical activity for use with underserved racial or ethnic groups. We conducted focus groups with low-income Hispanic women in Texas, Hmong parents and their children in California, low-income African American women and men in the Mississippi Delta, and Native Hawaiian college students in Hawaii. We also interviewed key leaders of these communities. Topics of discussion were participants' perceptions about 1) the benefits of engaging in physical activity, 2) the proposed evidence-based strategies for increasing each community's level of physical activity, and 3) the benefits and barriers to following the proposed interventions for increasing physical activity. A total of 292 individuals participated in the study. All groups considered that being physically active was part of their culture, and participants found culturally relevant suggestions for physical activities appealing. Overwhelmingly, strategies that aimed to create or improve social support and increase access to physical activity venues received the most positive feedback from all groups. Barriers to physical activity were not culturally specific; they are common to all underserved people (lack of time, transportation, access, neighborhood safety, or economic resources). Results indicate that evidence-based strategies to increase physical activity need to be adapted for cultural relevance for each racial or ethnic group. Our research shows that members of four underserved populations are likely to respond to strategies that increase social support for physical activity and improve access to venues where they can be physically active. Further research is needed to test how to implement such strategies in ways that are embraced by community members.

  17. I Move: systematic development of a web-based computer tailored physical activity intervention, based on motivational interviewing and self-determination theory

    PubMed Central

    2014-01-01

    Background This article describes the systematic development of the I Move intervention: a web-based computer tailored physical activity promotion intervention, aimed at increasing and maintaining physical activity among adults. This intervention is based on the theoretical insights and practical applications of self-determination theory and motivational interviewing. Methods/design Since developing interventions in a systemically planned way increases the likelihood of effectiveness, we used the Intervention Mapping protocol to develop the I Move intervention. In this article, we first describe how we proceeded through each of the six steps of the Intervention Mapping protocol. After that, we describe the content of the I Move intervention and elaborate on the planned randomized controlled trial. Discussion By integrating self-determination theory and motivational interviewing in web-based computer tailoring, the I Move intervention introduces a more participant-centered approach than traditional tailored interventions. Adopting this approach might enhance computer tailored physical activity interventions both in terms of intervention effectiveness and user appreciation. We will evaluate this in an randomized controlled trial, by comparing the I Move intervention to a more traditional web-based computer tailored intervention. Trial registration NTR4129 PMID:24580802

  18. The Integration of a Family Systems Approach for Understanding Youth Obesity, Physical Activity, and Dietary Programs

    PubMed Central

    Wilson, Dawn K.; St. George, Sara M.; Lawman, Hannah; Segal, Michelle; Fairchild, Amanda

    2012-01-01

    Rates of overweight in youth have reached epidemic proportions and are associated with adverse health outcomes. Family-based programs have been widely used to treat overweight in youth. However, few programs incorporate a theoretical framework for studying a family systems approach in relation to youth health behavior change. Therefore, this review provides a family systems theory framework for evaluating family-level variables in weight loss, physical activity, and dietary approaches in youth. Studies were reviewed and effect sizes were calculated for interventions that manipulated the family system, including components that targeted parenting styles, parenting skills, or family functioning, or which had novel approaches for including the family. Twenty-one weight loss interventions were identified, and 25 interventions related to physical activity and/or diet were identified. Overall, family-based treatment programs that incorporated training for authoritative parenting styles, parenting skills, or child management, and family functioning had positive effects on youth weight loss. Programs to improve physical activity and dietary behaviors that targeted the family system also demonstrated improvements in youth health behaviors; however, direct effects of parent-targeted programming is not clear. Both treatment and prevention programs would benefit from evaluating family functioning and parenting styles as possible mediators of intervention outcomes. Recommendations are provided to guide the development of future family-based obesity prevention and treatment programs for youth. PMID:20689989

  19. Blind test of physics-based prediction of protein structures.

    PubMed

    Shell, M Scott; Ozkan, S Banu; Voelz, Vincent; Wu, Guohong Albert; Dill, Ken A

    2009-02-01

    We report here a multiprotein blind test of a computer method to predict native protein structures based solely on an all-atom physics-based force field. We use the AMBER 96 potential function with an implicit (GB/SA) model of solvation, combined with replica-exchange molecular-dynamics simulations. Coarse conformational sampling is performed using the zipping and assembly method (ZAM), an approach that is designed to mimic the putative physical routes of protein folding. ZAM was applied to the folding of six proteins, from 76 to 112 monomers in length, in CASP7, a community-wide blind test of protein structure prediction. Because these predictions have about the same level of accuracy as typical bioinformatics methods, and do not utilize information from databases of known native structures, this work opens up the possibility of predicting the structures of membrane proteins, synthetic peptides, or other foldable polymers, for which there is little prior knowledge of native structures. This approach may also be useful for predicting physical protein folding routes, non-native conformations, and other physical properties from amino acid sequences.

  20. Blind Test of Physics-Based Prediction of Protein Structures

    PubMed Central

    Shell, M. Scott; Ozkan, S. Banu; Voelz, Vincent; Wu, Guohong Albert; Dill, Ken A.

    2009-01-01

    We report here a multiprotein blind test of a computer method to predict native protein structures based solely on an all-atom physics-based force field. We use the AMBER 96 potential function with an implicit (GB/SA) model of solvation, combined with replica-exchange molecular-dynamics simulations. Coarse conformational sampling is performed using the zipping and assembly method (ZAM), an approach that is designed to mimic the putative physical routes of protein folding. ZAM was applied to the folding of six proteins, from 76 to 112 monomers in length, in CASP7, a community-wide blind test of protein structure prediction. Because these predictions have about the same level of accuracy as typical bioinformatics methods, and do not utilize information from databases of known native structures, this work opens up the possibility of predicting the structures of membrane proteins, synthetic peptides, or other foldable polymers, for which there is little prior knowledge of native structures. This approach may also be useful for predicting physical protein folding routes, non-native conformations, and other physical properties from amino acid sequences. PMID:19186130

  1. Semiparametric modeling: Correcting low-dimensional model error in parametric models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, Tyrus, E-mail: thb11@psu.edu; Harlim, John, E-mail: jharlim@psu.edu; Department of Meteorology, the Pennsylvania State University, 503 Walker Building, University Park, PA 16802-5013

    2016-03-01

    In this paper, a semiparametric modeling approach is introduced as a paradigm for addressing model error arising from unresolved physical phenomena. Our approach compensates for model error by learning an auxiliary dynamical model for the unknown parameters. Practically, the proposed approach consists of the following steps. Given a physics-based model and a noisy data set of historical observations, a Bayesian filtering algorithm is used to extract a time-series of the parameter values. Subsequently, the diffusion forecast algorithm is applied to the retrieved time-series in order to construct the auxiliary model for the time evolving parameters. The semiparametric forecasting algorithm consistsmore » of integrating the existing physics-based model with an ensemble of parameters sampled from the probability density function of the diffusion forecast. To specify initial conditions for the diffusion forecast, a Bayesian semiparametric filtering method that extends the Kalman-based filtering framework is introduced. In difficult test examples, which introduce chaotically and stochastically evolving hidden parameters into the Lorenz-96 model, we show that our approach can effectively compensate for model error, with forecasting skill comparable to that of the perfect model.« less

  2. A Trial of Physics Education for Liberal Arts Students Using the Advancing Physics

    NASA Astrophysics Data System (ADS)

    Ochi, Nobuaki

    A new approach to physics education for liberal arts students was performed in a Japanese university. The Advancing Physics, a modern textbook developed by the Institute of Physics, was employed as the base of this approach. The textbook includes a variety of modern topics about science and technology with beautiful pictures, while the use of math is kept to a minimum. From results of the questionnaire after one-semester lectures, it turned out that students' interest in science and technology rose substantially. On the other hand, there were some difficulties in lecturing, mathematical techniques in particular, which should be modified by the next trial. This result is an indication of a potential of the Advancing Physics for liberal arts education.

  3. Probabilistic short-term forecasting of eruption rate at Kīlauea Volcano using a physics-based model

    NASA Astrophysics Data System (ADS)

    Anderson, K. R.

    2016-12-01

    Deterministic models of volcanic eruptions yield predictions of future activity conditioned on uncertainty in the current state of the system. Physics-based eruption models are well-suited for deterministic forecasting as they can relate magma physics with a wide range of observations. Yet, physics-based eruption forecasting is strongly limited by an inadequate understanding of volcanic systems, and the need for eruption models to be computationally tractable. At Kīlauea Volcano, Hawaii, episodic depressurization-pressurization cycles of the magma system generate correlated, quasi-exponential variations in ground deformation and surface height of the active summit lava lake. Deflations are associated with reductions in eruption rate, or even brief eruptive pauses, and thus partly control lava flow advance rates and associated hazard. Because of the relatively well-understood nature of Kīlauea's shallow magma plumbing system, and because more than 600 of these events have been recorded to date, they offer a unique opportunity to refine a physics-based effusive eruption forecasting approach and apply it to lava eruption rates over short (hours to days) time periods. A simple physical model of the volcano ascribes observed data to temporary reductions in magma supply to an elastic reservoir filled with compressible magma. This model can be used to predict the evolution of an ongoing event, but because the mechanism that triggers events is unknown, event durations are modeled stochastically from previous observations. A Bayesian approach incorporates diverse data sets and prior information to simultaneously estimate uncertain model parameters and future states of the system. Forecasts take the form of probability distributions for eruption rate or cumulative erupted volume at some future time. Results demonstrate the significant uncertainties that still remain even for short-term eruption forecasting at a well-monitored volcano - but also the value of a physics-based, mixed deterministic-probabilistic eruption forecasting approach in reducing and quantifying these uncertainties.

  4. Promoting physical activity among children and adolescents: the strengths and limitations of school-based approaches.

    PubMed

    Booth, Michael; Okely, Anthony

    2005-04-01

    Paediatric overweight and obesity is recognised as one of Australia's most significant health problems and effective approaches to increasing physical activity and reducing energy consumption are being sought urgently. Every potential approach and setting should be subjected to critical review in an attempt to maximise the impact of policy and program initiatives. This paper identifies the strengths and limitations of schools as a setting for promoting physical activity. The strengths are: most children and adolescents attend school; most young people are likely to see teachers as credible sources of information; schools provide access to the facilities, infrastructure and support required for physical activity; and schools are the workplace of skilled educators. Potential limitations are: those students who like school the least are the most likely to engage in health-compromising behaviours and the least likely to be influenced by school-based programs; there are about 20 more hours per week available for physical activity outside schools hours than during school hours; enormous demands are already being made on schools; many primary school teachers have low levels of perceived competence in teaching physical education and fundamental movement skills; and opportunities for being active at school may not be consistent with how and when students prefer to be active.

  5. Real time polymer nanocomposites-based physical nanosensors: theory and modeling.

    PubMed

    Bellucci, Stefano; Shunin, Yuri; Gopeyenko, Victor; Lobanova-Shunina, Tamara; Burlutskaya, Nataly; Zhukovskii, Yuri

    2017-09-01

    Functionalized carbon nanotubes and graphene nanoribbons nanostructures, serving as the basis for the creation of physical pressure and temperature nanosensors, are considered as tools for ecological monitoring and medical applications. Fragments of nanocarbon inclusions with different morphologies, presenting a disordered system, are regarded as models for nanocomposite materials based on carbon nanoсluster suspension in dielectric polymer environments (e.g., epoxy resins). We have formulated the approach of conductivity calculations for carbon-based polymer nanocomposites using the effective media cluster approach, disordered systems theory and conductivity mechanisms analysis, and obtained the calibration dependences. Providing a proper description of electric responses in nanosensoring systems, we demonstrate the implementation of advanced simulation models suitable for real time control nanosystems. We also consider the prospects and prototypes of the proposed physical nanosensor models providing the comparisons with experimental calibration dependences.

  6. Real time polymer nanocomposites-based physical nanosensors: theory and modeling

    NASA Astrophysics Data System (ADS)

    Bellucci, Stefano; Shunin, Yuri; Gopeyenko, Victor; Lobanova-Shunina, Tamara; Burlutskaya, Nataly; Zhukovskii, Yuri

    2017-09-01

    Functionalized carbon nanotubes and graphene nanoribbons nanostructures, serving as the basis for the creation of physical pressure and temperature nanosensors, are considered as tools for ecological monitoring and medical applications. Fragments of nanocarbon inclusions with different morphologies, presenting a disordered system, are regarded as models for nanocomposite materials based on carbon nanoсluster suspension in dielectric polymer environments (e.g., epoxy resins). We have formulated the approach of conductivity calculations for carbon-based polymer nanocomposites using the effective media cluster approach, disordered systems theory and conductivity mechanisms analysis, and obtained the calibration dependences. Providing a proper description of electric responses in nanosensoring systems, we demonstrate the implementation of advanced simulation models suitable for real time control nanosystems. We also consider the prospects and prototypes of the proposed physical nanosensor models providing the comparisons with experimental calibration dependences.

  7. Problem-Based Learning Model Used to Scientific Approach Based Worksheet for Physics to Develop Senior High School Students Characters

    NASA Astrophysics Data System (ADS)

    Yulianti, D.

    2017-04-01

    The purpose of this study is to explore the application of Problem Based Learning(PBL) model aided withscientific approach and character integrated physics worksheets (LKS). Another purpose is to investigate the increase in cognitive and psychomotor learning outcomes and to know the character development of students. The method used in this study was the quasi-experiment. The instruments were observation and cognitive test. Worksheets can improve students’ cognitive, psychomotor learning outcomes. Improvements in cognitive learning results of students who have learned using worksheets are higher than students who received learning without worksheets. LKS can also develop the students’ character.

  8. Viticulture microzoning: a functional approach aiming to grape and wine qualities

    NASA Astrophysics Data System (ADS)

    Bonfante, A.; Agrillo, A.; Albrizio, R.; Basile, A.; Buonomo, R.; De Mascellis, R.; Gambuti, A.; Giorio, P.; Guida, G.; Langella, G.; Manna, P.; Minieri, L.; Moio, L.; Siani, T.; Terribile, F.

    2014-12-01

    This paper aims to test a new physically oriented approach to viticulture zoning at the farm scale, strongly rooted on hydropedology and aiming to achieve a better use of environmental features with respect to plant requirement and wine production. The physics of our approach is defined by the use of soil-plant-atmosphere simulation models which applies physically-based equations to describe the soil hydrological processes and solves soil-plant water status. This study (ZOVISA project) was conducted in a farm devoted to high quality wines production (Aglianico DOC), located in South Italy (Campania region, Mirabella Eclano-AV). The soil spatial distribution was obtained after standard soil survey informed by geophysical survey. Two Homogenous Zones (HZs) were identified; in each one of those a physically based model was applied to solve the soil water balance and estimate the soil functional behaviour (crop water stress index, CWSI) defining the functional Homogeneous Zones (fHzs). In these last, experimental plots were established and monitored for investigating soil-plant water status, crop development (biometric and physiological parameters) and daily climate variables (temperature, solar radiation, rainfall, wind). The effects of crop water status on crop response over must and wine quality were then evaluated in the fHZs. This was performed by comparing crop water stress with (i) crop physiological measurement (leaf gas exchange, chlorophyll a fluorescence, leaf water potential, chlorophyll content, LAI measurement), (ii) grape bunches measurements (berry weight, sugar content, titratable acidity, etc.) and (iii) wine quality (aromatic response). Eventually this experiment has proved the usefulness of the physical based approach also in the case of mapping viticulture microzoning.

  9. Active Ottumwa: Adapting Evidence-Based Recommendations to Promote Physical Activity in a Micropolitan New Destination Community

    PubMed Central

    Baquero, Barbara; Ashida, Sato; Daniel-Ulloa, Jason; Laroche, Helena H.; Haines, Heidi; Bucklin, Rebecca; Maldonado, Adriana; Coronado Garcia, Mayra; Berto, Sandy; Sewell, Dan; Janz, Kathleen; Gates, Claudia; Parker, Edith A.

    2018-01-01

    Background: Evidence-based interventions have been developed and tested to promote physical activity, but fewer studies have focused on identifying effective intervention strategies for mid-size rural communities, especially new immigrant destinations. We report here on the design and implementation of Active Ottumwa, a community-wide intervention using a lay health advisor approach to increase physical activity in a micropolitan new destination community in the rural state of Iowa. Methods: The Active Ottumwa study is part of a community-academic partnership in Ottumwa, IA. Evidence-based strategies recommended by the Community Guide for Preventive Services guided study implementation and included behavioral and social, campaign and informational, and environmental and policy approaches. Evaluation methods for this study are multi-faceted and include a cross-sectional community survey, longitudinal cohort assessment, observational data, key informant interviews, and project records. Results: We are currently in our second year of intervention implementation, with 45 lay health advisors (termed physical activity leaders here) trained to carry out behavioral and social intervention approaches, including walking groups, tai chi, and yoga. We have completed a communication and informational campaign utilizing five channels. Our longitudinal cohort has been recruited, with baseline and 12-month data collection completed. Conclusions: This study will assess the effectiveness and impact of a community-wide intervention to support physical activity. PMID:29734709

  10. Active Ottumwa: Adapting Evidence-Based Recommendations to Promote Physical Activity in a Micropolitan New Destination Community.

    PubMed

    Baquero, Barbara; Kava, Christine M; Ashida, Sato; Daniel-Ulloa, Jason; Laroche, Helena H; Haines, Heidi; Bucklin, Rebecca; Maldonado, Adriana; Coronado Garcia, Mayra; Berto, Sandy; Sewell, Dan; Novak, Nicole; Janz, Kathleen; Gates, Claudia; Parker, Edith A

    2018-05-04

    Background : Evidence-based interventions have been developed and tested to promote physical activity, but fewer studies have focused on identifying effective intervention strategies for mid-size rural communities, especially new immigrant destinations. We report here on the design and implementation of Active Ottumwa, a community-wide intervention using a lay health advisor approach to increase physical activity in a micropolitan new destination community in the rural state of Iowa. Methods : The Active Ottumwa study is part of a community-academic partnership in Ottumwa, IA. Evidence-based strategies recommended by the Community Guide for Preventive Services guided study implementation and included behavioral and social, campaign and informational, and environmental and policy approaches. Evaluation methods for this study are multi-faceted and include a cross-sectional community survey, longitudinal cohort assessment, observational data, key informant interviews, and project records. Results : We are currently in our second year of intervention implementation, with 45 lay health advisors (termed physical activity leaders here) trained to carry out behavioral and social intervention approaches, including walking groups, tai chi, and yoga. We have completed a communication and informational campaign utilizing five channels. Our longitudinal cohort has been recruited, with baseline and 12-month data collection completed. Conclusions : This study will assess the effectiveness and impact of a community-wide intervention to support physical activity.

  11. Developing Critical Thinking in Undergraduate Courses: A Philosophical Approach.

    ERIC Educational Resources Information Center

    Kalman, Calvin S.

    2002-01-01

    Examines how 20th century philosophers of science have influenced current physics educational research. Examines the introduction of a study of these philosophers in several courses, including the calculus-based introductory physics course on optics and modern physics. Concludes that students seem to have made a marked improvement in their…

  12. Multiple Teaching Approaches, Teaching Sequence and Concept Retention in High School Physics Education

    ERIC Educational Resources Information Center

    Fogarty, Ian; Geelan, David

    2013-01-01

    Students in 4 Canadian high school physics classes completed instructional sequences in two key physics topics related to motion--Straight Line Motion and Newton's First Law. Different sequences of laboratory investigation, teacher explanation (lecture) and the use of computer-based scientific visualizations (animations and simulations) were…

  13. Active Learning Strategies for Introductory Light and Optics

    ERIC Educational Resources Information Center

    Sokoloff, David R.

    2016-01-01

    There is considerable evidence that traditional approaches are ineffective in teaching physics concepts, including light and optics concepts. A major focus of the work of the Activity Based Physics Group has been on the development of active learning curricula like RealTime Physics (RTP) labs and Interactive Lecture Demonstrations (ILDs). Among…

  14. Effects of a Competency-Based Professional Development Training on Children's Physical Activity and Staff Physical Activity Promotion in Summer Day Camps

    ERIC Educational Resources Information Center

    Weaver, R. Glenn; Beets, Michael W.; Turner-McGrievy, Gabrielle; Webster, Collin A.; Moore, Justin

    2014-01-01

    The YMCA of the USA serves more than nine million youth in its summer day camping programs nationwide. In spring 2011, the YMCA of Columbia, SC, with support from the University of South Carolina, adopted a competency-based staff-level training approach in an attempt to align staff behaviors with the YMCA of the USA new physical activity standards…

  15. Physical Activity as a Nonpharmacological Symptom Management Approach in Myeloproliferative Neoplasms: Recommendations for Future Research

    PubMed Central

    Eckert, Ryan; Huberty, Jennifer; Gowin, Krisstina; Mesa, Ruben; Marks, Lisa

    2016-01-01

    Purpose: Essential thrombocythemia, polycythemia vera, and myelofibrosis are rare chronic hematological malignancies known as myeloproliferative neoplasms (MPNs) and are characterized by deregulated myeloid lineage cell production, splenomegaly, and heterogeneous symptom profiles. MPN patients suffer from a significant symptom burden (eg, fatigue, depressive symptoms, early satiety) and an impaired overall quality of life (QoL). Current treatments typically include pharmacological approaches, which may come with additional side effects and may be limited by treatment-associated toxicities (ie, cytopenias). Nonpharmacological approaches such as physical activity may be beneficial for reducing symptom burden and improving QoL. To date, no studies have examined physical activity as a nonpharmacological approach in MPN patients despite preliminary evidence supporting its benefit in other hematological cancers. The purpose of this article is to (1) review the literature related to physical activity and specific hematological cancer subtypes and to (2) make suggestions for future research involving physical activity in MPN patients as a symptom management strategy. Methods: A brief review of studies examining physical activity in leukemias, lymphomas, and myelomas (excluding stem-cell transplant patients) was conducted. Results: There is preliminary evidence to suggest that physical activity may be an effective approach to improve patient-reported outcomes (fatigue, depression, anxiety, sleep), physical fitness (cardiovascular fitness, balance, body composition), and overall QoL in other hematological cancers. Conclusions: Based on encouraging findings in other hematological cancers, future research should examine the feasibility and effectiveness of physical activity in MPN patients. PMID:27458250

  16. A Social Marketing Approach to Promoting Healthful Eating and Physical Activity in Low-Income and Ethnically Diverse Schools

    ERIC Educational Resources Information Center

    Paek, Hye-Jin; Jung, Yumi; Oh, Hyun Jung; Alaimo, Katherine; Pfeiffer, Karin; Carlson, Joseph J.; Wen, Yalu; Betz, Heather Hayes; Orth, Julie

    2015-01-01

    Objective: To evaluate the short-term outcome of the social marketing approach used in Project FIT, we developed a school- and community-based programme for promoting healthful eating and physical activity in kindergarten to 5th-grade children and their parents. Design: A 2-year quasi-experiment for children and two cross-sectional surveys for…

  17. The Systemic Approach to Technological Education: Effects of Transferred Learning in Resolving a Physics Problem

    ERIC Educational Resources Information Center

    Andreucci, Colette; Chatoney, Marjolaine; Ginestie, Jacques

    2012-01-01

    The purpose of this study is to verify whether pupils (15-16 years old) who have received technology education on a systemic approach of industrial systems, are better than other pupils (of the same age but from other academic domains such as literary ones or ones that are economics-based) at solving physical science problems which involve…

  18. A review of physically based models for soil erosion by water

    NASA Astrophysics Data System (ADS)

    Le, Minh-Hoang; Cerdan, Olivier; Sochala, Pierre; Cheviron, Bruno; Brivois, Olivier; Cordier, Stéphane

    2010-05-01

    Physically-based models rely on fundamental physical equations describing stream flow and sediment and associated nutrient generation in a catchment. This paper reviews several existing erosion and sediment transport approaches. The process of erosion include soil detachment, transport and deposition, we present various forms of equations and empirical formulas used when modelling and quantifying each of these processes. In particular, we detail models describing rainfall and infiltration effects and the system of equations to describe the overland flow and the evolution of the topography. We also present the formulas for the flow transport capacity and the erodibility functions. Finally, we present some recent numerical schemes to approach the shallow water equations and it's coupling with infiltration and erosion source terms.

  19. Replicating effective pedagogical approaches from introductory physics to improve student learning of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Sayer, Ryan Thomas

    Upper-level undergraduate students entering a quantum mechanics (QM) course are in many ways similar to students entering an introductory physics course. Numerous studies have investigated the difficulties that novices face in introductory physics as well as the pedagogical approaches that are effective in helping them overcome those difficulties. My research focuses on replicating effective approaches and instructional strategies used in introductory physics courses to help advanced students in an upper-level QM course. I have investigated the use of Just-in-time Teaching (JiTT) and peer discussion involving clicker questions in an upper-level quantum mechanics course. The JiTT approach including peer discussions was effective in helping students overcome their difficulties and improve their understanding of QM concepts. Learning tools, such as a Quantum Interactive Learning Tutorial (QuILT) based on the Doubleslit Experiment (DSE) which I helped develop, have been successful in helping upper-level undergraduate students improve their understanding of QM. Many students have also demonstrated the ability to transfer knowledge from a QuILT based on the Mach-Zehnder interferometer while working on the DSE QuILT. In addition, I have been involved in implementing research-based activities during our semester-long professional development course for teaching assistants (TAs). In one intervention, TAs were asked to grade student solutions to introductory physics problems first using their choice of method, then again using a rubric designed to promote effective problem-solving approaches, then once more at the end of the semester using their choice of method. This intervention found that many TAs have ingrained beliefs about the purposes of grading which include placing the burden of proof on the instructor as well as a belief that grading cannot serve as a formative assessment. I also compared TAs grading practices and considerations when grading student solutions to QM problems versus when grading student solutions to introductory physics. Many TAs penalized students for not explicating the problem solving process more often in the QM context than in the introductory physics context. The implications of these interventions for promoting student learning in QM are discussed.

  20. Exploring student learning profiles in algebra-based studio physics: A person-centered approach

    NASA Astrophysics Data System (ADS)

    Pond, Jarrad W. T.; Chini, Jacquelyn J.

    2017-06-01

    In this study, we explore the strategic self-regulatory and motivational characteristics of students in studio-mode physics courses at three universities with varying student populations and varying levels of success in their studio-mode courses. We survey students using questions compiled from several existing questionnaires designed to measure students' study strategies, attitudes toward and motivations for learning physics, organization of scientific knowledge, experiences outside the classroom, and demographics. Using a person-centered approach, we utilize cluster analysis methods to group students into learning profiles based on their individual responses to better understand the strategies and motives of algebra-based studio physics students. Previous studies have identified five distinct learning profiles across several student populations using similar methods. We present results from first-semester and second-semester studio-mode introductory physics courses across three universities. We identify these five distinct learning profiles found in previous studies to be present within our population of introductory physics students. In addition, we investigate interactions between these learning profiles and student demographics. We find significant interactions between a student's learning profile and their experience with high school physics, major, gender, grade expectation, and institution. Ultimately, we aim to use this method of analysis to take the characteristics of students into account in the investigation of successful strategies for using studio methods of physics instruction within and across institutions.

  1. Efficacy and Mediation of a Theory-Based Physical Activity Intervention for African American Men Who Have Sex with Men: A Randomized Controlled Trial.

    PubMed

    Zhang, Jingwen; Jemmott, John B; O'Leary, Ann; Stevens, Robin; Jemmott, Loretta Sweet; Icard, Larry D; Hsu, Janet; Rutledge, Scott E

    2017-02-01

    Few trials have tested physical-activity interventions among sexual minorities, including African American men who have sex with men (MSM). We examined the efficacy and mediation of the Being Responsible for Ourselves (BRO) physical-activity intervention among African American MSM. African American MSM were randomized to the physical-activity intervention consisting of three 90-min one-on-one sessions or an attention-matched control intervention and completed pre-intervention, immediately post-intervention, and 6- and 12-month post-intervention audio computer-based surveys. Of the 595 participants, 503 completed the 12-month follow-up. Generalized estimating equation models revealed that the intervention increased self-reported physical activity compared with the control intervention, adjusted for pre-intervention physical activity. Mediation analyses suggested that the intervention increased reasoned action approach variables, subjective norm and self-efficacy, increasing intention immediately post-intervention, which increased physical activity during the follow-up period. Interventions targeting reasoned action approach variables may contribute to efforts to increase African American MSM's physical activity. The trial was registered with the ClinicalTrials.gov Identifier NCT02561286 .

  2. Dynamic Emulation Modelling (DEMo) of large physically-based environmental models

    NASA Astrophysics Data System (ADS)

    Galelli, S.; Castelletti, A.

    2012-12-01

    In environmental modelling large, spatially-distributed, physically-based models are widely adopted to describe the dynamics of physical, social and economic processes. Such an accurate process characterization comes, however, to a price: the computational requirements of these models are considerably high and prevent their use in any problem requiring hundreds or thousands of model runs to be satisfactory solved. Typical examples include optimal planning and management, data assimilation, inverse modelling and sensitivity analysis. An effective approach to overcome this limitation is to perform a top-down reduction of the physically-based model by identifying a simplified, computationally efficient emulator, constructed from and then used in place of the original model in highly resource-demanding tasks. The underlying idea is that not all the process details in the original model are equally important and relevant to the dynamics of the outputs of interest for the type of problem considered. Emulation modelling has been successfully applied in many environmental applications, however most of the literature considers non-dynamic emulators (e.g. metamodels, response surfaces and surrogate models), where the original dynamical model is reduced to a static map between input and the output of interest. In this study we focus on Dynamic Emulation Modelling (DEMo), a methodological approach that preserves the dynamic nature of the original physically-based model, with consequent advantages in a wide variety of problem areas. In particular, we propose a new data-driven DEMo approach that combines the many advantages of data-driven modelling in representing complex, non-linear relationships, but preserves the state-space representation typical of process-based models, which is both particularly effective in some applications (e.g. optimal management and data assimilation) and facilitates the ex-post physical interpretation of the emulator structure, thus enhancing the credibility of the model to stakeholders and decision-makers. Numerical results from the application of the approach to the reduction of 3D coupled hydrodynamic-ecological models in several real world case studies, including Marina Reservoir (Singapore) and Googong Reservoir (Australia), are illustrated.

  3. Transversality of Electromagnetic Waves in the Calculus--Based Introductory Physics Course

    NASA Astrophysics Data System (ADS)

    Burko, Lior M.

    2009-05-01

    Introductory calculus--based physics textbooks state that electromagnetic waves are transverse and list many of their properties, but most such textbooks do not bring forth arguments why this is so. Both physical and theoretical arguments are at a level appropriate for students of courses based on such books, and could be readily used by instructors of such courses. Here, we discuss two physical arguments (based on polarization experiments and on lack of monopole electromagnetic radiation), and the full argument for the transversality of (plane) electromagnetic waves based on the integral Maxwell equations. We also show, at a level appropriate for the introductory course, why the electric and magnetic fields in a wave are in phase and the relation of their magnitudes. We have successfully integrated this approach in the calculus--based introductory physics course at the University of Alabama in Huntsville.

  4. The pandemic of physical inactivity: global action for public health.

    PubMed

    Kohl, Harold W; Craig, Cora Lynn; Lambert, Estelle Victoria; Inoue, Shigeru; Alkandari, Jasem Ramadan; Leetongin, Grit; Kahlmeier, Sonja

    2012-07-21

    Physical inactivity is the fourth leading cause of death worldwide. We summarise present global efforts to counteract this problem and point the way forward to address the pandemic of physical inactivity. Although evidence for the benefits of physical activity for health has been available since the 1950s, promotion to improve the health of populations has lagged in relation to the available evidence and has only recently developed an identifiable infrastructure, including efforts in planning, policy, leadership and advocacy, workforce training and development, and monitoring and surveillance. The reasons for this late start are myriad, multifactorial, and complex. This infrastructure should continue to be formed, intersectoral approaches are essential to advance, and advocacy remains a key pillar. Although there is a need to build global capacity based on the present foundations, a systems approach that focuses on populations and the complex interactions among the correlates of physical inactivity, rather than solely a behavioural science approach focusing on individuals, is the way forward to increase physical activity worldwide.

  5. Modeling the dynamics of multipartite quantum systems created departing from two-level systems using general local and non-local interactions

    NASA Astrophysics Data System (ADS)

    Delgado, Francisco

    2017-12-01

    Quantum information is an emergent area merging physics, mathematics, computer science and engineering. To reach its technological goals, it is requiring adequate approaches to understand how to combine physical restrictions, computational approaches and technological requirements to get functional universal quantum information processing. This work presents the modeling and the analysis of certain general type of Hamiltonian representing several physical systems used in quantum information and establishing a dynamics reduction in a natural grammar for bipartite processing based on entangled states.

  6. Physical Activity and Movement Proficiency: The Need for a Biocultural Approach.

    PubMed

    Malina, Robert M; Cumming, Sean P; Coelho E Silva, Manuel J

    2016-05-01

    "Gaps in Our Knowledge" are discussed in the context of the need to integrate biological and behavioral factors in a biocultural approach to physical activity and movement proficiency. Specific issues considered include outdoor play, organized and informal activity, biological maturation, tracking of activity, development of movement proficiency, and individual differences. Studies considered are largely based on youth in economically better-off, developed countries in the western culture context. There is a need to extend studies of physical activity and movement proficiency to different cultural contexts.

  7. Physics in perspective: Recommendations and program emphases

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Exerpted material from Physics in Perspective, Vol. 1, is presented on recommendations, priorities, and program emphases. The major recommendations are addressed to the Federal Government and support agencies, the physics community, and the educational community, including precollege, undergraduate, and graduate sectors. Approaches to the questions involved in establishing scientific priorities are discussed, and an approach is evolved which is based on the jury rating application of certain criteria to the program elements of a subfield. The question of national support level for the physics enterprise is also considered, and contingency alternatives are suggested such that whatever the level of available support, it may be used with maximum effectiveness.

  8. Thin Lens Ray Tracing.

    ERIC Educational Resources Information Center

    Gatland, Ian R.

    2002-01-01

    Proposes a ray tracing approach to thin lens analysis based on a vector form of Snell's law for paraxial rays as an alternative to the usual approach in introductory physics courses. The ray tracing approach accommodates skew rays and thus provides a complete analysis. (Author/KHR)

  9. Evaluating crown fire rate of spread predictions from physics-based models

    Treesearch

    C. M. Hoffman; J. Ziegler; J. Canfield; R. R. Linn; W. Mell; C. H. Sieg; F. Pimont

    2015-01-01

    Modeling the behavior of crown fires is challenging due to the complex set of coupled processes that drive the characteristics of a spreading wildfire and the large range of spatial and temporal scales over which these processes occur. Detailed physics-based modeling approaches such as FIRETEC and the Wildland Urban Interface Fire Dynamics Simulator (WFDS) simulate...

  10. An Investigation into the Effectiveness of Problem-Based Learning in a Physical Chemistry Laboratory Course

    ERIC Educational Resources Information Center

    Gurses, Ahmet; Acikyildiz, Metin; Dogar, Cetin; Sozbilir, Mustafa

    2007-01-01

    The aim of this study was to investigate the effectiveness of a problem-based learning (PBL) approach in a physical chemistry laboratory course. The parameters investigated were students' attitudes towards a chemistry laboratory course, scientific process skills of students and their academic achievement. The design of the study was one group…

  11. [Effects of a Multi-disciplinary Approached, Empowerment Theory Based Self-management Intervention in Older Adults with Chronic Illness].

    PubMed

    Park, Chorong; Song, Misoon; Cho, Belong; Lim, Jaeyoung; Song, Wook; Chang, Heekyung; Park, Yeon-Hwan

    2015-04-01

    The purpose of this study was to develop a multi-disciplinary self-management intervention based on empowerment theory and to evaluate the effectiveness of the intervention for older adults with chronic illness. A randomized controlled trial design was used with 43 Korean older adults with chronic illness (Experimental group=22, Control group=21). The intervention consisted of two phases: (1) 8-week multi-disciplinary, team guided, group-based health education, exercise session, and individual empowerment counseling, (2) 16-week self-help group activities including weekly exercise and group discussion to maintain acquired self-management skills and problem-solving skills. Baseline, 8-week, and 24-week assessments measured health empowerment, exercise self-efficacy, physical activity, and physical function. Health empowerment, physical activity, and physical function in the experimental group increased significantly compared to the control group over time. Exercise self-efficacy significantly increased in experimental group over time but there was no significant difference between the two groups. The self-management program based on empowerment theory improved health empowerment, physical activity, and physical function in older adults. The study finding suggests that a health empowerment strategy may be an effective approach for older adults with multiple chronic illnesses in terms of achieving a sense of control over their chronic illness and actively engaging self-management.

  12. Predictive Models for Semiconductor Device Design and Processing

    NASA Technical Reports Server (NTRS)

    Meyyappan, Meyya; Arnold, James O. (Technical Monitor)

    1998-01-01

    The device feature size continues to be on a downward trend with a simultaneous upward trend in wafer size to 300 mm. Predictive models are needed more than ever before for this reason. At NASA Ames, a Device and Process Modeling effort has been initiated recently with a view to address these issues. Our activities cover sub-micron device physics, process and equipment modeling, computational chemistry and material science. This talk would outline these efforts and emphasize the interaction among various components. The device physics component is largely based on integrating quantum effects into device simulators. We have two parallel efforts, one based on a quantum mechanics approach and the second, a semiclassical hydrodynamics approach with quantum correction terms. Under the first approach, three different quantum simulators are being developed and compared: a nonequlibrium Green's function (NEGF) approach, Wigner function approach, and a density matrix approach. In this talk, results using various codes will be presented. Our process modeling work focuses primarily on epitaxy and etching using first-principles models coupling reactor level and wafer level features. For the latter, we are using a novel approach based on Level Set theory. Sample results from this effort will also be presented.

  13. Using a dual safeguard web-based interactive teaching approach in an introductory physics class

    NASA Astrophysics Data System (ADS)

    Li, Lie-Ming; Li, Bin; Luo, Ying

    2015-06-01

    We modified the Just-in-Time Teaching approach and developed a dual safeguard web-based interactive (DGWI) teaching system for an introductory physics course. The system consists of four instructional components that improve student learning by including warm-up assignments and online homework. Student and instructor activities involve activities both in the classroom and on a designated web site. An experimental study with control groups evaluated the effectiveness of the DGWI teaching method. The results indicate that the DGWI method is an effective way to improve students' understanding of physics concepts, develop students' problem-solving abilities through instructor-student interactions, and identify students' misconceptions through a safeguard framework based on questions that satisfy teaching requirements and cover all of the course material. The empirical study and a follow-up survey found that the DGWI method increased student-teacher interaction and improved student learning outcomes.

  14. Implementation of a School-Based State Policy to Increase Physical Activity

    ERIC Educational Resources Information Center

    Evenson, Kelly R.; Ballard, Kymm; Lee, Ginny; Ammerman, Alice

    2009-01-01

    Background: In 2005, the North Carolina State Board of Education updated the Healthy Active Children Policy to include a requirement that all kindergarten through eighth-grade children receive at least 30 minutes of moderate-to-vigorous physical activity each school day through physical education, recess, and other creative approaches. This study…

  15. A Physical Activity Program to Mobilize Older People: A Practical and Sustainable Approach

    ERIC Educational Resources Information Center

    Jancey, Jonine M.; Clarke, Ann; Howat, Peter A.; Lee, Andy H.; Shilton, Trevor; Fisher, John

    2008-01-01

    Purpose: Despite the documented benefits of physical activity, it remains difficult to motivate older adults to start and maintain regular physical activity. This study tested an innovative intervention for mobilizing older adults into a neighborhood-based walking program. Design and Methods: Researchers recruited a total of 260 healthy but…

  16. Physical activity levels and preferences of ethnically diverse visitors to Georgia State Parks

    Treesearch

    Lincoln Larson; Jason W. Whiting; Gary T. Green; Michael Bowker

    2014-01-01

    Parks provide many outdoor recreation opportunities that encourage physical activity and healthy lifestyles, and research has recently begun to explore the demographic, social, and environmental factors associated with park-based activity levels, particularly outside of urban areas. This study used a mixed methods approach to investigate physical activity levels and...

  17. The Impact and Promise of Open-Source Computational Material for Physics Teaching

    NASA Astrophysics Data System (ADS)

    Christian, Wolfgang

    2017-01-01

    A computer-based modeling approach to teaching must be flexible because students and teachers have different skills and varying levels of preparation. Learning how to run the ``software du jour'' is not the objective for integrating computational physics material into the curriculum. Learning computational thinking, how to use computation and computer-based visualization to communicate ideas, how to design and build models, and how to use ready-to-run models to foster critical thinking is the objective. Our computational modeling approach to teaching is a research-proven pedagogy that predates computers. It attempts to enhance student achievement through the Modeling Cycle. This approach was pioneered by Robert Karplus and the SCIS Project in the 1960s and 70s and later extended by the Modeling Instruction Program led by Jane Jackson and David Hestenes at Arizona State University. This talk describes a no-cost open-source computational approach aligned with a Modeling Cycle pedagogy. Our tools, curricular material, and ready-to-run examples are freely available from the Open Source Physics Collection hosted on the AAPT-ComPADRE digital library. Examples will be presented.

  18. A comparison of two approaches to modelling snow cover dynamics at the Polish Polar Station at Hornsund

    NASA Astrophysics Data System (ADS)

    Luks, B.; Osuch, M.; Romanowicz, R. J.

    2012-04-01

    We compare two approaches to modelling snow cover dynamics at the Polish Polar Station at Hornsund. In the first approach we apply physically-based Utah Energy Balance Snow Accumulation and Melt Model (UEB) (Tarboton et al., 1995; Tarboton and Luce, 1996). The model uses a lumped representation of the snowpack with two primary state variables: snow water equivalence and energy. Its main driving inputs are: air temperature, precipitation, wind speed, humidity and radiation (estimated from the diurnal temperature range). Those variables are used for physically-based calculations of radiative, sensible, latent and advective heat exchanges with a 3 hours time step. The second method is an application of a statistically efficient lumped parameter time series approach to modelling the dynamics of snow cover , based on daily meteorological measurements from the same area. A dynamic Stochastic Transfer Function model is developed that follows the Data Based Mechanistic approach, where a stochastic data-based identification of model structure and an estimation of its parameters are followed by a physical interpretation. We focus on the analysis of uncertainty of both model outputs. In the time series approach, the applied techniques also provide estimates of the modeling errors and the uncertainty of the model parameters. In the first, physically-based approach the applied UEB model is deterministic. It assumes that the observations are without errors and that the model structure perfectly describes the processes within the snowpack. To take into account the model and observation errors, we applied a version of the Generalized Likelihood Uncertainty Estimation technique (GLUE). This technique also provide estimates of the modelling errors and the uncertainty of the model parameters. The observed snowpack water equivalent values are compared with those simulated with 95% confidence bounds. This work was supported by National Science Centre of Poland (grant no. 7879/B/P01/2011/40). Tarboton, D. G., T. G. Chowdhury and T. H. Jackson, 1995. A Spatially Distributed Energy Balance Snowmelt Model. In K. A. Tonnessen, M. W. Williams and M. Tranter (Ed.), Proceedings of a Boulder Symposium, July 3-14, IAHS Publ. no. 228, pp. 141-155. Tarboton, D. G. and C. H. Luce, 1996. Utah Energy Balance Snow Accumulation and Melt Model (UEB). Computer model technical description and users guide, Utah Water Research Laboratory and USDA Forest Service Intermountain Research Station (http://www.engineering.usu.edu/dtarb/). 64 pp.

  19. Generalizing a categorization of students' interpretations of linear kinematics graphs

    NASA Astrophysics Data System (ADS)

    Bollen, Laurens; De Cock, Mieke; Zuza, Kristina; Guisasola, Jenaro; van Kampen, Paul

    2016-06-01

    We have investigated whether and how a categorization of responses to questions on linear distance-time graphs, based on a study of Irish students enrolled in an algebra-based course, could be adopted and adapted to responses from students enrolled in calculus-based physics courses at universities in Flanders, Belgium (KU Leuven) and the Basque Country, Spain (University of the Basque Country). We discuss how we adapted the categorization to accommodate a much more diverse student cohort and explain how the prior knowledge of students may account for many differences in the prevalence of approaches and success rates. Although calculus-based physics students make fewer mistakes than algebra-based physics students, they encounter similar difficulties that are often related to incorrectly dividing two coordinates. We verified that a qualitative understanding of kinematics is an important but not sufficient condition for students to determine a correct value for the speed. When comparing responses to questions on linear distance-time graphs with responses to isomorphic questions on linear water level versus time graphs, we observed that the context of a question influences the approach students use. Neither qualitative understanding nor an ability to find the slope of a context-free graph proved to be a reliable predictor for the approach students use when they determine the instantaneous speed.

  20. Role of Rehabilitation Medicine and Physical Agents in the Treatment of Cancer-Associated Pain

    PubMed Central

    Cheville, Andrea L.; Basford, Jeffrey R.

    2014-01-01

    Purpose To provide an overview of rehabilitation medicine– and physical modality–based approaches to cancer pain management, and to highlight the fact that these approaches are generally used in conjunction and that a majority are focused on minimizing pain during periods of mobility and the performance of activities of daily living. Methods We performed a nonsystematic literature review and provide a description of the current standard of care. Results Rehabilitative and physical modalities used to manage pain can be grouped into four categories: those that modulate nociception, stabilize or unload painful structures, influence physiological processes that indirectly influence nociception, or alleviate pain arising from the overloading of muscles and connective tissues that often occurs after surgery or with sarcopenia in late-stage cancer. Most modalities have been pragmatically refined over the years, and many have an evidence base, although few have been explicitly validated in the oncologic setting. With few exceptions, they are patient controlled and free of adverse effects. Conclusion Physical modalities and rehabilitation medicine offer a range of pain management approaches that may serve as beneficial adjuncts to the conventional systemic and interventional analgesic strategies used to control cancer-related pain. These approaches may be particularly beneficial to patients with movement-associated pain and those who are ambivalent regarding pharmacoanalgesia. PMID:24799472

  1. Two Archetypes of Motor Control Research.

    PubMed

    Latash, Mark L

    2010-07-01

    This reply to the Commentaries is focused on two archetypes of motor control research, one based on physics and physiology and the other based on control theory and ideas of neural computations. The former approach, represented by the equilibrium-point hypothesis, strives to discover the physical laws and salient physiological variables that make purposeful coordinated movements possible. The latter approach, represented by the ideas of internal models and optimal control, tries to apply methods of control developed for man-made inanimate systems to the human body. Specific issues related to control with subthreshold membrane depolarization, motor redundancy, and the idea of synergies are briefly discussed.

  2. Quantum-classical interface based on single flux quantum digital logic

    NASA Astrophysics Data System (ADS)

    McDermott, R.; Vavilov, M. G.; Plourde, B. L. T.; Wilhelm, F. K.; Liebermann, P. J.; Mukhanov, O. A.; Ohki, T. A.

    2018-04-01

    We describe an approach to the integrated control and measurement of a large-scale superconducting multiqubit array comprising up to 108 physical qubits using a proximal coprocessor based on the Single Flux Quantum (SFQ) digital logic family. Coherent control is realized by irradiating the qubits directly with classical bitstreams derived from optimal control theory. Qubit measurement is performed by a Josephson photon counter, which provides access to the classical result of projective quantum measurement at the millikelvin stage. We analyze the power budget and physical footprint of the SFQ coprocessor and discuss challenges and opportunities associated with this approach.

  3. Web-based rehabilitation interventions for people with rheumatoid arthritis: A systematic review.

    PubMed

    Srikesavan, Cynthia; Bryer, Catherine; Ali, Usama; Williamson, Esther

    2018-01-01

    Background Rehabilitation approaches for people with rheumatoid arthritis include joint protection, exercises and self-management strategies. Health interventions delivered via the web have the potential to improve access to health services overcoming time constraints, physical limitations, and socioeconomic and geographic barriers. The objective of this review is to determine the effects of web-based rehabilitation interventions in adults with rheumatoid arthritis. Methods Randomised controlled trials that compared web-based rehabilitation interventions with usual care, waiting list, no treatment or another web-based intervention in adults with rheumatoid arthritis were included. The outcomes were pain, function, quality of life, self-efficacy, rheumatoid arthritis knowledge, physical activity and adverse effects. Methodological quality was assessed using the Cochrane Risk of Bias tool and quality of evidence with the Grading of Recommendations Assessment, Development and Evaluation approach. Results Six source documents from four trials ( n = 567) focusing on self-management, health information or physical activity were identified. The effects of web-based rehabilitation interventions on pain, function, quality of life, self-efficacy, rheumatoid arthritis knowledge and physical activity are uncertain because of the very low quality of evidence mostly from small single trials. Adverse effects were not reported. Conclusion Large, well-designed trials are needed to evaluate the clinical and cost-effectiveness of web-based rehabilitation interventions in rheumatoid arthritis.

  4. A PetriNet-Based Approach for Supporting Traceability in Cyber-Physical Manufacturing Systems

    PubMed Central

    Huang, Jiwei; Zhu, Yeping; Cheng, Bo; Lin, Chuang; Chen, Junliang

    2016-01-01

    With the growing popularity of complex dynamic activities in manufacturing processes, traceability of the entire life of every product has drawn significant attention especially for food, clinical materials, and similar items. This paper studies the traceability issue in cyber-physical manufacturing systems from a theoretical viewpoint. Petri net models are generalized for formulating dynamic manufacturing processes, based on which a detailed approach for enabling traceability analysis is presented. Models as well as algorithms are carefully designed, which can trace back the lifecycle of a possibly contaminated item. A practical prototype system for supporting traceability is designed, and a real-life case study of a quality control system for bee products is presented to validate the effectiveness of the approach. PMID:26999141

  5. A PetriNet-Based Approach for Supporting Traceability in Cyber-Physical Manufacturing Systems.

    PubMed

    Huang, Jiwei; Zhu, Yeping; Cheng, Bo; Lin, Chuang; Chen, Junliang

    2016-03-17

    With the growing popularity of complex dynamic activities in manufacturing processes, traceability of the entire life of every product has drawn significant attention especially for food, clinical materials, and similar items. This paper studies the traceability issue in cyber-physical manufacturing systems from a theoretical viewpoint. Petri net models are generalized for formulating dynamic manufacturing processes, based on which a detailed approach for enabling traceability analysis is presented. Models as well as algorithms are carefully designed, which can trace back the lifecycle of a possibly contaminated item. A practical prototype system for supporting traceability is designed, and a real-life case study of a quality control system for bee products is presented to validate the effectiveness of the approach.

  6. Proposed nurse-led initiatives in improving physical health of people with serious mental illness: a survey of nurses in mental health.

