Sample records for physically based models

  1. Efficient physics-based tracking of heart surface motion for beating heart surgery robotic systems.

    PubMed

    Bogatyrenko, Evgeniya; Pompey, Pascal; Hanebeck, Uwe D

    2011-05-01

    Tracking of beating heart motion in a robotic surgery system is required for complex cardiovascular interventions. A heart surface motion tracking method is developed, including a stochastic physics-based heart surface model and an efficient reconstruction algorithm. The algorithm uses the constraints provided by the model that exploits the physical characteristics of the heart. The main advantage of the model is that it is more realistic than most standard heart models. Additionally, no explicit matching between the measurements and the model is required. The application of meshless methods significantly reduces the complexity of physics-based tracking. Based on the stochastic physical model of the heart surface, this approach considers the motion of the intervention area and is robust to occlusions and reflections. The tracking algorithm is evaluated in simulations and experiments on an artificial heart. Providing higher accuracy than the standard model-based methods, it successfully copes with occlusions and provides high performance even when all measurements are not available. Combining the physical and stochastic description of the heart surface motion ensures physically correct and accurate prediction. Automatic initialization of the physics-based cardiac motion tracking enables system evaluation in a clinical environment.

  2. Modeling of the radiation belt megnetosphere in decisional timeframes

    DOEpatents

    Koller, Josef; Reeves, Geoffrey D; Friedel, Reiner H.W.

    2013-04-23

    Systems and methods for calculating L* in the magnetosphere with essentially the same accuracy as with a physics based model at many times the speed by developing a surrogate trained to be a surrogate for the physics-based model. The trained model can then beneficially process input data falling within the training range of the surrogate model. The surrogate model can be a feedforward neural network and the physics-based model can be the TSK03 model. Operatively, the surrogate model can use parameters on which the physics-based model was based, and/or spatial data for the location where L* is to be calculated. Surrogate models should be provided for each of a plurality of pitch angles. Accordingly, a surrogate model having a closed drift shell can be used from the plurality of models. The feedforward neural network can have a plurality of input-layer units, there being at least one input-layer unit for each physics-based model parameter, a plurality of hidden layer units and at least one output unit for the value of L*.

  3. Learning Physics-based Models in Hydrology under the Framework of Generative Adversarial Networks

    NASA Astrophysics Data System (ADS)

    Karpatne, A.; Kumar, V.

    2017-12-01

    Generative adversarial networks (GANs), that have been highly successful in a number of applications involving large volumes of labeled and unlabeled data such as computer vision, offer huge potential for modeling the dynamics of physical processes that have been traditionally studied using simulations of physics-based models. While conventional physics-based models use labeled samples of input/output variables for model calibration (estimating the right parametric forms of relationships between variables) or data assimilation (identifying the most likely sequence of system states in dynamical systems), there is a greater opportunity to explore the full power of machine learning (ML) methods (e.g, GANs) for studying physical processes currently suffering from large knowledge gaps, e.g. ground-water flow. However, success in this endeavor requires a principled way of combining the strengths of ML methods with physics-based numerical models that are founded on a wealth of scientific knowledge. This is especially important in scientific domains like hydrology where the number of data samples is small (relative to Internet-scale applications such as image recognition where machine learning methods has found great success), and the physical relationships are complex (high-dimensional) and non-stationary. We will present a series of methods for guiding the learning of GANs using physics-based models, e.g., by using the outputs of physics-based models as input data to the generator-learner framework, and by using physics-based models as generators trained using validation data in the adversarial learning framework. These methods are being developed under the broad paradigm of theory-guided data science that we are developing to integrate scientific knowledge with data science methods for accelerating scientific discovery.

  4. A Hybrid Physics-Based Data-Driven Approach for Point-Particle Force Modeling

    NASA Astrophysics Data System (ADS)

    Moore, Chandler; Akiki, Georges; Balachandar, S.

