ERIC Educational Resources Information Center
Morales, Marie Paz Escaño
2017-01-01
"Laro-ng-Lahi" (Indigenous Filipino game) based physics activities invigorated the integration of culture in the pre-service physics education to develop students' epistemic beliefs and the notion of conceptual understanding through conceptual change. The study conveniently involved 28 pre-service undergraduate physics students enrolled…
2011-01-01
Background Guidance documents for the development and validation of patient-reported outcomes (PROs) advise the use of conceptual frameworks, which outline the structure of the concept that a PRO aims to measure. It is unknown whether currently available PROs are based on conceptual frameworks. This study, which was limited to a specific case, had the following aims: (i) to identify conceptual frameworks of physical activity in chronic respiratory patients or similar populations (chronic heart disease patients or the elderly) and (ii) to assess whether the development and validation of PROs to measure physical activity in these populations were based on a conceptual framework of physical activity. Methods Two systematic reviews were conducted through searches of the Medline, Embase, PsycINFO, and Cinahl databases prior to January 2010. Results In the first review, only 2 out of 581 references pertaining to physical activity in the defined populations provided a conceptual framework of physical activity in COPD patients. In the second review, out of 103 studies developing PROs to measure physical activity or related constructs, none were based on a conceptual framework of physical activity. Conclusions These findings raise concerns about how the large body of evidence from studies that use physical activity PRO instruments should be evaluated by health care providers, guideline developers, and regulatory agencies. PMID:21967887
ERIC Educational Resources Information Center
McDaniel, Mark A.; Stoen, Siera M.; Frey, Regina F.; Markow, Zachary E.; Hynes, K. Mairin; Zhao, Jiuqing; Cahill, Michael J.
2016-01-01
The existing literature indicates that interactive-engagement (IE) based general physics classes improve conceptual learning relative to more traditional lecture-oriented classrooms. Very little research, however, has examined quantitative problem-solving outcomes from IE based relative to traditional lecture-based physics classes. The present…
Investigating the Conceptual Variation of Major Physics Textbooks
NASA Astrophysics Data System (ADS)
Stewart, John; Campbell, Richard; Clanton, Jessica
2008-04-01
The conceptual problem content of the electricity and magnetism chapters of seven major physics textbooks was investigated. The textbooks presented a total of 1600 conceptual electricity and magnetism problems. The solution to each problem was decomposed into its fundamental reasoning steps. These fundamental steps are, then, used to quantify the distribution of conceptual content among the set of topics common to the texts. The variation of the distribution of conceptual coverage within each text is studied. The variation between the major groupings of the textbooks (conceptual, algebra-based, and calculus-based) is also studied. A measure of the conceptual complexity of the problems in each text is presented.
ERIC Educational Resources Information Center
Williams, Suzanne Ellen; Greene, Leon; Satinsky, Sonya; Neuberger, John
2016-01-01
Purpose: The purposes of this study were to explore PE in higher education through the offering of traditional activity- and skills-based physical education (ASPE) and conceptually-based physical education (CPE) courses, and to conduct an exploratory content analysis on the CPE available to students in randomized colleges and universities in the…
Soulis, Konstantinos X; Valiantzas, John D; Ntoulas, Nikolaos; Kargas, George; Nektarios, Panayiotis A
2017-09-15
In spite of the well-known green roof benefits, their widespread adoption in the management practices of urban drainage systems requires the use of adequate analytical and modelling tools. In the current study, green roof runoff modeling was accomplished by developing, testing, and jointly using a simple conceptual model and a physically based numerical simulation model utilizing HYDRUS-1D software. The use of such an approach combines the advantages of the conceptual model, namely simplicity, low computational requirements, and ability to be easily integrated in decision support tools with the capacity of the physically based simulation model to be easily transferred in conditions and locations other than those used for calibrating and validating it. The proposed approach was evaluated with an experimental dataset that included various green roof covers (either succulent plants - Sedum sediforme, or xerophytic plants - Origanum onites, or bare substrate without any vegetation) and two substrate depths (either 8 cm or 16 cm). Both the physically based and the conceptual models matched very closely the observed hydrographs. In general, the conceptual model performed better than the physically based simulation model but the overall performance of both models was sufficient in most cases as it is revealed by the Nash-Sutcliffe Efficiency index which was generally greater than 0.70. Finally, it was showcased how a physically based and a simple conceptual model can be jointly used to allow the use of the simple conceptual model for a wider set of conditions than the available experimental data and in order to support green roof design. Copyright © 2017 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Erduran, Sibel
Eight physical science textbooks were analyzed for coverage on acids, bases, and neutralization. At the level of the text, clarity and coherence of statements were investigated. The conceptual framework for this topic was represented in a concept map which was used as a coding tool for tracing concepts and links present in textbooks. Cognitive…
NASA Astrophysics Data System (ADS)
Said, Asma
Despite the advances made in various fields, women are still considered as minorities in the fields of science and mathematics. There is a gender gap regarding women's participation and achievement in physics. Self-efficacy and attitudes and beliefs toward physics have been identified as predictors of students' performance on conceptual surveys in physics courses. The present study, which used two-way analysis of variance and multiple linear regression analyses at a community college in California, revealed there is no gender gap in achievement between male and female students in physics courses. Furthermore, there is an achievement gap between students who are enrolled in algebra-based and calculus-based physics courses. The findings indicate that attitudes and beliefs scores can be used as predictors of students' performance on conceptual surveys in physics courses. However, scores of self-efficacy cannot be used as predictors of students' performance on conceptual surveys in physics courses.
ERIC Educational Resources Information Center
Saleh, Salmiza
2012-01-01
Teachers of science-based education in Malaysian secondary schools, especially those in the field of physics, often find their students facing huge difficulties in dealing with conceptual ideas in physics, resulting thus in a lack of interest towards the subject. The aim of this study was to assess the effectiveness of the Brain-Based Teaching…
NASA Astrophysics Data System (ADS)
Li, Yutong; Wang, Yuxin; Duffy, Alex H. B.
2014-11-01
Computer-based conceptual design for routine design has made great strides, yet non-routine design has not been given due attention, and it is still poorly automated. Considering that the function-behavior-structure(FBS) model is widely used for modeling the conceptual design process, a computer-based creativity enhanced conceptual design model(CECD) for non-routine design of mechanical systems is presented. In the model, the leaf functions in the FBS model are decomposed into and represented with fine-grain basic operation actions(BOA), and the corresponding BOA set in the function domain is then constructed. Choosing building blocks from the database, and expressing their multiple functions with BOAs, the BOA set in the structure domain is formed. Through rule-based dynamic partition of the BOA set in the function domain, many variants of regenerated functional schemes are generated. For enhancing the capability to introduce new design variables into the conceptual design process, and dig out more innovative physical structure schemes, the indirect function-structure matching strategy based on reconstructing the combined structure schemes is adopted. By adjusting the tightness of the partition rules and the granularity of the divided BOA subsets, and making full use of the main function and secondary functions of each basic structure in the process of reconstructing of the physical structures, new design variables and variants are introduced into the physical structure scheme reconstructing process, and a great number of simpler physical structure schemes to accomplish the overall function organically are figured out. The creativity enhanced conceptual design model presented has a dominant capability in introducing new deign variables in function domain and digging out simpler physical structures to accomplish the overall function, therefore it can be utilized to solve non-routine conceptual design problem.
NASA Astrophysics Data System (ADS)
McDaniel, Mark A.; Stoen, Siera M.; Frey, Regina F.; Markow, Zachary E.; Hynes, K. Mairin; Zhao, Jiuqing; Cahill, Michael J.
2016-12-01
The existing literature indicates that interactive-engagement (IE) based general physics classes improve conceptual learning relative to more traditional lecture-oriented classrooms. Very little research, however, has examined quantitative problem-solving outcomes from IE based relative to traditional lecture-based physics classes. The present study included both pre- and post-course conceptual-learning assessments and a new quantitative physics problem-solving assessment that included three representative conservation of energy problems from a first-semester calculus-based college physics course. Scores for problem translation, plan coherence, solution execution, and evaluation of solution plausibility were extracted for each problem. Over 450 students in three IE-based sections and two traditional lecture sections taught at the same university during the same semester participated. As expected, the IE-based course produced more robust gains on a Force Concept Inventory than did the lecture course. By contrast, when the full sample was considered, gains in quantitative problem solving were significantly greater for lecture than IE-based physics; when students were matched on pre-test scores, there was still no advantage for IE-based physics on gains in quantitative problem solving. Further, the association between performance on the concept inventory and quantitative problem solving was minimal. These results highlight that improved conceptual understanding does not necessarily support improved quantitative physics problem solving, and that the instructional method appears to have less bearing on gains in quantitative problem solving than does the kinds of problems emphasized in the courses and homework and the overlap of these problems to those on the assessment.
NASA Astrophysics Data System (ADS)
Samsudin, A.; Suhandi, A.; Rusdiana, D.; Kaniawati, I.
2016-08-01
Interactive Conceptual Instruction (ICI) based Multimedia has been developed to represent the electric concepts turn into more real and meaningful learning. The initial design of ICI based multimedia is a multimedia computer that allows users to explore the entire electric concepts in terms of the existing conceptual and practical. Pre-service physics teachers should be provided with the learning that could optimize the conceptions held by re-conceptualizing concepts in Basic Physics II, especially the concepts about electricity. To collect and to analyze the data genuinely and comprehensively, researchers utilized a developing method of ADDIE which has comprehensive steps: analyzing, design, development, implementation, and evaluation. The ADDIE developing steps has been utilized to describe comprehensively from the phase of analysis program up until the evaluation program. Based on data analysis, it can be concluded that ICI-based multimedia could effectively increase the pre-service physics teachers’ understanding on electric conceptions for re-conceptualizing electric conceptions at Universitas Pendidikan Indonesia.
ERIC Educational Resources Information Center
Baser, Mustafa; Geban, Omer
2007-01-01
This study was conducted to investigate the effectiveness of learning activities based on conceptual change conditions and traditionally designed physics instruction on tenth-grade students' understanding of static electricity concepts and their attitudes toward physics as a school subject. Misconceptions related to static electricity concepts…
ERIC Educational Resources Information Center
Arslan Buyruk, Arzu; Ogan Bekiroglu, Feral
2018-01-01
The focus of this study was to evaluate the impact of model-based inquiry on pre-service physics teachers' conceptual understanding of dynamics. Theoretical framework of this research was based on models-of-data theory. True-experimental design using quantitative and qualitative research methods was carried out for this research. Participants of…
ERIC Educational Resources Information Center
Rebello, Carina M.
2012-01-01
This study explored the effects of alternative forms of argumentation on undergraduates' physics solutions in introductory calculus-based physics. A two-phase concurrent mixed methods design was employed to investigate relationships between undergraduates' written argumentation abilities, conceptual quality of problem solutions, as well…
NASA Astrophysics Data System (ADS)
Tomshaw, Stephen G.
Physics education research has shown that students bring alternate conceptions to the classroom which can be quite resistant to traditional instruction methods (Clement, 1982; Halloun & Hestenes, 1985; McDermott, 1991). Microcomputer-based laboratory (MBL) experiments that employ an active-engagement strategy have been shown to improve student conceptual understanding in high school and introductory university physics courses (Thornton & Sokoloff, 1998). These (MBL) experiments require a specialized computer interface, type-specific sensors (e.g. motion detectors, force probes, accelerometers), and specialized software in addition to the standard physics experimental apparatus. Tao and Gunstone (1997) have shown that computer simulations used in an active engagement environment can also lead to conceptual change. This study investigated 69 secondary physics students' use of computer simulations of MBL activities in place of the hands-on MBL laboratory activities. The average normalized gain
Aircraft Conceptual Design and Risk Analysis Using Physics-Based Noise Prediction
NASA Technical Reports Server (NTRS)
Olson, Erik D.; Mavris, Dimitri N.
2006-01-01
An approach was developed which allows for design studies of commercial aircraft using physics-based noise analysis methods while retaining the ability to perform the rapid trade-off and risk analysis studies needed at the conceptual design stage. A prototype integrated analysis process was created for computing the total aircraft EPNL at the Federal Aviation Regulations Part 36 certification measurement locations using physics-based methods for fan rotor-stator interaction tones and jet mixing noise. The methodology was then used in combination with design of experiments to create response surface equations (RSEs) for the engine and aircraft performance metrics, geometric constraints and take-off and landing noise levels. In addition, Monte Carlo analysis was used to assess the expected variability of the metrics under the influence of uncertainty, and to determine how the variability is affected by the choice of engine cycle. Finally, the RSEs were used to conduct a series of proof-of-concept conceptual-level design studies demonstrating the utility of the approach. The study found that a key advantage to using physics-based analysis during conceptual design lies in the ability to assess the benefits of new technologies as a function of the design to which they are applied. The greatest difficulty in implementing physics-based analysis proved to be the generation of design geometry at a sufficient level of detail for high-fidelity analysis.
Effects of capillarity and microtopography on wetland specific yield
Sumner, D.M.
2007-01-01
Hydrologic models aid in describing water flows and levels in wetlands. Frequently, these models use a specific yield conceptualization to relate water flows to water level changes. Traditionally, a simple conceptualization of specific yield is used, composed of two constant values for above- and below-surface water levels and neglecting the effects of soil capillarity and land surface microtopography. The effects of capiltarity and microtopography on specific yield were evaluated at three wetland sites in the Florida Everglades. The effect of capillarity on specific yield was incorporated based on the fillable pore space within a soil moisture profile at hydrostatic equilibrium with the water table. The effect of microtopography was based on areal averaging of topographically varying values of specific yield. The results indicate that a more physically-based conceptualization of specific yield incorporating capillary and microtopographic considerations can be substantially different from the traditional two-part conceptualization, and from simpler conceptualizations incorporating only capillarity or only microtopography. For the sites considered, traditional estimates of specific yield could under- or overestimate the more physically based estimates by a factor of two or more. The results suggest that consideration of both capillarity and microtopography is important to the formulation of specific yield in physically based hydrologic models of wetlands. ?? 2007, The Society of Wetland Scientists.
Coupling Conceptual and Quantitative Problems to Develop Expertise in Introductory Physics Students
NASA Astrophysics Data System (ADS)
Singh, Chandralekha
2008-10-01
We discuss the effect of administering conceptual and quantitative isomorphic problem pairs (CQIPP) back to back vs. asking students to solve only one of the problems in the CQIPP in introductory physics courses. Students who answered both questions in a CQIPP often performed better on the conceptual questions than those who answered the corresponding conceptual questions only. Although students often took advantage of the quantitative counterpart to answer a conceptual question of a CQIPP correctly, when only given the conceptual question, students seldom tried to convert it into a quantitative question, solve it and then reason about the solution conceptually. Even in individual interviews, when students who were only given conceptual questions had difficulty and the interviewer explicitly encouraged them to convert the conceptual question into the corresponding quantitative problem by choosing appropriate variables, a majority of students were reluctant and preferred to guess the answer to the conceptual question based upon their gut feeling.
ERIC Educational Resources Information Center
Utter, Brian C.; Paulson, Scott A.; Almarode, John T.; Daniel, David B.
2018-01-01
We argue, based on a multi-year collaboration to develop a pedagogy course for physics majors by experts in physics, education, and the science of learning, that the process of teaching science majors about education and the science of learning, and evidence-based teaching methods in particular, requires conceptual change analogous to that…
ERIC Educational Resources Information Center
Samsudin, Achmad; Suhandi, Andi; Rusdiana, Dadi; Kaniawati, Ida; Costu, Bayram
2016-01-01
The aim of this study was to develop an Active Learning Based-Interactive Conceptual Instruction (ALBICI) model through PDEODE*E tasks (stands for Predict, Discuss, Explain, Observe, Discuss, Explore, and Explain) for promoting conceptual change and investigating its effectiveness of pre-service physics teachers' understanding on electric field…
A Proposed Conceptual Framework for Curriculum Design in Physical Fitness.
ERIC Educational Resources Information Center
Miller, Peter V.; Beauchamp, Larry S.
A physical fitness curriculum, designed to provide cumulative benefits in a sequential pattern, is based upon a framework of a conceptual structure. The curriculum's ultimate goal is the achievement of greater physiological efficiency through a holistic approach that would strengthen circulatory-respiratory, mechanical, and neuro-muscular…
NASA Astrophysics Data System (ADS)
Zulfikar, Aldi; Girsang, Denni Yulius; Saepuzaman, Duden; Samsudin, Achmad
2017-05-01
Conceptual understanding is one of the most important aspects in the study of Physics because of it useful to understand principles behind certain phenomenon which happened. An innovative method was needed to strengthen and enhance student's conceptual understanding, especially regarding the abstract subject such as magnetic field. For this reason, worksheet and exploration sheet based on PDEODE*E (Predict, Discuss, Explain, Observe, Discuss, Explore, and Explain) that uses Gauss Meter application as the smartphone technology has been designed to answer the problem. The magnetic field strength in different mediums is the physics subject which covered in this research. The research was conducted with the aim to know how effective smartphone technology-based PDEODE*E could be implemented as a physics learning strategy. The result of this research shows that students could show improvements in conceptual understanding that shown by the conclusion that was constructed during the learning process. Based on this result, PDEODE*E could become a solution to strengthen students' conceptual understanding regarding physics subject, especially those that requires abstract thinking. This result also has shown that the application ofsmartphone technology could be used to support physics learning processes in the classroom, such as Gauss Meter in this research which used to measure the magnetic field, Light Meter which could be used in the concept of light, and Harmonicity Meter for the context of the sound wave.
ERIC Educational Resources Information Center
Sahhyar; Nst, Febriani Hastini
2017-01-01
The purpose of this research was to analyze the physics cognitive competence and science process skill of students using scientific inquiry learning model based on conceptual change better than using conventional learning. The research type was quasi experiment and two group pretest-posttest designs were used in this study. The sample were Class…
NASA Astrophysics Data System (ADS)
Rebello, Carina M.
This study explored the effects of alternative forms of argumentation on undergraduates' physics solutions in introductory calculus-based physics. A two-phase concurrent mixed methods design was employed to investigate relationships between undergraduates' written argumentation abilities, conceptual quality of problem solutions, as well as approaches and strategies for solving argumentative physics problems across multiple physics topics. Participants were assigned via stratified sampling to one of three conditions (control, guided construct, or guided evaluate) based on gender and pre-test scores on a conceptual instrument. The guided construct and guided evaluate groups received tasks and prompts drawn from literature to facilitate argument construction or evaluation. Using a multiple case study design, with each condition serving as a case, interviews were conducted consisting of a think-aloud problem solving session paired with a semi-structured interview. The analysis of problem solving strategies was guided by the theoretical framework on epistemic games adapted by Tuminaro and Redish (2007). This study provides empirical evidence that integration of written argumentation into physics problems can potentially improve the conceptual quality of solutions, expand their repertoire of problem solving strategies and show promise for addressing the gender gap in physics. The study suggests further avenues for research in this area and implications for designing and implementing argumentation tasks in introductory college physics.
Tucker, Carole A.; Bevans, Katherine B.; Teneralli, Rachel E.; Smith, Ashley Wilder; Bowles, Heather R; Forrest, Christopher B.
2014-01-01
Purpose Children's physical activity (PA) levels are commonly assessed in pediatric clinical research, but rigorous self-report assessment tools for children are scarce, and computer adaptive test implementations are rare. Our objective was to improve pediatric self-report measures of activity using semi-structured interviews with experts and children for conceptualization of a child-informed framework. Methods Semi-structured interviews were conducted to conceptualize physical activity, sedentary behaviors, and strengthening activities. We performed systematic literature reviews to identify item-level concepts used to assess these 3 domains. Results We developed conceptual frameworks for each domain using words and phrases identified by children as relevant. Conclusions Semi-structured interview methods provide valuable information of children's perspectives and the ways children recall previous activities. Conceptualized domains of physical activity are based on the literature and expert views that also reflect children's experiences and understanding providing a basis for pediatric self-report instruments. PMID:25251789
ERIC Educational Resources Information Center
Wilcox, Bethany R.; Pollock, Steven J.
2014-01-01
Free-response research-based assessments, like the Colorado Upper-division Electrostatics Diagnostic (CUE), provide rich, fine-grained information about students' reasoning. However, because of the difficulties inherent in scoring these assessments, the majority of the large-scale conceptual assessments in physics are multiple choice. To increase…
Facilitating conceptual change in students’ understanding of concepts related to pressure
NASA Astrophysics Data System (ADS)
Ozkan, Gulbin; Sezgin Selcuk, Gamze
2016-09-01
The aim of this research was to explore the effects of three different types of methods of learning physics (conceptual change-based, real life context-based and traditional learning) on high school physics students in the 11th grade in terms of conceptual change they achieved in learning about the various topics (pressure exerted by solids, pressure in stagnant liquids and gases, buoyancy, Bernoulli’s principle). In this study, a pre-test/post-test quasi-experimental method with nonequivalent control group, involving a 3 (group) × 2 (time) factorial design was used. Study group 1 were given the conceptual change texts on the mentioned subjects, study group 2 were offered a teaching approach based on real life context-based learning, whereas the control group was taught in the traditional style. Data for the research were collected with the ‘pressure conceptual test’. As a result of research, the number of misconceptions had been reduced or shifted altogether in all three groups. After the instruction, it was seen that none of the students formed new misconceptions. It was found that the most positive change could be seen in the conceptual change text group followed by context-based and lastly traditional. The fact that none of the students formed new misconceptions is important, particularly since research such as the following shows that conceptual change is tenuous and inconsistent, taking time to shift in a sustained manner.
Correlates of gender and achievement in introductory algebra based physics
NASA Astrophysics Data System (ADS)
Smith, Rachel Clara
The field of physics is heavily male dominated in America. Thus, half of the population of our country is underrepresented and underserved. The identification of factors that contribute to gender disparity in physics is necessary for educators to address the individual needs of students, and, in particular, the separate and specific needs of female students. In an effort to determine if any correlations could be established or strengthened between sex, gender identity, social network, algebra skill, scientific reasoning ability, and/or student attitude, a study was performed on a group of 82 students in an introductory algebra based physics course. The subjects each filled out a survey at the beginning of the semester of their first semester of algebra based physics. They filled out another survey at the end of that same semester. These surveys included physics content pretests and posttests, as well as questions about the students' habits, attitudes, and social networks. Correlates of posttest score were identified, in order of significance, as pretest score, emphasis on conceptual learning, preference for male friends, number of siblings (negatively correlated), motivation in physics, algebra score, and parents' combined education level. Number of siblings was also found to negatively correlate with, in order of significance, gender identity, preference for male friends, emphasis on conceptual learning, and motivation in physics. Preference for male friends was found to correlate with, in order of significance, emphasis on conceptual learning, gender identity, and algebra score. Also, gender identity was found to correlate with emphasis on conceptual learning, the strongest predictor of posttest score other than pretest score.
Helping physics teacher-candidates develop questioning skills through innovative technology use
NASA Astrophysics Data System (ADS)
Milner-Bolotin, Marina
2015-12-01
Peer Instruction has been used successfully in undergraduate classrooms for decades. Its success depends largely on the quality of multiple-choice questions. Yet it is still rare in secondary schools because of teachers' lack of experience in designing, evaluating, and implementing conceptual questions. Research-based multiple-choice conceptual questions are also underutilized in physics teacher education. This study explores the implementation of Peer Instruction enhanced by PeerWise collaborative online system, in a physics methods course in a physics teacher education program.
Upper-Division Students' Difficulties with Ampere's Law
ERIC Educational Resources Information Center
Wallace, Colin S.; Chasteen, Stephanie V.
2010-01-01
This study presents and interprets some conceptual difficulties junior-level physics students experience with Ampere's law. We present both quantitative data, based on students' written responses to conceptual questions, and qualitative data, based on interviews of students solving Ampere's law problems. We find that some students struggle to…
Conceptual Change and Physics Instruction: A Longitudinal Study.
ERIC Educational Resources Information Center
Searle, Peter; Gunstone, Richard F.
This paper reports an action study of conceptual change in mechanics using an instructional strategy based on a constructivist view of learning. The aims of the study were to determine: (1) what effect the instructional strategy had on achieving conceptual change; (2) what devices or strategies students used in their attempts to understand…
Conceptual Change from the Framework Theory Side of the Fence
NASA Astrophysics Data System (ADS)
Vosniadou, Stella; Skopeliti, Irini
2014-07-01
We describe the main principles of the framework theory approach to conceptual change and briefly report on the results of a text comprehension study that investigated some of the hypotheses that derive from it. We claim that children construct a naive physics which is based on observation in the context of lay culture and which forms a relatively coherent conceptual system—i.e., a framework theory—that can be used as a basis for explanation and prediction of everyday phenomena. Learning science requires fundamental ontological, epistemological, and representational changes in naive physics. These conceptual changes take a long time to be achieved, giving rise to fragmentation and synthetic conceptions. We also argue that both fragmentation and synthetic conceptions can be explained to result from learners' attempts assimilate scientific information into their existing but incompatible naive physics.
Do evidence-based active-engagement courses reduce the gender gap in introductory physics?
NASA Astrophysics Data System (ADS)
Karim, Nafis I.; Maries, Alexandru; Singh, Chandralekha
2018-03-01
Prior research suggests that using evidence-based pedagogies can not only improve learning for all students, it can also reduce the gender gap. We describe the impact of physics education research-based pedagogical techniques in flipped and active-engagement non-flipped courses on the gender gap observed with validated conceptual surveys. We compare male and female students’ performance in courses which make significant use of evidence-based active-engagement (EBAE) strategies with courses that primarily use lecture-based (LB) instruction. All courses had large enrolment and often had more than 100 students. The analysis of data for validated conceptual surveys presented here includes data from two-semester sequences of algebra-based and calculus-based introductory physics courses. The conceptual surveys used to assess student learning in the first and second semester courses were the force concept inventory and the conceptual survey of electricity and magnetism, respectively. In the research discussed here, the performance of male and female students in EBAE courses at a particular level is compared with LB courses in two situations: (I) the same instructor taught two courses, one of which was an EBAE course and the other an LB course, while the homework, recitations and final exams were kept the same; (II) student performance in all of the EBAE courses taught by different instructors was averaged and compared with LB courses of the same type also averaged over different instructors. In all cases, on conceptual surveys we find that students in courses which make significant use of active-engagement strategies, on average, outperformed students in courses of the same type using primarily lecture-based instruction even though there was no statistically significant difference on the pre-test before instruction. However, the gender gap persisted even in courses using EBAE methods. We also discuss correlations between the performance of male and female students on the validated conceptual surveys and the final exam, which had a heavy weight on quantitative problem solving.
NASA Astrophysics Data System (ADS)
Corni, Federico; Fuchs, Hans U.; Savino, Giovanni
2018-02-01
This is a description of the conceptual foundations used for designing a novel learning environment for mechanics implemented as an Industrial Educational Laboratory - called Fisica in Moto (FiM) - at the Ducati Foundation in Bologna. In this paper, we will describe the motivation for and design of the conceptual approach to mechanics used in the lab - as such, the paper is theoretical in nature. The goal of FiM is to provide an approach to the teaching of mechanics based upon imaginative structures found in continuum physics suitable to engineering and science. We show how continuum physics creates models of mechanical phenomena by using momentum and angular momentum as primitive quantities. We analyse this approach in terms of cognitive linguistic concepts such as conceptual metaphor and narrative framing of macroscopic physical phenomena. The model discussed here has been used in the didactical design of the actual lab and raises questions for an investigation of student learning of mechanics in a narrative setting.
NASA Astrophysics Data System (ADS)
Brookes, David T.; Etkina, Eugenia
2007-06-01
This paper introduces a theory about the role of language in learning physics. The theory is developed in the context of physics students and physicists talking and writing about the subject of quantum mechanics. We found that physicists’ language encodes different varieties of analogical models through the use of grammar and conceptual metaphor. We hypothesize that students categorize concepts into ontological categories based on the grammatical structure of physicists’ language. We also hypothesize that students overextend and misapply conceptual metaphors in physicists’ speech and writing. Using our theory, we will show how, in some cases, we can explain student difficulties in quantum mechanics as difficulties with language.
Repositioning identity in conceptualizations human-place bonding
James D. Absher
2010-01-01
In this investigation, we adapted identity theory (references) to reassess a conceptualization of place attachment â an attitudinal construct used by environmental psychologists to describe peopleâs bonding to the physical landscape. Past work has conceptualized the construct in terms of three components; cognitive, affective and conative elements. Based on the tents...
ERIC Educational Resources Information Center
Jacobson, Michael J.; Kapur, Manu; Reimann, Peter
2016-01-01
This article proposes a conceptual framework of learning based on perspectives and methodologies being employed in the study of complex physical and social systems to inform educational research. We argue that the contexts in which learning occurs are complex systems with elements or agents at different levels--including neuronal, cognitive,…
Quantum Algorithms for Scientific Computing and Approximate Optimization
NASA Astrophysics Data System (ADS)
Hadfield, Stuart Andrew
Diversity and inclusion has been a concern for the physics community for nearly 50 years. Despite significant efforts including the American Physical Society (APS) Conferences for Undergraduate Women in Physics (CUWiP) and the APS Bridge Program, women, African Americans, and Hispanics continue to be substantially underrepresented in the physics profession. Similar efforts within the field of engineering, whose students make up the majority of students in the introductory calculus-based physics courses, have also met with limited success. With the introduction of research-based instruments such as the Force Concept Inventory (FCI), the Force and Motion Conceptual Evaluation (FMCE), and the Conceptual Survey of Electricity and Magnetism (CSEM), differences in performance by gender began to be reported. Researchers have yet to come to an agreement as to why these "gender gaps" exist in the conceptual inventories that are widely used in physics education research and/or how to reduce the gaps. The "gender gap" has been extensively studied; on average, for the mechanics conceptual inventories, male students outperform female students by 13% on the pretest and by 12% post instruction. While much of the gender gap research has been geared toward the mechanics conceptual inventories, there have been few studies exploring the gender gap in the electricity and magnetism conceptual inventories. Overall, male students outperform female students by 3.7% on the pretest and 8.5% on the post-test; however, these studies have much more variation including one study showing female students outperforming male students on the CSEM. Many factors have been proposed that may influence the gender gap, from differences in background and preparation to various psychological and sociocultural effects. A parallel but largely disconnected set of research has identified gender biased questions within the FCI. This research has produced sporadic results and has only been performed on the FCI. The work performed in this manuscript will seek to synthesize these strands and use large datasets and deep demographic data to understand the persistent differences in male and female performance.
Teaching Newton's Laws with the iPod Touch in Conceptual Physics
NASA Astrophysics Data System (ADS)
Kelly, Angela M.
2011-04-01
One of the greatest challenges in teaching physics is helping students achieve a conceptual understanding of Newton's laws. I find that students fresh from middle school can sometimes recite the laws verbatim ("An object in motion stays in motion…" and "For every action…"), but they rarely demonstrate a working knowledge of how to apply them to observable phenomena. As a firm believer in inquiry-based teaching methods, I like to develop activities where students can experiment and construct understandings based on relevant personal experiences. Consequently, I am always looking for exciting new technologies that can readily demonstrate how physics affects everyday things. In a conceptual physics class designed for ninth-graders, I created a structured activity where students applied Newton's laws to a series of free applications downloaded on iPod Touches. The laws had been introduced during the prior class session with textual descriptions and graphical representations. The course is offered as part of the Enlace Latino Collegiate Society, a weekend enrichment program for middle and high school students in the Bronx. The majority of students had limited or no prior exposure to physics concepts, and many attended high schools where physics was not offered at all.
ERIC Educational Resources Information Center
Beatty, Ian D.
There is a growing consensus among educational researchers that traditional problem-based assessments are not effective tools for diagnosing a student's knowledge state and for guiding pedagogical intervention, and that new tools grounded in the results of cognitive science research are needed. The ConMap ("Conceptual Mapping") project, described…
ERIC Educational Resources Information Center
Hirsh, Alon; Levy, Sharona T.
2013-01-01
The present research addresses a curious finding: how learning physical principles enhanced athletes' biking performance but not their conceptual understanding. The study involves a model-based triathlon training program, Biking with Particles, concerning aerodynamics of biking in groups (drafting). A conceptual framework highlights several…
NASA Astrophysics Data System (ADS)
Thornton, Ronald
2010-02-01
For the Activity Based Physics Group (APB), research in student learning has been a cornerstone, for the past 22 years, of the development of activity-based curricula supported by real-time data collection, analysis, and modeling. This presentation, the first of three related talks, will focus on student learning, Priscilla Laws will describe the curriculum and tools developed, and David Sokoloff will describe dissemination efforts. One of the earliest examples of seminal research, done as part of the early MBL development for middle school at TERC, showed that delaying the display of a position-time graph by 10 seconds instead of displaying it in real-time resulted in a substantial learning decrease. This result assured the use of real-time data collection in our curricula. As we developed our early kinematics and dynamics curricula for college and high school, we interviewed many students before and after instruction, to understand where they started and what they had learned. We used the results of these interviews and written student explanations of their thinking to develop robust multiple-choice evaluations that were easy to give and allowed us to understand student thinking using both ``right and wrong'' responses. Work such as this resulted in Questions on Linear Motion, Force and Motion Conceptual Evaluation (FMCE), Heat and Temperature Conceptual Evaluation (HTCE), Electrical Circuit Conceptual Evaluation (ECCE), Light and Optics Conceptual Evaluation (LOCE) and others which guided our curriculum development and convinced many that standard instruction in physics did not result in substantial conceptual learning. Other evaluations measured mathematical understandings.evaluations also allowed us to look at a progression of student ideas as they learned (``Conceptual Dynamics''), study the behavior of students who did and did not learn conceptually (``Uncommon Knowledge''), study the efficacy of peer groups, and finally identify some of factors that led to conceptual learning for both women and men. (e.g. increases in spatial ability). )
NASA Astrophysics Data System (ADS)
Ibrahim, Hyatt Abdelhaleem
The effect of Guided Constructivism (Interactivity-Based Learning Environment) and Traditional Expository instructional methods on students' misconceptions about concepts of Newtonian Physics was investigated. Four groups of 79 of University of Central Florida students enrolled in Physics 2048 participated in the study. A quasi-experimental design of nonrandomized, nonequivalent control and experimental groups was employed. The experimental group was exposed to the Guided Constructivist teaching method, while the control group was taught using the Traditional Expository teaching approach. The data collection instruments included the Force Concept Inventory Test (FCI), the Mechanics Baseline Test (MBT), and the Maryland Physics Expectation Survey (MPEX). The Guided Constructivist group had significantly higher means than the Traditional Expository group on the criterion variables of: (1) conceptions of Newtonian Physics, (2) achievement in Newtonian Physics, and (3) beliefs about the content of Physics knowledge, beliefs about the role of Mathematics in learning Physics, and overall beliefs about learning/teaching/appropriate roles of learners and teachers/nature of Physics. Further, significant relationships were found between (1) achievement, conceptual structures, beliefs about the content of Physics knowledge, and beliefs about the role of Mathematics in learning Physics; (2) changes in misconceptions about the physical phenomena, and changes in beliefs about the content of Physics knowledge. No statistically significant difference was found between the two teaching methods on achievement of males and females. These findings suggest that differences in conceptual learning due to the nature of the teaching method used exist. Furthermore, greater conceptual learning is fostered when teachers use interactivity-based teaching strategies to train students to link everyday experience in the real physical world to formal school concepts. The moderate effect size and power of the study suggest that the effect may not be subtle, but reliable. Physics teachers can use these results to inform their decisions about structuring learning environment when conceptual learning is important.
NASA Technical Reports Server (NTRS)
Schultz, Chris; Carey, Larry; Schultz, Elise V.; Stano, Geoffrey; Gatlin, Patrick N.; Kozlowski, Danielle M.; Blakeslee, Rich J.; Goodman, Steve
2013-01-01
Key points this analysis will address: 1) What physically is going on in the cloud when there is a jump in lightning? -- Updraft variations, Ice fluxes 2) How do these processes fit in with severe storm conceptual models? 3) What would this information provide an end user? --Relate LJA to radar observations, like changes in reflectivity, MESH, VIL, etc. based multi -Doppler derived physical relationships
ERIC Educational Resources Information Center
Lee, Heewon; Contento, Isobel R.; Koch, Pamela
2013-01-01
Objective: To use and review a conceptual model of process evaluation and to examine the implementation of a nutrition education curriculum, "Choice, Control & Change", designed to promote dietary and physical activity behaviors that reduce obesity risk. Design: A process evaluation study based on a systematic conceptual model. Setting: Five…
Comparison of a Conceptual Groundwater Model and Physically Based Groundwater Mode
NASA Astrophysics Data System (ADS)
Yang, J.; Zammit, C.; Griffiths, J.; Moore, C.; Woods, R. A.
2017-12-01
Groundwater is a vital resource for human activities including agricultural practice and urban water demand. Hydrologic modelling is an important way to study groundwater recharge, movement and discharge, and its response to both human activity and climate change. To understand the groundwater hydrologic processes nationally in New Zealand, we have developed a conceptually based groundwater flow model, which is fully integrated into a national surface-water model (TopNet), and able to simulate groundwater recharge, movement, and interaction with surface water. To demonstrate the capability of this groundwater model (TopNet-GW), we applied the model to an irrigated area with water shortage and pollution problems in the upper Ruamahanga catchment in Great Wellington Region, New Zealand, and compared its performance with a physically-based groundwater model (MODFLOW). The comparison includes river flow at flow gauging sites, and interaction between groundwater and river. Results showed that the TopNet-GW produced similar flow and groundwater interaction patterns as the MODFLOW model, but took less computation time. This shows the conceptually-based groundwater model has the potential to simulate national groundwater process, and could be used as a surrogate for the more physically based model.
A Structural Equation Model of Conceptual Change in Physics
ERIC Educational Resources Information Center
Taasoobshirazi, Gita; Sinatra, Gale M.
2011-01-01
A model of conceptual change in physics was tested on introductory-level, college physics students. Structural equation modeling was used to test hypothesized relationships among variables linked to conceptual change in physics including an approach goal orientation, need for cognition, motivation, and course grade. Conceptual change in physics…
Mathematical vs. conceptual understanding: Where do we draw the line?
NASA Astrophysics Data System (ADS)
Sadaghiani, Homeyra; Aguilera, Nicholas
2013-01-01
This research involved high school physics students and how they learn to understand Newton's laws as they relate to falling bodies and projectile motion. Students in introductory, algebra-based, high school physics classes were evaluated based on their prior knowledge through a pretest, designed to assess their initial comprehension of the motion of falling bodies and projectiles. Groups were divided and taught separately with an emphasis on either mathematical derivation of equations, followed by brief conceptual discussions, or on thorough conceptual analysis, followed by a brief mathematical verification. After a posttest was given, an evaluation of the responses and explanations of each group of students was used to determine which method of instruction was more effective. Results indicate that after the conceptual group and math groups achieved similar scores on the pretest, the conceptual group obtained a slightly higher normalized gain of 25% on the posttest, compared to the mathematical group's normalized gain of 16% (unpaired two-tailed t-test P value for posttest results was 0.1037) and, while within standard deviations, also achieved higher overall scores on all posttest questions and higher normalized gains on all but one posttest question. Further, most students, even thoes in the mathematically-instructed group, were more inclined to give conceptually-based responses on postest questions than mathematically-based ones. In the context of this topic, the dominating difficulty for both groups was in analyzing two-dimensional projectile motion and, more specifically, the behavior of each onedimensional component of such motion.
Abstract: Two physically based and deterministic models, CASC2-D and KINEROS are evaluated and compared for their performances on modeling sediment movement on a small agricultural watershed over several events. Each model has different conceptualization of a watershed. CASC...
Two physically based watershed models, GSSHA and KINEROS-2 are evaluated and compared for their performances on modeling flow and sediment movement. Each model has a different watershed conceptualization. GSSHA divides the watershed into cells, and flow and sediments are routed t...
Applying Model Analysis to a Resource-Based Analysis of the Force and Motion Conceptual Evaluation
ERIC Educational Resources Information Center
Smith, Trevor I.; Wittmann, Michael C.; Carter, Tom
2014-01-01
Previously, we analyzed the Force and Motion Conceptual Evaluation in terms of a resources-based model that allows for clustering of questions so as to provide useful information on how students correctly or incorrectly reason about physics. In this paper, we apply model analysis to show that the associated model plots provide more information…
The development and validation of Science Learning Inventory (SLI): A conceptual change framework
NASA Astrophysics Data System (ADS)
Seyedmonir, Mehdi
2000-12-01
A multidimensional theoretical model, Conceptual Change Science Learning (CCSL), was developed based on Standard Model of Conceptual Change and Cognitive Reconstruction of Knowledge Model. The model addresses three main components of science learning, namely the learner's conceptual ecology, the message along with its social context, and the cognitive engagement. A learner's conceptual ecology is organized around three clusters, including epistemological beliefs, existing conceptions, and motivation. Learner's cognitive engagement is represented by a continuum from peripheral processing involving shallow cognitive engagement to central processing involving deep cognitive engagement. Through reciprocal, non-sequential interactions of such constructs, the learners' conceptual change is achieved. Using a quantitative empirical approach, three studies were conducted to investigate the theoretical constructs based on the CCSL Model. The first study reports the development and validation of the hypothesized and factor-analytic scales comprising the instrument, Science Learning Inventory (SLI) intended for college students. The self-report instrument was designed in two parts, SLI-A (conceptual ecology and cognitive engagement) with 48 initial items, and SLI-B (science epistemology) with 49 initial items. The items for SLI-B were based on the tenets of Nature of Science as reflected in the recent reform documents, Science for All Americans (Project 2061) and National Science Education Standards. The results of factor analysis indicated seven factors for SLI-A and four factors for SLI-B. The second study investigated the criterion-related (conceptual change) predictive validity of the SLI in an instructional setting (a college-level physics course). The findings suggested the possibility of different interplay of factors and dynamics depending on the nature of the criterion (gain scores from a three-week intervention versus final course grade). Gain scores were predicted by "self-reflective study behavior" and "science self-efficacy" scales of SLI, whereas the course grade was predicted by "metacognitive engagement" and "dynamic scientific truth," (a factor from science epistemology). The third study investigated the effects of text-based conceptual-change strategy (Enhanced Refutational Text; ERT) on Newtonian Laws of Motion, and the efficacy of the SLI scales in a controlled setting. Also, initial divergent and convergent validity procedures are reported in the study. The results provided partial support for the superiority of ERT over expository text. The ERT was an effective intervention for students with no prior physics background but not for students with prior physics background.
Mediating relationship of differential products in understanding integration in introductory physics
NASA Astrophysics Data System (ADS)
Amos, Nathaniel; Heckler, Andrew F.
2018-01-01
In the context of introductory physics, we study student conceptual understanding of differentials, differential products, and integrals and possible pathways to understanding these quantities. We developed a multiple choice conceptual assessment employing a variety of physical contexts probing physical understanding of these three quantities and administered the instrument to over 1000 students in first and second semester introductory physics courses. Using a regression-based mediation analysis with conceptual understanding of integration as the dependent variable, we found evidence consistent with a simple mediation model: the relationship between differentials scores and integral scores may be mediated by the understanding of differential products. The indirect effect (a quantifiable metric of mediation) was estimated as a b =0.29 , 95% CI [0.25, 0.33] for N =1102 Physics 1 students, and a b =0.27 , 95% CI [0.14, 0.48] for N =65 Physics 2 students. We also find evidence that the physical context of the questions can be an important factor. These results imply that for introductory physics courses, instructional emphasis first on differentials then on differential products in a variety of contexts may in turn promote better integral understanding.
NASA Astrophysics Data System (ADS)
Li, Jing; Singh, Chandralekha
2017-03-01
Development of validated physics surveys on various topics is important for investigating the extent to which students master those concepts after traditional instruction and for assessing innovative curricula and pedagogies that can improve student understanding significantly. Here, we discuss the development and validation of a conceptual multiple-choice survey related to magnetism suitable for introductory physics courses. The survey was developed taking into account common students’ difficulties with magnetism concepts covered in introductory physics courses found in our investigation and the incorrect choices to the multiple-choice questions were designed based upon those common student difficulties. After the development and validation of the survey, it was administered to introductory physics students in various classes in paper-pencil format before and after traditional lecture-based instruction in relevant concepts. We compared the performance of students on the survey in the algebra-based and calculus-based introductory physics courses before and after traditional lecture-based instruction in relevant magnetism concepts. We discuss the common difficulties of introductory physics students with magnetism concepts we found via the survey. We also administered the survey to upper-level undergraduates majoring in physics and PhD students to benchmark the survey and compared their performance with those of traditionally taught introductory physics students for whom the survey is intended. A comparison with the base line data on the validated magnetism survey from traditionally taught introductory physics courses and upper-level undergraduate and PhD students discussed in this paper can help instructors assess the effectiveness of curricula and pedagogies which is especially designed to help students integrate conceptual and quantitative understanding and develop a good grasp of the concepts. In particular, if introductory physics students’ average performance in a class is significantly better than those of students in traditionally taught courses described here (and particularly when it is comparable to that of physics PhD students’ average performance discussed here), the curriculum or pedagogy used in that introductory class can be deemed effective. Moreover, we discuss the use of the survey to investigate gender differences in student performance.
Secondary analysis of teaching methods in introductory physics: A 50 k-student study
NASA Astrophysics Data System (ADS)
Von Korff, Joshua; Archibeque, Benjamin; Gomez, K. Alison; Heckendorf, Tyrel; McKagan, Sarah B.; Sayre, Eleanor C.; Schenk, Edward W.; Shepherd, Chase; Sorell, Lane
2016-12-01
Physics education researchers have developed many evidence-based instructional strategies to enhance conceptual learning of students in introductory physics courses. These strategies have historically been tested using assessments such as the Force Concept Inventory (FCI) and the Force and Motion Conceptual Evaluation (FMCE). We have performed a review and analysis of FCI and FMCE data published between 1995 and 2014. We confirm previous findings that interactive engagement teaching techniques are significantly more likely to produce high student learning gains than traditional lecture-based instruction. We also establish that interactive engagement instruction works in many settings, including those with students having a high and low level of prior knowledge, at liberal arts and research universities, and enrolled in both small and large classes.
Strategies for Teaching Healthy Behavior Conceptual Knowledge
ERIC Educational Resources Information Center
Kloeppel, Tiffany; Kulinna, Pamela Hodges
2012-01-01
By definition, conceptual knowledge is rich in relationships and understanding the kind of knowledge that may be transferred between situations. Despite the lack of importance that Conceptual Physical Education has been given in previous physical education reform efforts, research findings have shown that Conceptual Physical Education along with…
Alternative Model for Administration and Analysis of Research-Based Assessments
ERIC Educational Resources Information Center
Wilcox, Bethany R.; Zwickl, Benjamin M.; Hobbs, Robert D.; Aiken, John M.; Welch, Nathan M.; Lewandowski, H. J.
2016-01-01
Research-based assessments represent a valuable tool for both instructors and researchers interested in improving undergraduate physics education. However, the historical model for disseminating and propagating conceptual and attitudinal assessments developed by the physics education research (PER) community has not resulted in widespread adoption…
ERIC Educational Resources Information Center
Fan, Xinxin; Geelan, David; Gillies, Robyn
2018-01-01
This study investigated the effectiveness of a novel inquiry-based instructional sequence using interactive simulations for supporting students' development of conceptual understanding, inquiry process skills and confidence in learning. The study, conducted in Beijing, involved two teachers and 117 students in four classes. The teachers…
College Men's Meanings of Masculinities and Contextual Influences: Toward a Conceptual Model
ERIC Educational Resources Information Center
Harris, Frank, III
2010-01-01
Based on a grounded theory study involving 68 male undergraduates, a conceptual model of the meanings college men ascribe to masculinities is proposed in this article. The participants equated masculinities with "being respected," "being confident and self-assured," "assuming responsibility," and "embodying physical prowess." Contextual factors…
University Student Conceptual Resources for Understanding Energy
ERIC Educational Resources Information Center
Sabo, Hannah C.; Goodhew, Lisa M.; Robertson, Amy D.
2016-01-01
We report some of the common, prevalent conceptual resources that students used to reason about energy, based on our analysis of written responses to questions given to 807 introductory physics students. These resources include, for example, associating forms of energy with indicators, relating forces and energy, and representing energy…
Teaching Complex Concepts in the Geosciences by Integrating Analytical Reasoning with GIS
ERIC Educational Resources Information Center
Houser, Chris; Bishop, Michael P.; Lemmons, Kelly
2017-01-01
Conceptual models have long served as a means for physical geographers to organize their understanding of feedback mechanisms and complex systems. Analytical reasoning provides undergraduate students with an opportunity to develop conceptual models based upon their understanding of surface processes and environmental conditions. This study…
Scientific Reasoning Abilities of Nonscience Majors in Physics-Based Courses
ERIC Educational Resources Information Center
Moore, J. Christopher; Rubbo, Louis J.
2012-01-01
We have found that non-STEM (science, technology, engineering, and mathematics) majors taking either a conceptual physics or astronomy course at two regional comprehensive institutions score significantly lower preinstruction on the Lawson's Classroom Test of Scientific Reasoning (LCTSR) in comparison to national average STEM majors. Based on…
Synthesis of Discipline-Based Education Research in Physics
ERIC Educational Resources Information Center
Docktor, Jennifer L.; Mestre, José P.
2014-01-01
This paper presents a comprehensive synthesis of physics education research at the undergraduate level. It is based on work originally commissioned by the National Academies. Six topical areas are covered: (1) conceptual understanding, (2) problem solving, (3) curriculum and instruction, (4) assessment, (5) cognitive psychology, and (6) attitudes…
A Worksheet to Enhance Students’ Conceptual Understanding in Vector Components
NASA Astrophysics Data System (ADS)
Wutchana, Umporn; Emarat, Narumon
2017-09-01
With and without physical context, we explored 59 undergraduate students’conceptual and procedural understanding of vector components using both open ended problems and multiple choice items designed based on research instruments used in physics education research. The results showed that a number of students produce errors and revealed alternative conceptions especially when asked to draw graphical form of vector components. It indicated that most of them did not develop a strong foundation of understanding in vector components and could not apply those concepts to such problems with physical context. Based on the findings, we designed a worksheet to enhance the students’ conceptual understanding in vector components. The worksheet is composed of three parts which help students to construct their own understanding of definition, graphical form, and magnitude of vector components. To validate the worksheet, focus group discussions of 3 and 10 graduate students (science in-service teachers) had been conducted. The modified worksheet was then distributed to 41 grade 9 students in a science class. The students spent approximately 50 minutes to complete the worksheet. They sketched and measured vectors and its components and compared with the trigonometry ratio to condense the concepts of vector components. After completing the worksheet, their conceptual model had been verified. 83% of them constructed the correct model of vector components.
Conceptual size in developmental dyscalculia and dyslexia.
Gliksman, Yarden; Henik, Avishai
2018-02-01
People suffering from developmental dyscalculia (DD) are known to have impairment in numerical abilities and have been found to have weaker processing of countable magnitudes. However, not much research was done on their abilities to process noncountable magnitudes. An example of noncountable magnitude is conceptual size (e.g., mouse is small and elephant is big). Recently, we found that adults process conceptual size automatically. The current study examined automatic processing of conceptual size in students with DD and developmental dyslexia. Conceptual and physical sizes were manipulated orthogonally to create congruent (e.g., a physically small apple compared to a physically large violin) and incongruent (e.g., a physically large apple compared to a physically small violin) conditions. Participants were presented with 2 objects and had to choose the larger one. Each trial began with an instruction to respond to the physical or to the conceptual dimension. Control and the dyslexic groups presented automatic processing of both conceptual and physical sizes. The dyscalculic group presented automatic processing of physical size but not automaticity of processing conceptual size. Our results fit with previous findings of weaker magnitude representation in those with DD, specifically regarding noncountable magnitudes, and support theories of a shared neurocognitive substrate for different types of magnitudes. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
The Elements of Teaching Nonscientists: Make it Conceptual, Social, Modern, and Interactive
NASA Astrophysics Data System (ADS)
Hobson, Art
2001-03-01
Physics literacy for all students should be a top priority for every physics department. Reasons include each department's self-interest, and the health of our profession. But most importantly, as the American Association for the Adancement of Science puts it, "Without a scientifically literate population, the outlook for a better world is not promising." Because nonscientists have little need and less desire for algebra-based physics problems, these courses should be conceptual (non-algebraic) although they should certainly be numerate. Since 1976, I have developed and taught a course of this type that includes most of the major principles of physics. Its success has stemmed from (1) a conceptual approach, (2) inclusion of relevant societal topics such as energy resources, scientific methodology, pseudoscience, global warming, and technological risk, (3) modern physics topics that occupy 50instruction techniques even in (especially in!) classes of over 200. I will describe this course and present interactive teaching ideas for one socially relevant topic: transportation and energy efficiency. A textbook is available: Physics: Concepts and Connections, by Art Hobson (Prentice Hall, 2nd Edition 1999). Further info: http://www.uark.edu/depts/physics/about/hobson.html
The Elements of Teaching Nonscientists: Make it Conceptual, Social, Modern, and Interactive
NASA Astrophysics Data System (ADS)
Hobson, Art
2000-04-01
Physics literacy for all students should be a top priority for every physics department. Reasons include each department's self-interest, and the health of our profession. But most importantly, as the American Association for the Adancement of Science puts it, "Without a scientifically literate population, the outlook for a better world is not promising." Because nonscientists have little need and less desire for algebra-based physics problems, these courses should be conceptual (non-algebraic) although they should certainly be numerate. Since 1976, I have developed and taught a course of this type that includes most of the major principles of physics. Its success has stemmed from (1) a conceptual approach, (2) inclusion of relevant societal topics such as energy resources, scientific methodology, pseudoscience, global warming, and technological risk, (3) modern physics topics that occupy 50instruction techniques even in (especially in!) classes of over 200. I will describe this course and conduct an "active learning" demonstration of ideas for teaching one socially relevant topic: transportation and energy efficiency. A textbook is available: Physics: Concepts and Connections, by Art Hobson (Prentice Hall, 2nd Edition 1999). Further info: http://www.uark.edu/depts/physics/about/hobson.html
Assessing students' conceptual knowledge of electricity and magnetism
NASA Astrophysics Data System (ADS)
McColgan, Michele W.; Finn, Rose A.; Broder, Darren L.; Hassel, George E.