    PubMed

    Happell, Brenda; Platania-Phung, Chris; Scott, David

    2014-04-01

    To identify nurse perceptions on the potential value of general and specific nursing approaches to improving physical health outcomes of people with serious mental illness. People diagnosed with serious mental illnesses experience heightened rates of physical illnesses and can be supported better via healthcare system prevention and management. Nurses working in mental health are a critical part of a system-wide approach to improving physical health care, but there is little known on their views on specific approaches within Australia (e.g. screening for risks, stigma reduction). A national, cross-sectional and nonrandom survey study delivered online. Members of the Australian College of Mental Health Nurses (n = 643), representing nurses employed in mental healthcare services across Australia (71·6% from public mental health services). Participants were asked to rate the potential of nine nurse-based strategies for improving physical health (options: 'yes', 'no', 'not sure') and the potential value of 10 nursing and general strategies for improving physical health (rating from 'negative value' to 'significant value'). There was a high endorsement of all nine nurse-based strategies for physical health (e.g. lifestyle programmes, screening, linking services), although there was less support for reducing antipsychotics or advocating for fewer side effects. Participants mainly viewed all strategies as of moderate to significant value, with the most promising value attached to colocation of primary and mental care services, lifestyle programmes and improving primary care services (reduce stigma, train GPs). Australian nurses working in mental health services view a range of nurse-based strategies for improving physical healthcare services and standards as important. Nurses collectively need to work with consumers, health agencies and the general public to further define how to organise and implement physical health integration strategies, towards more comprehensive health care of people with serious mental illness. © 2013 John Wiley & Sons Ltd.

  7. Human Robotic Swarm Interaction Using an Artificial Physics Approach

    DTIC Science & Technology

    2014-12-01

    calculates virtual forces that are summed and translated into velocity commands. The virtual forces are modeled after real physical forces such as...results from the physical experiments show that an artificial physics-based framework is an effective way to allow multiple agents to follow a human... modeled after real physical forces such as gravitational and Coulomb, forces but are not restricted to them, for example, the force magnitude may not be

  8. Aircraft Conceptual Design and Risk Analysis Using Physics-Based Noise Prediction

    NASA Technical Reports Server (NTRS)

    Olson, Erik D.; Mavris, Dimitri N.

    2006-01-01

    An approach was developed which allows for design studies of commercial aircraft using physics-based noise analysis methods while retaining the ability to perform the rapid trade-off and risk analysis studies needed at the conceptual design stage. A prototype integrated analysis process was created for computing the total aircraft EPNL at the Federal Aviation Regulations Part 36 certification measurement locations using physics-based methods for fan rotor-stator interaction tones and jet mixing noise. The methodology was then used in combination with design of experiments to create response surface equations (RSEs) for the engine and aircraft performance metrics, geometric constraints and take-off and landing noise levels. In addition, Monte Carlo analysis was used to assess the expected variability of the metrics under the influence of uncertainty, and to determine how the variability is affected by the choice of engine cycle. Finally, the RSEs were used to conduct a series of proof-of-concept conceptual-level design studies demonstrating the utility of the approach. The study found that a key advantage to using physics-based analysis during conceptual design lies in the ability to assess the benefits of new technologies as a function of the design to which they are applied. The greatest difficulty in implementing physics-based analysis proved to be the generation of design geometry at a sufficient level of detail for high-fidelity analysis.

  9. Investigating Research Approaches: Classroom-Based Interaction Studies in Physical and Virtual Contexts

    ERIC Educational Resources Information Center

    Hartwick, Peggy

    2018-01-01

    This article investigates research approaches used in traditional classroom-based interaction studies for identifying a suitable research method for studies in three-dimensional virtual learning environments (3DVLEs). As opportunities for language learning and teaching in virtual worlds emerge, so too do new research questions. An understanding of…

  10. Hierarchical classifier approach to physical activity recognition via wearable smartphone tri-axial accelerometer.

    PubMed

    Yusuf, Feridun; Maeder, Anthony; Basilakis, Jim

    2013-01-01

    Physical activity recognition has emerged as an active area of research which has drawn increasing interest from researchers in a variety of fields. It can support many different applications such as safety surveillance, fraud detection, and clinical management. Accelerometers have emerged as the most useful and extensive tool to capture and assess human physical activities in a continuous, unobtrusive and reliable manner. The need for objective physical activity data arises strongly in health related research. With the shift to a sedentary lifestyle, where work and leisure tend to be less physically demanding, research on the health effects of low physical activity has become a necessity. The increased availability of small, inexpensive components has led to the development of mobile devices such as smartphones, providing platforms for new opportunities in healthcare applications. In this study 3 subjects performed directed activity routines wearing a smartphone with a built in tri-axial accelerometer, attached on a belt around the waist. The data was collected to classify 11 basic physical activities such as sitting, lying, standing, walking, and the transitions in between them. A hierarchical classifier approach was utilised with Artificial Neural Networks integrated in a rule-based system, to classify the activities. Based on our evaluation, recognition accuracy of over 89.6% between subjects and over 91.5% within subject was achieved. These results show that activities such as these can be recognised with a high accuracy rate; hence the approach is promising for use in future work.

  11. An explicit approach to detecting and characterizing submersed aquatic vegetation using a single-beam digital echosounder

    NASA Astrophysics Data System (ADS)

    Sabol, Bruce M.

    2005-09-01

    There has been a longstanding need for an objective and cost-effective technique to detect, characterize, and quantify submersed aquatic vegetation at spatial scales between direct physical sampling and remote aerial-based imaging. Acoustic-based approaches for doing so are reviewed and an explicit approach, using a narrow, single-beam echosounder, is described in detail. This heuristic algorithm is based on the spatial distribution of a thresholded signal generated from a high-frequency, narrow-beam echosounder operated in a vertical orientation from a survey boat. The physical basis, rationale, and implementation of this algorithm are described, and data documenting performance are presented. Using this technique, it is possible to generate orders of magnitude more data than would be available using previous techniques with a comparable level of effort. Thus, new analysis and interpretation approaches are called for which can make full use of these data. Several analyses' examples are shown for environmental effects application studies. Current operational window and performance limitations are identified and thoughts on potential processing approaches to improve performance are discussed.

  12. A physics based method for combining multiple anatomy models with application to medical simulation.

    PubMed

    Zhu, Yanong; Magee, Derek; Ratnalingam, Rishya; Kessel, David

    2009-01-01

    We present a physics based approach to the construction of anatomy models by combining components from different sources; different image modalities, protocols, and patients. Given an initial anatomy, a mass-spring model is generated which mimics the physical properties of the solid anatomy components. This helps maintain valid spatial relationships between the components, as well as the validity of their shapes. Combination can be either replacing/modifying an existing component, or inserting a new component. The external forces that deform the model components to fit the new shape are estimated from Gradient Vector Flow and Distance Transform maps. We demonstrate the applicability and validity of the described approach in the area of medical simulation, by showing the processes of non-rigid surface alignment, component replacement, and component insertion.

  13. Resolving the Antarctic contribution to sea-level rise: a hierarchical modelling framework.

    PubMed

    Zammit-Mangion, Andrew; Rougier, Jonathan; Bamber, Jonathan; Schön, Nana

    2014-06-01

    Determining the Antarctic contribution to sea-level rise from observational data is a complex problem. The number of physical processes involved (such as ice dynamics and surface climate) exceeds the number of observables, some of which have very poor spatial definition. This has led, in general, to solutions that utilise strong prior assumptions or physically based deterministic models to simplify the problem. Here, we present a new approach for estimating the Antarctic contribution, which only incorporates descriptive aspects of the physically based models in the analysis and in a statistical manner. By combining physical insights with modern spatial statistical modelling techniques, we are able to provide probability distributions on all processes deemed to play a role in both the observed data and the contribution to sea-level rise. Specifically, we use stochastic partial differential equations and their relation to geostatistical fields to capture our physical understanding and employ a Gaussian Markov random field approach for efficient computation. The method, an instantiation of Bayesian hierarchical modelling, naturally incorporates uncertainty in order to reveal credible intervals on all estimated quantities. The estimated sea-level rise contribution using this approach corroborates those found using a statistically independent method. © 2013 The Authors. Environmetrics Published by John Wiley & Sons, Ltd.

  14. Resolving the Antarctic contribution to sea-level rise: a hierarchical modelling framework†

    PubMed Central

    Zammit-Mangion, Andrew; Rougier, Jonathan; Bamber, Jonathan; Schön, Nana

    2014-01-01

    Determining the Antarctic contribution to sea-level rise from observational data is a complex problem. The number of physical processes involved (such as ice dynamics and surface climate) exceeds the number of observables, some of which have very poor spatial definition. This has led, in general, to solutions that utilise strong prior assumptions or physically based deterministic models to simplify the problem. Here, we present a new approach for estimating the Antarctic contribution, which only incorporates descriptive aspects of the physically based models in the analysis and in a statistical manner. By combining physical insights with modern spatial statistical modelling techniques, we are able to provide probability distributions on all processes deemed to play a role in both the observed data and the contribution to sea-level rise. Specifically, we use stochastic partial differential equations and their relation to geostatistical fields to capture our physical understanding and employ a Gaussian Markov random field approach for efficient computation. The method, an instantiation of Bayesian hierarchical modelling, naturally incorporates uncertainty in order to reveal credible intervals on all estimated quantities. The estimated sea-level rise contribution using this approach corroborates those found using a statistically independent method. © 2013 The Authors. Environmetrics Published by John Wiley & Sons, Ltd. PMID:25505370

  15. Profiling physical activity motivation based on self-determination theory: a cluster analysis approach.

    PubMed

    Friederichs, Stijn Ah; Bolman, Catherine; Oenema, Anke; Lechner, Lilian

    2015-01-01

    In order to promote physical activity uptake and maintenance in individuals who do not comply with physical activity guidelines, it is important to increase our understanding of physical activity motivation among this group. The present study aimed to examine motivational profiles in a large sample of adults who do not comply with physical activity guidelines. The sample for this study consisted of 2473 individuals (31.4% male; age 44.6 ± 12.9). In order to generate motivational profiles based on motivational regulation, a cluster analysis was conducted. One-way analyses of variance were then used to compare the clusters in terms of demographics, physical activity level, motivation to be active and subjective experience while being active. Three motivational clusters were derived based on motivational regulation scores: a low motivation cluster, a controlled motivation cluster and an autonomous motivation cluster. These clusters differed significantly from each other with respect to physical activity behavior, motivation to be active and subjective experience while being active. Overall, the autonomous motivation cluster displayed more favorable characteristics compared to the other two clusters. The results of this study provide additional support for the importance of autonomous motivation in the context of physical activity behavior. The three derived clusters may be relevant in the context of physical activity interventions as individuals within the different clusters might benefit most from different intervention approaches. In addition, this study shows that cluster analysis is a useful method for differentiating between motivational profiles in large groups of individuals who do not comply with physical activity guidelines.

  16. Effects-Based Operations: Air Power as the Sole Military Instrument of Power, Has it Matured Enough?

    DTIC Science & Technology

    2006-04-01

    use the current term, but they all tend to favor control of the enemy through EBO rather than physical destruction for its own sake. Operation Allied...would not approve of any attacks against Belgrade’s electrical power grid that would physically destroy it.56 By focusing on the desired effect, US...perspectives on how to orchestrate the air campaign in OEF. CENTCOM had an attrition-based approach and wanted air power to physically destroy all

  17. Interventions to Support Integrated Psychological Care and Holistic Health Outcomes in Paediatrics.

    PubMed

    Shafran, Roz; Bennett, Sophie D; McKenzie Smith, Mhairi

    2017-08-16

    There are strong calls from many national and international bodies for there to be a 'holistic' and integrated approach to the understanding and management of psychological and physical health needs. Such holistic approaches are characterized by the treatment of the whole person, taking into account mental and social factors, rather than just the symptoms of a disease. Holistic approaches can impact on mental and physical health and are cost-effective. Several psychological interventions have demonstrated efficacy in improving holistic health outcomes, for example Cognitive Behaviour Therapy, Behavioural Therapies and Problem Solving Therapies. They have shown to impact upon a wide range of outcomes, including psychological distress, pain, physical health, medication adherence, and family outcomes. There is increasing recognition that the holistic goals of the child and family should be prioritised, and that interventions and outcomes should reflect these goals. A focus on holistic goals in therapy can be achieved through a combination of personalised goal-based outcomes in addition to symptom-based measures.

  18. Learning Physical Science through Astronomy Activities: A Comparison between Constructivist and Traditional Approaches in Grades 3-6

    ERIC Educational Resources Information Center

    Ward, R. Bruce; Sadler, Philip M.; Shapiro, Irwin I.

    2008-01-01

    We report on an evaluation of the effectiveness of Project ARIES, an astronomy-based physical science curriculum for upper elementary and middle school children. ARIES students use innovative, simple, and affordable apparatus to carry out a wide range of indoor and outdoor hands-on, discovery-based activities. Student journals and comprehensive…

  19. A Cluster-Analytical Approach towards Physical Activity and Eating Habits among 10-Year-Old Children

    ERIC Educational Resources Information Center

    Sabbe, Dieter; De Bourdeaudhuij, I.; Legiest, E.; Maes, L.

    2008-01-01

    The purpose was to investigate whether clusters--based on physical activity (PA) and eating habits--can be found among children, and to explore subgroups' characteristics. A total of 1725 10-year olds completed a self-administered questionnaire. K-means cluster analysis was based on the weekly quantity of vigorous and moderate PA, the excess index…

  20. Impact of the "Planning to be Active" leisure time physical exercise program on rural high school students.

    PubMed

    Hortz, Brian; Petosa, Rick

    2006-10-01

    The purpose of the study was to evaluate the effects of a Social Cognitive Theory-based intervention designed to increase the frequency of leisure time planned moderate and vigorous physical exercise among rural high school students attending physical education class. Students in treatment and comparison groups were exposed to an activity-based physical education curricula. The treatment group received eight behavioral skill-building lessons integrated into the existing curriculum. The Social Cognitive Theory-based educational treatment increased levels of moderate physical exercise occurring outside the classroom. This study demonstrated an impact on adolescent leisure time moderate physical exercise using classroom instruction. The intervention was most effective with students who were previously sedentary. The curricular approaches used to promote regular moderate exercise may be useful for sedentary adolescents.

  1. The 3-year evolution of a preschool physical activity intervention through a collaborative partnership between research interventionists and preschool teachers

    PubMed Central

    Howie, E. K.; Brewer, A.; Brown, W. H.; Pfeiffer, K. A.; Saunders, R. P.; Pate, R. R.

    2014-01-01

    Despite evidence that preschoolers spend the majority of their time in sedentary activities, few physical activity interventions have focused on preschool-age children. Health promotion interventions that can be integrated into the daily routines of a school or other setting are more likely to be implemented. The Study of Health and Activity in Preschool Environments employed a flexible approach to increasing physical activity opportunities in preschools’ daily schedules through recess, indoor physical activity and physical activity integrated into academic lessons. Eight preschools were randomly assigned to receive the study’s physical activity intervention. Teachers in these schools partnered with university-based interventionists across 3 years to design and implement a flexible and adaptive intervention. The intervention approach included trainings and workshops, site visits and feedback from intervention personnel, newsletters, and physical activity equipment and materials. Teachers reported a high acceptability of the intervention. The purpose of this article is to describe the evolution of a multi-component physical activity intervention in preschools, including (i) a description of the intervention components, (ii) an explanation of the intervention process and approach, and (iii) a report of teachers’ perceptions of barriers to implementation. PMID:24659421

  2. Efficient physics-based tracking of heart surface motion for beating heart surgery robotic systems.

    PubMed

    Bogatyrenko, Evgeniya; Pompey, Pascal; Hanebeck, Uwe D

    2011-05-01

    Tracking of beating heart motion in a robotic surgery system is required for complex cardiovascular interventions. A heart surface motion tracking method is developed, including a stochastic physics-based heart surface model and an efficient reconstruction algorithm. The algorithm uses the constraints provided by the model that exploits the physical characteristics of the heart. The main advantage of the model is that it is more realistic than most standard heart models. Additionally, no explicit matching between the measurements and the model is required. The application of meshless methods significantly reduces the complexity of physics-based tracking. Based on the stochastic physical model of the heart surface, this approach considers the motion of the intervention area and is robust to occlusions and reflections. The tracking algorithm is evaluated in simulations and experiments on an artificial heart. Providing higher accuracy than the standard model-based methods, it successfully copes with occlusions and provides high performance even when all measurements are not available. Combining the physical and stochastic description of the heart surface motion ensures physically correct and accurate prediction. Automatic initialization of the physics-based cardiac motion tracking enables system evaluation in a clinical environment.

  3. Characteristics of Smokers from a National Sample Who Engaged in Any Physical Activity: Implications for Cardiovascular Health Intervention

    ERIC Educational Resources Information Center

    Patterson, Freda; Lenhart, Clare M.

    2016-01-01

    Background: Tobacco is a major cause of cardiovascular disease, and current treatments lack long-term efficacy. Promoting physical activity may be a viable population-level approach to improving cardiovascular health among smokers. Purpose: To characterize smokers engaging in any physical activity based on demographics, quitting behaviors, health…

  4. Why Inner-City High-School Students Attend After-School Physical Activity Clubs

    ERIC Educational Resources Information Center

    Whalen, Laurel; McCaughtry, Nate; Garn, Alex; Kulik, Noel; Centeio, Erin E.; Maljak, Kimberly; Kaseta, Michele; Shen, Bo; Martin, Jeffrey

    2016-01-01

    Objective: The population of young people most vulnerable to low levels of physical activity (e.g. urban/minority/low socio-economic status/female/non-athletes) often has the least access to physical activity opportunities and resources. It has been suggested that a comprehensive, school-based approach, including prudent use of time before, during…

  5. Three Physical Education Programs' Adaptive Approaches to Change: "How Can I Spin that so It Works for Me?"

    ERIC Educational Resources Information Center

    Patton, Kevin; Griffin, Linda L.

    2008-01-01

    This study examined five of 12 physical education teachers participating in the Assessment Initiative for Middle School Physical Education (AIMS-PE), a reform-based teacher development project designed to help teachers examine and reframe their assessment practices and to design and implement curricular programs that encourage active teaching and…

  6. Self-Reported Barriers to Quality Physical Education by Physical Education Specialists in Texas

    ERIC Educational Resources Information Center

    Barroso, Cristina S.; McCullum-Gomez, Christine; Hoelscher, Deanna M.; Kelder, Steven H.; Murray, Nancy G.

    2005-01-01

    School-based programs offer an efficient means of promoting the health of a large number of children. The Coordinated Approach to Child Health (CATCH) program was designed to decrease risk factors for chronic disease in elementary school children and includes separate coordinated interventions for child nutrition services, physical education (PE),…

  7. Control volume based hydrocephalus research; analysis of human data

    NASA Astrophysics Data System (ADS)

    Cohen, Benjamin; Wei, Timothy; Voorhees, Abram; Madsen, Joseph; Anor, Tomer

    2010-11-01

    Hydrocephalus is a neuropathophysiological disorder primarily diagnosed by increased cerebrospinal fluid volume and pressure within the brain. To date, utilization of clinical measurements have been limited to understanding of the relative amplitude and timing of flow, volume and pressure waveforms; qualitative approaches without a clear framework for meaningful quantitative comparison. Pressure volume models and electric circuit analogs enforce volume conservation principles in terms of pressure. Control volume analysis, through the integral mass and momentum conservation equations, ensures that pressure and volume are accounted for using first principles fluid physics. This approach is able to directly incorporate the diverse measurements obtained by clinicians into a simple, direct and robust mechanics based framework. Clinical data obtained for analysis are discussed along with data processing techniques used to extract terms in the conservation equation. Control volume analysis provides a non-invasive, physics-based approach to extracting pressure information from magnetic resonance velocity data that cannot be measured directly by pressure instrumentation.

  8. Using vertical Fourier transforms to invert potential-field data to magnetization or density models in the presence of topography

    USGS Publications Warehouse

    Phillips, Jeffrey

    2014-01-01

    A physical property inversion approach based on the use of 3D (or 2D) Fourier transforms to calculate the potential-field within a 3D (or 2D) volume from a known physical property distribution within the volume is described. Topographic surfaces and observations at arbitrary locations are easily accommodated. The limitations of the approach and applications to real data are considered.

  9. Dynamical simulation priors for human motion tracking.

    PubMed

    Vondrak, Marek; Sigal, Leonid; Jenkins, Odest Chadwicke

    2013-01-01

    We propose a simulation-based dynamical motion prior for tracking human motion from video in presence of physical ground-person interactions. Most tracking approaches to date have focused on efficient inference algorithms and/or learning of prior kinematic motion models; however, few can explicitly account for the physical plausibility of recovered motion. Here, we aim to recover physically plausible motion of a single articulated human subject. Toward this end, we propose a full-body 3D physical simulation-based prior that explicitly incorporates a model of human dynamics into the Bayesian filtering framework. We consider the motion of the subject to be generated by a feedback “control loop” in which Newtonian physics approximates the rigid-body motion dynamics of the human and the environment through the application and integration of interaction forces, motor forces, and gravity. Interaction forces prevent physically impossible hypotheses, enable more appropriate reactions to the environment (e.g., ground contacts), and are produced from detected human-environment collisions. Motor forces actuate the body, ensure that proposed pose transitions are physically feasible, and are generated using a motion controller. For efficient inference in the resulting high-dimensional state space, we utilize an exemplar-based control strategy that reduces the effective search space of motor forces. As a result, we are able to recover physically plausible motion of human subjects from monocular and multiview video. We show, both quantitatively and qualitatively, that our approach performs favorably with respect to Bayesian filtering methods with standard motion priors.

  10. Physical functioning in patients with ankylosing spondylitis: comparing approaches of experienced ability with self-reported and objectively measured physical activity.

    PubMed

    van Genderen, Simon; van den Borne, Carlie; Geusens, Piet; van der Linden, Sjef; Boonen, Annelies; Plasqui, Guy

    2014-04-01

    Physical functioning can be assessed by different approaches that are characterized by increasing levels of individual appraisal. There is insufficient insight into which approach is the most informative in patients with ankylosing spondylitis (AS) compared with control subjects. The objective of this study was to compare patients with AS and control subjects regarding 3 approaches of functioning: experienced ability to perform activities (Bath Ankylosing Spondylitis Functional Index [BASFI]), self-reported amount of physical activity (PA) (Baecke questionnaire), and the objectively measured amount of PA (triaxial accelerometer). This case-control study included 24 AS patients and 24 control subjects (matched for age, gender, and body mass index). Subjects completed the BASFI and Baecke questionnaire and wore a triaxial accelerometer. Subjects also completed other self-reported measures on disease activity (Bath AS Disease Activity Index), fatigue (Multidimensional Fatigue Inventory), and overall health (EuroQol visual analog scale). Both groups included 14 men (58%), and the mean age was 48 years. Patients scored significantly worse on the BASFI (3.9 vs 0.2) than their healthy peers, whereas PA assessed by Baecke and the accelerometer did not differ between groups. Correlations between approaches of physical functioning were low to moderate. Bath Ankylosing Spondylitis Functional Index was associated with disease activity (r = 0.49) and physical fatigue (0.73) and Baecke with physical and activity related fatigue (r = 0.54 and r = 0.54), but total PA assessed by accelerometer was not associated with any of these experience-based health outcomes. Different approaches of the concept physical functioning in patients with AS provide different information. Compared with matched control subjects, patients with AS report more difficulties but report and objectively perform the same amount of PA.

  11. Clinically oriented three-year medical physics curriculum: a new design for the future.

    PubMed

    Nachiappan, Arun C; Lee, Stephen R; Willis, Marc H; Galfione, Matthew R; Chinnappan, Raj R; Diaz-Marchan, Pedro J; Bushong, Stewart C

    2012-09-01

    Medical physics instruction for diagnostic radiology residency at our institution has been redesigned with an interactive and image-based approach that encourages clinical application. The new medical physics curriculum spans the first 3 years of radiology residency and is integrated with the core didactic curriculum. Salient features include clinical medical physics conferences, fundamentals of medical physics lectures, practicums, online modules, journal club, and a final review before the American Board of Radiology core examination.

  12. Community-based fortified dietary intervention improved health outcomes among low-income African-American women.

    PubMed

    Salihu, Hamisu M; Adegoke, Korede K; Das, Rachita; Wilson, Ronee E; Mazza, Jessica; Okoh, Jennifer O; Naik, Eknath; Berry, Estrellita Lo

    2016-08-01

    Poor dietary exposure disproportionately affects African-Americans and contributes to the persistence of disparities in health outcomes. In this study, we hypothesized that fortified dietary intervention (FDI) will improve measured dietary and related health outcomes and will be acceptable among low-income African-American women living in Tampa, FL. These objectives were tested using a prospective experimental study using pretest and posttest design with a control group, using a community-based participatory research approach. The intervention (FDI) was designed by the community through structural modification of a preexisting, diet-based program by the addition of a physical and mental health component. Paired sample t tests were used to examine preintervention and postintervention changes in study outcomes. A total of 49 women participated in the study, 26 in the FDI group and 23 controls. Two weeks postintervention, there were significant improvements in waist circumference and health-related quality of life related to physical health (P< .0001), physical fitness subscores (P= .002), and nutritional subscores (P= .001) in the FDI group. Among overweight/obese women, improvement in health-related quality of life related to physical health, a significant decrease in depressive score, and a reduction in waist circumference were noted. In the control group, a decrease in waist circumference was observed. Implementation of the FDI through a community-based participatory research approach is feasible and effective among low-income African-American women in general and overweight/obese women in particular. Social reengineering of a nutritional intervention coupled with community-based approach will enhance health outcomes of low-income women. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Commentary: physical approaches for the treatment of epilepsy: electrical and magnetic stimulation and cooling.

    PubMed

    Löscher, Wolfgang; Cole, Andrew J; McLean, Michael J

    2009-04-01

    Physical approaches for the treatment of epilepsy currently under study or development include electrical or magnetic brain stimulators and cooling devices, each of which may be implanted or applied externally. Some devices may stimulate peripheral structures, whereas others may be implanted directly into the brain. Stimulation may be delivered chronically, intermittently, or in response to either manual activation or computer-based detection of events of interest. Physical approaches may therefore ultimately be appropriate for seizure prophylaxis by causing a modification of the underlying substrate, presumably with a reduction in the intrinsic excitability of cerebral structures, or for seizure termination, by interfering with the spontaneous discharge of pathological neuronal networks. Clinical trials of device-based therapies are difficult due to ethical issues surrounding device implantation, problems with blinding, potential carryover effects that may occur in crossover designs if substrate modification occurs, and subject heterogeneity. Unresolved issues in the development of physical treatments include optimization of stimulation parameters, identification of the optimal volume of brain to be stimulated, development of adequate power supplies to stimulate the necessary areas, and a determination that stimulation itself does not promote epileptogenesis or adverse long-term effects on normal brain function.

  14. The picture of health: examining school-based health environments through photographs.

    PubMed

    Kontak, Julia C H; McIsaac, Jessie-Lee D; Penney, Tarra L; Kuhle, Stefan; Kirk, Sara F L

    2017-04-01

    Health-promoting schools (HPS) is an effective approach to enhance the health and well-being of children and youth, but its measurement remains a challenge considering contextual differences across school environments. The purpose of this study was to qualitatively explore the physical features of the school environment through photographs of schools that had implemented an HPS approach compared with schools that had not. This study used a descriptive approach, wherein physical features of the school environment were distilled through visual images and qualitatively analyzed. School environment data were collected from 18 elementary schools (10 HPS, 8 comparison schools) from a school board in rural Nova Scotia (Canada). Evaluation assistants captured photographs of the physical school environment as part of a broader environment audit. Overarching themes included the promotion, access and availability of opportunities for healthy eating and physical activity, healthy school climate and safety and accessibility of the school. The photographs characterized diverse aspects of the school environment and revealed differences between schools that had implemented an HPS approach compared with schools that had not. There were increased visual cues to support healthy eating, physical activity and mental well-being, and indications of a holistic approach to health among schools that implemented an HPS approach. This research adds to understanding the environmental elements of HPS. The use of photographic data to understand school environments provided an innovative method to explore the physical features of schools that had implemented an HPS approach. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Evaluation and Opportunities in Overtraining Approaches

    ERIC Educational Resources Information Center

    Roose, Jolanda; de Vries, Wouter R.; Schmikli, Sandor L.; Backx, Frank J. G.; van Doornen, Lorenz J. P.

    2009-01-01

    Overtraining (OT) as a sports phenomenon can be caused by stressors on various levels (physical, emotional, psychological, and social) and evokes responses on these levels. This study evaluated research and new opportunities in the field of OT by introducing an integrated multidisciplinary approach, based on the single and multistressors approach.…

  16. A "Mindful Rational Living" Approach for Addressing HIV in the School Setting

    ERIC Educational Resources Information Center

    Chenneville, Tiffany; St. John Walsh, Audra

    2016-01-01

    This paper describes a "mindful rational living" approach, which incorporates mindfulness techniques with rational emotive behavioral therapy strategies for addressing HIV in the school setting. The utility of this approach for attending to the physical, mental, and psychosocial aspects of school-based HIV prevention and treatment will…

  17. Physics-based simulation models for EBSD: advances and challenges

    NASA Astrophysics Data System (ADS)

    Winkelmann, A.; Nolze, G.; Vos, M.; Salvat-Pujol, F.; Werner, W. S. M.

    2016-02-01

    EBSD has evolved into an effective tool for microstructure investigations in the scanning electron microscope. The purpose of this contribution is to give an overview of various simulation approaches for EBSD Kikuchi patterns and to discuss some of the underlying physical mechanisms.

  18. The Faith, Activity, and Nutrition (FAN) Program: Design of a participatory research intervention to increase physical activity and improve dietary habits in African American churches

    PubMed Central

    Wilcox, Sara; Laken, Marilyn; Parrott, Allen W.; Condrasky, Margaret; Saunders, Ruth; Addy, Cheryl L.; Evans, Rebecca; Baruth, Meghan; Samuel, May

    2010-01-01

    Background African Americans are at increased risk for cardiovascular disease and cancer morbidity and mortality. Physical activity and healthy dietary practices can reduce this risk. The church is a promising setting to address health disparities, and community-based participatory research is a preferred approach. Objectives Using a community-based participatory approach and the social ecologic model, the FAN trial aims to increase self-reported moderate-intensity physical activity and fruit and vegetable consumption and reduce blood pressure in African American church members. Secondary aims are to increase objectively measured moderate-intensity physical activity and fiber/whole grain consumption and reduce fat consumption. Design FAN is a group randomized trial (GRT) with two levels of clustering: participants (N=1,279; n=316 accelerometer subgroup) within church and church within church cluster. In the first wave, seven clusters including 23 churches were randomized to an immediate intervention or delayed intervention. In subsequent waves, 51 churches were randomized to an immediate or delayed intervention. Methods Church committee members, pastors, and cooks participate in full-day trainings to learn how to implement physical activity and dietary changes in the church. Monthly mailings and technical assistance calls are delivered over the 15-month intervention. Members complete measurements at baseline and 15-months. A detailed process evaluation is included. Summary FAN focuses on modifying the social, cultural, and policy environment in a faith-based setting. The use of a community-based participatory research approach, engagement of church leaders, inclusion of a detailed process evaluation, and a formal plan for sustainability and dissemination make FAN unique. PMID:20359549

  19. Investigating elementary education and physical therapy majors' perceptions of an inquiry-based physics content course

    NASA Astrophysics Data System (ADS)

    Hilton, John Martin

    This study investigates why physical therapy assistant majors engage and perform better than elementary education majors in an inquiry-based conceptual physics course at Mid-Atlantic Community College. The students from each major are demographically similar, both courses are similar in depth and structure, and each course supports the students' program. However, there is an observed difference in the levels of engagement with the curriculum and performance on writing-based assessments between the two groups. To explore possible explanations for the difference, I examine students' affinity for science, their beliefs about the nature of science and scientific knowledge in the classroom, and their perception of the usefulness of science to their program. During semi-structured interviews, students from both majors displayed nearly identical weak affinities for science, epistemological beliefs, and uncertainty about the usefulness of the class. However, the physical therapy majors' ability to see the relevance of the physics course experience to their program enhanced their interest and motivation. In contrast, the elementary education students do not see connections between the course and their program, and do not see a purpose for their learning of physics content. To improve the program, I propose a two-pronged approach - designing a faded-scaffolded-inquiry approach for both classes, and developing a field-based/seminar class for the elementary education majors. The scaffolded inquiry will help both groups develop better orientations toward lab activities, and the structured observations and reflection will help the elementary group connect the material to their program.

  20. Population-based dietary approaches for the prevention of noncommunicable diseases.

    PubMed

    Somasundaram, Noel P; Kalupahana, Nishan Sudheera

    2016-04-01

    As the incidence of noncommunicable diseases such as diabetes continues to rise at an alarming rate in South-East Asia, it is imperative that urgent and population-wide strategies are adopted. The most important contributors to the rise in noncommunicable disease are a rise in mean caloric intake and a decrease in physical activity. The evidence for population-based dietary approaches to counter these factors is reviewed. Several structural and cohesive interdepartmental coordination efforts are required for effective implementation of prevention strategies. Since low- and middle-income countries may lack the frameworks for effective and integrated multi-stakeholder intervention, implementation of population-based dietary and physical-activity approaches may be delayed and may be too late for effective prevention in current at-risk cohorts. Evidence-based strategies to decrease energy intake and increase physical activity are now well established and their urgent adoption by Member States of the World Health Organization South-East Asia Region is essential. In the context of Sri Lanka, for example, it is recommended that the most effective and easy-to-implement interventions would be media campaigns, restrictions on advertisement of unhealthy foods, taxation of unhealthy foods, subsidies for production of healthy foods, and laws on nutrition labelling that introduce colour coding of packaged foods.

  1. Influence Based Learning Program Scientific Learning Approach to Science Students Generic Skills

    ERIC Educational Resources Information Center

    Wahyuni, Ida; Amdani, Khairul

    2016-01-01

    This study aims to determine the influence of scientific approach based learning program (P2BPS) against generic science skills of students. The method used in this research is "quasi experiment" with "two-group pretest posttest" design.The population in this study were all students who take courses in general physics II at the…

  2. Investigating Learner Attitudes toward E-Books as Learning Tools: Based on the Activity Theory Approach

    ERIC Educational Resources Information Center

    Liaw, Shu-Sheng; Huang, Hsiu-Mei

    2016-01-01

    This paper investigates the use of e-books as learning tools in terms of learner satisfaction, usefulness, behavioral intention, and learning effectiveness. Based on the activity theory approach, this research develops a research model to understand learner attitudes toward e-books in two physical sizes: 10? and 7?. Results suggest that screen…

  3. A Study of Faculty Approaches to Teaching Undergraduate Physical Chemistry Courses

    NASA Astrophysics Data System (ADS)

    Mack, Michael Ryan

    Chemistry education researchers have not adequately studied teaching and learning experiences at all levels in the undergraduate chemistry curriculum leaving gaps in discipline-based STEM education communities understanding about how the upper- division curricula works (National Research Council, 2012b; Towns, 2013). This study explored faculty approaches to teaching in upper-division physical chemistry course settings using an interview-based methodology. Two conceptualizations of approaches to teaching emerged from a phenomenographic analysis of interview transcripts: (1) faculty beliefs about the purposes for teaching physical chemistry and (2) their conceptions of their role as an instructor in these course settings. Faculty who reported beliefs predominantly centered on helping students develop conceptual knowledge and problem-solving skills in physical chemistry often worked with didactic models of teaching, which emphasized the transfer of expert knowledge to students. When faculty expressed beliefs that were more inclusive of conceptual, epistemic, and social learning goals in science education they often described more student-centered models of teaching and learning, which put more responsibilities on them to facilitate students' interactive engagement with the material and peers during regularly scheduled class time. Knowledge of faculty thinking, as evinced in a rich description of their accounts of their experience, provides researchers and professional developers with useful information about the potential opportunities or barriers that exist for helping faculty align their beliefs and goals for teaching with research-based instructional strategies.

  4. Vulnerability curves vs. vulnerability indicators: application of an indicator-based methodology for debris-flow hazards

    NASA Astrophysics Data System (ADS)

    Papathoma-Köhle, Maria

    2016-08-01

    The assessment of the physical vulnerability of elements at risk as part of the risk analysis is an essential aspect for the development of strategies and structural measures for risk reduction. Understanding, analysing and, if possible, quantifying physical vulnerability is a prerequisite for designing strategies and adopting tools for its reduction. The most common methods for assessing physical vulnerability are vulnerability matrices, vulnerability curves and vulnerability indicators; however, in most of the cases, these methods are used in a conflicting way rather than in combination. The article focuses on two of these methods: vulnerability curves and vulnerability indicators. Vulnerability curves express physical vulnerability as a function of the intensity of the process and the degree of loss, considering, in individual cases only, some structural characteristics of the affected buildings. However, a considerable amount of studies argue that vulnerability assessment should focus on the identification of these variables that influence the vulnerability of an element at risk (vulnerability indicators). In this study, an indicator-based methodology (IBM) for mountain hazards including debris flow (Kappes et al., 2012) is applied to a case study for debris flows in South Tyrol, where in the past a vulnerability curve has been developed. The relatively "new" indicator-based method is being scrutinised and recommendations for its improvement are outlined. The comparison of the two methodological approaches and their results is challenging since both methodological approaches deal with vulnerability in a different way. However, it is still possible to highlight their weaknesses and strengths, show clearly that both methodologies are necessary for the assessment of physical vulnerability and provide a preliminary "holistic methodological framework" for physical vulnerability assessment showing how the two approaches may be used in combination in the future.

  5. [A comprehensive approach to designing of magnetotherapy techniques based on the Atos device].

    PubMed

    Raĭgorodskiĭ, Iu M; Semiachkin, G P; Tatarenko, D A

    1995-01-01

    The paper determines how to apply a comprehensive approach to designing magnetic therapeutical techniques based on concomitant exposures to two or more physical factors. It shows the advantages of the running pattern of a magnetic field and photostimuli in terms of optimization of physiotherapeutical exposures. An Atos apparatus with an Amblio-1 attachment is used as an example to demonstrate how to apply the comprehensive approach for ophthalmology.

  6. An analysis of learning process based on scientific approach in physical chemsitry experiment

    NASA Astrophysics Data System (ADS)

    Arlianty, Widinda Normalia; Febriana, Beta Wulan; Diniaty, Artina

    2017-03-01

    This study aimed to analysis the quality of learning process based on scientific approach in physical chemistry experiment of Chemistry Education students, Islamic University of Indonesia. The research was descriptive qualitative. The samples of this research were 2nd semester student, class of 2015. Scientific data of learning process were collected by observation sheet and documentation of seven title experimental. The results showed that the achievement of scientific learning process on observing, questioning, experimenting and associating data were 73.98%; 81.79%; 80.74%; and 76.94% respectively, which categorized as medium. Furthermore, for aspect communicating had high category at 86.11% of level achievement.

  7. Holistic Context-Sensitivity for Run-Time Optimization of Flexible Manufacturing Systems.

    PubMed

    Scholze, Sebastian; Barata, Jose; Stokic, Dragan

    2017-02-24

    Highly flexible manufacturing systems require continuous run-time (self-) optimization of processes with respect to diverse parameters, e.g., efficiency, availability, energy consumption etc. A promising approach for achieving (self-) optimization in manufacturing systems is the usage of the context sensitivity approach based on data streaming from high amount of sensors and other data sources. Cyber-physical systems play an important role as sources of information to achieve context sensitivity. Cyber-physical systems can be seen as complex intelligent sensors providing data needed to identify the current context under which the manufacturing system is operating. In this paper, it is demonstrated how context sensitivity can be used to realize a holistic solution for (self-) optimization of discrete flexible manufacturing systems, by making use of cyber-physical systems integrated in manufacturing systems/processes. A generic approach for context sensitivity, based on self-learning algorithms, is proposed aiming at a various manufacturing systems. The new solution encompasses run-time context extractor and optimizer. Based on the self-learning module both context extraction and optimizer are continuously learning and improving their performance. The solution is following Service Oriented Architecture principles. The generic solution is developed and then applied to two very different manufacturing processes.

  8. Holistic Context-Sensitivity for Run-Time Optimization of Flexible Manufacturing Systems

    PubMed Central

    Scholze, Sebastian; Barata, Jose; Stokic, Dragan

    2017-01-01

    Highly flexible manufacturing systems require continuous run-time (self-) optimization of processes with respect to diverse parameters, e.g., efficiency, availability, energy consumption etc. A promising approach for achieving (self-) optimization in manufacturing systems is the usage of the context sensitivity approach based on data streaming from high amount of sensors and other data sources. Cyber-physical systems play an important role as sources of information to achieve context sensitivity. Cyber-physical systems can be seen as complex intelligent sensors providing data needed to identify the current context under which the manufacturing system is operating. In this paper, it is demonstrated how context sensitivity can be used to realize a holistic solution for (self-) optimization of discrete flexible manufacturing systems, by making use of cyber-physical systems integrated in manufacturing systems/processes. A generic approach for context sensitivity, based on self-learning algorithms, is proposed aiming at a various manufacturing systems. The new solution encompasses run-time context extractor and optimizer. Based on the self-learning module both context extraction and optimizer are continuously learning and improving their performance. The solution is following Service Oriented Architecture principles. The generic solution is developed and then applied to two very different manufacturing processes. PMID:28245564

  9. Active Learning Strategies for Introductory Light and Optics

    NASA Astrophysics Data System (ADS)

    Sokoloff, David R.

    2016-01-01

    There is considerable evidence that traditional approaches are ineffective in teaching physics concepts, including light and optics concepts. A major focus of the work of the Activity Based Physics Group has been on the development of active learning curricula like RealTime Physics (RTP) labs and Interactive Lecture Demonstrations (ILDs). Among the characteristics of these curricula are: (1) use of a learning cycle in which students are challenged to compare predictions—discussed with their peers in small groups—to observations of the physical world, (2) use of guided hands-on work to construct basic concepts from observations, and (3) use of computer-based tools. It has been possible to change the lecture and laboratory learning environments at a large number of universities, colleges, and high schools without changing the structure of the introductory course. For example, in the United States, nearly 200 physics departments have adopted RTP, and many others use pre-publication, open-source versions or have adopted the RTP approach to develop their own labs. Examples from RTP and ILDs (including optics magic tricks) are described in this paper.

  10. The Desired Learning Outcomes of School-Based Nutrition/Physical Activity Health Education: A Health Literacy Constructed Delphi Survey of Finnish Experts

    ERIC Educational Resources Information Center

    Ormshaw, Michael James; Kokko, Sami Petteri; Villberg, Jari; Kannas, Lasse

    2016-01-01

    Purpose: The purpose of this paper is to utilise the collective opinion of a group of Finnish experts to identify the most important learning outcomes of secondary-level school-based health education, in the specific domains of physical activity and nutrition. Design/ Methodology/ Approach: The study uses a Delphi survey technique to collect the…

  11. Multi-Level Discourse Analysis in a Physics Teaching Methods Course from the Psychological Perspective of Activity Theory

    ERIC Educational Resources Information Center

    Vieira, Rodrigo Drumond; Kelly, Gregory J.

    2014-01-01

    In this paper, we present and apply a multi-level method for discourse analysis in science classrooms. This method is based on the structure of human activity (activity, actions, and operations) and it was applied to study a pre-service physics teacher methods course. We argue that such an approach, based on a cultural psychological perspective,…

  12. The Reality of Sustaining Community-Based Sport and Physical Activity Programs to Enhance the Development of Underserved Youth: Challenges and Potential Strategies

    ERIC Educational Resources Information Center

    Whitley, Meredith A.; Forneris, Tanya; Barker, Bryce

    2015-01-01

    Many community-based sport and physical activity programs take a positive youth development approach when operating in underserved communities around the world (Forneris, Whitley, & Barker, 2013). However, one of the biggest challenges for these programs is sustainability (Lindsey, 2008). The purpose of this article is to present the 3…

  13. Simulation of green roof runoff under different substrate depths and vegetation covers by coupling a simple conceptual and a physically based hydrological model.

    PubMed

    Soulis, Konstantinos X; Valiantzas, John D; Ntoulas, Nikolaos; Kargas, George; Nektarios, Panayiotis A

    2017-09-15

    In spite of the well-known green roof benefits, their widespread adoption in the management practices of urban drainage systems requires the use of adequate analytical and modelling tools. In the current study, green roof runoff modeling was accomplished by developing, testing, and jointly using a simple conceptual model and a physically based numerical simulation model utilizing HYDRUS-1D software. The use of such an approach combines the advantages of the conceptual model, namely simplicity, low computational requirements, and ability to be easily integrated in decision support tools with the capacity of the physically based simulation model to be easily transferred in conditions and locations other than those used for calibrating and validating it. The proposed approach was evaluated with an experimental dataset that included various green roof covers (either succulent plants - Sedum sediforme, or xerophytic plants - Origanum onites, or bare substrate without any vegetation) and two substrate depths (either 8 cm or 16 cm). Both the physically based and the conceptual models matched very closely the observed hydrographs. In general, the conceptual model performed better than the physically based simulation model but the overall performance of both models was sufficient in most cases as it is revealed by the Nash-Sutcliffe Efficiency index which was generally greater than 0.70. Finally, it was showcased how a physically based and a simple conceptual model can be jointly used to allow the use of the simple conceptual model for a wider set of conditions than the available experimental data and in order to support green roof design. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Physics students' approaches to learning and cognitive processes in solving physics problems

    NASA Astrophysics Data System (ADS)

    Bouchard, Josee

    This study examined traditional instruction and problem-based learning (PBL) approaches to teaching and the extent to which they foster the development of desirable cognitive processes, including metacognition, critical thinking, physical intuition, and problem solving among undergraduate physics students. The study also examined students' approaches to learning and their perceived role as physics students. The research took place in the context of advanced courses of electromagnetism at a Canadian research university. The cognitive science, expertise, physics and science education, instructional psychology, and discourse processes literature provided the framework and background to conceptualize and structure this study. A within-stage mixed-model design was used and a number of instruments, including a survey, observation grids, and problem sets were developed specifically for this study. A special one-week long problem-based learning (PBL) intervention was also designed. Interviews with the instructors participating in the study provided complementary data. Findings include evidence that students in general engage in metacognitive processes in the organization of their personal study time. However, this potential, including the development of other cognitive processes, might not be stimulated as much as it could in the traditional lecture instructional context. The PBL approach was deemed as more empowering for the students. An unexpected finding came from the realisation that a simple exposure to a structured exercise of problem-solving (pre-test) was sufficient to produce superior planning and solving strategies on a second exposure (post-test) even for the students who had not been exposed to any special treatment. Maturation was ruled out as a potential threat to the validity of this finding. Another promising finding appears to be that the problem-based learning (PBL) intervention tends to foster the development of cognitive competencies, particularly physical intuition, even if it was only implemented for a short period of time. Other findings relate to the nature of the cognitive actions and activities that the students engage in when learning to solve electromagnetism problems in a PBL environment for the first time and the tutoring actions that guide students in this context.

  15. Native American Culture: An Interdisciplinary Approach.

    ERIC Educational Resources Information Center

    Troisi, Andrea

    1995-01-01

    Provides suggestions for a literature-based approach when integrating Native American culture into the middle school curriculum. Recommends resources in the following subjects: language arts, mathematics, physical education, health, home and career skills, technology, art, music, and second language. (AEF)

  16. Experimental College Physics Course Based on Ausubel's Learning Theory.

    ERIC Educational Resources Information Center

    Moreira, Marco Antonio

    1978-01-01

    Compares the Ausubelian approach and the traditional one to the content organization of an introductory course in electromagnetism. States the differences between these approaches in terms of the student's ability to apply, relate, and differentiate electromagnetic concepts. (GA)

  17. Problem based learning approaches to the technology education of physical therapy students.

    PubMed

    Castro-Sánchez, Adelaida M; Aguilar-Ferrándiz, María Encarnación M E; Matarán-Peñarrocha, Guillermo A Ga; Iglesias-Alonso, Alberto A; Fernández-Fernández, Maria Jesus M J; Moreno-Lorenzo, Carmen C

    2012-01-01

    Problem-Based Learning (PBL) is a whole-curriculum concept. This study aimed to compare learning preferences and strategies between physical therapy students taught by PBL and those receiving conventional lectures on massage therapy, trauma physical therapy, and electrotherapy, hydrotherapy, and thermotherapy. This quasi-experimental study included 182 male and female students on physical therapy diploma courses at three universities in Andalusia (Spain). The Canfield Learning Skills Inventory (CLSI) was used to assess learning strategies and the Approaches to Study Skills Inventory for Students (ASSIST) to analyze study preferences. At the end of the academic year 2009/10, physical therapy students taught by PBL considered the most important learning strategies to be group work, study organization, relationship of ideas, and academic results. In comparison to conventionally taught counterparts, they considered that PBL reduced lack of purpose, memorizing without relating, the law of minimum effort, and fear of failure. Among these PBL students, the most highly rated study preferences were: organization of course tasks, cordial interaction with the teacher, learning by reading and images, and direct hands-on experience. For these physical therapy students, PBL facilitates learning strategies and study preferences in comparison to conventional teaching.

  18. PEOPLE IN PHYSICS: David Bohm and the implicate order: a new paradigm for physics teachers

    NASA Astrophysics Data System (ADS)

    Bettany, Laurence

    1998-11-01

    David Bohm (1917-93) was a highly original and individual physicist. His novel ideas and profound intuition extended not only to the physical world but also to the nature of consciousness and society. Bohm regarded science as having become essentially fragmented in its approach to understanding physical reality and sought a more holistic physics based on order, transformation and flowing movement. His notion of an implicate order provides an unusual and exciting challenge for both teachers and students alike.

  19. A Deliberate Practice Instructional Approach for Upper Division Physics Courses

    NASA Astrophysics Data System (ADS)

    Jones, David

    2015-05-01

    In upper division physics courses, an overarching educational goal is to have students think about and use the material much as a practicing physicist in the field does. Specifically, this would include knowledge (such as concepts, formalism, and instruments), approaches, and metacognitive skills that physicists use in solving ``typical'' (research context) problems to both understand and predict physical observations and accompanying models. Using an interactive instructional approach known as deliberate practice (described earlier in this session) we will discuss our work on how to provide students with the necessary practice and feedback to achieve these skills in a core DAMOP course of modern optics. We present the results of a direct and explicit comparison between this approach and traditional lecture-based instruction revealing evidence that a significant improvement of the students' mastery of these skills occurs when deliberate practice is employed. Our work was supported by the University of British Columbia through the CWSEI.

  20. Clinical examination and physical assessment of hip joint-related pain in athletes.

    PubMed

    Reiman, Michael P; Thorborg, Kristian

    2014-11-01

    Evidence-based clinical examination and assessment of the athlete with hip joint related pain is complex. It requires a systematic approach to properly differentially diagnose competing potential causes of athletic pain generation. An approach with an initial broad focus (and hence use of highly sensitive tests/measures) that then is followed by utilizing more specific tests/measures to pare down this imprecise differential diagnosis list is suggested. Physical assessment measures are then suggested to discern impairments, activity and participation restrictions for athletes with hip-join related pain, hence guiding the proper treatment approach. 5.