    2017-11-01

    This study improves upon the physics-based pairwise interaction extended point-particle (PIEP) model. The PIEP model leverages a physical framework to predict fluid mediated interactions between solid particles. While the PIEP model is a powerful tool, its pairwise assumption leads to increased error in flows with high particle volume fractions. To reduce this error, a regression algorithm is used to model the differences between the current PIEP model's predictions and the results of direct numerical simulations (DNS) for an array of monodisperse solid particles subjected to various flow conditions. The resulting statistical model and the physical PIEP model are superimposed to construct a hybrid, physics-based data-driven PIEP model. It must be noted that the performance of a pure data-driven approach without the model-form provided by the physical PIEP model is substantially inferior. The hybrid model's predictive capabilities are analyzed using more DNS. In every case tested, the hybrid PIEP model's prediction are more accurate than those of physical PIEP model. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1315138 and the U.S. DOE, NNSA, ASC Program, as a Cooperative Agreement under Contract No. DE-NA0002378.

  5. Models Based Practices in Physical Education: A Sociocritical Reflection

    ERIC Educational Resources Information Center

    Landi, Dillon; Fitzpatrick, Katie; McGlashan, Hayley

    2016-01-01

    In this paper, we reflect on models-based practices in physical education using a sociocritical lens. Drawing links between neoliberal moves in education, and critical approaches to the body and physicality, we take a view that models are useful tools that are worth integrating into physical education, but we are apprehensive to suggest they…

  6. Machine Learning and Deep Learning Models to Predict Runoff Water Quantity and Quality

    NASA Astrophysics Data System (ADS)

    Bradford, S. A.; Liang, J.; Li, W.; Murata, T.; Simunek, J.

    2017-12-01

    Contaminants can be rapidly transported at the soil surface by runoff to surface water bodies. Physically-based models, which are based on the mathematical description of main hydrological processes, are key tools for predicting surface water impairment. Along with physically-based models, data-driven models are becoming increasingly popular for describing the behavior of hydrological and water resources systems since these models can be used to complement or even replace physically based-models. In this presentation we propose a new data-driven model as an alternative to a physically-based overland flow and transport model. First, we have developed a physically-based numerical model to simulate overland flow and contaminant transport (the HYDRUS-1D overland flow module). A large number of numerical simulations were carried out to develop a database containing information about the impact of various input parameters (weather patterns, surface topography, vegetation, soil conditions, contaminants, and best management practices) on runoff water quantity and quality outputs. This database was used to train data-driven models. Three different methods (Neural Networks, Support Vector Machines, and Recurrence Neural Networks) were explored to prepare input- output functional relations. Results demonstrate the ability and limitations of machine learning and deep learning models to predict runoff water quantity and quality.

  7. A methodology for reduced order modeling and calibration of the upper atmosphere

    NASA Astrophysics Data System (ADS)

    Mehta, Piyush M.; Linares, Richard

    2017-10-01

    Atmospheric drag is the largest source of uncertainty in accurately predicting the orbit of satellites in low Earth orbit (LEO). Accurately predicting drag for objects that traverse LEO is critical to space situational awareness. Atmospheric models used for orbital drag calculations can be characterized either as empirical or physics-based (first principles based). Empirical models are fast to evaluate but offer limited real-time predictive/forecasting ability, while physics based models offer greater predictive/forecasting ability but require dedicated parallel computational resources. Also, calibration with accurate data is required for either type of models. This paper presents a new methodology based on proper orthogonal decomposition toward development of a quasi-physical, predictive, reduced order model that combines the speed of empirical and the predictive/forecasting capabilities of physics-based models. The methodology is developed to reduce the high dimensionality of physics-based models while maintaining its capabilities. We develop the methodology using the Naval Research Lab's Mass Spectrometer Incoherent Scatter model and show that the diurnal and seasonal variations can be captured using a small number of modes and parameters. We also present calibration of the reduced order model using the CHAMP and GRACE accelerometer-derived densities. Results show that the method performs well for modeling and calibration of the upper atmosphere.