2017-12-01
We present the Electricity and Magnetism Conceptual Assessment (EMCA), a new assessment aligned with second-semester introductory physics courses. Topics covered include electrostatics, electric fields, circuits, magnetism, and induction. We have two motives for writing a new assessment. First, we find other assessments such as the Brief Electricity and Magnetism Assessment and the Conceptual Survey on Electricity and Magnetism not well aligned with the topics and content depth of our courses. We want to test introductory physics content at a level appropriate for our students. Second, we want the assessment to yield scores and gains comparable to the widely used Force Concept Inventory (FCI). After five testing and revision cycles, the assessment was finalized in early 2015 and is available online. We present performance results for a cohort of 225 students at Siena College who were enrolled in our algebra- and calculus-based physics courses during the spring 2015 and 2016 semesters. We provide pretest, post-test, and gain analyses, as well as individual question and whole test statistics to quantify difficulty and reliability. In addition, we compare EMCA and FCI scores and gains, and we find that students' FCI scores are strongly correlated with their performance on the EMCA. Finally, the assessment was piloted in an algebra-based physics course at George Washington University (GWU). We present performance results for a cohort of 130 GWU students and we find that their EMCA scores are comparable to the scores of students in our calculus-based physics course.
Educating through the Physical--Behavioral Interpretation
ERIC Educational Resources Information Center
Eldar, Eitan
2008-01-01
Background: Physical activity holds great promise as a natural and enjoyable setting for learning and for behavioral change. Despite claims that engagement in physical activity can promote socially desired behaviors, there remains a lack of a clear conceptual base that can guide interventions as well as research endeavors in this field. This…
ERIC Educational Resources Information Center
Akarsu, Bayram
2011-01-01
In present paper, we propose a new diagnostic test to measure students' conceptual knowledge of principles of modern physics topics. Over few decades since born of physics education research (PER), many diagnostic instruments that measure students' conceptual understanding of various topics in physics, the earliest tests developed in PER are Force…
A Study of Faculty Approaches to Teaching Undergraduate Physical Chemistry Courses
NASA Astrophysics Data System (ADS)
Mack, Michael Ryan
Chemistry education researchers have not adequately studied teaching and learning experiences at all levels in the undergraduate chemistry curriculum leaving gaps in discipline-based STEM education communities understanding about how the upper- division curricula works (National Research Council, 2012b; Towns, 2013). This study explored faculty approaches to teaching in upper-division physical chemistry course settings using an interview-based methodology. Two conceptualizations of approaches to teaching emerged from a phenomenographic analysis of interview transcripts: (1) faculty beliefs about the purposes for teaching physical chemistry and (2) their conceptions of their role as an instructor in these course settings. Faculty who reported beliefs predominantly centered on helping students develop conceptual knowledge and problem-solving skills in physical chemistry often worked with didactic models of teaching, which emphasized the transfer of expert knowledge to students. When faculty expressed beliefs that were more inclusive of conceptual, epistemic, and social learning goals in science education they often described more student-centered models of teaching and learning, which put more responsibilities on them to facilitate students' interactive engagement with the material and peers during regularly scheduled class time. Knowledge of faculty thinking, as evinced in a rich description of their accounts of their experience, provides researchers and professional developers with useful information about the potential opportunities or barriers that exist for helping faculty align their beliefs and goals for teaching with research-based instructional strategies.
Garcia, Leandro M T; Diez Roux, Ana V; Martins, André C R; Yang, Yong; Florindo, Alex A
2017-08-22
Despite the increasing body of evidences on the factors influencing leisure-time physical activity, our understanding of the mechanisms and interactions that lead to the formation and evolution of population patterns is still limited. Moreover, most frameworks in this field fail to capture dynamic processes. Our aim was to create a dynamic conceptual model depicting the interaction between key psychological attributes of individuals and main aspects of the built and social environments in which they live. This conceptual model will inform and support the development of an agent-based model aimed to explore how population patterns of LTPA in adults may emerge from the dynamic interplay between psychological traits and built and social environments. We integrated existing theories and models as well as available empirical data (both from literature reviews), and expert opinions (based on a systematic expert assessment of an intermediary version of the model). The model explicitly presents intention as the proximal determinant of leisure-time physical activity, a relationship dynamically moderated by the built environment (access, quality, and available activities) - with the strength of the moderation varying as a function of the person's intention- and influenced both by the social environment (proximal network's and community's behavior) and the person's behavior. Our conceptual model is well supported by evidence and experts' opinions and will inform the design of our agent-based model, as well as data collection and analysis of future investigations on population patterns of leisure-time physical activity among adults.
NASA Astrophysics Data System (ADS)
Trecia Markes, Cecelia
2006-03-01
With a three-year FIPSE grant, it has been possible at the University of Nebraska at Kearney (UNK) to develop and implement activity- based introductory physics at the algebra level. It has generally been recognized that students enter physics classes with misconceptions about motion and force. Many of these misconceptions persist after instruction. Pretest and posttest responses on the ``Force and Motion Conceptual Evaluation'' (FMCE) are analyzed to determine the effectiveness of the activity- based method of instruction relative to the traditional (lecture/lab) method of instruction. Data were analyzed to determine the following: student understanding at the beginning of the course, student understanding at the end of the course, how student understanding is related to the type of class taken, student understanding based on gender and type of class. Some of the tests used are the t-test, the chi-squared test, and analysis of variance. The results of these tests will be presented, and their implications will be discussed.
NASA Astrophysics Data System (ADS)
Negishi, Meiko
Student achievement and motivation to learn physics is highly valued in many industrialized countries including the United States and Japan. Science education curricula in these countries emphasize the importance and encourage classroom teachers to use an inquiry approach. This dissertation investigated high school students' motivational orientations and their understanding of physics concepts in a context of inquiry-based instruction. The goals were to explore the patterns of instructional effects on motivation and learning in each country and to examine cultural differences and similarities. Participants consisted of 108 students (55 females, 53 males) and 9 physics teachers in the United States and 616 students (203 females and 413 males) and 11 physics teachers in Japan. Students were administered (a) Force Concept Inventory measuring physics conceptual understanding and (b) Attitudes about Science Questionnaire measuring student motivational orientations. Teachers were given a survey regarding their use of inquiry teaching practices and background information. Additionally, three teachers in each country were interviewed and observed in their classrooms. For the data analysis, two-level hierarchical linear modeling (HLM) methods were used to examine individual student differences (i.e., learning, motivation, and gender) within each classroom (i.e., inquiry-based teaching, teaching experience, and class size) in the U.S. and Japan, separately. Descriptive statistical analyses were also conducted. The results indicated that there was a cultural similarity in that current teaching practices had minimal influence on conceptual understanding as well as motivation of high school students between the U.S. and Japan. In contrast, cultural differences were observed in classroom structures and instructional approaches. Furthermore, this study revealed gender inequity in Japanese students' conceptual understanding and self-efficacy. Limitations of the study, as well as implications for high school physics teachers are discussed. Future research in this line could explore students' use of cognitive strategies to overcome misconceptions in Western and Eastern cultures. Also, exploring the best practices in changing student misconceptions and promoting motivation across cultures would enrich our understanding and current teaching practices.
NASA Astrophysics Data System (ADS)
Li, Sissi L.
At the university level, introductory science courses usually have high student to teacher ratios which increases the challenge to meaningfully connect with students. Various curricula have been developed in physics education to actively engage students in learning through social interactions with peers and instructors in class. This learning environment demands not only conceptual understanding but also learning to be a scientist. However, the success of student learning is typically measured in test performance and course grades while assessment of student development as science learners is largely ignored. This dissertation addresses this issue with the development of an instrument towards a measure of physics learning identity (PLI) which is used to guide and complement case studies through student interviews and in class observations. Using the conceptual framework based on Etienne Wenger's communities of practice (1998), I examine the relationship between science learning and learning identity from a situated perspective in the context of a large enrollment science class as a community of practice. This conceptual framework emphasizes the central role of identity in the practices negotiated in the classroom community and in the way students figure out their trajectory as members. Using this framework, I seek to understand how the changes in student learning identity are supported by active engagement based instruction. In turn, this understanding can better facilitate the building of a productive learning community and provide a measure for achievement of the curricular learning goals in active engagement strategies. Based on the conceptual framework, I developed and validated an instrument for measuring physics learning identity in terms of student learning preferences, self-efficacy for learning physics, and self-image as a physics learner. The instrument was pilot tested with a population of Oregon State University students taking calculus based introductory physics. The responses were analyzed using principal component exploratory factor analysis. The emergent factors were analyzed to create reliable subscales to measure PLI in terms of physics learning self-efficacy and social expectations about learning. Using these subscales, I present a case study of a student who performed well in the course but resisted the identity learning goals of the curriculum. These findings are used to support the factors that emerged from the statistical analysis and suggest a potential model of the relationships between the factors describing science learning and learning identity in large enrollment college science classes. This study offers an instrument with which to measure aspects of physics learning identity and insights on how PLI might develop in a classroom community of practice.
The Effects of Peer Instruction on Students' Conceptual Learning and Motivation
ERIC Educational Resources Information Center
Gok, Tolga
2012-01-01
The aim of this study was to investigate the effects of peer instruction on college students' conceptual learning, motivation, and self-efficacy in an algebra-based introductory physics course for nonmajors. Variables were studied via a quasi-experiment, Solomon four-group design on 123 students. Treatment groups were taught by peer instruction.…
ERIC Educational Resources Information Center
Corni, Federico; Fuchs, Hans U.; Savino, Giovanni
2018-01-01
This is a description of the conceptual foundations used for designing a novel learning environment for mechanics implemented as an "Industrial Educational Laboratory"--called Fisica in Moto (FiM)--at the Ducati Foundation in Bologna. In this paper, we will describe the motivation for and design of the conceptual approach to mechanics…
Promoting Physics Literacy through Enquiry-Based Learning Online
ERIC Educational Resources Information Center
Ng, Wan; Angstmann, Elizabeth
2017-01-01
In Australia, as in a number of other countries, studies have consistently shown a low enrolment trend towards Physics by students in post-secondary years, due partly to the subject being perceived as conceptually difficult and abstract to grasp. In order to promote Physics literacy, continued opportunities such as online courses for students to…
CADDIS Volume 2. Sources, Stressors and Responses: Physical Habitat - Simple Conceptual Diagram
Introduction to the Physical Habitat module, when to list Physical Habitat as a candidate cause, ways to measure Physical Habitat, simple and detailed conceptual diagrams for Physical Habitat, Physical Habitat module references and literature reviews.
CADDIS Volume 2. Sources, Stressors and Responses: Physical Habitat - Detailed Conceptual Diagram
Introduction to the Physical Habitat module, when to list Physical Habitat as a candidate cause, ways to measure Physical Habitat, simple and detailed conceptual diagrams for Physical Habitat, Physical Habitat module references and literature reviews.
NASA Astrophysics Data System (ADS)
Linuwih, S.; Lurinda, N. W.; Fianti
2017-04-01
These study aims are to develop a textbook based on cognitive conflict approachment, to know theproperness of textbook, the legibility of textbook, and also the effect of using the textbook for increasing the conceptual understanding and improving the character of the students. This study was conducted by research and development method employing non-equivalent control group design to test the product. The subjects wereten-grade students of SMA N 1 Gubug in thesecond semester of 2015/2016. The properness test used properness-questionnaire, while the legibility test used themost closet. The data of conceptual understanding was taken from thepretest-postest result and the data of characters was taken from direct observation. By analysing the data, we concluded that the textbook based on cognitive conflict approachment was very proper to use with high legibility. By applied this textbook, students would be helped to get a deeper conceptual understanding and better characters.
More than Just "Plug-and-Chug": Exploring How Physics Students Make Sense with Equations
ERIC Educational Resources Information Center
Kuo, Eric
2013-01-01
Although a large part the Physics Education Research (PER) literature investigates students' conceptual understanding in physics, these investigations focus on qualitative, conceptual reasoning. Even in modeling expert problem solving, attention to conceptual understanding means a focus on initial qualitative analysis of the problem; the equations…
Toward equity through participation in Modeling Instruction in introductory university physics
NASA Astrophysics Data System (ADS)
Brewe, Eric; Sawtelle, Vashti; Kramer, Laird H.; O'Brien, George E.; Rodriguez, Idaykis; Pamelá, Priscilla
2010-06-01
We report the results of a five year evaluation of the reform of introductory calculus-based physics by implementation of Modeling Instruction (MI) at Florida International University (FIU), a Hispanic-serving institution. MI is described in the context of FIU’s overall effort to enhance student participation in physics and science broadly. Our analysis of MI from a “participationist” perspective on learning identifies aspects of MI including conceptually based instruction, culturally sensitive instruction, and cooperative group learning, which are consistent with research on supporting equitable learning and participation by students historically under-represented in physics (i.e., Black, Hispanic, women). This study uses markers of conceptual understanding as measured by the Force Concept Inventory (FCI) and odds of success as measured by the ratio of students completing introductory physics and earning a passing grade (i.e., C- or better) by students historically under-represented in physics to reflect equity and participation in introductory physics. FCI pre and post scores for students in MI are compared with lecture-format taught students. Modeling Instruction students outperform students taught in lecture-format classes on post instruction FCI (61.9% vs 47.9%, p<0.001 ), where these benefits are seen across both ethnic and gender comparisons. In addition, we report that the odds of success in MI are 6.73 times greater than in lecture instruction. Both odds of success and FCI scores within Modeling Instruction are further disaggregated by ethnicity and by gender to address the question of equity within the treatment. The results of this disaggregation indicate that although ethnically under-represented students enter with lower overall conceptual understanding scores, the gap is not widened during introductory physics but instead is maintained, and the odds of success for under-represented students is not different from majority students. Women, similarly enter with scores indicating lower conceptual understanding, and over the course of MI this understanding gap increases, yet we do not find differences in the odds of success between men and women. Contrasting these results with the participationist view on learning indicates a movement toward greater equity in introductory physics but also indicates that the instructional environment can be improved.
NASA Astrophysics Data System (ADS)
Becerra-Labra, Carlos; Gras-Martí, Albert; Martínez Torregrosa, Joaquín
2012-05-01
A model of teaching/learning is proposed based on a 'problem-based structure' of the contents of the course, in combination with a training in paper and pencil problem solving that emphasizes discussion and quantitative analysis, rather than formulae plug-in. The aim is to reverse the high failure and attrition rate among engineering undergraduates taking physics. A number of tests and questionnaires were administered to a group of students following a traditional lecture-based instruction, as well as to another group that was following an instruction scheme based on the proposed approach and the teaching materials developed ad hoc. The results show that students following the new method can develop scientific reasoning habits in problem-solving skills, and show gains in conceptual learning, attitudes and interests, and that the effects of this approach on learning are noticeable several months after the course is over.
Van Oudenhove, Lukas; Cuypers, Stefaan E
2010-01-01
Parallel to psychiatry, "philosophy of mind" investigates the relationship between mind (mental domain) and body/brain (physical domain). Unlike older forms of philosophy of mind, contemporary analytical philosophy is not exclusively based on introspection and conceptual analysis, but also draws upon the empirical methods and findings of the sciences. This article outlines the conceptual framework of the "mind-body problem" as formulated in contemporary analytical philosophy and argues that this philosophical debate has potentially far-reaching implications for psychiatry as a clinical-scientific discipline, especially for its own autonomy and its relationship to neurology/neuroscience. This point is illustrated by a conceptual analysis of the five principles formulated in Kandel's 1998 article "A New Intellectual Framework for Psychiatry." Kandel's position in the philosophical mind-body debate is ambiguous, ranging from reductive physicalism (psychophysical identity theory) to non-reductive physicalism (in which the mental "supervenes" on the physical) to epiphenomenalist dualism or even emergent dualism. We illustrate how these diverging interpretations result in radically different views on the identity of psychiatry and its relationship with the rapidly expanding domain of neurology/neuroscience.
ERIC Educational Resources Information Center
Manurung, Sondang R.; Mihardi, Satria
2016-01-01
The purpose of this study was to determine the effectiveness of hypertext media based kinematic learning and formal thinking ability to improve the conceptual understanding of physic prospective students. The research design used is the one-group pretest-posttest experimental design is carried out in the research by taking 36 students on from…
Conceptual Change from the Framework Theory Side of the Fence
ERIC Educational Resources Information Center
Vosniadou, Stella; Skopeliti, Irini
2014-01-01
We describe the main principles of the framework theory approach to conceptual change and briefly report on the results of a text comprehension study that investigated some of the hypotheses that derive from it. We claim that children construct a naive physics which is based on observation in the context of lay culture and which forms a relatively…
Function-based design process for an intelligent ground vehicle vision system
NASA Astrophysics Data System (ADS)
Nagel, Robert L.; Perry, Kenneth L.; Stone, Robert B.; McAdams, Daniel A.
2010-10-01
An engineering design framework for an autonomous ground vehicle vision system is discussed. We present both the conceptual and physical design by following the design process, development and testing of an intelligent ground vehicle vision system constructed for the 2008 Intelligent Ground Vehicle Competition. During conceptual design, the requirements for the vision system are explored via functional and process analysis considering the flows into the vehicle and the transformations of those flows. The conceptual design phase concludes with a vision system design that is modular in both hardware and software and is based on a laser range finder and camera for visual perception. During physical design, prototypes are developed and tested independently, following the modular interfaces identified during conceptual design. Prototype models, once functional, are implemented into the final design. The final vision system design uses a ray-casting algorithm to process camera and laser range finder data and identify potential paths. The ray-casting algorithm is a single thread of the robot's multithreaded application. Other threads control motion, provide feedback, and process sensory data. Once integrated, both hardware and software testing are performed on the robot. We discuss the robot's performance and the lessons learned.
Comparing Three Methods for Teaching Newton's Third Law
ERIC Educational Resources Information Center
Smith, Trevor I.; Wittman, Michael C.
2007-01-01
Although guided-inquiry methods for teaching introductory physics have been individually shown to be more effective at improving conceptual understanding than traditional lecture-style instruction, researchers in physics education have not studied differences among reform-based curricula in much detail. Several researchers have developed…
Comparing three methods for teaching Newton's third law
NASA Astrophysics Data System (ADS)
Smith, Trevor I.; Wittmann, Michael C.
2007-12-01
Although guided-inquiry methods for teaching introductory physics have been individually shown to be more effective at improving conceptual understanding than traditional lecture-style instruction, researchers in physics education have not studied differences among reform-based curricula in much detail. Several researchers have developed University of Washington style tutorial materials, but the different curricula have not been compared against each other. Our study examines three tutorials designed to improve student understanding of Newton’s third law: the University of Washington’s Tutorials in Introductory Physics (TIP), the University of Maryland’s Activity-Based Tutorials (ABT), and the Open Source Tutorials (OST) also developed at the University of Maryland. Each tutorial was designed with different goals and agendas, and each employs different methods to help students understand the physics. We analyzed pretest and post-test data, including course examinations and data from the Force and Motion Conceptual Evaluation (FMCE). Using both FMCE and course data, we find that students using the OST version of the tutorial perform better than students using either of the other two.
Hagger, Martin S; Chatzisarantis, Nikos L D
2016-06-01
The trans-contextual model outlines the processes by which autonomous motivation toward activities in a physical education context predicts autonomous motivation toward physical activity outside of school, and beliefs about, intentions toward, and actual engagement in, out-of-school physical activity. In the present article, we clarify the fundamental propositions of the model and resolve some outstanding conceptual issues, including its generalizability across multiple educational domains, criteria for its rejection or failed replication, the role of belief-based antecedents of intentions, and the causal ordering of its constructs. We also evaluate the consistency of model relationships in previous tests of the model using path-analytic meta-analysis. The analysis supported model hypotheses but identified substantial heterogeneity in the hypothesized relationships across studies unattributed to sampling and measurement error. Based on our meta-analysis, future research needs to provide further replications of the model in diverse educational settings beyond physical education and test model hypotheses using experimental methods.
ERIC Educational Resources Information Center
Ogunleye, Ayodele O.
2009-01-01
In recent times, science education researchers have identified a lot of instruments for evaluating conceptual understanding as well as students' attitudes and beliefs about physics; unfortunately however, there are no broad based evaluation instruments in the field of problem-solving in physics. This missing tool is an indication of the complexity…
ERIC Educational Resources Information Center
Thorburn, Malcolm; Stolz, Steven
2017-01-01
We write as critical theorists, who consider that in terms of scoping out robust conceptual elaborations which are suitable for contemporary schooling, that physical education has ground to make up connecting theory with practice and practice with theory. We advocate that aspects of existentialism and phenomenology can provide a theoretically…
ERIC Educational Resources Information Center
Driver, Simon
2008-01-01
The purpose was to examine psychosocial factors that influence the physical activity behaviors of adults with brain injuries. Two differing models, based on Harter's model of self-worth, were proposed to examine the relationship between perceived competence, social support, physical self-worth, affect, and motivation. Adults numbering 384 with…
ERIC Educational Resources Information Center
Barrett, Sarah Elizabeth; Hazari, Zahra; Fatholahzadeh, Baharak; Harrison, David M.
2012-01-01
Many students enrolled in university physics have little interest in the subject matter, a trend more pronounced in females. This study assesses students' conceptual understanding and interest during the electrochemistry unit of a physics course for nonphysics majors that was revised in light of consistently low ratings from its students. The…
ERIC Educational Resources Information Center
Koponen, Ismo; Nousiainen, Maija
2013-01-01
Good conceptual understanding of physics is based on understanding what the key concepts are and how they are related. This kind of understanding is especially important for physics teachers in planning how and in what order to introduce concepts in teaching; connections which tie concepts to each other give direction of progress--there is "flux…
ERIC Educational Resources Information Center
Baser, Mustafa
2006-01-01
The purpose of this study was to investigate the effectiveness of cognitive conflict based physics instruction over traditionally designed physics instruction on preservice primary school teachers at grade 2. The subjects were 82 (27 boys, 55 girls) second grade pre-service teachers in two classes. One of the classes (42 students) was randomly…
Chronicling a successful secondary implementation of Studio Physics
NASA Astrophysics Data System (ADS)
Kohl, Patrick B.; Vincent Kuo, H.
2012-09-01
The Colorado School of Mines (CSM) has taught its first-semester calculus-based introductory physics course (Physics I) using a hybrid lecture/Studio Physics format since the spring of 1997. Starting in the fall of 2007, we have been converting the second semester of our calculus-based introductory physics course (Physics II) to a hybrid lecture/Studio Physics format, beginning from a traditional lecture/lab/recitation course. In this paper, we document the stages of this transformation, highlighting what has worked and what has not, and the challenges and benefits associated with the switch to Studio Physics. A major goal in this study is to develop a method for secondary implementations of Studio physics that keeps the time and resource investments manageable. We describe the history of Studio at CSM and characterize our progress via several metrics, including pre/post Conceptual Survey of Electricity and Magnetism (CSEM) scores, Colorado Learning About Science Survey scores (CLASS), exam scores, failure rates, and a variety of qualitative observations. Results suggest that Studio has increased student performance and satisfaction despite an aggressive expansion of class sizes in the past few years. Gains have been concentrated mostly in problem-solving skills and exam performance (as opposed to conceptual survey gains), in contrast to what has sometimes been seen in other studies.
ERIC Educational Resources Information Center
Reiner, Miriam; And Others
1995-01-01
Observations of high school physics students in an instructional experiment with an interactive learning environment in geometrical optics indicated that students in the Optics Dynagrams Project went through major conceptual developments as reflected in the diagrams they constructed. (Author/MKR)
Abramoff, Rose; Xu, Xiaofeng; Hartman, Melannie; ...
2017-12-20
Soil organic carbon (SOC) can be defined by measurable chemical and physical pools, such as mineral-associated carbon, carbon physically entrapped in aggregates, dissolved carbon, and fragments of plant detritus. Yet, most soil models use conceptual rather than measurable SOC pools. What would the traditional pool-based soil model look like if it were built today, reflecting the latest understanding of biological, chemical, and physical transformations in soils? We propose a conceptual model—the Millennial model—that defines pools as measurable entities. First, we discuss relevant pool definitions conceptually and in terms of the measurements that can be used to quantify pool size, formation,more » and destabilization. Then, we develop a numerical model following the Millennial model conceptual framework to evaluate against the Century model, a widely-used standard for estimating SOC stocks across space and through time. The Millennial model predicts qualitatively similar changes in total SOC in response to single factor perturbations when compared to Century, but different responses to multiple factor perturbations. Finally, we review important conceptual and behavioral differences between the Millennial and Century modeling approaches, and the field and lab measurements needed to constrain parameter values. Here, we propose the Millennial model as a simple but comprehensive framework to model SOC pools and guide measurements for further model development.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abramoff, Rose; Xu, Xiaofeng; Hartman, Melannie
Soil organic carbon (SOC) can be defined by measurable chemical and physical pools, such as mineral-associated carbon, carbon physically entrapped in aggregates, dissolved carbon, and fragments of plant detritus. Yet, most soil models use conceptual rather than measurable SOC pools. What would the traditional pool-based soil model look like if it were built today, reflecting the latest understanding of biological, chemical, and physical transformations in soils? We propose a conceptual model—the Millennial model—that defines pools as measurable entities. First, we discuss relevant pool definitions conceptually and in terms of the measurements that can be used to quantify pool size, formation,more » and destabilization. Then, we develop a numerical model following the Millennial model conceptual framework to evaluate against the Century model, a widely-used standard for estimating SOC stocks across space and through time. The Millennial model predicts qualitatively similar changes in total SOC in response to single factor perturbations when compared to Century, but different responses to multiple factor perturbations. Finally, we review important conceptual and behavioral differences between the Millennial and Century modeling approaches, and the field and lab measurements needed to constrain parameter values. Here, we propose the Millennial model as a simple but comprehensive framework to model SOC pools and guide measurements for further model development.« less
A Conceptual Framework for SAHRA Integrated Multi-resolution Modeling in the Rio Grande Basin
NASA Astrophysics Data System (ADS)
Liu, Y.; Gupta, H.; Springer, E.; Wagener, T.; Brookshire, D.; Duffy, C.
2004-12-01
The sustainable management of water resources in a river basin requires an integrated analysis of the social, economic, environmental and institutional dimensions of the problem. Numerical models are commonly used for integration of these dimensions and for communication of the analysis results to stakeholders and policy makers. The National Science Foundation Science and Technology Center for Sustainability of semi-Arid Hydrology and Riparian Areas (SAHRA) has been developing integrated multi-resolution models to assess impacts of climate variability and land use change on water resources in the Rio Grande Basin. These models not only couple natural systems such as surface and ground waters, but will also include engineering, economic and social components that may be involved in water resources decision-making processes. This presentation will describe the conceptual framework being developed by SAHRA to guide and focus the multiple modeling efforts and to assist the modeling team in planning, data collection and interpretation, communication, evaluation, etc. One of the major components of this conceptual framework is a Conceptual Site Model (CSM), which describes the basin and its environment based on existing knowledge and identifies what additional information must be collected to develop technically sound models at various resolutions. The initial CSM is based on analyses of basin profile information that has been collected, including a physical profile (e.g., topographic and vegetative features), a man-made facility profile (e.g., dams, diversions, and pumping stations), and a land use and ecological profile (e.g., demographics, natural habitats, and endangered species). Based on the initial CSM, a Conceptual Physical Model (CPM) is developed to guide and evaluate the selection of a model code (or numerical model) for each resolution to conduct simulations and predictions. A CPM identifies, conceptually, all the physical processes and engineering and socio-economic activities occurring (or to occur) in the real system that the corresponding numerical models are required to address, such as riparian evapotranspiration responses to vegetation change and groundwater pumping impacts on soil moisture contents. Simulation results from different resolution models and observations of the real system will then be compared to evaluate the consistency among the CSM, the CPMs, and the numerical models, and feedbacks will be used to update the models. In a broad sense, the evaluation of the models (conceptual or numerical), as well as the linkages between them, can be viewed as a part of the overall conceptual framework. As new data are generated and understanding improves, the models will evolve, and the overall conceptual framework is refined. The development of the conceptual framework becomes an on-going process. We will describe the current state of this framework and the open questions that have to be addressed in the future.
NASA Astrophysics Data System (ADS)
Sauer, Tim Allen
The purpose of this study was to evaluate the effectiveness of utilizing student constructed theoretical math models when teaching acceleration to high school introductory physics students. The goal of the study was for the students to be able to utilize mathematical modeling strategies to improve their problem solving skills, as well as their standardized scientific and conceptual understanding. This study was based on mathematical modeling research, conceptual change research and constructivist theory of learning, all of which suggest that mathematical modeling is an effective way to influence students' conceptual connectiveness and sense making of formulaic equations and problem solving. A total of 48 students in two sections of high school introductory physics classes received constructivist, inquiry-based, cooperative learning, and conceptual change-oriented instruction. The difference in the instruction for the 24 students in the mathematical modeling treatment group was that they constructed every formula they needed to solve problems from data they collected. In contrast, the instructional design for the control group of 24 students allowed the same instruction with assigned problems solved with formulas given to them without explanation. The results indicated that the mathematical modeling students were able to solve less familiar and more complicated problems with greater confidence and mental flexibility than the control group students. The mathematical modeling group maintained fewer alternative conceptions consistently in the interviews than did the control group. The implications for acceleration instruction from these results were discussed.
An intelligent tutoring system for teaching fundamental physics concepts
NASA Astrophysics Data System (ADS)
Albacete, Patricia Lucia
1999-12-01
Students in traditional elementary mechanics classes can master problem solving of a quantitative nature but not those of a qualitative type. Moreover, students' naive conceptions of physics remain unchanged after completing their class. A few approaches have been implemented to improve this situation however none have met with great success. Since elementary mechanics is the foundation for all of physics and it is a required course for most science majors there is a clear need to improve the instruction of the subject. To address this problem I developed a intelligent tutoring system, called the Conceptual Helper, which coaches students during homework problem solving. The tutor uses a unique cognitive based approach to teaching physics, which presents innovations in three areas. (1) The teaching strategy, which focuses on teaching those links among the concepts of the domain that are essential for conceptual understanding yet are seldom learned by the students. (2) The manner in which the knowledge is taught, which is based on a combination of effective human tutoring techniques (e.g., hinting), effective pedagogical methods (e.g., a microscopic view of matter), and less cognitively demanding approaches (e.g., anthropomorphism). (3) The way in which misconceptions are handled which uses the underlying scientific correct line of reasoning to describe to the student the phenomenon that is the basis for the misconception. From a technological point of view the Conceptual Helper was implemented as a model-tracing tutor which intervenes when students make errors and after completion of each problem, at which time the tutor scaffolds the students on post-problem reflection. The remediation is guided by probabilistic assessment of mastery and the interventions are adapted to the errors. The thesis also presents the results of the evaluation of the system which revealed that the gain scores of the experimental group were statistically significantly higher than those of the control group, suggesting that the Conceptual Helper was indeed capable of effectively teaching the conceptual aspects of physics as well as helped students abandon common misconceptions. Furthermore, the evaluation showed that the students' performance on a standardized test was comparable to those of other more complex approaches.
Physical activity and the environment: conceptual review and framework for intervention research.
Panter, Jenna; Guell, Cornelia; Prins, Rick; Ogilvie, David
2017-11-15
Changing the physical environment is one way to promote physical activity and improve health, but evidence on intervention effectiveness is mixed. The theoretical perspectives and conceptual issues discussed or used in evaluative studies and related literature may contribute to these inconsistencies. We aimed to advance the intervention research agenda by systematically searching for and synthesising the literature pertaining to these wider conceptual issues. We searched for editorials, commentaries, reviews, or primary qualitative or quantitative studies in multiple disciplines by electronic searches of key databases (MEDLINE and MEDLINE In-Process, Web of Science, Cochrane Reviews, ProQuest for dissertations, Health Evidence, EPPI-Centre, TRID and NICE) and snowballing. We extracted theoretical and conceptual material and used thematic analysis in an in-depth, configurative narrative approach to synthesis. Our initial searches identified 2760 potential sources from fields including public health, sociology, behavioural science and transport, of which 104 were included. By first separating out and then drawing together this material, we produced a synthesis that identified five high-level conceptual themes: one concerning outcomes (physical activity as a behaviour and a socially embedded practice), one concerning exposures (environmental interventions as structural changes) and three concerning how interventions bring about their effects (the importance of social and physical context; (un) observable mechanisms linking interventions and changes in physical activity; and interventions as events in complex systems). These themes are inter-related but have rarely been considered together in the disparate literatures. Drawing on these insights, we present a more generalisable way of thinking about how environmental interventions work which could be used in future evaluation studies. Environmental and policy interventions are socially embedded and operate within a system. Evaluators should acknowledge this, and the philosophical perspective taken in their evaluation. Across disciplinary fields, future studies should seek to understand how interventions work through considering these systems, the context in which interventions take place, and the (un) observable mechanisms that may operate. This will help ensure that findings can be more easily interpreted and widely applied by policymakers. We hope that highlighting these conceptual issues will help others to interpret and improve upon a somewhat contested evidence base.
ERIC Educational Resources Information Center
Arista, Fitra Suci; Kuswanto, Heru
2018-01-01
The research study concerned here was to: (1) produce a virtual physics laboratory application to be called ViPhyLab by using the Android smartphone as basis; (2) determine the appropriateness and quality of the virtual physics laboratory application that had been developed; and (3) describe the improvement in learning independence and conceptual…
The Role of Interest in Physical Education: A Review of Research Evidence
ERIC Educational Resources Information Center
Chen, Ang; Wang, Yubing
2017-01-01
This article focuses on the research on interest, especially situational interest, in physical education. Interest has been considered a powerful motivator for children and adolescents. Based on a conceptualization of individual and situational interest, a reasonable size of evidence has been accumulated showing that situational interest motivates…
Conceptual Connections in Teaching of Technical Education and Physics
ERIC Educational Resources Information Center
Antonijevic, Radovan
2006-01-01
This paper considers the main characteristics of contents' connections between technical education and physics curricula, in the sixth, seventh and eighth grade of the Serbian primary school. The undertaken logical and didactic analyses of interconnectedness between contents structure of the two school subjects are based upon comparisons which…
ERIC Educational Resources Information Center
Echeverria, Alejandro; Barrios, Enrique; Nussbaum, Miguel; Amestica, Matias; Leclerc, Sandra
2012-01-01
Computer simulations combined with games have been successfully used to teach conceptual physics. However, there is no clear methodology for guiding the design of these types of games. To remedy this, we propose a structured methodology for the design of conceptual physics games that explicitly integrates the principles of the intrinsic…
Conceptualization of preferential flow for hillslope stability assessment
NASA Astrophysics Data System (ADS)
Kukemilks, Karlis; Wagner, Jean-Frank; Saks, Tomas; Brunner, Philip
2018-03-01
This study uses two approaches to conceptualize preferential flow with the goal to investigate their influence on hillslope stability. Synthetic three-dimensional hydrogeological models using dual-permeability and discrete-fracture conceptualization were subsequently integrated into slope stability simulations. The slope stability simulations reveal significant differences in slope stability depending on the preferential flow conceptualization applied, despite similar small-scale hydrogeological responses of the system. This can be explained by a local-scale increase of pore-water pressures observed in the scenario with discrete fractures. The study illustrates the critical importance of correctly conceptualizing preferential flow for slope stability simulations. It further demonstrates that the combination of the latest generation of physically based hydrogeological models with slope stability simulations allows for improvement to current modeling approaches through more complex consideration of preferential flow paths.
Characterizing the Fundamental Intellectual Steps Required in the Solution of Conceptual Problems
NASA Astrophysics Data System (ADS)
Stewart, John
2010-02-01
At some level, the performance of a science class must depend on what is taught, the information content of the materials and assignments of the course. The introductory calculus-based electricity and magnetism class at the University of Arkansas is examined using a catalog of the basic reasoning steps involved in the solution of problems assigned in the class. This catalog was developed by sampling popular physics textbooks for conceptual problems. The solution to each conceptual problem was decomposed into its fundamental reasoning steps. These fundamental steps are, then, used to quantify the distribution of conceptual content within the course. Using this characterization technique, an exceptionally detailed picture of the information flow and structure of the class can be produced. The intellectual structure of published conceptual inventories is compared with the information presented in the class and the dependence of conceptual performance on the details of coverage extracted. )
NASA Astrophysics Data System (ADS)
Aryal, Bijaya
2016-03-01
We have studied the impacts of web-based Computer Coaches on educational outputs and outcomes. This presentation will describe the technical and conceptual framework related to the Coaches and discuss undergraduate students' favorability of the Coaches. Moreover, its impacts on students' physics problem solving performance and on their conceptual understanding of physics will be reported. We used a qualitative research technique to collect and analyze interview data from 19 undergraduate students who used the Coaches in the interview setting. The empirical results show that the favorability and efficacy of the Computer Coaches differ considerably across students of different educational backgrounds, preparation levels, attitudes and epistemologies about physics learning. The interview data shows that female students tend to have more favorability supporting the use of the Coach. Likewise, our assessment suggests that female students seem to benefit more from the Coaches in their problem solving performance and in conceptual learning of physics. Finally, the analysis finds evidence that the Coach has potential for increasing efficiency in usage and for improving students' educational outputs and outcomes under its customized usage. This work was partially supported by the Center for Educational Innovation, Office of the Senior Vice President for Academic Affairs and Provost, University of Minnesota.
A physical data model for fields and agents
NASA Astrophysics Data System (ADS)
de Jong, Kor; de Bakker, Merijn; Karssenberg, Derek
2016-04-01
Two approaches exist in simulation modeling: agent-based and field-based modeling. In agent-based (or individual-based) simulation modeling, the entities representing the system's state are represented by objects, which are bounded in space and time. Individual objects, like an animal, a house, or a more abstract entity like a country's economy, have properties representing their state. In an agent-based model this state is manipulated. In field-based modeling, the entities representing the system's state are represented by fields. Fields capture the state of a continuous property within a spatial extent, examples of which are elevation, atmospheric pressure, and water flow velocity. With respect to the technology used to create these models, the domains of agent-based and field-based modeling have often been separate worlds. In environmental modeling, widely used logical data models include feature data models for point, line and polygon objects, and the raster data model for fields. Simulation models are often either agent-based or field-based, even though the modeled system might contain both entities that are better represented by individuals and entities that are better represented by fields. We think that the reason for this dichotomy in kinds of models might be that the traditional object and field data models underlying those models are relatively low level. We have developed a higher level conceptual data model for representing both non-spatial and spatial objects, and spatial fields (De Bakker et al. 2016). Based on this conceptual data model we designed a logical and physical data model for representing many kinds of data, including the kinds used in earth system modeling (e.g. hydrological and ecological models). The goal of this work is to be able to create high level code and tools for the creation of models in which entities are representable by both objects and fields. Our conceptual data model is capable of representing the traditional feature data models and the raster data model, among many other data models. Our physical data model is capable of storing a first set of kinds of data, like omnipresent scalars, mobile spatio-temporal points and property values, and spatio-temporal rasters. With our poster we will provide an overview of the physical data model expressed in HDF5 and show examples of how it can be used to capture both object- and field-based information. References De Bakker, M, K. de Jong, D. Karssenberg. 2016. A conceptual data model and language for fields and agents. European Geosciences Union, EGU General Assembly, 2016, Vienna.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chou, Weiren
This paper discusses the cost consideration and a possible construction timeline of the CEPC-SPPC study based on a preliminary conceptual design that is being carried out at the Institute of High Energy Physics (IHEP) in China.
Sebire, Simon J; Jago, Russell; Wood, Lesley; Thompson, Janice L; Zahra, Jezmond; Lawlor, Deborah A
2016-01-01
Parenting is an often-studied correlate of children's physical activity, however there is little research examining the associations between parenting styles, practices and the physical activity of younger children. This study aimed to investigate whether physical activity-based parenting practices mediate the association between parenting styles and 5-6 year-old children's objectively-assessed physical activity. 770 parents self-reported parenting style (nurturance and control) and physical activity-based parenting practices (logistic and modeling support). Their 5-6 year old child wore an accelerometer for five days to measure moderate-to-vigorous physical activity (MVPA). Linear regression was used to examine direct and indirect (mediation) associations. Data were collected in the United Kingdom in 2012/13 and analyzed in 2014. Parent nurturance was positively associated with provision of modeling (adjusted unstandardized coefficient, β = 0.11; 95% CI = 0.02, 0.21) and logistic support (β = 0.14; 0.07, 0.21). Modeling support was associated with greater child MVPA (β = 2.41; 0.23, 4.60) and a small indirect path from parent nurturance to child's MVPA was identified (β = 0.27; 0.04, 0.70). Physical activity-based parenting practices are more strongly associated with 5-6 year old children's MVPA than parenting styles. Further research examining conceptual models of parenting is needed to understand in more depth the possible antecedents to adaptive parenting practices beyond parenting styles. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Materials for Active Engagement in Nuclear and Particle Physics Courses
NASA Astrophysics Data System (ADS)
Loats, Jeff; Schwarz, Cindy; Krane, Ken
2013-04-01
Physics education researchers have developed a rich variety of research-based instructional strategies that now permeate many introductory courses. Carrying these active-engagement techniques to upper-division courses requires effort and is bolstered by experience. Instructors interested in these methods thus face a large investment of time to start from scratch. This NSF-TUES grant, aims to develop, test and disseminate active-engagement materials for nuclear and particle physics topics. We will present examples of these materials, including: a) Conceptual discussion questions for use with Peer Instruction; b) warm-up questions for use with Just in Time Teaching, c) ``Back of the Envelope'' estimation questions and small-group case studies that will incorporate use of nuclear and particle databases, as well as d) conceptual exam questions.
Unpacking Gender Differences in Students' Perceived Experiences in Introductory Physics
NASA Astrophysics Data System (ADS)
Kost, Lauren E.; Pollock, Steven J.; Finkelstein, Noah D.
2009-11-01
Prior research has shown, at our institution: 1) males outperform females on conceptual assessments (a gender gap), 2) the gender gap persists despite the use of research-based reforms, and 3) the gender gap is correlated with students' physics and mathematics background and prior attitudes and beliefs [Kost, et al. PRST-PER, 5, 010101]. Our follow-up work begins to explore how males and females experience the introductory course differently and how these differences relate to the gender gap. We gave a survey to students in the introductory course in which we investigated students' physics identity and self-efficacy. We find there are significant gender differences in each of these three areas, and further find that these measures are weakly correlated with student conceptual performance, and moderately correlated with course grade.
Physical Activity as Reinforcement for Classroom Calmness of ADHD Children: A Preliminary Study
ERIC Educational Resources Information Center
Azrin, Nathan H.; Vinas, Veronica; Ehle, Christopher T.
2007-01-01
Contingent reward procedures have been found beneficial in improving classroom conduct of ADHD children. Based on the conceptualization of the Premack Principle, a previous single-subject study of an ADHD Autistic child suggested the novel use of physical activity availability as a reinforcer for attentive calmness of the Attention Deficit…
A Laborative Model of Geomagnetism as an Example of Creative Learning
ERIC Educational Resources Information Center
Prytz, Kjell
2015-01-01
Creative learning is discussed with respect to a specific physics topic. A teaching example, based on an apparatus that demonstrates the standard dynamo model of geomagnetism, is presented. It features many of the basic physics concepts within the syllabus of electromagnetism at high-school and university. To stimulate conceptual learning and to…
Designing for Enhanced Conceptual Understanding in an Online Physics Course
ERIC Educational Resources Information Center
Dunlap, Joanna C.; Furtak, Thomas E.; Tucker, Susan A.
2009-01-01
The calculus-based, introductory physics course is the port of entry for any student interested in pursuing a college degree in the sciences, mathematics, or engineering. There is increasing demand for online delivery options that make the course more widely available, especially those that use best practices in student engagement. However,…
Interactive Problem Solving Tutorials Through Visual Programming
NASA Astrophysics Data System (ADS)
Undreiu, Lucian; Schuster, David; Undreiu, Adriana
2008-10-01
We have used LabVIEW visual programming to build an interactive tutorial to promote conceptual understanding in physics problem solving. This programming environment is able to offer a web-accessible problem solving experience that enables students to work at their own pace and receive feedback. Intuitive graphical symbols, modular structures and the ability to create templates are just a few of the advantages this software has to offer. The architecture of an application can be designed in a way that allows instructors with little knowledge of LabVIEW to easily personalize it. Both the physics solution and the interactive pedagogy can be visually programmed in LabVIEW. Our physics pedagogy approach is that of cognitive apprenticeship, in that the tutorial guides students to develop conceptual understanding and physical insight into phenomena, rather than purely formula-based solutions. We demonstrate how this model is reflected in the design and programming of the interactive tutorials.
NASA Astrophysics Data System (ADS)
Ülen, Simon; Gerlič, Ivan; Slavinec, Mitja; Repnik, Robert
2017-04-01
To provide a good understanding of many abstract concepts in the field of electricity above that of their students is often a major challenge for secondary school teachers. Many educational researchers promote conceptual learning as a teaching approach that can help teachers to achieve this goal. In this paper, we present Physlet-based materials for supporting conceptual learning about electricity. To conduct research into the effectiveness of these materials, we designed two different physics courses: one group of students, the experimental group, was taught using Physlet-based materials and the second group of students, the control group, was taught using expository instruction without using Physlets. After completion of the teaching, we assessed students' thinking skills and analysed the materials with an independent t test, multiple regression analyses and one-way analysis of covariance. The test scores were significantly higher in the experimental group than in the control group ( p < 0.05). The results of this study confirmed the effectiveness of conceptual learning about electricity with the help of Physlet-based materials.
Evaluation of a physically based quasi-linear and a conceptually based nonlinear Muskingum methods
NASA Astrophysics Data System (ADS)
Perumal, Muthiah; Tayfur, Gokmen; Rao, C. Madhusudana; Gurarslan, Gurhan
2017-03-01
Two variants of the Muskingum flood routing method formulated for accounting nonlinearity of the channel routing process are investigated in this study. These variant methods are: (1) The three-parameter conceptual Nonlinear Muskingum (NLM) method advocated by Gillin 1978, and (2) The Variable Parameter McCarthy-Muskingum (VPMM) method recently proposed by Perumal and Price in 2013. The VPMM method does not require rigorous calibration and validation procedures as required in the case of NLM method due to established relationships of its parameters with flow and channel characteristics based on hydrodynamic principles. The parameters of the conceptual nonlinear storage equation used in the NLM method were calibrated using the Artificial Intelligence Application (AIA) techniques, such as the Genetic Algorithm (GA), the Differential Evolution (DE), the Particle Swarm Optimization (PSO) and the Harmony Search (HS). The calibration was carried out on a given set of hypothetical flood events obtained by routing a given inflow hydrograph in a set of 40 km length prismatic channel reaches using the Saint-Venant (SV) equations. The validation of the calibrated NLM method was investigated using a different set of hypothetical flood hydrographs obtained in the same set of channel reaches used for calibration studies. Both the sets of solutions obtained in the calibration and validation cases using the NLM method were compared with the corresponding solutions of the VPMM method based on some pertinent evaluation measures. The results of the study reveal that the physically based VPMM method is capable of accounting for nonlinear characteristics of flood wave movement better than the conceptually based NLM method which requires the use of tedious calibration and validation procedures.
Impact of Learning Model Based on Cognitive Conflict toward Student’s Conceptual Understanding
NASA Astrophysics Data System (ADS)
Mufit, F.; Festiyed, F.; Fauzan, A.; Lufri, L.
2018-04-01
The problems that often occur in the learning of physics is a matter of misconception and low understanding of the concept. Misconceptions do not only happen to students, but also happen to college students and teachers. The existing learning model has not had much impact on improving conceptual understanding and remedial efforts of student misconception. This study aims to see the impact of cognitive-based learning model in improving conceptual understanding and remediating student misconceptions. The research method used is Design / Develop Research. The product developed is a cognitive conflict-based learning model along with its components. This article reports on product design results, validity tests, and practicality test. The study resulted in the design of cognitive conflict-based learning model with 4 learning syntaxes, namely (1) preconception activation, (2) presentation of cognitive conflict, (3) discovery of concepts & equations, (4) Reflection. The results of validity tests by some experts on aspects of content, didactic, appearance or language, indicate very valid criteria. Product trial results also show a very practical product to use. Based on pretest and posttest results, cognitive conflict-based learning models have a good impact on improving conceptual understanding and remediating misconceptions, especially in high-ability students.
Mordecai, Yaniv; Dori, Dov
2017-07-17
The cyber-physical gap (CPG) is the difference between the 'real' state of the world and the way the system perceives it. This discrepancy often stems from the limitations of sensing and data collection technologies and capabilities, and is inevitable at some degree in any cyber-physical system (CPS). Ignoring or misrepresenting such limitations during system modeling, specification, design, and analysis can potentially result in systemic misconceptions, disrupted functionality and performance, system failure, severe damage, and potential detrimental impacts on the system and its environment. We propose CPG-Aware Modeling & Engineering (CPGAME), a conceptual model-based approach to capturing, explaining, and mitigating the CPG. CPGAME enhances the systems engineer's ability to cope with CPGs, mitigate them by design, and prevent erroneous decisions and actions. We demonstrate CPGAME by applying it for modeling and analysis of the 1979 Three Miles Island 2 nuclear accident, and show how its meltdown could be mitigated. We use ISO-19450:2015-Object Process Methodology as our conceptual modeling framework.
Strategies for Facilitating Conceptual Change in School Physics
ERIC Educational Resources Information Center
Gafoor, K. Abdul; Akhilesh, P. T.
2010-01-01
Learning occurs through various processes. Among these processes, conceptual change has a pivotal part. This article discusses briefly conceptual change in physics. Anchoring on Kuhn's original explanation of theory change in science, this article elaborates especially on the influence of children's science concepts in general, and pre-conceptions…
Hudon, Anne; Gervais, Mathieu-Joël; Hunt, Matthew
2015-04-01
There is growing recognition of the importance of knowledge translation activities in physical therapy to ensure that research findings are integrated into clinical practice, and increasing numbers of knowledge translation interventions are being conducted. Although various frameworks have been developed to guide and facilitate the process of translating knowledge into practice, these tools have been infrequently used in physical therapy knowledge translation studies to date. Knowledge translation in physical therapy implicates multiple stakeholders and environments and involves numerous steps. In light of this complexity, the use of explicit conceptual frameworks by clinicians and researchers conducting knowledge translation interventions is associated with a range of potential benefits. This perspective article argues that such frameworks are important resources to promote the uptake of new evidence in physical therapist practice settings. Four key benefits associated with the use of conceptual frameworks in designing and implementing knowledge translation interventions are identified, and limits related to their use are considered. A sample of 5 conceptual frameworks is evaluated, and how they address common barriers to knowledge translation in physical therapy is assessed. The goal of this analysis is to provide guidance to physical therapists seeking to identify a framework to support the design and implementation of a knowledge translation intervention. Finally, the use of a conceptual framework is illustrated through a case example. Increased use of conceptual frameworks can have a positive impact on the field of knowledge translation in physical therapy and support the development and implementation of robust and effective knowledge translation interventions that help span the research-practice gap. © 2015 American Physical Therapy Association.
Mediating Relationship of Differential Products in Understanding Integration in Introductory Physics
ERIC Educational Resources Information Center
Amos, Nathaniel; Heckler, Andrew F.
2018-01-01
In the context of introductory physics, we study student conceptual understanding of differentials, differential products, and integrals and possible pathways to understanding these quantities. We developed a multiple choice conceptual assessment employing a variety of physical contexts probing physical understanding of these three quantities and…
NASA Astrophysics Data System (ADS)
Viennot, Laurence; Décamp, Nicolas
2016-01-01
One key objective of physics teaching is the promotion of conceptual understanding. Additionally, the critical faculty is universally seen as a central quality to be developed in students. In recent years, however, teaching objectives have placed stronger emphasis on skills than on concepts, and there is a risk that conceptual structuring may be disregarded. The question therefore arises as to whether it is possible for students to develop a critical stance without a conceptual basis, leading in turn to the issue of possible links between the development of conceptual understanding and critical attitude. In an in-depth study to address these questions, the participants were seven prospective physics and chemistry teachers. The methodology included a ‘teaching interview’, designed to observe participants’ responses to limited explanations of a given phenomenon and their ensuing intellectual satisfaction or frustration. The explanatory task related to the physics of how a survival blanket works, requiring a full and appropriate system analysis of the blanket. The analysis identified five recurrent lines of reasoning and linked these to judgments of adequacy of explanation, based on metacognitive/affective (MCA) factors, intellectual (dis)satisfaction and critical stance. Recurrent themes and MCA factors were used to map the intellectual dynamics that emerged during the interview process. Participants’ critical attitude was observed to develop in strong interaction with their comprehension of the topic. The results suggest that most students need to reach a certain level of conceptual mastery before they can begin to question an oversimplified explanation, although one student’s replies show that a different intellectual dynamics is also possible. The paper ends with a discussion of the implications of these findings for future research and for decisions concerning teaching objectives and the design of learning environments.
NASA Astrophysics Data System (ADS)
Kock, Zeger-Jan; Taconis, Ruurd; Bolhuis, Sanneke; Gravemeijer, Koeno
2013-04-01
Many students in secondary schools consider the sciences difficult and unattractive. This applies to physics in particular, a subject in which students attempt to learn and understand numerous theoretical concepts, often without much success. A case in point is the understanding of the concepts current, voltage and resistance in simple electric circuits. In response to these problems, reform initiatives in education strive for a change of the classroom culture, putting emphasis on more authentic contexts and student activities containing elements of inquiry. The challenge then becomes choosing and combining these elements in such a manner that they foster an understanding of theoretical concepts. In this article we reflect on data collected and analyzed from a series of 12 grade 9 physics lessons on simple electric circuits. Drawing from a theoretical framework based on individual (conceptual change based) and socio-cultural views on learning, instruction was designed addressing known conceptual problems and attempting to create a physics (research) culture in the classroom. As the success of the lessons was limited, the focus of the study became to understand which inherent characteristics of inquiry based instruction complicate the process of constructing conceptual understanding. From the analysis of the data collected during the enactment of the lessons three tensions emerged: the tension between open inquiry and student guidance, the tension between students developing their own ideas and getting to know accepted scientific theories, and the tension between fostering scientific interest as part of a scientific research culture and the task oriented school culture. An outlook will be given on the implications for science lessons.
NASA Astrophysics Data System (ADS)
Donnelly, Suzanne M.