  1. Towards quantitative classification of folded proteins in terms of elementary functions.

    PubMed

    Hu, Shuangwei; Krokhotin, Andrei; Niemi, Antti J; Peng, Xubiao

    2011-04-01

    A comparative classification scheme provides a good basis for several approaches to understand proteins, including prediction of relations between their structure and biological function. But it remains a challenge to combine a classification scheme that describes a protein starting from its well-organized secondary structures and often involves direct human involvement, with an atomary-level physics-based approach where a protein is fundamentally nothing more than an ensemble of mutually interacting carbon, hydrogen, oxygen, and nitrogen atoms. In order to bridge these two complementary approaches to proteins, conceptually novel tools need to be introduced. Here we explain how an approach toward geometric characterization of entire folded proteins can be based on a single explicit elementary function that is familiar from nonlinear physical systems where it is known as the kink soliton. Our approach enables the conversion of hierarchical structural information into a quantitative form that allows for a folded protein to be characterized in terms of a small number of global parameters that are in principle computable from atomary-level considerations. As an example we describe in detail how the native fold of the myoglobin 1M6C emerges from a combination of kink solitons with a very high atomary-level accuracy. We also verify that our approach describes longer loops and loops connecting α helices with β strands, with the same overall accuracy. ©2011 American Physical Society

  2. 24 CFR 8.3 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... NONDISCRIMINATION BASED ON HANDICAP IN FEDERALLY ASSISTED PROGRAMS AND ACTIVITIES OF THE DEPARTMENT OF HOUSING AND... altered, can be approached, entered, and used by individuals with physical handicaps. The phrase... individuals with physical handicaps. A unit that is on an accessible route and is adaptable and otherwise in...

  3. Student Inferences Based on Facial Appearance

    ERIC Educational Resources Information Center

    Mendez, Jeanette Morehouse; Mendez, Jesse Perez

    2016-01-01

    This study extends the scope of research that examines the connection between physical attractiveness and student perception through a survey analysis. While other studies concentrate on physical attractiveness alone, we examined not only perceptions of attractiveness but its impact on students' perception of knowledge, approachability and faculty…

  4. Rethinking Physics for Biologists: A design-based research approach

    NASA Astrophysics Data System (ADS)

    Sawtelle, Vashti

    2015-03-01

    Biology majors at the University of Maryland are required to take courses in biology, chemistry, and physics - but they often see these courses as disconnected. Over the past three years the NEXUS/Physics course has been working to develop an interdisciplinary learning environment that bridges the disciplinary domains of biology and physics. Across the three years we have gone from teaching in a small class with one instructor to teaching in a large lecture hall with multiple instructors. We have used a design-based research approach to support critical reflection of the course at multiple-time scales. In this presentation I will detail our process of collecting systematic data, listening to and valuing students' reasoning, and bridging diverse perspectives led. I will demonstrate how this process led to improved curricular design, refined assessment objectives, and new design heuristics. This work is supported by NSF-TUES DUE 11-22818, the HHMI NEXUS grant, and a NSF Graduate Research Fellowship (DGE 0750616).

  5. Model-Based Detection of Radioactive Contraband for Harbor Defense Incorporating Compton Scattering Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Candy, J V; Chambers, D H; Breitfeller, E F

    2010-03-02

    The detection of radioactive contraband is a critical problem is maintaining national security for any country. Photon emissions from threat materials challenge both detection and measurement technologies especially when concealed by various types of shielding complicating the transport physics significantly. This problem becomes especially important when ships are intercepted by U.S. Coast Guard harbor patrols searching for contraband. The development of a sequential model-based processor that captures both the underlying transport physics of gamma-ray emissions including Compton scattering and the measurement of photon energies offers a physics-based approach to attack this challenging problem. The inclusion of a basic radionuclide representationmore » of absorbed/scattered photons at a given energy along with interarrival times is used to extract the physics information available from the noisy measurements portable radiation detection systems used to interdict contraband. It is shown that this physics representation can incorporated scattering physics leading to an 'extended' model-based structure that can be used to develop an effective sequential detection technique. The resulting model-based processor is shown to perform quite well based on data obtained from a controlled experiment.« less

  6. What Goes Around Comes Around … Or Does It? Disrupting the Cycle of Traditional, Sport-Based Physical Education

    PubMed Central

    Ennis, Catherine D.

    2015-01-01

    As typically taught, sport-based, multiactivity approaches to physical education provide students with few opportunities to increase their skill, fitness, or understanding. Alternative curriculum models, such as Sport Education, Teaching Games for Understanding, and Fitness for Life, represent a second generation of models that build on strong statements of democratic, student-centered practice in physical education. In the What Goes Around section of the paper, I discuss the U.S. perspective on the origins of alternative physical education curriculum models introduced in the early and mid-20th century as a response to sport and exercise programs of the times. Today, with the help of physical educators, scholars are conducting research to test new curricular alternatives or prototypes to provide evidence-based support for these models. Yet, the multiactivity, sport-based curriculum continues to dominate in most U.S. physical education classes. I discuss reasons for this dogged persistence and propose reforms to disrupt this pervasive pattern in the future. PMID:25960937

  7. Phases and interfaces from real space atomically resolved data: Physics-based deep data image analysis

    DOE PAGES

    Vasudevan, Rama K.; Ziatdinov, Maxim; Jesse, Stephen; ...

    2016-08-12

    Advances in electron and scanning probe microscopies have led to a wealth of atomically resolved structural and electronic data, often with ~1–10 pm precision. However, knowledge generation from such data requires the development of a physics-based robust framework to link the observed structures to macroscopic chemical and physical descriptors, including single phase regions, order parameter fields, interfaces, and structural and topological defects. Here, we develop an approach based on a synergy of sliding window Fourier transform to capture the local analog of traditional structure factors combined with blind linear unmixing of the resultant 4D data set. This deep data analysismore » is ideally matched to the underlying physics of the problem and allows reconstruction of the a priori unknown structure factors of individual components and their spatial localization. We demonstrate the principles of this approach using a synthetic data set and further apply it for extracting chemical and physically relevant information from electron and scanning tunneling microscopy data. Furthermore, this method promises to dramatically speed up crystallographic analysis in atomically resolved data, paving the road toward automatic local structure–property determinations in crystalline and quasi-ordered systems, as well as systems with competing structural and electronic order parameters.« less

  8. Relativity, quantum physics and philosophy in the upper secondary curriculum: challenges, opportunities and proposed approaches

    NASA Astrophysics Data System (ADS)

    Henriksen, Ellen K.; Bungum, Berit; Angell, Carl; Tellefsen, Cathrine W.; Frågåt, Thomas; Vetleseter Bøe, Maria

    2014-11-01

    In this article, we discuss how quantum physics and relativity can be taught in upper secondary school, in ways that promote conceptual understanding and philosophical reflections. We present the ReleQuant project, in which web-based teaching modules have been developed. The modules address competence aims in the Norwegian national curriculum for physics (final year of upper secondary education), which is unique in that it includes general relativity, entangled photons and the epistemological consequences of modern physics. These topics, with their high demands on students’ understanding of abstract and counter-intuitive concepts and principles, are challenging for teachers to teach and for students to learn. However, they also provide opportunities to present modern physics in innovative ways that students may find motivating and relevant both in terms of modern technological applications and in terms of contributions to students’ intellectual development. Beginning with these challenges and opportunities, we briefly present previous research and theoretical perspectives with relevance to student learning and motivation in modern physics. Based on this, we outline the ReleQuant teaching approach, where students use written and oral language and a collaborative exploration of animations and simulations as part of their learning process. Finally, we present some of the first experiences from classroom tests of the quantum physics modules.

  9. Three Studies of Service-Learning as an Approach to Movement Integration in Elementary Classrooms

    ERIC Educational Resources Information Center

    Michael, Robert D., Jr.

    2017-01-01

    This dissertation consists of three studies that examine service-learning (SL) as an approach to incorporating movement integration (MI) in elementary classrooms as part of a comprehensive school physical activity program (CSPAP). All three studies attempt to advance the knowledge base about using partnership approaches to supporting school based…

  10. Effects of a Problem-based Structure of Physics Contents on Conceptual Learning and the Ability to Solve Problems

    NASA Astrophysics Data System (ADS)

    Becerra-Labra, Carlos; Gras-Martí, Albert; Martínez Torregrosa, Joaquín

    2012-05-01

    A model of teaching/learning is proposed based on a 'problem-based structure' of the contents of the course, in combination with a training in paper and pencil problem solving that emphasizes discussion and quantitative analysis, rather than formulae plug-in. The aim is to reverse the high failure and attrition rate among engineering undergraduates taking physics. A number of tests and questionnaires were administered to a group of students following a traditional lecture-based instruction, as well as to another group that was following an instruction scheme based on the proposed approach and the teaching materials developed ad hoc. The results show that students following the new method can develop scientific reasoning habits in problem-solving skills, and show gains in conceptual learning, attitudes and interests, and that the effects of this approach on learning are noticeable several months after the course is over.

  11. Physically-Based Rendering of Particle-Based Fluids with Light Transport Effects

    NASA Astrophysics Data System (ADS)

    Beddiaf, Ali; Babahenini, Mohamed Chaouki

    2018-03-01

    Recent interactive rendering approaches aim to efficiently produce images. However, time constraints deeply affect their output accuracy and realism (many light phenomena are poorly or not supported at all). To remedy this issue, in this paper, we propose a physically-based fluid rendering approach. First, while state-of-the-art methods focus on isosurface rendering with only two refractions, our proposal (1) considers the fluid as a heterogeneous participating medium with refractive boundaries, and (2) supports both multiple refractions and scattering. Second, the proposed solution is fully particle-based in the sense that no particles transformation into a grid is required. This interesting feature makes it able to handle many particle types (water, bubble, foam, and sand). On top of that, a medium with different fluids (color, phase function, etc.) can also be rendered.

  12. Effectiveness of a website and mobile phone based physical activity and nutrition intervention for middle-aged males: Trial protocol and baseline findings of the ManUp Study

    PubMed Central

    2012-01-01

    Background Compared to females, males experience higher rates of chronic disease and mortality, yet few health promotion initiatives are specifically aimed at men. Therefore, the aim of the ManUp Study is to examine the effectiveness of an IT-based intervention to increase the physical activity and nutrition behaviour and literacy in middle-aged males (aged 35–54 years). Method/Design The study design was a two-arm randomised controlled trial, having an IT-based (applying website and mobile phones) and a print-based intervention arm, to deliver intervention materials and to promote self-monitoring of physical activity and nutrition behaviours. Participants (n = 317) were randomised on a 2:1 ratio in favour of the IT-based intervention arm. Both intervention arms completed assessments at baseline, 3, and 9 months. All participants completed self-report assessments of physical activity, sitting time, nutrition behaviours, physical activity and nutrition literacy, perceived health status and socio-demographic characteristics. A randomly selected sub-sample in the IT-based (n = 61) and print-based (n = 30) intervention arms completed objective measures of height, weight, waist circumference, and physical activity as measured by accelerometer (Actigraph GT3X). The average age of participants in the IT-based and print-based intervention arm was 44.2 and 43.8 years respectively. The majority of participants were employed in professional occupations (IT-based 57.6%, Print-based 54.2%) and were overweight or obese (IT-based 90.8%, Print-based 87.3%). At baseline a lower proportion of participants in the IT-based (70.2%) group agreed that 30 minutes of physical activity each day is enough to improve health compared to the print-based (82.3%) group (p = .026). The IT-based group consumed a significantly lower number of serves of red meat in the previous week, compared to the print-based group (p = .017). No other significant between-group differences were observed at baseline. Discussion The ManUp Study will examine the effectiveness of an IT-based approach to improve physical activity and nutrition behaviour and literacy. Study outcomes will provide much needed information on the efficacy of this approach in middle aged males, which is important due to the large proportions of males at risk, and the potential reach of IT-based interventions. Trial registration ACTRN12611000081910 PMID:22894747

  13. Radiative Transfer Modeling and Retrievals for Advanced Hyperspectral Sensors

    NASA Technical Reports Server (NTRS)

    Liu, Xu; Zhou, Daniel K.; Larar, Allen M.; Smith, William L., Sr.; Mango, Stephen A.

    2009-01-01

    A novel radiative transfer model and a physical inversion algorithm based on principal component analysis will be presented. Instead of dealing with channel radiances, the new approach fits principal component scores of these quantities. Compared to channel-based radiative transfer models, the new approach compresses radiances into a much smaller dimension making both forward modeling and inversion algorithm more efficient.

  14. Stochastic modelling of temperatures affecting the in situ performance of a solar-assisted heat pump: The multivariate approach and physical interpretation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loveday, D.L.; Craggs, C.

    Box-Jenkins-based multivariate stochastic modeling is carried out using data recorded from a domestic heating system. The system comprises an air-source heat pump sited in the roof space of a house, solar assistance being provided by the conventional tile roof acting as a radiation absorber. Multivariate models are presented which illustrate the time-dependent relationships between three air temperatures - at external ambient, at entry to, and at exit from, the heat pump evaporator. Using a deterministic modeling approach, physical interpretations are placed on the results of the multivariate technique. It is concluded that the multivariate Box-Jenkins approach is a suitable techniquemore » for building thermal analysis. Application to multivariate Box-Jenkins approach is a suitable technique for building thermal analysis. Application to multivariate model-based control is discussed, with particular reference to building energy management systems. It is further concluded that stochastic modeling of data drawn from a short monitoring period offers a means of retrofitting an advanced model-based control system in existing buildings, which could be used to optimize energy savings. An approach to system simulation is suggested.« less

  15. A discrete mechanics framework for real time virtual surgical simulations with application to virtual laparoscopic nephrectomy.

    PubMed

    Zhou, Xiangmin; Zhang, Nan; Sha, Desong; Shen, Yunhe; Tamma, Kumar K; Sweet, Robert

    2009-01-01

    The inability to render realistic soft-tissue behavior in real time has remained a barrier to face and content aspects of validity for many virtual reality surgical training systems. Biophysically based models are not only suitable for training purposes but also for patient-specific clinical applications, physiological modeling and surgical planning. When considering the existing approaches for modeling soft tissue for virtual reality surgical simulation, the computer graphics-based approach lacks predictive capability; the mass-spring model (MSM) based approach lacks biophysically realistic soft-tissue dynamic behavior; and the finite element method (FEM) approaches fail to meet the real-time requirement. The present development stems from physics fundamental thermodynamic first law; for a space discrete dynamic system directly formulates the space discrete but time continuous governing equation with embedded material constitutive relation and results in a discrete mechanics framework which possesses a unique balance between the computational efforts and the physically realistic soft-tissue dynamic behavior. We describe the development of the discrete mechanics framework with focused attention towards a virtual laparoscopic nephrectomy application.

  16. Unit of Analysis: Impact of Silverman and Solmon's Article on Field-Based Intervention Research in Physical Education in the U.S.A.

    ERIC Educational Resources Information Center

    Li, Weidong; Chen, Yung-Ju; Xiang, Ping; Xie, Xiuge; Li, Yilin

    2017-01-01

    Purpose: The purposes of this study were to: (a) examine the impact of the Silverman and Solmon article (1998) on how researchers handle the unit of analysis issue in their field-based intervention research in physical education in the United States and summarize statistical approaches that have been used to analyze the data, and (b) provide…

  17. A Statistical-Physics Approach to Language Acquisition and Language Change

    NASA Astrophysics Data System (ADS)

    Cassandro, Marzio; Collet, Pierre; Galves, Antonio; Galves, Charlotte

    1999-02-01

    The aim of this paper is to explain why Statistical Physics can help understanding two related linguistic questions. The first question is how to model first language acquisition by a child. The second question is how language change proceeds in time. Our approach is based on a Gibbsian model for the interface between syntax and prosody. We also present a simulated annealing model of language acquisition, which extends the Triggering Learning Algorithm recently introduced in the linguistic literature.

  18. Analytical derivation: An epistemic game for solving mathematically based physics problems

    NASA Astrophysics Data System (ADS)

    Bajracharya, Rabindra R.; Thompson, John R.

    2016-06-01

    Problem solving, which often involves multiple steps, is an integral part of physics learning and teaching. Using the perspective of the epistemic game, we documented a specific game that is commonly pursued by students while solving mathematically based physics problems: the analytical derivation game. This game involves deriving an equation through symbolic manipulations and routine mathematical operations, usually without any physical interpretation of the processes. This game often creates cognitive obstacles in students, preventing them from using alternative resources or better approaches during problem solving. We conducted hour-long, semi-structured, individual interviews with fourteen introductory physics students. Students were asked to solve four "pseudophysics" problems containing algebraic and graphical representations. The problems required the application of the fundamental theorem of calculus (FTC), which is one of the most frequently used mathematical concepts in physics problem solving. We show that the analytical derivation game is necessary, but not sufficient, to solve mathematically based physics problems, specifically those involving graphical representations.

  19. Mujeres Fuertes y Corazones Saludables: adaptation of the StrongWomen -healthy hearts program for rural Latinas using an intervention mapping approach.

    PubMed

    Perry, Cynthia K; McCalmont, Jean C; Ward, Judy P; Menelas, Hannah-Dulya K; Jackson, Christie; De Witz, Jazmyne R; Solanki, Emma; Seguin, Rebecca A

    2017-12-28

    To describe our use of intervention mapping as a systematic method to adapt an evidence-based physical activity and nutrition program to reflect the needs of rural Latinas. An intervention mapping process involving six steps guided the adaptation of an evidence based physical activity and nutrition program, using a community-based participatory research approach. We partnered with a community advisory board of rural Latinas throughout the adaptation process. A needs assessment and logic models were used to ascertain which program was the best fit for adaptation. Once identified, we collaborated with one of the developers of the original program (StrongWomen - Healthy Hearts) during the adaptation process. First, essential theoretical methods and program elements were identified, and additional elements were added or adapted. Next, we reviewed and made changes to reflect the community and cultural context of the practical applications, intervention strategies, program curriculum, materials, and participant information. Finally, we planned for the implementation and evaluation of the adapted program, Mujeres Fuertes y Corazones Saludables, within the context of the rural community. A pilot study will be conducted with overweight, sedentary, middle-aged, Spanish-speaking Latinas. Outcome measures will assess change in weight, physical fitness, physical activity, and nutrition behavior. The intervention mapping process was feasible and provided a systematic approach to balance fit and fidelity in the adaptation of an evidence-based program. Collaboration with community members ensured that the components of the curriculum that were adapted were culturally appropriate and relevant within the local community context.

  20. Methodology for Physics and Engineering of Reliable Products

    NASA Technical Reports Server (NTRS)

    Cornford, Steven L.; Gibbel, Mark

    1996-01-01

    Physics of failure approaches have gained wide spread acceptance within the electronic reliability community. These methodologies involve identifying root cause failure mechanisms, developing associated models, and utilizing these models to inprove time to market, lower development and build costs and higher reliability. The methodology outlined herein sets forth a process, based on integration of both physics and engineering principles, for achieving the same goals.

  1. HEPS Inventory Tool: An Inventory Tool Including Quality Assessment of School Interventions on Healthy Eating and Physical Activity

    ERIC Educational Resources Information Center

    Dadaczynski, Kevin; Paulus, Peter; de Vries, Nanne; de Ruiter, Silvia; Buijs, Goof

    2010-01-01

    The HEPS Inventory Tool aims to support stakeholders working in school health promotion to promote high quality interventions on healthy eating and physical activity. As a tool it provides a step-by-step approach on how to develop a national or regional inventory of existing school based interventions on healthy eating and physical activity. It…

  2. Developing students’ ideas about lens imaging: teaching experiments with an image-based approach

    NASA Astrophysics Data System (ADS)

    Grusche, Sascha

    2017-07-01

    Lens imaging is a classic topic in physics education. To guide students from their holistic viewpoint to the scientists’ analytic viewpoint, an image-based approach to lens imaging has recently been proposed. To study the effect of the image-based approach on undergraduate students’ ideas, teaching experiments are performed and evaluated using qualitative content analysis. Some of the students’ ideas have not been reported before, namely those related to blurry lens images, and those developed by the proposed teaching approach. To describe learning pathways systematically, a conception-versus-time coordinate system is introduced, specifying how teaching actions help students advance toward a scientific understanding.

  3. A machine-learning approach for computation of fractional flow reserve from coronary computed tomography.

    PubMed

    Itu, Lucian; Rapaka, Saikiran; Passerini, Tiziano; Georgescu, Bogdan; Schwemmer, Chris; Schoebinger, Max; Flohr, Thomas; Sharma, Puneet; Comaniciu, Dorin

    2016-07-01

    Fractional flow reserve (FFR) is a functional index quantifying the severity of coronary artery lesions and is clinically obtained using an invasive, catheter-based measurement. Recently, physics-based models have shown great promise in being able to noninvasively estimate FFR from patient-specific anatomical information, e.g., obtained from computed tomography scans of the heart and the coronary arteries. However, these models have high computational demand, limiting their clinical adoption. In this paper, we present a machine-learning-based model for predicting FFR as an alternative to physics-based approaches. The model is trained on a large database of synthetically generated coronary anatomies, where the target values are computed using the physics-based model. The trained model predicts FFR at each point along the centerline of the coronary tree, and its performance was assessed by comparing the predictions against physics-based computations and against invasively measured FFR for 87 patients and 125 lesions in total. Correlation between machine-learning and physics-based predictions was excellent (0.9994, P < 0.001), and no systematic bias was found in Bland-Altman analysis: mean difference was -0.00081 ± 0.0039. Invasive FFR ≤ 0.80 was found in 38 lesions out of 125 and was predicted by the machine-learning algorithm with a sensitivity of 81.6%, a specificity of 83.9%, and an accuracy of 83.2%. The correlation was 0.729 (P < 0.001). Compared with the physics-based computation, average execution time was reduced by more than 80 times, leading to near real-time assessment of FFR. Average execution time went down from 196.3 ± 78.5 s for the CFD model to ∼2.4 ± 0.44 s for the machine-learning model on a workstation with 3.4-GHz Intel i7 8-core processor. Copyright © 2016 the American Physiological Society.

  4. Health behaviour change theories: contributions to an ICF-based behavioural exercise therapy for individuals with chronic diseases.

    PubMed

    Geidl, Wolfgang; Semrau, Jana; Pfeifer, Klaus

    2014-01-01

    The purpose of this perspective is (1) to incorporate recent psychological health behaviour change (HBC) theories into exercise therapeutic programmes, and (2) to introduce the International Classification of Functioning (ICF)-based concept of a behavioural exercise therapy (BET). Relevant personal modifiable factors of physical activity (PA) were identified based on three recent psychological HBC theories. Following the principles of intervention mapping, a matrix of proximal programme objectives specifies desirable parameter values for each personal factor. As a result of analysing reviews on behavioural techniques and intervention programmes of the German rehabilitation setting, we identified exercise-related techniques that impact the personal determinants. Finally, the techniques were integrated into an ICF-based BET concept. Individuals' attitudes, skills, emotions, beliefs and knowledge are important personal factors of PA behaviour. BET systematically addresses these personal factors by a systematic combination of adequate exercise contents with related behavioural techniques. The presented 28 intervention techniques serve as a theory-driven "tool box" for designing complex BET programmes to promote PA. The current paper highlights the usefulness of theory-based integrative research in the field of exercise therapy, offers explicit methods and contents for physical therapists to promote PA behaviour, and introduces the ICF-based conceptual idea of a BET. Implications for Rehabilitation Irrespective of the clients' indication, therapeutic exercise programmes should incorporate effective, theory-based approaches to promote physical activity. Central determinants of physical activity behaviour are a number of personal factors: individuals' attitudes, skills, emotions, beliefs and knowledge. Clinicians implementing exercise therapy should set it within a wider theoretical framework including the personal factors that influence physical activity. To increase exercise-adherence and promote long-term physical activity behaviour change, the concept of a behavioural exercise therapy (BET) offers a theory-based approach to systematically address relevant personal factors with a combination of adequate contents of exercise with exercise-related techniques of behaviour change.

  5. Principal axes estimation using the vibration modes of physics-based deformable models.

    PubMed

    Krinidis, Stelios; Chatzis, Vassilios

    2008-06-01

    This paper addresses the issue of accurate, effective, computationally efficient, fast, and fully automated 2-D object orientation and scaling factor estimation. The object orientation is calculated using object principal axes estimation. The approach relies on the object's frequency-based features. The frequency-based features used by the proposed technique are extracted by a 2-D physics-based deformable model that parameterizes the objects shape. The method was evaluated on synthetic and real images. The experimental results demonstrate the accuracy of the method, both in orientation and the scaling estimations.

  6. The Coach2Move Approach: Development and Acceptability of an Individually Tailored Physical Therapy Strategy to Increase Activity Levels in Older Adults With Mobility Problems.

    PubMed

    de Vries, Nienke M; van Ravensberg, C Dorine; Hobbelen, Johannes S M; van der Wees, Philip J; Olde Rikkert, Marcel G M; Staal, J Bart; Nijhuis-van der Sanden, Maria W G

    2015-01-01

    Despite the positive effects of physical activity on numerous aspects of health, many older adults remain sedentary even after participating in physical activity interventions. Standardized exercise programs do not necessarily bring about the behavioral change that is necessary. Therefore, a patient-centered approach is needed. The purpose of this study was to develop and assess the acceptability and potential effectiveness of the Coach2Move strategy; a physical therapy (PT) approach aimed at improving the long-term level of physical activity in mobility-limited older adults. The Coach2Move strategy was developed on the basis of 2 systematic literature studies and expert consultations. Multiple focus group meetings and a Delphi procedure were organized to gain consensus on the Coach2Move strategy. Acceptability and potential effectiveness were studied in a pilot study with a pre-/postdesign in which 2 physical therapists and 12 patients participated. To assess acceptability, patients were interviewed, discussion were held with the involved physical therapists was held, and health records were studied. Potential effectiveness was tested measuring the level of physical activity, frailty, quality of life, and mobility before and after treatment. On the basis of the literature study and expert consultations, an algorithm based on the Hypothesis Oriented Algorithm for Clinicians Part II was developed: the Coach2Move approach. Key elements of the Coach2Move approach include an extensive intake using motivational interviewing, clinical reasoning, coaching to increase physical activity and self-management, focusing on meaningful activities, and working according to 3 patient-tailored intervention profiles with a predefined number of sessions. The pilot study showed high appraisal of the strategy by both physical therapists and patients. Moreover, a potential effect on the level of physical activity, frailty, quality of life, and mobility was observed. Because the pilot study was not randomized or controlled and included a small sample, no conclusions can be drawn about the effectiveness of the Coach2Move strategy. However, all suggestions made in this study were implemented in an ongoing, randomized controlled trial in which the Coach2Move strategy will be compared to usual care PT. In conclusion, the Coach2Move strategy can be considered acceptable in PT practice and showed potential benefits. The results on the (cost-)effectiveness of this strategy based on a large, randomized, controlled trial are expected in 2014.

  7. A case study of successful e-learning: a web-based distance course in medical physics held for school teachers of the upper secondary level.

    PubMed

    Jönsson, Bo-Anders

    2005-09-01

    Learning activities and course design in the new context of e-learning, such as in web-based courses involves a change both for teachers and students. The paper discusses factors important for e-learning to be successful. The development of an online course in medical physics and technology for high school teachers of physics, details of the course, and experience gained in connection with it are described. The course syllabus includes basics of radiation physics, imaging techniques using ionizing or non-ionizing radiation, and external and internal radiation therapy. The course has a highly didactic approach. The final task is for participants to design a course of their own centered on some topic of medical physics on the basis of the knowledge they have acquired. The aim of the course is to help the teachers integrate medical physics into their own teaching. This is seen as enhancing the interest of high school students in later studying physics, medical physics or some other branch of science at the university level, and as increasing the knowledge that they and people generally have of science. It is suggested that the basic approach taken can also have applicability to the training of medical, nursing or engineering students, and be used for continuing professional development in various areas.

  8. Clinical reasoning of Filipino physical therapists: Experiences in a developing nation.

    PubMed

    Rotor, Esmerita R; Capio, Catherine M

    2018-03-01

    Clinical reasoning is essential for physical therapists to engage in the process of client care, and has been known to contribute to professional development. The literature on clinical reasoning and experiences have been based on studies from Western and developed nations, from which multiple influencing factors have been found. A developing nation, the Philippines, has distinct social, economic, political, and cultural circumstances. Using a phenomenological approach, this study explored experiences of Filipino physical therapists on clinical reasoning. Ten therapists working in three settings: 1) hospital; 2) outpatient clinic; and 3) home health were interviewed. Major findings were: a prescription-based referral system limited clinical reasoning; procedural reasoning was a commonly experienced strategy while diagnostic and predictive reasoning were limited; factors that influenced clinical reasoning included practice setting and the professional relationship with the referring physician. Physical therapists' responses suggested a lack of autonomy in practice that appeared to stifle clinical reasoning. Based on our findings, we recommend that the current regulations governing PT practice in the Philippines may be updated, and encourage educators to strengthen teaching approaches and strategies that support clinical reasoning. These recommendations are consistent with the global trend toward autonomous practice.

  9. Incorporation of physical constraints in optimal surface search for renal cortex segmentation

    NASA Astrophysics Data System (ADS)

    Li, Xiuli; Chen, Xinjian; Yao, Jianhua; Zhang, Xing; Tian, Jie

    2012-02-01

    In this paper, we propose a novel approach for multiple surfaces segmentation based on the incorporation of physical constraints in optimal surface searching. We apply our new approach to solve the renal cortex segmentation problem, an important but not sufficiently researched issue. In this study, in order to better restrain the intensity proximity of the renal cortex and renal column, we extend the optimal surface search approach to allow for varying sampling distance and physical separation constraints, instead of the traditional fixed sampling distance and numerical separation constraints. The sampling distance of each vertex-column is computed according to the sparsity of the local triangular mesh. Then the physical constraint learned from a priori renal cortex thickness is applied to the inter-surface arcs as the separation constraints. Appropriate varying sampling distance and separation constraints were learnt from 6 clinical CT images. After training, the proposed approach was tested on a test set of 10 images. The manual segmentation of renal cortex was used as the reference standard. Quantitative analysis of the segmented renal cortex indicates that overall segmentation accuracy was increased after introducing the varying sampling distance and physical separation constraints (the average true positive volume fraction (TPVF) and false positive volume fraction (FPVF) were 83.96% and 2.80%, respectively, by using varying sampling distance and physical separation constraints compared to 74.10% and 0.18%, respectively, by using fixed sampling distance and numerical separation constraints). The experimental results demonstrated the effectiveness of the proposed approach.

  10. A new approach to identify the sensitivity and importance of physical parameters combination within numerical models using the Lund-Potsdam-Jena (LPJ) model as an example

    NASA Astrophysics Data System (ADS)

    Sun, Guodong; Mu, Mu

    2017-05-01

    An important source of uncertainty, which causes further uncertainty in numerical simulations, is that residing in the parameters describing physical processes in numerical models. Therefore, finding a subset among numerous physical parameters in numerical models in the atmospheric and oceanic sciences, which are relatively more sensitive and important parameters, and reducing the errors in the physical parameters in this subset would be a far more efficient way to reduce the uncertainties involved in simulations. In this context, we present a new approach based on the conditional nonlinear optimal perturbation related to parameter (CNOP-P) method. The approach provides a framework to ascertain the subset of those relatively more sensitive and important parameters among the physical parameters. The Lund-Potsdam-Jena (LPJ) dynamical global vegetation model was utilized to test the validity of the new approach in China. The results imply that nonlinear interactions among parameters play a key role in the identification of sensitive parameters in arid and semi-arid regions of China compared to those in northern, northeastern, and southern China. The uncertainties in the numerical simulations were reduced considerably by reducing the errors of the subset of relatively more sensitive and important parameters. The results demonstrate that our approach not only offers a new route to identify relatively more sensitive and important physical parameters but also that it is viable to then apply "target observations" to reduce the uncertainties in model parameters.

  11. Feasibility of a Dynamic Web Guidance Approach for Personalized Physical Activity Prescription Based on Daily Information From Wearable Technology

    PubMed Central

    Coolbaugh, Crystal L; Raymond Jr, Stephen C

    2015-01-01

    Background Computer tailored, Web-based interventions have emerged as an effective approach to promote physical activity. Existing programs, however, do not adjust activities according to the participant’s compliance or physiologic adaptations, which may increase risk of injury and program attrition in sedentary adults. To address this limitation, objective activity monitor (AM) and heart rate data could be used to guide personalization of physical activity, but improved Web-based frameworks are needed to test such interventions. Objective The objective of this study is to (1) develop a personalized physical activity prescription (PPAP) app that combines dynamic Web-based guidance with multi-sensor AM data to promote physical activity and (2) to assess the feasibility of using this system in the field. Methods The PPAP app was constructed using an open-source software platform and a custom, multi-sensor AM capable of accurately measuring heart rate and physical activity. A novel algorithm was written to use a participant’s compliance and physiologic response to aerobic training (ie, changes in daily resting heart rate) recorded by the AM to create daily, personalized physical activity prescriptions. In addition, the PPAP app was designed to (1) manage the transfer of files from the AM to data processing software and a relational database, (2) provide interactive visualization features such as calendars and training tables to encourage physical activity, and (3) enable remote administrative monitoring of data quality and participant compliance. A 12-week feasibility study was performed to assess the utility and limitations of the PPAP app used by sedentary adults in the field. Changes in physical activity level and resting heart rate were monitored throughout the intervention. Results The PPAP app successfully created daily, personalized physical activity prescriptions and an interactive Web environment to guide and promote physical activity by the participants. The varied compliance of the participants enabled evaluation of administrative features of the app including the generation of automated email reminders, participation surveys, and daily AM file upload logs. Conclusions This study describes the development of the PPAP app, a closed-loop technology framework that enables personalized physical activity prescription and remote monitoring of an individual’s compliance and health response to the intervention. Data obtained during a 12-week feasibility study demonstrated the ability of the PPAP app to use objective AM data to create daily, personalized physical activity guidance, provide interactive feedback to users, and enable remote administrative monitoring of data quality and subject compliance. Using this approach, public health professionals, clinicians, and researchers can adapt the PPAP app to facilitate a range of personalized physical activity interventions to improve health outcomes, assess injury risk, and achieve fitness performance goals in diverse populations. PMID:26043793

  12. "Get off the sofa and go and play": Family and socioeconomic influences on the physical activity of 10–11 year old children

    PubMed Central

    Brockman, Rowan; Jago, Russell; Fox, Kenneth R; Thompson, Janice L; Cartwright, Kim; Page, Angie S

    2009-01-01

    Background Physical activity declines as children approach puberty. Research has focussed on psychosocial, environmental, and demographic determinants. This paper explores how family and socioeconomic factors are related to children's physical activity. Methods Seventeen focus groups were conducted with 113, 10–11 year old children from 11 primary schools in Bristol, UK. Focus groups examined: 1) the way parents encourage their children to be physically active; 2) the extent to which physical activity is engaged in as a family; and 3) the types of non-family based physical activities Year 6 children commonly participate in. Results Participants from all socioeconomic (SES) groups reported that parents encouraged them to be physically active. However approaches differed. Children from middle/high SES schools were assisted through actions such as logistical and financial support, co-participation and modelling. Parents of children from low SES schools mainly restricted their input to verbal encouragement and demands. Participation in family-based activities was reported to be higher in children from middle/high SES schools than children from low SES schools. All SES groups reported time to be a limiting factor in family-based activity participation. Cost was reported as a significant barrier by children from low SES schools. Children from middle/high SES schools reported engaging in more sports clubs and organised activities than children from low SES schools, who reported participating in more unstructured activities or 'free play' with friends. Conclusion The family is important for encouraging children to be physically active, but families from different socioeconomic backgrounds support their children in different ways. This research suggests that the design of physical activity interventions, which might include working with families, requires tailoring to groups from different socio-economic backgrounds. PMID:19622143

  13. An investigation into the effectiveness of problem-based learning in a physical chemistry laboratory course

    NASA Astrophysics Data System (ADS)

    Gürses, Ahmet; Açıkyıldız, Metin; Doğar, Çetin; Sözbilir, Mustafa

    2007-04-01

    The aim of this study was to investigate the effectiveness of a problem-based learning (PBL) approach in a physical chemistry laboratory course. The parameters investigated were students’ attitudes towards a chemistry laboratory course, scientific process skills of students and their academic achievement. The design of the study was one group pre-test post-test. Four experiments, covering the topics adsorption, viscosity, surface tension and conductivity were performed using a PBL approach in the fall semester of the 2003/04 academic year at Kazim Karabekir Education Faculty of Atatürk University. Each experiment was done over a three week period. A total of 40 students, 18 male and 22 female, participated in the study. Students took the Physical Chemistry Laboratory Concept Test (PCLCT), Attitudes towards Chemistry Laboratory (ATCL) questionnaire and Science Process Skills Test (SPST) as pre and post-tests. In addition, the effectiveness of the PBL approach was also determined through four different scales; Scales Specific to Students’ Views of PBL. A statistically significant difference between the students’ academic achievement and scientific process skills at p

  14. Perspective: moving students beyond an organ-based approach when teaching medical interviewing and physical examination skills.

    PubMed

    Alexander, Erik K

    2008-10-01

    Medical interviewing and physical examination skills are core pillars of clinical medicine. Though nearly all U.S. medical students participate in preclinical courses designed to teach these skills, medical school faculty often comment that students' abilities remain limited on entering their clinical clerkships. The reason for this contention is not clear.The author briefly describes the current preclinical curricula at most medical schools that are designed to teach patient interviewing and examination. An organ-based curriculum is commonly employed, although the limitations of such an approach readily become apparent. For example, many hospitalized patients do not suffer from single-organ illnesses, but rather from infections or metabolic derangements, which cause numerous abnormalities to several body systems. Furthermore, clinical reasoning skills are rarely taught in such preclinical courses, though these abilities form the foundation for effective doctoring. These findings suggest an opportunity for content development surrounding patient interviewing and examination. The author proposes an educational approach that depicts how the confluence of both content knowledge skills and clinical reasoning skills can work synergistically to enhance preclinical teaching of the medical interview and physical examination.

  15. Teaching quantum physics by the sum over paths approach and GeoGebra simulations

    NASA Astrophysics Data System (ADS)

    Malgieri, M.; Onorato, P.; De Ambrosis, A.

    2014-09-01

    We present a research-based teaching sequence in introductory quantum physics using the Feynman sum over paths approach. Our reconstruction avoids the historical pathway, and starts by reconsidering optics from the standpoint of the quantum nature of light, analysing both traditional and modern experiments. The core of our educational path lies in the treatment of conceptual and epistemological themes, peculiar of quantum theory, based on evidence from quantum optics, such as the single photon Mach-Zehnder and Zhou-Wang-Mandel experiments. The sequence is supported by a collection of interactive simulations, realized in the open source GeoGebra environment, which we used to assist students in learning the basics of the method, and help them explore the proposed experimental situations as modeled in the sum over paths perspective. We tested our approach in the context of a post-graduate training course for pre-service physics teachers; according to the data we collected, student teachers displayed a greatly improved understanding of conceptual issues, and acquired significant abilities in using the sum over path method for problem solving.

  16. Measuring Perceived Motivational Climate in Physical Education

    ERIC Educational Resources Information Center

    Papaioannou, Athanasios G.; Tsigilis, Nikolaos; Kosmidou, Eudoxia; Milosis, Dimitrios

    2007-01-01

    A new instrument of motivational climate in physical education is presented with the goal of measuring perceptions of teachers' emphasis on mastery, performance-approach, performance-avoidance, and social approval goals. The measure was based on the principle of compatibility, according to which climate perceptions and achievement goals should be…

  17. A Proposed Conceptual Framework for Curriculum Design in Physical Fitness.

    ERIC Educational Resources Information Center

    Miller, Peter V.; Beauchamp, Larry S.

    A physical fitness curriculum, designed to provide cumulative benefits in a sequential pattern, is based upon a framework of a conceptual structure. The curriculum's ultimate goal is the achievement of greater physiological efficiency through a holistic approach that would strengthen circulatory-respiratory, mechanical, and neuro-muscular…

  18. Effects of an Integrated Physical Education/Music Program in Changing Early Childhood Perceptual-Motor Performance.

    ERIC Educational Resources Information Center

    Brown, Judy; And Others

    1981-01-01

    Two approaches to facilitating perceptual-motor development in children ages 4-6 were investigated. Fifteen children (the experimental group) received integrated physical education/music instruction based on Kodaly and Dalcroze (Eurhythmics) concepts. The control group received movement exploration and self-testing instruction. Significant…

  19. Protecting water quality in the watershed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, C.R.; Johnson, K.E.; Stewart, E.H.

    1994-08-01

    This article highlights the water quality component of a watershed management plan being developed for the San Francisco (CA) Water Department. The physical characteristics of the 63,000-acre watersheds were analyzed for source and transport vulnerability for five groups of water quality parameters--particulates, THM precursors, microorganisms (Giardia and cryptosporidium), nutrients (nitrogen and phosphorus), and synthetic organic chemicals--and vulnerability zones were mapped. Mapping was achieved through the use of an extensive geographic information system (GIS) database. Each water quality vulnerability zone map was developed based on five watershed physical characteristics--soils, slope, vegetation, wildlife concentration, and proximity to water bodies--and their relationships tomore » each of the five groups of water quality parameters. An approach to incorporate the watershed physical characteristics information into the five water quality vulnerability zone maps was defined and verified. The composite approach was based in part on information gathered from existing watershed management plans.« less

  20. Perspective: Reaches of chemical physics in biology.

    PubMed

    Gruebele, Martin; Thirumalai, D

    2013-09-28

    Chemical physics as a discipline contributes many experimental tools, algorithms, and fundamental theoretical models that can be applied to biological problems. This is especially true now as the molecular level and the systems level descriptions begin to connect, and multi-scale approaches are being developed to solve cutting edge problems in biology. In some cases, the concepts and tools got their start in non-biological fields, and migrated over, such as the idea of glassy landscapes, fluorescence spectroscopy, or master equation approaches. In other cases, the tools were specifically developed with biological physics applications in mind, such as modeling of single molecule trajectories or super-resolution laser techniques. In this introduction to the special topic section on chemical physics of biological systems, we consider a wide range of contributions, all the way from the molecular level, to molecular assemblies, chemical physics of the cell, and finally systems-level approaches, based on the contributions to this special issue. Chemical physicists can look forward to an exciting future where computational tools, analytical models, and new instrumentation will push the boundaries of biological inquiry.

  1. Perspective: Reaches of chemical physics in biology

    PubMed Central

    Gruebele, Martin; Thirumalai, D.

    2013-01-01

    Chemical physics as a discipline contributes many experimental tools, algorithms, and fundamental theoretical models that can be applied to biological problems. This is especially true now as the molecular level and the systems level descriptions begin to connect, and multi-scale approaches are being developed to solve cutting edge problems in biology. In some cases, the concepts and tools got their start in non-biological fields, and migrated over, such as the idea of glassy landscapes, fluorescence spectroscopy, or master equation approaches. In other cases, the tools were specifically developed with biological physics applications in mind, such as modeling of single molecule trajectories or super-resolution laser techniques. In this introduction to the special topic section on chemical physics of biological systems, we consider a wide range of contributions, all the way from the molecular level, to molecular assemblies, chemical physics of the cell, and finally systems-level approaches, based on the contributions to this special issue. Chemical physicists can look forward to an exciting future where computational tools, analytical models, and new instrumentation will push the boundaries of biological inquiry. PMID:24089712

  2. Preparing Science Teachers for the future

    NASA Astrophysics Data System (ADS)

    Stein, Fredrick

    2002-04-01

    What will teachers need in the future to be successful? What will "successful" mean in the future? Are the teaching approaches learned 40 years ago still relevant for tomorrow's classrooms? Will technology really change the way physics is taught (K-16)? Will we close the performance gap between students of differing ethnicity? Are schools of education rising to the challenge to answer these questions? Can college and university physics departments rise to the challenge of presenting physics to all students in an engaging manner? What can the APS, in partnership with AAPT and AIP, do to find the answers and provide strategies to improve the science preparation of future teachers? PhysTEC aims to help physics and education faculty work together to provide an education for future teachers that emphasizes a student-centered, hands-on, inquiry-based approach to learning science. The compelling evidence produced from Physics Education Research warrants this approach. A National Science Foundation grant of 5.76 million and a 498 thousand grant from the Fund for the Improvement of Postsecondary Education support PhysTEC, its partners and activities. http://www.phystec.org/

  3. Towards a Universal Biology: Is the Origin and Evolution of Life Predictable?

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.

    2017-01-01

    The origin and evolution of life seems an unpredictable oddity, based on the quirks of contingency. Celebrated by the late Stephen Jay Gould in several books, "evolution by contingency" has all the adventure of a thriller, but lacks the predictive power of the physical sciences. Not necessarily so, replied Simon Conway Morris, for convergence reassures us that certain evolutionary responses are replicable. The outcome of this debate is critical to Astrobiology. How can we understand where we came from on Earth without prophesy? Further, we cannot design a rational strategy for the search for life elsewhere - or to understand what the future will hold for life on Earth and beyond - without extrapolating from pre-biotic chemistry and evolution. There are several indirect approaches to understanding, and thus describing, what life must be. These include philosophical approaches to defining life (is there even a satisfactory definition of life?), using what we know of physics, chemistry and life to imagine alternate scenarios, using different approaches that life takes as pseudoreplicates (e.g., ribosomal vs non-ribosomal protein synthesis), and experimental approaches to understand the art of the possible. Given that: (1) Life is a process based on physical components rather than simply an object; (2). Life is likely based on organic carbon and needs a solvent for chemistry, most likely water, and (3) Looking for convergence in terrestrial evolution we can predict certain tendencies, if not quite "laws", that provide predictive power. Biological history must obey the laws of physics and chemistry, the principles of natural selection, the constraints of an evolutionary past, genetics, and developmental biology. This amalgam creates a surprising amount of predictive power in the broad outline. Critical is the apparent prevalence of organic chemistry, and uniformity in the universe of the laws of chemistry and physics. Instructive is the widespread occurrence of convergent or parallel evolution, which suggests that under certain conditions similar solutions are arrived at independently.

  4. Promoting Physical Activity Among Native American Youth: a Systematic Review of the Methodology and Current Evidence of Physical Activity Interventions and Community-wide Initiatives.

    PubMed

    Fleischhacker, Sheila; Roberts, Erica; Camplain, Ricky; Evenson, Kelly R; Gittelsohn, Joel

    2016-12-01

    Promoting physical activity using environmental, policy, and systems approaches could potentially address persistent health disparities faced by American Indian and Alaska Native children and adolescents. To address research gaps and help inform tribally led community changes that promote physical activity, this review examined the methodology and current evidence of physical activity interventions and community-wide initiatives among Native youth. A keyword-guided search was conducted in multiple databases to identify peer-reviewed research articles that reported on physical activity among Native youth. Ultimately, 20 unique interventions (described in 76 articles) and 13 unique community-wide initiatives (described in 16 articles) met the study criteria. Four interventions noted positive changes in knowledge and attitude relating to physical activity but none of the interventions examined reported statistically significant improvements on weight-related outcomes. Only six interventions reported implementing environmental, policy, and system approaches relating to promoting physical activity and generally only shared anecdotal information about the approaches tried. Using community-based participatory research or tribally driven research models strengthened the tribal-research partnerships and improved the cultural and contextual sensitivity of the intervention or community-wide initiative. Few interventions or community-wide initiatives examined multi-level, multi-sector interventions to promote physical activity among Native youth, families, and communities. More research is needed to measure and monitor physical activity within this understudied, high risk group. Future research could also focus on the unique authority and opportunity of tribal leaders and other key stakeholders to use environmental, policy, and systems approaches to raise a healthier generation of Native youth.

  5. Promoting physical activity among Native American youth: A systematic review of the methodology and current evidence of physical activity interventions and community-wide initiatives

    PubMed Central

    Roberts, Erica; Camplain, Ricky; Evenson, Kelly R.; Gittelsohn, Joel

    2015-01-01

    Promoting physical activity using environmental, policy, and systems approaches could potentially address persistent health disparities faced by American Indian and Alaska Native children and adolescents. To address research gaps and help inform tribally-led community changes that promote physical activity, this review examined the methodology and current evidence of physical activity interventions and community-wide initiatives among Native youth. A keyword guided search was conducted in multiple databases to identify peer-reviewed research articles that reported on physical activity among Native youth. Ultimately, 20 unique interventions (described in 76 articles) and 13 unique community-wide initiatives (described in 16 articles) met the study criteria. Four interventions noted positive changes in knowledge and attitude relating to physical activity but none of the interventions examined reported statistically significant improvements on weight-related outcomes. Only six interventions reported implementing environmental, policy, and system approaches relating to promoting physical activity and generally only shared anecdotal information about the approaches tried. Using community-based participatory research or tribally-driven research models strengthened the tribal-research partnerships and improved the cultural and contextual sensitivity of the intervention or community-wide initiative. Few interventions or community-wide initiatives examined multi-level, multi-sector interventions to promote physical activity among Native youth, families and communities. More research is needed to measure and monitor physical activity within this understudied, high risk group. Future research could also focus on the unique authority and opportunity of tribal leaders and other key stakeholders to use environmental, policy, and systems approaches to raise a healthier generation of Native youth. PMID:27294756

  6. Overcoming Legal Liability Concerns for School-Based Physical Activity Promotion

    PubMed Central

    Zimmerman, Sara; Kramer, Karen

    2013-01-01

    Schools have been identified as a priority environment for physical activity promotion as a component of efforts to help prevent childhood obesity. A variety of school-based environmental and programmatic strategies have been proven effective in promoting physical activity both on-site and in the surrounding community. However, many schools are deterred by fears of increased risk of legal liability for personal injuries. We examine 3 school-based strategies for promoting physical activity—Safe Routes to School programs, joint use agreements, and playground enhancement—from a tort liability perspective, and describe how schools can substantially minimize any associated liability risk through injury prevention and other strategies. We also recommend approaches to help schools overcome their liability concerns and adopt these critically needed healthy school policies. PMID:24028226

  7. Physics Learning with a Computer Algebra System: Towards a Learning Environment That Promotes Enhanced Problem Representations.

    ERIC Educational Resources Information Center

    Savelsbergh, Elwin R.; Ferguson-Hessler, Monica G. M.; de Jong, Ton

    An approach to teaching problem-solving based on using the computer software Mathematica is applied to the study of electrostatics and is compared with the normal approach to the module. Learning outcomes for both approaches were not significantly different. The experimental course successfully addressed a number of misconceptions. Students in the…

  8. Aerostructural interaction in a collaborative MDO environment

    NASA Astrophysics Data System (ADS)

    Ciampa, Pier Davide; Nagel, Björn

    2014-10-01

    The work presents an approach for aircraft design and optimization, developed to account for fluid-structure interactions in MDO applications. The approach makes use of a collaborative distributed design environment, and focuses on the influence of multiple physics based aerostructural models, on the overall aircraft synthesis and optimization. The approach is tested for the design of large transportation aircraft.

  9. Cognitive-based approach in teaching 1st year Physics for Life Sciences, including Atmospheric Physics and Climate Change components

    NASA Astrophysics Data System (ADS)

    Petelina, S. V.