  8. Investigation of model-based physical design restrictions (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Lucas, Kevin; Baron, Stanislas; Belledent, Jerome; Boone, Robert; Borjon, Amandine; Couderc, Christophe; Patterson, Kyle; Riviere-Cazaux, Lionel; Rody, Yves; Sundermann, Frank; Toublan, Olivier; Trouiller, Yorick; Urbani, Jean-Christophe; Wimmer, Karl

    2005-05-01

    As lithography and other patterning processes become more complex and more non-linear with each generation, the task of physical design rules necessarily increases in complexity also. The goal of the physical design rules is to define the boundary between the physical layout structures which will yield well from those which will not. This is essentially a rule-based pre-silicon guarantee of layout correctness. However the rapid increase in design rule requirement complexity has created logistical problems for both the design and process functions. Therefore, similar to the semiconductor industry's transition from rule-based to model-based optical proximity correction (OPC) due to increased patterning complexity, opportunities for improving physical design restrictions by implementing model-based physical design methods are evident. In this paper we analyze the possible need and applications for model-based physical design restrictions (MBPDR). We first analyze the traditional design rule evolution, development and usage methodologies for semiconductor manufacturers. Next we discuss examples of specific design rule challenges requiring new solution methods in the patterning regime of low K1 lithography and highly complex RET. We then evaluate possible working strategies for MBPDR in the process development and product design flows, including examples of recent model-based pre-silicon verification techniques. Finally we summarize with a proposed flow and key considerations for MBPDR implementation.

  9. ASSESSMENT OF TWO PHYSICALLY BASED WATERSHED MODELS BASED ON THEIR PERFORMANCES OF SIMULATING SEDIMENT MOVEMENT OVER SMALL WATERSHEDS

    EPA Science Inventory


    Abstract: Two physically based and deterministic models, CASC2-D and KINEROS are evaluated and compared for their performances on modeling sediment movement on a small agricultural watershed over several events. Each model has different conceptualization of a watershed. CASC...

  10. ASSESSMENT OF TWO PHYSICALLY-BASED WATERSHED MODELS BASED ON THEIR PERFORMANCES OF SIMULATING WATER AND SEDIMENT MOVEMENT

    EPA Science Inventory

    Two physically based watershed models, GSSHA and KINEROS-2 are evaluated and compared for their performances on modeling flow and sediment movement. Each model has a different watershed conceptualization. GSSHA divides the watershed into cells, and flow and sediments are routed t...

  11. Preduction of Vehicle Mobility on Large-Scale Soft-Soil Terrain Maps Using Physics-Based Simulation

    DTIC Science & Technology

    2016-08-02

    PREDICTION OF VEHICLE MOBILITY ON LARGE-SCALE SOFT- SOIL TERRAIN MAPS USING PHYSICS-BASED SIMULATION Tamer M. Wasfy, Paramsothy Jayakumar, Dave...NRMM • Objectives • Soft Soils • Review of Physics-Based Soil Models • MBD/DEM Modeling Formulation – Joint & Contact Constraints – DEM Cohesive... Soil Model • Cone Penetrometer Experiment • Vehicle- Soil Model • Vehicle Mobility DOE Procedure • Simulation Results • Concluding Remarks 2UNCLASSIFIED

  12. Improving flood forecasting capability of physically based distributed hydrological model by parameter optimization

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Li, J.; Xu, H.