This study features a comparative descriptive analysis of the physics content and representations surrounding the first law of thermodynamics as presented in four widely used introductory college physics textbooks representing each of four physics textbook categories (calculus-based, algebra/trigonometry-based, conceptual, and technical/applied). Introducing and employing a newly developed theoretical framework, multimodal generative learning theory (MGLT), an analysis of the multimodal characteristics of textbook and multimedia representations of physics principles was conducted. The modal affordances of textbook representations were identified, characterized, and compared across the four physics textbook categories in the context of their support of problem-solving. Keywords: college science, science textbooks, multimodal learning theory, thermodynamics, representations
Synthesis of discipline-based education research in physics
NASA Astrophysics Data System (ADS)
Docktor, Jennifer L.; Mestre, José P.
2014-12-01
This paper presents a comprehensive synthesis of physics education research at the undergraduate level. It is based on work originally commissioned by the National Academies. Six topical areas are covered: (1) conceptual understanding, (2) problem solving, (3) curriculum and instruction, (4) assessment, (5) cognitive psychology, and (6) attitudes and beliefs about teaching and learning. Each topical section includes sample research questions, theoretical frameworks, common research methodologies, a summary of key findings, strengths and limitations of the research, and areas for future study. Supplemental material proposes promising future directions in physics education research.
TOCUSO: Test of Conceptual Understanding on High School Optics Topics
ERIC Educational Resources Information Center
Akarsu, Bayram
2012-01-01
Physics educators around the world often need reliable diagnostic materials to measure students' understanding of physics concept in high school. The purpose of this study is to evaluate a new diagnostic tool on High School Optics concept. Test of Conceptual Understanding on High School Optics (TOCUSO) consists of 25 conceptual items that measures…
Arrows as Anchors: An Analysis of the Material Features of Electric Field Vector Arrows
ERIC Educational Resources Information Center
Gire, Elizabeth; Price, Edward
2014-01-01
Representations in physics possess both physical and conceptual aspects that are fundamentally intertwined and can interact to support or hinder sense making and computation. We use distributed cognition and the theory of conceptual blending with material anchors to interpret the roles of conceptual and material features of representations in…
ERIC Educational Resources Information Center
Henriksen, Ellen K.; Bungum, Berit; Angell, Carl; Tellefsen, Catherine W.; Frågåt, Thomas; Bøe, Maria Vetleseter
2014-01-01
In this article, we discuss how quantum physics and relativity can be taught in upper secondary school, in ways that promote conceptual understanding and philosophical reflections. We present the ReleQuant project, in which web-based teaching modules have been developed. The modules address competence aims in the Norwegian national curriculum for…
ERIC Educational Resources Information Center
Russ, Rosemary S.; Odden, Tor Ole B.
2017-01-01
Our field has long valued the goal of teaching students not just the facts of physics, but also the thinking and reasoning skills of professional physicists. The complexity inherent in scientific reasoning demands that we think carefully about how we conceptualize for ourselves, enact in our classes, and encourage in our students the relationship…
Models in Science Education: Applications of Models in Learning and Teaching Science
ERIC Educational Resources Information Center
Ornek, Funda
2008-01-01
In this paper, I discuss different types of models in science education and applications of them in learning and teaching science, in particular physics. Based on the literature, I categorize models as conceptual and mental models according to their characteristics. In addition to these models, there is another model called "physics model" by the…
Physical Education, Liberal Education and the Leaving Certificate Examination
ERIC Educational Resources Information Center
Mulcahy, D. G.
2012-01-01
This article considers the conceptualization of physical education as a Leaving Certificate Examination subject and the place of physical education in a liberal education. Special attention is given to the conceptual evolution of physical education and its intrinsic educational values and to the developments in the idea of a liberal education over…
ERIC Educational Resources Information Center
Mantyla, Terhi
2013-01-01
In teaching physics, the history of physics offers fruitful starting points for designing instruction. I introduce here an approach that uses historical cognitive processes to enhance the conceptual development of pre-service physics teachers' knowledge. It applies a method called cognitive-historical approach, introduced to the cognitive sciences…
Conceptual Physical Education Course and College Freshmen's Physical Activity Patterns
ERIC Educational Resources Information Center
Shangguan, Rulan; Keating, Xiaofen Deng; Liu, Jingwen; Zhou, Ke; Clark, Langston; Leitner, Jessica
2017-01-01
Conceptual physical education (CPE) courses play a critical role in promoting physical activity (PA) among students in American higher education settings. To date, however, very limited knowledge is available about the effectiveness of such courses. Aims: The primary purpose of the study was to examine effects of a CPE course on altering freshmen…
The Contribution of Conceptual Frameworks to Knowledge Translation Interventions in Physical Therapy
Gervais, Mathieu-Joël; Hunt, Matthew
2015-01-01
There is growing recognition of the importance of knowledge translation activities in physical therapy to ensure that research findings are integrated into clinical practice, and increasing numbers of knowledge translation interventions are being conducted. Although various frameworks have been developed to guide and facilitate the process of translating knowledge into practice, these tools have been infrequently used in physical therapy knowledge translation studies to date. Knowledge translation in physical therapy implicates multiple stakeholders and environments and involves numerous steps. In light of this complexity, the use of explicit conceptual frameworks by clinicians and researchers conducting knowledge translation interventions is associated with a range of potential benefits. This perspective article argues that such frameworks are important resources to promote the uptake of new evidence in physical therapist practice settings. Four key benefits associated with the use of conceptual frameworks in designing and implementing knowledge translation interventions are identified, and limits related to their use are considered. A sample of 5 conceptual frameworks is evaluated, and how they address common barriers to knowledge translation in physical therapy is assessed. The goal of this analysis is to provide guidance to physical therapists seeking to identify a framework to support the design and implementation of a knowledge translation intervention. Finally, the use of a conceptual framework is illustrated through a case example. Increased use of conceptual frameworks can have a positive impact on the field of knowledge translation in physical therapy and support the development and implementation of robust and effective knowledge translation interventions that help span the research-practice gap. PMID:25060959
Modelling strategies to predict the multi-scale effects of rural land management change
NASA Astrophysics Data System (ADS)
Bulygina, N.; Ballard, C. E.; Jackson, B. M.; McIntyre, N.; Marshall, M.; Reynolds, B.; Wheater, H. S.
2011-12-01
Changes to the rural landscape due to agricultural land management are ubiquitous, yet predicting the multi-scale effects of land management change on hydrological response remains an important scientific challenge. Much empirical research has been of little generic value due to inadequate design and funding of monitoring programmes, while the modelling issues challenge the capability of data-based, conceptual and physics-based modelling approaches. In this paper we report on a major UK research programme, motivated by a national need to quantify effects of agricultural intensification on flood risk. Working with a consortium of farmers in upland Wales, a multi-scale experimental programme (from experimental plots to 2nd order catchments) was developed to address issues of upland agricultural intensification. This provided data support for a multi-scale modelling programme, in which highly detailed physics-based models were conditioned on the experimental data and used to explore effects of potential field-scale interventions. A meta-modelling strategy was developed to represent detailed modelling in a computationally-efficient manner for catchment-scale simulation; this allowed catchment-scale quantification of potential management options. For more general application to data-sparse areas, alternative approaches were needed. Physics-based models were developed for a range of upland management problems, including the restoration of drained peatlands, afforestation, and changing grazing practices. Their performance was explored using literature and surrogate data; although subject to high levels of uncertainty, important insights were obtained, of practical relevance to management decisions. In parallel, regionalised conceptual modelling was used to explore the potential of indices of catchment response, conditioned on readily-available catchment characteristics, to represent ungauged catchments subject to land management change. Although based in part on speculative relationships, significant predictive power was derived from this approach. Finally, using a formal Bayesian procedure, these different sources of information were combined with local flow data in a catchment-scale conceptual model application , i.e. using small-scale physical properties, regionalised signatures of flow and available flow measurements.
Using computer simulations to facilitate conceptual understanding of electromagnetic induction
NASA Astrophysics Data System (ADS)
Lee, Yu-Fen
This study investigated the use of computer simulations to facilitate conceptual understanding in physics. The use of computer simulations in the present study was grounded in a conceptual framework drawn from findings related to the use of computer simulations in physics education. To achieve the goal of effective utilization of computers for physics education, I first reviewed studies pertaining to computer simulations in physics education categorized by three different learning frameworks and studies comparing the effects of different simulation environments. My intent was to identify the learning context and factors for successful use of computer simulations in past studies and to learn from the studies which did not obtain a significant result. Based on the analysis of reviewed literature, I proposed effective approaches to integrate computer simulations in physics education. These approaches are consistent with well established education principles such as those suggested by How People Learn (Bransford, Brown, Cocking, Donovan, & Pellegrino, 2000). The research based approaches to integrated computer simulations in physics education form a learning framework called Concept Learning with Computer Simulations (CLCS) in the current study. The second component of this study was to examine the CLCS learning framework empirically. The participants were recruited from a public high school in Beijing, China. All participating students were randomly assigned to two groups, the experimental (CLCS) group and the control (TRAD) group. Research based computer simulations developed by the physics education research group at University of Colorado at Boulder were used to tackle common conceptual difficulties in learning electromagnetic induction. While interacting with computer simulations, CLCS students were asked to answer reflective questions designed to stimulate qualitative reasoning and explanation. After receiving model reasoning online, students were asked to submit their revised answers electronically. Students in the TRAD group were not granted access to the CLCS material and followed their normal classroom routine. At the end of the study, both the CLCS and TRAD students took a post-test. Questions on the post-test were divided into "what" questions, "how" questions, and an open response question. Analysis of students' post-test performance showed mixed results. While the TRAD students scored higher on the "what" questions, the CLCS students scored higher on the "how" questions and the one open response questions. This result suggested that more TRAD students knew what kinds of conditions may or may not cause electromagnetic induction without understanding how electromagnetic induction works. Analysis of the CLCS students' learning also suggested that frequent disruption and technical trouble might pose threats to the effectiveness of the CLCS learning framework. Despite the mixed results of students' post-test performance, the CLCS learning framework revealed some limitations to promote conceptual understanding in physics. Improvement can be made by providing students with background knowledge necessary to understand model reasoning and incorporating the CLCS learning framework with other learning frameworks to promote integration of various physics concepts. In addition, the reflective questions in the CLCS learning framework may be refined to better address students' difficulties. Limitations of the study, as well as suggestions for future research, are also presented in this study.
Sebire, Simon J.; Jago, Russell; Wood, Lesley; Thompson, Janice L.; Zahra, Jezmond; Lawlor, Deborah A.
2016-01-01
Rationale Parenting is an often-studied correlate of children's physical activity, however there is little research examining the associations between parenting styles, practices and the physical activity of younger children. Objective This study aimed to investigate whether physical activity-based parenting practices mediate the association between parenting styles and 5–6 year-old children's objectively-assessed physical activity. Methods 770 parents self-reported parenting style (nurturance and control) and physical activity-based parenting practices (logistic and modeling support). Their 5–6 year old child wore an accelerometer for five days to measure moderate-to-vigorous physical activity (MVPA). Linear regression was used to examine direct and indirect (mediation) associations. Data were collected in the United Kingdom in 2012/13 and analyzed in 2014. Results Parent nurturance was positively associated with provision of modeling (adjusted unstandardized coefficient, β = 0.11; 95% CI = 0.02, 0.21) and logistic support (β = 0.14; 0.07, 0.21). Modeling support was associated with greater child MVPA (β = 2.41; 0.23, 4.60) and a small indirect path from parent nurturance to child's MVPA was identified (β = 0.27; 0.04, 0.70). Conclusions Physical activity-based parenting practices are more strongly associated with 5–6 year old children's MVPA than parenting styles. Further research examining conceptual models of parenting is needed to understand in more depth the possible antecedents to adaptive parenting practices beyond parenting styles. PMID:26647364
NASA Astrophysics Data System (ADS)
Slykhuis, David A.
This research project examined the efficacy of an online microcomputer-based laboratory based (MBL) physics unit. One hundred and fifty physics students from five high schools in North Carolina were divided into online and classroom groups. The classroom group completed the MBL unit in small groups with assistance from their teachers. The online groups completed the MBL unit in small groups using a website designed for this project for guidance. Pre- and post-unit content specific tests and surveys were given. Statistical analysis of the content tests showed significant development of conceptual understanding by the online group over the course of the unit. There was not a significant difference between the classroom and online group with relation to the amount of conceptual understanding developed. Correlations with post-test achievement showed that pre-test scores and math background were the most significant correlates with success. Computer related variables, such as computer comfort and online access, were only mildly correlated with the online group. Students' views about the nature of physics were not well developed prior to the unit and did not significantly change over the course of the unit. Examination of the students' physics conceptions after instruction revealed common alternative conceptions such as confusing position and velocity variables and incorrect interpretations of graphical features such as slope.
NASA Astrophysics Data System (ADS)
Bumbacher, Engin; Salehi, Shima; Wieman, Carl; Blikstein, Paulo
2017-12-01
Manipulative environments play a fundamental role in inquiry-based science learning, yet how they impact learning is not fully understood. In a series of two studies, we develop the argument that manipulative environments (MEs) influence the kind of inquiry behaviors students engage in, and that this influence realizes through the affordances of MEs, independent of whether they are physical or virtual. In particular, we examine how MEs shape college students' experimentation strategies and conceptual understanding. In study 1, students engaged in two consecutive inquiry tasks, first on mass and spring systems and then on electric circuits. They either used virtual or physical MEs. We found that the use of experimentation strategies was strongly related to conceptual understanding across tasks, but that students engaged differently in those strategies depending on what ME they used. More students engaged in productive strategies using the virtual ME for electric circuits, and vice versa using the physical ME for mass and spring systems. In study 2, we isolated the affordance of measurement uncertainty by comparing two versions of the same virtual ME for electric circuits—one with and one without noise—and found that the conditions differed in terms of productive experimentation strategies. These findings indicate that measures of inquiry processes may resolve apparent ambiguities and inconsistencies between studies on MEs that are based on learning outcomes alone.
NASA Astrophysics Data System (ADS)
Zacharia, Zacharias C.; Constantinou, Constantinos P.
2008-04-01
We compare the effect of experimenting with physical or virtual manipulatives on undergraduate students' conceptual understanding of heat and temperature. A pre-post comparison study design was used to replicate all aspects of a guided inquiry classroom except the mode in which students performed their experiments. This study is the first on physical and virtual manipulative experimentation in physics in which the curriculum, method of instruction, and resource capabilities were explicitly controlled. The participants were 68 undergraduates in an introductory course and were randomly assigned to an experimental or a control group. Conceptual tests were administered to both groups to assess students' understanding before, during, and after instruction. The result indicates that both modes of experimentation are equally effective in enhancing students' conceptual understanding. This result is discussed in the context of an ongoing debate on the relative importance of virtual and real laboratory work in physics education.
ERIC Educational Resources Information Center
Gok, Tolga
2012-01-01
The purpose of this study is to assess students' conceptual learning of electricity and magnetism and examine how these conceptions, beliefs about physics, and quantitative problem-solving skills would change after peer instruction (PI). The Conceptual Survey of Electricity and Magnetism (CSEM), Colorado Learning Attitudes about Science Survey…
NASA Astrophysics Data System (ADS)
Oliveira, Sérgio C.; Zêzere, José L.; Lajas, Sara; Melo, Raquel
2017-07-01
Approaches used to assess shallow slide susceptibility at the basin scale are conceptually different depending on the use of statistical or physically based methods. The former are based on the assumption that the same causes are more likely to produce the same effects, whereas the latter are based on the comparison between forces which tend to promote movement along the slope and the counteracting forces that are resistant to motion. Within this general framework, this work tests two hypotheses: (i) although conceptually and methodologically distinct, the statistical and deterministic methods generate similar shallow slide susceptibility results regarding the model's predictive capacity and spatial agreement; and (ii) the combination of shallow slide susceptibility maps obtained with statistical and physically based methods, for the same study area, generate a more reliable susceptibility model for shallow slide occurrence. These hypotheses were tested at a small test site (13.9 km2) located north of Lisbon (Portugal), using a statistical method (the information value method, IV) and a physically based method (the infinite slope method, IS). The landslide susceptibility maps produced with the statistical and deterministic methods were combined into a new landslide susceptibility map. The latter was based on a set of integration rules defined by the cross tabulation of the susceptibility classes of both maps and analysis of the corresponding contingency tables. The results demonstrate a higher predictive capacity of the new shallow slide susceptibility map, which combines the independent results obtained with statistical and physically based models. Moreover, the combination of the two models allowed the identification of areas where the results of the information value and the infinite slope methods are contradictory. Thus, these areas were classified as uncertain and deserve additional investigation at a more detailed scale.
Sjøgaard, Gisela; Justesen, Just Bendix; Murray, Mike; Dalager, Tina; Søgaard, Karen
2014-06-26
Health promotion at the work site in terms of physical activity has proven positive effects but optimization of relevant exercise training protocols and implementation for high adherence are still scanty. The aim of this paper is to present a study protocol with a conceptual model for planning the optimal individually tailored physical exercise training for each worker based on individual health check, existing guidelines and state of the art sports science training recommendations in the broad categories of cardiorespiratory fitness, muscle strength in specific body parts, and functional training including balance training. The hypotheses of this research are that individually tailored worksite-based intelligent physical exercise training, IPET, among workers with inactive job categories will: 1) Improve cardiorespiratory fitness and/or individual health risk indicators, 2) Improve muscle strength and decrease musculoskeletal disorders, 3) Succeed in regular adherence to worksite and leisure physical activity training, and 3) Reduce sickness absence and productivity losses (presenteeism) in office workers. The present RCT study enrolled almost 400 employees with sedentary jobs in the private as well as public sectors. The training interventions last 2 years with measures at baseline as well as one and two years follow-up. If proven effective, the intelligent physical exercise training scheduled as well as the information for its practical implementation can provide meaningful scientifically based information for public health policy. ClinicalTrials.gov, number: NCT01366950.
2014-01-01
Background Health promotion at the work site in terms of physical activity has proven positive effects but optimization of relevant exercise training protocols and implementation for high adherence are still scanty. Methods/Design The aim of this paper is to present a study protocol with a conceptual model for planning the optimal individually tailored physical exercise training for each worker based on individual health check, existing guidelines and state of the art sports science training recommendations in the broad categories of cardiorespiratory fitness, muscle strength in specific body parts, and functional training including balance training. The hypotheses of this research are that individually tailored worksite-based intelligent physical exercise training, IPET, among workers with inactive job categories will: 1) Improve cardiorespiratory fitness and/or individual health risk indicators, 2) Improve muscle strength and decrease musculoskeletal disorders, 3) Succeed in regular adherence to worksite and leisure physical activity training, and 3) Reduce sickness absence and productivity losses (presenteeism) in office workers. The present RCT study enrolled almost 400 employees with sedentary jobs in the private as well as public sectors. The training interventions last 2 years with measures at baseline as well as one and two years follow-up. Discussion If proven effective, the intelligent physical exercise training scheduled as well as the information for its practical implementation can provide meaningful scientifically based information for public health policy. Trial Registration ClinicalTrials.gov, number: NCT01366950. PMID:24964869
Rovniak, Liza S; Sallis, James F; Kraschnewski, Jennifer L; Sciamanna, Christopher N; Kiser, Elizabeth J; Ray, Chester A; Chinchilli, Vernon M; Ding, Ding; Matthews, Stephen A; Bopp, Melissa; George, Daniel R; Hovell, Melbourne F
2013-08-14
High rates of physical inactivity compromise the health status of populations globally. Social networks have been shown to influence physical activity (PA), but little is known about how best to engineer social networks to sustain PA. To improve procedures for building networks that shape PA as a normative behavior, there is a need for more specific hypotheses about how social variables influence PA. There is also a need to integrate concepts from network science with ecological concepts that often guide the design of in-person and electronically-mediated interventions. Therefore, this paper: (1) proposes a conceptual model that integrates principles from network science and ecology across in-person and electronically-mediated intervention modes; and (2) illustrates the application of this model to the design and evaluation of a social network intervention for PA. A conceptual model for engineering social networks was developed based on a scoping literature review of modifiable social influences on PA. The model guided the design of a cluster randomized controlled trial in which 308 sedentary adults were randomly assigned to three groups: WalkLink+: prompted and provided feedback on participants' online and in-person social-network interactions to expand networks for PA, plus provided evidence-based online walking program and weekly walking tips; WalkLink: evidence-based online walking program and weekly tips only; Minimal Treatment Control: weekly tips only. The effects of these treatment conditions were assessed at baseline, post-program, and 6-month follow-up. The primary outcome was accelerometer-measured PA. Secondary outcomes included objectively-measured aerobic fitness, body mass index, waist circumference, blood pressure, and neighborhood walkability; and self-reported measures of the physical environment, social network environment, and social network interactions. The differential effects of the three treatment conditions on primary and secondary outcomes will be analyzed using general linear modeling (GLM), or generalized linear modeling if the assumptions for GLM cannot be met. Results will contribute to greater understanding of how to conceptualize and implement social networks to support long-term PA. Establishing social networks for PA across multiple life settings could contribute to cultural norms that sustain active living. ClinicalTrials.gov NCT01142804.
A dynamics based view of atmosphere-fire interactions
Brian E. Potter
2002-01-01
Current research on severe fire interactions with the atmosphere focuses largely on examination of correlations between fire growth and various atmospheric properties, and on the development of indices based on these correlations. The author proposes that progress requires understanding the physics and atmospheric dynamics behind the correlations. A conceptual 3-stage...
NASA Astrophysics Data System (ADS)
May, David B.
2002-11-01
To explore students' epistemological beliefs in a variety of conceptual domains in physics, and in a specific and novel context of measurement, this Dissertation makes use of Weekly Reports, a class assignment in which students reflect in writing on what they learn each week and how they learn it. Reports were assigned to students in the introductory physics course for honors engineering majors at The Ohio State University in two successive years. The Weekly Reports of several students from the first year were analyzed for the kinds of epistemological beliefs exhibited therein, called epistemological self-reflection, and a coding scheme was developed for categorizing and quantifying this reflection. The connection between epistemological self-reflection and conceptual learning in physics seen in a pilot study was replicated in a larger study, in which the coded reflections from the Weekly Reports of thirty students were correlated with their conceptual learning gains. Although the total amount of epistemological self-reflection was not found to be related to conceptual gain, different kinds of epistemological self-reflection were. Describing learning physics concepts in terms of logical reasoning and making personal connections were positively correlated with gains; describing learning from authority figures or by observing phenomena without making inferences were negatively correlated. Linear regression equations were determined in order to quantify the effects on conceptual gain of specific ways of describing learning. In an experimental test of this model, the regression equations and the Weekly Report coding scheme developed from the first year's data were used to predict the conceptual gains of thirty students from the second year. The prediction was unsuccessful, possibly because these students were not given as much feedback on their reflections as were the first-year students. These results show that epistemological beliefs are important factors affecting the conceptual learning of physics students. Also, getting students to reflect meaningfully on their knowledge and learning is difficult and requires consistent feedback. Research into the epistemological beliefs of physics students in different contexts and from different populations can help us develop more complete models of epistemological beliefs, and ultimately improve the conceptual and epistemological knowledge of all students.
NASA Astrophysics Data System (ADS)
Şenel Zor, Tuba; Aslan, Oktay
2018-03-01
The purpose of the study was to examine the effect of activity-based nanoscience and nanotechnology education (ABNNE) on pre-service science teachers' (PST') conceptual understanding of nanoscience and nanotechnology. Within this context, the study was conducted according to mixed methods research with the use of both quantitative and qualitative methods. The participants were 32 PST who were determined by using criterion sampling that is one of the purposive sampling methods. ABNNE was carried out during 7 weeks as 2 h per week in special issues at physics course. Design and implementation of ABNNE were based on "Big Ideas" which was found in literature and provided guidance for teaching nanoscience and nanotechnology. All activities implemented during ABNNE were selected from literature. "Nanoscience and Nanotechnology Concept Test (NN-CT)" and "Activity-Based Nanoscience and Nanotechnology Education Assessment Form (ABNNE-AF)" were used as data collection tools in research. Findings obtained with data collection tools were discussed with coverage of literature. The findings revealed that PST conceptual understanding developed following ABNNE. Various suggestions for increasing PST conceptual understanding of nanoscience and nanotechnology were presented according to the results of the study.
NASA Astrophysics Data System (ADS)
May, David B.; Etkina, Eugenia
2002-12-01
Students should develop self-reflection skills and appropriate views about knowledge and learning, both for their own sake and because these skills and views may be related to improvements in conceptual understanding. We explored the latter issue in the context of an introductory physics course for first-year engineering honors students. As part of the course, students submitted weekly reports, in which they reflected on how they learned specific physics content. The reports by 12 students were analyzed for the quality of reflection and some of the epistemological beliefs they exhibited. Students' conceptual learning gains were measured with standard survey instruments. We found that students with high conceptual gains tend to show reflection on learning that is more articulate and epistemologically sophisticated than students with lower conceptual gains. Some implications for instruction are suggested.
Conceptual strategies and inter-theory relations: The case of nanoscale cracks
NASA Astrophysics Data System (ADS)
Bursten, Julia R.
2018-05-01
This paper introduces a new account of inter-theory relations in physics, which I call the conceptual strategies account. Using the example of a multiscale computer simulation model of nanoscale crack propagation in silicon, I illustrate this account and contrast it with existing reductive, emergent, and handshaking approaches. The conceptual strategies account develops the notion that relations among physical theories, and among their models, are constrained but not dictated by limitations from physics, mathematics, and computation, and that conceptual reasoning within those limits is required both to generate and to understand the relations between theories. Conceptual strategies result in a variety of types of relations between theories and models. These relations are themselves epistemic objects, like theories and models, and as such are an under-recognized part of the epistemic landscape of science.
NASA Astrophysics Data System (ADS)
Arsenault, Richard; Poissant, Dominique; Brissette, François
2015-11-01
This paper evaluated the effects of parametric reduction of a hydrological model on five regionalization methods and 267 catchments in the province of Quebec, Canada. The Sobol' variance-based sensitivity analysis was used to rank the model parameters by their influence on the model results and sequential parameter fixing was performed. The reduction in parameter correlations improved parameter identifiability, however this improvement was found to be minimal and was not transposed in the regionalization mode. It was shown that 11 of the HSAMI models' 23 parameters could be fixed with little or no loss in regionalization skill. The main conclusions were that (1) the conceptual lumped models used in this study did not represent physical processes sufficiently well to warrant parameter reduction for physics-based regionalization methods for the Canadian basins examined and (2) catchment descriptors did not adequately represent the relevant hydrological processes, namely snow accumulation and melt.
ERIC Educational Resources Information Center
Thorburn, Malcolm
2008-01-01
In an earlier paper some of the conceptual and curriculum coherence challenges of linking practically based experiential learning with authentic attainment in high-stakes examination awards in physical education were analysed (Thorburn, 2007). Problems often existed for students in deriving subject knowledge understanding from tasks where there…
ERIC Educational Resources Information Center
Bumbacher, Engin; Salehi, Shima; Wierzchula, Miriam; Blikstein, Paulo
2015-01-01
Studies comparing virtual and physical manipulative environments (VME and PME) in inquiry-based science learning have mostly focused on students' learning outcomes but not on the actual processes they engage in during the learning activities. In this paper, we examined experimentation strategies in an inquiry activity and their relation to…
ERIC Educational Resources Information Center
Gobert, Janice D.; O'Dwyer, Laura; Horwitz, Paul; Buckley, Barbara C.; Levy, Sharona Tal; Wilensky, Uri
2011-01-01
This research addresses high school students' understandings of the nature of models, and their interaction with model-based software in three science domains, namely, biology, physics, and chemistry. Data from 736 high school students' understandings of models were collected using the Students' Understanding of Models in Science (SUMS) survey as…
NASA Astrophysics Data System (ADS)
Hidayati, A.; Rahmi, A.; Yohandri; Ratnawulan
2018-04-01
The importance of teaching materials in accordance with the characteristics of students became the main reason for the development of basic electronics I module integrated character values based on conceptual change teaching model. The module development in this research follows the development procedure of Plomp which includes preliminary research, prototyping phase and assessment phase. In the first year of this research, the module is validated. Content validity is seen from the conformity of the module with the development theory in accordance with the demands of learning model characteristics. The validity of the construct is seen from the linkage and consistency of each module component developed with the characteristic of the integrated learning model of character values obtained through validator assessment. The average validation value assessed by the validator belongs to a very valid category. Based on the validator assessment then revised the basic electronics I module integrated character values based on conceptual change teaching model.
High School Students' Physical Education Conceptual Knowledge
ERIC Educational Resources Information Center
Ayers, Suzan F.
2004-01-01
The value of conceptual physical education knowledge has long been acknowledged (American Alliance for Health, Physical Education, and Recreation, 1969; Kneer, 1981; NASPE, 1995) yet has not been formally measured or assessed. Seven multiple choice tests with established validity and reliability (Ayers, 2001b) were used to assess the concepts…
Student Perceptions of a Conceptual Physical Education Activity Course
ERIC Educational Resources Information Center
Jenkins, Jayne M.; Jenkins, Patience; Collums, Ashley; Werhonig, Gary
2006-01-01
Conceptual physical education (CPE) courses are typically included in university course work to provide students knowledge and skills to engage in physical activity for life. The purpose of this study was to identify CPE course characteristics that contributed to positive and negative student perceptions. Participants included 157 undergraduates…
NASA Astrophysics Data System (ADS)
Ding, Lin
2014-12-01
This study seeks to test the causal influences of reasoning skills and epistemologies on student conceptual learning in physics. A causal model, integrating multiple variables that were investigated separately in the prior literature, is proposed and tested through path analysis. These variables include student preinstructional reasoning skills measured by the Classroom Test of Scientific Reasoning, pre- and postepistemological views measured by the Colorado Learning Attitudes about Science Survey, and pre- and postperformance on Newtonian concepts measured by the Force Concept Inventory. Students from a traditionally taught calculus-based introductory mechanics course at a research university participated in the study. Results largely support the postulated causal model and reveal strong influences of reasoning skills and preinstructional epistemology on student conceptual learning gains. Interestingly enough, postinstructional epistemology does not appear to have a significant influence on student learning gains. Moreover, pre- and postinstructional epistemology, although barely different from each other on average, have little causal connection between them.
Arrows as anchors: An analysis of the material features of electric field vector arrows
NASA Astrophysics Data System (ADS)
Gire, Elizabeth; Price, Edward
2014-12-01
Representations in physics possess both physical and conceptual aspects that are fundamentally intertwined and can interact to support or hinder sense making and computation. We use distributed cognition and the theory of conceptual blending with material anchors to interpret the roles of conceptual and material features of representations in students' use of representations for computation. We focus on the vector-arrows representation of electric fields and describe this representation as a conceptual blend of electric field concepts, physical space, and the material features of the representation (i.e., the physical writing and the surface upon which it is drawn). In this representation, spatial extent (e.g., distance on paper) is used to represent both distances in coordinate space and magnitudes of electric field vectors. In conceptual blending theory, this conflation is described as a clash between the input spaces in the blend. We explore the benefits and drawbacks of this clash, as well as other features of this representation. This analysis is illustrated with examples from clinical problem-solving interviews with upper-division physics majors. We see that while these intermediate physics students make a variety of errors using this representation, they also use the geometric features of the representation to add electric field contributions and to organize the problem situation productively.
ERIC Educational Resources Information Center
Wang, Tzu-Ling; Tseng, Yi-Kuan
2018-01-01
The purpose of this study was to investigate the relative effectiveness of experimenting with physical manipulatives alone, virtual manipulatives alone, and virtual preceding physical manipulatives (combination environment) on third-grade students' science achievement and conceptual understanding in the domain of state changes of water, focusing…
NASA Astrophysics Data System (ADS)
Thornton, Ronald
2010-10-01
Physics education research has shown that learning environments that engage students and allow them to take an active part in their learning can lead to large conceptual gains compared to traditional instruction. Examples of successful curricula and methods include Peer Instruction, Just in Time Teaching, RealTime Physics, Workshop Physics, Scale-Up, and Interactive Lecture Demonstrations (ILDs). An active learning environment is often difficult to achieve in lecture sessions. This presentation will demonstrate the use of sequences of Interactive Lecture Demonstrations (ILDs) that use real experiments often involving real-time data collection and display combined with student interaction to create an active learning environment in large or small lecture classes. Interactive lecture demonstrations will be done in the area of mechanics using real-time motion probes and the Visualizer. A video tape of students involved in interactive lecture demonstrations will be shown. The results of a number of research studies at various institutions (including international) to measure the effectiveness of ILDs and guided inquiry conceptual laboratories will be presented.
NASA Astrophysics Data System (ADS)
Li, Jing; Singh, Chandralekha
2012-02-01
We discuss the development of a research-based conceptual multiple-choice survey of magnetism. We also discuss the use of the survey to investigate gender differences in students' difficulties with concepts related to magnetism. We find that while there was no gender difference on the pre-test. However, female students performed significantly worse than male students when the survey was given as a post-test in traditionally taught calculus-based introductory physics courses with similar results in both the regular and honors versions of the course. In the algebra-based courses, the performance of female and male students has no statistical difference on the pre-test or the post-test.
2017-01-01
The cyber-physical gap (CPG) is the difference between the ‘real’ state of the world and the way the system perceives it. This discrepancy often stems from the limitations of sensing and data collection technologies and capabilities, and is inevitable at some degree in any cyber-physical system (CPS). Ignoring or misrepresenting such limitations during system modeling, specification, design, and analysis can potentially result in systemic misconceptions, disrupted functionality and performance, system failure, severe damage, and potential detrimental impacts on the system and its environment. We propose CPG-Aware Modeling & Engineering (CPGAME), a conceptual model-based approach to capturing, explaining, and mitigating the CPG. CPGAME enhances the systems engineer’s ability to cope with CPGs, mitigate them by design, and prevent erroneous decisions and actions. We demonstrate CPGAME by applying it for modeling and analysis of the 1979 Three Miles Island 2 nuclear accident, and show how its meltdown could be mitigated. We use ISO-19450:2015—Object Process Methodology as our conceptual modeling framework. PMID:28714910
Teaching quantum physics by the sum over paths approach and GeoGebra simulations
NASA Astrophysics Data System (ADS)
Malgieri, M.; Onorato, P.; De Ambrosis, A.
2014-09-01
We present a research-based teaching sequence in introductory quantum physics using the Feynman sum over paths approach. Our reconstruction avoids the historical pathway, and starts by reconsidering optics from the standpoint of the quantum nature of light, analysing both traditional and modern experiments. The core of our educational path lies in the treatment of conceptual and epistemological themes, peculiar of quantum theory, based on evidence from quantum optics, such as the single photon Mach-Zehnder and Zhou-Wang-Mandel experiments. The sequence is supported by a collection of interactive simulations, realized in the open source GeoGebra environment, which we used to assist students in learning the basics of the method, and help them explore the proposed experimental situations as modeled in the sum over paths perspective. We tested our approach in the context of a post-graduate training course for pre-service physics teachers; according to the data we collected, student teachers displayed a greatly improved understanding of conceptual issues, and acquired significant abilities in using the sum over path method for problem solving.
Cognition of an expert tackling an unfamiliar conceptual physics problem
NASA Astrophysics Data System (ADS)
Schuster, David; Undreiu, Adriana
2009-11-01
We have investigated and analyzed the cognition of an expert tackling a qualitative conceptual physics problem of an unfamiliar type. Our goal was to elucidate the detailed cognitive processes and knowledge elements involved, irrespective of final solution form, and consider implications for instruction. The basic but non-trivial problem was to find qualitatively the direction of acceleration of a pendulum bob at various stages of its motion, a problem originally studied by Reif and Allen. Methodology included interviews, introspection, retrospection and self-reported metacognition. Multiple facets of cognition were revealed, with different reasoning strategies used at different stages and for different points on the path. An account is given of the zigzag thinking paths and interplay of reasoning modes and schema elements involved. We interpret the cognitive processes in terms of theoretical concepts that emerged, namely: case-based, principle-based, experiential-intuitive and practical-heuristic reasoning; knowledge elements and schemata; activation; metacognition and epistemic framing. The complexity of cognition revealed in this case study contrasts with the tidy principle-based solutions we present to students. The pervasive role of schemata, case-based reasoning, practical heuristic strategies, and their interplay with physics principles is noteworthy, since these aspects of cognition are generally neither recognized nor taught. The schema/reasoning-mode perspective has direct application in science teaching, learning and problem-solving.
Pre-Service Physics and Chemistry Teachers' Conceptual Integration of Physics and Chemistry Concepts
ERIC Educational Resources Information Center
Tuysuz, Mustafa; Bektas, Oktay; Geban, Omer; Ozturk, Gokhan; Yalvac, Bugrahan
2016-01-01
This study examines the pre-service teachers' opinions about conceptual integration (CI) and their understanding of it. A qualitative phenomenology design was used in the study. Data was collected through in-depth semi-structured interviews comprising ten guiding questions. Three pre-service physics and three pre-service chemistry teachers…
The Nature and Role of Thought Experiments in Solving Conceptual Physics Problems
ERIC Educational Resources Information Center
Kösem, Sule Dönertas; Özdemir, Ömer Faruk
2014-01-01
This study describes the possible variations of thought experiments in terms of their nature, purpose, and reasoning resources adopted during the solution of conceptual physics problems. A phenomenographic research approach was adopted for this study. Three groups of participants with varying levels of physics knowledge--low, medium, and high…
ERIC Educational Resources Information Center
Zacharia, Zacharias C.; de Jong, Ton
2014-01-01
This study investigates whether Virtual Manipulatives (VM) within a Physical Manipulatives (PM)-oriented curriculum affect conceptual understanding of electric circuits and related experimentation processes. A pre-post comparison study randomly assigned 194 undergraduates in an introductory physics course to one of five conditions: three…
The impact of CmapTools utilization towards students' conceptual change on optics topic
NASA Astrophysics Data System (ADS)
Rofiuddin, Muhammad Rifqi; Feranie, Selly
2017-05-01
Science teachers need to help students identify their prior ideas and modify them based on scientific knowledge. This process is called as conceptual change. One of essential tools to analyze students' conceptual change is by using concept map. Concept Maps are graphical representations of knowledge that are comprised of concepts and the relationships between them. Constructing concept map is implemented by adapting the role of technology to support learning process, as it is suitable with Educational Ministry Regulation No.68 year 2013. Institute for Human and Machine Cognition (IHMC) has developed CmapTools, a client-server software for easily construct and visualize concept maps. This research aims to investigate secondary students' conceptual change after experiencing five-stage conceptual teaching model by utilizing CmapTools in learning Optics. Weak experimental method through one group pretest-posttest design is implemented in this study to collect preliminary and post concept map as qualitative data. Sample was taken purposively of 8th grade students (n= 22) at one of private schools Bandung, West Java. Conceptual change based on comparison of preliminary and post concept map construction is assessed based on rubric of concept map scoring and structure. Results shows significance conceptual change differences at 50.92 % that is elaborated into concept map element such as prepositions and hierarchical level in high category, cross links in medium category and specific examples in low category. All of the results are supported with the students' positive response towards CmapTools utilization that indicates improvement of motivation, interest, and behavior aspect towards Physics lesson.
NASA Astrophysics Data System (ADS)
Lark, Adam
Scientific Community Laboratories, developed by The University of Maryland, have shown initial promise as laboratories meant to emulate the practice of doing physics. These laboratories have been re-created by incorporating their design elements with the University of Toledo course structure and resources. The laboratories have been titled the Scientific Learning Community (SLC) Laboratories. A comparative study between these SLC laboratories and the University of Toledo physics department's traditional laboratories was executed during the fall 2012 semester on first semester calculus-based physics students. Three tests were executed as pre-test and post-tests to capture the change in students' concept knowledge, attitudes, and understanding of uncertainty. The Force Concept Inventory (FCI) was used to evaluate students' conceptual changes through the semester and average normalized gains were compared between both traditional and SLC laboratories. The Colorado Learning Attitudes about Science Survey for Experimental Physics (E-CLASS) was conducted to elucidate students' change in attitudes through the course of each laboratory. Finally, interviews regarding data analysis and uncertainty were transcribed and coded to track changes in the way students understand uncertainty and data analysis in experimental physics after their participation in both laboratory type. Students in the SLC laboratories showed a notable an increase conceptual knowledge and attitudes when compared to traditional laboratories. SLC students' understanding of uncertainty showed most improvement, diverging completely from students in the traditional laboratories, who declined throughout the semester.
Characterizing, modeling, and addressing gender disparities in introductory college physics
NASA Astrophysics Data System (ADS)
Kost-Smith, Lauren Elizabeth
2011-12-01
The underrepresentation and underperformance of females in physics has been well documented and has long concerned policy-makers, educators, and the physics community. In this thesis, we focus on gender disparities in the first- and second-semester introductory, calculus-based physics courses at the University of Colorado. Success in these courses is critical for future study and careers in physics (and other sciences). Using data gathered from roughly 10,000 undergraduate students, we identify and model gender differences in the introductory physics courses in three areas: student performance, retention, and psychological factors. We observe gender differences on several measures in the introductory physics courses: females are less likely to take a high school physics course than males and have lower standardized mathematics test scores; males outscore females on both pre- and post-course conceptual physics surveys and in-class exams; and males have more expert-like attitudes and beliefs about physics than females. These background differences of males and females account for 60% to 70% of the gender gap that we observe on a post-course survey of conceptual physics understanding. In analyzing underlying psychological factors of learning, we find that female students report lower self-confidence related to succeeding in the introductory courses (self-efficacy) and are less likely to report seeing themselves as a "physics person". Students' self-efficacy beliefs are significant predictors of their performance, even when measures of physics and mathematics background are controlled, and account for an additional 10% of the gender gap. Informed by results from these studies, we implemented and tested a psychological, self-affirmation intervention aimed at enhancing female students' performance in Physics 1. Self-affirmation reduced the gender gap in performance on both in-class exams and the post-course conceptual physics survey. Further, the benefit of the self-affirmation was strongest for females who endorsed the stereotype that men do better than women in physics. The findings of this thesis suggest that there are multiple factors that contribute to the underperformance of females in physics. Establishing this model of gender differences is a first step towards increasing females' participation and performance in physics, and can be used to guide future interventions to address the disparities.
Ince, Mustafa Levent
2008-12-01
The purpose of this study was to examine the effects of a 12-wk. physical activity intervention, based on conceptual discussions and practices of a social cognitive theory on health-promoting behaviors of 62 university students. The intervention mainly focused on development of self-regulatory skills, social support, and self-assessment of health-related fitness. The Adolescent Health Promotion Scale and International Physical Activity Questionnaire were given. Analysis of self-reports indicated improved nutrition, health responsibility, social support, exercise, stress management, and overall health from pre- to postintervention. Also, participants' postintervention reports of moderate, vigorous, and total physical activity were higher than at preintervention.
Active Learning in a Large General Physics Classroom.
NASA Astrophysics Data System (ADS)
Trousil, Rebecca
2008-04-01
In 2004, we launched a new calculus-based, introductory physics sequence at Washington University. Designed as an alternative to our traditional lecture-based sequence, the primary objectives for this new course were to actively engage students in the learning process, to significantly strengthen students' conceptual reasoning skills, to help students develop higher level quantitative problem solving skills necessary for analyzing ``real world'' problems, and to integrate modern physics into the curriculum. This talk will describe our approach, using The Six Ideas That Shaped Physics text by Thomas Moore, to creating an active learning environment in large classes as well as share our perspective on key elements for success and challenges that we face in the large class environment.
Bright, Felicity; Kayes, Nicola; Cott, Cheryl A
2016-01-01
Introduction Person-centredness is a philosophy for organising and delivering healthcare based on patients’ needs, preferences and experiences. Although widely endorsed, the concept suffers from a lack of detail and clarification, in turn accounting for ambiguous implementation and outcomes. While a conceptual framework based on a systematic review defines person/patient-centred care components (Scholl et al, 2014), it applies across healthcare contexts and may not be sensitive to the nuances of the rehabilitation of adults with physical impairments. Accordingly, this study aims to build a conceptual framework, based on existing literature, of what person-centredness means in the rehabilitation of adults with physical impairments in the clinical encounter and broader health service delivery. Methods and analysis We will use a scoping review methodology. Searches on relevant databases will be conducted first, combining keywords for ‘rehabilitation’, ‘person-centered’ and associated terms (including patient preferences/experiences). Next, snowball searches (citation tracking, references lists) will be performed. Papers will be included if they fall within predefined selection categories (seen as most likely informative on elements pertaining to person-centred rehabilitation) and are written in English, regardless of design (conceptual, qualitative, quantitative). Two reviewers will independently screen titles and abstracts, followed by screening of the full text to determine inclusion. Experts will then be consulted to identify relevant missing papers. This can include elements other than the peer-reviewed literature (eg, book chapters, policy/legal papers). Finally, information that helps to build the concept and practice of person-centred rehabilitation will be abstracted independently by two reviewers and analysed by inductive thematic analysis to build the conceptual framework. Dissemination The resulting framework will aid clarification regarding person-centred rehabilitation, which in turn is expected to conceptually ground and inform its operationalisation (eg, measurement, implementation, improvement). Findings will be disseminated through local, national and international stakeholders, both at the clinical and service organisation levels. PMID:27436670
ERIC Educational Resources Information Center
Westbrook, Susan L.
1998-01-01
Compares the conceptual organization of students in an integrated algebra and physical science class (SAM 9) with that of students in a discipline-specific physical science class (PSO). Analysis of students' concept maps indicates that the SAM9 students used a greater number of procedural linkages to connect mathematics and science concepts than…
More than just "plug-and-chug": Exploring how physics students make sense with equations
NASA Astrophysics Data System (ADS)
Kuo, Eric
Although a large part the Physics Education Research (PER) literature investigates students' conceptual understanding in physics, these investigations focus on qualitative, conceptual reasoning. Even in modeling expert problem solving, attention to conceptual understanding means a focus on initial qualitative analysis of the problem; the equations are typically conceived of as tools for "plug-and-chug" calculations. In this dissertation, I explore the ways that undergraduate physics students make conceptual sense of physics equations and the factors that support this type of reasoning through three separate studies. In the first study, I investigate how students' can understand physics equations intuitively through use of a particular class of cognitive elements, symbolic forms (Sherin, 2001). Additionally, I show how students leverage this intuitive, conceptual meaning of equations in problem solving. By doing so, these students avoid algorithmic manipulations, instead using a heuristic approach that leverages the equation in a conceptual argument. The second study asks the question why some students use symbolic forms and others don't. Although it is possible that students simply lack the knowledge required, I argue that this is not the only explanation. Rather, symbolic forms use is connected to particular epistemological stances, in-the-moment views on what kinds of knowledge and reasoning are appropriate in physics. Specifically, stances that value coherence between formal, mathematical knowledge and intuitive, conceptual knowledge are likely to support symbolic forms use. Through the case study of one student, I argue that both reasoning with equations and epistemological stances are dynamic, and that shifts in epistemological stance can produce shifts in whether symbolic forms are used to reason with equations. The third study expands the focus to what influences how students reason with equations across disciplinary problem contexts. In seeking to understand differences in how the same student reasons on two similar problems in calculus and physics, I show two factors, beyond the content or structure of the problems, that can help explain why reasoning on these two problems would be so different. This contributes to an understanding of what can support or impede transfer of content knowledge across disciplinary boundaries.
Effect of lecture instruction on student performance on qualitative questions
NASA Astrophysics Data System (ADS)
Heron, Paula R. L.
2015-06-01
The impact of lecture instruction on student conceptual understanding in physics has been the subject of research for several decades. Most studies have reported disappointingly small improvements in student performance on conceptual questions despite direct instruction on the relevant topics. These results have spurred a number of attempts to improve learning in physics courses through new curricula and instructional techniques. This paper contributes to the research base through a retrospective analysis of 20 randomly selected qualitative questions on topics in kinematics, dynamics, electrostatics, waves, and physical optics that have been given in introductory calculus-based physics at the University of Washington over a period of 15 years. In some classes, questions were administered after relevant lecture instruction had been completed; in others, it had yet to begin. Simple statistical tests indicate that the average performance of the "after lecture" classes was significantly better than that of the "before lecture" classes for 11 questions, significantly worse for two questions, and indistinguishable for the remaining seven. However, the classes had not been randomly assigned to be tested before or after lecture instruction. Multiple linear regression was therefore conducted with variables (such as class size) that could plausibly lead to systematic differences in performance and thus obscure (or artificially enhance) the effect of lecture instruction. The regression models support the results of the simple tests for all but four questions. In those cases, the effect of lecture instruction was reduced to a nonsignificant level, or increased to a significant, negative level when other variables were considered. Thus the results provide robust evidence that instruction in lecture can increase student ability to give correct answers to conceptual questions but does not necessarily do so; in some cases it can even lead to a decrease.
Iwasaki, Yoshitaka; Coyle, Catherine P.; Shank, John W.
2010-01-01
SUMMARY Globally, the mental health system is being transformed into a strengths-based, recovery-oriented system of care, to which the concept of active living is central. Based on an integrative review of the literature, this paper presents a heuristic conceptual framework of the potential contribution that enjoyable and meaningful leisure experiences can have in active living, recovery, health and life quality among persons with mental illness. This framework is holistic and reflects the humanistic approach to mental illness endorsed by the United Nations and the World Health Organization. It also includes ecological factors such as health care systems and environmental factors as well as cultural influences that can facilitate and/or hamper recovery, active living and health/life quality. Unique to this framework is our conceptualization of active living from a broad-based and meaning-oriented perspective rather than the traditional, narrower conceptualization which focuses on physical activity and exercise. Conceptualizing active living in this manner suggests a unique and culturally sensitive potential for leisure experiences to contribute to recovery, health and life quality. In particular, this paper highlights the potential of leisure engagements as a positive, strengths-based and potentially cost-effective means for helping people better deal with the challenges of living with mental illness. PMID:20543204
A Physically Based Coupled Chemical and Physical Weathering Model for Simulating Soilscape Evolution
NASA Astrophysics Data System (ADS)
Willgoose, G. R.; Welivitiya, D.; Hancock, G. R.
2015-12-01
A critical missing link in existing landscape evolution models is a dynamic soil evolution models where soils co-evolve with the landform. Work by the authors over the last decade has demonstrated a computationally manageable model for soil profile evolution (soilscape evolution) based on physical weathering. For chemical weathering it is clear that full geochemistry models such as CrunchFlow and PHREEQC are too computationally intensive to be couplable to existing soilscape and landscape evolution models. This paper presents a simplification of CrunchFlow chemistry and physics that makes the task feasible, and generalises it for hillslope geomorphology applications. Results from this simplified model will be compared with field data for soil pedogenesis. Other researchers have previously proposed a number of very simple weathering functions (e.g. exponential, humped, reverse exponential) as conceptual models of the in-profile weathering process. The paper will show that all of these functions are possible for specific combinations of in-soil environmental, geochemical and geologic conditions, and the presentation will outline the key variables controlling which of these conceptual models can be realistic models of in-profile processes and under what conditions. The presentation will finish by discussing the coupling of this model with a physical weathering model, and will show sample results from our SSSPAM soilscape evolution model to illustrate the implications of including chemical weathering in the soilscape evolution model.
ERIC Educational Resources Information Center
Ding, Lin
2014-01-01
Though many research-based problem types have been shown effective in promoting students' conceptual understanding and scientific abilities, the extent of their use in actual classrooms remains unclear. We interviewed and surveyed 16 physics and engineering faculty members at a large US Midwest research university to investigate how university…
ERIC Educational Resources Information Center
Nicholson, Scott
2005-01-01
Archaeologists have used material artifacts found in a physical space to gain an understanding about the people who occupied that space. Likewise, as users wander through a digital library, they leave behind data-based artifacts of their activity in the virtual space. Digital library archaeologists can gather these artifacts and employ inductive…
ERIC Educational Resources Information Center
Jacobs, Jennifer M.; Wright, Paul M.
2018-01-01
Research has demonstrated that many quality sport-based youth development programs promote life skill acquisition (e.g., leadership, self-control) with the ultimate goal of facilitating positive outcomes in youth participants' social and academic environments. Researchers call this "transfer of life skills" (i.e., the idea that physical,…
NASA Astrophysics Data System (ADS)
Adams, April Dean
In this study, the relationships between student beliefs about the nature of science, student attitudes, and conceptual change about the nature of forces were investigated within a traditional and within a constructivistic high school physics classroom. Students in both classrooms were honors students taking a first year high school physics course and were primarily white and middle to upper SES. Students in the traditional classroom were all high ability juniors, and physics instruction was integrated with pre-calculus. Students in the constructivistic classroom were a mixture of juniors and seniors. Due to the interrelated nature of these factors and the complexity of their interactions, a naturalistic inquiry design was chosen. The data sources included videotape of 7-9 weeks of instruction; analysis of the videotapes using the Secondary Teacher Analysis Matrix (Gallagher & Parker, 1995); field notes; pretest/posttest assessment with the Force Concept Inventory (Hestenes, Wells, & Swackhammer, 1992); student responses from the Views on Science-Technology-Society questionnaire (Aikenhead & Ryan, 1992), the Questionnaire for the Assessment of a Science Course (Chiappetta, 1995), and the Constructivist Learning Environment Survey (Taylor, Fraser, & White, 1994); student interviews; and teacher interviews. In the traditional classroom, (a) students did not think that physics was relevant to everyday experiences; (b) high conceptual change students were more likely to have an angular world view (Cobern, 1993) and have views more similar to the teacher's about the nature of science; and (c) high conceptual change students were able to develop an internally consistent understanding of the content; however, that content appeared to be isolated knowledge in some students. In the constructivistic classroom, (a) students saw physics as relevant and useful; (b) there was no difference in world view or agreement with the teacher's views on the nature of science between high and low conceptual change students; (c) students appreciated the importance of empirical evidence; and (d) low conceptual change students had low classroom engagement. Mean gains in conceptual change were larger for the traditional classroom.
A conceptual physics class where students found meaning in calculations
NASA Astrophysics Data System (ADS)
Hull, Michael M.; Elby, Andrew
2013-01-01
Prior to taking a translated version of the Maryland Open Source Tutorials (OSTs) as a stand-alone course, most students at Tokyo Gakugei University in Japan had experienced physics as memorizing laws and equations to use as computational tools. We might expect this reformed physics class, which emphasizes common sense and conceptual reasoning and rarely invokes equations, to produce students who see a disconnect between equation use and intuitive/conceptual reasoning. Many students at Gakugei, however, somehow learned to integrate mathematics into their "constructivist" epistemologies of physics, even though OSTs do not emphasize this integration. Tadao, for example, came to see that although a common-sense solution to a problem is preferable for explaining to someone who doesn't know physics, solving the problem with a quantitative calculation (that connects to physical meaning) can bring clarity and concreteness to communication between experts. How this integration occurred remains an open question for future research.