    2009-12-01

    Most 1st year students who take the service course in Physics - Physics for Life Sciences - in Australia encounter numerous problems caused by such factors as no previous experience with this subject; general perception that Physics is hard and only very gifted people are able to understand it; lack of knowledge of elementary mathematics; difficulties encountered by lecturers in teaching university level Physics to a class of nearly 200 students with no prior experience, diverse and sometime disadvantageous backgrounds, different majoring areas, and different learning abilities. As a result, many students either drop, or fail the subject. In addition, many of those who pass develop a huge dislike towards Physics, consider the whole experience as time wasted, and spread this opinion among their peers and friends. The above issues were addressed by introducing numerous changes to the curriculum and modifying strategies and approaches in teaching Physics for Life Sciences. Instead of a conventional approach - teaching Physics from simple to complicated, topic after topic, the students were placed in the world of Physics in the same way as a newborn child is introduced to this world - everything is seen all the time and everywhere. That created a unique environment where a bigger picture and all details were always present and interrelated. Numerous concepts of classical and modern physics were discussed, compared, and interconnected all the time with “Light” being a key component. Our primary field of research is Atmospheric Physics, in particular studying the atmospheric composition and structure using various satellite and ground-based data. With this expertise and also inspired by an increasing importance of training a scientifically educated generation who understands the challenges of the modern society and responsibilities that come with wealth, a new section on environmental physics has been developed. It included atmospheric processes and the greenhouse effect, climate change, stratospheric ozone depletion, skin cancer, ets. This new section has been greatly appreciated by the students, and adding more material on this was requested.

  10. Yielding physically-interpretable emulators - A Sparse PCA approach

    NASA Astrophysics Data System (ADS)

    Galelli, S.; Alsahaf, A.; Giuliani, M.; Castelletti, A.

    2015-12-01

    Projection-based techniques, such as Principal Orthogonal Decomposition (POD), are a common approach to surrogate high-fidelity process-based models by lower order dynamic emulators. With POD, the dimensionality reduction is achieved by using observations, or 'snapshots' - generated with the high-fidelity model -, to project the entire set of input and state variables of this model onto a smaller set of basis functions that account for most of the variability in the data. While reduction efficiency and variance control of POD techniques are usually very high, the resulting emulators are structurally highly complex and can hardly be given a physically meaningful interpretation as each basis is a projection of the entire set of inputs and states. In this work, we propose a novel approach based on Sparse Principal Component Analysis (SPCA) that combines the several assets of POD methods with the potential for ex-post interpretation of the emulator structure. SPCA reduces the number of non-zero coefficients in the basis functions by identifying a sparse matrix of coefficients. While the resulting set of basis functions may retain less variance of the snapshots, the presence of a few non-zero coefficients assists in the interpretation of the underlying physical processes. The SPCA approach is tested on the reduction of a 1D hydro-ecological model (DYRESM-CAEDYM) used to describe the main ecological and hydrodynamic processes in Tono Dam, Japan. An experimental comparison against a standard POD approach shows that SPCA achieves the same accuracy in emulating a given output variable - for the same level of dimensionality reduction - while yielding better insights of the main process dynamics.

  11. Electronic collection of solved physics problems to encourage students’ active approach (not only to self study)

    NASA Astrophysics Data System (ADS)

    Koupilová, Zdeňka; Mandíková, Dana; Snětinová, Marie

    2017-09-01

    Ten years ago we started to develop a Collection of Fully Solved Problems aimed at introductory undergraduate and high school level students. The collection is specially designed to encourage students in an active approach to problem solving, e.g. to solve at least some parts of a problem on their own. Nowadays the Collection contains about 800 fully solved problems in physics in Czech and nearly 180 problems in English. It has several hundreds of unique visitors per school day. Based on user feedback, the collection is used by students mainly for their home study and by teachers as a supplementary material. The creation of the structured solution of the physics problems has proved to be a beneficial activity for prospective physics teachers (students of our department).

  12. Why evidence-based medicine is a good approach in physical and rehabilitation medicine. Thesis.

    PubMed

    Negrini, S

    2014-10-01

    According to a good definition, evidence-based medicine (EBM) is: "The explicit, conscientious, and judicious use of the current best evidence in making decisions about the care of individual patients (and populations)". More appropriate in a clinical context like that of physical and rehabilitation medicine (PRM) is looking at evidence based clinical practice (EBCP), whose definition is: "The integration of best research evidence with clinical expertise and patient values". In the past the term evidence-based physical and rehabilitation medicine (EBPRM) was also proposed. In this thesis, after some historical notes on EBM and on PRM, we will discuss why in our view EBPRM must be the real foundation of our everyday PRM clinical practice.

  13. Reliability Quantification of Advanced Stirling Convertor (ASC) Components

    NASA Technical Reports Server (NTRS)

    Shah, Ashwin R.; Korovaichuk, Igor; Zampino, Edward

    2010-01-01

    The Advanced Stirling Convertor, is intended to provide power for an unmanned planetary spacecraft and has an operational life requirement of 17 years. Over this 17 year mission, the ASC must provide power with desired performance and efficiency and require no corrective maintenance. Reliability demonstration testing for the ASC was found to be very limited due to schedule and resource constraints. Reliability demonstration must involve the application of analysis, system and component level testing, and simulation models, taken collectively. Therefore, computer simulation with limited test data verification is a viable approach to assess the reliability of ASC components. This approach is based on physics-of-failure mechanisms and involves the relationship among the design variables based on physics, mechanics, material behavior models, interaction of different components and their respective disciplines such as structures, materials, fluid, thermal, mechanical, electrical, etc. In addition, these models are based on the available test data, which can be updated, and analysis refined as more data and information becomes available. The failure mechanisms and causes of failure are included in the analysis, especially in light of the new information, in order to develop guidelines to improve design reliability and better operating controls to reduce the probability of failure. Quantified reliability assessment based on fundamental physical behavior of components and their relationship with other components has demonstrated itself to be a superior technique to conventional reliability approaches based on utilizing failure rates derived from similar equipment or simply expert judgment.

  14. Developing Integrated Programs: A Transdisciplinary Approach for Early Intervention.

    ERIC Educational Resources Information Center

    Coling, Marcia Cain

    This book presents an amalgam of early intervention ideas from the fields of education, occupational therapy, and physical therapy for children with developmental delays. An introductory chapter describes the approach's three theoretical bases: neurodevelopmental treatment (NDT), sensory integration, and Piagetian theory. Chapter 1 considers…

  15. Review of mechanisms, methods, and theory for determining recharge to shallow aquifers in North Dakota

    USGS Publications Warehouse

    Horak, W.F.

    1988-01-01

    Effective management of ground-water resources requires knowledge of all components of the water budget for the aquifer of interest. Efforts to simulate ground-water flow prior to development and the effects of proposed pumping in several of North Dakota's shallow glacial aquifers have been hindered by the lack of reliable estimates of ground-water recharge. This study was done to (1) review the methods that have been used to measure recharge, (2) review the theory of unsaturated flow and the methods for characterizing the physical properties of unsaturated media, (3) consider the relative merits of a rigorous data-intensive approach versus an estimation approach to the study of recharge, and (4) review past and current agronomic research in North Dakota for applicability of the research and the data generated to the study of recharge.Direct, quantitative techniques for evaluating recharge are rarely applied. The theory for computing fluxes in unsaturated media is well established and numerous physics-based models that effectively implement the theory are available, but the data required for the models generally are lacking. Many parametric approaches have been developed to avoid the large data requirements of the physics-based approaches for analyzing flow in the unsaturated zone. However, the parametric approaches normally include fitting coefficients that must be calibrated for every study site, thereby detracting from the general utility of the parametric approach. The functional relation of matric potential to moisture content is required for physics-based soil-water models, whether analytic or numeric. Laboratory methods to determine these relations are tedious, costly, and may not give results representative of the soils as they occur in the field. Many models have been proposed to estimate the moisture-characteristic curve and hydraulic-conductivity function from basic soil properties, but none yield results that are universally satisfactory. In situ methods, because they require minimal disturbance of the soil profile and may be used repeatedly on the same soil mass, have become the preferred means for acquiring physical data, especially hydraulic conductivity. Hydro logic investigations, except for recent studies of hazardous-waste disposal sites, rarely have included physical characterizations of unsaturated media. Any of four phenomena could hinder attempts to simulate unsaturated flow in settings typical of North Dakota; variability of soil properties, hysteresis, frozen ground, and macropore development. The spatial and temporal variability of soil properties probably is the greatest complicating phenomenon and must be dealt with by detailed characterization of the properties. Hysteresis can detract from the accuracy of flow calculations for some soils under certain conditions but, for the present, our scant knowledge of soil physical properties is a greater hindrance to reliable soi1-water mode 1 ing than is the hysteresis phenomenon. A1 though seasona1ly frozen ground undoubtedly affects hydrologic processes in North Dakota, much more research is needed before meaningful quantitative treatment is possible. Finally, macropores can influence soil-water movement significantly, but macropore development may not be common on the intensively farmed, coarse-textured soils that typically overlie North Dakota's glacial aquifers. Lysimetry currently is the only reliable means of analyzing macropore flow.The soil-related research that has been conducted in North Dakota to date (1983) provides little of the type of information required to estimate ground-water recharge. Useful data could be developed by systematically evaluating the hydraulic characteristics of the prominent soil types overlying North Dakota's shallow glacial aquifers. These data would be required to enable use of a physics-based approach to estimating recharge. The size of the aquifer under study, its economic value, and the resources available for data collection should be considered when choosing between parametric or physics-based methods.

  16. Quantifying control effort of biological and technical movements: an information-entropy-based approach.

    PubMed

    Haeufle, D F B; Günther, M; Wunner, G; Schmitt, S

    2014-01-01

    In biomechanics and biorobotics, muscles are often associated with reduced movement control effort and simplified control compared to technical actuators. This is based on evidence that the nonlinear muscle properties positively influence movement control. It is, however, open how to quantify the simplicity aspect of control effort and compare it between systems. Physical measures, such as energy consumption, stability, or jerk, have already been applied to compare biological and technical systems. Here a physical measure of control effort based on information entropy is presented. The idea is that control is simpler if a specific movement is generated with less processed sensor information, depending on the control scheme and the physical properties of the systems being compared. By calculating the Shannon information entropy of all sensor signals required for control, an information cost function can be formulated allowing the comparison of models of biological and technical control systems. Exemplarily applied to (bio-)mechanical models of hopping, the method reveals that the required information for generating hopping with a muscle driven by a simple reflex control scheme is only I=32 bits versus I=660 bits with a DC motor and a proportional differential controller. This approach to quantifying control effort captures the simplicity of a control scheme and can be used to compare completely different actuators and control approaches.

  17. Interpreting physical performance in professional soccer match-play: should we be more pragmatic in our approach?

    PubMed

    Carling, Christopher

    2013-08-01

    Academic and practitioner interest in the physical performance of male professional soccer players in the competition setting determined via time-motion analyses has grown substantially over the last four decades leading to a substantial body of published research and aiding development of a more systematic evidence-based framework for physical conditioning. Findings have forcibly shaped contemporary opinions in the sport with researchers and practitioners frequently emphasising the important role that physical performance plays in match outcomes. Time-motion analyses have also influenced practice as player conditioning programmes can be tailored according to the different physical demands identified across individual playing positions. Yet despite a more systematic approach to physical conditioning, data indicate that even at the very highest standards of competition, the contemporary player is still susceptible to transient and end-game fatigue. Over the course of this article, the author suggests that a more pragmatic approach to interpreting the current body of time-motion analysis data and its application in the practical setting is nevertheless required. Examples of this are addressed using findings in the literature to examine (a) the association between competitive physical performance and 'success' in professional soccer, (b) current approaches to interpreting differences in time-motion analysis data across playing positions, and (c) whether data can realistically be used to demonstrate the occurrence of fatigue in match-play. Gaps in the current literature and directions for future research are also identified.

  18. Applying the tools of physics to teaching physics

    NASA Astrophysics Data System (ADS)

    Wieman, Carl

    2003-05-01

    The strengths of modern AMO physics are its solid foundation on objective quantitative data, the rapid widespread dissemination and duplication of ideas, results, and successful approaches, and the rapid utilization of technological developments to achieve new capabilities. Unfortunately AMO physicists usually abandon these powerful tools in their approach to the teaching of physics and instead rely on an approach that would be considered little more than individual superstition if used in the context of actual AMO science. Choices of content and presentation in teaching are usually based on tradition or totally subjective judgments of the instructor. I will discuss my efforts to approach teaching physics much as I have done experimental physics. This includes: collecting and utilizing data (both my own and that from the research of others), developing a strategy for dealing with numerous degrees of freedom that one cannot control nearly as well as one would like (whether they are atomic interactions or student attitudes), optimizing the use of the time and money available, and taking advantage of useful new technology. The latter discussion will include some specifics on using technology that allows real time measurement of student learning and engagement in a large class and the development and use of interactive applets to facilitate conceptual understanding. Achieving true understanding and appreciation of physics by introductory students is a major challenge. Fortunately, there is sufficient room for improvement in the current educational system that one can fall far short of that ideal and still be making major progress.

  19. The economic burden of physical inactivity: a systematic review and critical appraisal.

    PubMed

    Ding, Ding; Kolbe-Alexander, Tracy; Nguyen, Binh; Katzmarzyk, Peter T; Pratt, Michael; Lawson, Kenny D

    2017-10-01

    To summarise the literature on the economic burden of physical inactivity in populations, with emphases on appraising the methodologies and providing recommendations for future studies. Systematic review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines (PROSPERO registration number CRD42016047705). Electronic databases for peer-reviewed and grey literature were systematically searched, followed by reference searching and consultation with experts. Studies that examined the economic consequences of physical inactivity in a population/population-based sample, with clearly stated methodologies and at least an abstract/summary written in English. Of the 40 eligible studies, 27 focused on direct healthcare costs only, 13 also estimated indirect costs and one study additionally estimated household costs. For direct costs, 23 studies used a population attributable fraction (PAF) approach with estimated healthcare costs attributable to physical inactivity ranging from 0.3% to 4.6% of national healthcare expenditure; 17 studies used an econometric approach, which tended to yield higher estimates than those using a PAF approach. For indirect costs, 10 studies used a human capital approach, two used a friction cost approach and one used a value of a statistical life approach. Overall, estimates varied substantially, even within the same country, depending on analytical approaches, time frame and other methodological considerations. Estimating the economic burden of physical inactivity is an area of increasing importance that requires further development. There is a marked lack of consistency in methodological approaches and transparency of reporting. Future studies could benefit from cross-disciplinary collaborations involving economists and physical activity experts, taking a societal perspective and following best practices in conducting and reporting analysis, including accounting for potential confounding, reverse causality and comorbidity, applying discounting and sensitivity analysis, and reporting assumptions, limitations and justifications for approaches taken. We have adapted the Consolidated Health Economic Evaluation Reporting Standards checklist as a guide for future estimates of the economic burden of physical inactivity and other risk factors. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  20. Mujeres en accion: design and baseline data.

    PubMed

    Keller, Colleen; Fleury, Julie; Perez, Adriana; Belyea, Michael; Castro, Felipe G

    2011-10-01

    The majority of programs designed to promote physical activity in older Hispanic women includes few innovative theory-based interventions that address cultural relevant strategies. The purpose of this report is to describe the design and baseline data for Mujeres en Accion, a physical activity intervention to increase regular physical activity, and cardiovascular health outcomes among older Hispanic women. Mujeres en Accion [Women in Action for Health], a 12 month randomized controlled trial to evaluate the effectiveness of a social support physical activity intervention in midlife and older Hispanic women. This study tests an innovative intervention, Mujeres en Accion, and includes the use of a theory-driven approach to intervention, explores social support as a theoretical mediating variable, use of a Promotora model and a Community Advisory group to incorporate cultural and social approaches and resources, and use of objective measures of physical activity in Hispanic women.

  1. Mujeres en Accion: Design and Baseline Data

    PubMed Central

    Fleury, Julie; Perez, Adriana; Belyea, Michael; Castro, Felipe G.

    2015-01-01

    The majority of programs designed to promote physical activity in older Hispanic women includes few innovative theory-based interventions that address cultural relevant strategies. The purpose of this report is to describe the design and baseline data for Mujeres en Accion, a physical activity intervention to increase regular physical activity, and cardiovascular health outcomes among older Hispanic women. Mujeres en Accion [Women in Action for Health], a 12 month randomized controlled trial to evaluate the effectiveness of a social support physical activity intervention in midlife and older Hispanic women. This study tests an innovative intervention, Mujeres en Accion, and includes the use of a theory-driven approach to intervention, explores social support as a theoretical mediating variable, use of a Promotora model and a Community Advisory group to incorporate cultural and social approaches and resources, and use of objective measures of physical activity in Hispanic women. PMID:21298400

  2. Optical quantum memory based on electromagnetically induced transparency

    PubMed Central

    Ma, Lijun; Slattery, Oliver

    2017-01-01

    Electromagnetically induced transparency (EIT) is a promising approach to implement quantum memory in quantum communication and quantum computing applications. In this paper, following a brief overview of the main approaches to quantum memory, we provide details of the physical principle and theory of quantum memory based specifically on EIT. We discuss the key technologies for implementing quantum memory based on EIT and review important milestones, from the first experimental demonstration to current applications in quantum information systems. PMID:28828172

  3. Optical quantum memory based on electromagnetically induced transparency.

    PubMed

    Ma, Lijun; Slattery, Oliver; Tang, Xiao

    2017-04-01

    Electromagnetically induced transparency (EIT) is a promising approach to implement quantum memory in quantum communication and quantum computing applications. In this paper, following a brief overview of the main approaches to quantum memory, we provide details of the physical principle and theory of quantum memory based specifically on EIT. We discuss the key technologies for implementing quantum memory based on EIT and review important milestones, from the first experimental demonstration to current applications in quantum information systems.

  4. Signal Detection Theory-Based Information Processing for the Detection of Breast Cancer at Microwave Frequencies

    DTIC Science & Technology

    2002-08-01

    the measurement noise, as well as the physical model of the forward scattered electric field. The Bayesian algorithms for the Uncertain Permittivity...received at multiple sensors. In this research project a tissue- model -based signal-detection theory approach for the detection of mammary tumors in the...oriented information processors. In this research project a tissue- model - based signal detection theory approach for the detection of mammary tumors in the

  5. Assessing tribal youth physical activity and programming using a community-based participatory research approach.

    PubMed

    Perry, Cynthia; Hoffman, Barbara

    2010-01-01

    American Indian youth experience a greater prevalence of obesity compared with the general U.S. population. One avenue to reverse the trend toward increasing obesity prevalence is through promoting physical activity. The goal of this project was to understand tribal youths' current patterns of physical activity behavior and their beliefs and preferences about physical activity. This assessment used a community-based participatory research approach. Sample included 35 Native youth aged 8-18. A Community Advisory Board was created that specifically developed an exercise survey for this assessment to explore physical activity patterns, preferences, and determinants. Twenty-six youth completed the survey. Descriptive statistics were analyzed, exploring differences by age group. Nine youth participated in 2 focus groups. Qualitative data were analyzed with thematic analysis. Youth distinguished between sports and exercise, with each possessing different determinants. Common motivators were friends, coach, and school, and barriers were lack of programs and school or work. None of the youth reported meeting the recommended 60 min of strenuous exercise daily. This tribal academic partnership responded to a tribal concern by developing an exercise survey and conducting focus groups that addressed tribal-specific questions. The results are informing program development.

  6. Motivating Calculus-Based Kinematics Instruction with Super Mario Bros

    NASA Astrophysics Data System (ADS)

    Nordine, Jeffrey C.

    2011-09-01

    High-quality physics instruction is contextualized, motivates students to learn, and represents the discipline as a way of investigating the world rather than as a collection of facts and equations. Inquiry-oriented pedagogy, such as problem-based instruction, holds great promise for both teaching physics content and representing the process of doing real science.2 A challenge for physics teachers is to find instructional contexts that are meaningful, accessible, and motivating for students. Today's students are spending a growing fraction of their lives interacting with virtual environments, and these environments—physically realistic or not—can provide valuable contexts for physics explorations3-5 and lead to thoughtful discussions about decisions that programmers make when designing virtual environments. In this article, I describe a problem-based approach to calculus-based kinematics instruction that contextualizes students' learning within the Super Mario Bros. video game—a game that is more than 20 years old, but still remarkably popular with today's high school and college students.

  7. Active Learning in a Large General Physics Classroom.

    NASA Astrophysics Data System (ADS)

    Trousil, Rebecca

    2008-04-01

    In 2004, we launched a new calculus-based, introductory physics sequence at Washington University. Designed as an alternative to our traditional lecture-based sequence, the primary objectives for this new course were to actively engage students in the learning process, to significantly strengthen students' conceptual reasoning skills, to help students develop higher level quantitative problem solving skills necessary for analyzing ``real world'' problems, and to integrate modern physics into the curriculum. This talk will describe our approach, using The Six Ideas That Shaped Physics text by Thomas Moore, to creating an active learning environment in large classes as well as share our perspective on key elements for success and challenges that we face in the large class environment.

  8. Functional homogeneous zones (fHZs) in viticultural zoning procedure: an Italian case study on Aglianico vine

    NASA Astrophysics Data System (ADS)

    Bonfante, A.; Agrillo, A.; Albrizio, R.; Basile, A.; Buonomo, R.; De Mascellis, R.; Gambuti, A.; Giorio, P.; Guida, G.; Langella, G.; Manna, P.; Minieri, L.; Moio, L.; Siani, T.; Terribile, F.

    2015-06-01

    This paper aims to test a new physically oriented approach to viticulture zoning at farm scale that is strongly rooted in hydropedology and aims to achieve a better use of environmental features with respect to plant requirements and wine production. The physics of our approach are defined by the use of soil-plant-atmosphere simulation models, applying physically based equations to describe the soil hydrological processes and solve soil-plant water status. This study (part of the ZOVISA project) was conducted on a farm devoted to production of high-quality wines (Aglianico DOC), located in southern Italy (Campania region, Mirabella Eclano, AV). The soil spatial distribution was obtained after standard soil survey informed by geophysical survey. Two homogeneous zones (HZs) were identified; in each one a physically based model was applied to solve the soil water balance and estimate the soil functional behaviour (crop water stress index, CWSI) defining the functional homogeneous zones (fHZs). For the second process, experimental plots were established and monitored for investigating soil-plant water status, crop development (biometric and physiological parameters) and daily climate variables (temperature, solar radiation, rainfall, wind). The effects of crop water status on crop response over must and wine quality were then evaluated in the fHZs. This was performed by comparing crop water stress with (i) crop physiological measurement (leaf gas exchange, chlorophyll a fluorescence, leaf water potential, chlorophyll content, leaf area index (LAI) measurement), (ii) grape bunches measurements (berry weight, sugar content, titratable acidity, etc.) and (iii) wine quality (aromatic response). This experiment proved the usefulness of the physically based approach, also in the case of mapping viticulture microzoning.

  9. Individuation in Quantum Mechanics and Space-Time

    NASA Astrophysics Data System (ADS)

    Jaeger, Gregg

    2010-10-01

    Two physical approaches—as distinct, under the classification of Mittelstaedt, from formal approaches—to the problem of individuation of quantum objects are considered, one formulated in spatiotemporal terms and one in quantum mechanical terms. The spatiotemporal approach itself has two forms: one attributed to Einstein and based on the ontology of space-time points, and the other proposed by Howard and based on intersections of world lines. The quantum mechanical approach is also provided here in two forms, one based on interference and another based on a new Quantum Principle of Individuation (QPI). It is argued that the space-time approach to individuation fails and that the quantum approach offers several advantages over it, including consistency with Leibniz’s Principle of Identity of Indiscernibles.

  10. An experiment-based comparative study of fuzzy logic control

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.; Chen, Yung-Yaw; Lee, Chuen-Chein; Murugesan, S.; Jang, Jyh-Shing

    1989-01-01

    An approach is presented to the control of a dynamic physical system through the use of approximate reasoning. The approach has been implemented in a program named POLE, and the authors have successfully built a prototype hardware system to solve the cartpole balancing problem in real-time. The approach provides a complementary alternative to the conventional analytical control methodology and is of substantial use when a precise mathematical model of the process being controlled is not available. A set of criteria for comparing controllers based on approximate reasoning and those based on conventional control schemes is furnished.

  11. Development based on carrying capacity. A strategy for environmental protection

    USGS Publications Warehouse

    Carey, D.I.

    1993-01-01

    Environmental degradation has accelerated in recent years because economic development activities have been inconsistent with a sustainable environment. In human ecology, the concept of 'carrying capacity' implies an optimum level of development and population size based on a complex of interacting factors - physical, institutional, social, and psychological. Development studies which have explicitly recognized carrying capacity have shown that this approach can be used to promote economic activities which are consistent with a sustainable social and physical environment. The concept of carrying capacity provides a framework for integrating physical, socioeconomic, and environmental systems into planning for a sustainable environment. ?? 1993.

  12. NASA GPM GV Science Implementation

    NASA Technical Reports Server (NTRS)

    Petersen, W. A.

    2009-01-01

    Pre-launch algorithm development & post-launch product evaluation: The GPM GV paradigm moves beyond traditional direct validation/comparison activities by incorporating improved algorithm physics & model applications (end-to-end validation) in the validation process. Three approaches: 1) National Network (surface): Operational networks to identify and resolve first order discrepancies (e.g., bias) between satellite and ground-based precipitation estimates. 2) Physical Process (vertical column): Cloud system and microphysical studies geared toward testing and refinement of physically-based retrieval algorithms. 3) Integrated (4-dimensional): Integration of satellite precipitation products into coupled prediction models to evaluate strengths/limitations of satellite precipitation producers.

  13. Bohmian mechanics without wave function ontology

    NASA Astrophysics Data System (ADS)

    Solé, Albert

    2013-11-01

    In this paper, I critically assess different interpretations of Bohmian mechanics that are not committed to an ontology based on the wave function being an actual physical object that inhabits configuration space. More specifically, my aim is to explore the connection between the denial of configuration space realism and another interpretive debate that is specific to Bohmian mechanics: the quantum potential versus guidance approaches. Whereas defenders of the quantum potential approach to the theory claim that Bohmian mechanics is better formulated as quasi-Newtonian, via the postulation of forces proportional to acceleration; advocates of the guidance approach defend the notion that the theory is essentially first-order and incorporates some concepts akin to those of Aristotelian physics. Here I analyze whether the desideratum of an interpretation of Bohmian mechanics that is both explanatorily adequate and not committed to configuration space realism favors one of these two approaches to the theory over the other. Contrary to some recent claims in the literature, I argue that the quasi-Newtonian approach based on the idea of a quantum potential does not come out the winner.

  14. Mutation Testing for Effective Verification of Digital Components of Physical Systems

    NASA Astrophysics Data System (ADS)

    Kushik, N. G.; Evtushenko, N. V.; Torgaev, S. N.

    2015-12-01

    Digital components of modern physical systems are often designed applying circuitry solutions based on the field programmable gate array technology (FPGA). Such (embedded) digital components should be carefully tested. In this paper, an approach for the verification of digital physical system components based on mutation testing is proposed. The reference description of the behavior of a digital component in the hardware description language (HDL) is mutated by introducing into it the most probable errors and, unlike mutants in high-level programming languages, the corresponding test case is effectively derived based on a comparison of special scalable representations of the specification and the constructed mutant using various logic synthesis and verification systems.

  15. A Situation-specific Theory of Midlife Women's Attitudes toward Physical Activity (MAPA)

    PubMed Central

    Im, Eun-Ok; Stuifbergen, Alexa K.; Walker, Lorraine

    2010-01-01

    This paper presents a situation specific theory—the Midlife Women's Attitudes toward Physical Activity (MAPA) theory—that explains how women's attitudes toward physical activity influence their participation in physical activity. Using the integrative approach of Im, the theory was developed based on the Attitude, Social Influence, and Self Efficacy Model, a review of the related literature, and a study of women's attitudes toward physical activity. As a situation-specific theory, the MAPA theory can be easily linked to nursing practice and research projects related to physical activity in midlife women, especially interventions aimed at increasing midlife women's participation in physical activity. PMID:20113755

  16. Analysing hierarchy in the organization of biological and physical systems.

    PubMed

    Jagers op Akkerhuis, Gerard A J M

    2008-02-01

    A structured approach is discussed for analysing hierarchy in the organization of biological and physical systems. The need for a structured approach follows from the observation that many hierarchies in the literature apply conflicting hierarchy rules and include ill-defined systems. As an alternative, we suggest a framework that is based on the following analytical steps: determination of the succession stage of the universe, identification of a specific system as part of the universe, specification of external influences on a system's creation and analysis of a system's internal organization. At the end, the paper discusses practical implications of the proposed method for the analysis of system organization and hierarchy in biology, ecology and physics.

  17. Methods for fostering a community academic partnership in a firefighter community.

    PubMed

    Delisle, Anthony T; Delisle, Alexis L; Chaney, Beth H; Stopka, Christine B; Northcutt, William

    2013-11-01

    To describe how a community academic partnership (CAP) created a cardiovascular disease (CVD) prevention program for firefighters. Principles of community based participatory research (CBPR) were integrated with intervention mapping (IM) to guide the development of a physical activity program. Key elements of the CAP program include instituting annual CVD screenings; creating a department-wide program and a pilot intervention for high-risk firefighters; training firefighters to become peer health mentors; improving access to physical activity equipment; instituting policy to promote physical activity, and validating instrumentation for assessing cardiorespiratory fitness. Integrating CBPR with IM was an efficacious approach for engaging firefighters in research for developing an ecological approach to cardiovascular health in firefighters.

  18. Income and Physical Activity among Adults: Evidence from Self-Reported and Pedometer-Based Physical Activity Measurements

    PubMed Central

    Kari, Jaana T.; Pehkonen, Jaakko; Hirvensalo, Mirja; Yang, Xiaolin; Hutri-Kähönen, Nina; Raitakari, Olli T.; Tammelin, Tuija H.

    2015-01-01

    This study examined the relationship between income and physical activity by using three measures to illustrate daily physical activity: the self-reported physical activity index for leisure-time physical activity, pedometer-based total steps for overall daily physical activity, and pedometer-based aerobic steps that reflect continuous steps for more than 10 min at a time. The study population consisted of 753 adults from Finland (mean age 41.7 years; 64% women) who participated in 2011 in the follow-up of the ongoing Young Finns study. Ordinary least squares models were used to evaluate the associations between income and physical activity. The consistency of the results was explored by using register-based income information from Statistics Finland, employing the instrumental variable approach, and dividing the pedometer-based physical activity according to weekdays and weekend days. The results indicated that higher income was associated with higher self-reported physical activity for both genders. The results were robust to the inclusion of the control variables and the use of register-based income information. However, the pedometer-based results were gender-specific and depended on the measurement day (weekday vs. weekend day). In more detail, the association was positive for women and negative or non-existing for men. According to the measurement day, among women, income was positively associated with aerobic steps despite the measurement day and with totals steps measured on the weekend. Among men, income was negatively associated with aerobic steps measured on weekdays. The results indicate that there is an association between income and physical activity, but the association is gender-specific and depends on the measurement type of physical activity. PMID:26317865

  19. Income and Physical Activity among Adults: Evidence from Self-Reported and Pedometer-Based Physical Activity Measurements.

    PubMed

    Kari, Jaana T; Pehkonen, Jaakko; Hirvensalo, Mirja; Yang, Xiaolin; Hutri-Kähönen, Nina; Raitakari, Olli T; Tammelin, Tuija H

    2015-01-01

    This study examined the relationship between income and physical activity by using three measures to illustrate daily physical activity: the self-reported physical activity index for leisure-time physical activity, pedometer-based total steps for overall daily physical activity, and pedometer-based aerobic steps that reflect continuous steps for more than 10 min at a time. The study population consisted of 753 adults from Finland (mean age 41.7 years; 64% women) who participated in 2011 in the follow-up of the ongoing Young Finns study. Ordinary least squares models were used to evaluate the associations between income and physical activity. The consistency of the results was explored by using register-based income information from Statistics Finland, employing the instrumental variable approach, and dividing the pedometer-based physical activity according to weekdays and weekend days. The results indicated that higher income was associated with higher self-reported physical activity for both genders. The results were robust to the inclusion of the control variables and the use of register-based income information. However, the pedometer-based results were gender-specific and depended on the measurement day (weekday vs. weekend day). In more detail, the association was positive for women and negative or non-existing for men. According to the measurement day, among women, income was positively associated with aerobic steps despite the measurement day and with totals steps measured on the weekend. Among men, income was negatively associated with aerobic steps measured on weekdays. The results indicate that there is an association between income and physical activity, but the association is gender-specific and depends on the measurement type of physical activity.

  20. Laplace Transform Based Radiative Transfer Studies

    NASA Astrophysics Data System (ADS)

    Hu, Y.; Lin, B.; Ng, T.; Yang, P.; Wiscombe, W.; Herath, J.; Duffy, D.

    2006-12-01

    Multiple scattering is the major uncertainty for data analysis of space-based lidar measurements. Until now, accurate quantitative lidar data analysis has been limited to very thin objects that are dominated by single scattering, where photons from the laser beam only scatter a single time with particles in the atmosphere before reaching the receiver, and simple linear relationship between physical property and lidar signal exists. In reality, multiple scattering is always a factor in space-based lidar measurement and it dominates space- based lidar returns from clouds, dust aerosols, vegetation canopy and phytoplankton. While multiple scattering are clear signals, the lack of a fast-enough lidar multiple scattering computation tool forces us to treat the signal as unwanted "noise" and use simple multiple scattering correction scheme to remove them. Such multiple scattering treatments waste the multiple scattering signals and may cause orders of magnitude errors in retrieved physical properties. Thus the lack of fast and accurate time-dependent radiative transfer tools significantly limits lidar remote sensing capabilities. Analyzing lidar multiple scattering signals requires fast and accurate time-dependent radiative transfer computations. Currently, multiple scattering is done with Monte Carlo simulations. Monte Carlo simulations take minutes to hours and are too slow for interactive satellite data analysis processes and can only be used to help system / algorithm design and error assessment. We present an innovative physics approach to solve the time-dependent radiative transfer problem. The technique utilizes FPGA based reconfigurable computing hardware. The approach is as following, 1. Physics solution: Perform Laplace transform on the time and spatial dimensions and Fourier transform on the viewing azimuth dimension, and convert the radiative transfer differential equation solving into a fast matrix inversion problem. The majority of the radiative transfer computation goes to matrix inversion processes, FFT and inverse Laplace transforms. 2. Hardware solutions: Perform the well-defined matrix inversion, FFT and Laplace transforms on highly parallel, reconfigurable computing hardware. This physics-based computational tool leads to accurate quantitative analysis of space-based lidar signals and improves data quality of current lidar mission such as CALIPSO. This presentation will introduce the basic idea of this approach, preliminary results based on SRC's FPGA-based Mapstation, and how we may apply it to CALIPSO data analysis.

  1. Mind body therapies in rehabilitation of patients with rheumatic diseases.

    PubMed

    Del Rosso, Angela; Maddali-Bongi, Susanna

    2016-02-01

    Mind body therapies (MBT) share a global approach involving both mental and physical dimensions, and focus on relationship between brain, mind, body and behavior and their effects on health and disease. MBT include concentration based therapies and movement based therapies, comprising traditional Oriental practices and somatic techniques. The greatest part of rheumatic diseases have a chronic course, leading to progressive damages at musculoskeletal system and causing physical problems, psychological and social concerns. Thus, rheumatic patients need to be treated with a multidisciplinary approach integrating pharmacological therapies and rehabilitation techniques, that not should only aim to reduce the progression of damages at musculoskeletal system. Thus, MBT, using an overall approach, could be useful in taking care of the overall health of the patients with chronic rheumatic diseases. This review will deal with different MBT and with their effects in the most common chronic rheumatic diseases (Rheumatoid Arthritis, Ankylosing Spondylitis, Fibromyalgia Syndrome). Copyright © 2015. Published by Elsevier Ltd.

  2. Promoting instructional change in new faculty: An evaluation of the physics and astronomy new faculty workshop

    NASA Astrophysics Data System (ADS)

    Henderson, Charles

    2008-02-01

    An important finding of physics and astronomy education research (PAER) is that traditional, transmission-based instructional approaches are not effective in promoting meaningful student learning. Instead, PAER research suggests that physics and astronomy should be taught using more interactive instructional methods. These ways of teaching require significant changes in the way faculty think about teaching and learning and corresponding changes in their teaching behavior. Although the research base and corresponding pedagogies and strategies are well documented and widely available, widespread changes in physics and astronomy teaching at the college level has yet to occur. The Workshop for New Physics and Astronomy Faculty has been working to address this problem since 1996. This workshop, which is jointly administered by the American Association of Physics Teachers, the American Astronomical Society, and the American Physical Society, has attracted approximately 25% of all new physics and astronomy faculty each year to a four-day workshop designed to introduce new faculty to PAER-based instructional ideas and materials. This paper describes the impact of the Workshop as measured by surveys of Workshop participants and physics and astronomy department chairs. The results indicate that the Workshop is successful in meeting its goals and might be significantly contributing to the spread and acceptance of PAER-based instructional ideas and materials.

  3. Health-related quality of life among adults 65 years and older in the United States, 2011-2012: a multilevel small area estimation approach.

    PubMed

    Lin, Yu-Hsiu; McLain, Alexander C; Probst, Janice C; Bennett, Kevin J; Qureshi, Zaina P; Eberth, Jan M

    2017-01-01

    The purpose of this study was to develop county-level estimates of poor health-related quality of life (HRQOL) among aged 65 years and older U.S. adults and to identify spatial clusters of poor HRQOL using a multilevel, poststratification approach. Multilevel, random-intercept models were fit to HRQOL data (two domains: physical health and mental health) from the 2011-2012 Behavioral Risk Factor Surveillance System. Using a poststratification, small area estimation approach, we generated county-level probabilities of having poor HRQOL for each domain in U.S. adults aged 65 and older, and validated our model-based estimates against state and county direct estimates. County-level estimates of poor HRQOL in the United States ranged from 18.07% to 44.81% for physical health and 14.77% to 37.86% for mental health. Correlations between model-based and direct estimates were higher for physical than mental HRQOL. Counties located in the Arkansas, Kentucky, and Mississippi exhibited the worst physical HRQOL scores, but this pattern did not hold for mental HRQOL, which had the highest probability of mentally unhealthy days in Illinois, Indiana, and Vermont. Substantial geographic variation in physical and mental HRQOL scores exists among older U.S. adults. State and local policy makers should consider these local conditions in targeting interventions and policies to counties with high levels of poor HRQOL scores. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Perceptions of International Students on Service Quality Delivery in a Malaysian Public University

    ERIC Educational Resources Information Center

    Njie, Baboucarr; Asimiran, Soaib; Baki, Roselan

    2012-01-01

    Purpose: The purpose of this study is to explore the perceptions of international students of service quality delivery (SQD) in a Malaysian public university. Design/methodology/approach: The study was limited to the University's immediate physical environment and its associated human and systems-based services. The physical environment in this…

  5. Linking Physical Geography Education and Research through the Development of an Environmental Sensing Network and Project-Based Learning

    ERIC Educational Resources Information Center

    Roberts, Dar; Bradley, Eliza; Roth, Keely; Eckmann, Ted; Still, Christopher

    2010-01-01

    Geographic education is more effective when students actively participate by developing hypotheses, designing experiments, collecting and analyzing data, and discussing results. We describe an innovative pedagogical approach, in which students learn physical geography concepts by analyzing environmental data collected in contrasting environments…

  6. Exploring Student Learning Profiles in Algebra-Based Studio Physics: A Person-Centered Approach

    ERIC Educational Resources Information Center

    Pond, Jarrad W. T.; Chini, Jacquelyn J.

    2017-01-01

    In this study, we explore the strategic self-regulatory and motivational characteristics of students in studio-mode physics courses at three universities with varying student populations and varying levels of success in their studio-mode courses. We survey students using questions compiled from several existing questionnaires designed to measure…

  7. Physical Education. A Movement Approach. Grades K-6.

    ERIC Educational Resources Information Center

    New York City Board of Education, Brooklyn, NY. Div. of Curriculum and Instruction.

    This teacher guide for elementary level physical education programs is based on the theories of movement education. It is divided into nine sections: (1) planning the program, its philosophy and objectives; (2) spatial awareness; (3) the body and its parts; (4) how the body moves; (5) development of locomotor, nonlocomotor, and manipulative…

  8. The Dietary guideline 2005 and physical activities role in weight management of University Arkansas at Pine Bluff

    USDA-ARS?s Scientific Manuscript database

    To evaluate the effectiveness of the weight loss initiative, researchers at the University of Arkansas at Pine Bluff conducted an obesity prevention intervention based on the Dietary Guidelines for Americans approach. A 12 month study was conducted that focused on interventions to improve physical ...

  9. Physical Activity Promotion in General Practices of Barcelona: A Case Study

    ERIC Educational Resources Information Center

    Puig Ribera, Anna; McKenna, Jim; Riddoch, Chris

    2006-01-01

    This case study aimed to generate explanations for the lack of integration of physical activity (PA) promotion in general practices of Barcelona, the capital of Catalonia. This explanatory study adopted a qualitative approach, based on three techniques; focus groups (n = 3), semi-structured (n = 25) and short individual interviews (n = 5). These…

  10. Utilizing Educational Theoretical Models to Support Effective Physical Education Pedagogy

    ERIC Educational Resources Information Center

    Usher, Wayne; Edwards, Allan; de Meyrick, Bianca

    2015-01-01

    Physical education (PE) pedagogy has traditionally been viewed as drillstyle teaching. Whilst this traditional pedagogical approach provides exposure to various skills, used within a school-based PE and sporting context, it does not demonstrate a student's competence associated with their ability to apply these skills in complex game situations.…

  11. Experiences of Individuals with Visual Impairments in Integrated Physical Education: A Retrospective Study

    ERIC Educational Resources Information Center

    Haegele, Justin A.; Zhu, Xihe

    2017-01-01

    Purpose: The purpose of this retrospective study was to examine the experiences of adults with visual impairments during school-based integrated physical education (PE). Method: An interpretative phenomenological analysis (IPA) research approach was used and 16 adults (ages 21-48 years; 10 women, 6 men) with visual impairments acted as…

  12. Modelling Systems of Classical/Quantum Identical Particles by Focusing on Algorithms

    ERIC Educational Resources Information Center

    Guastella, Ivan; Fazio, Claudio; Sperandeo-Mineo, Rosa Maria

    2012-01-01

    A procedure modelling ideal classical and quantum gases is discussed. The proposed approach is mainly based on the idea that modelling and algorithm analysis can provide a deeper understanding of particularly complex physical systems. Appropriate representations and physical models able to mimic possible pseudo-mechanisms of functioning and having…

  13. Assessing Student Learning in Gender Inclusive Tertiary Mathematics and Physics Education.

    ERIC Educational Resources Information Center

    Wistedt, Inger

    1998-01-01

    The merits and limitations of an alternative assessment method implemented in an inclusive university education program are discussed based on data from a study in which 24 Swedish university students presented mathematics and physics project results. The study shows how an interdisciplinary approach to assessment can promote critical reflection…

  14. Questioning the Validity of Inquiry Assessment in a High Stakes Physical Sciences Examination

    ERIC Educational Resources Information Center

    Ramnarain, Umesh

    2014-01-01

    The South African science curriculum advocates an inquiry-based approach to practical work. Inquiry is a complex and multifaceted activity involving both cognitive and physical activity; thus, paper-and-pencil items do not provide the authentic context for this assessment. This study investigates the construct validity of inquiry-related questions…

  15. An evidence based approach to undergraduate physical assessment practicum course development.

    PubMed

    Anderson, Brenda; Nix, Elizabeth; Norman, Bilinda; McPike, H Dawn

    2014-05-01

    Physical assessment is an important component of professional nursing practice. New nurse graduates experience difficulty transitioning the traditional head to toe physical assessment into real world nursing practice. This study was conducted to provide current data concerning physical assessment competencies utilized consistently by registered nurses. This quantitative study used a 126 item survey mailed to 900 Registered Nurses. Participants used a Likert-type scale to report frequency of use for physical assessment competencies. Thirty seven competencies were determined to be essential components of the physical assessment, 18 were determined supplemental, and 71 were determined to be non-essential. Transition of the new graduate nurse into professional practice can be enhanced by focusing content in physical assessment practicum courses on the essential competencies of physical assessment. Faculty for the university has analyzed data from this study to support evidence based changes to the undergraduate nursing program physical assessment practicum course. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Biological Nature of Knowledge in the Learning Organisation

    ERIC Educational Resources Information Center

    Hall, William P.

    2005-01-01

    Purpose: To develop a biological approach to the analysis of learning organisations based on complexity theory, autopoiesis, and evolutionary epistemology. Design/methodology/approach: This paper synthesises ideas from disciplines ranging from physics, epistemology and philosophy of science to military affairs, to sketch a scientific framework in…

  17. Event-based analysis of free-living behaviour.

    PubMed

    Granat, Malcolm H

    2012-11-01

    The quantification of free-living physical activities is important in understanding how physical activity and sedentary behaviour impact on health and also on how interventions might modify free-living behaviour to enhance health. Quantification, and the terminology used, has in many ways been determined by the choice of measurement technique. The inter-related issues around measurement devices and terminology used are explored. This paper proposes a terminology and a systematic approach for the analysis of free-living activity information using event-based activity data. The event-based approach uses a flexible hierarchical classification of events and, dependent on the research question, analysis can then be undertaken on a selection of these events. The quantification of free-living behaviour is therefore the result of the analysis on the patterns of these chosen events. The application of this approach is illustrated with results from a range of published studies by our group showing how event-based analysis provides a flexible yet robust method of addressing the research question(s) and provides a deeper insight into free-living behaviour. It is proposed that it is through event-based analysis we can more clearly understand how behaviour is related to health and also how we can produce more relevant outcome measures.

  18. A decentralised multi-agent approach to enhance the stability of smart microgrids with renewable energy

    NASA Astrophysics Data System (ADS)

    Rahman, M. S.; Pota, H. R.; Mahmud, M. A.; Hossain, M. J.

    2016-05-01

    This paper presents the impact of large penetration of wind power on the transient stability through a dynamic evaluation of the critical clearing times (CCTs) by using intelligent agent-based approach. A decentralised multi-agent-based framework is developed, where agents represent a number of physical device models to form a complex infrastructure for computation and communication. They enable the dynamic flow of information and energy for the interaction between the physical processes and their activities. These agents dynamically adapt online measurements and use the CCT information for relay coordination to improve the transient stability of power systems. Simulations are carried out on a smart microgrid system for faults at increasing wind power penetration levels and the improvement in transient stability using the proposed agent-based framework is demonstrated.

  19. Surveying Turkish high school and university students' attitudes and approaches to physics problem solving

    NASA Astrophysics Data System (ADS)

    Balta, Nuri; Mason, Andrew J.; Singh, Chandralekha

    2016-06-01

    Students' attitudes and approaches to physics problem solving can impact how well they learn physics and how successful they are in solving physics problems. Prior research in the U.S. using a validated Attitude and Approaches to Problem Solving (AAPS) survey suggests that there are major differences between students in introductory physics and astronomy courses and physics experts in terms of their attitudes and approaches to physics problem solving. Here we discuss the validation, administration, and analysis of data for the Turkish version of the AAPS survey for high school and university students in Turkey. After the validation and administration of the Turkish version of the survey, the analysis of the data was conducted by grouping the data by grade level, school type, and gender. While there are no statistically significant differences between the averages of various groups on the survey, overall, the university students in Turkey were more expertlike than vocational high school students. On an item by item basis, there are statistically differences between the averages of the groups on many items. For example, on average, the university students demonstrated less expertlike attitudes about the role of equations and formulas in problem solving, in solving difficult problems, and in knowing when the solution is not correct, whereas they displayed more expertlike attitudes and approaches on items related to metacognition in physics problem solving. A principal component analysis on the data yields item clusters into which the student responses on various survey items can be grouped. A comparison of the responses of the Turkish and American university students enrolled in algebra-based introductory physics courses shows that on more than half of the items, the responses of these two groups were statistically significantly different, with the U.S. students on average responding to the items in a more expertlike manner.

  20. Considerations on non equilibrium thermodynamics of interactions

    NASA Astrophysics Data System (ADS)

    Lucia, Umberto

    2016-04-01

    Nature can be considered the ;first; engineer! For scientists and engineers, dynamics and evolution of complex systems are not easy to predict. A fundamental approach to study complex system is thermodynamics. But, the result is the origin of too many schools of thermodynamics with a consequent difficulty in communication between thermodynamicists and other scientists and, also, among themselves. The solution is to obtain a unified approach based on the fundamentals of physics. Here we suggest a possible unification of the schools of thermodynamics starting from two fundamental concepts of physics, interaction and flows.

  1. Combining Users’ Needs With Health Behavior Models in Designing an Internet- and Mobile-Based Intervention for Physical Activity in Cardiac Rehabilitation

    PubMed Central

    2014-01-01

    Background Internet-based physical activity interventions have great potential in supporting patients in cardiac rehabilitation. Health behavior change theories and user input are identified as important contributors in the effectiveness of the interventions, but they are rarely combined in a systematic way in the design of the interventions. Objective The aim of this study is to identify the appropriate theoretical framework, along with the needs of the users of a physical activity intervention for cardiac rehabilitation, and to combine them into an effective Internet- and mobile-based intervention. Methods We explain the theoretical framework of the intervention in a narrative overview of the existing health behavior change literature as it applies to physical activity. We also conducted a focus group with 11 participants of a cardiac rehabilitation program and used thematic analysis to identify and analyze patterns of meaning in the transcribed data. Results We chose stage-based approaches, specifically the transtheoretical model and the health action process approach as our main framework for tailoring, supplemented with other theoretical concepts such as regulatory focus within the appropriate stages. From the thematic analysis of the focus group data, we identified seven themes: (1) social, (2) motivation, (3) integration into everyday life, (4) information, (5) planning, (6) monitoring and feedback, and (7) concerns and potential problems. The final design of the intervention was based on both the theoretical review and the user input, and it is explained in detail. Conclusions We applied a combination of health behavioral theory and user input in designing our intervention. We think this is a promising design approach with the potential to combine the high efficacy of theory-based interventions with the higher perceived usefulness of interventions designed according to user input. Trial Registration Clinicaltrials.gov NCT01223170; http://clinicaltrials.gov/show/NCT01223170 (Archived by WebCite at http://www.webcitation.org/6M5FqT9Q2). PMID:24413185

  2. Paving the COWpath: data-driven design of pediatric order sets

    PubMed Central

    Zhang, Yiye; Padman, Rema; Levin, James E

    2014-01-01

    Objective Evidence indicates that users incur significant physical and cognitive costs in the use of order sets, a core feature of computerized provider order entry systems. This paper develops data-driven approaches for automating the construction of order sets that match closely with user preferences and workflow while minimizing physical and cognitive workload. Materials and methods We developed and tested optimization-based models embedded with clustering techniques using physical and cognitive click cost criteria. By judiciously learning from users’ actual actions, our methods identify items for constituting order sets that are relevant according to historical ordering data and grouped on the basis of order similarity and ordering time. We evaluated performance of the methods using 47 099 orders from the year 2011 for asthma, appendectomy and pneumonia management in a pediatric inpatient setting. Results In comparison with existing order sets, those developed using the new approach significantly reduce the physical and cognitive workload associated with usage by 14–52%. This approach is also capable of accommodating variations in clinical conditions that affect order set usage and development. Discussion There is a critical need to investigate the cognitive complexity imposed on users by complex clinical information systems, and to design their features according to ‘human factors’ best practices. Optimizing order set generation using cognitive cost criteria introduces a new approach that can potentially improve ordering efficiency, reduce unintended variations in order placement, and enhance patient safety. Conclusions We demonstrate that data-driven methods offer a promising approach for designing order sets that are generalizable, data-driven, condition-based, and up to date with current best practices. PMID:24674844

  3. Models of Integrating Physical Therapists into Family Health Teams in Ontario, Canada: Challenges and Opportunities

    PubMed Central

    Mandoda, Shilpa; Landry, Michel D.