    2015-10-01

    Physically based distributed hydrological models discrete the terrain of the whole catchment into a number of grid cells at fine resolution, and assimilate different terrain data and precipitation to different cells, and are regarded to have the potential to improve the catchment hydrological processes simulation and prediction capability. In the early stage, physically based distributed hydrological models are assumed to derive model parameters from the terrain properties directly, so there is no need to calibrate model parameters, but unfortunately, the uncertanties associated with this model parameter deriving is very high, which impacted their application in flood forecasting, so parameter optimization may also be necessary. There are two main purposes for this study, the first is to propose a parameter optimization method for physically based distributed hydrological models in catchment flood forecasting by using PSO algorithm and to test its competence and to improve its performances, the second is to explore the possibility of improving physically based distributed hydrological models capability in cathcment flood forecasting by parameter optimization. In this paper, based on the scalar concept, a general framework for parameter optimization of the PBDHMs for catchment flood forecasting is first proposed that could be used for all PBDHMs. Then, with Liuxihe model as the study model, which is a physically based distributed hydrological model proposed for catchment flood forecasting, the improverd Particle Swarm Optimization (PSO) algorithm is developed for the parameter optimization of Liuxihe model in catchment flood forecasting, the improvements include to adopt the linear decreasing inertia weight strategy to change the inertia weight, and the arccosine function strategy to adjust the acceleration coefficients. This method has been tested in two catchments in southern China with different sizes, and the results show that the improved PSO algorithm could be used for Liuxihe model parameter optimization effectively, and could improve the model capability largely in catchment flood forecasting, thus proven that parameter optimization is necessary to improve the flood forecasting capability of physically based distributed hydrological model. It also has been found that the appropriate particle number and the maximum evolution number of PSO algorithm used for Liuxihe model catchment flood forcasting is 20 and 30, respectively.

  13. Prediction of brittleness based on anisotropic rock physics model for kerogen-rich shale

    NASA Astrophysics Data System (ADS)

    Qian, Ke-Ran; He, Zhi-Liang; Chen, Ye-Quan; Liu, Xi-Wu; Li, Xiang-Yang

    2017-12-01

    The construction of a shale rock physics model and the selection of an appropriate brittleness index ( BI) are two significant steps that can influence the accuracy of brittleness prediction. On one hand, the existing models of kerogen-rich shale are controversial, so a reasonable rock physics model needs to be built. On the other hand, several types of equations already exist for predicting the BI whose feasibility needs to be carefully considered. This study constructed a kerogen-rich rock physics model by performing the selfconsistent approximation and the differential effective medium theory to model intercoupled clay and kerogen mixtures. The feasibility of our model was confirmed by comparison with classical models, showing better accuracy. Templates were constructed based on our model to link physical properties and the BI. Different equations for the BI had different sensitivities, making them suitable for different types of formations. Equations based on Young's Modulus were sensitive to variations in lithology, while those using Lame's Coefficients were sensitive to porosity and pore fluids. Physical information must be considered to improve brittleness prediction.

  14. Model-Based Detection of Radioactive Contraband for Harbor Defense Incorporating Compton Scattering Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Candy, J V; Chambers, D H; Breitfeller, E F

    2010-03-02

    The detection of radioactive contraband is a critical problem is maintaining national security for any country. Photon emissions from threat materials challenge both detection and measurement technologies especially when concealed by various types of shielding complicating the transport physics significantly. This problem becomes especially important when ships are intercepted by U.S. Coast Guard harbor patrols searching for contraband. The development of a sequential model-based processor that captures both the underlying transport physics of gamma-ray emissions including Compton scattering and the measurement of photon energies offers a physics-based approach to attack this challenging problem. The inclusion of a basic radionuclide representationmore » of absorbed/scattered photons at a given energy along with interarrival times is used to extract the physics information available from the noisy measurements portable radiation detection systems used to interdict contraband. It is shown that this physics representation can incorporated scattering physics leading to an 'extended' model-based structure that can be used to develop an effective sequential detection technique. The resulting model-based processor is shown to perform quite well based on data obtained from a controlled experiment.« less

  15. Forecasting runout of rock and debris avalanches

    USGS Publications Warehouse

    Iverson, Richard M.; Evans, S.G.; Mugnozza, G.S.; Strom, A.; Hermanns, R.L.