ERIC Educational Resources Information Center
Gok, Tolga
2018-01-01
The purpose of the research was to investigate the effects of think pair share (TPS) instructional strategy on students' conceptual learning and epistemological beliefs on physics and physics learning. The research was conducted with two groups. One of the groups was the experimental group (EG) and the other group was the control group (CG). 35…
ERIC Educational Resources Information Center
Tekbiyik, Ahmet; Ercan, Orhan
2015-01-01
Current study examined the effects of virtual and physical laboratory practices on students' conceptual achievement in the subject of electricity and their attitudes towards simple electric circuits. Two groups (virtual and physical) selected through simple random sampling was taught with web-aided material called "Electricity in Our…
ERIC Educational Resources Information Center
Brookes, David T.; Etkina, Eugenia
2007-01-01
This paper introduces a theory about the role of language in learning physics. The theory is developed in the context of physics students and physicists talking and writing about the subject of quantum mechanics. We found that physicists' language encodes different varieties of analogical models through the use of grammar and conceptual metaphor.…
ERIC Educational Resources Information Center
Stolz, Steven A.; Thorburn, Malcolm
2017-01-01
We write as critical theorists who share an interest in how conceptions of physical education are taken forward in policy and practice. In this respect, we are particularly intrigued by Peter Arnold's conceptual account of meaning in movement, sport and physical education, and the subsequent ways in which his ideas have informed national…
ERIC Educational Resources Information Center
Kaymak, Ercan; Ogan-Bekiroglu, Feral
2013-01-01
The purposes of this study were to determine high school students' epistemological beliefs in the domain of physics and to explore and explain the possible relationship between their beliefs and their conceptual change in physics by taking the students' learning strategies into account. A multi-case study design was used for the research…
Preconceptions of Japanese Students Surveyed Using the Force and Motion Conceptual Evaluation
NASA Astrophysics Data System (ADS)
Ishimoto, Michi
2010-07-01
We assess the preconceptions of Japanese students about force and motion. The Force and Motion Conceptual Evaluation is a research-based, multiple-choice assessment of students' conceptual understanding of Newton's laws of motion and energy conservation. It is administered to determine the effectiveness of introductory mechanics curricula. In this study, the test was given to engineering students at the beginning of the first lecture of an introductory mechanics course for several years. Some students had minimal high school physics education, whereas the others had completed high school physics programs. To probe the students' preconceptions, we studied their test answers for each of the following categories: velocity, acceleration, Newton's first and second laws, Newton's third law, and energy conservation. We find that preconceptions, such as F ∝ mv, are prevalent among the students, regardless of their level of high school physics education. In the case of a collision between two objects, two preconceptions—a mass-dependent model and an action-dependent model—are prevalent. Typically, students combine the two models, with action dependency outweighing mass dependency. In the case of a sled sliding down a hill without friction at two heights and inclinations, a quarter of students used the height-dependent model to answer questions regarding speed and kinetic energy.
RealTime Physics: Active learning laboratory
NASA Astrophysics Data System (ADS)
Thornton, Ronald K.; Sokoloff, David R.
1997-03-01
Our research shows that student learning of physics concepts in introductory physics courses is enhanced by the use of special guided discovery laboratory curricula which embody the results of educational research and which are supported by the use of the Tools for Scientific Thinking microcomputer-based laboratory (MBL) tools. In this paper we first describe the general characteristics of the research-based RealTime Physics laboratory curricula developed for use in introductory physics classes in colleges, universities and high schools. We then describe RealTime Physics Mechanics in detail. Finally we examine student learning of dynamics in traditional physics courses and in courses using RealTime Physics Mechanics, primarily by the use of correlated questions on the Force and Motion Conceptual Evaluation. We present considerable evidence that students who use the new laboratory curricula demonstrate significantly improved learning and retention of dynamics concepts compared to students taught by traditional methods.
Design Oriented Structural Modeling for Airplane Conceptual Design Optimization
NASA Technical Reports Server (NTRS)
Livne, Eli
1999-01-01
The main goal for research conducted with the support of this grant was to develop design oriented structural optimization methods for the conceptual design of airplanes. Traditionally in conceptual design airframe weight is estimated based on statistical equations developed over years of fitting airplane weight data in data bases of similar existing air- planes. Utilization of such regression equations for the design of new airplanes can be justified only if the new air-planes use structural technology similar to the technology on the airplanes in those weight data bases. If any new structural technology is to be pursued or any new unconventional configurations designed the statistical weight equations cannot be used. In such cases any structural weight estimation must be based on rigorous "physics based" structural analysis and optimization of the airframes under consideration. Work under this grant progressed to explore airframe design-oriented structural optimization techniques along two lines of research: methods based on "fast" design oriented finite element technology and methods based on equivalent plate / equivalent shell models of airframes, in which the vehicle is modelled as an assembly of plate and shell components, each simulating a lifting surface or nacelle / fuselage pieces. Since response to changes in geometry are essential in conceptual design of airplanes, as well as the capability to optimize the shape itself, research supported by this grant sought to develop efficient techniques for parametrization of airplane shape and sensitivity analysis with respect to shape design variables. Towards the end of the grant period a prototype automated structural analysis code designed to work with the NASA Aircraft Synthesis conceptual design code ACS= was delivered to NASA Ames.
Teaching Physics for Conceptual Understanding Exemplified for Einstein's Special Relativity
NASA Astrophysics Data System (ADS)
Undreiu, Lucian M.
2006-12-01
In most liberal arts colleges the prerequisites for College Physics, Introductory or Calculus based, are strictly related to Mathematics. As a state of fact, the majorities of the students perceive Physics as a conglomerate of mathematical equations, a collection of facts to be memorized and they regard Physics as one of the most difficult subjects. A change of this attitude towards Physics, and Science in general, is intrinsically connected with the promotion of conceptual understanding and stimulation of critical thinking. In such an environment, the educators are facilitators, rather than the source of knowledge. One good way of doing this is to challenge the students to think about what they see around them and to connect physics with the real world. Motivation occurs when students realize that what was learned is interesting and relevant. Visual teaching aids such as educational videos or computer simulations, as well as computer-assisted experiments, can greatly enhance the effectiveness of a science lecture or laboratory. Difficult topics can be discussed through animated analogies. Special Relativity is recognized as a challenging topic and is probably one of the most misunderstood theories of Physics. While understanding Special Relativity requires a detachment from ordinary perception and every day life notions, animated analogies can prove to be very successful in making difficult topics accessible.
Students Do Not Overcome Conceptual Difficulties after Solving 1000 Traditional Problems.
ERIC Educational Resources Information Center
Kim, Eunsook; Pak, Sung-Jae
2002-01-01
Investigates the relationship between traditional physics textbook problem solving and conceptual understanding. Reports that students had many of the well-known conceptual difficulties with basic mechanics and that there was little correlation between the number of problems solved and conceptual understanding. (Contains 21 references.)…
2013-01-01
Background High rates of physical inactivity compromise the health status of populations globally. Social networks have been shown to influence physical activity (PA), but little is known about how best to engineer social networks to sustain PA. To improve procedures for building networks that shape PA as a normative behavior, there is a need for more specific hypotheses about how social variables influence PA. There is also a need to integrate concepts from network science with ecological concepts that often guide the design of in-person and electronically-mediated interventions. Therefore, this paper: (1) proposes a conceptual model that integrates principles from network science and ecology across in-person and electronically-mediated intervention modes; and (2) illustrates the application of this model to the design and evaluation of a social network intervention for PA. Methods/Design A conceptual model for engineering social networks was developed based on a scoping literature review of modifiable social influences on PA. The model guided the design of a cluster randomized controlled trial in which 308 sedentary adults were randomly assigned to three groups: WalkLink+: prompted and provided feedback on participants’ online and in-person social-network interactions to expand networks for PA, plus provided evidence-based online walking program and weekly walking tips; WalkLink: evidence-based online walking program and weekly tips only; Minimal Treatment Control: weekly tips only. The effects of these treatment conditions were assessed at baseline, post-program, and 6-month follow-up. The primary outcome was accelerometer-measured PA. Secondary outcomes included objectively-measured aerobic fitness, body mass index, waist circumference, blood pressure, and neighborhood walkability; and self-reported measures of the physical environment, social network environment, and social network interactions. The differential effects of the three treatment conditions on primary and secondary outcomes will be analyzed using general linear modeling (GLM), or generalized linear modeling if the assumptions for GLM cannot be met. Discussion Results will contribute to greater understanding of how to conceptualize and implement social networks to support long-term PA. Establishing social networks for PA across multiple life settings could contribute to cultural norms that sustain active living. Trial registration ClinicalTrials.gov NCT01142804 PMID:23945138
High School Students' Understanding of Projectile Motion Concepts
ERIC Educational Resources Information Center
Dilber, Refik; Karaman, Ibrahim; Duzgun, Bahattin
2009-01-01
The aim of this study was to investigate the effectiveness of conceptual change-based instruction and traditionally designed physics instruction on students' understanding of projectile motion concepts. Misconceptions related to projectile motion concepts were determined by related literature on this subject. Accordingly, the Projectile Motion…
Du, HuiYun; Everett, Bronwyn; Newton, Phillip J; Salamonson, Yenna; Davidson, Patricia M
2012-02-01
To explore the conceptual underpinnings of self-efficacy to address the barriers to participating in physical activity and propose a model of intervention. The benefits of physical activity in reducing cardiovascular risk have led to evidence-based recommendations for patients with heart disease, including those with chronic heart failure. However, adherence to best practice recommendations is often suboptimal, particularly in those individuals who experience high symptom burden and feel less confident to undertake physical activity. Self-efficacy is the degree of confidence an individual has in his/her ability to perform behaviour under several specific circumstances. Four factors influence an individual's level of self-efficacy: (1) past performance, (2) vicarious experience, (3) verbal persuasion and (4) physiological arousal. Discursive. Using the method of a discursive paper, this article seeks to explore the conceptual underpinnings of self-efficacy to address the barriers to participating in physical activity and proposes a model of intervention, the Home-Heart-Walk, to promote physical activity and monitor functional status. Implementing effective interventions to promote physical activities require appreciation of factors impacting on behaviour change. Addressing concepts relating to self-efficacy in physical activity interventions may promote participation and adherence in the longer term. The increasing burden of chronic disease and the emphasis on self-management strategies underscore the importance of promoting adherence to recommendations, such as physical activity. © 2011 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Escalada, Lawrence T.; Moeller, Julia K.
2006-02-01
With the existing shortage of qualified high school physics teachers and the current mandate of the No Child Left Behind Act requiring teachers to be "highly qualified" in all subjects they teach, university physics departments must offer content courses and programs that would allow out-of-field high school physics teachers to meet this requirement. This paper will identify how the University of Northern Iowa Physics Department is attempting to address the needs of the high school physics teacher through its course offerings and professional development programs for teachers. The effectiveness of one such physics professional development program, the UNI Physics Institute (UNI-PI), on secondary science teachers' and their students' conceptual understanding of Newtonian mechanics, and the teachers' instructional practices was investigated. Twenty-one Iowa out-of-field high school physics teachers participating in the program were able to complete the physics coursework required to obtain the State of Iowa 7-12 Grade Physics Teaching endorsement. Twelve of the participants completed a two-year program during the 2002 and 2003 summers. Background information, pre- and post-test physics conceptual assessments and other data was collected from participants throughout the Institute. Participants collected pre and post-test conceptual assessment data from their students during the 2002-2003 and 2003-2004 academic years. This comprehensive assessment data revealed the Institute's influence on participants' and students' conceptual understanding of Newtonian Mechanics. The results of this investigation, the insights we have gained, and possible future directions for professional development will be shared.
NASA Astrophysics Data System (ADS)
Hill, M.; Sharma, M. D.; Johnston, H.
2015-07-01
The use of online learning resources as core components of university science courses is increasing. Learning resources range from summaries, videos, and simulations, to question banks. Our study set out to develop, implement, and evaluate research-based online learning resources in the form of pre-lecture online learning modules (OLMs). The aim of this paper is to share our experiences with those using, or considering implementing, online learning resources. Our first task was to identify student learning issues in physics to base the learning resources on. One issue with substantial research is conceptual understanding, the other with comparatively less research is scientific representations (graphs, words, equations, and diagrams). We developed learning resources on both these issues and measured their impact. We created weekly OLMs which were delivered to first year physics students at The University of Sydney prior to their first lecture of the week. Students were randomly allocated to either a concepts stream or a representations stream of online modules. The programme was first implemented in 2013 to trial module content, gain experience and process logistical matters and repeated in 2014 with approximately 400 students. Two validated surveys, the Force and Motion Concept Evaluation (FMCE) and the Representational Fluency Survey (RFS) were used as pre-tests and post-tests to measure learning gains while surveys and interviews provided further insights. While both streams of OLMs produced similar positive learning gains on the FMCE, the representations-focussed OLMs produced higher gains on the RFS. Conclusions were triangulated with student responses which indicated that they have recognized the benefit of the OLMs for their learning of physics. Our study shows that carefully designed online resources used as pre-instruction can make a difference in students’ conceptual understanding and representational fluency in physics, as well as make them more aware of their learning processes. In particular, the representations-focussed modules offer more advantages.
The LUE data model for representation of agents and fields
NASA Astrophysics Data System (ADS)
de Jong, Kor; Schmitz, Oliver; Karssenberg, Derek
2017-04-01
Traditionally, agents-based and field-based modelling environments use different data models to represent the state of information they manipulate. In agent-based modelling, involving the representation of phenomena as objects bounded in space and time, agents are often represented by classes, each of which represents a particular kind of agent and all its properties. Such classes can be used to represent entities like people, birds, cars and countries. In field-based modelling, involving the representation of the environment as continuous fields, fields are often represented by a discretization of space, using multidimensional arrays, each storing mostly a single attribute. Such arrays can be used to represent the elevation of the land-surface, the pH of the soil, or the population density in an area, for example. Representing a population of agents by class instances grouped in collections is an intuitive way of organizing information. A drawback, though, is that models in which class instances grouping properties are stored in collections are less efficient (execute slower) than models in which collections of properties are grouped. The field representation, on the other hand, is convenient for the efficient execution of models. Another drawback is that, because the data models used are so different, integrating agent-based and field-based models becomes difficult, since the model builder has to deal with multiple concepts, and often multiple modelling environments. With the development of the LUE data model [1] we aim at representing agents and fields within a single paradigm, by combining the advantages of the data models used in agent-based and field-based data modelling. This removes the barrier for writing integrated agent-based and field-based models. The resulting data model is intuitive to use and allows for efficient execution of models. LUE is both a high-level conceptual data model and a low-level physical data model. The LUE conceptual data model is a generalization of the data models used in agent-based and field-based modelling. The LUE physical data model [2] is an implementation of the LUE conceptual data model in HDF5. In our presentation we will provide details of our approach to organizing information about agents and fields. We will show examples of agent and field data represented by the conceptual and physical data model. References: [1] de Bakker, M.P., de Jong, K., Schmitz, O., Karssenberg, D., 2016. Design and demonstration of a data model to integrate agent-based and field-based modelling. Environmental Modelling and Software. http://dx.doi.org/10.1016/j.envsoft.2016.11.016 [2] de Jong, K., 2017. LUE source code. https://github.com/pcraster/lue
ERIC Educational Resources Information Center
Eick, Charles J.; Dias, Michael; Smith, Nancy R. Cook
2009-01-01
A new National Science Foundation supported curriculum, Interactions in Physical Science[TM], was evaluated on students' conceptual change in the twelve concept areas of the national physical science content standard (B) for grades 5-8. Eighth grade students (N = 66) were evaluated pre and post on a 31-item multiple-choice test of conceptual…
ERIC Educational Resources Information Center
Ennis, Catherine D.
2007-01-01
The author discusses a line of research examining the acquisition, organization, and use of knowledge associated with conceptual change in which she is engaged at the University of Maryland. It builds on foundational research by scholars in science, mathematics, and reading education as well as in motor learning and physical education pedagogy,…
NASA Astrophysics Data System (ADS)
Kohl, Patrick B.; Kuo, H. Vincent; Ruskell, Todd G.
2008-10-01
The Colorado School of Mines (CSM) has taught its first-semester introductory physics course using a hybrid lecture/Studio Physics format for several years. Over the past year we have converted the second semester of our calculus-based introductory physics course (Physics II) to a Studio Physics format, starting from a traditional lecture-based format. In this paper, we document the early stages of this conversion in order to better understand which features succeed and which do not, and in order to develop a model for switching to Studio that keeps the time and resource investment manageable. We describe the recent history of the Physics II course and of Studio at Mines, discuss the PER-based improvements that we are implementing, and characterize our progress via several metrics, including pre/post Conceptual Survey of Electricity and Magnetism (CSEM) scores, Colorado Learning About Science Survey scores (CLASS), solicited student comments, failure rates, and exam scores.
Studio Physics at the Colorado School of Mines: A model for iterative development and assessment
NASA Astrophysics Data System (ADS)
Kohl, Patrick; Kuo, Vincent
2009-05-01
The Colorado School of Mines (CSM) has taught its first-semester introductory physics course using a hybrid lecture/Studio Physics format for several years. Based on this previous success, over the past 18 months we have converted the second semester of our traditional calculus-based introductory physics course (Physics II) to a Studio Physics format. In this talk, we describe the recent history of the Physics II course and of Studio at Mines, discuss the PER-based improvements that we are implementing, and characterize our progress via several metrics, including pre/post Conceptual Survey of Electricity and Magnetism (CSEM) scores, Colorado Learning About Science Survey scores (CLASS), failure rates, and exam scores. We also report on recent attempts to involve students in the department's Senior Design program with our course. Our ultimate goal is to construct one possible model for a practical and successful transition from a lecture course to a Studio (or Studio-like) course.
Schulz, Amy J.; Kannan, Srimathi; Dvonch, J. Timothy; Israel, Barbara A.; Allen, Alex; James, Sherman A.; House, James S.; Lepkowski, James
2005-01-01
The Healthy Environments Partnership (HEP) is a community-based participatory research effort investigating variations in cardiovascular disease risk, and the contributions of social and physical environments to those variations, among non-Hispanic black, non-Hispanic white, and Hispanic residents in three areas of Detroit, Michigan. Initiated in October 2000 as a part of the National Institute of Environmental Health Sciences’ Health Disparities Initiative, HEP is affiliated with the Detroit Community–Academic Urban Research Center. The study is guided by a conceptual model that considers race-based residential segregation and associated concentrations of poverty and wealth to be fundamental factors influencing multiple, more proximate predictors of cardiovascular risk. Within this model, physical and social environments are identified as intermediate factors that mediate relationships between fundamental factors and more proximate factors such as physical activity and dietary practices that ultimately influence anthropomorphic and physiologic indicators of cardiovascular risk. The study design and data collection methods were jointly developed and implemented by a research team based in community-based organizations, health service organizations, and academic institutions. These efforts include collecting and analyzing airborne particulate matter over a 3-year period; census and administrative data; neighborhood observation checklist data to assess aspects of the physical and social environment; household survey data including information on perceived stressors, access to social support, and health-related behaviors; and anthropometric, biomarker, and self-report data as indicators of cardiovascular health. Through these collaborative efforts, HEP seeks to contribute to an understanding of factors that contribute to racial and socioeconomic health inequities, and develop a foundation for efforts to eliminate these disparities in Detroit. PMID:16330371
ERIC Educational Resources Information Center
Acar, Ömer; Patton, Bruce R.
2016-01-01
This study had two research purposes. First, we examined the scientific reasoning gains of prospective science teachers who are concrete, formal, and postformal reasoners in an argumentation-based physics inquiry instruction. Second, we sought conceptual knowledge and achievement gaps between these student groups before and after the instruction.…
Joseph, Rodney P; Keller, Colleen; Affuso, Olivia; Ainsworth, Barbara E
2017-06-01
African-American women perform low levels of physical activity and are disproportionally burdened by associated cardiometabolic disease conditions (i.e., 57 % are obese, 49 % have cardiovascular disease). The marked health disparities among African-American women indicate the need for innovative strategies to promote physical activity to help attenuate the chronic disease health disparities in this high-risk population. Culturally tailoring physical activity programs to address the sociocultural norms, values, beliefs, and behaviors of African-American women is an advantageous strategy to enhance physical activity promotion efforts. The purpose of this article is to discuss critical aspects for researchers to consider when designing physical activity programs for African-American women and to present a conceptual framework to guide intervention development. Development of the framework was based on our previous physical activity research with African-American women, seminal literature on the topics of cultural adaptation and health promotion, sociological and theoretical perspectives on the role of women in African-American culture, and key determinants of physical activity engagement among African-American women. Three key concepts are discussed in the conceptual framework: (1) Developmental milestones and life stage transitions of African-American women; (2) Historical, social, and cultural influences associated with physical activity engagement; and (3) Intervention delivery strategies. Using the framework to guide intervention development has the potential to enhance the physical activity and health outcomes of a physical activity program for African-American women.
Addressing Barriers to Conceptual Understanding in IE Physics Classes
NASA Astrophysics Data System (ADS)
Coletta, Vincent P.; Phillips, Jeffrey A.
2009-11-01
We report on the Thinking in Physics project, which helps students who demonstrate weak scientific reasoning skills, as measured by low preinstruction scores on the Lawson Test of Scientific Reasoning Ability. Without special help, such students are unlikely to achieve a good conceptual understanding of introductory mechanics.
Correcting the Normalized Gain for Guessing
ERIC Educational Resources Information Center
Stewart, John; Stewart, Gay
2010-01-01
The normalized gain, "g", has been an important tool for the characterization of conceptual improvement in physics courses since its use in Hake's extensive study on conceptual learning in introductory physics. The normalized gain is calculated from the score on a pre-test administered before instruction and a post-test administered…
Lessons from a Large-Scale Assessment: Results from Conceptual Inventories
ERIC Educational Resources Information Center
Thacker, Beth; Dulli, Hani; Pattillo, Dave; West, Keith
2014-01-01
We report conceptual inventory results of a large-scale assessment project at a large university. We studied the introduction of materials and instructional methods informed by physics education research (PER) (physics education research-informed materials) into a department where most instruction has previously been traditional and a significant…
1988-03-01
structure of the interface is a mapping from the physical world [for example, the use of icons, which S have inherent meaning to users but represent...design alternatives. Mechanisms for linking the user to the computer include physical devices (keyboards), actions taken with the devices (keystrokes...VALUATION AIDES TEMLATEI IITCOM1I LATOR IACTICAL KNOWLEDGE ACGIUISITION MICNnII t 1 Fig. 9. INTACVAL. * OtJiCTs ARE PHYSICAL ENTITIES OR CONCEPTUAL EN
Conceptual Developments of 20th Century Field Theories
NASA Astrophysics Data System (ADS)
Cao, Tian Yu
1998-06-01
This volume provides a broad synthesis of conceptual developments of twentieth century field theories, from the general theory of relativity to quantum field theory and gauge theory. The book traces the foundations and evolution of these theories within a historio-critical context. Theoretical physicists and students of theoretical physics will find this a valuable account of the foundational problems of their discipline that will help them understand the internal logic and dynamics of theoretical physics. It will also provide professional historians and philosophers of science, particularly philosophers of physics, with a conceptual basis for further historical, cultural and sociological analysis of the theories discussed. Finally, the scientifically qualified general reader will find in this book a deeper analysis of contemporary conceptions of the physical world than can be found in popular accounts of the subject.
Conceptual Developments of 20th Century Field Theories
NASA Astrophysics Data System (ADS)
Cao, Tian Yu
1997-02-01
This volume provides a broad synthesis of conceptual developments of twentieth century field theories, from the general theory of relativity to quantum field theory and gauge theory. The book traces the foundations and evolution of these theories within a historio-critical context. Theoretical physicists and students of theoretical physics will find this a valuable account of the foundational problems of their discipline that will help them understand the internal logic and dynamics of theoretical physics. It will also provide professional historians and philosophers of science, particularly philosophers of physics, with a conceptual basis for further historical, cultural and sociological analysis of the theories discussed. Finally, the scientifically qualified general reader will find in this book a deeper analysis of contemporary conceptions of the physical world than can be found in popular accounts of the subject.
NASA Astrophysics Data System (ADS)
Yang, J.; Zammit, C.; McMillan, H. K.
2016-12-01
As in most countries worldwide, water management in lowland areas is a big concern for New Zealand due to its economic importance for water related human activities. As a result, the estimation of available water resources in these areas (e.g., for irrigation and water supply purpose) is crucial and often requires an understanding of complex hydrological processes, which are often characterized by strong interactions between surface water and groundwater (usually expressed as losing and gaining rivers). These processes are often represented and simulated using integrated physically based hydrological models. However models with physically based groundwater modules typically require large amount of non-readily available geologic and aquifer information and are computationally intensive. Instead, this paper presents a conceptual groundwater model that is fully integrated into New Zealand's national hydrological model TopNet based on TopModel concepts (Beven, 1992). Within this conceptual framework, the integrated model can simulate not only surface processes, but also groundwater processes and surface water-groundwater interaction processes (including groundwater flow, river-groundwater interaction, and groundwater interaction with external watersheds). The developed model was applied to two New Zealand catchments with different hydro-geological and climate characteristics (Pareora catchment in the Canterbury Plains and Grey catchment on the West Coast). Previous studies have documented strong interactions between the river and groundwater, based on the analysis of a large number of concurrent flow measurements and associated information along the river main stem. Application of the integrated hydrological model indicates flow simulation (compared to the original hydrological model conceptualisation) during low flow conditions are significantly improved and further insights on local river dynamics are gained. Due to its conceptual characteristics and low level of data requirement, the integrated model could be used at local and national scales to improve the simulation of hydrological processes in non-topographically driven areas (where groundwater processes are important), and to assess impact of climate change on the integrated hydrological cycle in these areas.
NASA Astrophysics Data System (ADS)
Versini, Pierre-Antoine; Tchiguirinskaia, Ioulia; Schertzer, Daniel
2017-04-01
Green roofs are commonly considered as efficient tools to mitigate urban runoff as they can store precipitation, and consequently provide retention and detention performances. Designed as a compromise between water holding capacity, weight and hydraulic conductivity, their substrate is usually an artificial media differentiating significantly from a traditional soil. In order to assess green roofs hydrological performances, many models have been developed. Classified into two categories (conceptual and physically based), they are usually applied to reproduce the discharge of a particular monitored green roof considered as homogeneous. Although the resulted simulations could be satisfactory, the question of robustness and consistency of the calibrated parameters is often not addressed. Here, a modeling framework has been developed to assess the efficiency and the robustness of both modelling approaches (conceptual and physically based) in reproducing green roof hydrological behaviour. SWMM and VS2DT models have been used for this purpose. This work also benefits from an experimental setup where several green roofs differentiated by their substrate thickness and vegetation cover are monitored. Based on the data collected for several rainfall events, it has been studied how the calibrated parameters are effectively linked to their physical properties and how they can vary from one green roof configuration to another. Although both models reproduce correctly the observed discharges in most of the cases, their calibrated parameters exhibit a high inconsistency. For a same green roof configuration, these parameters can vary significantly from one rainfall event to another, even if they are supposed to be linked to the green roof characteristics (roughness, residual moisture content for instance). They can also be different from one green roof configuration to another although the implemented substrate is the same. Finally, it appears very difficult to find any relationship between the calibrated parameters supposed to represent similar characteristics in both models (porosity, hydraulic conductivity). These results illustrate the difficulty to reproduce the hydrological behaviour of such an artificial media constituting green roof substrate. They justify the development of new methods able to take to into account the spatial heterogeneity of the substrate for instance.
Organic unity theory: an integrative mind-body theory for psychiatry.
Goodman, A
1997-12-01
The potential of psychiatry as an integrative science has been impeded by an internal schism that derives from the duality of mental and physical. Organic unity theory is proposed as a conceptual framework that brings together the terms of the mind-body duality in one coherent perspective. Organic unity theory is braided of three strands: identity, which describes the relationship between mentally described events and corresponding physically described events; continuity, which describes the linguistic-conceptual system that contains both mental and physical terms; and dialectic, which describes the relationship between the empirical way of knowing that is associated with the physical domain of the linguistic-conceptual system and the hermeneutic way of knowing that is associated with the mental domain. Each strand represents an integrative formulation that resolves an aspect of mental-physical dualism into an underlying unity. After the theory is presented, its implications for psychiatry are briefly considered.
The PROactive innovative conceptual framework on physical activity
Dobbels, Fabienne; de Jong, Corina; Drost, Ellen; Elberse, Janneke; Feridou, Chryssoula; Jacobs, Laura; Rabinovich, Roberto; Frei, Anja; Puhan, Milo A.; de Boer, Willem I.; van der Molen, Thys; Williams, Kate; Pinnock, Hillary; Troosters, Thierry; Karlsson, Niklas; Kulich, Karoly; Rüdell, Katja; Brindicci, Caterina; Higenbottam, Tim; Troosters, Thierry; Dobbels, Fabienne; Decramer, Marc; Tabberer, Margaret; Rabinovich, Roberto A; MacNee, William; Vogiatzis, Ioannis; Polkey, Michael; Hopkinson, Nick; Garcia-Aymerich, Judith; Puhan, Milo; Frei, Anja; van der Molen, Thys; de Jong, Corina; de Boer, Pim; Jarrod, Ian; McBride, Paul; Kamel, Nadia; Rudell, Katja; Wilson, Frederick J.; Ivanoff, Nathalie; Kulich, Karoly; Glendenning, Alistair; Karlsson, Niklas X.; Corriol-Rohou, Solange; Nikai, Enkeleida; Erzen, Damijan
2014-01-01
Although physical activity is considered an important therapeutic target in chronic obstructive pulmonary disease (COPD), what “physical activity” means to COPD patients and how their perspective is best measured is poorly understood. We designed a conceptual framework, guiding the development and content validation of two patient reported outcome (PRO) instruments on physical activity (PROactive PRO instruments). 116 patients from four European countries with diverse demographics and COPD phenotypes participated in three consecutive qualitative studies (63% male, age mean±sd 66±9 years, 35% Global Initiative for Chronic Obstructive Lung Disease stage III–IV). 23 interviews and eight focus groups (n = 54) identified the main themes and candidate items of the framework. 39 cognitive debriefings allowed the clarity of the items and instructions to be optimised. Three themes emerged, i.e. impact of COPD on amount of physical activity, symptoms experienced during physical activity, and adaptations made to facilitate physical activity. The themes were similar irrespective of country, demographic or disease characteristics. Iterative rounds of appraisal and refinement of candidate items resulted in 30 items with a daily recall period and 34 items with a 7-day recall period. For the first time, our approach provides comprehensive insight on physical activity from the COPD patients’ perspective. The PROactive PRO instruments’ content validity represents the pivotal basis for empirically based item reduction and validation. PMID:25034563
The PROactive innovative conceptual framework on physical activity.
Dobbels, Fabienne; de Jong, Corina; Drost, Ellen; Elberse, Janneke; Feridou, Chryssoula; Jacobs, Laura; Rabinovich, Roberto; Frei, Anja; Puhan, Milo A; de Boer, Willem I; van der Molen, Thys; Williams, Kate; Pinnock, Hillary; Troosters, Thierry; Karlsson, Niklas; Kulich, Karoly; Rüdell, Katja
2014-11-01
Although physical activity is considered an important therapeutic target in chronic obstructive pulmonary disease (COPD), what "physical activity" means to COPD patients and how their perspective is best measured is poorly understood. We designed a conceptual framework, guiding the development and content validation of two patient reported outcome (PRO) instruments on physical activity (PROactive PRO instruments). 116 patients from four European countries with diverse demographics and COPD phenotypes participated in three consecutive qualitative studies (63% male, age mean±sd 66±9 years, 35% Global Initiative for Chronic Obstructive Lung Disease stage III-IV). 23 interviews and eight focus groups (n = 54) identified the main themes and candidate items of the framework. 39 cognitive debriefings allowed the clarity of the items and instructions to be optimised. Three themes emerged, i.e. impact of COPD on amount of physical activity, symptoms experienced during physical activity, and adaptations made to facilitate physical activity. The themes were similar irrespective of country, demographic or disease characteristics. Iterative rounds of appraisal and refinement of candidate items resulted in 30 items with a daily recall period and 34 items with a 7-day recall period. For the first time, our approach provides comprehensive insight on physical activity from the COPD patients' perspective. The PROactive PRO instruments' content validity represents the pivotal basis for empirically based item reduction and validation. ©ERS 2014.
Pechak, Celia M; Black, Jill D
2014-02-01
Increasingly physical therapist students complete part of their clinical training outside of their home country. This trend is understudied. The purposes of this study were to: (1) explore, in depth, various international clinical education (ICE) programs; and (2) determine whether the Conceptual Model of Optimal International Service-Learning (ISL) could be applied or adapted to represent ICE. Qualitative content analysis was used to analyze ICE programs and consider modification of an existing ISL conceptual model for ICE. Fifteen faculty in the United States currently involved in ICE were interviewed. The interview transcriptions were systematically analyzed by two researchers. Three models of ICE practices emerged: (1) a traditional clinical education model where local clinical instructors (CIs) focus on the development of clinical skills; (2) a global health model where US-based CIs provide the supervision in the international setting, and learning outcomes emphasized global health and cultural competency; and (3) an ICE/ISL hybrid where US-based CIs supervise the students, and the foci includes community service. Additionally the data supported revising the ISL model's essential core conditions, components and consequence for ICE. The ICE conceptual model may provide a useful framework for future ICE program development and research.
Walking impairment in patients with multiple sclerosis: exercise training as a treatment option.
Motl, Robert W; Goldman, Myla D; Benedict, Ralph H B
2010-11-16
Multiple sclerosis (MS) is a chronic disease of the central nervous system that culminates in the progression of physical and cognitive disability over time. Walking impairment is a ubiquitous feature of MS and a sentinel characteristic of the later or advanced stages of the disease. This paper presents a conceptual rationale along with empirical evidence for exercise training as a rehabilitation approach for managing walking impairment and improving walking function in persons with MS. Conceptually, MS is associated with a decrease in physical activity, which, in turn, can result in deconditioning across multiple domains of physiological functioning. The resulting deconditioning feeds back and further drives physical inactivity until a threshold is reached that likely initiates the progression of walking impairment in MS. Empirically, physical activity and exercise training have been associated with beneficial effects on walking function in persons with MS. This is based on cross-sectional, longitudinal, and experimental research that included diversity in the breadth of measures of walking, persons with MS, and exercise/physical activity characteristics. Of particular importance, future researchers might consider examining the combinatory effects of exercise training plus pharmacological agents on walking mobility in MS. Collectively, exercise training and physical activity might hold significant potential for the management of progressive mobility disability in MS.
Investigating and improving introductory physics students’ understanding of electric flux
NASA Astrophysics Data System (ADS)
Li, Jing; Singh, Chandralekha
2018-07-01
A solid grasp of the concept of electric flux is an important pre-requisite for appropriate use of Gauss’s law in solving electrostatics problems. As part of a broader investigation focusing on improving understanding of electrostatics concepts, we investigated the conceptual difficulties of college students in a traditionally taught calculus-based introductory physics course with the concept of electric flux and then the research on student difficulties was used as a guide in the development and evaluation of a research-validated tutorial which strives to help students learn this concept better. During the investigation of difficulties and the design and validation of the guided inquiry-based tutorial, college students in a calculus-based introductory physics course were given written questions to probe the common conceptual difficulties with the electric flux related concepts, and we also interviewed a subset of those students to get an in-depth account of the reasons behind the conceptual difficulties. The guided inquiry-based learning sequences in the tutorial were also iterated several times with instructors who regularly teach these courses. Here we discuss the common student difficulties with the electric flux found in our investigations, and the development and validation of a tutorial that strives to improve student understanding. We analyse how students performed on the pre-test (administered before the electric flux tutorial but after traditional instruction in the electric flux concepts) and on the post-test (administered after students in the tutorial group had engaged with the electric flux related tutorial). The performance of students in all sections of the course was comparable on the pre-test regardless of who taught that section. However, on the post-test, the performance of those in the sections of the course in which students engaged with the tutorial is significantly better that the section in which the tutorial was not used.
NASA Astrophysics Data System (ADS)
Huda, C.; Hudha, M. N.; Ain, N.; Nandiyanto, A. B. D.; Abdullah, A. G.; Widiaty, I.
2018-01-01
Computer programming course is theoretical. Sufficient practice is necessary to facilitate conceptual understanding and encouraging creativity in designing computer programs/animation. The development of tutorial video in an Android-based blended learning is needed for students’ guide. Using Android-based instructional material, students can independently learn anywhere and anytime. The tutorial video can facilitate students’ understanding about concepts, materials, and procedures of programming/animation making in detail. This study employed a Research and Development method adapting Thiagarajan’s 4D model. The developed Android-based instructional material and tutorial video were validated by experts in instructional media and experts in physics education. The expert validation results showed that the Android-based material was comprehensive and very feasible. The tutorial video was deemed feasible as it received average score of 92.9%. It was also revealed that students’ conceptual understanding, skills, and creativity in designing computer program/animation improved significantly.
Keller, Colleen; Affuso, Oliva; Ainsworth, Barbara E.
2016-01-01
Background African American women perform low levels of physical activity and are disproportionally burdened by associated cardiometabolic disease conditions (i.e. 57% are obese, 49% have cardiovascular disease) The marked health disparities among African American women indicate the need for innovative strategies to promote physical activity to help attenuate the chronic disease health disparities in this high-risk population. Culturally tailoring PA programs to address the sociocultural norms, values, beliefs, and behaviors of African American women is an advantageous strategy to enhance physical activity promotion efforts. The purpose of this article is to discuss critical aspects for researchers to consider when designing physical activity programs for African American women and to present a conceptual framework to guide intervention development. Methods Development of the framework was based on our previous physical activity research with African American women, seminal literature on the topics of cultural adaptation and health promotion, sociological and theoretical perspectives on the role of women in African American culture, and key determinants of physical activity engagement among African American women. Results Three key concepts are discussed in the conceptual framework: 1) Developmental milestones and life stage transitions of African American women, 2) Historical, social and cultural influences associated with physical activity engagement, and 3) Intervention delivery strategies. Discussion Using the framework to guide intervention development has the potential to enhance the physical activity and health outcomes of a physical activity program for African American women. PMID:27178447
Dimensions of Temperamental Activity Level and Adjustment
ERIC Educational Resources Information Center
Teglasi, Hedwig; French, Mila; Lohr, Lauren; Miller, Karen J.; Erwin, Holly Drewer; Rothman, Lee; Denny, Michelle
2008-01-01
The relationship between children's activity level and adjustment has been based on a one-dimensional conceptualization of activity level and warrants re-examination. Current questionnaires conflate amount of physical movement with its appropriateness to the context, making it impossible to tell which aspect of activity level accounts for its…
Preliminary Investigation of Instructor Effects on Gender Gap in Introductory Physics
ERIC Educational Resources Information Center
Kreutzer, Kimberley; Boudreaux, Andrew
2012-01-01
Gender differences in student learning in the introductory, calculus-based electricity and magnetism course were assessed by administering the Conceptual Survey of Electricity and Magnetism pre- and postcourse. As expected, male students outgained females in traditionally taught sections as well as sections that incorporated interactive engagement…
Inquiry in the Physical Geology Classroom: Supporting Students' Conceptual Model Development
ERIC Educational Resources Information Center
Miller, Heather R.; McNeal, Karen S.; Herbert, Bruce E.
2010-01-01
This study characterizes the impact of an inquiry-based learning (IBL) module versus a traditionally structured laboratory exercise. Laboratory sections were randomized into experimental and control groups. The experimental group was taught using IBL pedagogical techniques and included manipulation of large-scale data-sets, use of multiple…
ERIC Educational Resources Information Center
Vartiainen, Henriikka; Enkenberg, Jorma
2013-01-01
Sociocultural approaches emphasize the systemic, context-bound nature of learning, which is mediated by other people, physical and conceptual artifacts, and tools. However, current educational systems tend not to approach learning from the systemic perspective, and mostly situate learning within classroom environments. This design-based research…
A Conceptual Model of Structured Support in Physical Education
ERIC Educational Resources Information Center
Hinton, Vanessa; Buchanan, Alice M.; Rudisill, Mary
2016-01-01
Schools implement Positive Behavior Intervention and Supports (PBIS) as a way of meeting students' needs in classrooms. PBIS focuses on tiered instruction. Tiered instruction is a teaching strategy in which the educator implements incremental changes that increase supports based on students' needs--academic or behavioral. Yet, tiered instruction…
Analyzing Learning during Peer Instruction Dialogues: A Resource Activation Framework
ERIC Educational Resources Information Center
Wood, Anna K.; Galloway, Ross K.; Hardy, Judy; Sinclair, Christine M.
2014-01-01
Peer Instruction (PI) is an evidence based pedagogy commonly used in undergraduate physics instruction. When asked questions designed to test conceptual understanding, it has been observed that the proportion of students choosing the correct answer increases following peer discussion; however, relatively little is known about what takes place…
NASA Astrophysics Data System (ADS)
Ramlo, Susan E.
Microcomputer-based laboratories (MBLs) have been defined as software that uses an electronic probe to collect information about a physical system and then converts that information into graphical systems in real-time. Realtime Physics Laboratories (RTP) are an example of laboratories that combine the use of MBLs with collaboration and guided-inquiry. RTP Mechanics Laboratories include both laboratory activities and laboratory homework for the first semester of college freshman physics courses. Prior research has investigated the effectiveness of the RTP laboratories as a package (laboratory activities with laboratory homework). In this study, an experimental-treatment had students complete both the RTP laboratory activity and the associated laboratory homework during the same laboratory period. Observations of this treatment indicated that students primarily consulted the laboratory instructor and referred to their completed laboratory activity while completing the homework in their collaborative groups. In the control-treatment, students completed the laboratory homework outside the laboratory period. Measures of force and motion conceptual understanding included the Force and Motion Conceptual Understanding (FMCE), a 47 multiple-choice question test. Analyses of the FMCE indicated that it is both a reliable and a valid measure of force and motion conceptual understanding. A distinct, five-factor structure for the FMCE post-test answers reflected specific concepts related to force and motion. However, the three FMCE pretest factors were less distinct. Analysis of the experimental-treatment, compared to a control-treatment, included multiple regression analysis with covariates of age, prior physics-classroom experience, and the three FMCE pretest factors. Criterion variables included each of the five post-test factors, the total laboratory homework score, and a group of seven exam questions. The results were all positive, in favor of the experimental-treatment. However, the results were significant only with the criterions of the FMCE post-test factor "Concepts Regarding Newton's First and Second Laws" and the laboratory homework score. The interaction between the treatments and prior physics-classroom experience was not significant. Implications of the qualitative and quantitative findings are discussed.
NASA Astrophysics Data System (ADS)
Brinson, James R.
The current study compared the effects of virtual versus physical laboratory manipulatives on 84 undergraduate non-science majors' (a) conceptual understanding of density and (b) density-related inquiry skill acquisition. A pre-post comparison study design was used, which incorporated all components of an inquiry-guided classroom, except experimental mode, and which controlled for curriculum, instructor, instructional method, time spent on task, and availability of reference resources. Participants were randomly assigned to either a physical or virtual lab group. Pre- and post-assessments of conceptual understanding and inquiry skills were administered to both groups. Paired-samples t tests revealed a significant mean percent correct score increase for conceptual understanding in both the physical lab group (M = .103, SD = .168), t(38) = -3.82, p < .001, r = .53, two-tailed, and the virtual lab group (M = .084, SD = .177), t(44) = -3.20, p = .003, r = .43, two-tailed. However, a one-way ANCOVA (using pretest scores as the covariate) revealed that the main effect of lab group on conceptual learning gains was not significant, F(1, 81) = 0.081, p = .776, two-tailed. An omnibus test of model coefficients within hierarchical logistic regression revealed that a correct response on inquiry pretest scores was not a significant predictor of a correct post-test response, chi 2(1, N = 84) = 1.68, p = .195, and that when lab mode was added to the model, it did not significantly increase the model's predictive ability, chi2(2, N = 84) = 1.95, p = .377. Thus, the data in the current study revealed no significant difference in the effect of physical versus virtual manipulatives when used to teach conceptual understanding and inquiry skills related to density.
The role of language in learning physics
NASA Astrophysics Data System (ADS)
Brookes, David T.
Many studies in PER suggest that language poses a serious difficulty for students learning physics. These difficulties are mostly attributed to misunderstanding of specialized terminology. This terminology often assigns new meanings to everyday terms used to describe physical models and phenomena. In this dissertation I present a novel approach to analyzing of the role of language in learning physics. This approach is based on the analysis of the historical development of physics ideas, the language of modern physicists, and students' difficulties in the areas of quantum mechanics, classical mechanics, and thermodynamics. These data are analyzed using linguistic tools borrowed from cognitive linguistics and systemic functional grammar. Specifically, I combine the idea of conceptual metaphor and grammar to build a theoretical framework that accounts for: (1) the role and function that language serves for physicists when they speak and reason about physical ideas and phenomena, (2) specific features of students' reasoning and difficulties that may be related to or derived from language that students read or hear. The theoretical framework is developed using the methodology of a grounded theoretical approach. The theoretical framework allows us to make predictions about the relationship between student discourse and their conceptual and problem solving difficulties. Tests of the theoretical framework are presented in the context of "heat" in thermodynamics and "force" in dynamics. In each case the language that students use to reason about the concepts of "heat" and "force" is analyzed using the theoretical framework. The results of this analysis show that language is very important in students' learning. In particular, students are (1) using features of physicists' conceptual metaphors to reason about physical phenomena, often overextending and misapplying these features, (2) drawing cues from the grammar of physicists' speech and writing to categorize physics concepts; this categorization of physics concepts plays a key role in students' ability to solve physics problems. In summary, I present a theoretical framework that provides a possible explanation of the role that language plays in learning physics. The framework also attempts to account for how and why physicists' language influences students in the way that it does.
Cross-Grade Comparison of Students' Conceptual Understanding with Lenses in Geometric Optics
ERIC Educational Resources Information Center
Tural, G.
2015-01-01
Students commonly find the field of physics difficult. Therefore, they generally have learning problems. One of the subjects with which they have difficulties is optics within a physics discipline. This study aims to determine students' conceptual understanding levels at different education levels relating to lenses in geometric optics. A…
Experimenting with Impacts in a Conceptual Physics or Descriptive Astronomy Laboratory
ERIC Educational Resources Information Center
LoPresto, Michael C.
2016-01-01
What follows is a description of the procedure for and results of a simple experiment on the formation of impact craters designed for the laboratory portions of lower mathematical-level general education science courses such as conceptual physics or descriptive astronomy. The experiment provides necessary experience with data collection and…
Teaching Newton's Laws with the iPod Touch in Conceptual Physics
ERIC Educational Resources Information Center
Kelly, Angela M.
2011-01-01
One of the greatest challenges in teaching physics is helping students achieve a conceptual understanding of Newton's laws. I find that students fresh from middle school can sometimes recite the laws verbatim ("An object in motion stays in motion..." and "For every action..."), but they rarely demonstrate a working knowledge of…
ERIC Educational Resources Information Center
Ding, Lin
2014-01-01
This study seeks to test the causal influences of reasoning skills and epistemologies on student conceptual learning in physics. A causal model, integrating multiple variables that were investigated separately in the prior literature, is proposed and tested through path analysis. These variables include student preinstructional reasoning skills…
Three Examples of Kinesiology in Physical Education: Why, How, and for Whom?
ERIC Educational Resources Information Center
Locke, Lawrence F.
2008-01-01
This article examines three distinctly different approaches to the task of helping public school teachers inject conceptual content into their physical education lessons. The first strategy is the production of a textbook prepared by one or several individuals. Such books typically espouse the desirability of including conceptual content, describe…
Bend or Break: Your IQ Is Not Your Identity
ERIC Educational Resources Information Center
Hasan, Melissa R
2013-01-01
Melissa Hasan believes that Conceptual Physics saved her sanity. A seemingly unimportant metallurgical fact she learned in high school has made parenting her toddler possible on most days. The most important thing she learned in High School from Conceptual Physics, and Interpersonal Relationships was that what is rigid breaks. In high school, she…
Exploring the gender gap in the conceptual survey of electricity and magnetism
NASA Astrophysics Data System (ADS)
Henderson, Rachel; Stewart, Gay; Stewart, John; Michaluk, Lynnette; Traxler, Adrienne
2017-12-01
The "gender gap" on various physics conceptual evaluations has been extensively studied. Men's average pretest scores on the Force Concept Inventory and Force and Motion Conceptual Evaluation are 13% higher than women's, and post-test scores are on average 12% higher than women's. This study analyzed the gender differences within the Conceptual Survey of Electricity and Magnetism (CSEM) in which the gender gap has been less well studied and is less consistent. In the current study, data collected from 1407 students (77% men, 23% women) in a calculus-based physics course over ten semesters showed that male students outperformed female students on the CSEM pretest (5%) and post-test (6%). Separate analyses were conducted for qualitative and quantitative problems on lab quizzes and course exams and showed that male students outperformed female students by 3% on qualitative quiz and exam problems. Male and female students performed equally on the quantitative course exam problems. The gender gaps within CSEM post-test scores, qualitative lab quiz scores, and qualitative exam scores were insignificant for students with a CSEM pretest score of 25% or less but grew as pretest scores increased. Structural equation modeling demonstrated that a latent variable, called Conceptual Physics Performance/Non-Quantitative (CPP/NonQnt), orthogonal to quantitative test performance was useful in explaining the differences observed in qualitative performance; this variable was most strongly related to CSEM post-test scores. The CPP/NonQnt of male students was 0.44 standard deviations higher than female students. The CSEM pretest measured CPP/NonQnt much less accurately for women (R2=4 % ) than for men (R2=17 % ). The failure to detect a gender gap for students scoring 25% or less on the pretest suggests that the CSEM instrument itself is not gender biased. The failure to find a performance difference in quantitative test performance while detecting a gap in qualitative performance suggests the qualitative differences do not result from psychological factors such as science anxiety or stereotype threat.
Can one puff really make an adolescent addicted to nicotine? A critical review of the literature
2010-01-01
Rationale In the past decade, there have been various attempts to understand the initiation and progression of tobacco smoking among adolescents. One line of research on these issues has made strong claims regarding the speed in which adolescents can become physically and mentally addicted to smoking. According to these claims, and in contrast to other models of smoking progression, adolescents can lose autonomy over their smoking behavior after having smoked one puff in their lifetime and never having smoked again, and can become mentally and physically "hooked on nicotine" even if they have never smoked a puff. Objectives To critically examine the conceptual and empirical basis for the claims made by the "hooked on nicotine" thesis. Method We reviewed the major studies on which the claims of the "hooked on nicotine" research program are based. Results The studies we reviewed contained substantive conceptual and methodological flaws. These include an untenable and idiosyncratic definition of addiction, use of single items or of very lenient criteria for diagnosing nicotine dependence, reliance on responders' causal attributions in determining physical and mental addiction to nicotine and biased coding and interpretation of the data. Discussion The conceptual and methodological problems detailed in this review invalidate many of the claims made by the "hooked on nicotine" research program and undermine its contribution to the understanding of the nature and development of tobacco smoking in adolescents. PMID:21067587
Health and wellness: a conceptual differentiation.
Greenberg, J S
1985-12-01
Confusion exists regarding the terms health and wellness. This article presents a conceptualization of health as consisting of social, mental, emotional, spiritual, and physical components; a conceptualization of wellness as the integration of these components; and a conceptualization of high-level wellness as the balance of these components. Implications of these conceptualizations for health education are presented. Iatrogenic health education disease is discussed and a distinction is made between health education and health indoctrination.
Jesus, Tiago S; Bright, Felicity; Kayes, Nicola; Cott, Cheryl A
2016-07-19
Person-centredness is a philosophy for organising and delivering healthcare based on patients' needs, preferences and experiences. Although widely endorsed, the concept suffers from a lack of detail and clarification, in turn accounting for ambiguous implementation and outcomes. While a conceptual framework based on a systematic review defines person/patient-centred care components (Scholl et al, 2014), it applies across healthcare contexts and may not be sensitive to the nuances of the rehabilitation of adults with physical impairments. Accordingly, this study aims to build a conceptual framework, based on existing literature, of what person-centredness means in the rehabilitation of adults with physical impairments in the clinical encounter and broader health service delivery. We will use a scoping review methodology. Searches on relevant databases will be conducted first, combining keywords for 'rehabilitation', 'person-centered' and associated terms (including patient preferences/experiences). Next, snowball searches (citation tracking, references lists) will be performed. Papers will be included if they fall within predefined selection categories (seen as most likely informative on elements pertaining to person-centred rehabilitation) and are written in English, regardless of design (conceptual, qualitative, quantitative). Two reviewers will independently screen titles and abstracts, followed by screening of the full text to determine inclusion. Experts will then be consulted to identify relevant missing papers. This can include elements other than the peer-reviewed literature (eg, book chapters, policy/legal papers). Finally, information that helps to build the concept and practice of person-centred rehabilitation will be abstracted independently by two reviewers and analysed by inductive thematic analysis to build the conceptual framework. The resulting framework will aid clarification regarding person-centred rehabilitation, which in turn is expected to conceptually ground and inform its operationalisation (eg, measurement, implementation, improvement). Findings will be disseminated through local, national and international stakeholders, both at the clinical and service organisation levels. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
PhET: Interactive Simulations for Teaching and Learning Physics
NASA Astrophysics Data System (ADS)
Perkins, Katherine; Adams, Wendy; Dubson, Michael; Finkelstein, Noah; Reid, Sam; Wieman, Carl; LeMaster, Ron
2006-01-01
The Physics Education Technology (PhET) project creates useful simulations for teaching and learning physics and makes them freely available from the PhET website (http://phet.colorado.edu). The simulations (sims) are animated, interactive, and game-like environments in which students learn through exploration. In these sims, we emphasize the connections between real-life phenomena and the underlying science, and seek to make the visual and conceptual models of expert physicists accessible to students. We use a research-based approach in our design—incorporating findings from prior research and our own testing to create sims that support student engagement with and understanding of physics concepts.
NASA Astrophysics Data System (ADS)
2015-10-01
I think and hope that most experienced physics and astronomy teachers would agree that teaching is both a science and a creative art. There is a way to creatively introduce vectors into introductory astronomy that lets students learn some basic, but fundamental, physics and at the same time demonstrates that mathematics need not be a barrier in a science course. The approach is entirely graphical in that it is based on the geometric properties of vectors and is implemented by drawing diagrams. Despite the simplicity, it allows astronomy students to experience genuine physics reasoning at about the same level of a conceptual physics course (and possibly a higher level).