    2011-01-01

    ABSTRACT Purpose: To explore the potential for different models of incorporating physical therapy (PT) services within the emerging network of family health teams (FHTs) in Ontario and to identify challenges and opportunities of each model. Methods: A two-phase mixed-methods qualitative descriptive approach was used. First, FHTs were mapped in relation to existing community-based PT practices. Second, semi-structured key-informant interviews were conducted with representatives from urban and rural FHTs and from a variety of community-based PT practices. Interviews were digitally recorded, transcribed verbatim, and analyzed using a categorizing/editing approach. Results: Most participants agreed that the ideal model involves embedding physical therapists directly into FHTs; in some situations, however, partnering with an existing external PT provider may be more feasible and sustainable. Access and funding remain the key issues, regardless of the model adopted. Conclusion: Although there are differences across the urban/rural divide, there exist opportunities to enhance and optimize existing delivery models so as to improve client access and address emerging demand for community-based PT services. PMID:22654231

  4. CLINICAL APPLICATIONS OF CRYOTHERAPY AMONG SPORTS PHYSICAL THERAPISTS.

    PubMed

    Hawkins, Shawn W; Hawkins, Jeremy R

    2016-02-01

    Therapeutic modalities (TM) are used by sports physical therapists (SPT) but how they are used is unknown. To identify the current clinical use patterns for cryotherapy among SPT. Cross-sectional survey. All members (7283) of the Sports Physical Therapy Section of the APTA were recruited. A scenario-based survey using pre-participation management of an acute or sub-acute ankle sprain was developed. A Select Survey link was distributed via email to participants. Respondents selected a treatment approach based upon options provided. Follow-up questions were asked. The survey was available for two weeks with a follow-up email sent after one week. Question answers were the main outcome measures. Reliability: Cronbach's alpha=>0.9. The SPT response rate = 6.9% (503); responses came from 48 states. Survey results indicated great variability in respondents' approaches to the treatment of an acute and sub-acute ankle sprain. SPT applied cryotherapy with great variability and not always in accordance to the limited research on the TM. Continuing education, application of current research, and additional outcomes based research needs to remain a focus for clinicians. 3.

  5. Independent Manipulation of Heat and Electrical Current via Bifunctional Metamaterials

    NASA Astrophysics Data System (ADS)

    Moccia, Massimo; Castaldi, Giuseppe; Savo, Salvatore; Sato, Yuki; Galdi, Vincenzo

    2014-04-01

    Spatial tailoring of the material constitutive properties is a well-known strategy to mold the local flow of given observables in different physical domains. Coordinate-transformation-based methods (e.g., transformation optics) offer a powerful and systematic approach to design anisotropic, spatially inhomogeneous artificial materials (metamaterials) capable of precisely manipulating wave-based (electromagnetic, acoustic, elastic) as well as diffusion-based (heat) phenomena in a desired fashion. However, as versatile as these approaches have been, most designs have thus far been limited to serving single-target functionalities in a given physical domain. Here, we present a step towards a "transformation multiphysics" framework that allows independent and simultaneous manipulation of multiple physical phenomena. As a proof of principle of this new scheme, we design and synthesize (in terms of realistic material constituents) a metamaterial shell that simultaneously behaves as a thermal concentrator and an electrical "invisibility cloak." Our numerical results open up intriguing possibilities in the largely unexplored phase space of multifunctional metadevices, with a wide variety of potential applications to electrical, magnetic, acoustic, and thermal scenarios.

  6. Comparison of Nonlinear Random Response Using Equivalent Linearization and Numerical Simulation

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Muravyov, Alexander A.

    2000-01-01

    A recently developed finite-element-based equivalent linearization approach for the analysis of random vibrations of geometrically nonlinear multiple degree-of-freedom structures is validated. The validation is based on comparisons with results from a finite element based numerical simulation analysis using a numerical integration technique in physical coordinates. In particular, results for the case of a clamped-clamped beam are considered for an extensive load range to establish the limits of validity of the equivalent linearization approach.

  7. A holistic approach to movement education in sport and fitness: a systems based model.

    PubMed

    Polsgrove, Myles Jay

    2012-01-01

    The typical model used by movement professionals to enhance performance relies on the notion that a linear increase in load results in steady and progressive gains, whereby, the greater the effort, the greater the gains in performance. Traditional approaches to movement progression typically rely on the proper sequencing of extrinsically based activities to facilitate the individual in reaching performance objectives. However, physical rehabilitation or physical performance rarely progresses in such a linear fashion; instead they tend to evolve non-linearly and rather unpredictably. A dynamic system can be described as an entity that self-organizes into increasingly complex forms. Applying this view to the human body, practitioners could facilitate non-linear performance gains through a systems based programming approach. Utilizing a dynamic systems view, the Holistic Approach to Movement Education (HADME) is a model designed to optimize performance by accounting for non-linear and self-organizing traits associated with human movement. In this model, gains in performance occur through advancing individual perspectives and through optimizing sub-system performance. This inward shift of the focus of performance creates a sharper self-awareness and may lead to more optimal movements. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. From sedentary to active: Shifting the movement paradigm in workplaces.

    PubMed

    Das, Bhibha M; Mailey, Emily; Murray, Kate; Phillips, Siobhan M; Torres, Cam; King, Abby C

    2016-06-08

    Increased sedentary behavior and reduced physical activity are risk factors for morbidity and mortality. As adults spend a significant portion of their time at work where the default is to spend the majority of the day sitting, shifting workplace norms to decrease sedentary time and increase active time could have a public health impact. Workplaces offer a unique setting for multi-level interventions that can reach diverse populations. Traditional worksite wellness initiatives have produced equivocal results in terms of increasing physical activity. One reason for this may be the focus on corporate-fitness type programs and health education with little change in workplace culture. More innovative approaches combining theory-based worksite wellness components with behavioral economics approaches promoting incidental physical activity at the workplace to make activity the default may be necessary. This article discusses strategies to shift the workplace paradigm from being sedentary to more active using a range of approaches.

  9. Physical examination of the respiratory system.

    PubMed

    Sharp, Claire R; Rozanski, Elizabeth A

    2013-08-01

    This article reviews the approach to a patient with respiratory distress, with a focus on clues obtained from the physical examination. Respiratory distress is a common reason for presentation of a companion animal to a veterinarian on an emergency basis, and thus the clinician should have a comfort level with the approach to these patients. Our discussion includes a basic review of respiratory pathophysiology and the differential diagnoses for hypoxemia. In the majority of cases, physical examination should allow localization of the cause of the respiratory problem to the upper airways, lower airways, pleural space, or pulmonary parenchyma. Such localization, coupled with signalment and historical clues, guides additional diagnostics and therapeutics based on the most likely differential diagnoses. Although managing a patient with respiratory distress can be challenging, a systematic approach such as the one presented here should ensure appropriate intervention in a timely fashion and maximize the chance of a good outcome. © 2013 Published by Elsevier Inc.

  10. Learning from and with Museum Objects: Design Perspectives, Environment, and Emerging Learning Systems

    ERIC Educational Resources Information Center

    Vartiainen, Henriikka; Enkenberg, Jorma

    2013-01-01

    Sociocultural approaches emphasize the systemic, context-bound nature of learning, which is mediated by other people, physical and conceptual artifacts, and tools. However, current educational systems tend not to approach learning from the systemic perspective, and mostly situate learning within classroom environments. This design-based research…

  11. Using Inquiry and Phylogeny: To Teach Comparative Morphology

    ERIC Educational Resources Information Center

    Giese, Alan R.

    2005-01-01

    A description on inquiry-based approach to teaching comparative vertebrate, skeletal morphology is presented that could be easily adapted to teach comparative morphology for any discipline, provided that sufficient physical models are available. This approach requires students to probe the material world for evidence that would allow them to…

  12. A methodology to enable rapid evaluation of aviation environmental impacts and aircraft technologies

    NASA Astrophysics Data System (ADS)

    Becker, Keith Frederick

    Commercial aviation has become an integral part of modern society and enables unprecedented global connectivity by increasing rapid business, cultural, and personal connectivity. In the decades following World War II, passenger travel through commercial aviation quickly grew at a rate of roughly 8% per year globally. The FAA's most recent Terminal Area Forecast predicts growth to continue at a rate of 2.5% domestically, and the market outlooks produced by Airbus and Boeing generally predict growth to continue at a rate of 5% per year globally over the next several decades, which translates into a need for up to 30,000 new aircraft produced by 2025. With such large numbers of new aircraft potentially entering service, any negative consequences of commercial aviation must undergo examination and mitigation by governing bodies so that growth may still be achieved. Options to simultaneously grow while reducing environmental impact include evolution of the commercial fleet through changes in operations, aircraft mix, and technology adoption. Methods to rapidly evaluate fleet environmental metrics are needed to enable decision makers to quickly compare the impact of different scenarios and weigh the impact of multiple policy options. As the fleet evolves, interdependencies may emerge in the form of tradeoffs between improvements in different environmental metrics as new technologies are brought into service. In order to include the impacts of these interdependencies on fleet evolution, physics-based modeling is required at the appropriate level of fidelity. Evaluation of environmental metrics in a physics-based manner can be done at the individual aircraft level, but will then not capture aggregate fleet metrics. Contrastingly, evaluation of environmental metrics at the fleet level is already being done for aircraft in the commercial fleet, but current tools and approaches require enhancement because they currently capture technology implementation through post-processing, which does not capture physical interdependencies that may arise at the aircraft-level. The goal of the work that has been conducted here was the development of a methodology to develop surrogate fleet approaches that leverage the capability of physics-based aircraft models and the development of connectivity to fleet-level analysis tools to enable rapid evaluation of fuel burn and emissions metrics. Instead of requiring development of an individual physics-based model for each vehicle in the fleet, the surrogate fleet approaches seek to reduce the number of such models needed while still accurately capturing performance of the fleet. By reducing the number of models, both development time and execution time to generate fleet-level results may also be reduced. The initial steps leading to surrogate fleet formulation were a characterization of the commercial fleet into groups based on capability followed by the selection of a reference vehicle model and a reference set of operations for each group. Next, three potential surrogate fleet approaches were formulated. These approaches include the parametric correction factor approach, in which the results of a reference vehicle model are corrected to match the aggregate results of each group; the average replacement approach, in which a new vehicle model is developed to generate aggregate results of each group, and the best-in-class replacement approach, in which results for a reference vehicle are simply substituted for the entire group. Once candidate surrogate fleet approaches were developed, they were each applied to and evaluated over the set of reference operations. Then each approach was evaluated for their ability to model variations in operations. Finally, the ability of each surrogate fleet approach to capture implementation of different technology suites along with corresponding interdependencies between fuel burn and emissions was evaluated using the concept of a virtual fleet to simulate the technology response of multiple aircraft families. The results of experimentation led to a down selection to the best approach to use to rapidly characterize the performance of the commercial fleet for accurately in the context of acceptability of current fleet evaluation methods. The parametric correction factor and average replacement approaches were shown to be successful in capturing reference fleet results as well as fleet performance with variations in operations. The best-in-class replacement approach was shown to be unacceptable as a model for the larger fleet in each of the scenarios tested. Finally, the average replacement approach was the only one that was successful in capturing the impact of technologies on a larger fleet. These results are meaningful because they show that it is possible to calculate the fuel burn and emissions of a larger fleet with a reduced number of physics-based models within acceptable bounds of accuracy. At the same time, the physics-based modeling also provides the ability to evaluate the impact of technologies on fleet-level fuel burn and emissions metrics. The value of such a capability is that multiple future fleet scenarios involving changes in both aircraft operations and technology levels may now be rapidly evaluated to inform and equip policy makers of the implications of impacts of changes on fleet-level metrics.

  13. The effects of surfing and the natural environment on the well-being of combat veterans.

    PubMed

    Caddick, Nick; Smith, Brett; Phoenix, Cassandra

    2015-01-01

    Although researchers have identified the benefits of physical activity on well-being, there is little evidence concerning the effects of nature-based physical activity. We investigated the effect of one nature-based activity-surfing-on the well-being of combat veterans experiencing posttraumatic stress disorder (PTSD). We conducted interviews and participant observations with a group of combat veterans belonging to a United Kingdom-based veterans' surfing charity. Our primary analytical approach was dialogical narrative analysis. Based on our rigorous analysis and findings, we suggest that surfing facilitated a sense of respite from PTSD. Respite was a fully embodied feeling of release from suffering that was cultivated through surfing and shaped by the stories veterans told of their experiences. We significantly extend previous knowledge on physical activity, combat veterans, and PTSD by highlighting how nature-based physical activity, encapsulated in the conceptual notion of the "blue gym," can promote well-being among combat veterans. © The Author(s) 2014.

  14. Framework for the design and delivery of organized physical activity sessions for children and adolescents: rationale and description of the 'SAAFE' teaching principles.

    PubMed

    Lubans, David R; Lonsdale, Chris; Cohen, Kristen; Eather, Narelle; Beauchamp, Mark R; Morgan, Philip J; Sylvester, Benjamin D; Smith, Jordan J

    2017-02-23

    The economic burden of inactivity is substantial, with conservative estimates suggesting the global cost to health care systems is more than US$50 billion. School-based programs, including physical education and school sport, have been recommended as important components of a multi-sector, multi-system approach to address physical inactivity. Additionally, community sporting clubs and after-school programs (ASPs) offer further opportunities for young people to be physically active outside of school. Despite demonstrating promise, current evidence suggests school-based physical activity programs, community sporting clubs and ASPs are not achieving their full potential. For example, physical activity levels in physical education (PE) and ASP sessions are typically much lower than recommended. For these sessions to have the strongest effects on young people's physical activity levels and their on-going physical literacy, they need to improve in quality and should be highly active and engaging. This paper presents the Supportive, Active, Autonomous, Fair, Enjoyable (SAAFE) principles, which represent an evidence-based framework designed to guide the planning, delivery and evaluation of organized physical activity sessions in school, community sport and ASPs. In this paper we provide a narrative and integrative review of the conceptual and empirical bases that underpin this framework and highlight implications for knowledge translation and application.

  15. Evidence-based practice guideline: increasing physical activity in schools--kindergarten through 8th grade.

    PubMed

    Bagby, Karen; Adams, Susan

    2007-06-01

    Because of the growing obesity epidemic across all age groups in the United States, interventions to increase physical activity and reduce sedentary behaviors have become a priority. Evidence is growing that interventions to increase physical activity and reduce sedentary behaviors have positive results and are generally inexpensive to implement. National and international health organizations are calling for a comprehensive approach for reducing obesity in children that includes increasing physical activity in the school setting. Although the call to increase activity levels in schools is clear, little guidance has been given to schools on specific methods to accomplish this task. This article provides an overview of an evidence-based guideline developed by a physical education teacher and a school nurse to provide inexpensive, easy-to-implement, effective strategies to increase physical activity in students. Tools are also included in the guideline to measure the effectiveness of the intervention.

  16. Using a flipped classroom in an algebra-based physics course

    NASA Astrophysics Data System (ADS)

    Smith, Leigh

    2013-03-01

    The algebra-based physics course is taken by Biology students, Pre-Pharmacy, Pre-Medical, and other health related majors such as medical imaging, physical therapy, and so on. Nearly 500 students take the course each Semester. Student learning is adversely impacted by poor math backgrounds as well as extensive work schedules outside of the classroom. We have been researching the use of an intensive flipped-classroom approach where students spend one to two hours each week preparing for class by reading the book, completing a series of conceptual problems, and viewing videos which describe the material. In class, the new response system Learning Catalytics is used which allows much richer problems to be posed in class and includes sketching figures, numerical or symbolic entries, short answers, highlighting text, etc in addition to the standard multiple choice questions. We make direct comparison of student learning for 1200 sudents who have taken the same tests, 25% of which used the flipped classroom approach, and 75% who took a more standard lecture. There is significant evidence of improvements in student learning for students taking the flipped classroom approach over standard lectures. These benefits appear to impact students at all math backgrounds.

  17. One Size Does Not Fit All: Contextualising Family Physical Activity Using a Write, Draw, Show and Tell Approach.

    PubMed

    Noonan, Robert J; Fairclough, Stuart J; Knowles, Zoe R; Boddy, Lynne M

    2017-07-14

    Understanding family physical activity (PA) behaviour is essential for designing effective family-based PA interventions. However, effective approaches to capture the perceptions and "lived experiences" of families are not yet well established. The aims of the study were to: (1) demonstrate how a "write, draw, show and tell" (WDST) methodological approach can be appropriate to family-based PA research, and (2) present two distinct family case studies to provide insights into the habitual PA behaviour and experiences of a nuclear and single-parent family. Six participants (including two "target" children aged 9-11 years, two mothers and two siblings aged 6-8 years) from two families were purposefully selected to take part in the study, based on their family structure. Participants completed a paper-based PA diary and wore an ActiGraph GT9X accelerometer on their left wrist for up to 10 weekdays and 16 weekend days. A range of WDST tasks were then undertaken by each family to offer contextual insight into their family-based PA. The selected families participated in different levels and modes of PA, and reported contrasting leisure opportunities and experiences. These novel findings encourage researchers to tailor family-based PA intervention programmes to the characteristics of the family.

  18. One Size Does Not Fit All: Contextualising Family Physical Activity Using a Write, Draw, Show and Tell Approach

    PubMed Central

    Fairclough, Stuart J.; Knowles, Zoe R.; Boddy, Lynne M.

    2017-01-01

    Understanding family physical activity (PA) behaviour is essential for designing effective family-based PA interventions. However, effective approaches to capture the perceptions and “lived experiences” of families are not yet well established. The aims of the study were to: (1) demonstrate how a “write, draw, show and tell” (WDST) methodological approach can be appropriate to family-based PA research, and (2) present two distinct family case studies to provide insights into the habitual PA behaviour and experiences of a nuclear and single-parent family. Six participants (including two “target” children aged 9–11 years, two mothers and two siblings aged 6–8 years) from two families were purposefully selected to take part in the study, based on their family structure. Participants completed a paper-based PA diary and wore an ActiGraph GT9X accelerometer on their left wrist for up to 10 weekdays and 16 weekend days. A range of WDST tasks were then undertaken by each family to offer contextual insight into their family-based PA. The selected families participated in different levels and modes of PA, and reported contrasting leisure opportunities and experiences. These novel findings encourage researchers to tailor family-based PA intervention programmes to the characteristics of the family. PMID:28708114

  19. An adaptive community-based participatory approach to formative assessment with high schools for obesity intervention*.

    PubMed

    Kong, Alberta S; Farnsworth, Seth; Canaca, Jose A; Harris, Amanda; Palley, Gabriel; Sussman, Andrew L

    2012-03-01

    In the emerging debate around obesity intervention in schools, recent calls have been made for researchers to include local community opinions in the design of interventions. Community-based participatory research (CBPR) is an effective approach for forming community partnerships and integrating local opinions. We used CBPR principles to conduct formative research in identifying acceptable and potentially sustainable obesity intervention strategies in 8 New Mexico school communities. We collected formative data from 8 high schools on areas of community interest for school health improvement through collaboration with local School Health Advisory Councils (SHACs) and interviews with students and parents. A survey based on formative results was created to assess acceptability of specific intervention strategies and was provided to SHACs. Quantitative data were analyzed using descriptive statistics while qualitative data were evaluated using an iterative analytic process for thematic identification. Key themes identified through the formative process included lack of healthy food options, infrequent curricular/extracurricular physical activity opportunities, and inadequate exposure to health/nutritional information. Key strategies identified as most acceptable by SHAC members included healthier food options and preparation, a healthy foods marketing campaign, yearly taste tests, an after-school noncompetitive physical activity program, and community linkages to physical activity opportunities. An adaptive CBPR approach for formative assessment can be used to identify obesity intervention strategies that address community school health concerns. Eight high school SHACs identified 6 school-based strategies to address parental and student concerns related to obesity. © 2012, American School Health Association.

  20. An Adaptive Community-Based Participatory Approach to Formative Assessment With High Schools for Obesity Intervention*

    PubMed Central

    Kong, Alberta S.; Farnsworth, Seth; Canaca, Jose A.; Harris, Amanda; Palley, Gabriel; Sussman, Andrew L.

    2013-01-01

    BACKGROUND In the emerging debate around obesity intervention in schools, recent calls have been made for researchers to include local community opinions in the design of interventions. Community-based participatory research (CBPR) is an effective approach for forming community partnerships and integrating local opinions. We used CBPR principles to conduct formative research in identifying acceptable and potentially sustainable obesity intervention strategies in 8 New Mexico school communities. METHODS We collected formative data from 8 high schools on areas of community interest for school health improvement through collaboration with local School Health Advisory Councils (SHACs) and interviews with students and parents. A survey based on formative results was created to assess acceptability of specific intervention strategies and was provided to SHACs. Quantitative data were analyzed using descriptive statistics while qualitative data were evaluated using an iterative analytic process for thematic identification. RESULTS Key themes identified through the formative process included lack of healthy food options, infrequent curricular/extracurricular physical activity opportunities, and inadequate exposure to health/nutritional information. Key strategies identified as most acceptable by SHAC members included healthier food options and preparation, a healthy foods marketing campaign, yearly taste tests, an after-school noncompetitive physical activity program, and community linkages to physical activity opportunities. CONCLUSION An adaptive CBPR approach for formative assessment can be used to identify obesity intervention strategies that address community school health concerns. Eight high school SHACs identified 6 school-based strategies to address parental and student concerns related to obesity. PMID:22320339

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Curtis L.; Prescott, Steven; Coleman, Justin

    This report describes the current progress and status related to the Industry Application #2 focusing on External Hazards. For this industry application within the Light Water Reactor Sustainability (LWRS) Program Risk-Informed Safety Margin Characterization (RISMC) R&D Pathway, we will create the Risk-Informed Margin Management (RIMM) approach to represent meaningful (i.e., realistic facility representation) event scenarios and consequences by using an advanced 3D facility representation that will evaluate external hazards such as flooding and earthquakes in order to identify, model and analyze the appropriate physics that needs to be included to determine plant vulnerabilities related to external events; manage the communicationmore » and interactions between different physics modeling and analysis technologies; and develop the computational infrastructure through tools related to plant representation, scenario depiction, and physics prediction. One of the unique aspects of the RISMC approach is how it couples probabilistic approaches (the scenario) with mechanistic phenomena representation (the physics) through simulation. This simulation-based modeling allows decision makers to focus on a variety of safety, performance, or economic metrics. In this report, we describe the evaluation of various physics toolkits related to flooding representation. Ultimately, we will be coupling the flooding representation with other events such as earthquakes in order to provide coupled physics analysis for scenarios where interactions exist.« less

  2. Application of identified sensitive physical parameters in reducing the uncertainty of numerical simulation

    NASA Astrophysics Data System (ADS)

    Sun, Guodong; Mu, Mu

    2016-04-01

    An important source of uncertainty, which then causes further uncertainty in numerical simulations, is that residing in the parameters describing physical processes in numerical models. There are many physical parameters in numerical models in the atmospheric and oceanic sciences, and it would cost a great deal to reduce uncertainties in all physical parameters. Therefore, finding a subset of these parameters, which are relatively more sensitive and important parameters, and reducing the errors in the physical parameters in this subset would be a far more efficient way to reduce the uncertainties involved in simulations. In this context, we present a new approach based on the conditional nonlinear optimal perturbation related to parameter (CNOP-P) method. The approach provides a framework to ascertain the subset of those relatively more sensitive and important parameters among the physical parameters. The Lund-Potsdam-Jena (LPJ) dynamical global vegetation model was utilized to test the validity of the new approach. The results imply that nonlinear interactions among parameters play a key role in the uncertainty of numerical simulations in arid and semi-arid regions of China compared to those in northern, northeastern and southern China. The uncertainties in the numerical simulations were reduced considerably by reducing the errors of the subset of relatively more sensitive and important parameters. The results demonstrate that our approach not only offers a new route to identify relatively more sensitive and important physical parameters but also that it is viable to then apply "target observations" to reduce the uncertainties in model parameters.

  3. Managing corporate capabilities:theory and industry approaches.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slavin, Adam M.

    2007-02-01

    This study characterizes theoretical and industry approaches to organizational capabilities management and ascertains whether there is a distinct ''best practice'' in this regard. We consider both physical capabilities, such as technical disciplines and infrastructure, and non-physical capabilities such as corporate culture and organizational procedures. We examine Resource-Based Theory (RBT), which is the predominant organizational management theory focused on capabilities. RBT seeks to explain the effect of capabilities on competitiveness, and thus provide a basis for investment/divestment decisions. We then analyze industry approaches described to us in interviews with representatives from Goodyear, 3M, Intel, Ford, NASA, Lockheed Martin, and Boeing. Wemore » found diversity amongst the industry capability management approaches. Although all organizations manage capabilities and consider them to some degree in their strategies, no two approaches that we observed were identical. Furthermore, we observed that theory is not a strong driver in this regard. No organization used the term ''Resource-Based Theory'', nor did any organization mention any other guiding theory or practice from the organizational management literature when explaining their capabilities management approaches. As such, we concluded that there is no single best practice for capabilities management. Nevertheless, we believe that RBT and the diverse industry experiences described herein can provide useful insights to support development of capabilities management approaches.« less

  4. Vegetarian and Omnivorous Nutrition - Comparing Physical Performance.

    PubMed

    Craddock, Joel C; Probst, Yasmine C; Peoples, Gregory E

    2016-06-01

    Humans consuming vegetarian-based diets are observed to have reduced relative risk for many chronic diseases. Similarly, regular physical activity has also been shown to assist in preventing, and reducing the severity of these conditions. Many people, including athletes, acknowledge these findings and are adopting a vegetarian-based diet to improve their health status. Furthermore, athletes are incorporating this approach with the specific aim of optimizing physical performance. To examine the evidence for the relationship between consuming a predominately vegetarian-based diet and improved physical performance, a systematic literature review was performed using the SCOPUS database. No date parameters were set. The keywords vegetarian OR vegan AND sport OR athlete OR training OR performance OR endurance were used to identify relevant literature. Included studies (i) directly compared a vegetarian-based diet to an omnivorous/mixed diet, (ii) directly assessed physical performance, not biomarkers of physical performance, and (iii) did not use supplementation emulating a vegetarian diet. Reference lists were hand searched for additional studies. Seven randomized controlled trials and one cross-sectional study met the inclusion criteria. No distinguished differences between vegetarian-based diets and omnivorous mixed diets were identified when physical performance was compared. Consuming a predominately vegetarian-based diet did not improve nor hinder performance in athletes. However, with only 8 studies identified, with substantial variability among the studies' experimental designs, aims and outcomes, further research is warranted.

  5. Relativity, Quantum Physics and Philosophy in the Upper Secondary Curriculum: Challenges, Opportunities and Proposed Approaches

    ERIC Educational Resources Information Center

    Henriksen, Ellen K.; Bungum, Berit; Angell, Carl; Tellefsen, Catherine W.; Frågåt, Thomas; Bøe, Maria Vetleseter

    2014-01-01

    In this article, we discuss how quantum physics and relativity can be taught in upper secondary school, in ways that promote conceptual understanding and philosophical reflections. We present the ReleQuant project, in which web-based teaching modules have been developed. The modules address competence aims in the Norwegian national curriculum for…

  6. Creating Interactive Web-Based Environments to Scaffold Creative Reasoning and Meaningful Learning: From Physics to Products

    ERIC Educational Resources Information Center

    Jou, Min; Chuang, Chien-Pen; Wu, Yu-Shiang

    2010-01-01

    With the evolution of the surrounding world market, engineers have to propose innovations in products and processes. Industrial innovation frequently results from an improved understanding of basic physics. In this paper, an approach to accelerate inventive preliminary design is presented. This method combines the main advantages of CBR (Case…

  7. Learning in a Web-Based World: An Innovative Approach to Teach Physical Examination Skills in Patients with Neurodisability.

    PubMed

    Benjamin, Jennifer; Groner, Judith; Walton, Jennifer; Noritz, Garey; Gascon, Gregg M; Mahan, John D

    2018-03-05

    Despite increasing numbers of patients with neurodisability, residents lack training to develop physical examination skills. Following a blended educational intervention combining online and bedside teaching, residents demonstrated desired patient-care behaviors on standardized clinical exam assessment. Copyright © 2018 Academic Pediatric Association. Published by Elsevier Inc. All rights reserved.

  8. The Impact of a Multi-Component Physical Activity Programme in Low-Income Elementary Schools

    ERIC Educational Resources Information Center

    Massey, William V.; Stellino, Megan B.; Holliday, Megan; Godbersen, Travis; Rodia, Rachel; Kucher, Greta; Wilkison, Megan

    2017-01-01

    Objective: To identify the effects of a structured and multifaceted physical activity and recess intervention on student and adult behaviour in school. Design: Mixed-methods and community-based participatory approach. Setting: Large, urban, low-income school district in the USA. Methods: Data were collected at three time points over a 1-year…

  9. Using Google Earth and Satellite Imagery to Foster Place-Based Teaching in an Introductory Physical Geology Course

    ERIC Educational Resources Information Center

    Monet, Julie; Greene, Todd

    2012-01-01

    Students in an introductory physical geology course often have difficulty making connections between basic course topics and assembling key concepts (beyond textbook examples) to interpret how geologic processes shape the characteristics of the local and regional natural environment. As an approach to address these issues, we designed and…

  10. Influencing Factors on Planning Decision-Making among Spanish In-Service Physical Education Teachers. A Population-Based Study

    ERIC Educational Resources Information Center

    Viciana, Jesús; Mayorga-Vega, Daniel

    2017-01-01

    Introduction: Traditionally, literature has contributed qualitative approaches for studying how to plan Physical Education (PE). To our knowledge there are not quantitative populationbased studies regarding the decision-making process among in-service Spanish PE teachers. The aim of this study was to analyze possible differences in the factors of…

  11. Usability of Mobile Phones in Physical Activity-Rrelated Research: A Systematic Review

    ERIC Educational Resources Information Center

    Monroe, Courtney M.; Thompson, Dixie L.; Bassett, David R., Jr.; Fitzhugh, Eugene C.; Raynor, Hollie A.

    2015-01-01

    Background: The use of mobile phones for physical activity (PA) promotion and assessment represents an attractive research area because this technology is characterized by a widespread reach and dynamic features. Purpose: The purpose of this study was to conduct a systematic review of mobile phone-based approaches for encouraging and assessing PA.…

  12. Building a Physically Active and Talent Rich Culture: An Educationally Sound Approach

    ERIC Educational Resources Information Center

    Collins, Dave; Martindale, Russell; Button, Angela; Sowerby, Katie

    2010-01-01

    Physical education and sport are often critically evaluated for the potential impact they can have on the development of children, both from the perspective of health and the development of sporting talent. Reflecting these two important goals, this paper presents an evaluation of the efficacy of an evidence-based, educational and inclusive…

  13. gPhysics--Using Smart Glasses for Head-Centered, Context-Aware Learning in Physics Experiments

    ERIC Educational Resources Information Center

    Kuhn, Jochen; Lukowicz, Paul; Hirth, Michael; Poxrucker, Andreas; Weppner, Jens; Younas, Junaid

    2016-01-01

    Smart Glasses such as Google Glass are mobile computers combining classical Head-Mounted Displays (HMD) with several sensors. Therefore, contact-free, sensor-based experiments can be linked with relating, near-eye presented multiple representations. We will present a first approach on how Smart Glasses can be used as an experimental tool for…

  14. Understanding the physics of functional fibers in the gastrointestinal tract: an evidence-based approach to resolving enduring misconceptions about insoluble and soluble fiber

    USDA-ARS?s Scientific Manuscript database

    Enduring misconceptions about the physical effects of fiber in the gut have led to misunderstandings about the health benefits attributable to insoluble and soluble fiber. This review will focus on isolated functional fibers (eg, fiber supplements) whose effects on clinical outcomes have been readil...

  15. Social Physique Anxiety and Intention to Be Physically Active: A Self-Determination Theory Approach

    ERIC Educational Resources Information Center

    Sicilia, Álvaro; Sáenz-Alvarez, Piedad; González-Cutre, David; Ferriz, Roberto

    2016-01-01

    Purpose: Based on self-determination theory, the purpose of this study was to analyze the relationship between social physique anxiety and intention to be physically active, while taking into account the mediating effects of the basic psychological needs and behavioral regulations in exercise. Method: Having obtained parents' prior consent, 390…

  16. Using Research-Based Interactive Video Vignettes to Enhance Out-of-Class Learning in Introductory Physics

    NASA Astrophysics Data System (ADS)

    Laws, Priscilla W.; Willis, Maxine C.; Jackson, David P.; Koenig, Kathleen; Teese, Robert

    2015-02-01

    Ever since the first generalized computer-assisted instruction system (PLATO1) was introduced over 50 years ago, educators have been adding computer-based materials to their classes. Today many textbooks have complete online versions that include video lectures and other supplements. In the past 25 years the web has fueled an explosion of online homework and course management systems, both as blended learning and online courses. Meanwhile, introductory physics instructors have been implementing new approaches to teaching based on the outcomes of Physics Education Research (PER). A common theme of PER-based instruction has been the use of active-learning strategies designed to help students overcome alternative conceptions that they often bring to the study of physics.2 Unfortunately, while classrooms have become more active, online learning typically relies on passive lecture videos or Kahn-style3 tablet drawings. To bring active learning online, the LivePhoto Physics Group has been developing Interactive Video Vignettes (IVVs) that add interactivity and PER-based elements to short presentations. These vignettes incorporate web-based video activities that contain interactive elements and typically require students to make predictions and analyze real-world phenomena.

  17. An Integrated Scenario Ensemble-Based Framework for Hurricane Evacuation Modeling: Part 2-Hazard Modeling.

    PubMed

    Blanton, Brian; Dresback, Kendra; Colle, Brian; Kolar, Randy; Vergara, Humberto; Hong, Yang; Leonardo, Nicholas; Davidson, Rachel; Nozick, Linda; Wachtendorf, Tricia

    2018-04-25

    Hurricane track and intensity can change rapidly in unexpected ways, thus making predictions of hurricanes and related hazards uncertain. This inherent uncertainty often translates into suboptimal decision-making outcomes, such as unnecessary evacuation. Representing this uncertainty is thus critical in evacuation planning and related activities. We describe a physics-based hazard modeling approach that (1) dynamically accounts for the physical interactions among hazard components and (2) captures hurricane evolution uncertainty using an ensemble method. This loosely coupled model system provides a framework for probabilistic water inundation and wind speed levels for a new, risk-based approach to evacuation modeling, described in a companion article in this issue. It combines the Weather Research and Forecasting (WRF) meteorological model, the Coupled Routing and Excess STorage (CREST) hydrologic model, and the ADvanced CIRCulation (ADCIRC) storm surge, tide, and wind-wave model to compute inundation levels and wind speeds for an ensemble of hurricane predictions. Perturbations to WRF's initial and boundary conditions and different model physics/parameterizations generate an ensemble of storm solutions, which are then used to drive the coupled hydrologic + hydrodynamic models. Hurricane Isabel (2003) is used as a case study to illustrate the ensemble-based approach. The inundation, river runoff, and wind hazard results are strongly dependent on the accuracy of the mesoscale meteorological simulations, which improves with decreasing lead time to hurricane landfall. The ensemble envelope brackets the observed behavior while providing "best-case" and "worst-case" scenarios for the subsequent risk-based evacuation model. © 2018 Society for Risk Analysis.

  18. On the thermomechanical coupling in dissipative materials: A variational approach for generalized standard materials

    NASA Astrophysics Data System (ADS)

    Bartels, A.; Bartel, T.; Canadija, M.; Mosler, J.

    2015-09-01

    This paper deals with the thermomechanical coupling in dissipative materials. The focus lies on finite strain plasticity theory and the temperature increase resulting from plastic deformation. For this type of problem, two fundamentally different modeling approaches can be found in the literature: (a) models based on thermodynamical considerations and (b) models based on the so-called Taylor-Quinney factor. While a naive straightforward implementation of thermodynamically consistent approaches usually leads to an over-prediction of the temperature increase due to plastic deformation, models relying on the Taylor-Quinney factor often violate fundamental physical principles such as the first and the second law of thermodynamics. In this paper, a thermodynamically consistent framework is elaborated which indeed allows the realistic prediction of the temperature evolution. In contrast to previously proposed frameworks, it is based on a fully three-dimensional, finite strain setting and it naturally covers coupled isotropic and kinematic hardening - also based on non-associative evolution equations. Considering a variationally consistent description based on incremental energy minimization, it is shown that the aforementioned problem (thermodynamical consistency and a realistic temperature prediction) is essentially equivalent to correctly defining the decomposition of the total energy into stored and dissipative parts. Interestingly, this decomposition shows strong analogies to the Taylor-Quinney factor. In this respect, the Taylor-Quinney factor can be well motivated from a physical point of view. Furthermore, certain intervals for this factor can be derived in order to guarantee that fundamental physically principles are fulfilled a priori. Representative examples demonstrate the predictive capabilities of the final constitutive modeling framework.

  19. Communicating about obesity and weight-related topics with children with a physical disability and their families: spina bifida as an example.

    PubMed

    McPherson, Amy C; Swift, Judy A; Peters, Michelle; Lyons, Julia; Joy Knibbe, Tara; Church, Paige; Chen, Lorry; Farrell, Renée M; Willem Gorter, Jan

    2017-04-01

    The purpose of this study was to explore the experiences of children with spina bifida (SB), their families and healthcare professionals (HCPs) when discussing weight-related topics. In-depth qualitative interviews were conducted with HCPs from Canadian outpatient SB clinics (n = 13), children aged 6-18 years with SB (n = 17) and their parents (n = 20). Data were analyzed using a phenomenological approach within an interpretative paradigm. Many HCPs were not confident talking about weight, concerned that they would damage relationships with children and families. Parents wanted routine weight surveillance, but were worried about their children's self-esteem if their weight was discussed. They wanted HCPs to acknowledge the challenges of weight management in children with a physical disability and provide specialized solutions. Children wanted a positively framed and tailored approach to weight discussions, although this had generally not been their experience. Stakeholders describe therapeutic relationships that are currently disconnected around the issue of weight and obesity. However, children, parents and HCPs all believed that discussing this topic was critical. Positively framed, strengths-based and tailored approaches to weight-related discussions are warranted. Implications for Rehabilitation Rates of overweight and obesity in children and youth with physical disabilities are substantially higher than their typically developing peers. Healthcare professionals, children with physical disabilities and families often find weight-related discussions challenging and disconnected. Weight-related discussions should be tailored to the child and family's circumstances and priorities. Positively framed and strengths-based approaches to weight-related discussions are warranted.

  20. An Inquiry-based Course Using ``Physics?'' in Cartoons and Movies

    NASA Astrophysics Data System (ADS)

    Rogers, Michael

    2007-01-01

    Books, cartoons, movies, and video games provide engaging opportunities to get both science and nonscience students excited about physics. An easy way to use these media in one's classroom is to have students view clips and identify unusual events, odd physics, or list things that violate our understanding of the physics that governs our universe.1,2 These activities provide a lesson or two of material, but how does one create an entire course on examining the physics in books, cartoons, movies, and video games? Other approaches attempt to reconcile events in various media with our understanding of physics3-8 or use cartoons themselves to help explain physics topics.9

  1. A situation-specific theory of Midlife Women's Attitudes Toward Physical Activity (MAPA).

    PubMed

    Im, Eun-Ok; Stuifbergen, Alexa K; Walker, Lorraine

    2010-01-01

    This paper presents a situation specific theory-the Midlife Women's Attitudes Toward Physical Activity (MAPA) theory-that explains how women's attitudes toward physical activity influence their participation in physical activity. Using the integrative approach of Im, the theory was developed based on the Attitude, Social Influence, and Self Efficacy Model; a review of the related literature; and a study of women's attitudes toward physical activity. As a situation-specific theory, the MAPA theory can be linked easily to nursing practice and research projects related to physical activity in midlife women, especially interventions aimed at increasing midlife women's participation in physical activity. Copyright 2010 Mosby, Inc. All rights reserved.

  2. Babinski reflex

    MedlinePlus

    ... examination. In: Malanga GA, Mautner K, eds. Musculoskeletal Physical Examination: An Evidence-Based Approach . 2nd ed. Philadelphia, PA: Elsevier; 2017:chap 2. Review Date 2/23/2017 Updated by: Amit M. ...

  3. Multiple Damage Progression Paths in Model-Based Prognostics

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew; Goebel, Kai Frank

    2011-01-01

    Model-based prognostics approaches employ domain knowledge about a system, its components, and how they fail through the use of physics-based models. Component wear is driven by several different degradation phenomena, each resulting in their own damage progression path, overlapping to contribute to the overall degradation of the component. We develop a model-based prognostics methodology using particle filters, in which the problem of characterizing multiple damage progression paths is cast as a joint state-parameter estimation problem. The estimate is represented as a probability distribution, allowing the prediction of end of life and remaining useful life within a probabilistic framework that supports uncertainty management. We also develop a novel variance control mechanism that maintains an uncertainty bound around the hidden parameters to limit the amount of estimation uncertainty and, consequently, reduce prediction uncertainty. We construct a detailed physics-based model of a centrifugal pump, to which we apply our model-based prognostics algorithms. We illustrate the operation of the prognostic solution with a number of simulation-based experiments and demonstrate the performance of the chosen approach when multiple damage mechanisms are active

  4. An educational approach based on a non-injury model compared with individual symptom-based physical training in chronic LBP. A pragmatic, randomised trial with a one-year follow-up

    PubMed Central

    2010-01-01

    Background In the treatment of chronic back pain, cognitive methods are attracting increased attention due to evidence of effectiveness similar to that of traditional therapies. The purpose of this study was to compare the effectiveness of performing a cognitive intervention based on a non-injury model with that of a symptom-based physical training method on the outcomes of low back pain (LBP), activity limitation, LBP attitudes (fear-avoidance beliefs and back beliefs), physical activity levels, sick leave, and quality of life, in chronic LBP patients. Methods The study was a pragmatic, single-blind, randomised, parallel-group trial. Patients with chronic/recurrent LBP were randomised to one of the following treatments: 1. Educational programme : the emphasis was on creating confidence that the back is strong, that loads normally do not cause any damage despite occasional temporary pain, that reducing the focus on the pain might facilitate more natural and less painful movements, and that it is beneficial to stay physically active. 2. Individual symptom-based physical training programme : directional-preference exercises for those centralising their pain with repetitive movements; 'stabilising exercises' for those deemed 'unstable' based on specific tests; or intensive dynamic exercises for the remaining patients. Follow-up questionnaires (examiner-blinded) were completed at 2, 6 and 12 months. The main statistical test was an ANCOVA adjusted for baseline values. Results A total of 207 patients participated with the median age of 39 years (IQR 33-47); 52% were female, 105 were randomised to the educational programme and 102 to the physical training programme. The two groups were comparable at baseline. For the primary outcome measures, there was a non-significant trend towards activity limitation being reduced mostly in the educational programme group, although of doubtful clinical relevance. Regarding secondary outcomes, improvement in fear-avoidance beliefs was also better in the educational programme group. All other variables were about equally influenced by the two treatments. The median number of treatment sessions was 3 for the educational programme group and 6 for the physical training programme group. Conclusions An educational approach to treatment for chronic LBP resulted in at least as good outcomes as a symptom-based physical training method, despite fewer treatment sessions. Trial registration Clinicaltrials.gov: # NCT00410319 PMID:20849601

  5. Physical approaches to biomaterial design

    PubMed Central

    Mitragotri, Samir; Lahann, Joerg

    2009-01-01

    The development of biomaterials for drug delivery, tissue engineering and medical diagnostics has traditionally been based on new chemistries. However, there is growing recognition that the physical as well as the chemical properties of materials can regulate biological responses. Here, we review this transition with regard to selected physical properties including size, shape, mechanical properties, surface texture and compartmentalization. In each case, we present examples demonstrating the significance of these properties in biology. We also discuss synthesis methods and biological applications for designer biomaterials, which offer unique physical properties. PMID:19096389

  6. Low-Cost Sensor System Design for In-Home Physical Activity Tracking.

    PubMed

    Nambiar, Siddhartha; Nikolaev, Alexander; Greene, Melissa; Cavuoto, Lora; Bisantz, Ann

    2016-01-01

    An aging and more sedentary population requires interventions aimed at monitoring physical activity, particularly within the home. This research uses simulation, optimization, and regression analyses to assess the feasibility of using a small number of sensors to track movement and infer physical activity levels of older adults. Based on activity data from the American Time Use Survey and assisted living apartment layouts, we determined that using three to four doorway sensors can be used to effectively capture a sufficient amount of movements in order to estimate activity. The research also identified preferred approaches for assigning sensor locations, evaluated the error magnitude inherent in the approach, and developed a methodology to identify which apartment layouts would be best suited for these technologies.

  7. Low-Cost Sensor System Design for In-Home Physical Activity Tracking

    PubMed Central

    Nikolaev, Alexander; Greene, Melissa; Cavuoto, Lora; Bisantz, Ann

    2016-01-01

    An aging and more sedentary population requires interventions aimed at monitoring physical activity, particularly within the home. This research uses simulation, optimization, and regression analyses to assess the feasibility of using a small number of sensors to track movement and infer physical activity levels of older adults. Based on activity data from the American Time Use Survey and assisted living apartment layouts, we determined that using three to four doorway sensors can be used to effectively capture a sufficient amount of movements in order to estimate activity. The research also identified preferred approaches for assigning sensor locations, evaluated the error magnitude inherent in the approach, and developed a methodology to identify which apartment layouts would be best suited for these technologies. PMID:28560118

  8. Physics and chemistry-driven artificial neural network for predicting bioactivity of peptides and proteins and their design.

    PubMed

    Huang, Ri-Bo; Du, Qi-Shi; Wei, Yu-Tuo; Pang, Zong-Wen; Wei, Hang; Chou, Kuo-Chen

    2009-02-07

    Predicting the bioactivity of peptides and proteins is an important challenge in drug development and protein engineering. In this study we introduce a novel approach, the so-called "physics and chemistry-driven artificial neural network (Phys-Chem ANN)", to deal with such a problem. Unlike the existing ANN approaches, which were designed under the inspiration of biological neural system, the Phys-Chem ANN approach is based on the physical and chemical principles, as well as the structural features of proteins. In the Phys-Chem ANN model the "hidden layers" are no longer virtual "neurons", but real structural units of proteins and peptides. It is a hybridization approach, which combines the linear free energy concept of quantitative structure-activity relationship (QSAR) with the advanced mathematical technique of ANN. The Phys-Chem ANN approach has adopted an iterative and feedback procedure, incorporating both machine-learning and artificial intelligence capabilities. In addition to making more accurate predictions for the bioactivities of proteins and peptides than is possible with the traditional QSAR approach, the Phys-Chem ANN approach can also provide more insights about the relationship between bioactivities and the structures involved than the ANN approach does. As an example of the application of the Phys-Chem ANN approach, a predictive model for the conformational stability of human lysozyme is presented.

  9. Can microbes economically remove sulfur

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, J.L.

    Researchers have reported that refiners who now rely on costly physic-chemical procedures to desulfurize petroleum will soon have an alternative microbial-enzyme-based approach to this process. This new approach is still under development and considerable number chemical engineering problems need to be solved before this process is ready for large-scale use. This paper reviews the several research projects dedicated solving the problems that keep a biotechnology-based alternative from competing with chemical desulfurization.

  10. Turbulent Flow Modification With Thermoacoustic Waves for Separation Control

    DTIC Science & Technology

    2017-08-24

    analyses using two different approaches in order to provide guidance to physics-based design of active flow control using thermal-based actuators. RPPR... control effects are also observed by Post & Corke (2004) on the same airfoil. The uses of plasma actuators on other shear layer setups have been...region may be a more practical approach than introducing control inputs externally. On the other hand, Barone & Lele (2005) studied the receptivity of the

  11. Data base on physical observations of near-Earth asteroids and establishment of a network to coordinate observations of newly discovered near-Earth asteroids

    NASA Technical Reports Server (NTRS)

    Davis, D. R.; Chapman, C. R.; Campins, H.

    1990-01-01

    This program consists of two tasks: (1) development of a data base of physical observations of near-earth asteroids and establishment of a network to coordinate observations of newly discovered earth-approaching asteroids; and (2) a simulation of the surface of low-activity comets. Significant progress was made on task one and, and task two was completed during the period covered by this progress report.

  12. An AMR capable finite element diffusion solver for ALE hydrocodes [An AMR capable diffusion solver for ALE-AMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, A. C.; Bailey, D. S.; Kaiser, T. B.

    2015-02-01

    Here, we present a novel method for the solution of the diffusion equation on a composite AMR mesh. This approach is suitable for including diffusion based physics modules to hydrocodes that support ALE and AMR capabilities. To illustrate, we proffer our implementations of diffusion based radiation transport and heat conduction in a hydrocode called ALE-AMR. Numerical experiments conducted with the diffusion solver and associated physics packages yield 2nd order convergence in the L 2 norm.

  13. Physical Cryptography: A New Approach to Key Generation and Direct Encryption

    DTIC Science & Technology

    2009-11-18

    has been  further studied theoretically and P a g e  | 4    experimentally to only a limited extent. The second is quantum cryptography [3] based on...Std Z39-18 P a g e  | 2    Abstract: The security of key generation and direct encryption in quantum and physical cryptography have been...investigated. It is found that similar to the situation of conventional mathematics based cryptography , fundamental and meaningful security levels for either

  14. Identifying the critical physical demanding tasks of paramedic work: Towards the development of a physical employment standard.