    2006-01-01

    Physically based mathematical models and statistically based empirical equations each may provide useful means of forecasting runout of rock and debris avalanches. This paper compares the foundations, strengths, and limitations of a physically based model and a statistically based forecasting method, both of which were developed to predict runout across three-dimensional topography. The chief advantage of the physically based model results from its ties to physical conservation laws and well-tested axioms of soil and rock mechanics, such as the Coulomb friction rule and effective-stress principle. The output of this model provides detailed information about the dynamics of avalanche runout, at the expense of high demands for accurate input data, numerical computation, and experimental testing. In comparison, the statistical method requires relatively modest computation and no input data except identification of prospective avalanche source areas and a range of postulated avalanche volumes. Like the physically based model, the statistical method yields maps of predicted runout, but it provides no information on runout dynamics. Although the two methods differ significantly in their structure and objectives, insights gained from one method can aid refinement of the other.

  16. Improvements to Fidelity, Generation and Implementation of Physics-Based Lithium-Ion Reduced-Order Models

    NASA Astrophysics Data System (ADS)

    Rodriguez Marco, Albert

    Battery management systems (BMS) require computationally simple but highly accurate models of the battery cells they are monitoring and controlling. Historically, empirical equivalent-circuit models have been used, but increasingly researchers are focusing their attention on physics-based models due to their greater predictive capabilities. These models are of high intrinsic computational complexity and so must undergo some kind of order-reduction process to make their use by a BMS feasible: we favor methods based on a transfer-function approach of battery cell dynamics. In prior works, transfer functions have been found from full-order PDE models via two simplifying assumptions: (1) a linearization assumption--which is a fundamental necessity in order to make transfer functions--and (2) an assumption made out of expedience that decouples the electrolyte-potential and electrolyte-concentration PDEs in order to render an approach to solve for the transfer functions from the PDEs. This dissertation improves the fidelity of physics-based models by eliminating the need for the second assumption and, by linearizing nonlinear dynamics around different constant currents. Electrochemical transfer functions are infinite-order and cannot be expressed as a ratio of polynomials in the Laplace variable s. Thus, for practical use, these systems need to be approximated using reduced-order models that capture the most significant dynamics. This dissertation improves the generation of physics-based reduced-order models by introducing different realization algorithms, which produce a low-order model from the infinite-order electrochemical transfer functions. Physics-based reduced-order models are linear and describe cell dynamics if operated near the setpoint at which they have been generated. Hence, multiple physics-based reduced-order models need to be generated at different setpoints (i.e., state-of-charge, temperature and C-rate) in order to extend the cell operating range. This dissertation improves the implementation of physics-based reduced-order models by introducing different blending approaches that combine the pre-computed models generated (offline) at different setpoints in order to produce good electrochemical estimates (online) along the cell state-of-charge, temperature and C-rate range.

  17. Simulation of green roof runoff under different substrate depths and vegetation covers by coupling a simple conceptual and a physically based hydrological model.

    PubMed

    Soulis, Konstantinos X; Valiantzas, John D; Ntoulas, Nikolaos; Kargas, George; Nektarios, Panayiotis A

    2017-09-15

    In spite of the well-known green roof benefits, their widespread adoption in the management practices of urban drainage systems requires the use of adequate analytical and modelling tools. In the current study, green roof runoff modeling was accomplished by developing, testing, and jointly using a simple conceptual model and a physically based numerical simulation model utilizing HYDRUS-1D software. The use of such an approach combines the advantages of the conceptual model, namely simplicity, low computational requirements, and ability to be easily integrated in decision support tools with the capacity of the physically based simulation model to be easily transferred in conditions and locations other than those used for calibrating and validating it. The proposed approach was evaluated with an experimental dataset that included various green roof covers (either succulent plants - Sedum sediforme, or xerophytic plants - Origanum onites, or bare substrate without any vegetation) and two substrate depths (either 8 cm or 16 cm). Both the physically based and the conceptual models matched very closely the observed hydrographs. In general, the conceptual model performed better than the physically based simulation model but the overall performance of both models was sufficient in most cases as it is revealed by the Nash-Sutcliffe Efficiency index which was generally greater than 0.70. Finally, it was showcased how a physically based and a simple conceptual model can be jointly used to allow the use of the simple conceptual model for a wider set of conditions than the available experimental data and in order to support green roof design. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Hydrological modelling in forested systems | Science ...