Holtermann, Andreas; Jørgensen, Marie B; Gram, Bibi; Christensen, Jeanette R; Faber, Anne; Overgaard, Kristian; Ektor-Andersen, John; Mortensen, Ole S; Sjøgaard, Gisela; Søgaard, Karen
2010-03-09
A mismatch between individual physical capacities and physical work demands enhance the risk for musculoskeletal disorders, poor work ability and sickness absence, termed physical deterioration. However, effective intervention strategies for preventing physical deterioration in job groups with high physical demands remains to be established. This paper describes the background, design and conceptual model of the FINALE programme, a framework for health promoting interventions at 4 Danish job groups (i.e. cleaners, health-care workers, construction workers and industrial workers) characterized by high physical work demands, musculoskeletal disorders, poor work ability and sickness absence. A novel approach of the FINALE programme is that the interventions, i.e. 3 randomized controlled trials (RCT) and 1 exploratory case-control study are tailored to the physical work demands, physical capacities and health profile of workers in each job-group. The RCT among cleaners, characterized by repetitive work tasks and musculoskeletal disorders, aims at making the cleaners less susceptible to musculoskeletal disorders by physical coordination training or cognitive behavioral theory based training (CBTr). Because health-care workers are reported to have high prevalence of overweight and heavy lifts, the aim of the RCT is long-term weight-loss by combined physical exercise training, CBTr and diet. Construction work, characterized by heavy lifting, pushing and pulling, the RCT aims at improving physical capacity and promoting musculoskeletal and cardiovascular health. At the industrial work-place characterized by repetitive work tasks, the intervention aims at reducing physical exertion and musculoskeletal disorders by combined physical exercise training, CBTr and participatory ergonomics. The overall aim of the FINALE programme is to improve the safety margin between individual resources (i.e. physical capacities, and cognitive and behavioral skills) and physical work demands, and thereby reduce the physical deterioration in a long term perspective by interventions tailored for each respective job-group. The FINALE programme has the potential to provide evidence-based knowledge of significant importance for public health policy and health promotion strategies for employees at high risk for physical deterioration. ISRCTN96241850, NCT01015716 and NCT01007669.
2010-01-01
Background A mismatch between individual physical capacities and physical work demands enhance the risk for musculoskeletal disorders, poor work ability and sickness absence, termed physical deterioration. However, effective intervention strategies for preventing physical deterioration in job groups with high physical demands remains to be established. This paper describes the background, design and conceptual model of the FINALE programme, a framework for health promoting interventions at 4 Danish job groups (i.e. cleaners, health-care workers, construction workers and industrial workers) characterized by high physical work demands, musculoskeletal disorders, poor work ability and sickness absence. Methods/Design A novel approach of the FINALE programme is that the interventions, i.e. 3 randomized controlled trials (RCT) and 1 exploratory case-control study are tailored to the physical work demands, physical capacities and health profile of workers in each job-group. The RCT among cleaners, characterized by repetitive work tasks and musculoskeletal disorders, aims at making the cleaners less susceptible to musculoskeletal disorders by physical coordination training or cognitive behavioral theory based training (CBTr). Because health-care workers are reported to have high prevalence of overweight and heavy lifts, the aim of the RCT is long-term weight-loss by combined physical exercise training, CBTr and diet. Construction work, characterized by heavy lifting, pushing and pulling, the RCT aims at improving physical capacity and promoting musculoskeletal and cardiovascular health. At the industrial work-place characterized by repetitive work tasks, the intervention aims at reducing physical exertion and musculoskeletal disorders by combined physical exercise training, CBTr and participatory ergonomics. The overall aim of the FINALE programme is to improve the safety margin between individual resources (i.e. physical capacities, and cognitive and behavioral skills) and physical work demands, and thereby reduce the physical deterioration in a long term perspective by interventions tailored for each respective job-group. Discussion The FINALE programme has the potential to provide evidence-based knowledge of significant importance for public health policy and health promotion strategies for employees at high risk for physical deterioration. Trial registrations ISRCTN96241850, NCT01015716 and NCT01007669 PMID:20214807
The effects of surfing and the natural environment on the well-being of combat veterans.
Caddick, Nick; Smith, Brett; Phoenix, Cassandra
2015-01-01
Although researchers have identified the benefits of physical activity on well-being, there is little evidence concerning the effects of nature-based physical activity. We investigated the effect of one nature-based activity-surfing-on the well-being of combat veterans experiencing posttraumatic stress disorder (PTSD). We conducted interviews and participant observations with a group of combat veterans belonging to a United Kingdom-based veterans' surfing charity. Our primary analytical approach was dialogical narrative analysis. Based on our rigorous analysis and findings, we suggest that surfing facilitated a sense of respite from PTSD. Respite was a fully embodied feeling of release from suffering that was cultivated through surfing and shaped by the stories veterans told of their experiences. We significantly extend previous knowledge on physical activity, combat veterans, and PTSD by highlighting how nature-based physical activity, encapsulated in the conceptual notion of the "blue gym," can promote well-being among combat veterans. © The Author(s) 2014.
NASA Astrophysics Data System (ADS)
Woolnough, J. A.
1993-12-01
This paper presents an evaluation of the Physics course at Dickson College (ACT). It highlights students' expectations before the course, and their impressions and feelings during the course. This is the second evaluation carried out as part of a long term study of student attitudes before and after the introduction of a more ‘conceptual’ approach to the teaching of physics at this college. Overall, this approach has produced a more positive attitude in all students, but more significantly in girls.
Götschi, Thomas; de Nazelle, Audrey; Brand, Christian; Gerike, Regine
2017-09-01
This paper reviews the use of conceptual frameworks in research on active travel, such as walking and cycling. Generic framework features and a wide range of contents are identified and synthesized into a comprehensive framework of active travel behavior, as part of the Physical Activity through Sustainable Transport Approaches project (PASTA). PASTA is a European multinational, interdisciplinary research project on active travel and health. Along with an exponential growth in active travel research, a growing number of conceptual frameworks has been published since the early 2000s. Earlier frameworks are simpler and emphasize the distinction of environmental vs. individual factors, while more recently several studies have integrated travel behavior theories more thoroughly. Based on the reviewed frameworks and various behavioral theories, we propose the comprehensive PASTA conceptual framework of active travel behavior. We discuss how it can guide future research, such as data collection, data analysis, and modeling of active travel behavior, and present some examples from the PASTA project.
NASA Astrophysics Data System (ADS)
Bogaard, Thom; Greco, Roberto
2018-01-01
Many shallow landslides and debris flows are precipitation initiated. Therefore, regional landslide hazard assessment is often based on empirically derived precipitation intensity-duration (ID) thresholds and landslide inventories. Generally, two features of precipitation events are plotted and labeled with (shallow) landslide occurrence or non-occurrence. Hereafter, a separation line or zone is drawn, mostly in logarithmic space. The practical background of ID is that often only meteorological information is available when analyzing (non-)occurrence of shallow landslides and, at the same time, it could be that precipitation information is a good proxy for both meteorological trigger and hydrological cause. Although applied in many case studies, this approach suffers from many false positives as well as limited physical process understanding. Some first steps towards a more hydrologically based approach have been proposed in the past, but these efforts received limited follow-up.Therefore, the objective of our paper is to (a) critically analyze the concept of precipitation ID thresholds for shallow landslides and debris flows from a hydro-meteorological point of view and (b) propose a trigger-cause conceptual framework for lumped regional hydro-meteorological hazard assessment based on published examples and associated discussion. We discuss the ID thresholds in relation to return periods of precipitation, soil physics, and slope and catchment water balance. With this paper, we aim to contribute to the development of a stronger conceptual model for regional landslide hazard assessment based on physical process understanding and empirical data.
Understanding projectile acceleration.
Hecht, H; Bertamini, M
2000-04-01
Throwing and catching balls or other objects is a generally highly practiced skill; however, conceptual as well as perceptual understanding of the mechanics that underlie this skill is surprisingly poor. In 5 experiments, we investigated conceptual and perceptual understanding of simple ballistic motion. Paper-and-pencil tests revealed that up to half of all participants mistakenly believed that a ball would continue to accelerate after it left the thrower's hand. Observers also showed a remarkable tolerance for anomalous trajectory shapes. Perceptual judgments based on graphics animations replicated these erroneous beliefs for shallow release angles. Observers' tolerance for anomalies tended to decrease with their distance from the actor. The findings are at odds with claims of the naive physics literature that liken intuitive understanding to Aristotelian or medieval physics theories. Instead, observers seem to project their intentions to the ball itself (externalization) or even feel that they have power over the ball when it is still close.
Sensemaking: Conceptualizing and Coding for “Good” Student Reasoning
NASA Astrophysics Data System (ADS)
Elby, Andrew; Scherr, R.; Bing, T.
2006-12-01
Physics instructors’ goals often go beyond improving students’ conceptual understanding and problem solving. Instructors also want students to engage in inquiry, become scientific/critical thinkers, understand the scientific process, and so on. We see two problems with these “non-content” goals. First, notions such as inquiry and scientific thinking are often defined vaguely or inconsistently across the literature. Second, even when like-minded instructors share a vision of what we’d love to see our students do, descriptions of that vision are often too squishy to communicate, debate, or assess: “We know it when we see it!” In this talk and poster, we address these problems by introducing sensemaking vs. answermaking, two mindsets with which students can approach physics. Our definitions of those notions benefit from a theoretical base, and our coding scheme for sensemaking vs. answermaking displays high interrater reliability and rests upon a list of specific indicators.
Learning in Physics by Doing Laboratory Work: Towards a New Conceptual Framework
ERIC Educational Resources Information Center
Danielsson, Anna Teresia; Linder, Cedric
2009-01-01
Drawing on a study that explores university students' experiences of doing laboratory work in physics, this article outlines a proposed conceptual framework for extending the exploration of the gendered experience of learning. In this framework situated cognition and post-structural gender theory are merged together. By drawing on data that aim at…
The Relative Effectiveness of Integrated Reading Study Strategy and Conceptual Physics Approach
ERIC Educational Resources Information Center
Taslidere, Erdal; Eryilmaz, Ali
2012-01-01
The primary purpose of this study was to investigate the combined and partial effects of the Integrated Reading/Study Strategy and Conceptual Physics Approach on ninth grade private high school students' achievement in and attitudes toward optics. The Integrated Reading/Study Strategy is a new strategy which was developed by integrating previously…
ERIC Educational Resources Information Center
Dega, Bekele Gashe; Kriek, Jeanne; Mogese, Temesgen Fereja
2013-01-01
The purpose of this study was to investigate Ethiopian physics undergraduate students' conceptual change in the concepts of electric potential and energy (EPE) and electromagnetic induction (EMI). A quasi-experimental design was used to study the effect of cognitive perturbation using physics interactive simulations (CPS) in relation to cognitive…
A Conceptual Physical Education Course and College Freshmen's Health-Related Fitness
ERIC Educational Resources Information Center
Liu, Jingwen; Shangguan, Rulan; Keating, Xiaofen D.; Leitner, Jessica; Wu, Yigang
2017-01-01
Purpose: Conceptual physical education (CPE) classes have been widely offered to promote a healthy lifestyle in higher education settings. The purpose of this paper is to examine the effects of a CPE course on health-related fitness (HRF) levels among college freshmen. Design/methodology/approach: A pre- and post-test research design was used. In…
Effects of Re-Using a Conceptual Examination Question in Physics
ERIC Educational Resources Information Center
Sharma, Manjula D.; Sefton, Ian M.; Cole, Martyn; Whymark, Aaron; Millar, Rosemary M.; Smith, Andrew
2005-01-01
We report on a study of what happened when we recycled a conceptual examination question in a first-year university physics course. The question, which was used for three consecutive years, asked about an astronaut's experience of weighing in an orbiting space-craft. The original intention was to use a phenomenographic approach to look for…
Concept Development in Learning Physics: The Case of Electric Current and Voltage Revisited
ERIC Educational Resources Information Center
Koponen, Ismo T.; Huttunen, Laura
2013-01-01
In learning conceptual knowledge in physics, a common problem is the development and differentiation of concepts in the learning process. An important part of this development process is the re-organisation or re-structuring process in which students' conceptual knowledge and concepts change. This study proposes a new view of concept…
Stygar, William A.; Reisman, David B.; Stoltzfus, Brian S.; ...
2016-07-07
In this study, we have developed a conceptual design of a next-generation pulsed-power accelerator that is optmized for driving megajoule-class dynamic-material-physics experiments at pressures as high as 1 TPa. The design is based on an accelerator architecture that is founded on three concepts: single-stage electrical-pulse compression, impedance matching, and transit-time-isolated drive circuits. Since much of the accelerator is water insulated, we refer to this machine as Neptune. The prime power source of Neptune consists of 600 independent impedance-matched Marx generators. As much as 0.8 MJ and 20 MA can be delivered in a 300-ns pulse to a 16-mΩ physics load;more » hence Neptune is a megajoule-class 20-MA arbitrary waveform generator. Neptune will allow the international scientific community to conduct dynamic equation-of-state, phase-transition, mechanical-property, and other material-physics experiments with a wide variety of well-defined drive-pressure time histories. Because Neptune can deliver on the order of a megajoule to a load, such experiments can be conducted on centimeter-scale samples at terapascal pressures with time histories as long as 1 μs.« less
Sabzi Khoshnami, Mohammad; Mohammadi, Elham; Addelyan Rasi, Hamideh; Khankeh, Hamid Reza; Arshi, Maliheh
2017-05-01
Acid attack, a worldwide phenomenon, has been increasing in recent years. In addition to severe injuries to the face and body, such violence leads to psychological and social problems that affect the survivors' quality of life. The present study provides a more in-depth understanding of this phenomenon and explores the nature and dimensions of acid attacks based on survivors' experiences. A grounded theory study using semi-structured, recorded interviews and applying purposeful theoretical sampling was conducted with 12 acid attack survivors in Iran. Data were analysed using constant comparison in open, axial and selective coding stages. A conceptual model was developed to explain the relationships among the main categories extracted through the grounded theory study. Physical and psychological wounds emerged as a core category. Traditional context and extreme beauty value in society acted as the context of the physical and psychological wounds experienced. Living with a drug abuser with behavioural disorders and lack of problem-solving skills in interpersonal conflict were found to be causal conditions. Action strategies to deal with this experience were found to be composed of individual, interpersonal and structural levels. Education, percentage and place of burning acted as intervening conditions that influenced survivors' strategies. Finally, adverse consequences of social deprivation and feeling helpless and hindered were found to have an important impact. Acid attack lead to physical and psychological wounds in survivors. This is a multi-dimensional phenomenon involving illness, disability, and victimization, and requires a wide range of strategies at different levels. The conceptual model derived through this study can serve as a good basis for intervention programs. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.
NASA Astrophysics Data System (ADS)
Guerra, André G. C.; Simeão Carvalho, Paulo
2016-09-01
The motion of astronomical bodies and the centre of mass of the system is not always well perceived by students. One of the struggles is the conceptual change of reference frame, which is the same that held back the acceptance of the Heliocentric model over the Geocentric one. To address the question, the notion of centre of mass, motion equations (and their numerical solution for a system of multiple bodies), and change of frame of reference is introduced. The discussion is done based on conceptual and real world examples, using the solar system. Consequently, through the use of simple ‘do it yourself’ methods and basic equations, students can debate complex motions, and have a wider and potentially effective understanding of physics.
Research-Based Assessment of Students' Beliefs about Experimental Physics: When Is Gender a Factor?
ERIC Educational Resources Information Center
Wilcox, Bethany R.; Lewandowski, H. J.
2016-01-01
The existence of gender differences in student performance on conceptual assessments and their responses to attitudinal assessments has been repeatedly demonstrated. This difference is often present in students' preinstruction responses and persists in their postinstruction responses. However, one area in which the presence of gender differences…
A Stress and Coping Approach to Intervention with Abused Women.
ERIC Educational Resources Information Center
Carlson, Bonnie E.
1997-01-01
Presents an ecological model of intervention for physical abuse based on the Lazarus and Folkman conceptualization of stress and coping. Claims that the model identifies the stages that abused women may experience in their appraisal of the abuse experience. Focuses on barriers to ending abuse, stress and coping, and effective interventions. (RJM)
Accounting for Variability in Student Responses to Motion Questions
ERIC Educational Resources Information Center
Frank, Brian W.; Kanim, Stephen E.; Gomez, Luanna S.
2008-01-01
We describe the results of an experiment conducted to test predictions about student responses to questions about motion based on an explicit model of student thinking in terms of the cuing of a variety of different physical intuitions or conceptual resources. This particular model allows us to account for observed variations in patterns of…
ERIC Educational Resources Information Center
Mudaly, Vimolan
2014-01-01
Within the South African school curriculum, the section on graphical functional relationships consists of signs which include symbols, notation and imagery. In a previous article we explored the role visualisation played in the way learners understood mathematical concepts. That paper reported on the learners' fixation with the physical features…
Designing a Visual Interface for Online Searching.
ERIC Educational Resources Information Center
Lin, Xia
1999-01-01
"MedLine Search Assistant" is a new interface for MEDLINE searching that improves both search precision and recall by helping the user convert a free text search to a controlled vocabulary-based search in a visual environment. Features of the interface are described, followed by details of the conceptual design and the physical design of…
Applying the Socratic Method to Physics Education
NASA Astrophysics Data System (ADS)
Corcoran, Ed
2005-04-01
We have restructured University Physics I and II in accordance with methods that PER has shown to be effective, including a more interactive discussion- and activity-based curriculum based on the premise that developing understanding requires an interactive process in which students have the opportunity to talk through and think through ideas with both other students and the teacher. Studies have shown that in classes implementing this approach to teaching as compared to classes using a traditional approach, students have significantly higher gains on the Force Concept Inventory (FCI). This has been true in UPI. However, UPI FCI results seem to suggest that there is a significant conceptual hole in students' understanding of Newton's Second Law. Two labs in UPI which teach Newton's Second Law will be redesigned replacing more activity with students as a group talking through, thinking through, and answering conceptual questions asked by the TA. The results will be measured by comparing FCI results to those from previous semesters, coupled with interviews. The results will be analyzed, and we will attempt to understand why gains were or were not made.
Scale-Up: Improving Large Enrollment Physics Courses
NASA Astrophysics Data System (ADS)
Beichner, Robert
1999-11-01
The Student-Centered Activities for Large Enrollment University Physics (SCALE-UP) project is working to establish a learning environment that will promote increased conceptual understanding, improved problem-solving performance, and greater student satisfaction, while still maintaining class sizes of approximately 100. We are also addressing the new ABET engineering accreditation requirements for inquiry-based learning along with communication and team-oriented skills development. Results of studies of our latest classroom design, plans for future classroom space, and the current iteration of instructional materials will be discussed.
Brady, Anne O; Straight, Chad R; Evans, Ellen M
2014-07-01
The aging process leads to adverse changes in body composition (increases in fat mass and decreases in skeletal muscle mass), declines in physical function (PF), and ultimately increased risk for disability and loss of independence. Specific components of body composition or muscle capacity (strength and power) may be useful in predicting PF; however, findings have been mixed regarding the most salient predictor of PF. The development of a conceptual model potentially aids in understanding the interrelated factors contributing to PF with the factors of interest being physical activity, body composition, and muscle capacity. This article also highlights sex differences in these domains. Finally, factors known to affect PF, such as sleep, depression, fatigue, and self-efficacy, are discussed. Development of a comprehensive conceptual model is needed to better characterize the most salient factors contributing to PF and to subsequently inform the development of interventions to reduce physical disability in older adults.
Hulteen, Ryan M; Morgan, Philip J; Barnett, Lisa M; Stodden, David F; Lubans, David R
2018-03-09
Evidence supports a positive association between competence in fundamental movement skills (e.g., kicking, jumping) and physical activity in young people. Whilst important, fundamental movement skills do not reflect the broad diversity of skills utilized in physical activity pursuits across the lifespan. Debate surrounds the question of what are the most salient skills to be learned which facilitate physical activity participation across the lifespan. In this paper, it is proposed that the term 'fundamental movement skills' be replaced with 'foundational movement skills'. The term 'foundational movement skills' better reflects the broad range of movement forms that increase in complexity and specificity and can be applied in a variety of settings. Thus, 'foundational movement skills' includes both traditionally conceptualized 'fundamental' movement skills and other skills (e.g., bodyweight squat, cycling, swimming strokes) that support physical activity engagement across the lifespan. A proposed conceptual model outlines how foundational movement skill competency can provide a direct or indirect pathway, via specialized movement skills, to a lifetime of physical activity. Foundational movement skill development is hypothesized to vary according to culture and/or geographical location. Further, skill development may be hindered or enhanced by physical (i.e., fitness, weight status) and psychological (i.e., perceived competence, self-efficacy) attributes. This conceptual model may advance the application of motor development principles within the public health domain. Additionally, it promotes the continued development of human movement in the context of how it leads to skillful performance and how movement skill development supports and maintains a lifetime of physical activity engagement.
Creating Interactive Teaching Methods for ASTRO 101 That Really Work
NASA Astrophysics Data System (ADS)
Prather, E. E.; Adams, J. P.; Bailey, J. M.; Huggins, D.; Jones, L. V.; Slater, T. F.
2004-05-01
Acknowledging that lecture-based teaching methods are insufficient at promoting significant conceptual gains for students in the introductory astronomy course for non-science majors (ASTRO 101) is only the first step. But then, what can you do besides lecture? The Conceptual Astronomy and Physics Education Research (CAPER) Team at the University of Arizona has been developing and conducting research on the effectiveness of learner-centered instructional materials that put students in an active role in the classroom. With the support of an NSF CCLI (9952232) and NSF Geosciences Education (9907755) awards, we have designed and field-tested a set of innovative instructional materials called Lecture Tutorials. These Lecture Tutorial activities are intended for use with collaborative student learning groups and are designed specifically to be easily integrated into existing conventional lecture-based courses. As such, these instructional materials directly address the needs of heavily loaded teaching faculty in that they offer effective, learner-centered, classroom-ready activities that do not require any outside equipment/staffing or a drastic course revision for implementation. Each 15-minute Lecture-Tutorial poses a carefully crafted sequence of conceptually challenging, Socratic-dialogue driven questions, along with graphs and data tables, all designed to encourage students to reason critically about conceptually challenging and commonly taught topics in astronomy. The materials are based on research into student beliefs and reasoning difficulties and make use of a conceptual change instructional framework that promotes the intellectual engagement of students. Our research into the effectiveness of the Lecture Tutorials illustrates that traditional lectures alone make unsatisfactory gains on student understanding; however, supplementing traditional instruction with the lecture tutorials helps students make impressive conceptual gains over traditional instruction. In addition to the Lecture Tutorials we will discuss our current development of another set of engaging conceptual exercises that may have special benefit in the ASTRO 101 classroom known as Ranking Tasks.
Student Responses to a Flipped Introductory Physics Class with built-in Post-Video Feedback Quizzes
NASA Astrophysics Data System (ADS)
Ramos, Roberto
We present and analyze student responses to multiple Introductory physics classes in a university setting, taught in a ''flipped'' class format. The classes included algebra- and calculus-based introductory physics. Outside class, students viewed over 100 online video lectures on Classical Mechanics, Electricity and Magnetism, and Modern Physics prepared by this author and in some cases, by a third-party lecture package available over YouTube. Inside the class, students solved and discussed problems and conceptual issues in greater detail. A pre-class online quiz was deployed as an important source of feedback. I will report on the student reactions to the feedback mechanism, student responses using data based on anonymous surveys, as well as on learning gains from pre-/post- physics diagnostic tests. The results indicate a broad mixture of responses to different lecture video packages that depend on learning styles and perceptions. Students preferred the online quizzes as a mechanism to validate their understanding. The learning gains based on FCI and CSEM surveys were significant.
Learning and Retention of Quantum Concepts with Different Teaching Methods
ERIC Educational Resources Information Center
Deslauriers, Louis; Wieman, Carl
2011-01-01
We measured mastery and retention of conceptual understanding of quantum mechanics in a modern physics course. This was studied for two equivalent cohorts of students taught with different pedagogical approaches using the Quantum Mechanics Conceptual Survey. We measured the impact of pedagogical approach both on the original conceptual learning…
Repositioning identity in conceptualizations of human-place bonding
Gerard T. Kyle; Jinhee Jun; James D. Absher
2014-01-01
In this investigation, we adapted identity theory to reassess a conceptualization of place attachment—conceived herein as an attitudinal construct used by environmental psychologists to describe people's bonding to the physical landscape. Past work has conceptualized the construct in terms of three components: cognitive, affective, and conative elements...
A Multivariate Model of Conceptual Change
ERIC Educational Resources Information Center
Taasoobshirazi, Gita; Heddy, Benjamin; Bailey, MarLynn; Farley, John
2016-01-01
The present study used the Cognitive Reconstruction of Knowledge Model (CRKM) model of conceptual change as a framework for developing and testing how key cognitive, motivational, and emotional variables are linked to conceptual change in physics. This study extends an earlier study developed by Taasoobshirazi and Sinatra ("J Res Sci…
Top 10 Research Questions Related to Children Physical Activity Motivation
Chen, Ang
2017-01-01
Physical activity is critical to healthy development of children. It is well documented that helping children develop and sustain a physically active lifestyle requires children to become motivated. Many studies have been conducted in the past 2.5 decades on determinants and correlates for children and adolescents’ physical activity motivation. The findings have informed researchers and practitioners about motivation sources for children and effective strategies to motivate children in given physical activity settings. Built on the extensive knowledge base and theoretical platforms formed by these research studies, the purpose of this article is to take a look at the current research landscape and provide subjective thoughts about what we still need to know about children’s physical activity motivation. The product of this subjective thinking process rendered 10 potential questions for future research on children’s physical activity motivation in both in-school and out-of-school settings. These topics encompass those focusing on children’s physical activity motivation as a mental dispositional process, those conceptualizing the motivation as an outcome of person–environment interactions, and those attempting to dissect the motivation as an outcome of social–cultural influences and educational policies. It is hoped that the topics can serve researchers interested in children’s physical activity motivation as starting blocks from which they can extend their conceptual thinking and identify research questions that are personally meaningful. It is also hoped that the list of potential questions can be helpful to researchers in accomplishing the imperative and significant mission to motivate children to be physically active in the 21st century and beyond. PMID:24592774
Top 10 research questions related to children physical activity motivation.
Chen, Ang
2013-12-01
Physical activity is critical to healthy development of children. It is well documented that helping children develop and sustain a physically active lifestyle requires children to become motivated. Many studies have been conducted in the past 2.5 decades on determinants and correlates for children and adolescents' physical activity motivation. The findings have informed researchers and practitioners about motivation sources for children and effective strategies to motivate children in given physical activity settings. Built on the extensive knowledge base and theoretical platforms formed by these research studies, the purpose of this article is to take a look at the current research landscape and provide subjective thoughts about what we still need to know about children's physical activity motivation. The product of this subjective thinking process rendered 10 potential questions for future research on children's physical activity motivation in both in-school and out-of-school settings. These topics encompass those focusing on children's physical activity motivation as a mental dispositional process, those conceptualizing the motivation as an outcome of person-environment interactions, and those attempting to dissect the motivation as an outcome of social-cultural influences and educational policies. It is hoped that the topics can serve researchers interested in children's physical activity motivation as starting blocks from which they can extend their conceptual thinking and identify research questions that are personally meaningful. It is also hoped that the list of potential questions can be helpful to researchers in accomplishing the imperative and significant mission to motivate children to be physically active in the 21st century and beyond.
NASA Astrophysics Data System (ADS)
Williams, Karen Ann
One section of college students (N = 25) enrolled in an algebra-based physics course was selected for a Piagetian-based learning cycle (LC) treatment while a second section (N = 25) studied in an Ausubelian-based meaningful verbal reception learning treatment (MVRL). This study examined the students' overall (concept + problem solving + mental model) meaningful understanding of force, density/Archimedes Principle, and heat. Also examined were students' meaningful understanding as measured by conceptual questions, problems, and mental models. In addition, students' learning orientations were examined. There were no significant posttest differences between the LC and MVRL groups for students' meaningful understanding or learning orientation. Piagetian and Ausubelian theories explain meaningful understanding for each treatment. Students from each treatment increased their meaningful understanding. However, neither group altered their learning orientation. The results of meaningful understanding as measured by conceptual questions, problem solving, and mental models were mixed. Differences were attributed to the weaknesses and strengths of each treatment. This research also examined four variables (treatment, reasoning ability, learning orientation, and prior knowledge) to find which best predicted students' overall meaningful understanding of physics concepts. None of these variables were significant predictors at the.05 level. However, when the same variables were used to predict students' specific understanding (i.e. concept, problem solving, or mental model understanding), the results were mixed. For forces and density/Archimedes Principle, prior knowledge and reasoning ability significantly predicted students' conceptual understanding. For heat, however, reasoning ability was the only significant predictor of concept understanding. Reasoning ability and treatment were significant predictors of students' problem solving for heat and forces. For density/Archimedes Principle, treatment was the only significant predictor of students' problem solving. None of the variables were significant predictors of mental model understanding. This research suggested that Piaget and Ausubel used different terminology to describe learning yet these theories are similar. Further research is needed to validate this premise and validate the blending of the two theories.
ERIC Educational Resources Information Center
Zacharia, Zacharias C.; Olympiou, Georgios; Papaevripidou, Marios
2008-01-01
This study aimed to investigate the comparative value of experimenting with physical manipulatives (PM) in a sequential combination with virtual manipulatives (VM), with the use of PM preceding the use of VM, and of experimenting with PM alone, with respect to changes in students' conceptual understanding in the domain of heat and temperature. A…
Alternative Conceptions: Turning Adversity into Advantage
NASA Astrophysics Data System (ADS)
Ferreira, Annalize; Lemmer, Miriam; Gunstone, Richard
2017-08-01
While a vast body of research has identified difficulties in students' understanding about forces and acceleration and their related alternative conceptions, far less research suggests ways to use students' alternative conceptions to enhance conceptual understanding of a specific fundamental concept. This study focused on distinguishing between students' conceptual understanding of the Newtonian concept of gravitational acceleration being the same for all objects and students' alternative conception that heavy objects fall faster. A multiple choice questionnaire was distributed to first year physics students for three consecutive years at a university in South Africa. The results indicate that changing the direction of motion and the physics quantity asked in paired questions revealed practically significant inconsistencies in students' reasoning and conceptions. This research contributes to the body of knowledge in proposing how the alternative conception of mass-related gravitational acceleration can be used in instruction to enhance conceptual understanding of the force-mass-acceleration relationship. Understanding of this relationship not only promotes conceptual understanding of the basic Newtonian concepts of the laws of motion which forms the critical foundation on which more advanced physics courses are built, but also contributes towards students' perception of physics as a set of coherent ideas applicable in all contexts.
In harmony: inquiry based learning in a blended physics and music class
NASA Astrophysics Data System (ADS)
Hechter, Richard P.; Bergman, Daniel
2016-11-01
The power of music to resonate within us transcends conventional boundaries established in cultural, geographic, and political contexts. In our world, as physics educators, so does the resonating of physics phenomena. Secondary level physics is a perfect place to blend these two genres. While advocating for STEM-based education is at the forefront of pedagogical reform, seldom do we use this cross-boundary vision as the foundation to teach and learn in true collaboration of science and arts classrooms. As music enthusiasts, and physics educators, we developed new resources for a blended music and physics class through inquiry-based learning activities. Punctuated with modern technology, we aimed our activities for an engaging learning experience towards developing conceptual understandings of sound and harmonics at the grade 11 level. The umbrella activity shared here was designed to engage a wide range of students through the universal language of music, and provide them a hands-on and minds-on experience to explore harmonics through both music and physics lenses. It is our intention to provide readers with an overview of the activity, a description of exemplar student-designed inquiry-based investigations, and helpful suggestions for potential for use in reader’s classrooms.
On the Performance of Alternate Conceptual Ecohydrological Models for Streamflow Prediction
NASA Astrophysics Data System (ADS)
Naseem, Bushra; Ajami, Hoori; Cordery, Ian; Sharma, Ashish
2016-04-01
A merging of a lumped conceptual hydrological model with two conceptual dynamic vegetation models is presented to assess the performance of these models for simultaneous simulations of streamflow and leaf area index (LAI). Two conceptual dynamic vegetation models with differing representation of ecological processes are merged with a lumped conceptual hydrological model (HYMOD) to predict catchment scale streamflow and LAI. The merged RR-LAI-I model computes relative leaf biomass based on transpiration rates while the RR-LAI-II model computes above ground green and dead biomass based on net primary productivity and water use efficiency in response to soil moisture dynamics. To assess the performance of these models, daily discharge and 8-day MODIS LAI product for 27 catchments of 90 - 1600km2 in size located in the Murray - Darling Basin in Australia are used. Our results illustrate that when single-objective optimisation was focussed on maximizing the objective function for streamflow or LAI, the other un-calibrated predicted outcome (LAI if streamflow is the focus) was consistently compromised. Thus, single-objective optimization cannot take into account the essence of all processes in the conceptual ecohydrological models. However, multi-objective optimisation showed great strength for streamflow and LAI predictions. Both response outputs were better simulated by RR-LAI-II than RR-LAI-I due to better representation of physical processes such as net primary productivity (NPP) in RR-LAI-II. Our results highlight that simultaneous calibration of streamflow and LAI using a multi-objective algorithm proves to be an attractive tool for improved streamflow predictions.
Gorecki, Claudia; Lamping, Donna L; Brown, Julia M; Madill, Anna; Firth, Jill; Nixon, Jane
2010-12-01
Evaluating outcomes such as health-related quality of life is particularly important and relevant in skin conditions such as pressure ulcers where the condition and associated interventions pose substantial burden to patients. Measures to evaluate such outcomes need to be developed by utilising patient-perspective to ensure that content and conceptualisation is relevant to patients. Our aim was to develop a conceptual framework of health-related quality of life in pressure ulcers, based on patients' views about the impact of pressure ulcers and interventions on health-related quality of life to inform the development of a new patient-reported outcome measure. SETTING, PARTICIPANTS AND METHODS: We developed a working conceptual framework based on a previous review of the literature, then used semi-structured qualitative interviews with 30 adults with pressure ulcers (22-94 years) purposively sampled from hospital, community and rehabilitation care settings in England and Northern Ireland to obtain patients' views, and thematic content analysis and review by a multidisciplinary expert group to develop the final conceptual framework. Our conceptual model includes four health-related quality of life domains (symptoms, physical functioning, psychological well-being, social functioning), divided into 13 sub-domains and defined by specific descriptive components. We have identified health-related quality of life outcomes that are important to people with pressure ulcers and developed a conceptual framework using robust and systematic methods, which provides the basis for the development of a new pressure ulcer-specific measure of health-related quality of life. Copyright © 2010 Elsevier Ltd. All rights reserved.
CADDIS Volume 2. Sources, Stressors and Responses: Physical Habitat
Introduction to the Physical Habitat module, when to list Physical Habitat as a candidate cause, ways to measure Physical Habitat, simple and detailed conceptual diagrams for Physical Habitat, Physical Habitat module references and literature reviews.
Effect of science magic applied in interactive lecture demonstrations on conceptual understanding
NASA Astrophysics Data System (ADS)
Taufiq, Muhammad; Suhandi, Andi; Liliawati, Winny
2017-08-01
Research about the application of science magic-assisting Interactive Lecture Demonstrations (ILD) has been conducted. This research is aimed at providing description about the comparison of the improvement of the conceptual understanding of lesson on pressure between students who receive physics lesson through science magic-assisting ILD and students who receive physics lesson through ILD without science magic. This research used a quasi-experiment methods with Control Group Pretest-Posttest Design. The subject of the research is all students of class VIII in one of MTs (Islamic junior high school) in Pekalongan. Research samples were selected using random sampling technique. Data about students' conceptual understanding was collected using test instrument of conceptual understanding in the form of multiple choices. N-gain average calculation was performed in order to determine the improvement of students' conceptual understanding. The result of the research shows that conceptual understanding of students on lesson about pressure who received lesson with ILD using science magic <0.44> is higher than students who received lesson with ILD without science magic <0.25>. Therefore, the conclusion is that the application of science magic ILD is more effective to improve the conceptual understanding of lesson on pressure.
Marfeo, Elizabeth E.; Haley, Stephen M.; Jette, Alan M.; Eisen, Susan V.; Ni, Pengsheng; Bogusz, Kara; Meterko, Mark; McDonough, Christine M.; Chan, Leighton; Brandt, Diane E.; Rasch, Elizabeth K.
2014-01-01
Physical and mental impairments represent the two largest health condition categories for which workers receive Social Security disability benefits. Comprehensive assessment of physical and mental impairments should include aspects beyond medical conditions such as a person’s underlying capabilities as well as activity demands relevant to the context of work. The objective of this paper is to describe the initial conceptual stages of developing new measurement instruments of behavioral health and physical functioning relevant for Social Security work disability evaluation purposes. To outline a clear conceptualization of the constructs to be measured, two content models were developed using structured and informal qualitative approaches. We performed a structured literature review focusing on work disability and incorporating aspects of the International Classification of Functioning, Disability, and Health (ICF) as a unifying taxonomy for framework development. Expert interviews provided advice and consultation to enhance face validity of the resulting content models. The content model for work-related behavioral health function identifies five major domains (1) Behavior Control, (2) Basic Interactions, (3) Temperament and Personality, (4) Adaptability, and (5) Workplace Behaviors. The content model describing physical functioning includes three domains (1) Changing and Maintaining Body Position, (2) Whole Body Mobility, and (3) Carrying, Moving and Handling Objects. These content models informed subsequent measurement properties including item development, measurement scale construction, and provided conceptual coherence guiding future empirical inquiry. The proposed measurement approaches show promise to comprehensively and systematically assess physical and behavioral health functioning relevant to work. PMID:23548543
A conceptual framework for the domain of evidence-based design.
Ulrich, Roger S; Berry, Leonard L; Quan, Xiaobo; Parish, Janet Turner
2010-01-01
The physical facilities in which healthcare services are performed play an important role in the healing process. Evidence-based design in healthcare is a developing field of study that holds great promise for benefiting key stakeholders: patients, families, physicians, and nurses, as well as other healthcare staff and organizations. In this paper, the authors present and discuss a conceptual framework intended to capture the current domain of evidence-based design in healthcare. In this framework, the built environment is represented by nine design variable categories: audio environment, visual environment, safety enhancement, wayfinding system, sustainability, patient room, family support spaces, staff support spaces, and physician support spaces. Furthermore, a series of matrices is presented that indicates knowledge gaps concerning the relationship between specific healthcare facility design variable categories and participant and organizational outcomes. From this analysis, the authors identify fertile research opportunities from the perspectives of key stakeholders.
Levy, C.; Beauchamp, C.
1996-01-01
This poster describes the methods used and working prototype that was developed from an abstraction of the relational model from the VA's hierarchical DHCP database. Overlaying the relational model on DHCP permits multiple user views of the physical data structure, enhances access to the database by providing a link to commercial (SQL based) software, and supports a conceptual managed care data model based on primary and longitudinal patient care. The goal of this work was to create a relational abstraction of the existing hierarchical database; to construct, using SQL data definition language, user views of the database which reflect the clinical conceptual view of DHCP, and to allow the user to work directly with the logical view of the data using GUI based commercial software of their choosing. The workstation is intended to serve as a platform from which a managed care information model could be implemented and evaluated.
Secondary School Students' Conceptual Understanding of Physical and Chemical Changes
ERIC Educational Resources Information Center
Hanson, R.; Twumasi, A. K.; Aryeetey, C.; Sam, A.; Adukpo, G.
2016-01-01
In recent years, researchers have shown an interest in understanding students' own ideas about basic chemical principles and guiding them through innovative ways to gain conceptual understanding where necessary. This research was a case study designed to assess 50 first year high school students' conceptual understanding about changes in matter,…
Development and Use of a Conceptual Survey in Introductory Quantum Physics
ERIC Educational Resources Information Center
Wuttiprom, Sura; Sharma, Manjula Devi; Johnston, Ian D.; Chitaree, Ratchapak; Soankwan, Chernchok
2009-01-01
Conceptual surveys have become increasingly popular at many levels to probe various aspects of science education research such as measuring student understanding of basic concepts and assessing the effectiveness of pedagogical material. The aim of this study was to construct a valid and reliable multiple-choice conceptual survey to investigate…
Exploring the Gender Gap in the Conceptual Survey of Electricity and Magnetism
ERIC Educational Resources Information Center
Henderson, Rachel; Stewart, Gay; Stewart, John; Michaluk, Lynnette; Traxler, Adrienne
2017-01-01
The "gender gap" on various physics conceptual evaluations has been extensively studied. Men's average pretest scores on the Force Concept Inventory and Force and Motion Conceptual Evaluation are 13% higher than women's, and post-test scores are on average 12% higher than women's. This study analyzed the gender differences within the…
Design and Validation of the Quantum Mechanics Conceptual Survey
ERIC Educational Resources Information Center
McKagan, S. B.; Perkins, K. K.; Wieman, C. E.
2010-01-01
The Quantum Mechanics Conceptual Survey (QMCS) is a 12-question survey of students' conceptual understanding of quantum mechanics. It is intended to be used to measure the relative effectiveness of different instructional methods in modern physics courses. In this paper, we describe the design and validation of the survey, a process that included…
Investigation of Conceptual Change about Double-Slit Interference in Secondary School Physics
ERIC Educational Resources Information Center
Kocakulah, Mustafa Sabri; Kural, Mehmet
2010-01-01
In this study, whether or not constructivist teaching of double-slit interference of light has a positive effect on the secondary school students' conceptual change is examined. An achievement test, a conceptual understanding test and semi-structured interviews were used as data collection tools in this mixed methods research. Experimental group…
ERIC Educational Resources Information Center
Brewe, Eric
2011-01-01
Utilizing an energy-as-substance conceptual metaphor as a central feature of the introductory physics curriculum affords students a wealth of conceptual resources for reasoning about energy conservation, storage, and transfer. This paper first establishes the utility and function of a conceptual metaphor in developing student understanding of…
Carroll, Linda J; Rothe, J Peter
2010-09-01
Like other areas of health research, there has been increasing use of qualitative methods to study public health problems such as injuries and injury prevention. Likewise, the integration of qualitative and quantitative research (mixed-methods) is beginning to assume a more prominent role in public health studies. Likewise, using mixed-methods has great potential for gaining a broad and comprehensive understanding of injuries and their prevention. However, qualitative and quantitative research methods are based on two inherently different paradigms, and their integration requires a conceptual framework that permits the unity of these two methods. We present a theory-driven framework for viewing qualitative and quantitative research, which enables us to integrate them in a conceptually sound and useful manner. This framework has its foundation within the philosophical concept of complementarity, as espoused in the physical and social sciences, and draws on Bergson's metaphysical work on the 'ways of knowing'. Through understanding how data are constructed and reconstructed, and the different levels of meaning that can be ascribed to qualitative and quantitative findings, we can use a mixed-methods approach to gain a conceptually sound, holistic knowledge about injury phenomena that will enhance our development of relevant and successful interventions.
NASA Astrophysics Data System (ADS)
Thacker, Beth
2017-01-01
Large-scale assessment data from Texas Tech University yielded evidence that most students taught traditionally in large lecture classes with online homework and predominantly multiple choice question exams, when asked to answer free-response (FR) questions, did not support their answers with logical arguments grounded in physics concepts. In addition to a lack of conceptual understanding, incorrect and partially correct answers lacked evidence of the ability to apply even lower level reasoning skills in order to solve a problem. Correct answers, however, did show evidence of at least lower level thinking skills as coded using a rubric based on Bloom's taxonomy. With the introduction of evidence-based instruction into the labs and recitations of the large courses and in a small, completely laboratory-based, hands-on course, the percentage of correct answers with correct explanations increased. The FR format, unlike other assessment formats, allowed assessment of both conceptual understanding and the application of thinking skills, clearly pointing out weaknesses not revealed by other assessment instruments, and providing data on skills beyond conceptual understanding for course and program assessment. Supported by National Institutes of Health (NIH) Challenge grant #1RC1GM090897-01.
Physical Activity Parenting Measurement and Research: Challenges, Explanations, and Solutions
Mâsse, Louise C.; Timperio, Anna; Frenn, Marilyn D.; Saunders, Julie; Mendoza, Jason A.; Gobbi, Erica; Hanson, Phillip; Trost, Stewart G.
2013-01-01
Abstract Physical activity (PA) parenting research has proliferated over the past decade, with findings verifying the influential role that parents play in children's emerging PA behaviors. This knowledge, however, has not translated into effective family-based PA interventions. During a preconference workshop to the 2012 International Society for Behavioral Nutrition and Physical Activity annual meeting, a PA parenting workgroup met to: (1) Discuss challenges in PA parenting research that may limit its translation, (2) identify explanations or reasons for such challenges, and (3) recommend strategies for future research. Challenges discussed by the workgroup included a proliferation of disconnected and inconsistently measured constructs, a limited understanding of the dimensions of PA parenting, and a narrow conceptualization of hypothesized moderators of the relationship between PA parenting and child PA. Potential reasons for such challenges emphasized by the group included a disinclination to employ theory when developing measures and examining predictors and outcomes of PA parenting as well as a lack of agreed-upon measurement standards. Suggested solutions focused on the need to link PA parenting research with general parenting research, define and adopt rigorous standards of measurement, and identify new methods to assess PA parenting. As an initial step toward implementing these recommendations, the workgroup developed a conceptual model that: (1) Integrates parenting dimensions from the general parenting literature into the conceptualization of PA parenting, (2) draws on behavioral and developmental theory, and (3) emphasizes areas which have been neglected to date including precursors to PA parenting and effect modifiers. PMID:23944918
ERIC Educational Resources Information Center
Faour, Malak Abou; Ayoubi, Zalpha
2018-01-01
This study investigated the effect of using (VL) on grade 10 students' conceptual understanding of the direct current electric circuit and their attitudes towards physics. The research used a quantitative experimental approach. The sample of the study was formed of 50 students of the tenth grade, aged 14 to 16 years old, of an official secondary…
Linkage of a Physically Based Distributed Watershed Model and a Dynamic Plant Growth Model
2006-12-01
i.e., Universal Soil Loss Equation ( USLE ) factors, K, C, and P). The K, C, and P factors are empiri- cal coefficients with the same conceptual...with general ecosystem models designed to make long-term projections of ecosystem dynamics. This development effort investigated the linkage of soil ...20 EDYS soil module
Toward self-organization and complex matter.
Lehn, Jean-Marie
2002-03-29
Beyond molecular chemistry based on the covalent bond, supramolecular chemistry aims at developing highly complex chemical systems from components interacting through noncovalent intermolecular forces. Over the past quarter century, supramolecular chemistry has grown into a major field and has fueled numerous developments at the interfaces with biology and physics. Some of the conceptual advances and future challenges are profiled here.
ERIC Educational Resources Information Center
Rivet, Ann E.; Kastens, Kim A.
2012-01-01
In recent years, science education has placed increasing importance on learners' mastery of scientific reasoning. This growing emphasis presents a challenge for both developers and users of assessments. We report on our effort around the conceptualization, development, and testing the validity of an assessment of students' ability to reason around…
A spatial model of land use change for western Oregon and western Washington.
Jeffrey D. Kline; Ralph J. Alig
2001-01-01
We developed an empirical model describing the probability that forests and farmland in western Oregon and western Washington were developed for residential, commercial, or industrial uses during a 30-year period, as a function of spatial socioeconomic variables, ownership, and geographic and physical land characteristics. The empirical model is based on a conceptual...
Kinecting Physics: Conceptualization of Motion through Visualization and Embodiment
ERIC Educational Resources Information Center
Anderson, Janice L.; Wall, Steven D.
2016-01-01
The purpose of this work was to share our findings in using the Kinect technology to facilitate the understanding of basic kinematics with middle school science classrooms. This study marks the first three iterations of this design-based research that examines the pedagogical potential of using the Kinect technology. To this end, we explored the…
Instructional Design for the 21st Century: Towards a New Conceptual Framework.
ERIC Educational Resources Information Center
Mashhadi, Azam
As a new century approaches it is time to re-assess the foundations on which instructional design currently rests, as well as the "mode of thinking" that it promotes. Traditional theories regarding instructional design have largely been implicitly based on out-moded eighteenth century conceptions of the physical universe (a mechanistic world view)…
Advanced Usage of Vehicle Sketch Pad for CFD-Based Conceptual Design
NASA Technical Reports Server (NTRS)
Ordaz, Irian; Li, Wu
2013-01-01
Conceptual design is the most fluid phase of aircraft design. It is important to be able to perform large scale design space exploration of candidate concepts that can achieve the design intent to avoid more costly configuration changes in later stages of design. This also means that conceptual design is highly dependent on the disciplinary analysis tools to capture the underlying physics accurately. The required level of analysis fidelity can vary greatly depending on the application. Vehicle Sketch Pad (VSP) allows the designer to easily construct aircraft concepts and make changes as the design matures. More recent development efforts have enabled VSP to bridge the gap to high-fidelity analysis disciplines such as computational fluid dynamics and structural modeling for finite element analysis. This paper focuses on the current state-of-the-art geometry modeling for the automated process of analysis and design of low-boom supersonic concepts using VSP and several capability-enhancing design tools.
Loprinzi, Paul D; Herod, Skyla M; Walker, Jerome F; Cardinal, Bradley J; Mahoney, Sara E; Kane, Christy
2015-01-01
Considerable research has shown adverse neurobiological effects of chronic alcohol use, including long-term and potentially permanent changes in the structure and function of the brain; however, much less is known about the neurobiological consequences of chronic smoking, as it has largely been ignored until recently. In this article, we present a conceptual model proposing the effects of smoking on neurocognition and the role that physical activity may play in this relationship as well as its role in smoking cessation. Pertinent published peer-reviewed articles deposited in PubMed delineating the pathways in the proposed model were reviewed. The proposed model, which is supported by emerging research, demonstrates a bidirectional relationship between smoking and executive functioning. In support of our conceptual model, physical activity may moderate this relationship and indirectly influence smoking behavior through physical activity-induced changes in executive functioning. Our model may have implications for aiding smoking cessation efforts through the promotion of physical activity as a mechanism for preventing smoking-induced deficits in neurocognition and executive function.
Conceptual design for the Space Station Freedom fluid physics/dynamics facility
NASA Technical Reports Server (NTRS)
Thompson, Robert L.; Chucksa, Ronald J.; Omalley, Terence F.; Oeftering, Richard C.
1993-01-01
A study team at NASA's Lewis Research Center has been working on a definition study and conceptual design for a fluid physics and dynamics science facility that will be located in the Space Station Freedom's baseline U.S. Laboratory module. This modular, user-friendly facility, called the Fluid Physics/Dynamics Facility, will be available for use by industry, academic, and government research communities in the late 1990's. The Facility will support research experiments dealing with the study of fluid physics and dynamics phenomena. Because of the lack of gravity-induced convection, research into the mechanisms of fluids in the absence of gravity will help to provide a better understanding of the fundamentals of fluid processes. This document has been prepared as a final version of the handout for reviewers at the Fluid Physics/Dynamics Facility Assessment Workshop held at Lewis on January 24 and 25, 1990. It covers the background, current status, and future activities of the Lewis Project Study Team effort. It is a revised and updated version of a document entitled 'Status Report on the Conceptual Design for the Space Station Fluid Physics/Dynamics Facility', dated January 1990.
Mâsse, Louise C; O'Connor, Teresia M; Tu, Andrew W; Hughes, Sheryl O; Beauchamp, Mark R; Baranowski, Tom
2017-06-14
Parents are widely recognized as playing a central role in the development of child behaviors such as physical activity. As there is little agreement as to the dimensions of physical activity-related parenting practices that should be measured or how they should be operationalized, this study engaged experts to develop an integrated conceptual framework for assessing parenting practices that influence multiple aspects of 5 to 12 year old children's participation in physical activity. The ultimate goal of this study is to inform the development of an item bank (repository of calibrated items) aimed at measuring physical activity parenting practices. Twenty four experts from 6 countries (Australia, Canada, England, Scotland, the Netherlands, & United States (US)) sorted 77 physical activity parenting practice concepts identified from our previously published synthesis of the literature (74 measures) and survey of Canadian and US parents. Concept Mapping software was used to conduct the multi-dimensional scaling (MDS) analysis and a cluster analysis of the MDS solution of the Expert's sorting which was qualitatively reviewed and commented on by the Experts. The conceptual framework includes 12 constructs which are presented using three main domains of parenting practices (neglect/control, autonomy support, and structure). The neglect/control domain includes two constructs: permissive and pressuring parenting practices. The autonomy supportive domain includes four constructs: encouragement, guided choice, involvement in child physical activities, and praises/rewards for their child's physical activity. Finally, the structure domain includes six constructs: co-participation, expectations, facilitation, modeling, monitoring, and restricting physical activity for safety or academic concerns. The concept mapping analysis provided a useful process to engage experts in re-conceptualizing physical activity parenting practices and identified key constructs to include in measures of physical activity parenting. While the constructs identified ought to be included in measures of physical activity parenting practices, it will be important to collect data among parents to further validate the content of these constructs. In conclusion, the method provided a roadmap for developing an item bank that captures key facets of physical activity parenting and ultimately serves to standardize how we operationalize measures of physical activity parenting.
Learning to Deflect: Conceptual Change in Physics during Digital Game Play
ERIC Educational Resources Information Center
Sengupta, Pratim; Krinks, Kara D.; Clark, Douglas B.
2015-01-01
How does deep conceptual change occur when students play well-designed educational games? To answer this question, we present a case study in the form of a microgenetic analysis of a student's processes of knowledge construction as he played a conceptually-integrated digital game (SURGE Next) designed to support learning about Newtonian mechanics.…
ERIC Educational Resources Information Center
Vasilenko, Sara A.; Lefkowitz, Eva S.; Welsh, Deborah P.