    PubMed

    Fischer, Steven L; Sinden, Kathryn E; MacPhee, Renee S

    2017-11-01

    Public safety related occupations including police, fire and military commonly apply physical employment standard (PES) to facilitate job matching, an approach to evaluate if candidates demonstrate acceptable physical capabilities as required to perform the job safely and effectively. In Canada, paramedics remain as one of the few public safety occupations without an evidence-based, validated PES. The purpose of this study was to document and describe the physical demands of paramedic work and to identify the most physically demanding tasks. These outcomes are essential to inform the design and development of an evidence-based PES for the paramedic sector. Physical demands of paramedic work were documented and described using a direct observation-based task analysis technique. Five paramedic's were trained to document the physical demands of their work, then applied their training to observe more than 90 calls over the course of 20 full 12-h work shifts. Physical demands data were then listed in a survey, administered service-wide, where 155 frontline paramedics identified critically demanding tasks and rank-ordered physical demands from not physically demanding to very strongly demanding. Critically important and physically demanding tasks were identified such as: transferring a patient; loading or unloading a stretcher in to or out of the ambulance; performing CPR; and, raising and lowering a stretcher. It is important that a paramedic-based PES evaluate a candidate's physical capabilities to perform the critical and physically demanding tasks identified in this study. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Constructing constitutive relationships for seismic and aseismic fault slip

    USGS Publications Warehouse

    Beeler, N.M.

    2009-01-01

    For the purpose of modeling natural fault slip, a useful result from an experimental fault mechanics study would be a physically-based constitutive relation that well characterizes all the relevant observations. This report describes an approach for constructing such equations. Where possible the construction intends to identify or, at least, attribute physical processes and contact scale physics to the observations such that the resulting relations can be extrapolated in conditions and scale between the laboratory and the Earth. The approach is developed as an alternative but is based on Ruina (1983) and is illustrated initially by constructing a couple of relations from that study. In addition, two example constitutive relationships are constructed; these describe laboratory observations not well-modeled by Ruina's equations: the unexpected shear-induced weakening of silica-rich rocks at high slip speed (Goldsby and Tullis, 2002) and fault strength in the brittle ductile transition zone (Shimamoto, 1986). The examples, provided as illustration, may also be useful for quantitative modeling.

  16. Atomic and molecular far-infrared lines from high redshift galaxies

    NASA Astrophysics Data System (ADS)

    Vallini, L.

    2015-03-01

    The advent of Atacama Large Millimeter-submillimeter Array (ALMA), with its unprecedented sensitivity, makes it possible the detection of far-infrared (FIR) metal cooling and molecular lines from the first galaxies that formed after the Big Bang. These lines represent a powerful tool to shed light on the physical properties of the interstellar medium (ISM) in high-redshift sources. In what follows we show the potential of a physically motivated theoretical approach that we developed to predict the ISM properties of high redshift galaxies. The model allows to infer, as a function of the metallicity, the luminosities of various FIR lines observable with ALMA. It is based on high resolution cosmological simulations of star-forming galaxies at the end of the Epoch of Reionization (z˜eq6) , further implemented with sub-grid physics describing the cooling and the heating processes that take place in the neutral diffuse ISM. Finally we show how a different approach based on semi-analytical calculations can allow to predict the CO flux function at z>6.

  17. The importance of economic, social and cultural capital in understanding health inequalities: using a Bourdieu-based approach in research on physical and mental health perceptions.

    PubMed

    Pinxten, Wouter; Lievens, John

    2014-09-01

    In this article we adopt a Bourdieu-based approach to study social inequalities in perceptions of mental and physical health. Most research takes into account the impact of economic or social capital on health inequalities. Bourdieu, however, distinguishes between three forms of capital that can determine peoples' social position: economic, social and cultural capital. Health research examining the effects of cultural capital is scarce. By simultaneously considering and modelling indicators of each of Bourdieu's forms of capital, we further the understanding of the dynamics of health inequalities. Using data from a large-scale representative survey (N = 1825) in Flanders, Belgium, we find that each of the forms of capital has a net effect on perceptions of physical and mental health, which persists after controlling for the other forms of capital and for the effects of other correlates of perceived health. The only exception is that the cultural capital indicators are not related to mental health. These results confirm the value of a Bourdieu-based approach and indicate the need to consider economic, social and cultural capital to obtain a better understanding of social inequality in health. © 2014 The Authors. Sociology of Health & Illness © 2014 Foundation for the Sociology of Health & Illness/John Wiley & Sons Ltd.

  18. Scale-invariant entropy-based theory for dynamic ordering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahulikar, Shripad P., E-mail: spm@iitmandi.ac.in, E-mail: spm@aero.iitb.ac.in; Department of Aerospace Engineering, Indian Institute of Technology Bombay, Mumbai 400076; Kumari, Priti

    2014-09-01

    Dynamically Ordered self-organized dissipative structure exists in various forms and at different scales. This investigation first introduces the concept of an isolated embedding system, which embeds an open system, e.g., dissipative structure and its mass and/or energy exchange with its surroundings. Thereafter, scale-invariant theoretical analysis is presented using thermodynamic principles for Order creation, existence, and destruction. The sustainability criterion for Order existence based on its structured mass and/or energy interactions with the surroundings is mathematically defined. This criterion forms the basis for the interrelationship of physical parameters during sustained existence of dynamic Order. It is shown that the sufficient conditionmore » for dynamic Order existence is approached if its sustainability criterion is met, i.e., its destruction path is blocked. This scale-invariant approach has the potential to unify the physical understanding of universal dynamic ordering based on entropy considerations.« less

  19. Physics Based Modeling and Rendering of Vegetation in the Thermal Infrared

    NASA Technical Reports Server (NTRS)

    Smith, J. A.; Ballard, J. R., Jr.

    1999-01-01

    We outline a procedure for rendering physically-based thermal infrared images of simple vegetation scenes. Our approach incorporates the biophysical processes that affect the temperature distribution of the elements within a scene. Computer graphics plays a key role in two respects. First, in computing the distribution of scene shaded and sunlit facets and, second, in the final image rendering once the temperatures of all the elements in the scene have been computed. We illustrate our approach for a simple corn scene where the three-dimensional geometry is constructed based on measured morphological attributes of the row crop. Statistical methods are used to construct a representation of the scene in agreement with the measured characteristics. Our results are quite good. The rendered images exhibit realistic behavior in directional properties as a function of view and sun angle. The root-mean-square error in measured versus predicted brightness temperatures for the scene was 2.1 deg C.

  20. Multi-level Discourse Analysis in a Physics Teaching Methods Course from the Psychological Perspective of Activity Theory

    NASA Astrophysics Data System (ADS)

    Vieira, Rodrigo Drumond; Kelly, Gregory J.

    2014-11-01

    In this paper, we present and apply a multi-level method for discourse analysis in science classrooms. This method is based on the structure of human activity (activity, actions, and operations) and it was applied to study a pre-service physics teacher methods course. We argue that such an approach, based on a cultural psychological perspective, affords opportunities for analysts to perform a theoretically based detailed analysis of discourse events. Along with the presentation of analysis, we show and discuss how the articulation of different levels offers interpretative criteria for analyzing instructional conversations. We synthesize the results into a model for a teacher's practice and discuss the implications and possibilities of this approach for the field of discourse analysis in science classrooms. Finally, we reflect on how the development of teachers' understanding of their activity structures can contribute to forms of progressive discourse of science education.

  1. Evolution of accelerometer methods for physical activity research.

    PubMed

    Troiano, Richard P; McClain, James J; Brychta, Robert J; Chen, Kong Y

    2014-07-01

    The technology and application of current accelerometer-based devices in physical activity (PA) research allow the capture and storage or transmission of large volumes of raw acceleration signal data. These rich data not only provide opportunities to improve PA characterisation, but also bring logistical and analytic challenges. We discuss how researchers and developers from multiple disciplines are responding to the analytic challenges and how advances in data storage, transmission and big data computing will minimise logistical challenges. These new approaches also bring the need for several paradigm shifts for PA researchers, including a shift from count-based approaches and regression calibrations for PA energy expenditure (PAEE) estimation to activity characterisation and EE estimation based on features extracted from raw acceleration signals. Furthermore, a collaborative approach towards analytic methods is proposed to facilitate PA research, which requires a shift away from multiple independent calibration studies. Finally, we make the case for a distinction between PA represented by accelerometer-based devices and PA assessed by self-report. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  2. Predicting Physical Activity-Related Outcomes in Overweight and Obese Adults: A Health Action Process Approach.

    PubMed

    Hattar, Anne; Pal, Sebely; Hagger, Martin S

    2016-03-01

    We tested the adequacy of a model based on the Health Action Process Approach (HAPA) in predicting changes in psychological, body composition, and cardiovascular risk outcomes with respect to physical activity participation in overweight and obese adults. Measures of HAPA constructs (action and maintenance self-efficacy, outcome expectancies, action planning, risk perceptions, intentions, behaviour), psychological outcomes (quality of life, depression, anxiety, stress symptoms), body composition variables (body weight, body fat mass), cardiovascular risk measures (total cholesterol, low density lipoprotein), and self-reported physical activity behaviour were administered to participants (N = 74) at baseline, and 6 and 12 weeks later. Data were analysed using variance-based structural equation modelling with residualised change scores for HAPA variables. The model revealed effects of action self-efficacy and outcome expectancies on physical activity intentions, action self-efficacy on maintenance self-efficacy, and maintenance self-efficacy and intentions on action planning. Intention predicted psychological and body composition outcomes indirectly through physical activity behaviour. Action planning was a direct predictor of psychological, cardiovascular, and body composition outcomes. Data supported HAPA hypotheses in relation to intentions and behaviour, but not the role of action planning as a mediator of the intention-behaviour relationship. Action planning predicted outcomes independent of intentions and behaviour. © 2016 The International Association of Applied Psychology.

  3. On-line integration of computer controlled diagnostic devices and medical information systems in undergraduate medical physics education for physicians.

    PubMed

    Hanus, Josef; Nosek, Tomas; Zahora, Jiri; Bezrouk, Ales; Masin, Vladimir

    2013-01-01

    We designed and evaluated an innovative computer-aided-learning environment based on the on-line integration of computer controlled medical diagnostic devices and a medical information system for use in the preclinical medical physics education of medical students. Our learning system simulates the actual clinical environment in a hospital or primary care unit. It uses a commercial medical information system for on-line storage and processing of clinical type data acquired during physics laboratory classes. Every student adopts two roles, the role of 'patient' and the role of 'physician'. As a 'physician' the student operates the medical devices to clinically assess 'patient' colleagues and records all results in an electronic 'patient' record. We also introduced an innovative approach to the use of supportive education materials, based on the methods of adaptive e-learning. A survey of student feedback is included and statistically evaluated. The results from the student feedback confirm the positive response of the latter to this novel implementation of medical physics and informatics in preclinical education. This approach not only significantly improves learning of medical physics and informatics skills but has the added advantage that it facilitates students' transition from preclinical to clinical subjects. Copyright © 2011 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  4. Agent autonomy approach to probabilistic physics-of-failure modeling of complex dynamic systems with interacting failure mechanisms

    NASA Astrophysics Data System (ADS)

    Gromek, Katherine Emily

    A novel computational and inference framework of the physics-of-failure (PoF) reliability modeling for complex dynamic systems has been established in this research. The PoF-based reliability models are used to perform a real time simulation of system failure processes, so that the system level reliability modeling would constitute inferences from checking the status of component level reliability at any given time. The "agent autonomy" concept is applied as a solution method for the system-level probabilistic PoF-based (i.e. PPoF-based) modeling. This concept originated from artificial intelligence (AI) as a leading intelligent computational inference in modeling of multi agents systems (MAS). The concept of agent autonomy in the context of reliability modeling was first proposed by M. Azarkhail [1], where a fundamentally new idea of system representation by autonomous intelligent agents for the purpose of reliability modeling was introduced. Contribution of the current work lies in the further development of the agent anatomy concept, particularly the refined agent classification within the scope of the PoF-based system reliability modeling, new approaches to the learning and the autonomy properties of the intelligent agents, and modeling interacting failure mechanisms within the dynamic engineering system. The autonomous property of intelligent agents is defined as agent's ability to self-activate, deactivate or completely redefine their role in the analysis. This property of agents and the ability to model interacting failure mechanisms of the system elements makes the agent autonomy fundamentally different from all existing methods of probabilistic PoF-based reliability modeling. 1. Azarkhail, M., "Agent Autonomy Approach to Physics-Based Reliability Modeling of Structures and Mechanical Systems", PhD thesis, University of Maryland, College Park, 2007.

  5. Using community-based participatory research to identify potential interventions to overcome barriers to adolescents’ healthy eating and physical activity

    PubMed Central

    Goh, Ying-Ying; Sipple-Asher, Bessie Ko; Uyeda, Kimberly; Hawes-Dawson, Jennifer; Olarita-Dhungana, Josephina; Ryan, Gery W.; Schuster, Mark A.

    2010-01-01

    Using a community-based participatory research approach, we explored adolescent, parent, and community stakeholder perspectives on barriers to healthy eating and physical activity, and intervention ideas to address adolescent obesity. We conducted 14 adolescent focus groups (n = 119), 8 parent focus groups (n = 63), and 28 interviews with community members (i.e., local experts knowledgeable about youth nutrition and physical activity). Participants described ecological and psychosocial barriers in neighborhoods (e.g., lack of accessible nutritious food), in schools (e.g., poor quality of physical education), at home (e.g., sedentary lifestyle), and at the individual level (e.g., lack of nutrition knowledge). Participants proposed interventions such as nutrition classes for families, addition of healthy school food options that appeal to students, and non-competitive physical education activities. Participants supported health education delivered by students. Findings demonstrate that community-based participatory research is useful for revealing potentially feasible interventions that are acceptable to community members. PMID:19544091

  6. Modelling strategies to predict the multi-scale effects of rural land management change

    NASA Astrophysics Data System (ADS)

    Bulygina, N.; Ballard, C. E.; Jackson, B. M.; McIntyre, N.; Marshall, M.; Reynolds, B.; Wheater, H. S.

    2011-12-01

    Changes to the rural landscape due to agricultural land management are ubiquitous, yet predicting the multi-scale effects of land management change on hydrological response remains an important scientific challenge. Much empirical research has been of little generic value due to inadequate design and funding of monitoring programmes, while the modelling issues challenge the capability of data-based, conceptual and physics-based modelling approaches. In this paper we report on a major UK research programme, motivated by a national need to quantify effects of agricultural intensification on flood risk. Working with a consortium of farmers in upland Wales, a multi-scale experimental programme (from experimental plots to 2nd order catchments) was developed to address issues of upland agricultural intensification. This provided data support for a multi-scale modelling programme, in which highly detailed physics-based models were conditioned on the experimental data and used to explore effects of potential field-scale interventions. A meta-modelling strategy was developed to represent detailed modelling in a computationally-efficient manner for catchment-scale simulation; this allowed catchment-scale quantification of potential management options. For more general application to data-sparse areas, alternative approaches were needed. Physics-based models were developed for a range of upland management problems, including the restoration of drained peatlands, afforestation, and changing grazing practices. Their performance was explored using literature and surrogate data; although subject to high levels of uncertainty, important insights were obtained, of practical relevance to management decisions. In parallel, regionalised conceptual modelling was used to explore the potential of indices of catchment response, conditioned on readily-available catchment characteristics, to represent ungauged catchments subject to land management change. Although based in part on speculative relationships, significant predictive power was derived from this approach. Finally, using a formal Bayesian procedure, these different sources of information were combined with local flow data in a catchment-scale conceptual model application , i.e. using small-scale physical properties, regionalised signatures of flow and available flow measurements.

  7. Does country-context matter? A cross-national analysis of gender and leisure time physical inactivity in Europe.

    PubMed

    Van Tuyckom, Charlotte; Van de Velde, Sarah; Bracke, Piet

    2013-06-01

    It is well known that European women are less physically active in their leisure time than European men. Attempts to explain this gender difference often do not succeed in raising the problem above the individual level. However, the size of the disadvantage for women varies considerably across countries, proving that leisure time physical (in)activity takes place in a broader societal context and must also be approached as such. In this sense, some authors have explained women's lack of leisure time physical activity in terms of gendered power relations in society. Therefore, the present article postulates that over and above the individual effect of gender, there is an additional impact of a society's gender-based (in)equality distribution. By means of the 2005 Eurobarometer survey (comprising 25,745 adults from 27 European countries), gender differences in leisure time physical inactivity (LTPI) were analysed by means of multilevel logistic regression analysis. National gender-based (in)equality was measured by the Gender Empowerment Measure and the Gender Gap Index. Controlled for compositional effects, gender differences in LTPI varied as a function of gender-related characteristics at the macro-level. In particular, in countries characterized by high levels of gender-based equality, LTPI differences between men and women even disappeared. The findings underscore the need to adopt a society-level approach and to incorporate socio-contextual factors in the study of gender disparities in LTPI.

  8. New light field camera based on physical based rendering tracing

    NASA Astrophysics Data System (ADS)

    Chung, Ming-Han; Chang, Shan-Ching; Lee, Chih-Kung

    2014-03-01

    Even though light field technology was first invented more than 50 years ago, it did not gain popularity due to the limitation imposed by the computation technology. With the rapid advancement of computer technology over the last decade, the limitation has been uplifted and the light field technology quickly returns to the spotlight of the research stage. In this paper, PBRT (Physical Based Rendering Tracing) was introduced to overcome the limitation of using traditional optical simulation approach to study the light field camera technology. More specifically, traditional optical simulation approach can only present light energy distribution but typically lack the capability to present the pictures in realistic scenes. By using PBRT, which was developed to create virtual scenes, 4D light field information was obtained to conduct initial data analysis and calculation. This PBRT approach was also used to explore the light field data calculation potential in creating realistic photos. Furthermore, we integrated the optical experimental measurement results with PBRT in order to place the real measurement results into the virtually created scenes. In other words, our approach provided us with a way to establish a link of virtual scene with the real measurement results. Several images developed based on the above-mentioned approaches were analyzed and discussed to verify the pros and cons of the newly developed PBRT based light field camera technology. It will be shown that this newly developed light field camera approach can circumvent the loss of spatial resolution associated with adopting a micro-lens array in front of the image sensors. Detailed operational constraint, performance metrics, computation resources needed, etc. associated with this newly developed light field camera technique were presented in detail.

  9. DATA ASSIMILATION APPROACH FOR FORECAST OF SOLAR ACTIVITY CYCLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kitiashvili, Irina N., E-mail: irina.n.kitiashvili@nasa.gov

    Numerous attempts to predict future solar cycles are mostly based on empirical relations derived from observations of previous cycles, and they yield a wide range of predicted strengths and durations of the cycles. Results obtained with current dynamo models also deviate strongly from each other, thus raising questions about criteria to quantify the reliability of such predictions. The primary difficulties in modeling future solar activity are shortcomings of both the dynamo models and observations that do not allow us to determine the current and past states of the global solar magnetic structure and its dynamics. Data assimilation is a relativelymore » new approach to develop physics-based predictions and estimate their uncertainties in situations where the physical properties of a system are not well-known. This paper presents an application of the ensemble Kalman filter method for modeling and prediction of solar cycles through use of a low-order nonlinear dynamo model that includes the essential physics and can describe general properties of the sunspot cycles. Despite the simplicity of this model, the data assimilation approach provides reasonable estimates for the strengths of future solar cycles. In particular, the prediction of Cycle 24 calculated and published in 2008 is so far holding up quite well. In this paper, I will present my first attempt to predict Cycle 25 using the data assimilation approach, and discuss the uncertainties of that prediction.« less

  10. Research-design model for professional development of teachers: Designing lessons with physics education research

    NASA Astrophysics Data System (ADS)

    Eylon, Bat-Sheva; Bagno, Esther

    2006-12-01

    How can one increase the awareness of teachers to the existence and importance of knowledge gained through physics education research (PER) and provide them with capabilities to use it? How can one enrich teachers’ physics knowledge and the related pedagogical content knowledge of topics singled out by PER? In this paper we describe a professional development model that attempts to respond to these needs. We report on a study of the model’s implementation in a program for 22 high-school experienced physics teachers. In this program teachers (in teams of 5-6) developed during a year and a half (about 330h ), several lessons (minimodules) dealing with a topic identified as problematic by PER. The teachers employed a systematic research-based approach and used PER findings. The program consisted of three stages, each culminating with a miniconference: 1. Defining teaching and/or learning goals based on content analysis and diagnosis of students’ prior knowledge. 2. Designing the lessons using PER-based instructional strategies. 3. Performing a small-scale research study that accompanies the development process and publishing the results. We describe a case study of one of the groups and bring evidence that demonstrates how the workshop advanced: (a) Teachers’ awareness of deficiencies in their own knowledge of physics and pedagogy, and their perceptions about their students’ knowledge; (b) teachers’ knowledge of physics and physics pedagogy; (c) a systematic research-based approach to the design of lessons; (d) the formation of a community of practice; and (e) acquaintance with central findings of PER. There was a clear effect on teachers’ practice in the context of the study as indicated by the materials brought to the workshop. The teachers also reported that they continued to use the insights gained, mainly in the topics that were investigated by themselves and by their peers.

  11. Developing a coordinated school health approach to child obesity prevention in rural Appalachia: results of focus groups with teachers, parents, and students.

    PubMed

    Schetzina, Karen E; Dalton, William T; Lowe, Elizabeth F; Azzazy, Nora; Vonwerssowetz, Katrina M; Givens, Connie; Stern, Harold P

    2009-01-01

    High prevalence rates of obesity, particularly among those residing in US rural areas, and associated physical and psychosocial health consequences, direct attention to the need for effective prevention programs. The current study describes an initial step in developing a school-based obesity prevention program in rural Appalachia, USA. The program, modeled on the Centers for Disease Control and Prevention Coordinated School Health (CSH) Program, includes a community-based participatory research approach to addressing the health needs specific to this region. Focus groups with teachers, parents, and 4th grade students were used to understand perceptions and school policy related to nutrition, physical activity, and the role of the school in obesity prevention. Results revealed that these community stakeholders were concerned about the problem of child obesity and supported the idea of their school doing more to improve the diet and physical activity of its students. Specifically, all groups thought that foods and drinks consumed by students at school should be healthier and that they should have more opportunities for physical activity. However, they cited limitations of the school environment, academic pressures, and lack of parental support as potential barriers to making such changes. Parents were most concerned that their children were not getting enough to eat and they and the teachers were not in favor of BMI screening at the school. Parents were in favor of increasing physical activity during school and thought that parent volunteers should help students select foods in the cafeteria. Students cited examples of how diet and physical activity affect their health and school performance, and thought that they should have more physical education time and recess. The data collected in the current study contributed to the limited knowledge base regarding rural populations as well as identified strengths and potential barriers to assist with the development of a pilot program based on the CSH model, Winning with Wellness.

  12. Dealing with the Challenges of Teaching Molecular Biophysics to Biochemistry Majors through an Heuristics-Based Approach

    ERIC Educational Resources Information Center

    Castanho, Miguel A. R. B.

    2002-01-01

    The main distinction between the overlapping fields of molecular biophysics and biochemistry resides in their different approaches to the same problems. Molecular biophysics makes more use of physical techniques and focuses on quantitative data. This difference encounters two difficult pedagogical challenges when teaching molecular biophysics to…

  13. Williams Holistic Approach Model (WHAM): Sustainable University Leadership from the Perspective of a Woman Physicist

    ERIC Educational Resources Information Center

    Williams, Elvira S.

    2010-01-01

    University leadership from career and organizational viewpoints are discussed from the perspective of a woman physicist. Laws of physics are used, through appropriate analogies, as templates for structuring useful life lessons on holistic WHAM leadership. Interactive university skill sets and program policies based on holistic WHAM approaches are…

  14. Designing the Speech Communication Classroom: A Viable Alternative.

    ERIC Educational Resources Information Center

    Springhorn, Ron G.

    This paper presents a structure for the speech communication classroom, based on a philosophically existential approach to education. The following suggestions are offered to those considering such an approach. There should be movable furniture, enabling students to move about and to turn toward one another so that they can be physically in…

  15. Does Constructivist Approach Applicable through Concept Maps to Achieve Meaningful Learning in Science?

    ERIC Educational Resources Information Center

    Jena, Ananta Kumar

    2012-01-01

    This study deals with the application of constructivist approach through individual and cooperative modes of spider and hierarchical concept maps to achieve meaningful learning on science concepts (e.g. acids, bases & salts, physical and chemical changes). The main research questions were: Q (1): is there any difference in individual and…

  16. Views about Physics Held by Physics Teachers with Differing Approaches to Teaching Physics

    ERIC Educational Resources Information Center

    Mulhall, Pamela; Gunstone, Richard

    2008-01-01

    Physics teachers' approaches to teaching physics are generally considered to be linked to their views about physics. In this qualitative study, the views about physics held by a group of physics teachers whose teaching practice was traditional were explored and compared with the views held by physics teachers who used conceptual change approaches.…

  17. P3: a practice focused learning environment

    NASA Astrophysics Data System (ADS)

    Irving, Paul W.; Obsniuk, Michael J.; Caballero, Marcos D.

    2017-09-01

    There has been an increased focus on the integration of practices into physics curricula, with a particular emphasis on integrating computation into the undergraduate curriculum of scientists and engineers. In this paper, we present a university-level, introductory physics course for science and engineering majors at Michigan State University called P3 (projects and practices in physics) that is centred around providing introductory physics students with the opportunity to appropriate various science and engineering practices. The P3 design integrates computation with analytical problem solving and is built upon a curriculum foundation of problem-based learning, the principles of constructive alignment and the theoretical framework of community of practice. The design includes an innovative approach to computational physics instruction, instructional scaffolds, and a unique approach to assessment that enables instructors to guide students in the development of the practices of a physicist. We present the very positive student related outcomes of the design gathered via attitudinal and conceptual inventories and research interviews of students’ reflecting on their experiences in the P3 classroom.

  18. Multi-objective optimisation and decision-making of space station logistics strategies

    NASA Astrophysics Data System (ADS)

    Zhu, Yue-he; Luo, Ya-zhong

    2016-10-01

    Space station logistics strategy optimisation is a complex engineering problem with multiple objectives. Finding a decision-maker-preferred compromise solution becomes more significant when solving such a problem. However, the designer-preferred solution is not easy to determine using the traditional method. Thus, a hybrid approach that combines the multi-objective evolutionary algorithm, physical programming, and differential evolution (DE) algorithm is proposed to deal with the optimisation and decision-making of space station logistics strategies. A multi-objective evolutionary algorithm is used to acquire a Pareto frontier and help determine the range parameters of the physical programming. Physical programming is employed to convert the four-objective problem into a single-objective problem, and a DE algorithm is applied to solve the resulting physical programming-based optimisation problem. Five kinds of objective preference are simulated and compared. The simulation results indicate that the proposed approach can produce good compromise solutions corresponding to different decision-makers' preferences.

  19. A statistical physics perspective on alignment-independent protein sequence comparison.

    PubMed

    Chattopadhyay, Amit K; Nasiev, Diar; Flower, Darren R

    2015-08-01

    Within bioinformatics, the textual alignment of amino acid sequences has long dominated the determination of similarity between proteins, with all that implies for shared structure, function and evolutionary descent. Despite the relative success of modern-day sequence alignment algorithms, so-called alignment-free approaches offer a complementary means of determining and expressing similarity, with potential benefits in certain key applications, such as regression analysis of protein structure-function studies, where alignment-base similarity has performed poorly. Here, we offer a fresh, statistical physics-based perspective focusing on the question of alignment-free comparison, in the process adapting results from 'first passage probability distribution' to summarize statistics of ensemble averaged amino acid propensity values. In this article, we introduce and elaborate this approach. © The Author 2015. Published by Oxford University Press.

  20. Requirements on a community-based intervention for stimulating physical activity in physically disabled people: a focus group study amongst experts.

    PubMed

    Krops, Leonie A; Hols, Doortje H J; Folkertsma, Nienke; Dijkstra, Pieter U; Geertzen, Jan H B; Dekker, Rienk

    2017-06-14

    To explore ideas experts, working in the field of physical activity for people with a disability, pose on a stimulating movement intervention for physically disabled people longer than one year post rehabilitation or not familiar with rehabilitation. Four semi-structured focus groups were conducted with experts (n = 28). Transcripts were analysed following thematic analysis, using the integrated physical activity for people with a disability and intervention mapping model. Experts expressed no need for a new intervention, but, instead, a need for adapting an existing intervention, and increased collaboration between organisations. Such an adapted intervention should aim to change participants and environmental attitude towards physical activity, and to increase visibility of potential activities. Several methods were mentioned, for instance individual coaching. Potential participants should be personally approached via various intermediates. The intervention owner and government are responsible for stimulating physical activity and should finance an intervention together with health insurances and the user. According to experts adapting an existing intervention, together with increased collaboration between organisations, will be effective in stimulating physical activity in the target population. This study provides requirements on an intervention to stimulate physical activity, and suggestions for the approach of the target population, finance, and responsibility. Implications for Rehabilitation There is no need for designing a new intervention, but need for adaptation of an existing intervention for stimulating physical activity in physically disabled people. An intervention to stimulate physical activity in physically disabled people should aim to change participants and environmental attitude towards physical activity, and to increase the visibility of potential activities. Methods for stimulating physical activity in physically disabled people could be the use of individual coaching, feedback, a trial period, and role models. Potential participants should be personally approached via a network of intermediate organisations and via marketing, and the social environment.

  1. Proceedings 3rd NASA/IEEE Workshop on Formal Approaches to Agent-Based Systems (FAABS-III)

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael (Editor); Rash, James (Editor); Truszkowski, Walt (Editor); Rouff, Christopher (Editor)

    2004-01-01

    These preceedings contain 18 papers and 4 poster presentation, covering topics such as: multi-agent systems, agent-based control, formalism, norms, as well as physical and biological models of agent-based systems. Some applications presented in the proceedings include systems analysis, software engineering, computer networks and robot control.

  2. Citrus Quality Control: An NMR/MRI Problem-Based Experiment

    ERIC Educational Resources Information Center

    Erhart, Sarah E.; McCarrick, Robert M.; Lorigan, Gary A.; Yezierski, Ellen J.

    2016-01-01

    An experiment seated in an industrial context can provide an engaging framework and unique learning opportunity for an upper-division physical chemistry laboratory. An experiment that teaches NMR/MRI through a problem-based quality control of citrus products was developed. In this experiment, using a problem-based learning (PBL) approach, students…

  3. 78 FR 16921 - Physical Protection of Byproduct Material

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-19

    ... 1 and category 2 thresholds are based on the quantities established by the International Atomic... orders that were issued to licensees using a graded approach based on the relative risk and quantity of... 5,400 Ytterbium-169 300 8,100 3 81.0 These materials and thresholds are based on the IAEA Code of...

  4. Identifying Multiple Levels of Discussion-Based Teaching Strategies for Constructing Scientific Models

    ERIC Educational Resources Information Center

    Williams, Grant; Clement, John

    2015-01-01

    This study sought to identify specific types of discussion-based strategies that two successful high school physics teachers using a model-based approach utilized in attempting to foster students' construction of explanatory models for scientific concepts. We found evidence that, in addition to previously documented dialogical strategies that…

  5. A framework for the design and development of physical employment tests and standards.

    PubMed

    Payne, W; Harvey, J

    2010-07-01

    Because operational tasks in the uniformed services (military, police, fire and emergency services) are physically demanding and incur the risk of injury, employment policy in these services is usually competency based and predicated on objective physical employment standards (PESs) based on physical employment tests (PETs). In this paper, a comprehensive framework for the design of PETs and PESs is presented. Three broad approaches to physical employment testing are described and compared: generic predictive testing; task-related predictive testing; task simulation testing. Techniques for the selection of a set of tests with good coverage of job requirements, including job task analysis, physical demands analysis and correlation analysis, are discussed. Regarding individual PETs, theoretical considerations including measurability, discriminating power, reliability and validity, and practical considerations, including development of protocols, resource requirements, administrative issues and safety, are considered. With regard to the setting of PESs, criterion referencing and norm referencing are discussed. STATEMENT OF RELEVANCE: This paper presents an integrated and coherent framework for the development of PESs and hence provides a much needed theoretically based but practically oriented guide for organisations seeking to establish valid and defensible PESs.

  6. Korean immigrant women's physical activity experience: a situation-specific theory.

    PubMed

    Im, Eun-Ok; Chang, Sun Ju; Nguyen, Giang; Stringer, Lynn; Chee, Wonshik; Chee, Eunice

    2015-01-01

    To develop successful physical activity promotion programs for midlife immigrant women, especially for Korean immigrant midlife women, concrete theoretical bases are needed. However, virtually no theoretical frameworks and/or theories exist that can explain the influences of immigration transition on the physical activity experience of midlife immigrant women in general or Korean immigrant midlife women in specific. The purpose of this article is to present a situation-specific theory on physical activity experience of Korean immigrant midlife women (SPAKIM) with its development process. An integrative approach was used to develop the theory based on the midlife women's attitudes toward physical activity (MAPA) theory, the transitions theory, a review of the relevant literature, and two studies on midlife women's attitudes toward physical activity. The proposed theory includes nature of transitions, nonmodifiable and modifiable transition conditions, contexts of daily life, patterns of response, and nursing therapeutics as major concepts, and each major concept includes several related subconcepts. Because several concepts of the theory were developed mainly based on the literature review, the major concepts and related subconcepts need to be further developed and evaluated in future studies.

  7. Science and engineering research opportunities at the National Science Foundation.

    PubMed

    Demir, Semahat S

    2004-01-01

    Research at the interface of the physical sciences and life sciences has produced remarkable advances and understanding in biology and medicine over the past fifty years. These bases for many of these healthcare and research advances have been discoveries in the quantitative sciences and engineering approaches to applying them. The National Science Foundation supports research and development in the physical sciences which underpins multi-disciplinary approaches to addressing problems in biology and medicine. This presentation will cover research opportunities offered by the NSF and collaborative programs with the NIH to transfer the resulting advances and technologies.

  8. Lattice hydrodynamic model based traffic control: A transportation cyber-physical system approach

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Sun, Dihua; Liu, Weining

    2016-11-01

    Lattice hydrodynamic model is a typical continuum traffic flow model, which describes the jamming transition of traffic flow properly. Previous studies in lattice hydrodynamic model have shown that the use of control method has the potential to improve traffic conditions. In this paper, a new control method is applied in lattice hydrodynamic model from a transportation cyber-physical system approach, in which only one lattice site needs to be controlled in this control scheme. The simulation verifies the feasibility and validity of this method, which can ensure the efficient and smooth operation of the traffic flow.

  9. Development of computer-based analytical tool for assessing physical protection system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mardhi, Alim, E-mail: alim-m@batan.go.id; Chulalongkorn University, Faculty of Engineering, Nuclear Engineering Department, 254 Phayathai Road, Pathumwan, Bangkok Thailand. 10330; Pengvanich, Phongphaeth, E-mail: ppengvan@gmail.com

    Assessment of physical protection system effectiveness is the priority for ensuring the optimum protection caused by unlawful acts against a nuclear facility, such as unauthorized removal of nuclear materials and sabotage of the facility itself. Since an assessment based on real exercise scenarios is costly and time-consuming, the computer-based analytical tool can offer the solution for approaching the likelihood threat scenario. There are several currently available tools that can be used instantly such as EASI and SAPE, however for our research purpose it is more suitable to have the tool that can be customized and enhanced further. In this work,more » we have developed a computer–based analytical tool by utilizing the network methodological approach for modelling the adversary paths. The inputs are multi-elements in security used for evaluate the effectiveness of the system’s detection, delay, and response. The tool has capability to analyze the most critical path and quantify the probability of effectiveness of the system as performance measure.« less

  10. Development of computer-based analytical tool for assessing physical protection system

    NASA Astrophysics Data System (ADS)

    Mardhi, Alim; Pengvanich, Phongphaeth

    2016-01-01

    Assessment of physical protection system effectiveness is the priority for ensuring the optimum protection caused by unlawful acts against a nuclear facility, such as unauthorized removal of nuclear materials and sabotage of the facility itself. Since an assessment based on real exercise scenarios is costly and time-consuming, the computer-based analytical tool can offer the solution for approaching the likelihood threat scenario. There are several currently available tools that can be used instantly such as EASI and SAPE, however for our research purpose it is more suitable to have the tool that can be customized and enhanced further. In this work, we have developed a computer-based analytical tool by utilizing the network methodological approach for modelling the adversary paths. The inputs are multi-elements in security used for evaluate the effectiveness of the system's detection, delay, and response. The tool has capability to analyze the most critical path and quantify the probability of effectiveness of the system as performance measure.

  11. Physical activity promotion in business and industry: evidence, context, and recommendations for a national plan.

    PubMed

    Pronk, Nicolaas P

    2009-11-01

    The contemporary workplace setting is in need of interventions that effectively promote higher levels of occupational and habitual physical activity. It is the purpose of this paper to outline an evidence-based approach to promote physical activity in the business and industry sector in support of a National Physical Activity Plan. Comprehensive literature searches identified systematic reviews, comprehensive reviews, and consensus documents on the impact of physical activity interventions in the business and industry sector. A framework for action and priority recommendations for practice and research were generated. Comprehensive, multicomponent work-site programs that include physical activity components generate significant improvements in health, reduce absenteeism and sick leave, and can generate a positive financial return. Specific evidence-based physical activity interventions are presented. Recommendations for practice include implementing comprehensive, multicomponent programs that make physical activity interventions possible, simple, rewarding and relevant in the context of a social-ecological model. The business and industry sector has significant opportunities to improve physical activity among employees, their dependents, and the community at-large and to reap important benefits related to worker health and business performance.

  12. Physical Activity Promotion in Business and Industry: Evidence, Context, and Recommendations for a National Plan.

    PubMed

    Pronk, Nicolaas P

    2009-11-01

    The contemporary workplace setting is in need of interventions that effectively promote higher levels of occupational and habitual physical activity. It is the purpose of this paper to outline an evidence-based approach to promote physical activity in the business and industry sector in support of a National Physical Activity Plan. Comprehensive literature searches identified systematic reviews, comprehensive reviews, and consensus documents on the impact of physical activity interventions in the business and industry sector. A framework for action and priority recommendations for practice and research were generated. Comprehensive, multicomponent worksite programs that include physical activity components generate significant improvements in health, reduce absenteeism and sick leave, and can generate a positive financial return. Specific evidence-based physical activity interventions are presented. Recommendations for practice include implementing comprehensive, multicomponent programs that make physical activity interventions possible, simple, rewarding and relevant in the context of a social-ecological model. The business and industry sector has significant opportunities to improve physical activity among employees, their dependents, and the community at-large and to reap important benefits related to worker health and business performance.

  13. Competency based teaching of college physics: The philosophy and the practice

    NASA Astrophysics Data System (ADS)

    Rajapaksha, Ajith; Hirsch, Andrew S.

    2017-12-01

    The practice of learning physics contributes to the development of many transdisciplinary skills learners are able to exercise independent of the physics discipline. However, the standard practices of physics instruction do not explicitly include the monitoring or evaluation of these skills. In a competency-based (CB) learning model, the skills (competencies) are clearly defined and evaluated. We envisioned that a CB approach, where the underlying competencies are highlighted within the instructional process, would be more suitable to teaching physics to learners with diversified disciplinary interests. A model CB course curriculum was developed and practiced at Purdue University to teach introductory college physics to learners who were majoring in the technology disciplines. The experiment took place from the spring semester in 2015 until the spring semester in 2017. The practice provided a means to monitor and evaluate a set of developmental transdisciplinary competencies that underlie the learning of force and motion concepts in classical physics. Additionally, the CB practice contributed to produce substantial physics learning outcomes among learners who were underprepared to learn physics in college.

  14. How Do Physical Therapists in the United Kingdom Manage Patients With Hip Osteoarthritis? Results of a Cross-Sectional Survey.

    PubMed

    Holden, Melanie A; Bennell, Kim L; Whittle, Rebecca; Chesterton, Linda; Foster, Nadine E; Halliday, Nicola A; Spiers, Libby N; Mason, Elizabeth M; Quicke, Jonathan G; Mallen, Christian D

    2018-06-01

    Hip osteoarthritis (OA) is common, painful, and disabling. Physical therapists have an important role in managing patients with hip OA; however, little is known about their current management approach and whether it aligns with clinical guideline recommendations. The objective of this study is to describe United Kingdom (UK) physical therapists' current management of patients with hip OA and to determine whether it aligns with clinical guidelines. The design is a cross-section questionnaire. A questionnaire was mailed to 3126 physical therapists in the UK that explored physical therapists' self-reported management of a patient with hip OA using a case vignette and clinical management questions. The response rate was 52.7% (n = 1646). In total, 1148 (69.7%) physical therapists had treated a patient with hip OA in the last 6 months and were included in the analyses. A treatment package was commonly provided incorporating advice, exercise (strength training 95.9%; general physical activity 85.4%), and other nonpharmacological modalities, predominantly manual therapy (69.6%), and gait retraining (66.4%). There were some differences in reported management between physical therapists based in the National Health Service (NHS) and non-NHS-based physical therapists, including fewer treatment sessions being provided by NHS-based therapists. Limitations include the potential for nonresponder bias and, in clinical practice, physical therapists may manage patients with hip OA differently. UK-based physical therapists commonly provide a package of care for patients with hip OA that is broadly in line with current clinical guidelines, including advice, exercise, and other nonpharmacological treatments. There were some differences in clinical practice between NHS and non-NHS-based physical therapists, but whether these differences impact on clinical outcomes remains unknown.

  15. Responder definition of the Multiple Sclerosis Impact Scale physical impact subscale for patients with physical worsening.

    PubMed

    Phillips, Glenn A; Wyrwich, Kathleen W; Guo, Shien; Medori, Rossella; Altincatal, Arman; Wagner, Linda; Elkins, Jacob

    2014-11-01

    The 29-item Multiple Sclerosis Impact Scale (MSIS-29) was developed to examine the impact of multiple sclerosis (MS) on physical and psychological functioning from a patient's perspective. To determine the responder definition (RD) of the MSIS-29 physical impact subscale (PHYS) in a group of patients with relapsing-remitting MS (RRMS) participating in a clinical trial. Data from the SELECT trial comparing daclizumab high-yield process with placebo in patients with RRMS were used. Physical function was evaluated in SELECT using three patient-reported outcomes measures and the Expanded Disability Status Scale (EDSS). Anchor- and distribution-based methods were used to identify an RD for the MSIS-29. Results across the anchor-based approach suggested MSIS-29 PHYS RD values of 6.91 (mean), 7.14 (median) and 7.50 (mode). Distribution-based RD estimates ranged from 6.24 to 10.40. An RD of 7.50 was selected as the most appropriate threshold for physical worsening based on corresponding changes in the EDSS (primary anchor of interest). These findings indicate that a ≥7.50 point worsening on the MSIS-29 PHYS is a reasonable and practical threshold for identifying patients with RRMS who have experienced a clinically significant change in the physical impact of MS. © The Author(s), 2014.

  16. Definitions, Foundations and Associations of Physical Literacy: A Systematic Review.

    PubMed

    Edwards, Lowri C; Bryant, Anna S; Keegan, Richard J; Morgan, Kevin; Jones, Anwen M

    2017-01-01

    The concept of physical literacy has stimulated increased research attention in recent years-being deployed in physical education, sport participation, and the promotion of physical activity. Independent research groups currently operationalize the construct differently. The purpose of this systematic review was to conduct a systematic review of the physical literacy construct, as reflected in contemporary research literature. Five databases were searched using the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines for systematic reviews. Inclusion criteria were English language, peer reviewed, published by March 2016, and seeking to conceptualize physical literacy. Articles that met these criteria were analyzed in relation to three core areas: properties/attributes, philosophical foundations and theoretical associations with other constructs. A total of 50 published articles met the inclusion criteria and were analyzed qualitatively using inductive thematic analysis. The thematic analysis addressed the three core areas. Under definitions, core attributes that define physical literacy were identified, as well as areas of conflict between different approaches currently being adopted. One relatively clear philosophical approach was prominent in approximately half of the papers, based on a monist/holistic ontology and phenomenological epistemology. Finally, the analysis identified a number of theoretical associations, including health, physical activity and academic performance. Current literature contains different representations of the physical literacy construct. The costs and benefits of adopting an exclusive approach versus pluralism are considered. Recommendations for both researchers and practitioners focus on identifying and clearly articulating the definitions, philosophical assumptions and expected outcomes prior to evaluating the effectiveness of this emerging concept.

  17. Print versus a culturally-relevant Facebook and text message delivered intervention to promote physical activity in African American women: a randomized pilot trial.

    PubMed

    Joseph, Rodney P; Keller, Colleen; Adams, Marc A; Ainsworth, Barbara E

    2015-03-27

    African American women report insufficient physical activity and are disproportionally burdened by associated disease conditions; indicating the need for innovative approaches to promote physical activity in this underserved population. Social media platforms (i.e. Facebook) and text messaging represent potential mediums to promote physical activity. This paper reports the results of a randomized pilot trial evaluating a theory-based (Social Cognitive Theory) multi-component intervention using Facebook and text-messages to promote physical activity among African American women. Participants (N = 29) were randomly assigned to receive one of two multi-component physical activity interventions over 8 weeks: a culturally-relevant, Social Cognitive Theory-based, intervention delivered by Facebook and text message (FI) (n = 14), or a non-culturally tailored print-based intervention (PI) (n = 15) consisting of promotion brochures mailed to their home. The primary outcome of physical activity was assessed by ActiGraph GT3X+ accelerometers. Secondary outcomes included self-reported physical activity, physical activity-related psychosocial variables, and participant satisfaction. All randomized participants (N = 29) completed the study. Accelerometer measured physical activity showed that FI participants decreased sedentary time (FI = -74 minutes/week vs. PI = +118 minute/week) and increased light intensity (FI = +95 minutes/week vs. PI = +59 minutes/week) and moderate-lifestyle intensity physical activity (FI = + 27 minutes/week vs. PI = -34 minutes/week) in comparison to PI participants (all P's < .05). No between group differences for accelerometer measured moderate-to-vigorous intensity physical activity were observed (P > .05). Results of secondary outcomes showed that in comparison to the PI, FI participants self-reported greater increases in moderate-to-vigorous physical activity (FI = +62 minutes/week vs. PI = +6 minutes/week; P = .015) and had greater enhancements in self-regulation for physical activity (P < .001) and social support from family for physical activity (P = .044). Satisfaction with the FI was also high: 100% reported physical activity-related knowledge gains and 100% would recommend the program to a friend. A culturally-relevant Facebook and text message delivered physical activity program was associated with several positive outcomes, including decreased sedentary behavior, increased light- and moderate-lifestyle intensity physical activity, enhanced psychosocial outcomes, and high participant satisfaction. Future studies with larger samples are warranted to further explore the efficacy of technology-based approaches to promote physical activity among African American women. ClinicalTrials.gov NCT02372565 . Registered 25 February 2015.

  18. Job task characteristics of Australian emergency services volunteers during search and rescue operations.

    PubMed

    Silk, Aaron; Lenton, Gavin; Savage, Robbie; Aisbett, Brad

    2018-02-01

    Search and rescue operations are necessary in locating, assisting and recovering individuals lost or in distress. In Australia, land-based search and rescue roles require a range of physically demanding tasks undertaken in dynamic and challenging environments. The aim of the current research was to identify and characterise the physically demanding tasks inherent to search and rescue operation personnel within Australia. These aims were met through a subjective job task analysis approach. In total, 11 criterion tasks were identified by personnel. These tasks were the most physically demanding, frequently occurring and operationally important tasks to these specialist roles. Muscular strength was the dominant fitness component for 7 of the 11 tasks. In addition to the discrete criterion tasks, an operational scenario was established. With the tasks and operational scenario identified, objective task analysis procedures can be undertaken so that practitioners can implement evidence-based strategies, such as physical selection procedures and task-based physical training programs, commensurate with the physical demands of search and rescue job roles. Practitioner Summary: The identification of physically demanding tasks amongst specialist emergency service roles predicates health and safety strategies which can be incorporated into organisations. Knowledge of physical task parameters allows employers to mitigate injury risk through the implementation of strategies modelled on the precise physical demands of the role.

  19. Effects of The Coach Approach Intervention on Adherence to Exercise in Obese Women: Assessing Mediation of Social Cognitive Theory Factors

    ERIC Educational Resources Information Center

    Annesi, James J.; Unruh, Jennifer L.; Marti, C. Nathan; Gorjala, Srinivasa; Tennant, Gisele

    2011-01-01

    The link between physical activity and weight loss has precipitated interest in interventions to foster adherence to exercise. It has been suggested that treatment effects, when significant, should be analyzed to determine theory-based mediators. This research assessed possible mediation of changes in Physical Self-Concept, Exercise Self-Efficacy,…

  20. What Did They Learn in School Today? A Method for Exploring Aspects of Learning in Physical Education

    ERIC Educational Resources Information Center

    Quennerstedt, Mikael; Annerstedt, Claes; Barker, Dean; Karlefors, Inger; Larsson, Håkan; Redelius, Karin; Öhman, Marie

    2014-01-01

    This paper outlines a method for exploring learning in educational practice. The suggested method combines an explicit learning theory with robust methodological steps in order to explore aspects of learning in school physical education. The design of the study is based on sociocultural learning theory, and the approach adds to previous research…

  1. Evaluating a Physical Activity App in the Classroom: A Mixed Methodological Approach among University Students

    ERIC Educational Resources Information Center

    Melton, Bridget; Bland, Helen; Harris, Brandonn; Kelly, Destiny; Chandler, Kristin

    2015-01-01

    The purpose of this study was to evaluate the effectiveness of using an exercise-based app in increasing student motivation, social support, self-efficacy, and enjoyment in a university physical activity class. A convenience sample of 48 college-aged students (28 males, 20 females) from one university located in the Southeastern United States…

  2. Comparative Urban Bangladesh Physics Learning Experiences as Described by Students and Alumni

    ERIC Educational Resources Information Center

    Ali, Tanzeem Iqbal

    2013-01-01

    A neo-culture of extra-curricular coaching prior to sitting the terminal exam was once the privileged domain of public education systems in the Eastern world, but this is no longer the case. This multi-phase study based on a grounded theory approach considered a diversity of physics learning experiences of students and alumni from two urban…

  3. Marine Renewable Energy: Resource Characterization and Physical Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zhaoqing; Copping, Andrea E.

    This complete reference to marine renewable energy covers aspects of resource characterization and physical effects of harvesting the ocean’s vast and powerful resources—from wave and tidal stream to ocean current energy. Experts in each of these areas contribute their insights to provide a cohesive overview of the marine renewable energy spectrum based on theoretical, numerical modeling, and field-measurement approaches.

  4. Primary Teachers' Particle Ideas and Explanations of Physical Phenomena: Effect of an In-Service Training Course

    ERIC Educational Resources Information Center

    Papageorgiou, George; Stamovlasis, Dimitrios; Johnson, Phil Michael

    2010-01-01

    This paper presents a study concerning Greek primary school teachers' (n = 162) ideas about the particulate nature of matter and their explanations of physical phenomena. The study took place during an in-service training course where the effectiveness of a specially designed intervention was tested. A key feature was an approach based on the…

  5. Comparison of Height, Weight, and Body Mass Index Data from State-Mandated School Physical Fitness Testing and a Districtwide Surveillance Project

    ERIC Educational Resources Information Center

    Khaokham, Christina B.; Hillidge, Sharon; Serpas, Shaila; McDonald, Eric; Nader, Philip R.