    EPA Pesticide Factsheets

    This chapter provides a brief overview of forest hydrology modelling approaches for answering important global research and management questions. Many hundreds of hydrological models have been applied globally across multiple decades to represent and predict forest hydrological processes. The focus of this chapter is on process-based models and approaches, specifically 'forest hydrology models'; that is, physically based simulation tools that quantify compartments of the forest hydrological cycle. Physically based models can be considered those that describe the conservation of mass, momentum and/or energy. The purpose of this chapter is to provide a brief overview of forest hydrology modeling approaches for answering important global research and management questions. The focus of this chapter is on process-based models and approaches, specifically “forest hydrology models”, i.e., physically-based simulation tools that quantify compartments of the forest hydrological cycle.

  19. What Goes Around Comes Around … Or Does It? Disrupting the Cycle of Traditional, Sport-Based Physical Education

    PubMed Central

    Ennis, Catherine D.

    2015-01-01

    As typically taught, sport-based, multiactivity approaches to physical education provide students with few opportunities to increase their skill, fitness, or understanding. Alternative curriculum models, such as Sport Education, Teaching Games for Understanding, and Fitness for Life, represent a second generation of models that build on strong statements of democratic, student-centered practice in physical education. In the What Goes Around section of the paper, I discuss the U.S. perspective on the origins of alternative physical education curriculum models introduced in the early and mid-20th century as a response to sport and exercise programs of the times. Today, with the help of physical educators, scholars are conducting research to test new curricular alternatives or prototypes to provide evidence-based support for these models. Yet, the multiactivity, sport-based curriculum continues to dominate in most U.S. physical education classes. I discuss reasons for this dogged persistence and propose reforms to disrupt this pervasive pattern in the future. PMID:25960937

  20. Structural Acoustic Physics Based Modeling of Curved Composite Shells

    DTIC Science & Technology

    2017-09-19

    Results show that the finite element computational models accurately match analytical calculations, and that the composite material studied in this...products. 15. SUBJECT TERMS Finite Element Analysis, Structural Acoustics, Fiber-Reinforced Composites, Physics-Based Modeling 16. SECURITY...2 4 FINITE ELEMENT MODEL DESCRIPTION

  1. Model-based reasoning in the physics laboratory: Framework and initial results

    NASA Astrophysics Data System (ADS)

    Zwickl, Benjamin M.; Hu, Dehui; Finkelstein, Noah; Lewandowski, H. J.

    2015-12-01

    [This paper is part of the Focused Collection on Upper Division Physics Courses.] We review and extend existing frameworks on modeling to develop a new framework that describes model-based reasoning in introductory and upper-division physics laboratories. Constructing and using models are core scientific practices that have gained significant attention within K-12 and higher education. Although modeling is a broadly applicable process, within physics education, it has been preferentially applied to the iterative development of broadly applicable principles (e.g., Newton's laws of motion in introductory mechanics). A significant feature of the new framework is that measurement tools (in addition to the physical system being studied) are subjected to the process of modeling. Think-aloud interviews were used to refine the framework and demonstrate its utility by documenting examples of model-based reasoning in the laboratory. When applied to the think-aloud interviews, the framework captures and differentiates students' model-based reasoning and helps identify areas of future research. The interviews showed how students productively applied similar facets of modeling to the physical system and measurement tools: construction, prediction, interpretation of data, identification of model limitations, and revision. Finally, we document students' challenges in explicitly articulating assumptions when constructing models of experimental systems and further challenges in model construction due to students' insufficient prior conceptual understanding. A modeling perspective reframes many of the seemingly arbitrary technical details of measurement tools and apparatus as an opportunity for authentic and engaging scientific sense making.