2014-01-01
Although research has increasingly emphasized how adolescent sexual behavior may be associated with aspects of health beyond unwanted pregnancy and sexually transmitted infections, no current theoretical or conceptual model fully explains associations between sexual behavior and multiple facets of health. We provide a conceptual model that…
An Analysis of Conceptual Flow Patterns and Structures in the Physics Classroom
ERIC Educational Resources Information Center
Eshach, Haim
2010-01-01
The aim of the current research is to characterize the conceptual flow processes occurring in whole-class dialogic discussions with a high level of interanimation; in the present case, of a high-school class learning about image creation on plane mirrors. Using detailed chains of interaction and conceptual flow discourse maps--both developed for…
Vasilenko, Sara A; Lefkowitz, Eva S; Welsh, Deborah P
2014-01-01
Although research has increasingly emphasized how adolescent sexual behavior may be associated with aspects of health beyond unwanted pregnancy and sexually transmitted infections, no current theoretical or conceptual model fully explains associations between sexual behavior and multiple facets of health. We provide a conceptual model that explicates possible processes of how adolescent sexual behavior may influence physical, mental, and social health. Next, we review the current literature consistent with this conceptual model, demonstrating that although early sexual behavior can be associated with some negative outcomes, sex may be, on average, a positive experience in late adolescence. Finally, we discuss important future directions for research in these areas, including how individuals' attitudes about and perceptions of sexual behavior influence outcomes of sex. © 2014 Wiley Periodicals, Inc.
Introductory Physics Gender Gaps: Pre- and Post-Studio Transition
NASA Astrophysics Data System (ADS)
Kohl, Patrick B.; Kuo, H. Vincent
2009-11-01
Prior work has characterized the gender gaps present in college-level introductory physics courses. Such work has also shown that research-based interactive engagement techniques can reduce or eliminate these gender gaps. In this paper, we study the gender gaps (and lack thereof) in the introductory calculus-based electricity and magnetism course at the Colorado School of Mines. We present eight semesters' worth of data, totaling 2577 students, with four semesters preceding a transition to Studio physics, and four following. We examine gender gaps in course grades, DFW (D grade, fail, or withdrawal) rates, and normalized gains on the Conceptual Survey of Electricity and Magnetism (CSEM), and consider factors such as student ACT scores and grades in prior math classes. We find little or no gap in male/female course grades and DFW rates, but substantial gaps in CSEM gains that are reduced somewhat by the transition to Studio physics.
Müftüler, Mine; İnce, Mustafa Levent
2015-08-01
This study examined how a physical activity course based on the Trans-Contextual Model affected the variables of perceived autonomy support, autonomous motivation, determinants of leisure-time physical activity behavior, basic psychological needs satisfaction, and leisure-time physical activity behaviors. The participants were 70 Turkish university students (M age=23.3 yr., SD=3.2). A pre-test-post-test control group design was constructed. Initially, the participants were randomly assigned into an experimental (n=35) and a control (n=35) group. The experimental group followed a 12 wk. trans-contextual model-based intervention. The participants were pre- and post-tested in terms of Trans-Contextual Model constructs and of self-reported leisure-time physical activity behaviors. Multivariate analyses showed significant increases over the 12 wk. period for perceived autonomy support from instructor and peers, autonomous motivation in leisure-time physical activity setting, positive intention and perceived behavioral control over leisure-time physical activity behavior, more fulfillment of psychological needs, and more engagement in leisure-time physical activity behavior in the experimental group. These results indicated that the intervention was effective in developing leisure-time physical activity and indicated that the Trans-Contextual Model is a useful way to conceptualize these relationships.
ERIC Educational Resources Information Center
Powietrzynska, Malgorzata; Gangji, Al-Karim H.
2016-01-01
In this manuscript we bring to focus student perceptions of salience (or lack of thereof) of emotions in the undergraduate conceptual physics course (in the teacher education program) and their relevance to teaching and learning. Our analysis of student responses to the Mindfulness in Education Heuristic constitutes a feedback loop affording the…
ERIC Educational Resources Information Center
Bryce, Tom; MacMillan, Kenneth
2005-01-01
The qualitative study described in this paper examined the effectiveness of bridging analogies intended to bring about conceptual change as part of a constructivist approach to teaching about action-reaction forces in the 'at rest' condition in physics. Twenty-one 15-year-old students were involved in the investigation with subgroups previously…
A conceptual snow model with an analytic resolution of the heat and phase change equations
NASA Astrophysics Data System (ADS)
Riboust, Philippe; Le Moine, Nicolas; Thirel, Guillaume; Ribstein, Pierre
2017-04-01
Compared to degree-day snow models, physically-based snow models resolve more processes in an attempt to achieve a better representation of reality. Often these physically-based models resolve the heat transport equations in snow using a vertical discretization of the snowpack. The snowpack is decomposed into several layers in which the mechanical and thermal states of the snow are calculated. A higher number of layers in the snowpack allow for better accuracy but it also tends to increase the computational costs. In order to develop a snow model that estimates the temperature profile of snow with a lower computational cost, we used an analytical decomposition of the vertical profile using eigenfunctions (i.e. trigonometric functions adapted to the specific boundary conditions). The mass transfer of snow melt has also been estimated using an analytical conceptualization of runoff fingering and matrix flow. As external meteorological forcing, the model uses solar and atmospheric radiation, air temperature, atmospheric humidity and precipitations. It has been tested and calibrated at point scale at two different stations in the Alps: Col de Porte (France, 1325 m) and Weissfluhjoch (Switzerland, 2540 m). A sensitivity analysis of model parameters and model inputs will be presented together with a comparison with measured snow surface temperature, SWE, snow depth, temperature profile and snow melt data. The snow model is created in order to be ultimately coupled with hydrological models for rainfall-runoff modeling in mountainous areas. We hope to create a model faster than physically-based models but capable to estimate more physical processes than degree-day snow models. This should help to build a more reliable snow model capable of being easily calibrated by remote sensing and in situ observation or to assimilate these data for forecasting purposes.
Building mental models by dissecting physical models.
Srivastava, Anveshna
2016-01-01
When students build physical models from prefabricated components to learn about model systems, there is an implicit trade-off between the physical degrees of freedom in building the model and the intensity of instructor supervision needed. Models that are too flexible, permitting multiple possible constructions require greater supervision to ensure focused learning; models that are too constrained require less supervision, but can be constructed mechanically, with little to no conceptual engagement. We propose "model-dissection" as an alternative to "model-building," whereby instructors could make efficient use of supervisory resources, while simultaneously promoting focused learning. We report empirical results from a study conducted with biology undergraduate students, where we demonstrate that asking them to "dissect" out specific conceptual structures from an already built 3D physical model leads to a significant improvement in performance than asking them to build the 3D model from simpler components. Using questionnaires to measure understanding both before and after model-based interventions for two cohorts of students, we find that both the "builders" and the "dissectors" improve in the post-test, but it is the latter group who show statistically significant improvement. These results, in addition to the intrinsic time-efficiency of "model dissection," suggest that it could be a valuable pedagogical tool. © 2015 The International Union of Biochemistry and Molecular Biology.
Students’ conceptions on white light and implications for teaching and learning about colour
NASA Astrophysics Data System (ADS)
Haagen-Schützenhöfer, Claudia
2017-07-01
The quality of learning processes is mainly determined by the extent to which students’ conceptions are addressed and thus conceptual change is triggered. Colour phenomena are a topic within initial instruction of optics which is challenging. A physically adequate concept of white light is crucial for being able to grasp the processes underlying colour formation. Our previous research suggests that misconceptions on white light may influence the conceptual understanding of colour phenomena. For the design of a learning environment on light and colours, the literature was reviewed. Then an explorative interview study with participants (N = 32), with and without instruction in introductory optics, was carried out. In addition, the representations used for white light in Austrian physics schoolbooks were analysed. Based on the results of the literature review, the interview study and the schoolbook analysis, a learning environment was designed and tested in teaching experiments. The results indicate that learners often lack an adequate concept of white light even after instruction in introductory optics. This seems to cause learning difficulties concerning colour phenomena. On the other hand, the evaluation of our learning environment showed that students are able to gain a good conceptual understanding of colour phenomena if instruction takes these content specific learning difficulties into account.
Lubans, David R; Lonsdale, Chris; Cohen, Kristen; Eather, Narelle; Beauchamp, Mark R; Morgan, Philip J; Sylvester, Benjamin D; Smith, Jordan J
2017-02-23
The economic burden of inactivity is substantial, with conservative estimates suggesting the global cost to health care systems is more than US$50 billion. School-based programs, including physical education and school sport, have been recommended as important components of a multi-sector, multi-system approach to address physical inactivity. Additionally, community sporting clubs and after-school programs (ASPs) offer further opportunities for young people to be physically active outside of school. Despite demonstrating promise, current evidence suggests school-based physical activity programs, community sporting clubs and ASPs are not achieving their full potential. For example, physical activity levels in physical education (PE) and ASP sessions are typically much lower than recommended. For these sessions to have the strongest effects on young people's physical activity levels and their on-going physical literacy, they need to improve in quality and should be highly active and engaging. This paper presents the Supportive, Active, Autonomous, Fair, Enjoyable (SAAFE) principles, which represent an evidence-based framework designed to guide the planning, delivery and evaluation of organized physical activity sessions in school, community sport and ASPs. In this paper we provide a narrative and integrative review of the conceptual and empirical bases that underpin this framework and highlight implications for knowledge translation and application.
Promoting Metacognition in Introductory Calculus-based Physics Labs
NASA Astrophysics Data System (ADS)
Grennell, Drew; Boudreaux, Andrew
2010-10-01
In the Western Washington University physics department, a project is underway to develop research-based laboratory curriculum for the introductory calculus-based course. Instructional goals not only include supporting students' conceptual understanding and reasoning ability, but also providing students with opportunities to engage in metacognition. For the latter, our approach has been to scaffold reflective thinking with guided questions. Specific instructional strategies include analysis of alternate reasoning presented in fictitious dialogues and comparison of students' initial ideas with their lab group's final, consensus understanding. Assessment of student metacognition includes pre- and post- course data from selected questions on the CLASS survey, analysis of written lab worksheets, and student opinion surveys. CLASS results are similar to a traditional physics course and analysis of lab sheets show that students struggle to engage in a metacognitive process. Future directions include video studies, as well as use of additional written assessments adapted from educational psychology.
Nontraditional approach to algebra-based general physics
NASA Astrophysics Data System (ADS)
Meltzer, David E.
1997-03-01
In order to improve the degree of conceptual learning in our algebra-based general physics course, the second semester (of a two-semester sequence) has been taught in a nontraditional format during the past year. The key characteristics of this course were: 1) Intense and continuous use of interactive-engagement methods and cooperative learning; 2) coverage of less than half of the conventional number of topics, 3) heavy emphasis on qualitative questions as opposed to quantitative problems, 4) adjustment of the pacing of the course based on continuous (twice per week) formative assessment. The students enrolled in the course were relatively poorly prepared, with weak mathematical skills. Open-book quizzes stressing qualitative concepts in electricity and magnetism were given twice per week; most were given in "group quiz" format, allowing collaboration. Exams (also open-book) were all done individually. Most of the class time was taken up by quizzes, and by interactive discussion and group work related to quiz questions. New topics were not introduced until a majority of the class demonstrated competence in the topic under discussion. Despite lengthy and intensive focus on qualitative, conceptual questions and simple quantitative problems, only a small minority of the class ultimately demonstrated mastery of the targeted concepts. Frequent testing and re-testing of the students on basic concepts disclosed tenacious persistence of misconceptions.
Evaluation of a distributed catchment scale water balance model
NASA Technical Reports Server (NTRS)
Troch, Peter A.; Mancini, Marco; Paniconi, Claudio; Wood, Eric F.
1993-01-01
The validity of some of the simplifying assumptions in a conceptual water balance model is investigated by comparing simulation results from the conceptual model with simulation results from a three-dimensional physically based numerical model and with field observations. We examine, in particular, assumptions and simplifications related to water table dynamics, vertical soil moisture and pressure head distributions, and subsurface flow contributions to stream discharge. The conceptual model relies on a topographic index to predict saturation excess runoff and on Philip's infiltration equation to predict infiltration excess runoff. The numerical model solves the three-dimensional Richards equation describing flow in variably saturated porous media, and handles seepage face boundaries, infiltration excess and saturation excess runoff production, and soil driven and atmosphere driven surface fluxes. The study catchments (a 7.2 sq km catchment and a 0.64 sq km subcatchment) are located in the North Appalachian ridge and valley region of eastern Pennsylvania. Hydrologic data collected during the MACHYDRO 90 field experiment are used to calibrate the models and to evaluate simulation results. It is found that water table dynamics as predicted by the conceptual model are close to the observations in a shallow water well and therefore, that a linear relationship between a topographic index and the local water table depth is found to be a reasonable assumption for catchment scale modeling. However, the hydraulic equilibrium assumption is not valid for the upper 100 cm layer of the unsaturated zone and a conceptual model that incorporates a root zone is suggested. Furthermore, theoretical subsurface flow characteristics from the conceptual model are found to be different from field observations, numerical simulation results, and theoretical baseflow recession characteristics based on Boussinesq's groundwater equation.
Closed-cycle gas dynamic laser design investigation
NASA Technical Reports Server (NTRS)
Ketch, G. W.; Young, W. E.
1977-01-01
A conceptual design study was made of a closed cycle gas-dynamic laser to provide definition of the major components in the laser loop. The system potential application is for long range power transmission by way of high power laser beams to provide satellite propulsion energy for orbit changing or station keeping. A parametric cycle optimization was conducted to establish the thermodynamic requirements for the system components. A conceptual design was conducted of the closed cycle system and the individual components to define physical characteristics and establish the system size and weight. Technology confirmation experimental demonstration programs were outlined to develop, evaluate, and demonstrate the technology base needed for this closed cycle GDL system.
A case study for a digital seabed database: Bohai Sea engineering geology database
NASA Astrophysics Data System (ADS)
Tianyun, Su; Shikui, Zhai; Baohua, Liu; Ruicai, Liang; Yanpeng, Zheng; Yong, Wang
2006-07-01
This paper discusses the designing plan of ORACLE-based Bohai Sea engineering geology database structure from requisition analysis, conceptual structure analysis, logical structure analysis, physical structure analysis and security designing. In the study, we used the object-oriented Unified Modeling Language (UML) to model the conceptual structure of the database and used the powerful function of data management which the object-oriented and relational database ORACLE provides to organize and manage the storage space and improve its security performance. By this means, the database can provide rapid and highly effective performance in data storage, maintenance and query to satisfy the application requisition of the Bohai Sea Oilfield Paradigm Area Information System.
Comparison of Conceptual and Neural Network Rainfall-Runoff Models
NASA Astrophysics Data System (ADS)
Vidyarthi, V. K.; Jain, A.
2014-12-01
Rainfall-runoff (RR) model is a key component of any water resource application. There are two types of techniques usually employed for RR modeling: physics based and data-driven techniques. Although the physics based models have been used for operational purposes for a very long time, they provide only reasonable accuracy in modeling and forecasting. On the other hand, the Artificial Neural Networks (ANNs) have been reported to provide superior modeling performance; however, they have not been acceptable by practitioners, decision makers and water resources engineers as operational tools. The ANNs one of the data driven techniques, became popular for efficient modeling of the complex natural systems in the last couple of decades. In this paper, the comparative results for conceptual and ANN models in RR modeling are presented. The conceptual models were developed by the use of rainfall-runoff library (RRL) and genetic algorithm (GA) was used for calibration of these models. Feed-forward neural network model structure trained by Levenberg-Marquardt (LM) training algorithm has been adopted here to develop all the ANN models. The daily rainfall, runoff and various climatic data derived from Bird creek basin, Oklahoma, USA were employed to develop all the models included here. Daily potential evapotranspiration (PET), which was used in conceptual model development, was calculated by the use of Penman equation. The input variables were selected on the basis of correlation analysis. The performance evaluation statistics such as average absolute relative error (AARE), Pearson's correlation coefficient (R) and threshold statistics (TS) were used for assessing the performance of all the models developed here. The results obtained in this study show that the ANN models outperform the conventional conceptual models due to their ability to learn the non-linearity and complexity inherent in data of rainfall-runoff process in a more efficient manner. There is a strong need to carry out such studies to prove the superiority of ANN models over conventional methods in an attempt to make them acceptable by water resources community responsible for the operation of water resources systems.
A multidimensional model of optimal participation of children with physical disabilities.
Kang, Lin-Ju; Palisano, Robert J; King, Gillian A; Chiarello, Lisa A
2014-01-01
To present a conceptual model of optimal participation in recreational and leisure activities for children with physical disabilities. The conceptualization of the model was based on review of contemporary theories and frameworks, empirical research and the authors' practice knowledge. A case scenario is used to illustrate application to practice. The model proposes that optimal participation in recreational and leisure activities involves the dynamic interaction of multiple dimensions and determinants of participation. The three dimensions of participation are physical, social and self-engagement. Determinants of participation encompass attributes of the child, family and environment. Experiences of optimal participation are hypothesized to result in long-term benefits including better quality of life, a healthier lifestyle and emotional and psychosocial well-being. Consideration of relevant child, family and environment determinants of dimensions of optimal participation should assist children, families and health care professionals to identify meaningful goals and outcomes and guide the selection and implementation of innovative therapy approaches and methods of service delivery. Implications for Rehabilitation Optimal participation is proposed to involve the dynamic interaction of physical, social and self-engagement and attributes of the child, family and environment. The model emphasizes the importance of self-perceptions and participation experiences of children with physical disabilities. Optimal participation may have a positive influence on quality of life, a healthy lifestyle and emotional and psychosocial well-being. Knowledge of child, family, and environment determinants of physical, social and self-engagement should assist children, families and professionals in identifying meaningful goals and guiding innovative therapy approaches.
Marfeo, Elizabeth E; Haley, Stephen M; Jette, Alan M; Eisen, Susan V; Ni, Pengsheng; Bogusz, Kara; Meterko, Mark; McDonough, Christine M; Chan, Leighton; Brandt, Diane E; Rasch, Elizabeth K
2013-09-01
Physical and mental impairments represent the 2 largest health condition categories for which workers receive Social Security disability benefits. Comprehensive assessment of physical and mental impairments should include aspects beyond medical conditions such as a person's underlying capabilities as well as activity demands relevant to the context of work. The objective of this article is to describe the initial conceptual stages of developing new measurement instruments of behavioral health and physical functioning relevant for Social Security work disability evaluation purposes. To outline a clear conceptualization of the constructs to be measured, 2 content models were developed using structured and informal qualitative approaches. We performed a structured literature review focusing on work disability and incorporating aspects of the International Classification of Functioning, Disability and Health as a unifying taxonomy for framework development. Expert interviews provided advice and consultation to enhance face validity of the resulting content models. The content model for work-related behavioral health function identifies 5 major domains: (1) behavior control, (2) basic interactions, (3) temperament and personality, (4) adaptability, and (5) workplace behaviors. The content model describing physical functioning includes 3 domains: (1) changing and maintaining body position, (2) whole-body mobility, and (3) carrying, moving, and handling objects. These content models informed subsequent measurement properties including item development and measurement scale construction, and provided conceptual coherence guiding future empirical inquiry. The proposed measurement approaches show promise to comprehensively and systematically assess physical and behavioral health functioning relevant to work. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Simple and detailed conceptual model diagram and associated narrative for ammonia, dissolved oxygen, flow alteration, herbicides, insecticides, ionic strength, metals, nutrients, ph, physical habitat, sediments, temperature, unspecified toxic chemicals.
Model Based Reasoning by Introductory Students When Analyzing Earth Systems and Societal Challenges
NASA Astrophysics Data System (ADS)
Holder, L. N.; Herbert, B. E.
2014-12-01
Understanding how students use their conceptual models to reason about societal challenges involving societal issues such as natural hazard risk assessment, environmental policy and management, and energy resources can improve instructional activity design that directly impacts student motivation and literacy. To address this question, we created four laboratory exercises for an introductory physical geology course at Texas A&M University that engages students in authentic scientific practices by using real world problems and issues that affect societies based on the theory of situated cognition. Our case-study design allows us to investigate the various ways that students utilize model based reasoning to identify and propose solutions to societally relevant issues. In each of the four interventions, approximately 60 students in three sections of introductory physical geology were expected to represent and evaluate scientific data, make evidence-based claims about the data trends, use those claims to express conceptual models, and use their models to analyze societal challenges. Throughout each step of the laboratory exercise students were asked to justify their claims, models, and data representations using evidence and through the use of argumentation with peers. Cognitive apprenticeship was the foundation for instruction used to scaffold students so that in the first exercise they are given a partially completed model and in the last exercise students are asked to generate a conceptual model on their own. Student artifacts, including representation of earth systems, representation of scientific data, verbal and written explanations of models and scientific arguments, and written solutions to specific societal issues or environmental problems surrounding earth systems, were analyzed through the use of a rubric that modeled authentic expertise and students were sorted into three categories. Written artifacts were examined to identify student argumentation and justifications of solutions through the use of evidence and reasoning. Higher scoring students justified their solutions through evidence-based claims, while lower scoring students typically justified their solutions using anecdotal evidence, emotional ideologies, and naive and incomplete conceptions of earth systems.
Processing Motion: Using Code to Teach Newtonian Physics
NASA Astrophysics Data System (ADS)
Massey, M. Ryan
Prior to instruction, students often possess a common-sense view of motion, which is inconsistent with Newtonian physics. Effective physics lessons therefore involve conceptual change. To provide a theoretical explanation for concepts and how they change, the triangulation model brings together key attributes of prototypes, exemplars, theories, Bayesian learning, ontological categories, and the causal model theory. The triangulation model provides a theoretical rationale for why coding is a viable method for physics instruction. As an experiment, thirty-two adolescent students participated in summer coding academies to learn how to design Newtonian simulations. Conceptual and attitudinal data was collected using the Force Concept Inventory and the Colorado Learning Attitudes about Science Survey. Results suggest that coding is an effective means for teaching Newtonian physics.
NASA Astrophysics Data System (ADS)
Zheng, Pai; wang, Honghui; Sang, Zhiqian; Zhong, Ray Y.; Liu, Yongkui; Liu, Chao; Mubarok, Khamdi; Yu, Shiqiang; Xu, Xun
2018-06-01
Information and communication technology is undergoing rapid development, and many disruptive technologies, such as cloud computing, Internet of Things, big data, and artificial intelligence, have emerged. These technologies are permeating the manufacturing industry and enable the fusion of physical and virtual worlds through cyber-physical systems (CPS), which mark the advent of the fourth stage of industrial production (i.e., Industry 4.0). The widespread application of CPS in manufacturing environments renders manufacturing systems increasingly smart. To advance research on the implementation of Industry 4.0, this study examines smart manufacturing systems for Industry 4.0. First, a conceptual framework of smart manufacturing systems for Industry 4.0 is presented. Second, demonstrative scenarios that pertain to smart design, smart machining, smart control, smart monitoring, and smart scheduling, are presented. Key technologies and their possible applications to Industry 4.0 smart manufacturing systems are reviewed based on these demonstrative scenarios. Finally, challenges and future perspectives are identified and discussed.
ERIC Educational Resources Information Center
Gaudin, Cyrille; Chaliès, Sébastien; Amathieu, Jérôme
2018-01-01
This case study documents the influence of preservice teachers' experiences in a Video-Enhanced Training Program (VETP) on their teaching. The conceptual framework of this VETP comes from a research program in cultural anthropology based on Wittgenstein's analytical philosophy. Influence was identified during self-confrontation interviews with…
ERIC Educational Resources Information Center
Klaar, Susanne; Ohman, Johan
2012-01-01
Research into preschool education has paid a lot of attention to investigating children's conceptual development and cognitive learning about nature, with methods based on observations and verbal interviews before and after a teaching period. The purpose of this study has been to present and illustrate an approach that facilitates the analysis of…
The Effects of a History-Based Instructional Material on the Students' Understanding of Field Lines
ERIC Educational Resources Information Center
Pocovi, M. Cecilia
2007-01-01
Many students in physics courses fail to achieve a desired conceptual change because they assign an incorrect ontology to the to-be-learned concept. This situation has been detected in previous research for the case of field lines: many college students assign material properties to the lines and describe them, for example, as tubes that contain…
Koohsari, Mohammad Javad; Mavoa, Suzanne; Villanueva, Karen; Sugiyama, Takemi; Badland, Hannah; Kaczynski, Andrew T; Owen, Neville; Giles-Corti, Billie
2015-05-01
Public open spaces such as parks and green spaces are key built environment elements within neighbourhoods for encouraging a variety of physical activity behaviours. Over the past decade, there has been a burgeoning number of active living research studies examining the influence of public open space on physical activity. However, the evidence shows mixed associations between different aspects of public open space (e.g., proximity, size, quality) and physical activity. These inconsistencies hinder the development of specific evidence-based guidelines for urban designers and policy-makers for (re)designing public open space to encourage physical activity. This paper aims to move this research agenda forward, by identifying key conceptual and methodological issues that may contribute to inconsistencies in research examining relations between public open space and physical activity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sharing e-Learning Experiences: A Personalised Approach
NASA Astrophysics Data System (ADS)
Clematis, Andrea; Forcheri, Paola; Ierardi, Maria Grazia; Quarati, Alfonso
A two-tier architecture is presented, based on hybrid peer-to-peer technology, aimed at providing personalized access to heterogeneous learning sources. The architecture deploys a conceptual model that is superimposed over logically and physically separated repositories. The model is based on the interactions between users and learning resources, described by means of coments. To support users to find out material satisfying their needs, mechanisms for ranking resources and for extracting personalized views of the learning space are provided.
Role of Pre-Course Student Characteristics on Student Learning in Interactive Teaching Environments
NASA Astrophysics Data System (ADS)
Miller, Kelly Anne
The goal of this dissertation is to broaden our understanding of interactive teaching strategies, in the context of the introductory physics classroom at the undergraduate level. The dissertation is divided into four main projects, each of which investigates a specific aspect of teaching physics interactively. All four projects look towards improving the effectiveness of interactive teaching by understanding how pre-course student characteristics affect the way students learn interactively. We first discuss lecture demonstrations in the context of an interactive classroom using Peer Instruction. We study the role of predictions in conceptual learning. We examine how students' predictions affect what they report having seen during a demonstration. We also examine how student predictions affect what they recall as the outcome of the demonstration at the end of the semester. We then analyze student response patterns to conceptual questions posed during Peer Instruction. We look at the relationship between a student's tendency to switch their answer and pre-course student characteristics like science self-efficacy. Next we elucidate response timing to conceptual questions posed over the course of the semester, in two introductory physics classes taught using Peer Instruction. We look at the relationship between student response times and student characteristics like pre-course physics knowledge, science self-efficacy and gender. We study response times as a way of gaining insight into students thinking in Peer Instruction environments as well as to improve the implementation of Peer Instruction. Finally, we present work on the role of NB, an online collaborative textbook annotation tool, in a flipped, project based, physics class. We analyze the relationship between students' level of online engagement and traditional learning metrics to understand the effectiveness of NB in the context of flipped classrooms. We also report the results of experiments conducted to explore ways to steer discussion forums to produce high-quality learning interactions.
Interplay Between Conceptual Expectations and Movement Predictions Underlies Action Understanding.
Ondobaka, Sasha; de Lange, Floris P; Wittmann, Marco; Frith, Chris D; Bekkering, Harold
2015-09-01
Recent accounts of understanding goal-directed action underline the importance of a hierarchical predictive architecture. However, the neural implementation of such an architecture remains elusive. In the present study, we used functional neuroimaging to quantify brain activity associated with predicting physical movements, as they were modulated by conceptual-expectations regarding the purpose of the object involved in the action. Participants observed object-related actions preceded by a cue that generated both conceptual goal expectations and movement goal predictions. In 2 tasks, observers judged whether conceptual or movement goals matched or mismatched the cue. At the conceptual level, expected goals specifically recruited the posterior cingulate cortex, irrespectively of the task and the perceived movement goal. At the movement level, neural activation of the parieto-frontal circuit, including inferior frontal gyrus and the inferior parietal lobe, reflected unpredicted movement goals. Crucially, this movement prediction error was only present when the purpose of the involved object was expected. These findings provide neural evidence that prior conceptual expectations influence processing of physical movement goals and thereby support the hierarchical predictive account of action processing. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
A framework for understanding school based physical environmental influences on childhood obesity
Harrison, Flo; Jones, Andrew P
2013-01-01
Schools are inviting settings for the promotion of healthy behaviours in children, and a number of interventions have been trialled to improve diet or increase physical activity levels with the ultimate aim of reducing the prevalence of obesity. However, these have seen mixed results and there is suggestion that consideration needs to be given to a broader definition of the school environment in order to encourage sustainable behaviour changes. This review considers evidence for associations between the physical school environment and diet, physical activity and adiposity. School environment covers the neighbourhood around the school as well as the school grounds, buildings and facilities. Reviewed evidence is used to construct a conceptual framework for understanding associations between the physical school environment and adiposity and related behaviours. The framework highlights how school environments may be modified to promote behaviour changes, and how they may limit or enhance the success of other school-based interventions. Consideration is also given to where future work may best be directed. PMID:22281440
You, Sukkyung; Shin, Kyulee
2017-12-01
Physically active leisure plays a key role in successful aging. Exercise beliefs are one of the key predictors of exercise behavior. We used structural equation modeling to assess the plausibility of a conceptual model specifying hypothesized linkages among middle-aged adults' perceptions of (a) exercise beliefs, (b) physical exercise behavior, and (c) subjective well-being. Four hundred two adults in South Korea responded to survey questions designed to capture the above constructs. We found that physically active leisure participation leads to subjective well-being for both middle-aged men and women. However, men and women exercised for different reasons. Women exercised for the sake of their physical appearance and mental and emotional functioning, whereas men exercised for the sake of their social desirability and vulnerability to disease and aging. Based on our results, we suggest that men tend to show higher social face sensitivity, while women show more appearance management behavior. Based on these findings, we discussed the implications and future research directions.
ERIC Educational Resources Information Center
Safadi, Rafi'
2017-01-01
I examined the impact of a self-diagnosis activity on students' conceptual understanding and achievements in physics. This activity requires students to self-diagnose their solutions to problems that they have solved on their own--namely, to identify and explain their errors--and self-score them--that is, assign scores to their solutions--aided by…
Gender disparities in second-semester college physics: The incremental effects of a ``smog of bias''
NASA Astrophysics Data System (ADS)
Kost-Smith, Lauren E.; Pollock, Steven J.; Finkelstein, Noah D.
2010-07-01
Our previous research [Kost , Phys. Rev. ST Phys. Educ. Res. 5, 010101 (2009)10.1103/PhysRevSTPER.5.010101] examined gender differences in the first-semester, introductory physics class at the University of Colorado at Boulder. We found that: (1) there were gender differences in several aspects of the course, including conceptual survey performance, (2) these differences persisted despite the use of interactive engagement techniques, and (3) the post-test gender differences could largely be attributed to differences in males’ and females’ prior physics and math performance and their incoming attitudes and beliefs. In the current study, we continue to characterize gender differences in our physics courses by examining the second-semester, electricity and magnetism course. We analyze three factors: student retention from Physics 1 to Physics 2, student performance, and students’ attitudes and beliefs about physics, and find gender differences in all three of these areas. Specifically, females are less likely to stay in the physics major than males. Despite males and females performing about equally on the conceptual pretest, we find that females score about 6 percentage points lower than males on the conceptual post-test. In most semesters, females outperform males on homework and participation, and males outperform females on exams, resulting in course grades of males and females that are not significantly different. In terms of students’ attitudes and beliefs, we find that both males and females shift toward less expertlike beliefs over the course of Physics 2. Shifts are statistically equal for all categories except for the Personal Interest category, where females have more negative shifts than males. A large fraction of the conceptual post-test gender gap (up to 60%) can be accounted for by differences in males’ and females’ prior physics and math performance and their pre-Physics 2 attitudes and beliefs. Taken together, the results of this study suggest that it is an accumulation of small gender differences over time that may be responsible for the large differences that we observe in physics participation of males and females.
NASA Astrophysics Data System (ADS)
Maries, Alexandru; Singh, Chandralekha
2015-12-01
It has been found that activation of a stereotype, for example by indicating one's gender before a test, typically alters performance in a way consistent with the stereotype, an effect called "stereotype threat." On a standardized conceptual physics assessment, we found that asking test takers to indicate their gender right before taking the test did not deteriorate performance compared to an equivalent group who did not provide gender information. Although a statistically significant gender gap was present on the standardized test whether or not students indicated their gender, no gender gap was observed on the multiple-choice final exam students took, which included both quantitative and conceptual questions on similar topics.
Prediction of physical workload in reduced gravity environments
NASA Technical Reports Server (NTRS)
Goldberg, Joseph H.
1987-01-01
The background, development, and application of a methodology to predict human energy expenditure and physical workload in low gravity environments, such as a Lunar or Martian base, is described. Based on a validated model to predict energy expenditures in Earth-based industrial jobs, the model relies on an elemental analysis of the proposed job. Because the job itself need not physically exist, many alternative job designs may be compared in their physical workload. The feasibility of using the model for prediction of low gravity work was evaluated by lowering body and load weights, while maintaining basal energy expenditure. Comparison of model results was made both with simulated low gravity energy expenditure studies and with reported Apollo 14 Lunar EVA expenditure. Prediction accuracy was very good for walking and for cart pulling on slopes less than 15 deg, but the model underpredicted the most difficult work conditions. This model was applied to example core sampling and facility construction jobs, as presently conceptualized for a Lunar or Martian base. Resultant energy expenditures and suggested work-rest cycles were well within the range of moderate work difficulty. Future model development requirements were also discussed.
Visual Activities for Assessing Non-science Majors’ Understanding in Introductory Astronomy
NASA Astrophysics Data System (ADS)
Loranz, Daniel; Prather, E. E.; Slater, T. F.
2006-12-01
One of the most ardent challenges for astronomy teachers is to deeply and meaningfully assess students’ conceptual and quantitative understanding of astronomy topics. In an effort to uncover students’ actual understanding, members and affiliates of the Conceptual Astronomy and Physics Education Research (CAPER) Team at the University of Arizona and Truckee Meadows Community College are creating and field-testing innovative approaches to assessment. Leveraging from the highly successful work on interactive lecture demonstrations from astronomy and physics education research, we are creating a series of conceptually rich questions that are matched to visually captivating and purposefully interactive astronomical animations. These conceptually challenging tasks are being created to span the entire domain of topics in introductory astronomy for non-science majoring undergraduates. When completed, these sorting tasks and vocabulary-in-context activities will be able to be delivered via a drag-and-drop computer interface.
Physics Literacy for All Students
NASA Astrophysics Data System (ADS)
Hobson, Art
2010-03-01
Physics teachers must broaden their focus from physics for scientists to physics for all. The reason, as the American Association for the Advancement of Science puts it, is: ``Without a scientifically literate population, the outlook for a better world is not promising.'' Physics for all (including the first course for scientists) should be conceptual, not technical. It should describe the universe as we understand it today, including special and general relativity, quantum physics, modern cosmology, the standard model, and quantum fields. Many science writers have shown this is possible. It should include physics-related social topics such as global warming and nuclear weapons, because citizens need to vote on these issues. Above all, it should emphasize the scientific process and the difference between science and nonsense. Science is based not on beliefs but rather on evidence and reason. We should constantly ask ``How do we know?'' and ``What is the evidence?''
Aytur, Semra A; Jones, Sydney A; Stransky, Michelle; Evenson, Kelly R
2015-01-01
Chronic diseases such as cardiovascular disease (CVD) are major contributors to escalating health care costs in the USA. Physical activity is an important protective factor against CVD, and the National Prevention Strategy recognizes active living (defined as a way of life that integrates physical activity into everyday routines) as a priority for improving the nation's health. This paper focuses on developing more inclusive measures of physical activity in outdoor community recreational environments, specifically parks and trails, to enhance their usability for at-risk populations such as persons with mobility limitations. We develop an integrated conceptual framework for measuring physical activity in outdoor community recreational environments, describe examples of evidence-based tools for measuring physical activity in these settings, and discuss strategies to improve measurement of physical activity for persons with mobility limitations. Addressing these measurement issues is critically important to making progress towards national CVD goals pertaining to active community environments.
Students' conceptual performance on synthesis physics problems with varying mathematical complexity
NASA Astrophysics Data System (ADS)
Ibrahim, Bashirah; Ding, Lin; Heckler, Andrew F.; White, Daniel R.; Badeau, Ryan
2017-06-01
A body of research on physics problem solving has focused on single-concept problems. In this study we use "synthesis problems" that involve multiple concepts typically taught in different chapters. We use two types of synthesis problems, sequential and simultaneous synthesis tasks. Sequential problems require a consecutive application of fundamental principles, and simultaneous problems require a concurrent application of pertinent concepts. We explore students' conceptual performance when they solve quantitative synthesis problems with varying mathematical complexity. Conceptual performance refers to the identification, follow-up, and correct application of the pertinent concepts. Mathematical complexity is determined by the type and the number of equations to be manipulated concurrently due to the number of unknowns in each equation. Data were collected from written tasks and individual interviews administered to physics major students (N =179 ) enrolled in a second year mechanics course. The results indicate that mathematical complexity does not impact students' conceptual performance on the sequential tasks. In contrast, for the simultaneous problems, mathematical complexity negatively influences the students' conceptual performance. This difference may be explained by the students' familiarity with and confidence in particular concepts coupled with cognitive load associated with manipulating complex quantitative equations. Another explanation pertains to the type of synthesis problems, either sequential or simultaneous task. The students split the situation presented in the sequential synthesis tasks into segments but treated the situation in the simultaneous synthesis tasks as a single event.
Methodology and application of combined watershed and ground-water models in Kansas
Sophocleous, M.; Perkins, S.P.
2000-01-01
Increased irrigation in Kansas and other regions during the last several decades has caused serious water depletion, making the development of comprehensive strategies and tools to resolve such problems increasingly important. This paper makes the case for an intermediate complexity, quasi-distributed, comprehensive, large-watershed model, which falls between the fully distributed, physically based hydrological modeling system of the type of the SHE model and the lumped, conceptual rainfall-runoff modeling system of the type of the Stanford watershed model. This is achieved by integrating the quasi-distributed watershed model SWAT with the fully-distributed ground-water model MODFLOW. The advantage of this approach is the appreciably smaller input data requirements and the use of readily available data (compared to the fully distributed, physically based models), the statistical handling of watershed heterogeneities by employing the hydrologic-response-unit concept, and the significantly increased flexibility in handling stream-aquifer interactions, distributed well withdrawals, and multiple land uses. The mechanics of integrating the component watershed and ground-water models are outlined, and three real-world management applications of the integrated model from Kansas are briefly presented. Three different aspects of the integrated model are emphasized: (1) management applications of a Decision Support System for the integrated model (Rattlesnake Creek subbasin); (2) alternative conceptual models of spatial heterogeneity related to the presence or absence of an underlying aquifer with shallow or deep water table (Lower Republican River basin); and (3) the general nature of the integrated model linkage by employing a watershed simulator other than SWAT (Wet Walnut Creek basin). These applications demonstrate the practicality and versatility of this relatively simple and conceptually clear approach, making public acceptance of the integrated watershed modeling system much easier. This approach also enhances model calibration and thus the reliability of model results. (C) 2000 Elsevier Science B.V.Increased irrigation in Kansas and other regions during the last several decades has caused serious water depletion, making the development of comprehensive strategies and tools to resolve such problems increasingly important. This paper makes the case for an intermediate complexity, quasi-distributed, comprehensive, large-watershed model, which falls between the fully distributed, physically based hydrological modeling system of the type of the SHE model and the lumped, conceptual rainfall-runoff modeling system of the type of the Stanford watershed model. This is achieved by integrating the quasi-distributed watershed model SWAT with the fully-distributed ground-water model MODFLOW. The advantage of this approach is the appreciably smaller input data requirements and the use of readily available data (compared to the fully distributed, physically based models), the statistical handling of watershed heterogeneities by employing the hydrologic-response-unit concept, and the significantly increased flexibility in handling stream-aquifer interactions, distributed well withdrawals, and multiple land uses. The mechanics of integrating the component watershed and ground-water models are outlined, and three real-world management applications of the integrated model from Kansas are briefly presented. Three different aspects of the integrated model are emphasized: (1) management applications of a Decision Support System for the integrated model (Rattlesnake Creek subbasin); (2) alternative conceptual models of spatial heterogeneity related to the presence or absence of an underlying aquifer with shallow or deep water table (Lower Republican River basin); and (3) the general nature of the integrated model linkage by employing a watershed simulator other than SWAT (Wet Walnut Creek basin). These applications demonstrate the practicality and ve
Modelling Mathematical Reasoning in Physics Education
NASA Astrophysics Data System (ADS)
Uhden, Olaf; Karam, Ricardo; Pietrocola, Maurício; Pospiech, Gesche
2012-04-01
Many findings from research as well as reports from teachers describe students' problem solving strategies as manipulation of formulas by rote. The resulting dissatisfaction with quantitative physical textbook problems seems to influence the attitude towards the role of mathematics in physics education in general. Mathematics is often seen as a tool for calculation which hinders a conceptual understanding of physical principles. However, the role of mathematics cannot be reduced to this technical aspect. Hence, instead of putting mathematics away we delve into the nature of physical science to reveal the strong conceptual relationship between mathematics and physics. Moreover, we suggest that, for both prospective teaching and further research, a focus on deeply exploring such interdependency can significantly improve the understanding of physics. To provide a suitable basis, we develop a new model which can be used for analysing different levels of mathematical reasoning within physics. It is also a guideline for shifting the attention from technical to structural mathematical skills while teaching physics. We demonstrate its applicability for analysing physical-mathematical reasoning processes with an example.
Lee, Heewon; Contento, Isobel R.; Koch, Pamela
2012-01-01
Objective To use and review a conceptual model of process evaluation and to examine the implementation of a nutrition education curriculum, Choice, Control & Change, designed to promote dietary and physical activity behaviors that reduce obesity risk. Design A process evaluation study based on a systematic conceptual model. Setting Five middle schools in New York City. Participants 562 students in 20 classes and their science teachers (n=8). Main Outcome Measures Based on the model, teacher professional development, teacher implementation, and student reception were evaluated. Also measured were teacher characteristics, teachers’ curriculum evaluation, and satisfaction with teaching the curriculum. Analysis Descriptive statistics and Spearman’s Rho Correlation for quantitative analysis and content analysis for qualitative data were used. Results Mean score of the teacher professional development evaluation was 4.75 on a 5-point scale. Average teacher implementation rate was 73%, and student reception rate was 69%. Ongoing teacher support was highly valued by teachers. Teachers’ satisfaction with teaching the curriculum was highly correlated with students’ satisfaction (p <.05). Teachers’ perception of amount of student work was negatively correlated with implementation and with student satisfaction (p<.05). Conclusions and implications Use of a systematic conceptual model and comprehensive process measures improves understanding of the implementation process and helps educators to better implement interventions as designed. PMID:23321021
Lee, Heewon; Contento, Isobel R; Koch, Pamela
2013-03-01
To use and review a conceptual model of process evaluation and to examine the implementation of a nutrition education curriculum, Choice, Control & Change, designed to promote dietary and physical activity behaviors that reduce obesity risk. A process evaluation study based on a systematic conceptual model. Five middle schools in New York City. Five hundred sixty-two students in 20 classes and their science teachers (n = 8). Based on the model, teacher professional development, teacher implementation, and student reception were evaluated. Also measured were teacher characteristics, teachers' curriculum evaluation, and satisfaction with teaching the curriculum. Descriptive statistics and Spearman ρ correlation for quantitative analysis and content analysis for qualitative data were used. Mean score of the teacher professional development evaluation was 4.75 on a 5-point scale. Average teacher implementation rate was 73%, and the student reception rate was 69%. Ongoing teacher support was highly valued by teachers. Teacher satisfaction with teaching the curriculum was highly correlated with student satisfaction (P < .05). Teacher perception of amount of student work was negatively correlated with implementation and with student satisfaction (P < .05). Use of a systematic conceptual model and comprehensive process measures improves understanding of the implementation process and helps educators to better implement interventions as designed. Copyright © 2013 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.
Views about Physics Held by Physics Teachers with Differing Approaches to Teaching Physics
ERIC Educational Resources Information Center
Mulhall, Pamela; Gunstone, Richard
2008-01-01
Physics teachers' approaches to teaching physics are generally considered to be linked to their views about physics. In this qualitative study, the views about physics held by a group of physics teachers whose teaching practice was traditional were explored and compared with the views held by physics teachers who used conceptual change approaches.…
Modeling Instruction in AP Physics C: Mechanics and Electricity and Magnetism
NASA Astrophysics Data System (ADS)
Belcher, Nathan Tillman
This action research study used data from multiple assessments in Mechanics and Electricity and Magnetism to determine the viability of Modeling Instruction as a pedagogy for students in AP Physics C: Mechanics and Electricity and Magnetism. Modeling Instruction is a guided-inquiry approach to teaching science in which students progress through the Modeling Cycle to develop a fully-constructed model for a scientific concept. AP Physics C: Mechanics and Electricity and Magnetism are calculus-based physics courses, approximately equivalent to first-year calculus-based physics courses at the collegiate level. Using a one-group pretest-posttest design, students were assessed in Mechanics using the Force Concept Inventory, Mechanics Baseline Test, and 2015 AP Physics C: Mechanics Practice Exam. With the same design, students were assessed in Electricity and Magnetism on the Brief Electricity and Magnetism Assessment, Electricity and Magnetism Conceptual Assessment, and 2015 AP Physics C: Electricity and Magnetism Practice Exam. In a one-shot case study design, student scores were collected from the 2017 AP Physics C: Mechanics and Electricity and Magnetism Exams. Students performed moderately well on the assessments in Mechanics and Electricity and Magnetism, demonstrating that Modeling Instruction is a viable pedagogy in AP Physics C: Electricity and Magnetism.
Strategies to predict metal mobility in surficial mining environments
Smith, Kathleen S.
2007-01-01
This report presents some strategies to predict metal mobility at mining sites. These strategies are based on chemical, physical, and geochemical information about metals and their interactions with the environment. An overview of conceptual models, metal sources, and relative mobility of metals under different geochemical conditions is presented, followed by a discussion of some important physical and chemical properties of metals that affect their mobility, bioavailability, and toxicity. The physical and chemical properties lead into a discussion of the importance of the chemical speciation of metals. Finally, environmental and geochemical processes and geochemical barriers that affect metal speciation are discussed. Some additional concepts and applications are briefly presented at the end of this report.
NASA Astrophysics Data System (ADS)
Sumihara, K.
Based upon legitimate variational principles, one microscopic-macroscopic finite element formulation for linear dynamics is presented by Hybrid Stress Finite Element Method. The microscopic application of Geometric Perturbation introduced by Pian and the introduction of infinitesimal limit core element (Baby Element) have been consistently combined according to the flexible and inherent interpretation of the legitimate variational principles initially originated by Pian and Tong. The conceptual development based upon Hybrid Finite Element Method is extended to linear dynamics with the introduction of physically meaningful higher modes.
Use of clickers and sustainable reform in upper-division physics courses
NASA Astrophysics Data System (ADS)
Dubson, Michael
2008-03-01
At the University of Colorado at Boulder, successful reforms of our freshmen and sophomore-level physics courses are now being extended to upper-division courses, including Mechanics, Math Methods, QM, E&M, and Thermal Physics. Our course reforms include clicker questions (ConcepTests) in lecture, peer instruction, and an added emphasis on conceptual understanding and qualitative reasoning on homework assignments and exams. Student feedback has been strongly positive, and I will argue that such conceptual training improves rather than dilutes, traditional, computationally-intensive problem-solving skills. In order for these reforms to be sustainable, reform efforts must begin with department-wide consensus and agreed-upon measures of success. I will discuss the design of good clicker questions and effective incorporation into upper-level courses, including examples from materials science. Condensed matter physics, which by nature involve intelligent use of approximation, particularly lends itself to conceptual training. I will demonstrate the use of a clicker system (made by iClicker) with audience-participation questions. Come prepared to think and interact, rather than just sit there!
Definition of smolder experiments for Spacelab
NASA Technical Reports Server (NTRS)
Summerfield, M.; Messina, N. A.; Ingram, L. S.
1979-01-01
The feasibility of conducting experiments in space on smoldering combustion was studied to conceptually design specific smoldering experiments to be conducted in the Shuttle/Spacelab System. Design information for identified experiment critical components is provided. The analytical and experimental basis for conducting research on smoldering phenomena in space was established. Physical descriptions of the various competing processes pertaining to smoldering combustion were identified. The need for space research was defined based on limitations of existing knowledge and limitations of ground-based reduced-gravity experimental facilities.
Ultrahigh temperature vapor core reactor-MHD system for space nuclear electric power
NASA Technical Reports Server (NTRS)
Maya, Isaac; Anghaie, Samim; Diaz, Nils J.; Dugan, Edward T.
1991-01-01
The conceptual design of a nuclear space power system based on the ultrahigh temperature vapor core reactor with MHD energy conversion is presented. This UF4 fueled gas core cavity reactor operates at 4000 K maximum core temperature and 40 atm. Materials experiments, conducted with UF4 up to 2200 K, demonstrate acceptable compatibility with tungsten-molybdenum-, and carbon-based materials. The supporting nuclear, heat transfer, fluid flow and MHD analysis, and fissioning plasma physics experiments are also discussed.
Reasoning, Attitudes, and Learning: What matters in Introductory Physics?
NASA Astrophysics Data System (ADS)
Bateman, Melissa; Pyper, Brian
2009-05-01
Recent research has been revealing a connection between epistemological beliefs, reasoning ability and conceptual understanding. Our project has been taking data collected from the Fall `08 and Winter `09 semesters to supplement existing data in strengthening the statistical value of our sample size. We administered four tests to selected introductory physics courses: the Epistemological Beliefs Assessment for Physical Science, the Lawson Classroom Test of Scientific Reasoning, The Force Concept Inventory, and the Conceptual Survey in Electricity and Magnetism. With these data we have been comparing test results to demographics to answer questions such as: Does gender affect how we learn physics? Does past physics experience affect how we learn physics? Does past math experience affect how we learn physics? And how do math background successes compare to physics background successes? As we answer these questions, we will be better prepared in the Physics classroom and better identify the struggles of our students and solutions to help them better succeed.
Development and testing of a fast conceptual river water quality model.
Keupers, Ingrid; Willems, Patrick
2017-04-15
Modern, model based river quality management strongly relies on river water quality models to simulate the temporal and spatial evolution of pollutant concentrations in the water body. Such models are typically constructed by extending detailed hydrodynamic models with a component describing the advection-diffusion and water quality transformation processes in a detailed, physically based way. This approach is too computational time demanding, especially when simulating long time periods that are needed for statistical analysis of the results or when model sensitivity analysis, calibration and validation require a large number of model runs. To overcome this problem, a structure identification method to set up a conceptual river water quality model has been developed. Instead of calculating the water quality concentrations at each water level and discharge node, the river branch is divided into conceptual reservoirs based on user information such as location of interest and boundary inputs. These reservoirs are modelled as Plug Flow Reactor (PFR) and Continuously Stirred Tank Reactor (CSTR) to describe advection and diffusion processes. The same water quality transformation processes as in the detailed models are considered but with adjusted residence times based on the hydrodynamic simulation results and calibrated to the detailed water quality simulation results. The developed approach allows for a much faster calculation time (factor 10 5 ) without significant loss of accuracy, making it feasible to perform time demanding scenario runs. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gattis, Kenneth William
1995-01-01
The purpose was to investigate the acquisition and retrieval of physics concepts introduced to college physics students by classroom demonstrations. Three experimental groups of calculus-based physics classes were presented lessons on three different topics during the semester. The lessons, which were planned to deliver identical concepts and examples, were preceded by a short quiz and were followed by an identical posttest. One treatment group received "enhanced" demonstration lessons, which included a brief period of peer discussion prior to the demonstration lesson. The second treatment group received typical demonstration lessons, and the control group received traditional lectures. Both demonstration groups were found to have higher conceptual gains than the control group on the topic of force and motion, which featured an air track demonstration. No differences were found on the topic of conservation of energy. On the topic of angular momentum, the demonstration groups tended to have higher prediction gains and the control group had higher explanation gains. No differences were found between the gains of the two demonstration groups. Student interview responses recorded one to two weeks after the experimental lessons indicated that the lesson containing a "stool and dumbbell" demonstration in the treatment groups was more memorable than the corresponding angular momentum lesson seen by the control group. Demonstration group students who made conceptual gains on the quizzes were found to give more complete responses to problems; yet they used language that was similar to that used by demonstration group students making no gains. In recalling experimental lessons, the demonstration group students gave responses that were more complete and used more everyday language than the control group students. It was concluded that demonstrations may assist students on certain topics by (1) helping to make concepts more believable; (2) helping to explain concepts that have key spatial and temporal relationships; and (3) providing especially vivid visual images and physical examples that are useful in making analogies to other examples and generalizing to more abstract concepts. Further study is needed to test the hypothesis that demonstrations tend to enrich students' verbal descriptions of physics concepts and examples.
Podgórski, Daniel; Majchrzycka, Katarzyna; Dąbrowska, Anna; Gralewicz, Grzegorz; Okrasa, Małgorzata
2017-03-01
Recent developments in domains of ambient intelligence (AmI), Internet of Things, cyber-physical systems (CPS), ubiquitous/pervasive computing, etc., have led to numerous attempts to apply ICT solutions in the occupational safety and health (OSH) area. A literature review reveals a wide range of examples of smart materials, smart personal protective equipment and other AmI applications that have been developed to improve workers' safety and health. Because the use of these solutions modifies work methods, increases complexity of production processes and introduces high dynamism into thus created smart working environments (SWE), a new conceptual framework for dynamic OSH management in SWE is called for. A proposed framework is based on a new paradigm of OSH risk management consisting of real-time risk assessment and the capacity to monitor the risk level of each worker individually. A rationale for context-based reasoning in SWE and a respective model of the SWE-dedicated CPS are also proposed.