    2015-01-01

    Background: Approximately one third of California school-age children are overweight or obese. Legislative approaches to assessing obesity have focused on school-based data collection. During 2010-2011, the Chula Vista Elementary School District conducted districtwide surveillance and state-mandated physical fitness testing (PFT) among fifth grade…

  6. Being a Competent Athlete or a Competent Teacher? Aesthetic Experiences in Physical Education Teacher Education

    ERIC Educational Resources Information Center

    Maivorsdotter, Ninitha; Lundvall, Suzanne; Quennerstedt, Mikael

    2014-01-01

    The aim of this study was to explore physical education teacher education students' meaning-making of participating in lessons--in this case gymnastics and basketball--based on their aesthetic judgements, expressed in written stories. A transactional approach, drawing on the work of John Dewey, was used in the study and the empirical data was…

  7. The Nature and Role of Physical Models in Enhancing Sixth Grade Students' Mental Models of Groundwater and Groundwater Processes

    ERIC Educational Resources Information Center

    Duffy, Debra Lynne Foster

    2012-01-01

    Through a non-experimental descriptive and comparative mixed-methods approach, this study investigated the experiences of sixth grade earth science students with groundwater physical models through an extended SE learning cycle format. The data collection was based on a series of quantitative and qualitative research tools intended to investigate…

  8. The Impact of Nintendo Wii to Physical Education Students' Balance Compared to the Traditional Approaches

    ERIC Educational Resources Information Center

    Vernadakis, Nikolaos; Gioftsidou, Asimenia; Antoniou, Panagiotis; Ioannidis, Dionysis; Giannousi, Maria

    2012-01-01

    The purpose of this study was to determine whether there is a difference between an exergame-based and a traditional balance training program, in undergraduate Physical Education students. Thirty two third-year undergraduate students at the Democritus University of Thrace were randomly divided into two training program groups of 16 students each,…

  9. Teachers as Policy Actors: Co-Creating and Enacting Critical Inquiry in Secondary Health and Physical Education

    ERIC Educational Resources Information Center

    Alfrey, Laura; O'Connor, Justen; Jeanes, Ruth

    2017-01-01

    Background: Critical inquiry approaches have been presented as one way of enhancing relevance in school-based education, and there have been calls from academia for its systematic use within health and physical education (HPE). Purpose: This research explored how three Secondary HPE teachers coconstructed and enacted a unit of work (Take Action)…

  10. Vital physical signals measurements using a webcam

    NASA Astrophysics Data System (ADS)

    Ouyang, Jianfei; Yan, Yonggang; Yao, Lifeng

    2013-10-01

    Non-contact and remote measurements of vital physical signals are important for reliable and comfortable physiological self-assessment. In this paper, we provide a new video-based methodology for remote and fast measurements of vital physical signals such as cardiac pulse and breathing rate. A webcam is used to track color video of a human face or wrist, and a Photoplethysmography (PPG) technique is applied to perform the measurements of the vital signals. A novel sequential blind signal extraction methodology is applied to the color video under normal lighting conditions, based on correlation analysis between the green trace and the source signals. The approach is successfully applied in the measurement of vital signals under the condition of different illuminating in which the target signal can also be found out accurately. To assess the advantages, the measuring time of a large number of cases is recorded correctly. The experimental results show that it only takes less than 30 seconds to measure the vital physical signals using presented technique. The study indicates the proposed approach is feasible for PPG technique, which provides a way to study the relationship of the signal for different ROI in future research.

  11. Workplace physical activity interventions: a systematic review.

    PubMed

    To, Quyen G; Chen, Ted T L; Magnussen, Costan G; To, Kien G

    2013-01-01

    To assess the effectiveness of workplace interventions in improving physical activity. EBSCO research database (and all subdatabases). Articles were published from 2000 to 2010 in English, had appropriate designs, and measured employees' physical activity, energy consumption, and/or body mass index (BMI) as primary outcomes. Articles that did not meet the inclusion criteria were excluded. Data extracted included study design, study population, duration, intervention activities, outcomes, and results. Data were synthesized into one table. Results of each relevant outcome including p values were combined. Twelve (60%) of 20 selected interventions reported an improvement in physical activity level, steps, or BMI, and there was one slowed step reduction in the intervention group. Among these, 10 were less than 6 months in duration; 9 used pedometers; 6 applied Internet-based approaches; and 5 included activities targeting social and environmental levels. Seven of 8 interventions with pre-posttest and quasi-experimental controlled design showed improvement on at least one outcome. However, 7 of 12 randomized controlled trials (RCTs) did not prove effective in any outcome. Interventions that had less rigorous research designs, used pedometers, applied Internet-based approaches, and included activities at social and environmental levels were more likely to report being effective than those without these characteristics.

  12. Geologic Carbon Sequestration Leakage Detection: A Physics-Guided Machine Learning Approach

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Harp, D. R.; Chen, B.; Pawar, R.

    2017-12-01

    One of the risks of large-scale geologic carbon sequestration is the potential migration of fluids out of the storage formations. Accurate and fast detection of this fluids migration is not only important but also challenging, due to the large subsurface uncertainty and complex governing physics. Traditional leakage detection and monitoring techniques rely on geophysical observations including pressure. However, the resulting accuracy of these methods is limited because of indirect information they provide requiring expert interpretation, therefore yielding in-accurate estimates of leakage rates and locations. In this work, we develop a novel machine-learning technique based on support vector regression to effectively and efficiently predict the leakage locations and leakage rates based on limited number of pressure observations. Compared to the conventional data-driven approaches, which can be usually seem as a "black box" procedure, we develop a physics-guided machine learning method to incorporate the governing physics into the learning procedure. To validate the performance of our proposed leakage detection method, we employ our method to both 2D and 3D synthetic subsurface models. Our novel CO2 leakage detection method has shown high detection accuracy in the example problems.

  13. Distributed Damage Estimation for Prognostics based on Structural Model Decomposition

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew; Bregon, Anibal; Roychoudhury, Indranil

    2011-01-01

    Model-based prognostics approaches capture system knowledge in the form of physics-based models of components, and how they fail. These methods consist of a damage estimation phase, in which the health state of a component is estimated, and a prediction phase, in which the health state is projected forward in time to determine end of life. However, the damage estimation problem is often multi-dimensional and computationally intensive. We propose a model decomposition approach adapted from the diagnosis community, called possible conflicts, in order to both improve the computational efficiency of damage estimation, and formulate a damage estimation approach that is inherently distributed. Local state estimates are combined into a global state estimate from which prediction is performed. Using a centrifugal pump as a case study, we perform a number of simulation-based experiments to demonstrate the approach.

  14. Geometric Lagrangian approach to the physical degree of freedom count in field theory

    NASA Astrophysics Data System (ADS)

    Díaz, Bogar; Montesinos, Merced

    2018-05-01

    To circumvent some technical difficulties faced by the geometric Lagrangian approach to the physical degree of freedom count presented in the work of Díaz, Higuita, and Montesinos [J. Math. Phys. 55, 122901 (2014)] that prevent its direct implementation to field theory, in this paper, we slightly modify the geometric Lagrangian approach in such a way that its resulting version works perfectly for field theory (and for particle systems, of course). As in previous work, the current approach also allows us to directly get the Lagrangian constraints, a new Lagrangian formula for the counting of the number of physical degrees of freedom, the gauge transformations, and the number of first- and second-class constraints for any action principle based on a Lagrangian depending on the fields and their first derivatives without performing any Dirac's canonical analysis. An advantage of this approach over the previous work is that it also allows us to handle the reducibility of the constraints and to get the off-shell gauge transformations. The theoretical framework is illustrated in 3-dimensional generalized general relativity (Palatini and Witten's exotic actions), Chern-Simons theory, 4-dimensional BF theory, and 4-dimensional general relativity given by Palatini's action with a cosmological constant.

  15. Physical Organic Approach to Persistent, Cyclable, Low-Potential Electrolytes for Flow Battery Applications.

    PubMed

    Sevov, Christo S; Hickey, David P; Cook, Monique E; Robinson, Sophia G; Barnett, Shoshanna; Minteer, Shelley D; Sigman, Matthew S; Sanford, Melanie S

    2017-03-01

    The deployment of nonaqueous redox flow batteries for grid-scale energy storage has been impeded by a lack of electrolytes that undergo redox events at as low (anolyte) or high (catholyte) potentials as possible while exhibiting the stability and cycling lifetimes necessary for a battery device. Herein, we report a new approach to electrolyte design that uses physical organic tools for the predictive targeting of electrolytes that possess this combination of properties. We apply this approach to the identification of a new pyridinium-based anolyte that undergoes 1e - electrochemical charge-discharge cycling at low potential (-1.21 V vs Fc/Fc + ) to a 95% state-of-charge without detectable capacity loss after 200 cycles.

  16. A formulation of multidimensional growth models for the assessment and forecast of technology attributes

    NASA Astrophysics Data System (ADS)

    Danner, Travis W.

    Developing technology systems requires all manner of investment---engineering talent, prototypes, test facilities, and more. Even for simple design problems the investment can be substantial; for complex technology systems, the development costs can be staggering. The profitability of a corporation in a technology-driven industry is crucially dependent on maximizing the effectiveness of research and development investment. Decision-makers charged with allocation of this investment are forced to choose between the further evolution of existing technologies and the pursuit of revolutionary technologies. At risk on the one hand is excessive investment in an evolutionary technology which has only limited availability for further improvement. On the other hand, the pursuit of a revolutionary technology may mean abandoning momentum and the potential for substantial evolutionary improvement resulting from the years of accumulated knowledge. The informed answer to this question, evolutionary or revolutionary, requires knowledge of the expected rate of improvement and the potential a technology offers for further improvement. This research is dedicated to formulating the assessment and forecasting tools necessary to acquire this knowledge. The same physical laws and principles that enable the development and improvement of specific technologies also limit the ultimate capability of those technologies. Researchers have long used this concept as the foundation for modeling technological advancement through extrapolation by analogy to biological growth models. These models are employed to depict technology development as it asymptotically approaches limits established by the fundamental principles on which the technological approach is based. This has proven an effective and accurate approach to modeling and forecasting simple single-attribute technologies. With increased system complexity and the introduction of multiple system objectives, however, the usefulness of this modeling technique begins to diminish. With the introduction of multiple objectives, researchers often abandon technology growth models for scoring models and technology frontiers. While both approaches possess advantages over current growth models for the assessment of multi-objective technologies, each lacks a necessary dimension for comprehensive technology assessment. By collapsing multiple system metrics into a single, non-intuitive technology measure, scoring models provide a succinct framework for multi-objective technology assessment and forecasting. Yet, with no consideration of physical limits, scoring models provide no insight as to the feasibility of a particular combination of system capabilities. They only indicate that a given combination of system capabilities yields a particular score. Conversely, technology frontiers are constructed with the distinct objective of providing insight into the feasibility of system capability combinations. Yet again, upper limits to overall system performance are ignored. Furthermore, the data required to forecast subsequent technology frontiers is often inhibitive. In an attempt to reincorporate the fundamental nature of technology advancement as bound by physical principles, researchers have sought to normalize multi-objective systems whereby the variability of a single system objective is eliminated as a result of changes in the remaining objectives. This drastically limits the applicability of the resulting technology model because it is only applicable for a single setting of all other system attributes. Attempts to maintain the interaction between the growth curves of each technical objective of a complex system have thus far been limited to qualitative and subjective consideration. This research proposes the formulation of multidimensional growth models as an approach to simulating the advancement of multi-objective technologies towards their upper limits. Multidimensional growth models were formulated by noticing and exploiting the correlation between technology growth models and technology frontiers. Both are frontiers in actuality. The technology growth curve is a frontier between capability levels of a single attribute and time, while a technology frontier is a frontier between the capability levels of two or more attributes. Multidimensional growth models are formulated by exploiting the mathematical significance of this correlation. The result is a model that can capture both the interaction between multiple system attributes and their expected rates of improvement over time. The fundamental nature of technology development is maintained, and interdependent growth curves are generated for each system metric with minimal data requirements. Being founded on the basic nature of technology advancement, relative to physical limits, the availability for further improvement can be determined for a single metric relative to other system measures of merit. A by-product of this modeling approach is a single n-dimensional technology frontier linking all n system attributes with time. This provides an environment capable of forecasting future system capability in the form of advancing technology frontiers. The ability of a multidimensional growth model to capture the expected improvement of a specific technological approach is dependent on accurately identifying the physical limitations to each pertinent attribute. This research investigates two potential approaches to identifying those physical limits, a physics-based approach and a regression-based approach. The regression-based approach has found limited acceptance among forecasters, although it does show potential for estimating upper limits with a specified degree of uncertainty. Forecasters have long favored physics-based approaches for establishing the upper limit to unidimensional growth models. The task of accurately identifying upper limits has become increasingly difficult with the extension of growth models into multiple dimensions. A lone researcher may be able to identify the physical limitation to a single attribute of a simple system; however, as system complexity and the number of attributes increases, the attention of researchers from multiple fields of study is required. Thus, limit identification is itself an area of research and development requiring some level of investment. Whether estimated by physics or regression-based approaches, predicted limits will always have some degree of uncertainty. This research takes the approach of quantifying the impact of that uncertainty on model forecasts rather than heavily endorsing a single technique to limit identification. In addition to formulating the multidimensional growth model, this research provides a systematic procedure for applying that model to specific technology architectures. Researchers and decision-makers are able to investigate the potential for additional improvement within that technology architecture and to estimate the expected cost of each incremental improvement relative to the cost of past improvements. In this manner, multidimensional growth models provide the necessary information to set reasonable program goals for the further evolution of a particular technological approach or to establish the need for revolutionary approaches in light of the constraining limits of conventional approaches.

  17. Fractional-order difference equations for physical lattices and some applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarasov, Vasily E., E-mail: tarasov@theory.sinp.msu.ru

    2015-10-15

    Fractional-order operators for physical lattice models based on the Grünwald-Letnikov fractional differences are suggested. We use an approach based on the models of lattices with long-range particle interactions. The fractional-order operators of differentiation and integration on physical lattices are represented by kernels of lattice long-range interactions. In continuum limit, these discrete operators of non-integer orders give the fractional-order derivatives and integrals with respect to coordinates of the Grünwald-Letnikov types. As examples of the fractional-order difference equations for physical lattices, we give difference analogs of the fractional nonlocal Navier-Stokes equations and the fractional nonlocal Maxwell equations for lattices with long-range interactions.more » Continuum limits of these fractional-order difference equations are also suggested.« less

  18. The Social Determinants of Health Core: Taking a Place-Based Approach.

    PubMed

    Scribner, Richard A; Simonsen, Neal R; Leonardi, Claudia

    2017-01-01

    There is growing recognition that health disparities research needs to incorporate social determinants in the local environment into explanatory models. In the transdisciplinary setting of the Mid-South Transdisciplinary Collaborative Center (TCC), the Social Determinants of Health (SDH) Core developed an approach to incorporating SDH across a variety of studies. This place-based approach, which is geographically based, transdisciplinary, and inherently multilevel, is discussed. From 2014 through 2016, the SDH Core consulted on a variety of Mid-South TCC research studies with the goal of incorporating social determinants into their research designs. The approach used geospatial methods (e.g., geocoding) to link individual data files with measures of the physical and social environment in the SDH Core database. Once linked, the method permitted various types of analysis (e.g., multilevel analysis) to determine if racial disparities could be explained in terms of social determinants in the local environment. The SDH Core consulted on five Mid-South TCC research projects. In resulting analyses for all the studies, a significant portion of the variance in one or more outcomes was partially explained by a social determinant from the SDH Core database. The SDH Core approach to addressing health disparities by linking neighborhood social and physical environment measures to an individual-level data file proved to be a successful approach across Mid-South TCC research projects. Copyright © 2016 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  19. An integrated approach coupling physically based models and probabilistic method to assess quantitatively landslide susceptibility at different scale: application to different geomorphological environments

    NASA Astrophysics Data System (ADS)

    Vandromme, Rosalie; Thiéry, Yannick; Sedan, Olivier; Bernardie, Séverine

    2016-04-01

    Landslide hazard assessment is the estimation of a target area where landslides of a particular type, volume, runout and intensity may occur within a given period. The first step to analyze landslide hazard consists in assessing the spatial and temporal failure probability (when the information is available, i.e. susceptibility assessment). Two types of approach are generally recommended to achieve this goal: (i) qualitative approach (i.e. inventory based methods and knowledge data driven methods) and (ii) quantitative approach (i.e. data-driven methods or deterministic physically based methods). Among quantitative approaches, deterministic physically based methods (PBM) are generally used at local and/or site-specific scales (1:5,000-1:25,000 and >1:5,000, respectively). The main advantage of these methods is the calculation of probability of failure (safety factor) following some specific environmental conditions. For some models it is possible to integrate the land-uses and climatic change. At the opposite, major drawbacks are the large amounts of reliable and detailed data (especially materials type, their thickness and the geotechnical parameters heterogeneity over a large area) and the fact that only shallow landslides are taking into account. This is why they are often used at site-specific scales (> 1:5,000). Thus, to take into account (i) materials' heterogeneity , (ii) spatial variation of physical parameters, (iii) different landslide types, the French Geological Survey (i.e. BRGM) has developed a physically based model (PBM) implemented in a GIS environment. This PBM couples a global hydrological model (GARDENIA®) including a transient unsaturated/saturated hydrological component with a physically based model computing the stability of slopes (ALICE®, Assessment of Landslides Induced by Climatic Events) based on the Morgenstern-Price method for any slip surface. The variability of mechanical parameters is handled by Monte Carlo approach. The probability to obtain a safety factor below 1 represents the probability of occurrence of a landslide for a given triggering event. The dispersion of the distribution gives the uncertainty of the result. Finally, a map is created, displaying a probability of occurrence for each computing cell of the studied area. In order to take into account the land-uses change, a complementary module integrating the vegetation effects on soil properties has been recently developed. Last years, the model has been applied at different scales for different geomorphological environments: (i) at regional scale (1:50,000-1:25,000) in French West Indies and French Polynesian islands (ii) at local scale (i.e.1:10,000) for two complex mountainous areas; (iii) at the site-specific scale (1:2,000) for one landslide. For each study the 3D geotechnical model has been adapted. The different studies have allowed : (i) to discuss the different factors included in the model especially the initial 3D geotechnical models; (ii) to precise the location of probable failure following different hydrological scenarii; (iii) to test the effects of climatic change and land-use on slopes for two cases. In that way, future changes in temperature, precipitation and vegetation cover can be analyzed, permitting to address the impacts of global change on landslides. Finally, results show that it is possible to obtain reliable information about future slope failures at different scale of work for different scenarii with an integrated approach. The final information about landslide susceptibility (i.e. probability of failure) can be integrated in landslide hazard assessment and could be an essential information source for future land planning. As it has been performed in the ANR Project SAMCO (Society Adaptation for coping with Mountain risks in a global change COntext), this analysis constitutes a first step in the chain for risk assessment for different climate and economical development scenarios, to evaluate the resilience of mountainous areas.

  20. Advancing Health Promotion in Dentistry: Articulating an Integrative Approach to Coaching Oral Health Behavior Change in the Dental Setting

    PubMed Central

    Howard, Anita R.

    2015-01-01

    Oral health is managed based on objective measures such as the presence and severity of dental caries and periodontal disease. In recent years, oral health researchers and practitioners have shown increasing interest in a widened array of physical, psychological, and social factors found to influence patients’ oral health. In this article, we introduce a behavior change coaching approach that can be used to enhance psychosocial diagnosis and client-centered delivery of health-promoting interventions. Briefly, this health coaching approach is based on an interactive assessment (both physical and psychological), a non-judgmental exploration of patients’ knowledge, attitudes, and beliefs, a mapping of patient behaviors that may contribute to disease progression, gauging patient motivation, and tailoring health communication to encourage health-promoting behavior change. Developed in a clinical setting, this coaching model is supported by interdisciplinary theory, research, and practice on health behavior change. We suggest that, with supervision, this coaching process may be learned. PMID:26457237

  1. A Bayesian network model for predicting type 2 diabetes risk based on electronic health records

    NASA Astrophysics Data System (ADS)

    Xie, Jiang; Liu, Yan; Zeng, Xu; Zhang, Wu; Mei, Zhen

    2017-07-01

    An extensive, in-depth study of diabetes risk factors (DBRF) is of crucial importance to prevent (or reduce) the chance of suffering from type 2 diabetes (T2D). Accumulation of electronic health records (EHRs) makes it possible to build nonlinear relationships between risk factors and diabetes. However, the current DBRF researches mainly focus on qualitative analyses, and the inconformity of physical examination items makes the risk factors likely to be lost, which drives us to study the novel machine learning approach for risk model development. In this paper, we use Bayesian networks (BNs) to analyze the relationship between physical examination information and T2D, and to quantify the link between risk factors and T2D. Furthermore, with the quantitative analyses of DBRF, we adopt EHR and propose a machine learning approach based on BNs to predict the risk of T2D. The experiments demonstrate that our approach can lead to better predictive performance than the classical risk model.

  2. A Model-Based Approach for Bridging Virtual and Physical Sensor Nodes in a Hybrid Simulation Framework

    PubMed Central

    Mozumdar, Mohammad; Song, Zhen Yu; Lavagno, Luciano; Sangiovanni-Vincentelli, Alberto L.

    2014-01-01

    The Model Based Design (MBD) approach is a popular trend to speed up application development of embedded systems, which uses high-level abstractions to capture functional requirements in an executable manner, and which automates implementation code generation. Wireless Sensor Networks (WSNs) are an emerging very promising application area for embedded systems. However, there is a lack of tools in this area, which would allow an application developer to model a WSN application by using high level abstractions, simulate it mapped to a multi-node scenario for functional analysis, and finally use the refined model to automatically generate code for different WSN platforms. Motivated by this idea, in this paper we present a hybrid simulation framework that not only follows the MBD approach for WSN application development, but also interconnects a simulated sub-network with a physical sub-network and then allows one to co-simulate them, which is also known as Hardware-In-the-Loop (HIL) simulation. PMID:24960083

  3. Prediction of shallow landslide occurrence: Validation of a physically-based approach through a real case study.

    PubMed

    Schilirò, Luca; Montrasio, Lorella; Scarascia Mugnozza, Gabriele

    2016-11-01

    In recent years, physically-based numerical models have frequently been used in the framework of early-warning systems devoted to rainfall-induced landslide hazard monitoring and mitigation. For this reason, in this work we describe the potential of SLIP (Shallow Landslides Instability Prediction), a simplified physically-based model for the analysis of shallow landslide occurrence. In order to test the reliability of this model, a back analysis of recent landslide events occurred in the study area (located SW of Messina, northeastern Sicily, Italy) on October 1st, 2009 was performed. The simulation results have been compared with those obtained for the same event by using TRIGRS, another well-established model for shallow landslide prediction. Afterwards, a simulation over a 2-year span period has been performed for the same area, with the aim of evaluating the performance of SLIP as early warning tool. The results confirm the good predictive capability of the model, both in terms of spatial and temporal prediction of the instability phenomena. For this reason, we recommend an operating procedure for the real-time definition of shallow landslide triggering scenarios at the catchment scale, which is based on the use of SLIP calibrated through a specific multi-methodological approach. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. A hybrid hydrologically complemented warning model for shallow landslides induced by extreme rainfall in Korean Mountain

    NASA Astrophysics Data System (ADS)

    Singh Pradhan, Ananta Man; Kang, Hyo-Sub; Kim, Yun-Tae

    2016-04-01

    This study uses a physically based approach to evaluate the factor of safety of the hillslope for different hydrological conditions, in Mt Umyeon, south of Seoul. The hydrological conditions were determined using intensity and duration of whole Korea of known landslide inventory data. Quantile regression statistical method was used to ascertain different probability warning levels on the basis of rainfall thresholds. Physically based models are easily interpreted and have high predictive capabilities but rely on spatially explicit and accurate parameterization, which is commonly not possible. Statistical probabilistic methods can include other causative factors which influence the slope stability such as forest, soil and geology, but rely on good landslide inventories of the site. In this study a hybrid approach has described that combines the physically-based landslide susceptibility for different hydrological conditions. A presence-only based maximum entropy model was used to hybrid and analyze relation of landslide with conditioning factors. About 80% of the landslides were listed among the unstable sites identified in the proposed model, thereby presenting its effectiveness and accuracy in determining unstable areas and areas that require evacuation. These cumulative rainfall thresholds provide a valuable reference to guide disaster prevention authorities in the issuance of warning levels with the ability to reduce losses and save lives.

  5. Quantum Approach to Informatics

    NASA Astrophysics Data System (ADS)

    Stenholm, Stig; Suominen, Kalle-Antti

    2005-08-01

    An essential overview of quantum information Information, whether inscribed as a mark on a stone tablet or encoded as a magnetic domain on a hard drive, must be stored in a physical object and thus made subject to the laws of physics. Traditionally, information processing such as computation occurred in a framework governed by laws of classical physics. However, information can also be stored and processed using the states of matter described by non-classical quantum theory. Understanding this quantum information, a fundamentally different type of information, has been a major project of physicists and information theorists in recent years, and recent experimental research has started to yield promising results. Quantum Approach to Informatics fills the need for a concise introduction to this burgeoning new field, offering an intuitive approach for readers in both the physics and information science communities, as well as in related fields. Only a basic background in quantum theory is required, and the text keeps the focus on bringing this theory to bear on contemporary informatics. Instead of proofs and other highly formal structures, detailed examples present the material, making this a uniquely accessible introduction to quantum informatics. Topics covered include: * An introduction to quantum information and the qubit * Concepts and methods of quantum theory important for informatics * The application of information concepts to quantum physics * Quantum information processing and computing * Quantum gates * Error correction using quantum-based methods * Physical realizations of quantum computing circuits A helpful and economical resource for understanding this exciting new application of quantum theory to informatics, Quantum Approach to Informatics provides students and researchers in physics and information science, as well as other interested readers with some scientific background, with an essential overview of the field.

  6. Does subtype matter? Assessing the effects of maltreatment on functioning in preadolescent youth in out-of-home care

    PubMed Central

    Petrenko, Christie L. M.; Friend, Angela; Garrido, Edward F.; Taussig, Heather N.; Culhane, Sara E.

    2012-01-01

    Objectives Attempts to understand the effects of maltreatment subtypes on childhood functioning are complicated by the fact that children often experience multiple subtypes. This study assessed the effects of maltreatment subtypes on the cognitive, academic, and mental health functioning of preadolescent youth in out-of-home care using both “variable-centered” and “person-centered” statistical analytic approaches to modeling multiple subtypes of maltreatment. Methods Participants included 334 preadolescent youth (ages 9 to 11) placed in out-of-home care due to maltreatment. The occurrence and severity of maltreatment subtypes (physical abuse, sexual abuse, physical neglect, and supervisory neglect) were coded from child welfare records. The relationships between maltreatment subtypes and children’s cognitive, academic, and mental health functioning were evaluated with the following approaches: “Variable-centered” analytic methods: Regression approach: Multiple regression was used to estimate the effects of each maltreatment subtype (separate analyses for occurrence and severity), controlling for the other subtypes. Hierarchical approach: Contrast coding was used in regression analyses to estimate the effects of discrete maltreatment categories that were assigned based on a subtype occurrence hierarchy (sexual abuse > physical abuse > physical neglect > supervisory neglect). “Person-centered” analytic method: Latent class analysis was used to group children with similar maltreatment severity profiles into discrete classes. The classes were then compared to determine if they differed in terms of their ability to predict functioning. Results The approaches identified similar relationships between maltreatment subtypes and children’s functioning. The most consistent findings indicated that maltreated children who experienced physical or sexual abuse were at highest risk for caregiver-reported externalizing behavior problems, and those who experienced physical abuse and/or physical neglect were more likely to have higher levels of caregiver-reported internalizing problems. Children experiencing predominantly low severity supervisory neglect had relatively better functioning than other maltreated youth. Conclusions Many of the maltreatment subtype differences identified within the maltreated sample in the current study are consistent with those from previous research comparing maltreated youth to non-maltreated comparison groups. Results do not support combining supervisory and physical neglect. The “variable-centered” and “person-centered” analytic approaches produced complementary results. Advantages and disadvantages of each approach are discussed. PMID:22947490

  7. Learning physics: A comparative analysis between instructional design methods

    NASA Astrophysics Data System (ADS)

    Mathew, Easow

    The purpose of this research was to determine if there were differences in academic performance between students who participated in traditional versus collaborative problem-based learning (PBL) instructional design approaches to physics curricula. This study utilized a quantitative quasi-experimental design methodology to determine the significance of differences in pre- and posttest introductory physics exam performance between students who participated in traditional (i.e., control group) versus collaborative problem solving (PBL) instructional design (i.e., experimental group) approaches to physics curricula over a college semester in 2008. There were 42 student participants (N = 42) enrolled in an introductory physics course at the research site in the Spring 2008 semester who agreed to participate in this study after reading and signing informed consent documents. A total of 22 participants were assigned to the experimental group (n = 22) who participated in a PBL based teaching methodology along with traditional lecture methods. The other 20 students were assigned to the control group (n = 20) who participated in the traditional lecture teaching methodology. Both the courses were taught by experienced professors who have qualifications at the doctoral level. The results indicated statistically significant differences (p < .01) in academic performance between students who participated in traditional (i.e., lower physics posttest scores and lower differences between pre- and posttest scores) versus collaborative (i.e., higher physics posttest scores, and higher differences between pre- and posttest scores) instructional design approaches to physics curricula. Despite some slight differences in control group and experimental group demographic characteristics (gender, ethnicity, and age) there were statistically significant (p = .04) differences between female average academic improvement which was much higher than male average academic improvement (˜63%) in the control group which may indicate that traditional teaching methods are more effective in females, whereas there was no significant difference noted in the experimental group between male and female participants. There was a statistically significant and negative relationship (r = -.61, p = .01) between age and physics pretest scores in the control group. No statistical analyses yielded significantly different average academic performance values in either group as delineated by ethnicity.

  8. Physical Activity and Yoga-Based Approaches for Pregnancy-Related Low Back and Pelvic Pain.

    PubMed

    Kinser, Patricia Anne; Pauli, Jena; Jallo, Nancy; Shall, Mary; Karst, Kailee; Hoekstra, Michelle; Starkweather, Angela

    To conduct an integrative review to evaluate current literature about nonpharmacologic, easily accessible management strategies for pregnancy-related low back and pelvic pain (PR-LBPP). PubMed, CINAHL, Cochrane Database of Systematic Reviews. Original research articles were considered for review if they were full-length publications written in English and published in peer-reviewed journals from 2005 through 2015, included measures of pain and symptoms related to PR-LBPP, and evaluated treatment modalities that used a physical exercise or yoga-based approach for the described conditions. Electronic database searches yielded 1,435 articles. A total of 15 articles met eligibility criteria for further review. These modalities show preliminary promise for pain relief and other related symptoms, including stress and depression. However, our findings also indicate several gaps in knowledge about these therapies for PR-LBPP and methodologic issues with the current literature. Although additional research is required, the results of this integrative review suggest that clinicians may consider recommending nonpharmacologic treatment options, such as gentle physical activity and yoga-based interventions, for PR-LBPP and related symptoms. Copyright © 2017 AWHONN, the Association of Women’s Health, Obstetric and Neonatal Nurses. Published by Elsevier Inc. All rights reserved.

  9. 75 FR 67092 - Proposed Data Collections Submitted for Public Comment and Recommendations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-01

    ... (CM) using a quantitative, preference-based approach. The US Department of Health and Human Services... substantial long-term physical and psychological consequences. Despite considerable research on the... these decrements, based on respondent preferences over a series of comparisons that will be shown to...

  10. The illness/non-illness model: hypnotherapy for physically ill patients.

    PubMed

    Navon, Shaul

    2014-07-01

    This article proposes a focused, novel sub-set of the cognitive behavioral therapy approach to hypnotherapy for physically ill patients, based upon the illness/non-illness psychotherapeutic model for physically ill patients. The model is based on three logical rules used in differentiating illness from non-illness: duality, contradiction, and complementarity. The article discusses the use of hypnotic interventions to help physically ill and/or disabled patients distinguish between illness and non-illness in their psychotherapeutic themes and attitudes. Two case studies illustrate that patients in this special population group can be taught to learn the language of change and to use this language to overcome difficult situations. The model suggests a new clinical mode of treatment in which individuals who are physically ill and/or disabled are helped in coping with actual motifs and thoughts related to non-illness or non-disability.

  11. Technical Manual for the SAM Physical Trough Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, M. J.; Gilman, P.

    2011-06-01

    NREL, in conjunction with Sandia National Lab and the U.S Department of Energy, developed the System Advisor Model (SAM) analysis tool for renewable energy system performance and economic analysis. This paper documents the technical background and engineering formulation for one of SAM's two parabolic trough system models in SAM. The Physical Trough model calculates performance relationships based on physical first principles where possible, allowing the modeler to predict electricity production for a wider range of component geometries than is possible in the Empirical Trough model. This document describes the major parabolic trough plant subsystems in detail including the solar field,more » power block, thermal storage, piping, auxiliary heating, and control systems. This model makes use of both existing subsystem performance modeling approaches, and new approaches developed specifically for SAM.« less

  12. Physically-Based Probabilistic Seismic Hazard Analysis Using Broad-Band Ground Motion Simulation: a Case Study for Prince Islands Fault, Marmara Sea

    NASA Astrophysics Data System (ADS)

    Mert, A.

    2016-12-01

    The main motivation of this study is the impending occurrence of a catastrophic earthquake along the Prince Island Fault (PIF) in Marmara Sea and the disaster risk around Marmara region, especially in İstanbul. This study provides the results of a physically-based Probabilistic Seismic Hazard Analysis (PSHA) methodology, using broad-band strong ground motion simulations, for sites within the Marmara region, Turkey, due to possible large earthquakes throughout the PIF segments in the Marmara Sea. The methodology is called physically-based because it depends on the physical processes of earthquake rupture and wave propagation to simulate earthquake ground motion time histories. We include the effects of all considerable magnitude earthquakes. To generate the high frequency (0.5-20 Hz) part of the broadband earthquake simulation, the real small magnitude earthquakes recorded by local seismic array are used as an Empirical Green's Functions (EGF). For the frequencies below 0.5 Hz the simulations are obtained using by Synthetic Green's Functions (SGF) which are synthetic seismograms calculated by an explicit 2D/3D elastic finite difference wave propagation routine. Using by a range of rupture scenarios for all considerable magnitude earthquakes throughout the PIF segments we provide a hazard calculation for frequencies 0.1-20 Hz. Physically based PSHA used here follows the same procedure of conventional PSHA except that conventional PSHA utilizes point sources or a series of point sources to represent earthquakes and this approach utilizes full rupture of earthquakes along faults. Further, conventional PSHA predicts ground-motion parameters using by empirical attenuation relationships, whereas this approach calculates synthetic seismograms for all magnitude earthquakes to obtain ground-motion parameters. PSHA results are produced for 2%, 10% and 50% hazards for all studied sites in Marmara Region.

  13. On the utilization of hydrological modelling for road drainage design under climate and land use change.

    PubMed

    Kalantari, Zahra; Briel, Annemarie; Lyon, Steve W; Olofsson, Bo; Folkeson, Lennart

    2014-03-15

    Road drainage structures are often designed using methods that do not consider process-based representations of a landscape's hydrological response. This may create inadequately sized structures as coupled land cover and climate changes can lead to an amplified hydrological response. This study aims to quantify potential increases of runoff in response to future extreme rain events in a 61 km(2) catchment (40% forested) in southwest Sweden using a physically-based hydrological modelling approach. We simulate peak discharge and water level (stage) at two types of pipe bridges and one culvert, both of which are commonly used at Swedish road/stream intersections, under combined forest clear-cutting and future climate scenarios for 2050 and 2100. The frequency of changes in peak flow and water level varies with time (seasonality) and storm size. These changes indicate that the magnitude of peak flow and the runoff response are highly correlated to season rather than storm size. In all scenarios considered, the dimensions of the current culvert are insufficient to handle the increase in water level estimated using a physically-based modelling approach. It also appears that the water level at the pipe bridges changes differently depending on the size and timing of the storm events. The findings of the present study and the approach put forward should be considered when planning investigations on and maintenance for areas at risk of high water flows. In addition, the research highlights the utility of physically-based hydrological models to identify the appropriateness of road drainage structure dimensioning. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Physically-based Assessment of Tropical Cyclone Damage and Economic Losses

    NASA Astrophysics Data System (ADS)

    Lin, N.

    2012-12-01

    Estimating damage and economic losses caused by tropical cyclones (TC) is a topic of considerable research interest in many scientific fields, including meteorology, structural and coastal engineering, and actuarial sciences. One approach is based on the empirical relationship between TC characteristics and loss data. Another is to model the physical mechanism of TC-induced damage. In this talk we discuss about the physically-based approach to predict TC damage and losses due to extreme wind and storm surge. We first present an integrated vulnerability model, which, for the first time, explicitly models the essential mechanisms causing wind damage to residential areas during storm passage, including windborne-debris impact and the pressure-debris interaction that may lead, in a chain reaction, to structural failures (Lin and Vanmarcke 2010; Lin et al. 2010a). This model can be used to predict the economic losses in a residential neighborhood (with hundreds of buildings) during a specific TC (Yau et al. 2011) or applied jointly with a TC risk model (e.g., Emanuel et al 2008) to estimate the expected losses over long time periods. Then we present a TC storm surge risk model that has been applied to New York City (Lin et al. 2010b; Lin et al. 2012; Aerts et al. 2012), Miami-Dade County, Florida (Klima et al. 2011), Galveston, Texas (Lickley, 2012), and other coastal areas around the world (e.g., Tampa, Florida; Persian Gulf; Darwin, Australia; Shanghai, China). These physically-based models are applicable to various coastal areas and have the capability to account for the change of the climate and coastal exposure over time. We also point out that, although made computationally efficient for risk assessment, these models are not suitable for regional or global analysis, which has been a focus of the empirically-based economic analysis (e.g., Hsiang and Narita 2012). A future research direction is to simplify the physically-based models, possibly through parameterization, and make connections to the global loss data and economic analysis.

  15. Interactive lecture demonstrations, active learning, and the ALOP project

    NASA Astrophysics Data System (ADS)

    Lakshminarayanan, Vasudevan

    2011-05-01

    There is considerable evidence from the physics education literature that traditional approaches are ineffective in teaching physics concepts. A better teaching method is to use the active learning environment, which can be created using interactive lecture demonstrations. Based on the active learning methodology and within the framework of the UNESCO mandate in physics education and introductory physics, the ALOP project (active learning in optics and photonics) was started in 2003, to provide a focus on an experimental area that is adaptable and relevant to research and educational conditions in many developing countries. This project is discussed in this paper.

  16. Exact periodic cross-kink wave solutions for the new (2+1)-dimensional KdV equation in fluid flows and plasma physics.

    PubMed

    Liu, Jian-Guo; Du, Jian-Qiang; Zeng, Zhi-Fang; Ai, Guo-Ping

    2016-10-01

    The Korteweg-de Vries (KdV)-type models have been shown to describe many important physical situations such as fluid flows, plasma physics, and solid state physics. In this paper, a new (2 + 1)-dimensional KdV equation is discussed. Based on the Hirota's bilinear form and a generalized three-wave approach, we obtain new exact solutions for the new (2 + 1)-dimensional KdV equation. With the help of symbolic computation, the properties for some new solutions are presented with some figures.

  17. Test on the effectiveness of the sum over paths approach in favoring the construction of an integrated knowledge of quantum physics in high school

    NASA Astrophysics Data System (ADS)

    Malgieri, Massimiliano; Onorato, Pasquale; De Ambrosis, Anna

    2017-06-01

    In this paper we present the results of a research-based teaching-learning sequence on introductory quantum physics based on Feynman's sum over paths approach in the Italian high school. Our study focuses on students' understanding of two founding ideas of quantum physics, wave particle duality and the uncertainty principle. In view of recent research reporting the fragmentation of students' mental models of quantum concepts after initial instruction, we collected and analyzed data using the assessment tools provided by knowledge integration theory. Our results on the group of n =14 students who performed the final test indicate that the functional explanation of wave particle duality provided by the sum over paths approach may be effective in leading students to build consistent mental models of quantum objects, and in providing them with a unified perspective on both the photon and the electron. Results on the uncertainty principle are less clear cut, as the improvements over traditional instruction appear less significant. Given the low number of students in the sample, this work should be interpreted as a case study, and we do not attempt to draw definitive conclusions. However, our study suggests that (i) the sum over paths approach may deserve more attention from researchers and educators as a possible route to introduce basic concepts of quantum physics in high school, and (ii) more research should be focused not only on the correctness of students' mental models on individual concepts, but also on the ability of students to connect different ideas and experiments related to quantum theory in an organized whole.

  18. Smartphones as Integrated Kinematic and Dynamic Sensors for Amusement Park Physics Applications

    NASA Astrophysics Data System (ADS)

    Peterson, Stephanie; Dennison, J. R.

    2010-10-01

    USU has hosted Physics Day at Lagoon and has attracted more than 120,000 secondary educators and students over 21 years. During this educational day, students explore basic physics concepts and apply their classroom content outdoors, in real world applications. As part of the event, USU's Physics Department provides curriculum to be used at Lagoon, in similar outside venues, and in the classroom. One such educational instrument, which is a primary focus of this work, is student workbooks filled with activities ranging from very simple to more advanced topics. Workbooks cover the properties of waves, relative velocity, and acceleration, topics which have historically challenged students and future topics include kinematics, energy, and forces. The topics were selected based on requests from teachers throughout the Intermountain Region and identified deficiencies in student performance on core curriculum assessments. An innovative approach is to identify physical application of iPhone and Android smartphone software technologies, which make use of dynamic and kinematic sensors. These technologies will allow students to realize their ability to do quantitative physics calculations anywhere, anytime; a smart device which is highly salable to today's teenage learners. This also provides an exciting approach to more fully engage students in learning physics concepts.

  19. Learning from physics-based earthquake simulators: a minimal approach

    NASA Astrophysics Data System (ADS)

    Artale Harris, Pietro; Marzocchi, Warner; Melini, Daniele

    2017-04-01

    Physics-based earthquake simulators are aimed to generate synthetic seismic catalogs of arbitrary length, accounting for fault interaction, elastic rebound, realistic fault networks, and some simple earthquake nucleation process like rate and state friction. Through comparison of synthetic and real catalogs seismologists can get insights on the earthquake occurrence process. Moreover earthquake simulators can be used to to infer some aspects of the statistical behavior of earthquakes within the simulated region, by analyzing timescales not accessible through observations. The develoment of earthquake simulators is commonly led by the approach "the more physics, the better", pushing seismologists to go towards simulators more earth-like. However, despite the immediate attractiveness, we argue that this kind of approach makes more and more difficult to understand which physical parameters are really relevant to describe the features of the seismic catalog at which we are interested. For this reason, here we take an opposite minimal approach and analyze the behavior of a purposely simple earthquake simulator applied to a set of California faults. The idea is that a simple model may be more informative than a complex one for some specific scientific objectives, because it is more understandable. The model has three main components: the first one is a realistic tectonic setting, i.e., a fault dataset of California; the other two components are quantitative laws for earthquake generation on each single fault, and the Coulomb Failure Function for modeling fault interaction. The final goal of this work is twofold. On one hand, we aim to identify the minimum set of physical ingredients that can satisfactorily reproduce the features of the real seismic catalog, such as short-term seismic cluster, and to investigate on the hypothetical long-term behavior, and faults synchronization. On the other hand, we want to investigate the limits of predictability of the model itself.

  20. An Approach to Teaching General Chemistry II that Highlights the Interdisciplinary Nature of Science

    ERIC Educational Resources Information Center

    Sumter, Takita Felder; Owens, Patrick M.

    2011-01-01

    The need for a revised curriculum within the life sciences has been well-established. One strategy to improve student preparation in the life sciences is to redesign introductory courses like biology, chemistry, and physics so that they better reflect their disciplinary interdependence. We describe a medically relevant, context-based approach to…

  1. Campus-Based Geographic Learning: A Field Oriented Teaching Scenario

    ERIC Educational Resources Information Center

    Jennings, Steven A.; Huber, Thomas P.

    2003-01-01

    The use of field classes and the need for university master planning are presented as a way to enhance learning. This field-oriented, goal-oriented approach to learning is proposed as a general model for university-level geographic education. This approach is presented for physical geography classes, but could also be applied to other subdivisions…

  2. Evaluating Environmental Management Approaches to Alcohol and Other Drug Abuse Prevention. Prevention Updates

    ERIC Educational Resources Information Center

    DeJong, William; Langford, Linda M.

    2006-01-01

    Recent years have seen an upsurge in prevention work focused on changing the campus and community environments in which college students make decisions about alcohol and other drug (AOD) use. This approach, called "environmental management," is based on three fundamental premises: (1) Substance use problems are aggravated by a physical, social,…

  3. Creating the Joyful Writer: Introducing the Holistic Approach in the Classroom

    ERIC Educational Resources Information Center

    Schiller, Susan A.

    2007-01-01

    This book is a teacher resource based on holistic education for those educators who want to go beyond "traditional approaches" but do not know how. The author places emphasis on the whole person (intellectual, physical, social, emotional, spiritual, and environmental) rather than the intellectual way of knowing. Written in an easy-to-read format,…

  4. The Pedagogical Orientations of South African Physical Sciences Teachers towards Inquiry or Direct Instructional Approaches

    ERIC Educational Resources Information Center

    Ramnarain, Umesh; Schuster, David

    2014-01-01

    In recent years, inquiry-based science instruction has become widely advocated in science education standards in many countries and, hence, in teacher preparation programmes. Nevertheless, in practice, one finds a wide variety of science instructional approaches. In South Africa, as in many countries, there is also a great disparity in school…

  5. An Industrial Educational Laboratory at Ducati Foundation: Narrative Approaches to Mechanics Based upon Continuum Physics

    ERIC Educational Resources Information Center

    Corni, Federico; Fuchs, Hans U.; Savino, Giovanni

    2018-01-01

    This is a description of the conceptual foundations used for designing a novel learning environment for mechanics implemented as an "Industrial Educational Laboratory"--called Fisica in Moto (FiM)--at the Ducati Foundation in Bologna. In this paper, we will describe the motivation for and design of the conceptual approach to mechanics…

  6. Incorporating Physical Activity Into the Schools Using a 3-Tiered Approach

    ERIC Educational Resources Information Center

    Fedewa, Alicia L.; Candelaria, Ashley; Erwin, Heather E.; Clark, Teresa P.

    2013-01-01

    Background: Public health models have been used to address a number of school-based concerns, notably in the identification and treatment of students at-risk for academic or behavioral deficits. Significant benefits are associated with this model as, compared to a traditional approach, the focus is shifted from remediation to prevention, and from…

  7. The Integration of a Family Systems Approach for Understanding Youth Obesity, Physical Activity, and Dietary Programs

    ERIC Educational Resources Information Center

    Kitzman-Ulrich, Heather; Wilson, Dawn K.; St. George, Sara M.; Lawman, Hannah; Segal, Michelle; Fairchild, Amanda

    2010-01-01

    Rates of overweight in youth have reached epidemic proportions and are associated with adverse health outcomes. Family-based programs have been widely used to treat overweight in youth. However, few programs incorporate a theoretical framework for studying a family systems approach in relation to youth health behavior change. Therefore, this…

  8. Concurrent estimates of carbon export reveal physical biases in ΔO2/Ar-based net community production estimates in the Southern California Bight

    NASA Astrophysics Data System (ADS)

    Haskell, William Z.; Fleming, John C.

    2018-07-01

    Net community production (NCP) represents the amount of biologically-produced organic carbon that is available to be exported out of the surface ocean and is typically estimated using measurements of the O2/Ar ratio in the surface mixed layer under the assumption of negligible vertical transport. However, physical processes can significantly bias NCP estimates based on this in-situ tracer. It is actively debated whether discrepancies between O2/Ar-based NCP and carbon export estimates are due to differences in the location of biological production and export, or the result of physical biases. In this study, we calculate export production across the euphotic depth during two months of upwelling in Southern California in 2014, based on an estimate of the consumption rate of dissolved organic carbon (DOC) and the dissolved: total organic carbon consumption ratio below the euphotic depth. This estimate equals the concurrent O2/Ar-based NCP estimates over the same period that are corrected for physical biases, but is significantly different than NCP estimated without a correction for vertical transport. This comparison demonstrates that concurrent physical transport estimates would significantly improve O2/Ar-based estimates of NCP, particularly in settings with vertical advection. Potential approaches to mitigate this bias are discussed.

  9. Neck-Related Physical Function, Self-Efficacy, and Coping Strategies in Patients With Cervical Radiculopathy: A Randomized Clinical Trial of Postoperative Physiotherapy.

    PubMed

    Wibault, Johanna; Öberg, Birgitta; Dedering, Åsa; Löfgren, Håkan; Zsigmond, Peter; Persson, Liselott; Andell, Maria; R Jonsson, Margareta; Peolsson, Anneli

    2017-06-01

    The purpose of this study was to compare postoperative rehabilitation with structured physiotherapy to the standard approach in patients with cervical radiculopathy (CR) in a prospective randomized study at 6 months follow-up based on measures of neck-related physical function, self-efficacy, and coping strategies. Patients with persistent CR and scheduled for surgery (N = 202) were randomly assigned to structured postoperative physiotherapy or a standard postoperative approach. Structured postoperative physiotherapy combined neck-specific exercises with a behavioral approach. Baseline, 3-month, and 6-month evaluations included questionnaires and clinical examinations. Neck muscle endurance, active cervical range of motion, self-efficacy, pain catastrophizing (CSQ-CAT), perceived control over pain, and ability to decrease pain were analyzed for between-group differences using complete case and per-protocol approaches. No between-group difference was reported at the 6-month follow-up (P = .05-.99), but all outcomes had improved from baseline (P < .001). Patients undergoing structured postoperative physiotherapy with ≥50% attendance at treatment sessions had larger improvements in CSQ-CAT (P = .04) during the rehabilitation period from 3 to 6 months after surgery compared with the patients who received standard postoperative approach. No between-group difference was found at 6 months after surgery based on measures of neck-related physical function, self-efficacy, and coping strategies. However, the results confirm that neck-specific exercises are tolerated by patients with CR after surgery and may suggest a benefit from combining surgery with structured postoperative physiotherapy for patients with CR. Copyright © 2017. Published by Elsevier Inc.