  2. Diagnosis by integrating model-based reasoning with knowledge-based reasoning

    NASA Technical Reports Server (NTRS)

    Bylander, Tom

    1988-01-01

    Our research investigates how observations can be categorized by integrating a qualitative physical model with experiential knowledge. Our domain is diagnosis of pathologic gait in humans, in which the observations are the gait motions, muscle activity during gait, and physical exam data, and the diagnostic hypotheses are the potential muscle weaknesses, muscle mistimings, and joint restrictions. Patients with underlying neurological disorders typically have several malfunctions. Among the problems that need to be faced are: the ambiguity of the observations, the ambiguity of the qualitative physical model, correspondence of the observations and hypotheses to the qualitative physical model, the inherent uncertainty of experiential knowledge, and the combinatorics involved in forming composite hypotheses. Our system divides the work so that the knowledge-based reasoning suggests which hypotheses appear more likely than others, the qualitative physical model is used to determine which hypotheses explain which observations, and another process combines these functionalities to construct a composite hypothesis based on explanatory power and plausibility. We speculate that the reasoning architecture of our system is generally applicable to complex domains in which a less-than-perfect physical model and less-than-perfect experiential knowledge need to be combined to perform diagnosis.

  3. Measurement of Function Post Hip Fracture: Testing a Comprehensive Measurement Model of Physical Function

    PubMed Central

    Gruber-Baldini, Ann L.; Hicks, Gregory; Ostir, Glen; Klinedinst, N. Jennifer; Orwig, Denise; Magaziner, Jay

    2015-01-01

    Background Measurement of physical function post hip fracture has been conceptualized using multiple different measures. Purpose This study tested a comprehensive measurement model of physical function. Design This was a descriptive secondary data analysis including 168 men and 171 women post hip fracture. Methods Using structural equation modeling, a measurement model of physical function which included grip strength, activities of daily living, instrumental activities of daily living and performance was tested for fit at 2 and 12 months post hip fracture and among male and female participants and validity of the measurement model of physical function was evaluated based on how well the model explained physical activity, exercise and social activities post hip fracture. Findings The measurement model of physical function fit the data. The amount of variance the model or individual factors of the model explained varied depending on the activity. Conclusion Decisions about the ideal way in which to measure physical function should be based on outcomes considered and participant Clinical Implications The measurement model of physical function is a reliable and valid method to comprehensively measure physical function across the hip fracture recovery trajectory. Practical but useful assessment of function should be considered and monitored over the recovery trajectory post hip fracture. PMID:26492866

  4. Improving flood forecasting capability of physically based distributed hydrological models by parameter optimization

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Li, J.; Xu, H.

    2016-01-01

    Physically based distributed hydrological models (hereafter referred to as PBDHMs) divide the terrain of the whole catchment into a number of grid cells at fine resolution and assimilate different terrain data and precipitation to different cells. They are regarded to have the potential to improve the catchment hydrological process simulation and prediction capability. In the early stage, physically based distributed hydrological models are assumed to derive model parameters from the terrain properties directly, so there is no need to calibrate model parameters. However, unfortunately the uncertainties associated with this model derivation are very high, which impacted their application in flood forecasting, so parameter optimization may also be necessary. There are two main purposes for this study: the first is to propose a parameter optimization method for physically based distributed hydrological models in catchment flood forecasting by using particle swarm optimization (PSO) algorithm and to test its competence and to improve its performances; the second is to explore the possibility of improving physically based distributed hydrological model capability in catchment flood forecasting by parameter optimization. In this paper, based on the scalar concept, a general framework for parameter optimization of the PBDHMs for catchment flood forecasting is first proposed that could be used for all PBDHMs. Then, with the Liuxihe model as the study model, which is a physically based distributed hydrological model proposed for catchment flood forecasting, the improved PSO algorithm is developed for the parameter optimization of the Liuxihe model in catchment flood forecasting. The improvements include adoption of the linearly decreasing inertia weight strategy to change the inertia weight and the arccosine function strategy to adjust the acceleration coefficients. This method has been tested in two catchments in southern China with different sizes, and the results show that the improved PSO algorithm could be used for the Liuxihe model parameter optimization effectively and could improve the model capability largely in catchment flood forecasting, thus proving that parameter optimization is necessary to improve the flood forecasting capability of physically based distributed hydrological models. It also has been found that the appropriate particle number and the maximum evolution number of PSO algorithm used for the Liuxihe model catchment flood forecasting are 20 and 30 respectively.