Exploring the Relationship between Physics-Related Epistemological Beliefs and Physics Understanding
ERIC Educational Resources Information Center
Stathopoulou, Christina; Vosniadou, Stella
2007-01-01
Three studies are reported that investigated the relationship between secondary school students' physics-related epistemological beliefs and physics conceptual understanding. Study 1 involved the development of a Greek Epistemological Beliefs Evaluation Instrument for Physics (GEBEP) which was administered to 394 students (10th graders). Study 2…
Physics Teacher Use of the History of Science
ERIC Educational Resources Information Center
Winrich, Charles
2013-01-01
The School of Education and the Department of Physics at Boston University offer a sequence of 10 two-credit professional development courses through the Improving the Teaching of Physics (ITOP) project. The ITOP courses combine physics content, readings from the physics education research (PER) literature, and the conceptual history of physics…
NASA Technical Reports Server (NTRS)
Olds, John R.; Marcus, Leland
2002-01-01
This paper is written in support of the on-going research into conceptual space vehicle design conducted at the Space Systems Design Laboratory (SSDL) at the Georgia Institute of Technology. Research at the SSDL follows a sequence of a number of the traditional aerospace disciplines. The sequence of disciplines and interrelationship among them is shown in the Design Structure Matrix (DSM). The discipline of Weights and Sizing occupies a central location in the design of a new space vehicle. Weights and Sizing interact, either in a feed forward or feed back manner, with every other discipline in the DSM. Because of this principle location, accuracy in Weights and Sizing is integral to producing an accurate model of a space vehicle concept. Instead of using conceptual level techniques, a simplified Finite Element Analysis (FEA) technique is described as applied to the problem of the Liquid Oxygen (LOX) tank bending loads applied to the forward Liquid Hydrogen (LH2) tank of the Georgia Tech Air Breathing Launch Vehicle (ABLV).
NASA Astrophysics Data System (ADS)
Harper, Kathleen A.; Etkina, Eugenia
2002-10-01
As part of weekly reports,1 structured journals in which students answer three standard questions each week, they respond to the prompt, If I were the instructor, what questions would I ask or problems assign to determine if my students understood the material? An initial analysis of the results shows that some student-generated problems indicate fundamental misunderstandings of basic physical concepts. A further investigation explores the relevance of the problems to the week's material, whether the problems are solvable, and the type of problems (conceptual or calculation-based) written. Also, possible links between various characteristics of the problems and conceptual achievement are being explored. The results of this study spark many more questions for further work. A summary of current findings will be presented, along with its relationship to previous work concerning problem posing.2 1Etkina, E. Weekly Reports;A Two-Way Feedback Tool, Science Education, 84, 594-605 (2000). 2Mestre, J.P., Probing Adults Conceptual Understanding and Transfer of Learning Via Problem Posing, Journal of Applied Developmental Psychology, 23, 9-50 (2002).
Transforming the junior level: Outcomes from instruction and research in E&M
NASA Astrophysics Data System (ADS)
Chasteen, Stephanie V.; Pollock, Steven J.; Pepper, Rachel E.; Perkins, Katherine K.
2012-12-01
Over the course of four years, we have researched and transformed a key course in the career of an undergraduate physics major—junior-level electricity and magnetism. With the aim of educating our majors based on a more complete understanding of the cognitive and conceptual challenges of upper-division courses, we used principles of active engagement and learning theory to develop course materials and conceptual assessments. Our research results from student and faculty interviews and observations also informed our approach. We present several measures of the outcomes of this work at the University of Colorado at Boulder and external institutions. Students in the transformed courses achieved higher learning gains compared to those in the traditionally taught courses, particularly in the areas of conceptual understanding and ability to articulate their reasoning about a problem. The course transformations appear to close a gender gap, improving female students’ scores on conceptual and traditional assessments so that they are more similar to those of male students. Students enthusiastically support the transformations, and indicate that several course elements provide useful scaffolding in conceptual understanding, as well as physicists’ “habits of mind” such as problem-solving approaches and work habits. Despite these positive outcomes, student conceptual learning gains do not fully meet faculty expectations, suggesting that it is valuable to further investigate how the content and skills indicative of “thinking like a physicist” can be most usefully taught at the upper division.
Physics By Inquiry: Addressing Student Learning and Attitude
NASA Astrophysics Data System (ADS)
Sadaghiani, Homeyra R.
2008-10-01
In the last decade, the results of Physics Education Research and research-based instructional materials have been disseminated from traditional research universities to a wide variety of colleges and universities. Nevertheless, the ways in which different institutions implement these materials depend on their students and the institutional context. Even with the widespread use of these curriculums, the research documenting the effectiveness of these materials with different student populations is scarce. This paper describes the challenges associated with implementing Physics by Inquiry at California State Polytechnic University Pomona and confirms its effectiveness in promoting student conceptual knowledge of physics. However, despite the positive effect on student learning, the evidence suggests that the students did not appreciate the self-discovery aspect of the inquiry approach and characterized the learning process as difficult and unpleasant.
NASA Astrophysics Data System (ADS)
Hostache, Renaud; Rains, Dominik; Chini, Marco; Lievens, Hans; Verhoest, Niko E. C.; Matgen, Patrick
2017-04-01
Motivated by climate change and its impact on the scarcity or excess of water in many parts of the world, several agencies and research institutions have taken initiatives in monitoring and predicting the hydrologic cycle at a global scale. Such a monitoring/prediction effort is important for understanding the vulnerability to extreme hydrological events and for providing early warnings. This can be based on an optimal combination of hydro-meteorological models and remote sensing, in which satellite measurements can be used as forcing or calibration data or for regularly updating the model states or parameters. Many advances have been made in these domains and the near future will bring new opportunities with respect to remote sensing as a result of the increasing number of spaceborn sensors enabling the large scale monitoring of water resources. Besides of these advances, there is currently a tendency to refine and further complicate physically-based hydrologic models to better capture the hydrologic processes at hand. However, this may not necessarily be beneficial for large-scale hydrology, as computational efforts are therefore increasing significantly. As a matter of fact, a novel thematic science question that is to be investigated is whether a flexible conceptual model can match the performance of a complex physically-based model for hydrologic simulations at large scale. In this context, the main objective of this study is to investigate how innovative techniques that allow for the estimation of soil moisture from satellite data can help in reducing errors and uncertainties in large scale conceptual hydro-meteorological modelling. A spatially distributed conceptual hydrologic model has been set up based on recent developments of the SUPERFLEX modelling framework. As it requires limited computational efforts, this model enables early warnings for large areas. Using as forcings the ERA-Interim public dataset and coupled with the CMEM radiative transfer model, SUPERFLEX is capable of predicting runoff, soil moisture, and SMOS-like brightness temperature time series. Such a model is traditionally calibrated using only discharge measurements. In this study we designed a multi-objective calibration procedure based on both discharge measurements and SMOS-derived brightness temperature observations in order to evaluate the added value of remotely sensed soil moisture data in the calibration process. As a test case we set up the SUPERFLEX model for the large scale Murray-Darling catchment in Australia ( 1 Million km2). When compared to in situ soil moisture time series, model predictions show good agreement resulting in correlation coefficients exceeding 70 % and Root Mean Squared Errors below 1 %. When benchmarked with the physically based land surface model CLM, SUPERFLEX exhibits similar performance levels. By adapting the runoff routing function within the SUPERFLEX model, the predicted discharge results in a Nash Sutcliff Efficiency exceeding 0.7 over both the calibration and the validation periods.
NASA Astrophysics Data System (ADS)
Viennot, Laurence; Décamp, Nicolas
2018-06-01
This paper is inspired by the widely accepted need to develop critical thinking in physics students and teachers. More specifically, it is focused on the development of a critical attitude in prospective physics teachers. The question of a possible interplay between the development of conceptual comprehension and that of a critical attitude prompted us to conduct a series of investigations with teachers at the end of their preparation. The goal of this paper is to provide a synthesis of five previously published papers on this topic in order to inform discussion about teacher preparation. Each investigation is centered on a particular aspect of physics, and all are based on in-depth interviews with different participants. We focus on prospective teachers' "intellectual dynamics," that is, the way their comprehension of nonobvious topics and their critical attitudes evolve during these interviews, taking into account metacognitive and affective aspects such as intellectual satisfaction and self-esteem. We characterize several types of intellectual dynamics: "early critique," "delayed critique," "unstable critique," and "expert anesthesia" and provide information on their frequency. An overall conclusion is that in this type of context, that is, a guided intellectual pathway of about an hour, the development of conceptual comprehension and critical attitude are most often deeply entangled. We discuss the implications of these results for future research and we advocate new objectives and strategies for physics teachers' preparation.
NASA Astrophysics Data System (ADS)
Wutchana, U.; Emarat, N.
2011-06-01
The Maryland Physics Expectations (MPEX) survey was designed to probe students’ expectations about their understanding of the process of learning physics and the structure of physics knowledge—cognitive expectations. This survey was administered to first-year university students in Thailand in the first semester of an introductory calculus-based physics course during academic years 2007 and 2008, to assess their expectations at the beginning of the course. The precourse MPEX results were compared and correlated with two separate measures of student learning: (1) individual students’ normalized gains from pre and post Force and Motion Conceptual Evaluation (FMCE) results, which measure students’ conceptual understanding, and (2) student’s scores on the final exam, which measure their more general problem-solving ability. The results showed a significant positive correlation between their overall MPEX score and five of the six MPEX cluster scores, with their normalized learning gains on the FMCE for both academic years. The results also showed significant positive correlations between student MPEX scores and their final exam scores for the overall MPEX score and all MPEX cluster scores except for the effort cluster. We interviewed two groups of five students each, one group with small favorable scores on the precourse MPEX effort cluster and one with high favorable scores on the precourse MPEX effort cluster, to see how the students’ learning efforts compared with their MPEX results. We concluded from the interviews that what the students think or expect about the MPEX effort involved in learning physics does not match what they actually do.
Validity of peer grading using Calibrated Peer Review in a guided-inquiry, conceptual physics course
NASA Astrophysics Data System (ADS)
Price, Edward; Goldberg, Fred; Robinson, Steve; McKean, Michael
2016-12-01
Constructing and evaluating explanations are important science practices, but in large classes it can be difficult to effectively engage students in these practices and provide feedback. Peer review and grading are scalable instructional approaches that address these concerns, but which raise questions about the validity of the peer grading process. Calibrated Peer Review (CPR) is a web-based system that scaffolds peer evaluation through a "calibration" process where students evaluate sample responses and receive feedback on their evaluations before evaluating their peers. Guided by an activity theory framework, we developed, implemented, and evaluated CPR-based tasks in guided-inquiry, conceptual physics courses for future teachers and general education students. The tasks were developed through iterative testing and revision. Effective tasks had specific and directed prompts and evaluation instructions. Using these tasks, over 350 students at three universities constructed explanations or analyzed physical phenomena, and evaluated their peers' work. By independently assessing students' responses, we evaluated the CPR calibration process and compared students' peer reviews with expert evaluations. On the tasks analyzed, peer scores were equivalent to our independent evaluations. On a written explanation item included on the final exam, students in the courses using CPR outperformed students in similar courses using traditional writing assignments without a peer evaluation element. Our research demonstrates that CPR can be an effective way to explicitly include the science practices of constructing and evaluating explanations into large classes without placing a significant burden on the instructor.
A Conceptual Derivation of Einstein's Postulates of Special Relativity.
ERIC Educational Resources Information Center
Bearden, Thomas E.
This document presents a discussion and conceptual derivation of Einstein's postulates of special relativity. The perceptron approach appears to be a fundamentally new manner of regarding physical phenomena and it is hoped that physicists will interest themselves in the concept. (Author)
Gignac, M A; Cott, C
1998-09-01
This paper presents a conceptual model of physical independence and dependence as it relates to adult onset, chronic physical illness and disability. Physical independence and dependence are presented as two separate, continuous, and multiply determined constructs, and illustrations are provided of situations where people can be independent, dependent, not independent, or experience imposed dependence. The paper also discusses potential determinants of physical independence and dependence, including different domains of disability, the role of subjective perceptions, demographics, the physical and social/political environments, personal resources, attitudes and coping resources, illness and efficacy appraisals, and the nature of the assistive relationship. The paper extends work on physical independence and dependence by synthesizing the findings from previous studies and incorporating the findings from other relevant areas of research into the area. It also expands on the concepts of physical independence and dependence, as well as their determinants, and relates independence and dependence to other outcomes of interest such as service delivery.
Physical activity interventions using mass media, print media, and information technology.
Marcus, B H; Owen, N; Forsyth, L H; Cavill, N A; Fridinger, F
1998-11-01
Media-based physical activity interventions include a variety of print, graphic, audiovisual, and broadcast media programs intended to influence behavior change. New information technology allows print to be delivered in personalized, interactive formats that may enhance efficacy. Media-based interventions have been shaped by conceptual models from health education, Social Cognitive Theory, the Transtheoretical Model, and Social Marketing frameworks. We reviewed 28 studies of media-based interventions of which seven were mass media campaigns at the state or national level and the remaining 21 were delivered through health care, the workplace, or in the community. Recall of mass-media messages generally was high, but mass-media campaigns had very little impact on physical activity behavior. Interventions using print and/or telephone were effective in changing behavior in the short term. Studies in which there were more contacts and interventions tailored to the target audience were most effective. A key issue for research on media-based physical activity interventions is reaching socially disadvantaged groups for whom access, particularly to new forms of communication technology, may be limited. There is a clear need for controlled trials comparing different forms and intensities of media-based physical activity interventions. Controlled studies of personalized print, interactive computer-mediated programs, and web-based formats for program delivery also are needed. The integration of media-based methods into public and private sector service delivery has much potential for innovation.
Benitez, Tanya J; Dodgson, Joan E; Coe, Kathryn; Keller, Colleen
2016-06-01
Latina adults in the United States have a disproportionately higher prevalence of chronic diseases related to low physical activity levels than non-Hispanic women. Literature indicates that acculturation may be a contributing factor to being physically active, but the extent of this association remains unclear. An integrative review of literature was conducted on studies that examined acculturation as it relates to physical activity in Latinas in the United States. Our review of 33 studies revealed inconsistent measurement and conceptualization of acculturation and physical activity across studies. Findings from this review reinforce the importance and continued use of acculturation by behavioral researchers; however, acculturation, as conceptualized in the studies reviewed, may not have had an influence on health as much as traditions, life patterns, and resources of Latinas. © 2015 Society for Public Health Education.
Frone, Michael R.; Trinidad, Jonathan R.
2014-01-01
This study develops and tests a new conceptual model of perceived physical availability of alcohol at work that provides unique insight into three dimensions of workplace physical availability of alcohol and their direct and indirect relations to workplace alcohol use and impairment. Data were obtained from a national probability sample of 2,727 U.S. workers. The results support the proposed conceptual model and provide empirical support for a positive relation of perceived physical availability of alcohol at work to workplace alcohol use and two dimensions of workplace impairment (workplace intoxication and workplace hangover). Ultimately, the findings suggest that perceived physical availability of alcohol at work is a risk factor for alcohol use and impairment during the workday, and that this relation is more complex than previously hypothesized. PMID:25243831
The Trans-Contextual Model of Autonomous Motivation in Education
Hagger, Martin S.; Chatzisarantis, Nikos L. D.
2015-01-01
The trans-contextual model outlines the processes by which autonomous motivation toward activities in a physical education context predicts autonomous motivation toward physical activity outside of school, and beliefs about, intentions toward, and actual engagement in, out-of-school physical activity. In the present article, we clarify the fundamental propositions of the model and resolve some outstanding conceptual issues, including its generalizability across multiple educational domains, criteria for its rejection or failed replication, the role of belief-based antecedents of intentions, and the causal ordering of its constructs. We also evaluate the consistency of model relationships in previous tests of the model using path-analytic meta-analysis. The analysis supported model hypotheses but identified substantial heterogeneity in the hypothesized relationships across studies unattributed to sampling and measurement error. Based on our meta-analysis, future research needs to provide further replications of the model in diverse educational settings beyond physical education and test model hypotheses using experimental methods. PMID:27274585
Explosives Detection: Exploitation of the Physical Signatures
NASA Astrophysics Data System (ADS)
Atkinson, David
2010-10-01
Explosives based terrorism is an ongoing threat that is evolving with respect to implementation, configuration and materials used. There are a variety of devices designed to detect explosive devices, however, each technology has limitations and operational constraints. A full understanding of the signatures available for detection coupled with the array of detection choices can be used to develop a conceptual model of an explosives screening operation. Physics based sensors provide a robust approach to explosives detection, typically through the identification of anomalies, and are currently used for screening in airports around the world. The next generation of detectors for explosives detection will need to be more sensitive and selective, as well as integrate seamlessly with devices focused on chemical signatures. An appreciation for the details of the physical signature exploitation in cluttered environments with time, space, and privacy constraints is necessary for effective explosives screening of people, luggage, cargo, and vehicles.
Jensen, Gail M; Nordstrom, Terrence; Mostrom, Elizabeth; Hack, Laurita M; Gwyer, Janet
2017-09-01
The Carnegie Foundation for the Advancement of Teaching commissioned the Preparation for the Professions Program, a qualitative study of professional education in 5 professions: medicine, nursing, law, engineering, and clergy. These studies identified curricular structures, instructional practices, assessment approaches, and environmental characteristics that support the preparation of professionals and led to educational reforms. The physical therapy profession has not had any in-depth, national investigation of physical therapist education since the Catherine Worthingham studies conducted more than 50 years ago. This research was a Carnegie-type study, investigating elements of excellence and innovation in academic and clinical physical therapist education in the United States. Five physical therapist education researchers from across the United States used a qualitative multiple-case study design. Six academic and 5 clinical programs were selected for the study. The academic institutions and clinical agencies studied were diverse in size, institutional setting, geography, and role in residency education. Qualitative case studies were generated from review of artifacts, field observations, and interviews (individual and focus group), and they provided the data for the study. A conceptual framework grounded in 3 major dimensions was generated, with 8 supporting elements: (1) culture of excellence (shared beliefs and values, leadership and vision, drive for excellence, and partnerships), (2) praxis of learning (signature pedagogy, practice-based learning, creating adaptive learners, and professional formation), and (3) organizational structures and resources. Building on the work of the Carnegie Foundation's Preparation for the Professions Program, a conceptual model was developed, representing the dimensions and elements of excellence in physical therapist education that is centered on the foundational importance of a nexus of linked and highly valued aims of being learner centered and patient centered in all learning environments, both academic and clinical. © 2017 American Physical Therapy Association
Stuart, Gregory L; Meehan, Jeffrey C; Moore, Todd M; Morean, Meghan; Hellmuth, Julianne; Follansbee, Katherine
2006-01-01
There is a paucity of research developing and testing conceptual models of intimate partner violence, particularly for female perpetrators of aggression. Several theorists' conceptual frameworks hypothesize that distal factors-such as personality traits, drinking patterns, and marital discord-influence each other and work together to increase the likelihood of physical aggression. The purpose of the present study was to investigate these variables in a relatively large sample of men and women arrested for domestic violence and court-referred to violence intervention programs. We recruited 409 participants (272 men and 137 women) who were arrested for domestic violence. We assessed perpetrator alcohol problems, antisociality, trait anger, relationship discord, psychological aggression, and physical abuse. We also assessed the alcohol problems, psychological aggression, and physical abuse of their relationship partners. We used structural equation modeling to examine the interrelationships among these variables in both genders independently. In men and women, alcohol problems in perpetrators and their partners contributed directly to physical abuse and indirectly via psychological aggression, even after perpetrator antisociality, perpetrator trait anger, perpetrator relationship discord, and perpetrator and partner psychological and physical aggression were included in the model. The only significant gender difference found was that, in male perpetrators, trait anger was significantly associated with relationship discord, but this path was not significant for women perpetrators. The results of the study provide further evidence that alcohol problems in both partners are important in the evolution of psychological aggression and physical violence. There were minimal differences between men and women in the relationships of most distal risk factors with physical aggression, suggesting that the conceptual framework examined may fit equally well regardless of perpetrator gender. This finding suggests that, in arrested men and women, violence intervention programs might have improved outcomes if they offered adjunct or integrated alcohol treatment.
Teaching Elementary Particle Physics: Part I1
NASA Astrophysics Data System (ADS)
Hobson, Art
2011-01-01
I'll outline suggestions for teaching elementary particle physics, often called high energy physics, in high school or introductory college courses for non-scientists or scientists. Some presentations of this topic simply list the various particles along with their properties, with little overarching structure. Such a laundry list approach is a great way to make a fascinating topic meaningless. Students need a conceptual framework from which to view the elementary particles. That conceptual framework is quantum field theory (QFT). Teachers and students alike tend to quake at this topic, but bear with me. We're talking here about concepts, not technicalities. My approach will be conceptual and suitable for non-scientists and scientists; if mathematical details are added in courses for future scientists, they should be simple and sparse. Introductory students should not be expected to do QFT, but only to understand its concepts. Those concepts take some getting used to, but they are simple and can be understood by any literate person, be she plumber, attorney, musician, or physicist.
How Students Combine Resources to Make Conceptual Breakthroughs
NASA Astrophysics Data System (ADS)
Richards, A. J.; Jones, Darrick C.; Etkina, Eugenia
2018-04-01
We use the framework of cognitive resources to investigate how students construct understanding of a complex physics topic, namely, a photovoltaic cell. By observing students as they learn about how a solar cell functions, we identified over 60 distinct resources that learners may activate while thinking about photovoltaic cells. We classify these resources into three main types: phenomenological primitives, conceptual resources, and epistemological resources. Furthermore, we found a pattern that suggests that when students make conceptual breakthroughs they may be more likely to activate combinations of resources of different types in concert, especially if a resource from each of the three categories is used. This pattern suggests that physics instructors should encourage students to activate multiple types of prior knowledge during the learning process. This can result from instructors deliberately and explicitly connecting new knowledge to students' prior experience both in and outside the formal physics classroom, as well as allowing students to reflect metacognitively on how the new knowledge fits into their existing understanding of the natural world.
Conceptual problem solving in high school physics
NASA Astrophysics Data System (ADS)
Docktor, Jennifer L.; Strand, Natalie E.; Mestre, José P.; Ross, Brian H.
2015-12-01
Problem solving is a critical element of learning physics. However, traditional instruction often emphasizes the quantitative aspects of problem solving such as equations and mathematical procedures rather than qualitative analysis for selecting appropriate concepts and principles. This study describes the development and evaluation of an instructional approach called Conceptual Problem Solving (CPS) which guides students to identify principles, justify their use, and plan their solution in writing before solving a problem. The CPS approach was implemented by high school physics teachers at three schools for major theorems and conservation laws in mechanics and CPS-taught classes were compared to control classes taught using traditional problem solving methods. Information about the teachers' implementation of the approach was gathered from classroom observations and interviews, and the effectiveness of the approach was evaluated from a series of written assessments. Results indicated that teachers found CPS easy to integrate into their curricula, students engaged in classroom discussions and produced problem solutions of a higher quality than before, and students scored higher on conceptual and problem solving measures.
Gruber-Baldini, Ann L.; Hicks, Gregory; Ostir, Glen; Klinedinst, N. Jennifer; Orwig, Denise; Magaziner, Jay
2015-01-01
Background Measurement of physical function post hip fracture has been conceptualized using multiple different measures. Purpose This study tested a comprehensive measurement model of physical function. Design This was a descriptive secondary data analysis including 168 men and 171 women post hip fracture. Methods Using structural equation modeling, a measurement model of physical function which included grip strength, activities of daily living, instrumental activities of daily living and performance was tested for fit at 2 and 12 months post hip fracture and among male and female participants and validity of the measurement model of physical function was evaluated based on how well the model explained physical activity, exercise and social activities post hip fracture. Findings The measurement model of physical function fit the data. The amount of variance the model or individual factors of the model explained varied depending on the activity. Conclusion Decisions about the ideal way in which to measure physical function should be based on outcomes considered and participant Clinical Implications The measurement model of physical function is a reliable and valid method to comprehensively measure physical function across the hip fracture recovery trajectory. Practical but useful assessment of function should be considered and monitored over the recovery trajectory post hip fracture. PMID:26492866
What Do We Mean by Physician Wellness? A Systematic Review of Its Definition and Measurement.
Brady, Keri J S; Trockel, Mickey T; Khan, Christina T; Raj, Kristin S; Murphy, Mary Lou; Bohman, Bryan; Frank, Erica; Louie, Alan K; Roberts, Laura Weiss
2018-02-01
Physician wellness (well-being) is recognized for its intrinsic importance and impact on patient care, but it is a construct that lacks conceptual clarity. The authors conducted a systematic review to characterize the conceptualization of physician wellness in the literature by synthesizing definitions and measures used to operationalize the construct. A total of 3057 references identified from PubMed, Web of Science, and a manual reference check were reviewed for studies that quantitatively assessed the "wellness" or "well-being" of physicians. Definitions of physician wellness were thematically synthesized. Measures of physician wellness were classified based on their dimensional, contextual, and valence attributes, and changes in the operationalization of physician wellness were assessed over time (1989-2015). Only 14% of included papers (11/78) explicitly defined physician wellness. At least one measure of mental, social, physical, and integrated well-being was present in 89, 50, 49, and 37% of papers, respectively. The number of papers operationalizing physician wellness using integrated, general-life well-being measures (e.g., meaning in life) increased [X 2 = 5.08, p = 0.02] over time. Changes in measurement across mental, physical, and social domains remained stable over time. Conceptualizations of physician wellness varied widely, with greatest emphasis on negative moods/emotions (e.g., burnout). Clarity and consensus regarding the conceptual definition of physician wellness is needed to advance the development of valid and reliable physician wellness measures, improve the consistency by which the construct is operationalized, and increase comparability of findings across studies. To guide future physician wellness assessments and interventions, the authors propose a holistic definition.
White, Heather L.; Mulambia, Chishimba; Sinkala, Moses; Mwanahamuntu, Mulindi H.; Parham, Groesbeck P.; Moneyham, Linda; Grimley, Diane M.; Chamot, Eric
2012-01-01
Invasive cervical cancer is the second most common cancer among women worldwide, with approximately 85% of the disease burden occurring in developing countries. To date, there have been few systematic efforts to document African women's conceptualization of cervical cancer after participation in a visual inspection with acetic acid (VIA)-based “see and treat” cervical cancer prevention program. In this study, conducted between September, 2009-July, 2010, focus groups and in-depth interviews were conducted with 60 women who had recently undergone cervical cancer screening at a government-operated primary health care clinic in Lusaka, Zambia. Interviewers elicited participants' causal representations of cervical cancer, associated physical signs and symptoms, perceived physical and psychological effects, and social norms regarding the disease. The lay model of illness causation portrayed by participants after recent exposure to program promotion messages departed in several ways from causal models described in other parts of the world. However, causal conceptualizations included both lay and biomedical elements, suggesting a possible shift from a purely traditional causal model to one that incorporates both traditional concepts and recently promoted biomedical concepts. Most, but not all, women still equated cervical cancer with death, and perceived it to be a highly stigmatized disease in Zambia because of its anatomic location, dire natural course, connections to socially-condemned behaviors, and association with HIV/AIDS. No substantive differences of disease conceptualization existed according to HIV serostatus, though HIV positive women acknowledged that their immune status makes them more aware of their health and more likely to seek medical attention. Further attention should be dedicated to the processes by which women incorporate new knowledge into their representations of cervical cancer. PMID:22459188
Developing and Applying Synthesis Models of Emerging Space Systems
2016-03-01
enables the exploration of small satellite physical trade -offs early in the conceptual design phase of the DOD space acquisition process. Early...provide trade space insights that can assist DOD space acquisition professionals in making better decisions in the conceptual design phase. More informed
The Long-Term Conditions Questionnaire: conceptual framework and item development.
Peters, Michele; Potter, Caroline M; Kelly, Laura; Hunter, Cheryl; Gibbons, Elizabeth; Jenkinson, Crispin; Coulter, Angela; Forder, Julien; Towers, Ann-Marie; A'Court, Christine; Fitzpatrick, Ray
2016-01-01
To identify the main issues of importance when living with long-term conditions to refine a conceptual framework for informing the item development of a patient-reported outcome measure for long-term conditions. Semi-structured qualitative interviews (n=48) were conducted with people living with at least one long-term condition. Participants were recruited through primary care. The interviews were transcribed verbatim and analyzed by thematic analysis. The analysis served to refine the conceptual framework, based on reviews of the literature and stakeholder consultations, for developing candidate items for a new measure for long-term conditions. Three main organizing concepts were identified: impact of long-term conditions, experience of services and support, and self-care. The findings helped to refine a conceptual framework, leading to the development of 23 items that represent issues of importance in long-term conditions. The 23 candidate items formed the first draft of the measure, currently named the Long-Term Conditions Questionnaire. The aim of this study was to refine the conceptual framework and develop items for a patient-reported outcome measure for long-term conditions, including single and multiple morbidities and physical and mental health conditions. Qualitative interviews identified the key themes for assessing outcomes in long-term conditions, and these underpinned the development of the initial draft of the measure. These initial items will undergo cognitive testing to refine the items prior to further validation in a survey.
A Conceptual Framework for Tiered Intervention in Physical Education
ERIC Educational Resources Information Center
Dauenhauer, Brian; Keating, Xiaofen; Lambdin, Dolly; Knipe, Robert
2017-01-01
Our goal as physical educators is to help all students develop the knowledge, skills and dispositions to be physically active for a lifetime. Despite efforts to address the diverse needs of students through quality physical education, the reality is that some students still need additional support beyond physical education to achieve their full…
39 Questionable Assumptions in Modern Physics
NASA Astrophysics Data System (ADS)
Volk, Greg
2009-03-01
The growing body of anomalies in new energy, low energy nuclear reactions, astrophysics, atomic physics, and entanglement, combined with the failure of the Standard Model and string theory to predict many of the most basic fundamental phenomena, all point to a need for major new paradigms. Not Band-Aids, but revolutionary new ways of conceptualizing physics, in the spirit of Thomas Kuhn's The Structure of Scientific Revolutions. This paper identifies a number of long-held, but unproven assumptions currently being challenged by an increasing number of alternative scientists. Two common themes, both with venerable histories, keep recurring in the many alternative theories being proposed: (1) Mach's Principle, and (2) toroidal, vortex particles. Matter-based Mach's Principle differs from both space-based universal frames and observer-based Einsteinian relativity. Toroidal particles, in addition to explaining electron spin and the fundamental constants, satisfy the basic requirement of Gauss's misunderstood B Law, that motion itself circulates. Though a comprehensive theory is beyond the scope of this paper, it will suggest alternatives to the long list of assumptions in context.
ERIC Educational Resources Information Center
Robinson, Daniel B.; Randall, Lynn
2017-01-01
Margaret Whitehead first introduced the concept of physical literacy over 20 years ago. Since that introduction, physical literacy has been gaining in popularity within many Western physical education and sport contexts. This is particularly true within Canada, where physical literacy has been embraced by two of the nation's most notable national…
Integration of Rotor Aerodynamic Optimization with the Conceptual Design of a Large Civil Tiltrotor
2010-01-01
Rotor MCP Maximum Continuous Power MRP Maximum Rated Power (take-off power) NDARC NASA Design and Analysis of Rotorcraft OEI One Engine Inoperative...OGE Out of Ground Effect SFC Specific Fuel Consumption SNI Simultaneous Non-Interfering approach STOL Short Takeoff and Landing VTOL Vertical...that are assembled into a complete aircraft model. NDARC is designed for high computational efficiency. Performance is calculated with physics- based
Expanding the FCI to Eevaluate Conceptual Mastery of Energy, Momentum, and Rotational Dynamics
NASA Astrophysics Data System (ADS)
Chediak, Alex; Hay, Katrina
2010-03-01
Normalized gain on the Force Concept Inventory (FCI) has deservedly become a widely accepted assessment tool to evaluate conceptual mastery in a high school, college, or university-level mechanics course. Left out of this assessment, however, are important physics concepts typically presented in the same course. Conservation of energy and momentum as well as rotational motion receive scant (if any) coverage on the FCI (or, for that matter, the Mechanics Baseline Test). Yet these concepts are foundational for popular majors such as mechanical engineering, where high failure rates are often a concern. A revised assessment tool is presented, one that incorporates the strengths of the FCI (and preserves the straightforward multiple choice format), but assesses these other mechanics-related concepts. Ten additional questions are included, inspired in part by material from the Physics Education Group at the University of Washington and in part by the authors' own experiences with common student misperceptions. The questions are given as pre- and post tests at the authors' institutions, California Baptist University and Pacific Lutheran University, in both calculus-based and algebra-based mechanics courses, exploring breadth of applicability for our findings. We present normalized gain data for the traditional thirty FCI questions and for our ten additional questions.
Röder, Brigitte; Rösler, Frank
2003-10-01
Several recent reports suggest compensatory performance changes in blind individuals. It has, however, been argued that the lack of visual input leads to impoverished semantic networks resulting in the use of data-driven rather than conceptual encoding strategies on memory tasks. To test this hypothesis, congenitally blind and sighted participants encoded environmental sounds either physically or semantically. In the recognition phase, both conceptually as well as physically distinct and physically distinct but conceptually highly related lures were intermixed with the environmental sounds encountered during study. Participants indicated whether or not they had heard a sound in the study phase. Congenitally blind adults showed elevated memory both after physical and semantic encoding. After physical encoding blind participants had lower false memory rates than sighted participants, whereas the false memory rates of sighted and blind participants did not differ after semantic encoding. In order to address the question if compensatory changes in memory skills are restricted to critical periods during early childhood, late blind adults were tested with the same paradigm. When matched for age, they showed similarly high memory scores as the congenitally blind. These results demonstrate compensatory performance changes in long-term memory functions due to the loss of a sensory system and provide evidence for high adaptive capabilities of the human cognitive system.
NASA Astrophysics Data System (ADS)
Fauzi, Ahmad; Ratna Kawuri, Kunthi; Pratiwi, Retno
2017-01-01
Researchers of students’ conceptual change usually collects data from written tests and interviews. Moreover, reports of conceptual change often simply refer to changes in concepts, such as on a test, without any identification of the learning processes that have taken place. Research has shown that students have difficulties with vectors in university introductory physics courses and high school physics courses. In this study, we intended to explore students’ understanding of one-dimensional and two-dimensional vector in multi perspective views. In this research, we explore students’ understanding through test perspective and interviews perspective. Our research study adopted the mixed-methodology design. The participants of this research were sixty students of third semester of physics education department. The data of this research were collected by testand interviews. In this study, we divided the students’ understanding of one-dimensional vector and two-dimensional vector in two categories, namely vector skills of the addition of one-dimensionaland two-dimensional vector and the relation between vector skills and conceptual understanding. From the investigation, only 44% of students provided correct answer for vector skills of the addition of one-dimensional and two-dimensional vector and only 27% students provided correct answer for the relation between vector skills and conceptual understanding.
Williamson, S. C.; Bartholow, J. M.; Stalnaker, C. B.
1993-01-01
A conceptual model has been developed to test river regulation concepts by linking physical habitat and water temperature with salmonid population and production in cold water streams. Work is in progress to examine numerous questions as part of flow evaluation and habitat restoration programmes in the Trinity River of California and elsewhere. For instance, how much change in pre-smolt chinook salmon (Oncorhynchus tshawytscha) production in the Trinity River would result from a different annual instream allocation (i.e. up or down from 271 × 106 m3released in the late 1980s) and how much change in pre-smolt production would result from a different release pattern (i.e. different from the 8.5 m3 s−1 year-round release). The conceptual model is being used to: design, integrate and improve young-of-year population data collection efforts; test hypotheses that physical habitat significantly influences movement, growth and mortality of salmonid fishes; and analyse the relative severity of limiting factors during each life stage. The conceptual model, in conjunction with previously developed tools in the Instream Flow Incremental Methodology, should provide the means to more effectively manage a fishery resource below a regulated reservoir and to provide positive feedback to planning of annual reservoir operations.
A conceptual model of children's cognitive adaptation to physical disability.
Bernardo, M L
1982-11-01
Increasing numbers of children are being required to adapt to lifelong illness and disability. While numerous studies exist on theories of adaptation, reaction to illness, and children's concepts of self and of illness, an integrated view of children's ability to conceptualize themselves, their disabilities and possible adaptations has not been formulated. In this article an attempt has been made to integrate models of adaptation to disability and knowledge about children's cognitive development using Piagetian theory of cognitive development and Crate's stages of adaptation to chronic illness. This conceptually integrated model can be used as a departure point for studies to validate the applicability of Piaget's theory to the development of the physically disabled child and to clinically assess the adaptational stages available to the child at various developmental stages.
Lim, Kyung-Choon; Waters, Catherine M; Froelicher, Erika S; Kayser-Jones, Jeanie S
2008-01-01
People can live longer and healthier lives by engaging in physical activity (PA). The purpose of this article is to assess the social cognitive theory (SCT) in relation to its relevance to produce cultural-specific directions for gerontological nursing practice in order to guide the design of PA interventions for Korean-American elders. SCT is compared to the Korean cultural, social, and health belief system and is analyzed and evaluated based on 3 criteria: assumptions of the theory, completeness and consistency, and essence of nursing. Within the Korean culture, as presumed in the SCT and the nursing paradigm, health-promoting behavior, such as PA, is conceptualized as the desire for a higher level of health rather than a fear of disease as is proposed by other health behavior theories. SCT with the integration of Korean culture recognizes cultural, developmental, societal, and other external constraints that may help in formulating interventions and better understanding of the limits faced by older Korean-Americans (OKAs) in their pursuit of routine PA.
A Method for Applying Fluvial Geomorphology in Support of Catchment-Scale River Restoration Planning
NASA Astrophysics Data System (ADS)
Sear, D.; Newson, M.; Hill, C.; Branson, J.; Old, J.
2005-12-01
Fluvial geomorphology is increasingly used by those responsible for conserving river ecosystems; survey techniques are used to derive conceptual models of the processes and forms that characterise particular systems and locations, with a view to making statements of `condition' or `status' and providing fundamental strategies for rehabilitation/restoration. However, there are important scale-related problems in developing catchments scale restoration plans that inevitably are implemented on a reach- by-reach basis. This paper reports on a watershed scale methodology for setting geomorphological and physical habitat reference conditions based on a science-based conceptual model of cachment:channel function. Using a case study from the River Nar, a gravel-bed groundwater dominated river in the UK with important conservation status, the paper describes the sequences of the methodology; from analysis of available evidence, process of field data capture and development of a conceptual model of catchment-wide fluvial dynamics. Reference conditions were derived from the conceptual model and gathered from the literature for the two main river types found on the river Nar, and compared with the current situation in 76 sub-reaches from source to mouth. Multi-Criteria Analysis (MCA) was used to score the extent of channel departures from `natural' and to suggest the basis for a progressive restoration strategy for the whole river system. MCA is shown to be a flexible method for setting and communicating decisions that are amenable to stakeholder and public consultation.
Towards a Conceptual Diagnostic Survey in Nuclear Physics
ERIC Educational Resources Information Center
Kohnle, Antje; Mclean, Stewart; Aliotta, Marialuisa
2011-01-01
Understanding students' prior beliefs in nuclear physics is a first step towards improving nuclear physics instruction. This paper describes the development of a diagnostic survey in nuclear physics covering the areas of radioactive decay, binding energy, properties of the nuclear force and nuclear reactions, that was administered to students at…
Advanced Level Physics Students' Conceptions of Quantum Physics.
ERIC Educational Resources Information Center
Mashhadi, Azam
This study addresses questions about particle physics that focus on the nature of electrons. Speculations as to whether they are more like particles or waves or like neither illustrate the difficulties with which students are confronted when trying to incorporate the concepts of quantum physics into their overall conceptual framework. Such…
A Conceptual Model of Observed Physical Literacy
ERIC Educational Resources Information Center
Dudley, Dean A.
2015-01-01
Physical literacy is a concept that is gaining greater acceptance around the world with the United Nations Educational, Cultural, and Scientific Organization (2013) recognizing it as one of several central tenets in a quality physical education framework. However, previous attempts to understand progression in physical literacy learning have been…
MO-DE-BRA-05: Developing Effective Medical Physics Knowledge Structures: Models and Methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sprawls, P
Purpose: Develop a method and supporting online resources to be used by medical physics educators for teaching medical imaging professionals and trainees so they develop highly-effective physics knowledge structures that can contribute to improved diagnostic image quality on a global basis. Methods: The different types of mental knowledge structures were analyzed and modeled with respect to both the learning and teaching process for their development and the functions or tasks that can be performed with the knowledge. While symbolic verbal and mathematical knowledge structures are very important in medical physics for many purposes, the tasks of applying physics in clinicalmore » imaging--especially to optimize image quality and diagnostic accuracy--requires a sensory conceptual knowledge structure, specifically, an interconnected network of visually based concepts. This type of knowledge supports tasks such as analysis, evaluation, problem solving, interacting, and creating solutions. Traditional educational methods including lectures, online modules, and many texts are serial procedures and limited with respect to developing interconnected conceptual networks. A method consisting of the synergistic combination of on-site medical physics teachers and the online resource, CONET (Concept network developer), has been developed and made available for the topic Radiographic Image Quality. This was selected as the inaugural topic, others to follow, because it can be used by medical physicists teaching the large population of medical imaging professionals, such as radiology residents, who can apply the knowledge. Results: Tutorials for medical physics educators on developing effective knowledge structures are being presented and published and CONET is available with open access for all to use. Conclusion: An adjunct to traditional medical physics educational methods with the added focus on sensory concept development provides opportunities for medical physics teachers to share their knowledge and experience at a higher cognitive level and produce medical professionals with the enhanced ability to apply physics to clinical procedures.« less
Factors Related to Healthy Diet and Physical Activity in Hospital-Based Clinical Nurses.
Albert, Nancy M; Butler, Robert; Sorrell, Jeanne
2014-09-30
Hospitals often promote healthy lifestyles, but little is known about nurses' actual diet and physical activity. Greater understanding about these lifestyle choices for clinical nurses may improve existing hospital-based programs and/or create desirable services. This article discusses a study that considered diet and physical activity of clinical nurses, using elements of Pender's self-care theory as a conceptual framework. Study methods included a cross-sectional, correlational design and a convenience sample of 278 nurses who worked on units with 24 hours/day and seven days-per-week responsibilities. Participants completed diet and exercise questionnaires about perceptions of attitudes and opinions, barriers, diet benefits/exercise motivators, self-efficacy, and locus of control, and personal and work characteristics. Diet and activity categories were created. Study results demonstrated that over 50% of nurses had moderately healthy diets but were insufficiently active. Healthy diet and physical activity levels were associated with higher self-efficacy, more diet benefits and physical activity motivators, fewer perceived barriers, and confidence in body image. The article discussion and conclusion sections note areas for future research and suggest that focused interventions that address benefits, motivators, and self-efficacy may increase participation in hospital-based programs and enhance healthy lifestyle for hospital-based clinical nurses.
Development and Uses of Upper-Division Conceptual Assessments
ERIC Educational Resources Information Center
Wilcox, Bethany R.; Caballero, Marcos D.; Baily, Charles; Sadaghiani, Homeyra; Chasteen, Stephanie V.; Ryan, Qing X.; Pollock, Steven J.
2015-01-01
The use of validated conceptual assessments alongside conventional course exams to measure student learning in introductory courses has become standard practice in many physics departments. These assessments provide a more standard measure of certain learning goals, allowing for comparisons of student learning across instructors, semesters,…
NASA Astrophysics Data System (ADS)
Tseitlin, Michael; Galili, Igal
The crisis in physics education necessitates searching for new relevant meanings of physics knowledge. This paper advocates regarding physics as the dialogue among discipline-cultures, rather than as a cluster of disciplines to be an appropriate subject of science education. In a discipline-culture one can distinguish elements of knowledge as belonging to either (1) central principles and paradigms - nucleus, (2) normal disciplinary area - body of knowledge or (3) rival knowledge of the subject - periphery. It appears that Physics cannot be represented as a simple dynamic wholeness, that is, cannot be arranged in a single tripartite (triadic) structure (this result presents a deconstruction), but incorporates several discipline-cultures. Bound together by family similarity, they maintain a conceptual discourse. Teaching physics as a culture is performed in polyphonic space of different worldviews; in other words, it is performed in a Kontrapunkt. Implications of the tripartite code are suggested with regard to representation of scientific revolutions, individual conceptual change, physics curricula and the typology of students learning science.
Jones, Sydney A.; Stransky, Michelle; Evenson, Kelly R.
2015-01-01
Chronic diseases such as cardiovascular disease (CVD) are major contributors to escalating health care costs in the USA. Physical activity is an important protective factor against CVD, and the National Prevention Strategy recognizes active living (defined as a way of life that integrates physical activity into everyday routines) as a priority for improving the nation’s health. This paper focuses on developing more inclusive measures of physical activity in outdoor community recreational environments, specifically parks and trails, to enhance their usability for at-risk populations such as persons with mobility limitations. We develop an integrated conceptual framework for measuring physical activity in outdoor community recreational environments, describe examples of evidence-based tools for measuring physical activity in these settings, and discuss strategies to improve measurement of physical activity for persons with mobility limitations. Addressing these measurement issues is critically important to making progress towards national CVD goals pertaining to active community environments. PMID:26005510
On the conceptual foundations of psychological measurement
NASA Astrophysics Data System (ADS)
Maul, Andrew; Wilson, Mark; Torres Irribarra, David
2013-09-01
Measurement has long been an important element of epistemology in the physical sciences and natural philosophy. More recently, the psychological sciences have developed a variety of techniques that purport to be instances of measurement as well. However, it is not clear how the understanding of measurement invoked in psychological science applications accords with the understanding of measurement found in other scientific disciplines. A sharper focus on conceptual clarity and coherence across the psychological and physical sciences has the potential to add a great deal to efforts to improve such practices. In this paper, we argue that it is possible to formulate a philosophically coherent account of how measurement works in both the physical and the human sciences.
The Persistence of the Gender Gap in Introductory Physics
NASA Astrophysics Data System (ADS)
Kost, Lauren E.; Pollock, Steven J.; Finkelstein, Noah D.
2008-10-01
We previously showed[l] that despite teaching with interactive engagement techniques, the gap in performance between males and females on conceptual learning surveys persisted from pre- to posttest, at our institution. Such findings were counter to previously published work[2]. Our current work analyzes factors that may influence the observed gender gap in our courses. Posttest conceptual assessment data are modeled using both multiple regression and logistic regression analyses to estimate the gender gap in posttest scores after controlling for background factors that vary by gender. We find that at our institution the gender gap persists in interactive physics classes, but is largely due to differences in physics and math preparation and incoming attitudes and beliefs.
Constructing conceptual meaning from a popular scientific paper—the case of E = mc2
NASA Astrophysics Data System (ADS)
Kapon, Shulamit
2013-01-01
Although high school physics students solve problems using the expression E = mc2, the origin of this expression and its deep conceptual meaning are hardly ever discussed due to students’ limited prior knowledge. In 1946, a year after the atomic bombs were first dropped, Albert Einstein published a popular scientific paper explaining the equivalence between mass and energy to the general public and the implications of this principle for our daily lives. This paper describes the utilization of Einstein’s paper in a high-school physics lesson on the equivalence of mass and energy, and discusses the instructional affordances of discussing exemplary popular scientific texts in a physics lesson.
Hollands, Gareth J; Shemilt, Ian; Marteau, Theresa M; Jebb, Susan A; Kelly, Michael P; Nakamura, Ryota; Suhrcke, Marc; Ogilvie, David
2013-12-21
The idea that behaviour can be influenced at population level by altering the environments within which people make choices (choice architecture) has gained traction in policy circles. However, empirical evidence to support this idea is limited, especially its application to changing health behaviour. We propose an evidence-based definition and typology of choice architecture interventions that have been implemented within small-scale micro-environments and evaluated for their effects on four key sets of health behaviours: diet, physical activity, alcohol and tobacco use. We argue that the limitations of the evidence base are due not simply to an absence of evidence, but also to a prior lack of definitional and conceptual clarity concerning applications of choice architecture to public health intervention. This has hampered the potential for systematic assessment of existing evidence. By seeking to address this issue, we demonstrate how our definition and typology have enabled systematic identification and preliminary mapping of a large body of available evidence for the effects of choice architecture interventions. We discuss key implications for further primary research, evidence synthesis and conceptual development to support the design and evaluation of such interventions. This conceptual groundwork provides a foundation for future research to investigate the effectiveness of choice architecture interventions within micro-environments for changing health behaviour. The approach we used may also serve as a template for mapping other under-explored fields of enquiry.
Quantum key distribution protocol based on contextuality monogamy
NASA Astrophysics Data System (ADS)
Singh, Jaskaran; Bharti, Kishor; Arvind
2017-06-01
The security of quantum key distribution (QKD) protocols hinges upon features of physical systems that are uniquely quantum in nature. We explore the role of quantumness, as qualified by quantum contextuality, in a QKD scheme. A QKD protocol based on the Klyachko-Can-Binicioğlu-Shumovsky (KCBS) contextuality scenario using a three-level quantum system is presented. We explicitly show the unconditional security of the protocol by a generalized contextuality monogamy relationship based on the no-disturbance principle. This protocol provides a new framework for QKD which has conceptual and practical advantages over other protocols.
Health Disparities and Discrimination: Three Perspectives
Ndiaye, Khadidiatou; Krieger, Janice R.; Warren, Jennifer R.; Hecht, Michael L.; Okuyemi, Kola
2010-01-01
This article presents three perspectives on health discrimination and disparities, organized around different conceptualizations of the way “space” perpetuates health disparities. The first two perspectives are grounded in conceptualizing space in a physical sense by exploring the manifestation of discrimination as a problem both among and within nations. The third perspective juxtaposes geographical space with cyberspace. The internet, with its ability to blur sense of place, social demarcations, and behavior is often considered a panacea that can eliminate the health disparities. The internet, however, may not be fulfilling its promise as an equal source of health information for all and disparities related to international and rural geography remain problematic. Solutions are proposed for reducing health disparities based on The Principle of Cultural Grounding (Hecht & Krieger, 2006; Hecht & Miller-Day, in press). PMID:20694161
The effect of conceptual metaphors through guided inquiry on student's conceptual change
NASA Astrophysics Data System (ADS)
Menia, Meli; Mudzakir, Ahmad; Rochintaniawati, Diana
2017-05-01
The purpose of this study was to identify student's conceptual change of global warming after integrated science learning based guided inquiry through conceptual metaphors. This study used a quasi-experimental with a nonequivalent control group design. The subject was students of two classes of one of MTsN Salido. Data was collected using conceptual change test (pretest and posttest), observation sheet to observe the learning processes, questionnaire sheet to identify students responses, and interview to identifyteacher'srespons of science learning with conceptual metaphors. The results showed that science learning based guided inquiry with conceptual metaphors is better than science learning without conceptual metaphors. The average of posttest experimental class was 79,40 and control class was 66,09. The student's conceptual change for two classes changed significantly byusing mann whitney U testwith P= 0,003(P less than sig. value, P< 0,05). This means that there was differenceson student's conceptual changebeetwen integrated science learning based guided inquiry with conceptual metaphors class and integrated science learning without conceptual metaphors class. The study also showed that teachers and studentsgive positive responsesto implementation of integrated science learning based guided inquiry with conceptual metaphors.
Thomas, Jonathan V.; Stanton, Gregory P.; Bumgarner, Johnathan R.; Pearson, Daniel K.; Teeple, Andrew; Houston, Natalie A.; Payne, Jason; Musgrove, MaryLynn
2013-01-01
Several previous studies have been done to compile or collect physical and chemical data, describe the hydrogeologic processes, and develop conceptual and numerical groundwater-flow models of the Edwards-Trinity aquifer in the Trans-Pecos region. Documented methods were used to compile and collect groundwater, surface-water, geochemical, geophysical, and geologic information that subsequently were used to develop this conceptual model.
Views about Learning Physics Held by Physics Teachers with Differing Approaches to Teaching Physics
ERIC Educational Resources Information Center
Mulhall, Pamela; Gunstone, Richard
2012-01-01
Research into teacher thinking offers potential insights into ways of promoting better teaching. A recent qualitative study explored the views about physics, and learning and teaching physics of a group of teachers whose classroom practice was "traditional" and a group who used conceptual change teaching approaches. This paper focuses on the views…
The free fall of an apple: conceptual subtleties and implications for physics teaching
NASA Astrophysics Data System (ADS)
Assis, A. K. T.; Karam, R. A. S.
2018-05-01
The study of free fall is thoroughly present in physics teaching at all levels. From the point of view of Newtonian dynamics it appears to be extremely simple, as it consists of a two-body problem with a constant force generating a constant acceleration. However, there are several important conceptual subtleties and hidden assumptions involved in this problem, which are rarely discussed in educational settings. In this work we present some of these subtleties and argue that explicitly addressing them has significant pedagogical benefits.
Particle Physics: From School to University.
ERIC Educational Resources Information Center
Barlow, Roger
1992-01-01
Discusses the teaching of particle physics as part of the A-level physics course in British secondary schools. Utilizes the quark model of hadrons and the conceptual kinematics of particle collisions, as examples, to demonstrate practical instructional possibilities in relation to student expectations. (JJK)
ERIC Educational Resources Information Center
Baser, Mustafa
2006-01-01
This paper reports upon an active learning approach that promotes conceptual change when studying direct current electricity circuits, using free open source software, "Qucs". The study involved a total of 102 prospective mathematics teacher students. Prior to instruction, students' understanding of direct current electricity was…
The Particle/Wave-in-a-Box Model in Dutch Secondary Schools
ERIC Educational Resources Information Center
Hoekzema, Dick; van den Berg, Ed; Schooten, Gert; van Dijk, Leo
2007-01-01
The combination of mathematical and conceptual difficulties makes teaching quantum physics at secondary schools a precarious undertaking. With many of the conceptual difficulties being unavoidable, simplifying the mathematics becomes top priority. The particle/wave-in-a-box provides a teaching model which includes many aspects of serious …
Conceptualizing Mind and Consciousness: Using Constructivist Ideas to Transcend the Physical Bind
ERIC Educational Resources Information Center
Becker, Joe
2008-01-01
Philosophers and scientists seeking to conceptualize consciousness, and subjective experience in particular, have focused on sensation and perception, and have emphasized binding--how a percept holds together. Building on a constructivist approach to conception centered on separistic-holistic complexes incorporating multiple levels of abstraction,…
Assessing Students' Conceptual Knowledge of Electricity and Magnetism
ERIC Educational Resources Information Center
McColgan, Michele W.; Finn, Rose A.; Broder, Darren L.; Hassel, George E.
2017-01-01
We present the Electricity and Magnetism Conceptual Assessment (EMCA), a new assessment aligned with second-semester introductory physics courses. Topics covered include electrostatics, electric fields, circuits, magnetism, and induction. We have two motives for writing a new assessment. First, we find other assessments such as the Brief…
Effect of Lecture Instruction on Student Performance on Qualitative Questions
ERIC Educational Resources Information Center
Heron, Paula R. L.