  10. Active Learning Approaches by Visualizing ICT Devices with Milliseconds Resolution for Deeper Understanding in Physics

    NASA Astrophysics Data System (ADS)

    Kobayashi, Akizo; Okiharu, Fumiko

    2010-07-01

    We are developing various modularized materials in physics education to overcome students' misconceptions by use of ICT, i.e. video analysis software and ultra-high-speed digital movies, motion detector, force sensors, current and voltage probes, temperature sensors etc. Furthermore, we also present some new modules of active learning approaches on electric circuit using high speed camera and voltage probes with milliseconds resolution. We are now especially trying to improve conceptual understanding by use of ICT devices with milliseconds resolution in various areas of physics education We give some modules of mass measurements by video analysis of collision phenomena by using high speed cameras—Casio EX-F1(1200 fps), EX-FH20(1000 fps) and EX-FC100/150(1000 fps). We present several new modules on collision phenomena to establish deeper understanding of conservation laws of momentum. We discuss some effective results of trial on a physics education training courses for science educators, and those for science teachers during the renewal years of teacher's license after every ten years in Japan. Finally, we discuss on some typical results of pre-test and post-test in our active learning approaches based on ICT, i.e. some evidence on improvements of physics education (increasing ratio of correct answer are 50%-level).

  11. Teaching energy using an integrated science approach

    NASA Astrophysics Data System (ADS)

    Poggi, Valeria; Miceli, Cristina; Testa, Italo

    2017-01-01

    Despite its relevance to all scientific domains, the debate surrounding the teaching of energy is still open. The main point remains the problems students have in understanding some aspects of the energy concept and in applying their knowledge to the comprehension of natural phenomena. In this paper, we present a research-based interdisciplinary approach to the teaching of energy in which the first and second laws of thermodynamics were used to interpret physical, chemical and biological processes. The contents of the three disciplines (physics, chemistry, biology) were reconstructed focusing on six basic aspects of energy (forms, transfer, transformation, conservation, degradation, and entropy) and using common teaching methodologies. The module was assessed with 39 secondary school students (aged 15-16) using a 30-question research instrument and a treatment/control group methodology. Analysis of students’ learning outcomes suggests a better understanding of the energy concept, supporting the effectiveness of an interdisciplinary approach in the teaching of energy in physics and science in general. Implications for the teaching of energy are briefly discussed.

  12. Male sexual strategies modify ratings of female models with specific waist-to-hip ratios.

    PubMed

    Brase, Gary L; Walker, Gary

    2004-06-01

    Female waist-to-hip ratio (WHR) has generally been an important general predictor of ratings of physical attractiveness and related characteristics. Individual differences in ratings do exist, however, and may be related to differences in the reproductive tactics of the male raters such as pursuit of short-term or long-term relationships and adjustments based on perceptions of one's own quality as a mate. Forty males, categorized according to sociosexual orientation and physical qualities (WHR, Body Mass Index, and self-rated desirability), rated female models on both attractiveness and likelihood they would approach them. Sociosexually restricted males were less likely to approach females rated as most attractive (with 0.68-0.72 WHR), as compared with unrestricted males. Males with lower scores in terms of physical qualities gave ratings indicating more favorable evaluations of female models with lower WHR. The results indicate that attractiveness and willingness to approach are overlapping but distinguishable constructs, both of which are influenced by variations in characteristics of the raters.

  13. Mindfulness-Based Cognitive Behaviour Therapy with Emotionally Disturbed Adolescents Affected by HIV/AIDS

    ERIC Educational Resources Information Center

    Sinha, Uday K.; Kumar, Deepak

    2010-01-01

    Mindfulness-based approaches have been shown to be useful in a variety of physical and mental health conditions including chronic pain, cancer, psoriasis, eating disorders, anxiety and depression. Mindfulness based CBT finds its origins in Eastern Buddhist meditation which began many centuries ago. Recent studies on CBT with mindfulness have shown…

  14. Embedding Research in a Field-Based Module through Peer Review and Assessment for Learning

    ERIC Educational Resources Information Center

    Nicholson, Dawn T.

    2011-01-01

    A case study is presented of embedding research in a final year undergraduate, field-based, physical geography module. The approach is holistic, whereby research-based learning activities simulate the full life cycle of research from inception through to peer review and publication. The learning, teaching and assessment strategy emphasizes the…

  15. Jumping In: Redefining Teaching and Learning in Physical Education through Project-Based Learning

    ERIC Educational Resources Information Center

    Coyne, Jaime; Hollas, Tori; Potter, Jalene P.

    2016-01-01

    Project-based learning (PBL) is an inquiry-based instructional approach that allows students to gain knowledge and skills by investigating and respond to engaging, complex problems or challenges. For some, PBL may seem like an unnatural fit in PE classrooms. However, this article describes how, with careful and creative planning, PBL can easily…

  16. Development of a Multi-Disciplinary Intervention for the Treatment of Childhood Obesity Based on Cognitive Behavioral Therapy

    ERIC Educational Resources Information Center

    Bathrellou, Eirini; Yannakoulia, Mary; Papanikolaou, Katerina; Pehlivanidis, Artemios; Pervanidou, Panagiota; Kanaka-Gantenbein, Christina; Tsiantis, John; Chrousos, George P.; Sidossis, Labros S.

    2010-01-01

    Along the lines of the evidence-based recommendations, we developed a multi-disciplinary intervention for overweight children 7- to 12-years-old, primarily aiming at helping children to adopt healthier eating habits and a physically active lifestyle. The program combined nutrition intervention, based on a non-dieting approach, with physical…

  17. Technology-Based Inquiry for Middle School

    ERIC Educational Resources Information Center

    Christmann, Edwin

    2006-01-01

    Activities featured in this new compendium--a collection of 26 articles published in Science Scope, NSTA's member journal for middle school teachers--will show how. Technology-Based Inquiry offers fresh approaches that teachers and students can use to explore physical science, Earth and space science, life science, and more. It covers the…

  18. Applications of a constrained mechanics methodology in economics

    NASA Astrophysics Data System (ADS)

    Janová, Jitka

    2011-11-01

    This paper presents instructive interdisciplinary applications of constrained mechanics calculus in economics on a level appropriate for undergraduate physics education. The aim of the paper is (i) to meet the demand for illustrative examples suitable for presenting the background of the highly expanding research field of econophysics even at the undergraduate level and (ii) to enable the students to gain a deeper understanding of the principles and methods routinely used in mechanics by looking at the well-known methodology from the different perspective of economics. Two constrained dynamic economic problems are presented using the economic terminology in an intuitive way. First, the Phillips model of the business cycle is presented as a system of forced oscillations and the general problem of two interacting economies is solved by the nonholonomic dynamics approach. Second, the Cass-Koopmans-Ramsey model of economical growth is solved as a variational problem with a velocity-dependent constraint using the vakonomic approach. The specifics of the solution interpretation in economics compared to mechanics is discussed in detail, a discussion of the nonholonomic and vakonomic approaches to constrained problems in mechanics and economics is provided and an economic interpretation of the Lagrange multipliers (possibly surprising for the students of physics) is carefully explained. This paper can be used by the undergraduate students of physics interested in interdisciplinary physics applications to gain an understanding of the current scientific approach to economics based on a physical background, or by university teachers as an attractive supplement to classical mechanics lessons.

  19. The MyHealthService approach for chronic disease management based on free open source software and low cost components.

    PubMed

    Vognild, Lars K; Burkow, Tatjana M; Luque, Luis Fernandez

    2009-01-01

    In this paper we present an approach to building personal health services, supporting following-up, physical exercising, health education, and psychosocial support for the chronically ill, based on free open source software and low-cost computers, mobile devices, and consumer health and fitness devices. We argue that this will lower the cost of the systems, which is important given the increasing number of people with chronicle diseases and limited healthcare budgets.

  20. Geometry and Integrability

    NASA Astrophysics Data System (ADS)

    Mason, Lionel; Nutku, Yavuz

    2003-12-01

    Based on courses held at the Feza GÜrsey Institute, this collection of survey articles introduces advanced graduate students to an exciting area on the border of mathematics and mathematical physics. Including articles by key names such as Calogero, Donagi and Mason, it features the algebro-geometric material from Donagi as well as the twistor space methods in Woodhouse's contribution, forming a bridge between the pure mathematics and the more physical approaches.

  1. Abjection and Alterity in the Imagining of Transgender in Physical Education and Sport: A Pedagogical Approach in Higher Education

    ERIC Educational Resources Information Center

    Pérez-Samaniego, Víctor; Fuentes-Miguel, Jorge; Pereira-García, Sofía; Devís-Devís, José

    2016-01-01

    In physical education (PE) and sports there is little theoretical and empirical knowledge about transgender people, and particularly, on how they are and can be imagined within this context. In this paper, we present and analyze a pedagogical activity based on the reading and discussion of a fictional representation of a transgender person within…

  2. A Student-Centered, Inquiry-Based Approach to Young's Double-Slit Experiment (and Other Investigations of Light's Wave Character)

    ERIC Educational Resources Information Center

    Meyer, Daniel Z.

    2017-01-01

    Young's double-slit experiment is one of the most historically significant works in physics, and one that is easily done in an introductory physics class. It is also an excellent example of an investigation that allows us to infer the nature of phenomena beyond direct observation. Unfortunately, perhaps because of this, it is often also an…

  3. A collaborative learning approach for service-oriented introductory physics

    NASA Astrophysics Data System (ADS)

    Smith, Michael R.

    1997-03-01

    I have taught algebra-based introductory physics for six years to liberal arts students. It was primarily a service course for students majoring in Athletic Training, Physical Therapy, Geology, Biology, and Pre-Med. The typical student was characterized by having a minimal math and problem-solving proficiency. There also was a pattern of students being predisposed to memorizing facts and formulas, and attempting to solve problems by finding the correct formula and "plugging in" numbers to get an answer. The students seemed to have a minimal ability in deductive reasoning and problem solving, starting from basic principles. It is no wonder that they entered the introductory physics service course with extreme trepidation, based upon a strongly perceived physics phobia. A standard lecture format was used for the class size of approximately 25-30 students; and an attempt was always made to engage the students through the Socratic approach, by asking leading questions during the course of the lecture. The students were relatively unprepared and couldn't participate in the class, and often responded antagonistically. They indicated they didn't want to be asked to think about an issue, but would rather just be told the facts so they could take specific notes for subsequent memorization. It was clear from the results of the open book exams given during the semester that the majority of students could not approach problem solving using deductive reasoning based on basic principles, but relied on attempting to force-fit the problem into a worked example in the text (often out of context, with illogical results). The absentee rate in the classroom was usually around 30-40%. The academic administration of my liberal arts university has the policy of formal course evaluations by the students at the end of each semester. The evaluation questionnaire appears to be primarily a measurement of the stress level of the student during the course, and the evaluation score I received for the service physics course was typically on the order of 3 out of a possible 5; a score considered unsatisfactory by the administration.

  4. Teaching the Whole Child through Physical Education and Youth Development

    ERIC Educational Resources Information Center

    Sucre, Sheldon

    2016-01-01

    This article describes the Make-A-Difference: Guard East New York program, a sports-based youth development program that utilizes the holistic teaching approach of teaching for personal and social responsibility.

  5. The evolution of process-based hydrologic models: historical challenges and the collective quest for physical realism

    NASA Astrophysics Data System (ADS)

    Clark, Martyn P.; Bierkens, Marc F. P.; Samaniego, Luis; Woods, Ross A.; Uijlenhoet, Remko; Bennett, Katrina E.; Pauwels, Valentijn R. N.; Cai, Xitian; Wood, Andrew W.; Peters-Lidard, Christa D.

    2017-07-01

    The diversity in hydrologic models has historically led to great controversy on the correct approach to process-based hydrologic modeling, with debates centered on the adequacy of process parameterizations, data limitations and uncertainty, and computational constraints on model analysis. In this paper, we revisit key modeling challenges on requirements to (1) define suitable model equations, (2) define adequate model parameters, and (3) cope with limitations in computing power. We outline the historical modeling challenges, provide examples of modeling advances that address these challenges, and define outstanding research needs. We illustrate how modeling advances have been made by groups using models of different type and complexity, and we argue for the need to more effectively use our diversity of modeling approaches in order to advance our collective quest for physically realistic hydrologic models.

  6. The evolution of process-based hydrologic models: historical challenges and the collective quest for physical realism

    NASA Astrophysics Data System (ADS)

    Clark, M. P.; Nijssen, B.; Wood, A.; Mizukami, N.; Newman, A. J.

    2017-12-01

    The diversity in hydrologic models has historically led to great controversy on the "correct" approach to process-based hydrologic modeling, with debates centered on the adequacy of process parameterizations, data limitations and uncertainty, and computational constraints on model analysis. In this paper, we revisit key modeling challenges on requirements to (1) define suitable model equations, (2) define adequate model parameters, and (3) cope with limitations in computing power. We outline the historical modeling challenges, provide examples of modeling advances that address these challenges, and define outstanding research needs. We illustrate how modeling advances have been made by groups using models of different type and complexity, and we argue for the need to more effectively use our diversity of modeling approaches in order to advance our collective quest for physically realistic hydrologic models.

  7. A Physics-Based Deep Learning Approach to Shadow Invariant Representations of Hyperspectral Images.

    PubMed

    Windrim, Lloyd; Ramakrishnan, Rishi; Melkumyan, Arman; Murphy, Richard J

    2018-02-01

    This paper proposes the Relit Spectral Angle-Stacked Autoencoder, a novel unsupervised feature learning approach for mapping pixel reflectances to illumination invariant encodings. This work extends the Spectral Angle-Stacked Autoencoder so that it can learn a shadow-invariant mapping. The method is inspired by a deep learning technique, Denoising Autoencoders, with the incorporation of a physics-based model for illumination such that the algorithm learns a shadow invariant mapping without the need for any labelled training data, additional sensors, a priori knowledge of the scene or the assumption of Planckian illumination. The method is evaluated using datasets captured from several different cameras, with experiments to demonstrate the illumination invariance of the features and how they can be used practically to improve the performance of high-level perception algorithms that operate on images acquired outdoors.

  8. Gray-Box Approach for Thermal Modelling of Buildings for Applications in District Heating and Cooling Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saurav, Kumar; Chandan, Vikas

    District-heating-and-cooling (DHC) systems are a proven energy solution that has been deployed for many years in a growing number of urban areas worldwide. They comprise a variety of technologies that seek to develop synergies between the production and supply of heat, cooling, domestic hot water and electricity. Although the benefits of DHC systems are significant and have been widely acclaimed, yet the full potential of modern DHC systems remains largely untapped. There are several opportunities for development of energy efficient DHC systems, which will enable the effective exploitation of alternative renewable resources, waste heat recovery, etc., in order to increasemore » the overall efficiency and facilitate the transition towards the next generation of DHC systems. This motivated the need for modelling these complex systems. Large-scale modelling of DHC-networks is challenging, as it has several components such as buildings, pipes, valves, heating source, etc., interacting with each other. In this paper, we focus on building modelling. In particular, we present a gray-box methodology for thermal modelling of buildings. Gray-box modelling is a hybrid of data driven and physics based models where, coefficients of the equations from physics based models are learned using data. This approach allows us to capture the dynamics of the buildings more effectively as compared to pure data driven approach. Additionally, this approach results in a simpler models as compared to pure physics based models. We first develop the individual components of the building such as temperature evolution, flow controller, etc. These individual models are then integrated in to the complete gray-box model for the building. The model is validated using data collected from one of the buildings at Lule{\\aa}, a city on the coast of northern Sweden.« less

  9. Developing a framework for assessment of the environmental determinants of walking and cycling.

    PubMed

    Pikora, Terri; Giles-Corti, Billie; Bull, Fiona; Jamrozik, Konrad; Donovan, Rob

    2003-04-01

    The focus for interventions and research on physical activity has moved away from vigorous activity to moderate-intensity activities, such as walking. In addition, a social ecological approach to physical activity research and practice is recommended. This approach considers the influence of the environment and policies on physical activity. Although there is limited empirical published evidence related to the features of the physical environment that influence physical activity, urban planning and transport agencies have developed policies and strategies that have the potential to influence whether people walk or cycle in their neighbourhood. This paper presents the development of a framework of the potential environmental influences on walking and cycling based on published evidence and policy literature, interviews with experts and a Delphi study. The framework includes four features: functional, safety, aesthetic and destination; as well as the hypothesised factors that contribute to each of these features of the environment. In addition, the Delphi experts determined the perceived relative importance of these factors. Based on these factors, a data collection tool will be developed and the frameworks will be tested through the collection of environmental information on neighbourhoods, where data on the walking and cycling patterns have been collected previously. Identifying the environmental factors that influence walking and cycling will allow the inclusion of a public health perspective as well as those of urban planning and transport in the design of built environments.

  10. Sport participation among individuals with acquired physical disabilities: group differences on demographic, disability, and Health Action Process Approach constructs.

    PubMed

    Perrier, Marie-Josée; Shirazipour, Celina H; Latimer-Cheung, Amy E

    2015-04-01

    Despite numerous physical, social, and mental health benefits of engaging in moderate and vigorous intensity physical activities (e.g., sport), few individuals with acquired physical disabilities currently participate in adapted sport. Theory-based sport promotion interventions are one possible way to increase the amount of individuals who engage in sport. The primary objective of this study was to examine the profiles of three different sport participation groups with respect to demographic, injury, and Health Action Process Approach (HAPA) constructs. ANOVAs and Chi-square tests were used to determine group differences on demographic and disability-related constructs. A MANCOVA was conducted to determine differences between three sport participation groups (non-intenders, intenders, and actors) with age, years post-injury, mode of mobility, and sex included as covariates. A cohort of 201 individuals was recruited; 56 (27.9%) were non-intenders, 21 (10.4%) were intenders, and 124 (61.7%) were actors. The MANCOVA revealed significant differences between groups on the HAPA constructs, F(22,370) = 9.02, p < .0001, Pillai's trace = .70, demonstrating that individuals with acquired physical disabilities will rate important health behavior constructs differently based on their sport intentions. These results provide an important framework that adapted sport organizations can use to tailor their sport promotion programs. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Automated Analysis of Stateflow Models

    NASA Technical Reports Server (NTRS)

    Bourbouh, Hamza; Garoche, Pierre-Loic; Garion, Christophe; Gurfinkel, Arie; Kahsaia, Temesghen; Thirioux, Xavier

    2017-01-01

    Stateflow is a widely used modeling framework for embedded and cyber physical systems where control software interacts with physical processes. In this work, we present a framework a fully automated safety verification technique for Stateflow models. Our approach is two-folded: (i) we faithfully compile Stateflow models into hierarchical state machines, and (ii) we use automated logic-based verification engine to decide the validity of safety properties. The starting point of our approach is a denotational semantics of State flow. We propose a compilation process using continuation-passing style (CPS) denotational semantics. Our compilation technique preserves the structural and modal behavior of the system. The overall approach is implemented as an open source toolbox that can be integrated into the existing Mathworks Simulink Stateflow modeling framework. We present preliminary experimental evaluations that illustrate the effectiveness of our approach in code generation and safety verification of industrial scale Stateflow models.

  12. A pressure relaxation closure model for one-dimensional, two-material Lagrangian hydrodynamics based on the Riemann problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamm, James R; Shashkov, Mikhail J

    2009-01-01

    Despite decades of development, Lagrangian hydrodynamics of strengthfree materials presents numerous open issues, even in one dimension. We focus on the problem of closing a system of equations for a two-material cell under the assumption of a single velocity model. There are several existing models and approaches, each possessing different levels of fidelity to the underlying physics and each exhibiting unique features in the computed solutions. We consider the case in which the change in heat in the constituent materials in the mixed cell is assumed equal. An instantaneous pressure equilibration model for a mixed cell can be cast asmore » four equations in four unknowns, comprised of the updated values of the specific internal energy and the specific volume for each of the two materials in the mixed cell. The unique contribution of our approach is a physics-inspired, geometry-based model in which the updated values of the sub-cell, relaxing-toward-equilibrium constituent pressures are related to a local Riemann problem through an optimization principle. This approach couples the modeling problem of assigning sub-cell pressures to the physics associated with the local, dynamic evolution. We package our approach in the framework of a standard predictor-corrector time integration scheme. We evaluate our model using idealized, two material problems using either ideal-gas or stiffened-gas equations of state and compare these results to those computed with the method of Tipton and with corresponding pure-material calculations.« less

  13. Optimized mirror shape tuning using beam weightings based on distance, angle of incidence, reflectivity, and power.

    PubMed

    Goldberg, Kenneth A; Yashchuk, Valeriy V

    2016-05-01

    For glancing-incidence optical systems, such as short-wavelength optics used for nano-focusing, incorporating physical factors in the calculations used for shape optimization can improve performance. Wavefront metrology, including the measurement of a mirror's shape or slope, is routinely used as input for mirror figure optimization on mirrors that can be bent, actuated, positioned, or aligned. Modeling shows that when the incident power distribution, distance from focus, angle of incidence, and the spatially varying reflectivity are included in the optimization, higher Strehl ratios can be achieved. Following the works of Maréchal and Mahajan, optimization of the Strehl ratio (for peak intensity with a coherently illuminated system) occurs when the expectation value of the phase error's variance is minimized. We describe an optimization procedure based on regression analysis that incorporates these physical parameters. This approach is suitable for coherently illuminated systems of nearly diffraction-limited quality. Mathematically, this work is an enhancement of the methods commonly applied for ex situ alignment based on uniform weighting of all points on the surface (or a sub-region of the surface). It follows a similar approach to the optimization of apodized and non-uniformly illuminated optical systems. Significantly, it reaches a different conclusion than a more recent approach based on minimization of focal plane ray errors.

  14. Coulomb explosion: a novel approach to separate single-walled carbon nanotubes from their bundle.

    PubMed

    Liu, Guangtong; Zhao, Yuanchun; Zheng, Kaihong; Liu, Zheng; Ma, Wenjun; Ren, Yan; Xie, Sishen; Sun, Lianfeng

    2009-01-01

    A novel approach based on Coulomb explosion has been developed to separate single-walled carbon nanotubes (SWNTs) from their bundle. With this technique, we can readily separate a bundle of SWNTs into smaller bundles with uniform diameter as well as some individual SWNTs. The separated SWNTs have a typical length of several microns and form a nanotree at one end of the original bundle. More importantly, this separating procedure involves no surfactant and includes only one-step physical process. The separation method offers great conveniences for the subsequent individual SWNT or multiterminal SWNTs device fabrication and their physical properties studies.

  15. A mixed-methods investigation of successful aging among older women engaged in sports-based versus exercise-based leisure time physical activities.

    PubMed

    Berlin, Kathryn; Kruger, Tina; Klenosky, David B

    2018-01-01

    This mixed-methods study compares active older women in different physically based leisure activities and explores the difference in subjective ratings of successful aging and quantifiable predictors of success. A survey was administered to 256 women, 60-92 years of age, engaged in a sports- or exercise-based activity. Quantitative data were analyzed through ANOVA and multiple regression. Qualitative data (n = 79) was analyzed using the approach associated with means-end theory. While participants quantitatively appeared similar in terms of successful aging, qualitative interviews revealed differences in activity motivation. Women involved in sports highlighted social/psychological benefits, while those involved in exercise-based activities stressed fitness outcomes.

  16. Learning physical descriptors for materials science by compressed sensing

    NASA Astrophysics Data System (ADS)

    Ghiringhelli, Luca M.; Vybiral, Jan; Ahmetcik, Emre; Ouyang, Runhai; Levchenko, Sergey V.; Draxl, Claudia; Scheffler, Matthias

    2017-02-01

    The availability of big data in materials science offers new routes for analyzing materials properties and functions and achieving scientific understanding. Finding structure in these data that is not directly visible by standard tools and exploitation of the scientific information requires new and dedicated methodology based on approaches from statistical learning, compressed sensing, and other recent methods from applied mathematics, computer science, statistics, signal processing, and information science. In this paper, we explain and demonstrate a compressed-sensing based methodology for feature selection, specifically for discovering physical descriptors, i.e., physical parameters that describe the material and its properties of interest, and associated equations that explicitly and quantitatively describe those relevant properties. As showcase application and proof of concept, we describe how to build a physical model for the quantitative prediction of the crystal structure of binary compound semiconductors.

  17. An approach for modelling snowcover ablation and snowmelt runoff in cold region environments

    NASA Astrophysics Data System (ADS)

    Dornes, Pablo Fernando

    Reliable hydrological model simulations are the result of numerous complex interactions among hydrological inputs, landscape properties, and initial conditions. Determination of the effects of these factors is one of the main challenges in hydrological modelling. This situation becomes even more difficult in cold regions due to the ungauged nature of subarctic and arctic environments. This research work is an attempt to apply a new approach for modelling snowcover ablation and snowmelt runoff in complex subarctic environments with limited data while retaining integrity in the process representations. The modelling strategy is based on the incorporation of both detailed process understanding and inputs along with information gained from observations of basin-wide streamflow phenomenon; essentially a combination of deductive and inductive approaches. The study was conducted in the Wolf Creek Research Basin, Yukon Territory, using three models, a small-scale physically based hydrological model, a land surface scheme, and a land surface hydrological model. The spatial representation was based on previous research studies and observations, and was accomplished by incorporating landscape units, defined according to topography and vegetation, as the spatial model elements. Comparisons between distributed and aggregated modelling approaches showed that simulations incorporating distributed initial snowcover and corrected solar radiation were able to properly simulate snowcover ablation and snowmelt runoff whereas the aggregated modelling approaches were unable to represent the differential snowmelt rates and complex snowmelt runoff dynamics. Similarly, the inclusion of spatially distributed information in a land surface scheme clearly improved simulations of snowcover ablation. Application of the same modelling approach at a larger scale using the same landscape based parameterisation showed satisfactory results in simulating snowcover ablation and snowmelt runoff with minimal calibration. Verification of this approach in an arctic basin illustrated that landscape based parameters are a feasible regionalisation framework for distributed and physically based models. In summary, the proposed modelling philosophy, based on the combination of an inductive and deductive reasoning, is a suitable strategy for reliable predictions of snowcover ablation and snowmelt runoff in cold regions and complex environments.

  18. Hierarchical multi-scale approach to validation and uncertainty quantification of hyper-spectral image modeling

    NASA Astrophysics Data System (ADS)

    Engel, Dave W.; Reichardt, Thomas A.; Kulp, Thomas J.; Graff, David L.; Thompson, Sandra E.

    2016-05-01

    Validating predictive models and quantifying uncertainties inherent in the modeling process is a critical component of the HARD Solids Venture program [1]. Our current research focuses on validating physics-based models predicting the optical properties of solid materials for arbitrary surface morphologies and characterizing the uncertainties in these models. We employ a systematic and hierarchical approach by designing physical experiments and comparing the experimental results with the outputs of computational predictive models. We illustrate this approach through an example comparing a micro-scale forward model to an idealized solid-material system and then propagating the results through a system model to the sensor level. Our efforts should enhance detection reliability of the hyper-spectral imaging technique and the confidence in model utilization and model outputs by users and stakeholders.

  19. Application of morphological synthesis for understanding electrode microstructure evolution as a function of applied charge/discharge cycles

    DOE PAGES

    Glazoff, Michael V.; Dufek, Eric J.; Shalashnikov, Egor V.

    2016-09-15

    Morphological analysis and synthesis operations were employed for analysis of electrode microstructure transformations and evolution accompanying the application of charge/discharge cycles to electrochemical storage systems (batteries). Using state-of-the-art morphological algorithms, it was possible to predict microstructure evolution in porous Si electrodes for Li-ion batteries with sufficient accuracy. Algorithms for image analyses (segmentation, feature extraction, and 3D-reconstructions using 2D-images) were also developed. Altogether, these techniques could be considered supplementary to phase-field mesoscopic approach to microstructure evolution that is based upon clear and definitive changes in the appearance of microstructure. However, unlike in phase-field, the governing equations for morphological approach are geometry-,more » not physics-based. Similar non-physics based approach to understanding different phenomena was attempted with the introduction of cellular automata. It is anticipated that morphological synthesis and analysis will represent a useful supplementary tool to phase-field and will render assistance to unraveling the underlying microstructure-property relationships. The paper contains data on electrochemical characterization of different electrode materials that was conducted in parallel to morphological study.« less

  20. Using 3d Bim Model for the Value-Based Land Share Calculations

    NASA Astrophysics Data System (ADS)

    Çelik Şimşek, N.; Uzun, B.

    2017-11-01

    According to the Turkish condominium ownership system, 3D physical buildings and its condominium units are registered to the condominium ownership books via 2D survey plans. Currently, 2D representations of the 3D physical objects, causes inaccurate and deficient implementations for the determination of the land shares. Condominium ownership and easement right are established with a clear indication of land shares (condominium ownership law, article no. 3). So, the land share of each condominium unit have to be determined including the value differences among the condominium units. However the main problem is that, land share has often been determined with area based over the project before construction of the building. The objective of this study is proposing a new approach in terms of value-based land share calculations of the condominium units that subject to condominium ownership. So, the current approaches and its failure that have taken into account in determining the land shares are examined. And factors that affect the values of the condominium units are determined according to the legal decisions. This study shows that 3D BIM models can provide important approaches for the valuation problems in the determination of the land shares.

  1. Learning Physical Science through Astronomy Activities: A Comparison between Constructivist and Traditional Approaches in Grades 3-6

    NASA Astrophysics Data System (ADS)

    Ward, R. Bruce; Sadler, Philip M.; Shapiro, Irwin I.

    We report on an evaluation of the effectiveness of Project ARIES, an astronomy- based physical science curriculum for upper elementary and middle school children. ARIES students use innovative, simple, and affordable apparatus to carry out a wide range of indoor and outdoor hands-on, discovery- based activities. Student journals and comprehensive teacher materials aid in making the science content accessible to students based on their shared experiences and observations. Approximately 750 Grades 3 6 students in ARIES (or treatment) classrooms are compared with approximately 650 Grades 4 6 students in control classrooms through a series of open-ended assessment measures, using a pretest and posttest format. A detailed analysis by item measures the gain in treatment and control groups. We identify concepts where the ARIES approach is more effective, where both are equally effective, and where neither results in much learning. (The ARIES approach was never less effective.) Although learning is in evidence for both control and treatment groups, overall, the ARIES students achieve roughly four times the gain of their control counterparts. In particular, ARIES students had much greater gains for the concepts that the control students found most difficult.

  2. A systematic review of three approaches for constructing physical activity messages: What messages work and what improvements are needed?

    PubMed Central

    2010-01-01

    Background To motivate individuals to adhere to a regular physical activity regime, guidelines must be supplemented with persuasive messages that are disseminated widely. While substantial research has examined effective strategies for disseminating physical activity messages, there has been no systematic effort to examine optimal message content. This paper reviews studies that evaluate the effectiveness of three approaches for constructing physical activity messages including tailoring messages to suit individual characteristics of message recipients (message tailoring), framing messages in terms of gains versus losses (message framing), and targeting messages to affect change in self-efficacy (i.e., a theoretical determinant of behavior change). Methods We searched the MEDLINE, PsycINFO, EMBASE and CINAHL databases up to July 2008. Relevant reference lists also were searched. We included intervention trials, field experiments, and laboratory-based studies that aimed to test the efficacy or effectiveness of tailored messages, framed messages and self-efficacy change messages among healthy adults. We used a descriptive approach to analyze emerging patterns in research findings. Based on this evidence we made recommendations for practice and future research. Results Twenty-two studies were identified. Twelve studies evaluated message tailoring. In 10 of these studies, tailored messages resulted in greater physical activity than a control message. Six studies evaluated framed messages. Five of these studies demonstrated that gain-framed messages lead to stronger intentions to be active compared to a control message. Moreover, a gain-frame advantage was evident in three of the four studies that assessed physical activity. Four studies evaluated self-efficacy change messages. The two studies that used an experimental design provide a clear indication that individuals' beliefs can be affected by messages that incorporate types of information known to be determinants of self-efficacy. Overall, strong evidence to support definitive recommendations for optimal message content and structure was lacking. Conclusions Additional research testing the optimal content of messages used to supplement physical activity guidelines is needed. Tailored messages, gain-framed messages, and self-efficacy change messages hold promise as strategies for constructing physical activity messages and should be a focus of future research. PMID:20459779

  3. Classical Wave Model of Quantum-Like Processing in Brain

    NASA Astrophysics Data System (ADS)

    Khrennikov, A.

    2011-01-01

    We discuss the conjecture on quantum-like (QL) processing of information in the brain. It is not based on the physical quantum brain (e.g., Penrose) - quantum physical carriers of information. In our approach the brain created the QL representation (QLR) of information in Hilbert space. It uses quantum information rules in decision making. The existence of such QLR was (at least preliminary) confirmed by experimental data from cognitive psychology. The violation of the law of total probability in these experiments is an important sign of nonclassicality of data. In so called "constructive wave function approach" such data can be represented by complex amplitudes. We presented 1,2 the QL model of decision making. In this paper we speculate on a possible physical realization of QLR in the brain: a classical wave model producing QLR . It is based on variety of time scales in the brain. Each pair of scales (fine - the background fluctuations of electromagnetic field and rough - the cognitive image scale) induces the QL representation. The background field plays the crucial role in creation of "superstrong QL correlations" in the brain.

  4. Assessing the Impacts of a Hybrid ``Flipped'' Approach to University Physics.

    NASA Astrophysics Data System (ADS)

    Hughes, Chris; Paulson, Scott

    2015-03-01

    Over the course of several years, the physics faculty at James Madison University has been gradually reforming the introductory calculus-based physics sequence to a hybrid model using a ``flipped classroom'' approach. The content traditionally delivered during lecture was divided into approximately 150 short (5-10 minute) videos. For homework, students are assigned 3-5 videos to watch before each class session. These assignments are combined with in-class activities including gouger problem solving and the tutorials developed by the University of Washington group to provide the students with focused guidance on concepts and skills that students traditionally have left our classes not having mastered. For the fall semester course on mechanics, the Force Concept Inventory (FCI) was used to evaluate student outcomes. For the spring semester course on E&M and optics, the Conceptual Survey of Electricity and Magnetism (CSEM) was used. Student reaction to the course structure was generally positive though there were some complaints in the student evaluations at the end of each semester. However, a positive impact on student outcomes was observed based on the Hake gains on the FCI.

  5. Pre-service teachers’ approaches to a historical problem in mechanics

    NASA Astrophysics Data System (ADS)

    Malgieri, Massimiliano; Onorato, Pasquale; Mascheretti, Paolo; De Ambrosis, Anna

    2014-09-01

    In this paper we report on an activity sequence with a group of 29 pre-service physics teachers based on the reconstruction and analysis of a thought experiment that was crucial for Huygens’ derivation of the formula for the centre of oscillation of a physical pendulum. The sequence starts with student teachers approaching the historical problem and culminates in a guided inquiry activity in a video-based laboratory (VBL) setting using Tracker software. We collected data before, during and after the experimental activity by means of written questions, oral discussions and final reports. These documents provide insights into students’ initial and evolving conceptions, as well as their attitudes towards the activity. The analysis of data allows us to uncover and focus on relevant difficulties for future teachers in mastering the concepts of centre of mass and conservation of energy. Moreover, we find indications that the VBL environment makes a positive contribution by stimulating and improving students’ modelling abilities. In particular, we find a sharp increase in the percentage of students capable of producing coherent explanations and physical analyses for the Huygens’ pendulum system after the Tracker activity.

  6. Physics-based enzyme design: predicting binding affinity and catalytic activity.

    PubMed

    Sirin, Sarah; Pearlman, David A; Sherman, Woody

    2014-12-01

    Computational enzyme design is an emerging field that has yielded promising success stories, but where numerous challenges remain. Accurate methods to rapidly evaluate possible enzyme design variants could provide significant value when combined with experimental efforts by reducing the number of variants needed to be synthesized and speeding the time to reach the desired endpoint of the design. To that end, extending our computational methods to model the fundamental physical-chemical principles that regulate activity in a protocol that is automated and accessible to a broad population of enzyme design researchers is essential. Here, we apply a physics-based implicit solvent MM-GBSA scoring approach to enzyme design and benchmark the computational predictions against experimentally determined activities. Specifically, we evaluate the ability of MM-GBSA to predict changes in affinity for a steroid binder protein, catalytic turnover for a Kemp eliminase, and catalytic activity for α-Gliadin peptidase variants. Using the enzyme design framework developed here, we accurately rank the most experimentally active enzyme variants, suggesting that this approach could provide enrichment of active variants in real-world enzyme design applications. © 2014 Wiley Periodicals, Inc.

  7. Responder definition of the Multiple Sclerosis Impact Scale physical impact subscale for patients with physical worsening

    PubMed Central

    Wyrwich, Kathleen W; Guo, Shien; Medori, Rossella; Altincatal, Arman; Wagner, Linda; Elkins, Jacob

    2014-01-01

    Background: The 29-item Multiple Sclerosis Impact Scale (MSIS-29) was developed to examine the impact of multiple sclerosis (MS) on physical and psychological functioning from a patient’s perspective. Objective: To determine the responder definition (RD) of the MSIS-29 physical impact subscale (PHYS) in a group of patients with relapsing–remitting MS (RRMS) participating in a clinical trial. Methods: Data from the SELECT trial comparing daclizumab high-yield process with placebo in patients with RRMS were used. Physical function was evaluated in SELECT using three patient-reported outcomes measures and the Expanded Disability Status Scale (EDSS). Anchor- and distribution-based methods were used to identify an RD for the MSIS-29. Results: Results across the anchor-based approach suggested MSIS-29 PHYS RD values of 6.91 (mean), 7.14 (median) and 7.50 (mode). Distribution-based RD estimates ranged from 6.24 to 10.40. An RD of 7.50 was selected as the most appropriate threshold for physical worsening based on corresponding changes in the EDSS (primary anchor of interest). Conclusion: These findings indicate that a ≥7.50 point worsening on the MSIS-29 PHYS is a reasonable and practical threshold for identifying patients with RRMS who have experienced a clinically significant change in the physical impact of MS. PMID:24740371

  8. The approaches to the didactics of physics in the Czech Republic - Historical development

    NASA Astrophysics Data System (ADS)

    Žák, Vojtěch

    2017-01-01

    The aim of this paper is to describe approaches to the didactics of physics which have appeared in the Czech Republic during its development and to discuss mainly their relationships with other fields. It is potentially beneficial to the understanding of the current situation of the Czech didactics of physics and to the prognosis of its future development. The main part of the article includes a description of the particular approaches of the Czech didactics of physics, such as the methodological, application, integration and communication approaches described in chronological order. Special attention is paid to the relationships of the didactics of physics and physics itself, pedagogy and other fields. It is obvious that the methodological approach is narrowly connected to physics, while the application approach comes essentially from pedagogy. The integration approach seeks the utilization of other scientific fields to develop the didactics of physics. It was revealed that the most elaborate is the communication approach. This approach belongs to the concepts that have influenced the current didactical thinking in the Czech Republic to a high extent in other fields as well (including within the didactics of socio-humanist fields). In spite of the importance of the communication approach, it should be admitted that the other approaches are, to a certain extent, employed as well and co-exist.

  9. SSME fault monitoring and diagnosis expert system

    NASA Technical Reports Server (NTRS)

    Ali, Moonis; Norman, Arnold M.; Gupta, U. K.

    1989-01-01

    An expert system, called LEADER, has been designed and implemented for automatic learning, detection, identification, verification, and correction of anomalous propulsion system operations in real time. LEADER employs a set of sensors to monitor engine component performance and to detect, identify, and validate abnormalities with respect to varying engine dynamics and behavior. Two diagnostic approaches are adopted in the architecture of LEADER. In the first approach fault diagnosis is performed through learning and identifying engine behavior patterns. LEADER, utilizing this approach, generates few hypotheses about the possible abnormalities. These hypotheses are then validated based on the SSME design and functional knowledge. The second approach directs the processing of engine sensory data and performs reasoning based on the SSME design, functional knowledge, and the deep-level knowledge, i.e., the first principles (physics and mechanics) of SSME subsystems and components. This paper describes LEADER's architecture which integrates a design based reasoning approach with neural network-based fault pattern matching techniques. The fault diagnosis results obtained through the analyses of SSME ground test data are presented and discussed.

  10. Effects of the Problem-Posing Approach on Students' Problem Solving Skills and Metacognitive Awareness in Science Education

    NASA Astrophysics Data System (ADS)

    Akben, Nimet

    2018-05-01

    The interrelationship between mathematics and science education has frequently been emphasized, and common goals and approaches have often been adopted between disciplines. Improving students' problem-solving skills in mathematics and science education has always been given special attention; however, the problem-posing approach which plays a key role in mathematics education has not been commonly utilized in science education. As a result, the purpose of this study was to better determine the effects of the problem-posing approach on students' problem-solving skills and metacognitive awareness in science education. This was a quasi-experimental based study conducted with 61 chemistry and 40 physics students; a problem-solving inventory and a metacognitive awareness inventory were administered to participants both as a pre-test and a post-test. During the 2017-2018 academic year, problem-solving activities based on the problem-posing approach were performed with the participating students during their senior year in various university chemistry and physics departments throughout the Republic of Turkey. The study results suggested that structured, semi-structured, and free problem-posing activities improve students' problem-solving skills and metacognitive awareness. These findings indicated not only the usefulness of integrating problem-posing activities into science education programs but also the need for further research into this question.

  11. Vehicle-based vision sensors for intelligent highway systems

    NASA Astrophysics Data System (ADS)

    Masaki, Ichiro

    1989-09-01

    This paper describes a vision system, based on ASIC (Application Specific Integrated Circuit) approach, for vehicle guidance on highways. After reviewing related work in the fields of intelligent vehicles, stereo vision, and ASIC-based approaches, the paper focuses on a stereo vision system for intelligent cruise control. The system measures the distance to the vehicle in front using trinocular triangulation. An application specific processor architecture was developed to offer low mass-production cost, real-time operation, low power consumption, and small physical size. The system was installed in the trunk of a car and evaluated successfully on highways.

  12. Modeling Instruction in AP Physics C: Mechanics and Electricity and Magnetism

    NASA Astrophysics Data System (ADS)

    Belcher, Nathan Tillman

    This action research study used data from multiple assessments in Mechanics and Electricity and Magnetism to determine the viability of Modeling Instruction as a pedagogy for students in AP Physics C: Mechanics and Electricity and Magnetism. Modeling Instruction is a guided-inquiry approach to teaching science in which students progress through the Modeling Cycle to develop a fully-constructed model for a scientific concept. AP Physics C: Mechanics and Electricity and Magnetism are calculus-based physics courses, approximately equivalent to first-year calculus-based physics courses at the collegiate level. Using a one-group pretest-posttest design, students were assessed in Mechanics using the Force Concept Inventory, Mechanics Baseline Test, and 2015 AP Physics C: Mechanics Practice Exam. With the same design, students were assessed in Electricity and Magnetism on the Brief Electricity and Magnetism Assessment, Electricity and Magnetism Conceptual Assessment, and 2015 AP Physics C: Electricity and Magnetism Practice Exam. In a one-shot case study design, student scores were collected from the 2017 AP Physics C: Mechanics and Electricity and Magnetism Exams. Students performed moderately well on the assessments in Mechanics and Electricity and Magnetism, demonstrating that Modeling Instruction is a viable pedagogy in AP Physics C: Electricity and Magnetism.

  13. Action with Friction: A Transactional Approach to Toddlers' Physical Meaning Making of Natural Phenomena and Processes in Preschool

    ERIC Educational Resources Information Center

    Klaar, Susanne; Ohman, Johan

    2012-01-01

    Research into preschool education has paid a lot of attention to investigating children's conceptual development and cognitive learning about nature, with methods based on observations and verbal interviews before and after a teaching period. The purpose of this study has been to present and illustrate an approach that facilitates the analysis of…

  14. A Locally Modal B-Spline Based Full-Vector Finite-Element Method with PML for Nonlinear and Lossy Plasmonic Waveguide

    NASA Astrophysics Data System (ADS)

    Karimi, Hossein; Nikmehr, Saeid; Khodapanah, Ehsan

    2016-09-01

    In this paper, we develop a B-spline finite-element method (FEM) based on a locally modal wave propagation with anisotropic perfectly matched layers (PMLs), for the first time, to simulate nonlinear and lossy plasmonic waveguides. Conventional approaches like beam propagation method, inherently omit the wave spectrum and do not provide physical insight into nonlinear modes especially in the plasmonic applications, where nonlinear modes are constructed by linear modes with very close propagation constant quantities. Our locally modal B-spline finite element method (LMBS-FEM) does not suffer from the weakness of the conventional approaches. To validate our method, first, propagation of wave for various kinds of linear, nonlinear, lossless and lossy materials of metal-insulator plasmonic structures are simulated using LMBS-FEM in MATLAB and the comparisons are made with FEM-BPM module of COMSOL Multiphysics simulator and B-spline finite-element finite-difference wide angle beam propagation method (BSFEFD-WABPM). The comparisons show that not only our developed numerical approach is computationally more accurate and efficient than conventional approaches but also it provides physical insight into the nonlinear nature of the propagation modes.

  15. Sexual counseling and cardiovascular disease: practical approaches

    PubMed Central

    Steinke, Elaine E; Jaarsma, Tiny

    2015-01-01

    Patients with cardiovascular disease and their partners expect health care providers to provide sexual counseling to assist them in maintaining sexual quality of life. Evidence suggests however, that there is a gap in integrating evidence into practice and that relatively few cardiac patients receive sexual counseling. This can result in negative psychological, physical, and quality of life outcomes for couples who may needlessly decide sexual activity is too risky and cease all sexual activity. Two scientific statements now exist that provide ample guidance to health care providers in discussing this important topic. Using a team approach that includes physicians, nurses, physical therapists, rehabilitation staff, and others is important to ensure that sexual counseling occurs throughout recovery. In addition, several trials using interventional approaches for sexual counseling provide insight into successful approaches for sexual counseling in practice. This article provides practical strategies and evidence-based approaches for assessment and sexual counseling for all cardiac patients and their partners, and specific counseling for those with ischemic conditions, heart failure, and implanted devices. PMID:25219908

  16. Sexual counseling and cardiovascular disease: practical approaches.

    PubMed

    Steinke, Elaine E; Jaarsma, Tiny

    2015-01-01

    Patients with cardiovascular disease and their partners expect health care providers to provide sexual counseling to assist them in maintaining sexual quality of life. Evidence suggests however, that there is a gap in integrating evidence into practice and that relatively few cardiac patients receive sexual counseling. This can result in negative psychological, physical, and quality of life outcomes for couples who may needlessly decide sexual activity is too risky and cease all sexual activity. Two scientific statements now exist that provide ample guidance to health care providers in discussing this important topic. Using a team approach that includes physicians, nurses, physical therapists, rehabilitation staff, and others is important to ensure that sexual counseling occurs throughout recovery. In addition, several trials using interventional approaches for sexual counseling provide insight into successful approaches for sexual counseling in practice. This article provides practical strategies and evidence-based approaches for assessment and sexual counseling for all cardiac patients and their partners, and specific counseling for those with ischemic conditions, heart failure, and implanted devices.

  17. Diffusion-Based Density-Equalizing Maps: an Interdisciplinary Approach to Visualizing Homicide Rates and Other Georeferenced Statistical Data

    NASA Astrophysics Data System (ADS)

    Mazzitello, Karina I.; Candia, Julián

    2012-12-01

    In every country, public and private agencies allocate extensive funding to collect large-scale statistical data, which in turn are studied and analyzed in order to determine local, regional, national, and international policies regarding all aspects relevant to the welfare of society. One important aspect of that process is the visualization of statistical data with embedded geographical information, which most often relies on archaic methods such as maps colored according to graded scales. In this work, we apply nonstandard visualization techniques based on physical principles. We illustrate the method with recent statistics on homicide rates in Brazil and their correlation to other publicly available data. This physics-based approach provides a novel tool that can be used by interdisciplinary teams investigating statistics and model projections in a variety of fields such as economics and gross domestic product research, public health and epidemiology, sociodemographics, political science, business and marketing, and many others.

  18. A New 3D Multi-fluid Model: A Study of Kinetic Effects and Variations of Physical Conditions in the Cometary Coma

    NASA Astrophysics Data System (ADS)

    Shou, Y.; Combi, M.; Toth, G.; Tenishev, V.; Fougere, N.; Jia, X.; Rubin, M.; Huang, Z.; Hansen, K.; Gombosi, T.; Bieler, A.

    2016-12-01

    Physics-based numerical coma models are desirable whether to interpret the spacecraft observations of the inner coma or to compare with the ground-based observations of the outer coma. In this work, we develop a multi-neutral-fluid model based on the BATS-R-US code of the University of Michigan, which is capable of computing both the inner and outer coma and simulating time-variable phenomena. It treats H2O, OH, H2, O, and H as separate fluids and each fluid has its own velocity and temperature, with collisions coupling all fluids together. The self-consistent collisional interactions decrease the velocity differences, re-distribute the excess energy deposited by chemical reactions among all species, and account for the varying heating efficiency under various physical conditions. Recognizing that the fluid approach has limitations in capturing all of the correct physics for certain applications, especially for very low density environment, we applied our multi-fluid coma model to comet 67P/Churyumov-Gerasimenko at various heliocentric distances and demonstrated that it yields comparable results to the Direct Simulation Monte Carlo (DSMC) model, which is based on a kinetic approach that is valid under these conditions. Therefore, our model may be a powerful alternative to the particle-based model, especially for some computationally intensive simulations. In addition, by running the model with several combinations of production rates and heliocentric distances, we characterize the cometary H2O expansion speeds and demonstrate the nonlinear dependencies of production rate and heliocentric distance. Our results are also compared to previous modeling work and remote observations, which serve as further validation of our model.

  19. Physical load during work and leisure time as risk factors for back pain.

    PubMed

    Hoogendoorn, W E; van Poppel, M N; Bongers, P M; Koes, B W; Bouter, L M

    1999-10-01

    This systematic review assessed aspects of physical load during work and leisure time as risk factors for back pain. Several reviews on this topic are available, but this one is based on a strict systematic approach to identify and summarize the evidence, comparable with that applied in the clinical literature on the efficacy of intervention for back pain. A computerized bibliographical search was made of several data bases for studies with a cohort or case-referent design. Cross-sectional studies were excluded. A rating system was used to assess the strength of the evidence, based on the methodological quality of 28 cohort and 3 case-referent studies and the consistency of the findings. Strong evidence exists for manual materials handling, bending and twisting, and whole-body vibration as risk factors for back pain. The evidence was moderate for patient handling and heavy physical work, and no evidence was found for standing or walking, sitting, sports, and total leisure-time physical activity.

  20. Fundamental physics issues of multilevel logic in developing a parallel processor.

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Anirban; Miki, Kazushi

    2007-06-01

    In the last century, On and Off physical switches, were equated with two decisions 0 and 1 to express every information in terms of binary digits and physically realize it in terms of switches connected in a circuit. Apart from memory-density increase significantly, more possible choices in particular space enables pattern-logic a reality, and manipulation of pattern would allow controlling logic, generating a new kind of processor. Neumann's computer is based on sequential logic, processing bits one by one. But as pattern-logic is generated on a surface, viewing whole pattern at a time is a truly parallel processing. Following Neumann's and Shannons fundamental thermodynamical approaches we have built compatible model based on series of single molecule based multibit logic systems of 4-12 bits in an UHV-STM. On their monolayer multilevel communication and pattern formation is experimentally verified. Furthermore, the developed intelligent monolayer is trained by Artificial Neural Network. Therefore fundamental weak interactions for the building of truly parallel processor are explored here physically and theoretically.

Top