2015-01-01
The impact of lecture instruction on student conceptual understanding in physics has been the subject of research for several decades. Most studies have reported disappointingly small improvements in student performance on conceptual questions despite direct instruction on the relevant topics. These results have spurred a number of attempts to…
Let's Repair the Broken Galileo Thermometer
ERIC Educational Resources Information Center
Kireš, Marián
2018-01-01
We have developed and verified laboratory work as guided inquiry for upper secondary level students, focusing on conceptual understanding of the physical principle that forms the basis of temperature measurement, and on improvement of selected skills. Conceptual pre-test questions initiate the students' interest and help identify input…
Learning Complex Scientific Information: Motivation Theory and Its Relation to Student Perceptions.
ERIC Educational Resources Information Center
Hynd, Cynthia; Holschuh, Jodi; Nist, Sherrie
2000-01-01
Examines motivation in high school students' conceptual change about physics principles, and college students' motivation for biology learning. Finds grades and interest were important, but students did not report the importance of social support. Suggests similar motivations are important in both conceptual change and assimilation and help…
Leading institutional change: Implementing Studio in physics and beyond
NASA Astrophysics Data System (ADS)
Kohl, Patrick; Kuo, H. Vincent
2013-04-01
The Colorado School of Mines (CSM) teaches its first-year calculus-based introductory physics courses (Physics I and Physics II) using a hybrid of lecture and Studio physics. This model was first implemented in Physics I in 1997, and was established in Physics II in the fall of 2007. In this talk, we highlight the stages of the transformation from traditional to Studio, highlighting what has worked and what has not, and describing methods for assessment and evaluation. Results suggest that Studio has increased student performance and satisfaction despite an aggressive expansion of class sizes in the past few years. Gains have been concentrated mostly in problem-solving skills and exam performance (as opposed to conceptual survey gains), in contrast to what has sometimes been seen in other studies. Most recently, we as a department have been capitalizing on our successes with Studio physics to take a leadership role in disseminating advanced educational methods throughout CSM, both vertically (into upper division physics courses) and horizontally (into various departments outside of physics). We will briefly describe progress so far.
Mootz, Jennifer J.; Stabb, Sally D.; Mollen, Debra
2017-01-01
The high prevalence of gender-based violence (GBV) in armed conflict has been documented in various national contexts, but less is known about the complex pathways that constitute the relation between the two. Employing a community-based collaborative approach, we constructed a community-informed socioecological conceptual model from a feminist perspective, detailing how armed conflict relates to GBV in a conflict-affected rural community in Northeastern Uganda. The research questions were as follows: (1) How does the community conceptualize GBV? and (2) How does armed conflict relate to GBV? Nine focus group discussions divided by gender, age, and profession and six key informant interviews were conducted. Participants’ ages ranged from 9 to 80 years (n =34 girls/women, n = 43 boys/men). Grounded theory was used in analysis. Participants conceptualized eight forms of and 22 interactive variables that contributed to GBV. Armed conflict affected physical violence/quarreling, sexual violence, early marriage, and land grabbing via a direct pathway and four indirect pathways initiated through looting of resources, militarization of the community, death of a parent(s) or husband, and sexual violence. The findings suggest that community, organizational, and policy-level interventions, which include attention to intersecting vulnerabilities for exposure to GBV in conflict-affected settings, should be prioritized. While tertiary psychological interventions with women and girls affected by GBV in these areas should not be eliminated, we suggest that policy makers and members of community and organizational efforts make systemic and structural changes. Online slides for instructors who want to use this article for teaching are available on PWQ’s website at http://journals.sagepub.com/page/pwq/suppl/index PMID:29563663
Genetic Programming for Automatic Hydrological Modelling
NASA Astrophysics Data System (ADS)
Chadalawada, Jayashree; Babovic, Vladan
2017-04-01
One of the recent challenges for the hydrologic research community is the need for the development of coupled systems that involves the integration of hydrologic, atmospheric and socio-economic relationships. This poses a requirement for novel modelling frameworks that can accurately represent complex systems, given, the limited understanding of underlying processes, increasing volume of data and high levels of uncertainity. Each of the existing hydrological models vary in terms of conceptualization and process representation and is the best suited to capture the environmental dynamics of a particular hydrological system. Data driven approaches can be used in the integration of alternative process hypotheses in order to achieve a unified theory at catchment scale. The key steps in the implementation of integrated modelling framework that is influenced by prior understanding and data, include, choice of the technique for the induction of knowledge from data, identification of alternative structural hypotheses, definition of rules, constraints for meaningful, intelligent combination of model component hypotheses and definition of evaluation metrics. This study aims at defining a Genetic Programming based modelling framework that test different conceptual model constructs based on wide range of objective functions and evolves accurate and parsimonious models that capture dominant hydrological processes at catchment scale. In this paper, GP initializes the evolutionary process using the modelling decisions inspired from the Superflex framework [Fenicia et al., 2011] and automatically combines them into model structures that are scrutinized against observed data using statistical, hydrological and flow duration curve based performance metrics. The collaboration between data driven and physical, conceptual modelling paradigms improves the ability to model and manage hydrologic systems. Fenicia, F., D. Kavetski, and H. H. Savenije (2011), Elements of a flexible approach for conceptual hydrological modeling: 1. Motivation and theoretical development, Water Resources Research, 47(11).
Mootz, Jennifer J; Stabb, Sally D; Mollen, Debra
2017-01-01
The high prevalence of gender-based violence (GBV) in armed conflict has been documented in various national contexts, but less is known about the complex pathways that constitute the relation between the two. Employing a community-based collaborative approach, we constructed a community-informed socioecological conceptual model from a feminist perspective, detailing how armed conflict relates to GBV in a conflict-affected rural community in Northeastern Uganda. The research questions were as follows: (1) How does the community conceptualize GBV? and (2) How does armed conflict relate to GBV? Nine focus group discussions divided by gender, age, and profession and six key informant interviews were conducted. Participants' ages ranged from 9 to 80 years ( n =34 girls/women, n = 43 boys/men). Grounded theory was used in analysis. Participants conceptualized eight forms of and 22 interactive variables that contributed to GBV. Armed conflict affected physical violence/quarreling, sexual violence, early marriage, and land grabbing via a direct pathway and four indirect pathways initiated through looting of resources, militarization of the community, death of a parent(s) or husband, and sexual violence. The findings suggest that community, organizational, and policy-level interventions, which include attention to intersecting vulnerabilities for exposure to GBV in conflict-affected settings, should be prioritized. While tertiary psychological interventions with women and girls affected by GBV in these areas should not be eliminated, we suggest that policy makers and members of community and organizational efforts make systemic and structural changes. Online slides for instructors who want to use this article for teaching are available on PWQ 's website at http://journals.sagepub.com/page/pwq/suppl/index.
Simons, Megan; Price, Nathaniel; Kimble, Roy; Tyack, Zephanie
2016-05-01
The aim of this study was to understand the impact of burn scars on health-related quality of life (HRQOL) from the perspective of adults and children with burn scars, and caregivers to inform the development of a conceptual model of burn scar HRQOL. Twenty-one participants (adults and children) with burn scars and nine caregivers participated in semi-structured, face-to-face interviews between 2012 and 2013. During the interviews, participants were asked to describe features about their (or their child's) burn scars and its impact on everyday life. Two coders conducted thematic analysis, with consensus achieved through discussion and review with a third coder. The literature on HRQOL models was then reviewed to further inform the development of a conceptual model of burn scar HRQOL. Five themes emerged from the qualitative data: 'physical and sensory symptoms', 'impact of burn scar interventions', 'impact of burn scar symptoms', 'personal factors' and 'change over time'. Caregivers offered further insights into family functioning after burn, and the impacts of burn scars and burn scar interventions on family life. In the conceptual model, symptoms (sensory and physical) of burn scars are considered proximal to HRQOL, with distal indicators including functioning (physical, emotional, social, cognitive), individual factors and the environment. Overall quality of life was affected by HRQOL. Understanding the impact of burn scars on HRQOL and the development of a conceptual model will inform future burn scar research and clinical practice. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Using the REACT Strategy to Understand Physical and Chemical Changes
ERIC Educational Resources Information Center
Ültay, Neslihan; Güngören, Seda Çavus; Ültay, Eser
2017-01-01
Students often struggle to determine whether changes in matter are physical or chemical; for example, they may have difficulty labelling a candle melting as a physical change but a candle burning as chemical change. Here we describe a lesson that we used to integrate conceptual learning about physical and chemical changes using the…
Investigating Graphical Representations of Slope and Derivative without a Physics Context
ERIC Educational Resources Information Center
Christensen, Warren M.; Thompson, John R.
2012-01-01
By analysis of student use of mathematics in responses to conceptual physics questions, as well as analogous math questions stripped of physical meaning, we have previously found evidence that students often enter upper-level physics courses lacking the assumed prerequisite mathematics knowledge and/or the ability to apply it productively in a…
ERIC Educational Resources Information Center
Shen, Ji; Liu, Ou Lydia; Chang, Hsin-Yi
2017-01-01
This paper presents a transformative modeling framework that guides the development of assessment to measure students' deep understanding in physical sciences. The framework emphasizes 3 types of connections that students need to make when learning physical sciences: (1) linking physical states, processes, and explanatory models, (2) integrating…
ERIC Educational Resources Information Center
Weber, Stephen W.
A study examined the effectiveness of incorporating writing as a tool to master the concepts of physics. Subjects were students in the three traditional physics classes and one non-math or conceptual physics class at East High School in Rockford, Illinois. The instructor tried a variety of methods--students wrote criticisms of Carl Sagan videos,…
Mariner Jupiter/Saturn infrared instrument study
NASA Technical Reports Server (NTRS)
1972-01-01
The Mariner Jupiter/Saturn infrared instrumentation conceptual design study was conducted to determine the physical and operational characteristics of the instruments needed to satisfy the experiment science requirements. The design of the instruments is based on using as many proven concepts as possible. Many design features are taken from current developments such as the Mariner, Pioneer 10, Viking Orbiter radiometers, and Nimbus D spectrometer. Calibration techniques and error analysis for the instrument system are discussed.
Waste Receiving and Processing Facility Module 2A: Advanced Conceptual Design Report. Volume 3A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Objective of this document is to provide descriptions of all WRAP 2A feed streams, including physical and chemical attributes, and describe the pathway that was used to select data for volume estimates. WRAP 2A is being designed for nonthermal treatment of contact-handled mixed low-level waste Category 1 and 3. It is based on immobilization and encapsulation treatment using grout or polymer.
NASA Astrophysics Data System (ADS)
Liu, Gang; Zhao, Rong; Liu, Jiping; Zhang, Qingpu
2007-06-01
The Lancang River Basin is so narrow and its hydrological and meteorological information are so flexible. The Rainfall, evaporation, glacial melt water and groundwater affect the runoff whose replenishment forms changing notable with the season in different areas at the basin. Characters of different kind of distributed model and conceptual hydrological model are analyzed. A semi-distributed hydrological model of relation between monthly runoff and rainfall, temperate and soil type has been built in Changdu County based on Visual Basic and ArcObject. The way of discretization of distributed hydrological model was used in the model, and principles of conceptual model are taken into account. The sub-catchment of Changdu is divided into regular cells, and all kinds of hydrological and meteorological information and land use classes and slope extracted from 1:250000 digital elevation models are distributed in each cell. The model does not think of the rainfall-runoff hydro-physical process but use the conceptual model to simulate the whole contributes to the runoff of the area. The affection of evapotranspiration loss and underground water is taken into account at the same time. The spatial distribute characteristics of the monthly runoff in the area are simulated and analyzed with a few parameters.
From F = ma to Flying Squirrels: Curricular Change in an Introductory Physics Course
O’Shea, Brian; Terry, Laura; Benenson, Walter
2013-01-01
We present outcomes from curricular changes made to an introductory calculus-based physics course whose audience is primarily life sciences majors, the majority of whom plan to pursue postbaccalaureate studies in medical and scientific fields. During the 2011–2012 academic year, we implemented a Physics of the Life Sciences curriculum centered on a draft textbook that takes a novel approach to teaching physics to life sciences majors. In addition, substantial revisions were made to the homework and hands-on components of the course to emphasize the relationship between physics and the life sciences and to help the students learn to apply physical intuition to life sciences–oriented problems. Student learning and attitudinal outcomes were assessed both quantitatively, using standard physics education research instruments, and qualitatively, using student surveys and a series of postsemester interviews. Students experienced high conceptual learning gains, comparable to other active learning–based physics courses. Qualitatively, a substantial fraction of interviewed students reported an increased interest in physics relative to the beginning of the semester. Furthermore, more than half of students self-reported that they could now relate physics topics to their majors and future careers, with interviewed subjects demonstrating a high level of ability to come up with examples of how physics affects living organisms and how it helped them to better understand content presented in courses in their major. PMID:23737630
From F = ma to flying squirrels: curricular change in an introductory physics course.
O'Shea, Brian; Terry, Laura; Benenson, Walter
2013-06-01
We present outcomes from curricular changes made to an introductory calculus-based physics course whose audience is primarily life sciences majors, the majority of whom plan to pursue postbaccalaureate studies in medical and scientific fields. During the 2011-2012 academic year, we implemented a Physics of the Life Sciences curriculum centered on a draft textbook that takes a novel approach to teaching physics to life sciences majors. In addition, substantial revisions were made to the homework and hands-on components of the course to emphasize the relationship between physics and the life sciences and to help the students learn to apply physical intuition to life sciences-oriented problems. Student learning and attitudinal outcomes were assessed both quantitatively, using standard physics education research instruments, and qualitatively, using student surveys and a series of postsemester interviews. Students experienced high conceptual learning gains, comparable to other active learning-based physics courses. Qualitatively, a substantial fraction of interviewed students reported an increased interest in physics relative to the beginning of the semester. Furthermore, more than half of students self-reported that they could now relate physics topics to their majors and future careers, with interviewed subjects demonstrating a high level of ability to come up with examples of how physics affects living organisms and how it helped them to better understand content presented in courses in their major.
Yoga as Coping: A Conceptual Framework for Meaningful Participation in Yoga.
Crowe, Brandi M; Van Puymbroeck, Marieke; Schmid, Arlene A
2016-07-27
Yoga facilitates relaxation and connection of mind, body, and spirit through the use of breathing, meditation, and physical postures. Participation in yoga has been extensively linked to decreased stress, and as a result, is considered a therapeutic intervention by many. However, few theories exist that explain the link between yoga participation and improved psychosocial wellbeing. The leisure-stress coping conceptual framework suggests that through participation in leisure, an individual can decrease stress while concurrently restoring and building up sustainable mental and physical capacities. Three types of leisure coping strategies exist: palliative coping, mood enhancement, and companionship. The purpose of this article is to propose the leisure-stress coping conceptual framework as a model for explaining benefits received from yoga participation via leisure coping strategies, which may explain or support improved ability to manage stress.
Yoga as Coping: A Conceptual Framework for Meaningful Participation in Yoga.
Crowe, Brandi M; Van Puymbroeck, Marieke; Schmid, Arlene A
2016-01-01
Yoga facilitates relaxation and connection of mind, body, and spirit through the use of breathing, meditation, and physical postures. Participation in yoga has been extensively linked to decreased stress, and as a result, is considered a therapeutic intervention by many. However, few theories exist that explain the link between yoga participation and improved psychosocial wellbeing. The leisure-stress coping conceptual framework suggests that through participation in leisure, an individual can decrease stress while concurrently restoring and building up sustainable mental and physical capacities. Three types of leisure coping strategies exist: palliative coping, mood enhancement, and companionship. The purpose of this article is to propose the leisure-stress coping conceptual framework as a model for explaining benefits received from yoga participation via leisure coping strategies, which may explain or support improved ability to manage stress.
Textbook presentations of weight: Conceptual difficulties and language ambiguities
NASA Astrophysics Data System (ADS)
Taibu, Rex; Rudge, David; Schuster, David
2015-06-01
The term "weight" has multiple related meanings in both scientific and everyday usage. Even among experts and in textbooks, weight is ambiguously defined as either the gravitational force on an object or operationally as the magnitude of the force an object exerts on a measuring scale. This poses both conceptual and language difficulties for learners, especially for accelerating objects where the scale reading is different from the gravitational force. But while the underlying physical constructs behind the two referents for the term weight (and their relation to each other) are well understood scientifically, it is unclear how the concept of weight should be introduced to students and how the language ambiguities should be dealt with. We investigated treatments of weight in a sample of twenty introductory college physics textbooks, analyzing and coding their content based on the definition adopted, how the distinct constructs were dealt with in various situations, terminologies used, and whether and how language issues were handled. Results indicate that language-related issues, such as different, inconsistent, or ambiguous uses of the terms weight, "apparent weight," and "weightlessness," were prevalent both across and within textbooks. The physics of the related constructs was not always clearly presented, particularly for accelerating bodies such as astronauts in spaceships, and the language issue was rarely addressed. Our analysis of both literature and textbooks leads us to an instructional position which focuses on the physics constructs before introducing the term weight, and which explicitly discusses the associated language issues.
Williams, Eric S; Konrad, Thomas R; Linzer, Mark; McMurray, Julia; Pathman, Donald E; Gerrity, Martha; Schwartz, Mark D; Scheckler, William E; Douglas, Jeff
2002-01-01
Objective To study the impact that physician, practice, and patient characteristics have on physician stress, satisfaction, mental, and physical health. Data Sources Based on a survey of over 5,000 physicians nationwide. Four waves of surveys resulted in 2,325 complete responses. Elimination of ineligibles yielded a 52 percent response rate; 1,411 responses from primary care physicians were used. Study Design A conceptual model was tested by structural equation modeling. Physician job satisfaction and stress mediated the relationship between physician, practice, and patient characteristics as independent variables and physician physical and mental health as dependent variables. Principle Findings The conceptual model was generally supported. Practice and, to a lesser extent, physician characteristics influenced job satisfaction, whereas only practice characteristics influenced job stress. Patient characteristics exerted little influence. Job stress powerfully influenced job satisfaction and physical and mental health among physicians. Conclusions These findings support the notion that workplace conditions are a major determinant of physician well-being. Poor practice conditions can result in poor outcomes, which can erode quality of care and prove costly to the physician and health care organization. Fortunately, these conditions are manageable. Organizational settings that are both “physician friendly” and “family friendly” seem to result in greater well-being. These findings are particularly important as physicians are more tightly integrated into the health care system that may be less clearly under their exclusive control.
Eime, Rochelle M; Young, Janet A; Harvey, Jack T; Charity, Melanie J; Payne, Warren R
2013-12-07
The definition of health incorporates the physical, social and mental domains, however the Physical Activity (PA) guidelines do not address social health. Furthermore, there is insufficient evidence about the levels or types of PA associated specifically with psychological health. This paper first presents the results of a systematic review of the psychological and social health benefits of participation in sport by adults. Secondly, the information arising from the systematic review has been used to develop a conceptual model of Health through Sport. A systematic review of 14 electronic databases was conducted in June 2012, and studies published since 1990 were considered for inclusion. Studies that addressed mental and/or social health benefits from participation in sport were included. A total of 3668 publications were initially identified, of which 11 met the selection criteria. There were many different psychological and social health benefits reported, with the most commonly being wellbeing and reduced distress and stress. Sport may be associated with improved psychosocial health in addition to improvements attributable to participation in PA. Specifically, club-based or team-based sport seems to be associated with improved health outcomes compared to individual activities, due to the social nature of the participation. Notwithstanding this, individuals who prefer to participate in sport by themselves can still derive mental health benefits which can enhance the development of true-self-awareness and personal growth which is essential for social health. A conceptual model, Health through Sport, is proposed. The model depicts the relationship between psychological, psychosocial and social health domains, and their positive associations with sport participation, as reported in the literature. However, it is acknowledged that the capacity to determine the existence and direction of causal links between participation and health is limited by the cross-sectional nature of studies to date. It is recommended that participation in sport is advocated as a form of leisure-time PA for adults which can produce a range of health benefits. It is also recommended that the causal link between participation in sport and psycho-social health be further investigated and the conceptual model of Health through Sport tested.
Small, Nicola; Brooks, Helen; Grundy, Andrew; Pedley, Rebecca; Gibbons, Chris; Lovell, Karina; Bee, Penny
2017-04-13
People with severe mental illness suffer more physical comorbidity than the general population, which can require a tailored approach to physical health care discussions within mental health care planning. Although evidence pertaining to service user and carer involvement in mental health care planning is accumulating, current understanding of how physical health is prioritised within this framework is limited. Understanding stakeholder experiences of physical health discussions within mental health care planning, and the key domains that underpin this phenomena is essential to improve quality of care. Our study aimed to explore service user, carer and professional experiences of and preferences for service user and carer involvement in physical health discussions within mental health care planning, and develop a conceptual framework of effective user-led involvement in this aspect of service provision. Six focus groups and four telephone interviews were carried out with twelve service users, nine carers, three service users with a dual service user and carer role, and ten mental health professionals recruited from one mental health Trust in the United Kingdom. Data was analysed utilising a thematic approach, analysed separately for each stakeholder group, and combined to aid comparisons. No service users or carers recalled being explicitly involved in physical health discussions within mental health care planning. Six prerequisites for effective service user and carer involvement in physical care planning were identified. Three themes confirmed general mental health care planning requirements: tailoring a collaborative working relationship, maintaining a trusting relationship with a professional, and having access to and being able to edit a living document. Three themes were novel to feeling involved in physical health care planning discussions: valuing physical health equally with mental health; experiencing coordination of care between physical-mental health professionals, and having a physical health discussion that is personalised. High quality physical health care discussions within the care planning process demands action at multiple levels. A conceptual framework is presented which provides an evidence-based foundation for service level improvement. Further work is necessary to develop a new patient reported outcome measure to enable meaningful quantification of health care quality and patient experience.
ERIC Educational Resources Information Center
Ahtee, Maija, Ed.; Meisalo, Veijo, Ed.; Lavonen, Jari, Ed.
The 15 conference papers in this report address a variety of issues such as computer applications in mechanics and optics, three-dimensional representation in physics teaching, computers in the physics laboratory, information technologies, the perceptual approach in physics education, improving students' conceptual understanding in physics, using…
ERIC Educational Resources Information Center
Hazari, Zahra; Cass, Cheryl; Beattie, Carrie
2015-01-01
In the process of reforming physics education over the last several decades, a tension has developed between engaging students with the content in more conceptually challenging ways and helping them identify with physics so they are personally motivated in their learning. Through comparative case studies of four high school physics teachers, we…
Escape the Black Hole of Lecturing: Put Collaborative Ranking Tasks on Your Event Horizon
NASA Astrophysics Data System (ADS)
Hudgins, D. W.; Prather, E. E.; Grayson, D. J.
2005-05-01
At the University of Arizona, we have been developing and testing a new type of introductory astronomy curriculum material called Ranking Tasks. Ranking Tasks are a form of conceptual exercise that presents students with four to six physical situations, usually by pictures or diagrams, and asks students to rank order the situations based on some resulting effect. Our study developed design guidelines for Ranking Tasks based on learning theory and classroom pilot studies. Our research questions were: Do in-class collaborative Ranking Task exercises result in student conceptual gains when used in conjunction with traditional lecture-based instruction? And are these gains sufficient to justify implementing them into the astronomy classroom? We conducted a single-group repeated measures experiment across eight core introductory astronomy topics with 250 students at the University of Arizona in the Fall of 2004. The study found that traditional lecture-based instruction alone produced statistically significant gains - raising test scores to 61% post-lecture from 32% on the pretest. While significant, we find these gains to be unsatisfactory from a teaching and learning perspective. The study data shows that adding a collaborative learning component to the class structured around Ranking Task exercises helped students achieve statistically significant gains - with post-Ranking Task scores over the eight astronomy topic rising to 77%. Interestingly, we found that the normalized gain from the Ranking Tasks was equal to the entire previous gain from traditional instruction. Further analysis of the data revealed that Ranking Tasks equally benefited both genders; they also equally benefited both high and low-scoring median groups based on their pretest scores. Based on these results, we conclude that adding collaborative Ranking Task exercises to traditional lecture-based instruction can significantly improve student conceptual understanding of core topics in astronomy.
NASA Astrophysics Data System (ADS)
Okada, S.; Sunaga, H.; Kaneko, H.; Takizawa, H.; Kawasuso, A.; Yotsumoto, K.; Tanaka, R.
1999-06-01
The Positron Factory has been planned at Japan Atomic Energy Research Institute (JAERI). The factory is expected to produce linac-based monoenergetic positron beams having world-highest intensities of more than 1010e+/sec, which will be applied for R&D of materials science, biotechnology and basic physics & chemistry. In this article, results of the design studies are demonstrated for the following essential components of the facilities: 1) Conceptual design of a high-power electron linac with 100 MeV in beam energy and 100 kW in averaged beam power, 2) Performance tests of the RF window in the high-power klystron and of the electron beam window, 3) Development of a self-driven rotating electron-to-positron converter and the performance tests, 4) Proposal of multi-channel beam generation system for monoenergetic positrons, with a series of moderator assemblies based on a newly developed Monte Carlo simulation and the demonstrative experiment, 5) Proposal of highly efficient moderator structures, 6) Conceptual design of a local shield to suppress the surrounding radiation and activation levels.
Tele-rehabilitation using in-house wearable ankle rehabilitation robot.
Jamwal, Prashant K; Hussain, Shahid; Mir-Nasiri, Nazim; Ghayesh, Mergen H; Xie, Sheng Q
2018-01-01
This article explores wide-ranging potential of the wearable ankle robot for in-house rehabilitation. The presented robot has been conceptualized following a brief analysis of the existing technologies, systems, and solutions for in-house physical ankle rehabilitation. Configuration design analysis and component selection for ankle robot have been discussed as part of the conceptual design. The complexities of human robot interaction are closely encountered while maneuvering a rehabilitation robot. We present a fuzzy logic-based controller to perform the required robot-assisted ankle rehabilitation treatment. Designs of visual haptic interfaces have also been discussed, which will make the treatment interesting, and the subject will be motivated to exert more and regain lost functions rapidly. The complex nature of web-based communication between user and remotely sitting physiotherapy staff has also been discussed. A high-level software architecture appended with robot ensures user-friendly operations. This software is made up of three important components: patient-related database, graphical user interface (GUI), and a library of exercises creating virtual reality-specifically developed for ankle rehabilitation.
Conceptualizing Peatlands in a Physically-Based Spatially Distributed Hydrologic Model
NASA Astrophysics Data System (ADS)
Downer, Charles; Wahl, Mark
2017-04-01
In as part of a research effort focused on climate change effects on permafrost near Fairbanks, Alaska, it became apparent that peat soils, overlain by thick sphagnum moss, had a considerable effect on the overall hydrology. Peatlands represent a confounding mixture of vegetation, soils, and water that present challenges for conceptualizing and parametrizing hydrologic models. We employed the Gridded Surface Subsurface Hydrologic Analysis Model (GSSHA) in our analysis of the Caribou Poker Creek Experimental Watershed (CPCRW). GSSHA is a physically-based, spatially distributed, watershed model developed by the U.S. Army to simulate important streamflow-generating processes (Downer and Ogden, 2004). The model enables simulation of surface water and groundwater interactions, as well as soil temperature and frozen ground effects on subsurface water movement. The test site is a 104 km2 basin located in the Yukon-Tanana Uplands of the Northern Plateaus Physiographic Province centered on 65˚10' N latitude and 147˚30' W longitude. The area lies above the Chattanika River floodplain and is characterized by rounded hilltops with gentle slopes and alluvium-floored valleys having minimal relief (Wahrhaftig, 1965) underlain by a mica shist of the Birch Creek formation (Rieger et al., 1972). The region has a cold continental climate characterized by short warm summers and long cold winters. Observed stream flows indicated significant groundwater contribution with sustained base flows even during dry periods. A site visit exposed the presence of surface water flows indicating a mixed basin that would require both surface and subsurface simulation capability to properly capture the response. Soils in the watershed are predominately silt loam underlain by shallow fractured bedrock. Throughout much of the basin, a thick layer of live sphagnum moss and fine peat covers the ground surface. A restrictive layer of permafrost is found on north facing slopes. The combination of thick moss and peat soils presented a conundrum in terms of conceptualizing the hydrology and identifying reasonable parameter ranges for physical properties. Various combinations of overland roughness, surface retention, and subsurface flow were used to represent the peatlands. The process resulted in some interesting results that may shed light on the dominant hydrologic processes associated with peatland, as well as what hydrologic conceptualizations, simulation tools, and approaches are applicable in modeling peatland hydrology. Downer, C.W., Ogden, F.L., 2004. GSSHA: Model to simulate diverse stream flow producing processes. J. Hydrol. Eng. 161-174. Rieger, S., Furbush, C.E., Schoephorster, D.B., Summerfield Jr., H., Geiger, L.C., 1972. Soils of the Caribou-Poker Creeks Research Watershed, Interior Alaska. Hanover, New Hampshire. Wahrhaftig, C., 1965. Physiographic Divisions of Alaska. Washington, DC.
NASA Astrophysics Data System (ADS)
Deng, Yongxin
2016-07-01
This paper examines complications in neighborhood mapping and corresponding challenges for the GIS community, taking both a conceptual and a methodological perspective. It focuses on the social and spatial dimensions of the neighborhood concept and highlights their relationship in neighborhood mapping. Following a brief summary of neighborhood definitions, five interwoven factors are identified to be origins of neighborhood mapping difficulties: conceptual vagueness, uncertainty of various sources, GIS representation, scale, and neighborhood homogeneity or continuity. Existing neighborhood mapping methods are grouped into six categories to be assessed: perception based, physically based, inference based, preexisting, aggregated, and automated. Mapping practices in various neighborhood-related disciplines and applications are cited as examples to demonstrate how the methods work, as well as how they should be evaluated. A few mapping strategies for the improvement of neighborhood mapping are prescribed from a GIS perspective: documenting simplifications employed in the mapping procedure, addressing uncertainty sources, developing new data solutions, and integrating complementary mapping methods. Incorporation of high-resolution data and introduction of more GIS ideas and methods (such as fuzzy logic) are identified to be future opportunities.
To master or perform? Exploring relations between achievement goals and conceptual change learning.
Ranellucci, John; Muis, Krista R; Duffy, Melissa; Wang, Xihui; Sampasivam, Lavanya; Franco, Gina M
2013-09-01
Research is needed to explore conceptual change in relation to achievement goal orientations and depth of processing. To address this need, we examined relations between achievement goals, use of deep versus shallow processing strategies, and conceptual change learning using a think-aloud protocol. Seventy-three undergraduate students were assessed on their prior knowledge and misconceptions about Newtonian mechanics, and then reported their achievement goals and participated in think-aloud protocols while reading Newtonian physics texts. A mastery-approach goal orientation positively predicted deep processing strategies, shallow processing strategies, and conceptual change. In contrast, a performance-approach goal orientation did not predict either of the processing strategies, but negatively predicted conceptual change. A performance-avoidance goal orientation negatively predicted deep processing strategies and conceptual change. Moreover, deep and shallow processing strategies positively predicted conceptual change as well as recall. Finally, both deep and shallow processing strategies mediated relations between mastery-approach goals and conceptual change. Results provide some support for Dole and Sinatra's (1998) Cognitive Reconstruction of Knowledge Model of conceptual change but also challenge specific facets with regard to the role of depth of processing in conceptual change. © 2012 The British Psychological Society.
Instruction of Learning Strategies: Effects on Conceptual Learning, and Learning Satisfactions
ERIC Educational Resources Information Center
Caliskan, Serap
2011-01-01
This study has investigated the effects of learning strategy instruction on conceptual learning, and student satisfactions in an introductory physics course at university level. In this study, pretest-posttest and quasi-experimental design with a non-equivalent control group was used. A total of 36 sophomore students majoring in mathematics…
Children's Perspectives on Conceptual Games Teaching: A Value-Adding Experience
ERIC Educational Resources Information Center
Fry, Joan Marian; Tan, Clara Wee Keat; McNeill, Michael; Wright, Steven
2010-01-01
Background: Revisions of the Singaporean physical education (PE) syllabus in 1999 and 2006 included a conceptual approach to teaching games. The games concept approach (GCA), a form of constructivist pedagogy, was a distinct departure from the direct teaching methods traditionally used in the country. Following the GCA's introduction into a PE…
Third Grade Students' Mental Models of Blood Circulation Related to Exercise
ERIC Educational Resources Information Center
Pasco, Denis; Ennis, Catherine D.
2015-01-01
Students' prior knowledge has been identified to play an important role in the learning process through conceptual change. In physical education, positive changes in students' lifestyles may come from changes in their conceptual understanding. In this study 45 third grade students (mean age = 8.54 years) were interviewed during their regular…
Big Ideas at a Very Small Scale
ERIC Educational Resources Information Center
Khourey-Bowers, Claudia
2009-01-01
The purpose of this article is to share a learning-cycle sequence of lessons designed to convey the particulate nature of matter through use of physical models and analogical thinking. This activity was adapted from Conceptual Chemistry, a long-running professional development program for teachers of grades 4-9. Conceptual Chemistry's approach is…
Insights into Teaching Quantum Mechanics in Secondary and Lower Undergraduate Education
ERIC Educational Resources Information Center
Krijtenburg-Lewerissa, K.; Pol, H. J.; Brinkman, A.; van Joolingen, W. R.
2017-01-01
This study presents a review of the current state of research on teaching quantum mechanics in secondary and lower undergraduate education. A conceptual approach to quantum mechanics is being implemented in more and more introductory physics courses around the world. Because of the differences between the conceptual nature of quantum mechanics and…
ERIC Educational Resources Information Center
Chen, Chien-Hsien; She, Hsiao-Ching
2012-01-01
This study reports the impact of Recurrent On-Line Synchronous Scientific Argumentation learning on 8th grade students' scientific argumentation ability and conceptual change involving physical science. The control group (N = 76) were recruited to receive conventional instruction whereas the experimental group (N = 74) received the Recurrent…
The Relation of Conceptual Tempo to Aggression and Its Control.
ERIC Educational Resources Information Center
Messer, Stanley B.; Brodzinsky, David M.
1979-01-01
Fifth-grade boys and girls were administered the Matching Familiar Figures Test and a projective measure of fantasy aggression and its control. They were also rated sociometrically by peers and teachers on physical, verbal, and indirect forms of overt aggression. Results indicated that conceptual tempo was related to aggression and its control.…
Role of Multiple Representations in Physics Problem Solving
ERIC Educational Resources Information Center
Maries, Alexandru
2013-01-01
This thesis explores the role of multiple representations in introductory physics students' problem solving performance through several investigations. Representations can help students focus on the conceptual aspects of physics and play a major role in effective problem solving. Diagrammatic representations can play a particularly important role…
A Framework for Physics Projects.
ERIC Educational Resources Information Center
Erzberger, Andria; And Others
1996-01-01
Describes the activities of the Physics Teachers Action Research Group in which college physics teachers work together in planning, revising, and evaluating student projects that foster greater conceptual understanding and address student misconceptions. Presents the details of a project in which students were asked to build an accelerometer. (JRH)
Student use of model-based reasoning when troubleshooting an electronic circuit
NASA Astrophysics Data System (ADS)
Lewandowski, Heather; Stetzer, Mackenzie; van de Bogart, Kevin; Dounas-Frazer, Dimitri
2016-03-01
Troubleshooting systems is an integral part of experimental physics in both research and educational settings. Accordingly, ability to troubleshoot is an important learning goal for undergraduate physics lab courses. We investigate students' model-based reasoning on a troubleshooting task using data collected in think-aloud interviews during which pairs of students from two institutions attempted to diagnose and repair a malfunctioning circuit. Our analysis scheme was informed by the Experimental Modeling Framework, which describes physicists' use of mathematical and conceptual models when reasoning about experimental systems. We show that system and subsystem models were crucial for the evaluation of repairs to the circuit and played an important role in some troubleshooting strategies. Finally, drawing on data from interviews with electronics instructors from a broad range of institution types, we outline recommendations for model-based approaches to teaching and learning troubleshooting skills.
Student use of model-based reasoning when troubleshooting an electric circuit
NASA Astrophysics Data System (ADS)
Dounas-Frazer, Dimitri
2016-05-01
Troubleshooting systems is an integral part of experimental physics in both research and educational settings. Accordingly, ability to troubleshoot is an important learning goal for undergraduate physics lab courses. We investigate students' model-based reasoning on a troubleshooting task using data collected in think-aloud interviews during which pairs of students from two institutions attempted to diagnose and repair a malfunctioning circuit. Our analysis scheme was informed by the Experimental Modeling Framework, which describes physicists' use of mathematical and conceptual models when reasoning about experimental systems. We show that system and subsystem models were crucial for the evaluation of repairs to the circuit and played an important role in some troubleshooting strategies. Finally, drawing on data from interviews with electronics instructors from a broad range of institution types, we outline recommendations for model-based approaches to teaching and learning troubleshooting skills.
Teaching Einsteinian physics at schools: part 1, models and analogies for relativity
NASA Astrophysics Data System (ADS)
Kaur, Tejinder; Blair, David; Moschilla, John; Stannard, Warren; Zadnik, Marjan
2017-11-01
The Einstein-First project aims to change the paradigm of school science teaching through the introduction of modern Einsteinian concepts of space and time, gravity and quanta at an early age. These concepts are rarely taught to school students despite their central importance to modern science and technology. The key to implementing the Einstein-First curriculum is the development of appropriate models and analogies. This paper is the first part of a three-paper series. It presents the conceptual foundation of our approach, based on simple physical models and analogies, followed by a detailed description of the models and analogies used to teach concepts of general and special relativity. Two accompanying papers address the teaching of quantum physics (Part 2) and research outcomes (Part 3).
Larizgoitia, Itziar; Izarzugaza, Isabel; Markez, Iñaki; Fernández, Itziar; Iraurgi, Ioseba; Larizgoitia, Arantza; Ballesteros, Javier; Fernández-Liria, Alberto; Moreno, Florentino; Retolaza, Ander; Páez, Darío; Martín-Beristaín, Carlos; Alonso, Jordi
2011-01-01
Epidemiologic research on collective violence (violence exerted by and within groups in pursuit of political, social or economic goals) is very scarce despite its growing recognition as a major public health issue. This paper describes the conceptual model and design of one of the first research studies conducted in Spain aiming to assess the impact of collective violence in the health status of its victims (study known as ISAVIC, based on its Spanish title Impacto en la SAlud de la VIolencia Colectiva). Starting with a comprehensive but non-systematic review of the literature, the authors describe the sequelae likely produced by collective violence and propose a conceptual model to explain the nature of the relationships between collective violence and health status. The conceptual model informed the ISAVIC study design and its measurement instruments. The possible sequelae of collective violence, in the physical, emotional and social dimensions of health, are described. Also, the review distinguishes the likely impact in primary and secondary victims, as well as the interplay with the social environment. The mixed methodological design of the ISAVIC study supports the coherence of the conceptual model described. The ISAVIC study suggests that collective violence may affect the main dimensions of the health status of its victims, in intimate relation to the societal factors where it operates. It is necessary to validate these results with new studies. Copyright © 2010 SESPAS. Published by Elsevier Espana. All rights reserved.
The Long-Term Conditions Questionnaire: conceptual framework and item development
Peters, Michele; Potter, Caroline M; Kelly, Laura; Hunter, Cheryl; Gibbons, Elizabeth; Jenkinson, Crispin; Coulter, Angela; Forder, Julien; Towers, Ann-Marie; A’Court, Christine; Fitzpatrick, Ray
2016-01-01
Purpose To identify the main issues of importance when living with long-term conditions to refine a conceptual framework for informing the item development of a patient-reported outcome measure for long-term conditions. Materials and methods Semi-structured qualitative interviews (n=48) were conducted with people living with at least one long-term condition. Participants were recruited through primary care. The interviews were transcribed verbatim and analyzed by thematic analysis. The analysis served to refine the conceptual framework, based on reviews of the literature and stakeholder consultations, for developing candidate items for a new measure for long-term conditions. Results Three main organizing concepts were identified: impact of long-term conditions, experience of services and support, and self-care. The findings helped to refine a conceptual framework, leading to the development of 23 items that represent issues of importance in long-term conditions. The 23 candidate items formed the first draft of the measure, currently named the Long-Term Conditions Questionnaire. Conclusion The aim of this study was to refine the conceptual framework and develop items for a patient-reported outcome measure for long-term conditions, including single and multiple morbidities and physical and mental health conditions. Qualitative interviews identified the key themes for assessing outcomes in long-term conditions, and these underpinned the development of the initial draft of the measure. These initial items will undergo cognitive testing to refine the items prior to further validation in a survey. PMID:27621678
Interactive Physics: the role of interactive learning objects in teaching Physics in Engineering
NASA Astrophysics Data System (ADS)
Benito, R. M.; Cámara, M. E.; Arranz, F. J.
2009-04-01
In this work we present the results of a Project in educational innovation entitled "Interactive Physics". We have developed resources for teaching Physics for students of Engineering, with an emphasis in conceptual reinforcement and addressing the shortcomings of students entering the University. The resources developed include hypertext, graphics, equations, quizzes and more elaborated problems that cover the customary syllabus in first-year Physics: kinematics and dynamics, Newton laws, electricity and magnetism, elementary circuits… The role of vector quantities is stressed and we also provide help for the most usual mathematical tools (calculus and trigonometric formulas). The structure and level of detail of the resources are fitted to the conceptual difficulties that most of the students find. Some of the most advanced resources we have developed are interactive simulations. These are real simulations of key physical situations, not only animations. They serve as learning objects, in the well known sense of small reusable digital objects that are self-contained and tagged with metadata. In this sense, we use them to link concepts and content through interaction with active engagement of the student. The development of an interactive simulation involves several steps. First, we identify common pitfalls in the conceptual framework of the students and the points in which they stumble frequently. Then we think of a way to make clear the physical concepts using a simulation. After that, we program the simulation (using Flash or Java) and finally the simulation is tested with the students, and we reelaborate some parts of it in terms of usability. In our communication, we discuss the usefulness of these interactive simulations in teaching Physics for engineers, and their integration in a more comprehensive b-learning system.
Conceptual Demands in the Nuffield O-Level Physics Course
ERIC Educational Resources Information Center
Shayer, Michael
1972-01-01
Critical examination of the Teachers' Guide and Guide to Experiments and Questions Book in O-level Nuffield physics course reveals there may be disadvantages to the current organization when analyzed with psychological considerations. (PS)
Problem Solving and the Use of Math in Physics Courses
ERIC Educational Resources Information Center
Redish, Edward F.
2006-01-01
Mathematics is an essential element of physics problem solving, but experts often fail to appreciate exactly how they use it. Math may be the language of science, but math-in-physics is a distinct dialect of that language. Physicists tend to blend conceptual physics with mathematical symbolism in a way that profoundly affects the way equations are…
The Vocabulary of Physics and Its Impact on Student Learning.
ERIC Educational Resources Information Center
Itza-Ortiz, Salomon F.; Rebello, N. Sanjay; Zollman, Dean A.
The everyday meaning and usage of several words can differ significantly from their meaning and usage in physics. Examining these differences, and how students respond to them, may shed some light on students' physical learning difficulties. We surveyed (N=154) students in a conceptual physics course on their use of some words, "force", "momentum"…
Pre-Service Physics Teachers' Ideas on Size, Visibility and Structure of the Atom
ERIC Educational Resources Information Center
Unlu, Pervin
2010-01-01
Understanding the atom gives the opportunity to both understand and conceptually unify the various domains of science, such as physics, chemistry, biology, astronomy and geology. Among these disciplines, physics teachers are expected to be particularly well educated in this topic. It is important that pre-service physics teachers know what sort of…
Teaching the Conceptual History of Physics to Physics Teachers
ERIC Educational Resources Information Center
Garik, Peter; Garbayo, Luciana; Benétreau-Dupin, Yann; Winrich, Charles; Duffy, Andrew; Gross, Nicholas; Jariwala, Manher
2015-01-01
For nearly a decade we have taught the history and philosophy of science as part of courses aimed at the professional development of physics teachers. The focus of the history of science instruction is on the stages in the development of the concepts and theories of physics. For this instruction, we designed activities to help the teachers…
Complex systems: physics beyond physics
NASA Astrophysics Data System (ADS)
Holovatch, Yurij; Kenna, Ralph; Thurner, Stefan
2017-03-01
Complex systems are characterised by specific time-dependent interactions among their many constituents. As a consequence they often manifest rich, non-trivial and unexpected behaviour. Examples arise both in the physical and non-physical worlds. The study of complex systems forms a new interdisciplinary research area that cuts across physics, biology, ecology, economics, sociology, and the humanities. In this paper we review the essence of complex systems from a physicists' point of view, and try to clarify what makes them conceptually different from systems that are traditionally studied in physics. Our goal is to demonstrate how the dynamics of such systems may be conceptualised in quantitative and predictive terms by extending notions from statistical physics and how they can often be captured in a framework of co-evolving multiplex network structures. We mention three areas of complex-systems science that are currently studied extensively, the science of cities, dynamics of societies, and the representation of texts as evolutionary objects. We discuss why these areas form complex systems in the above sense. We argue that there exists plenty of new ground for physicists to explore and that methodical and conceptual progress is needed most.
Jensen, Gail M; Hack, Laurita M; Nordstrom, Terrence; Gwyer, Janet; Mostrom, Elizabeth
2017-09-01
This perspective shares recommendations that draw from (1) the National Study of Excellence and Innovation in Physical Therapist Education research findings and a conceptual model of excellence in physical therapist education, (2) the Carnegie Foundation's Preparation for the Professions Program (PPP), and (3) research in the learning sciences. The 30 recommendations are linked to the dimensions described in the conceptual model for excellence in physical therapist education: Culture of Excellence, Praxis of Learning, and Organizational Structures and Resources. This perspective proposes a transformative call for reform framed across 3 core categories: (1) creating a culture of excellence, leadership, and partnership, (2) advancing the learning sciences and understanding and enacting the social contract, and (3) implementing organizational imperatives. Similar to the Carnegie studies, this perspective identifies action items (9) that should be initiated immediately in a strategic and systematic way by the major organizational stakeholders in physical therapist education. These recommendations and action items provide a transformative agenda for physical therapist education, and thus the profession, in meeting the changing needs of society through higher levels of excellence. © 2017 American Physical Therapy Association.
Improving students' understanding of quantum mechanics
NASA Astrophysics Data System (ADS)
Zhu, Guangtian
2011-12-01
Learning physics is challenging at all levels. Students' difficulties in the introductory level physics courses have been widely studied and many instructional strategies have been developed to help students learn introductory physics. However, research shows that there is a large diversity in students' preparation and skills in the upper-level physics courses and it is necessary to provide scaffolding support to help students learn advanced physics. This thesis explores issues related to students' common difficulties in learning upper-level undergraduate quantum mechanics and how these difficulties can be reduced by research-based learning tutorials and peer instruction tools. We investigated students' difficulties in learning quantum mechanics by administering written tests and surveys to many classes and conducting individual interviews with a subset of students. Based on these investigations, we developed Quantum Interactive Learning Tutorials (QuILTs) and peer instruction tools to help students build a hierarchical knowledge structure of quantum mechanics through a guided approach. Preliminary assessments indicate that students' understanding of quantum mechanics is improved after using the research-based learning tools in the junior-senior level quantum mechanics courses. We also designed a standardized conceptual survey that can help instructors better probe students' understanding of quantum mechanics concepts in one spatial dimension. The validity and reliability of this quantum mechanics survey is discussed.
NASA Astrophysics Data System (ADS)
Zavala, Genaro; Alarcón, Hugo; Benegas, Julio
2007-08-01
In this contribution we describe a short development course for in-service physics teachers. The course structure and materials are based on the results of educational research, and its main objective is to provide in-service teachers with a first contact with the active learning strategy “Tutorials in Introductory Physics,” developed by the Physics Education Research Group at the University of Washington. The course was organized in a constructivist, active learning environment, so that teachers have first to experience, as regular students, the whole Tutorial sequence of activities: Tutorial pre-test, Tutorial, and Tutorial Homework. After each Tutorial, teachers reflect on, and recognize their own students’ learning difficulties, discussing their teaching experiences with their colleagues in small collaborative groups first and the whole class later. Finally they read and discuss specific Physics Education Research literature, where these learning difficulties have been extensively studied by researchers. At the beginning and at the end of the course the participants were given the conceptual multiple-choice test Force Concept Inventory (FCI). The pre-/post-instruction FCI data were presented as a practical example of the use of a research-based test widely used in educational research and in formative assessment processes designed to improve instruction.
Impacts of curricular change: Implications from 8 years of data in introductory physics
NASA Astrophysics Data System (ADS)
Pollock, Steven J.; Finkelstein, Noah
2013-01-01
Introductory calculus-based physics classes at the University of Colorado Boulder were significantly transformed beginning in 2004. They now regularly include: interactive engagement using clickers in large lecture settings, Tutorials in Introductory Physics with use of undergraduate Learning Assistants in recitation sections, and a staffed help-room setting where students work on personalized CAPA homework. We compile and summarize conceptual (FMCE and BEMA) pre- and post-data from over 9,000 unique students after 16 semesters of both Physics 1 and 2. Within a single institution with stable pre-test scores, we reproduce results of Hake's 1998 study that demonstrate the positive impacts of interactive engagement on student performance. We link the degree of faculty's use of interactive engagement techniques and their experience levels on student outcomes, and argue for the role of such systematic data collection in sustained course and institutional transformations.
NASA Astrophysics Data System (ADS)
Russ, Rosemary S.; Odden, Tor Ole B.
2017-12-01
Our field has long valued the goal of teaching students not just the facts of physics, but also the thinking and reasoning skills of professional physicists. The complexity inherent in scientific reasoning demands that we think carefully about how we conceptualize for ourselves, enact in our classes, and encourage in our students the relationship between the multifaceted practices of professional science. The current study draws on existing research in the philosophy of science and psychology to advocate for intertwining two important aspects of scientific reasoning: using evidence from experimentation and modeling. We present a case from an undergraduate physics course to illustrate how these aspects can be intertwined productively and describe specific ways in which these aspects of reasoning can mutually reinforce one another in student learning. We end by discussing implications for this work for instruction in introductory physics courses and for research on scientific reasoning at the undergraduate level.
NASA Astrophysics Data System (ADS)
Henriksen, Ellen K.; Bungum, Berit; Angell, Carl; Tellefsen, Cathrine W.; Frågåt, Thomas; Vetleseter Bøe, Maria
2014-11-01
In this article, we discuss how quantum physics and relativity can be taught in upper secondary school, in ways that promote conceptual understanding and philosophical reflections. We present the ReleQuant project, in which web-based teaching modules have been developed. The modules address competence aims in the Norwegian national curriculum for physics (final year of upper secondary education), which is unique in that it includes general relativity, entangled photons and the epistemological consequences of modern physics. These topics, with their high demands on students’ understanding of abstract and counter-intuitive concepts and principles, are challenging for teachers to teach and for students to learn. However, they also provide opportunities to present modern physics in innovative ways that students may find motivating and relevant both in terms of modern technological applications and in terms of contributions to students’ intellectual development. Beginning with these challenges and opportunities, we briefly present previous research and theoretical perspectives with relevance to student learning and motivation in modern physics. Based on this, we outline the ReleQuant teaching approach, where students use written and oral language and a collaborative exploration of animations and simulations as part of their learning process. Finally, we present some of the first experiences from classroom tests of the quantum physics modules.
Making the Transition from Classical to Quantum Physics
ERIC Educational Resources Information Center
Dutt, Amit
2011-01-01
This paper reports on the nature of the conceptual understandings developed by Year 12 Victorian Certificate of Education (VCE) physics students as they made the transition from the essentially deterministic notions of classical physics, to interpretations characteristic of quantum theory. The research findings revealed the fact that the…
Quantum Mechanics for Beginning Physics Students
ERIC Educational Resources Information Center
Schneider, Mark B.
2010-01-01
The past two decades of attention to introductory physics education has emphasized enhanced development of conceptual understanding to accompany calculational ability. Given this, it is surprising that current texts continue to rely on the Bohr model to develop a flawed intuition, and introduce correct atomic physics on an ad hoc basis. For…
Physical Education Teacher Education (PETE) in Canada
ERIC Educational Resources Information Center
Melnychuk, Nancy; Robinson, Daniel; Lu, Chunlei; Chorney, David; Randall, Lynn
2011-01-01
The purpose of this study was to identify physical education (PE) teacher educators and examine physical education teacher education (PETE) programs presently offered at undergraduate degree-granting Canadian universities. The investigation was conceptualized by issues related to the dislodging of PETE from a central to a marginal role in higher…
Skill Acquisition in Physical Education: A Speculative Perspective
ERIC Educational Resources Information Center
Smith, Wayne W.
2011-01-01
How we learn motor skills has always been of interest to physical educators. Contemporary conceptual frameworks about motor skill learning draw from earlier behavioral and cognitive psychology learning theories. As a point of departure this paper foregrounds complexity theorizing, arguing that skill is contingent upon the performer's physical and…
Conceptualizing physical activity parenting practices using expert informed concept mapping analysis
USDA-ARS?s Scientific Manuscript database
Parents are widely recognized as playing a central role in the development of child behaviors such as physical activity. As there is little agreement as to the dimensions of physical activity-related parenting practices that should be measured or how they should be operationalized, this study engage...
Politics and Pleasure: The Philosophy of Physical Education Revisited
ERIC Educational Resources Information Center
Booth, Douglas
2009-01-01
Humans unquestionably derive pleasurable physical sensations from different types of movement. Yet, remarkably, there is a deafening silence around the subject in the literature on human movement. This article comprises three parts. First, I outline prevailing conceptualizations of pleasure as they relate to physical activity in the social…
Assessment Results Following Inquiry and Traditional Physics Laboratory Activities
ERIC Educational Resources Information Center
Bryan, Joel Arthur
2006-01-01
Preservice elementary teachers in a conceptual physics course were given multiple resources to use during several inquiry activities in order to investigate how materials were chosen, used, and valued. These students performed significantly better on assessment items related to the inquiry physics activities than on items related to traditional…
Physical Environments of Assisted Living: Research Needs and Challenges
ERIC Educational Resources Information Center
Cutler, Lois J.
2007-01-01
Purpose: This article aims to review research measures and findings related to physical environments of assisted living (AL) according to multiple conceptual perspectives--ecological, cultural, and Maslovian hierarchy. Design and Methods: A literature and research review was undertaken with two foci: performance measures for physical environments,…
What Does "Fast" Mean? Understanding the Physical World through Computational Representations
ERIC Educational Resources Information Center
Parnafes, Orit
2007-01-01
This article concerns the development of conceptual understanding of a physical phenomenon through the use of computational representations. It examines how students make sense of and interpret computational representations, and how their understanding of the represented physical phenomenon develops in this process. Eight studies were conducted,…