  5. USE OF TRANS-CONTEXTUAL MODEL-BASED PHYSICAL ACTIVITY COURSE IN DEVELOPING LEISURE-TIME PHYSICAL ACTIVITY BEHAVIOR OF UNIVERSITY STUDENTS.

    PubMed

    Müftüler, Mine; İnce, Mustafa Levent

    2015-08-01

    This study examined how a physical activity course based on the Trans-Contextual Model affected the variables of perceived autonomy support, autonomous motivation, determinants of leisure-time physical activity behavior, basic psychological needs satisfaction, and leisure-time physical activity behaviors. The participants were 70 Turkish university students (M age=23.3 yr., SD=3.2). A pre-test-post-test control group design was constructed. Initially, the participants were randomly assigned into an experimental (n=35) and a control (n=35) group. The experimental group followed a 12 wk. trans-contextual model-based intervention. The participants were pre- and post-tested in terms of Trans-Contextual Model constructs and of self-reported leisure-time physical activity behaviors. Multivariate analyses showed significant increases over the 12 wk. period for perceived autonomy support from instructor and peers, autonomous motivation in leisure-time physical activity setting, positive intention and perceived behavioral control over leisure-time physical activity behavior, more fulfillment of psychological needs, and more engagement in leisure-time physical activity behavior in the experimental group. These results indicated that the intervention was effective in developing leisure-time physical activity and indicated that the Trans-Contextual Model is a useful way to conceptualize these relationships.

  6. Model-Based Reasoning in the Physics Laboratory: Framework and Initial Results

    ERIC Educational Resources Information Center

    Zwickl, Benjamin M.; Hu, Dehui; Finkelstein, Noah; Lewandowski, H. J.

    2015-01-01

    We review and extend existing frameworks on modeling to develop a new framework that describes model-based reasoning in introductory and upper-division physics laboratories. Constructing and using models are core scientific practices that have gained significant attention within K-12 and higher education. Although modeling is a broadly applicable…

  7. HiRadProp: High-Frequency Modeling and Prediction of Tropospheric Radiopropagation Parameters from Ground-Based-Multi-Channel Radiometric Measurements between Ka and W Band

    DTIC Science & Technology

    2016-05-11

    new physically -based prediction models for all-weather path attenuation estimation at Ka, V and W band from multi- channel microwave radiometric data...of new physically -based prediction models for all-weather path attenuation estimation at Ka, V and W band from multi- channel microwave radiometric...the medium behavior at these frequency bands from both a physical and a statistical point of view (e.g., [5]-[7]). However, these campaigns are

  8. Tactile Teaching: Exploring Protein Structure/Function Using Physical Models

    ERIC Educational Resources Information Center

    Herman, Tim; Morris, Jennifer; Colton, Shannon; Batiza, Ann; Patrick, Michael; Franzen, Margaret; Goodsell, David S.

    2006-01-01

    The technology now exists to construct physical models of proteins based on atomic coordinates of solved structures. We review here our recent experiences in using physical models to teach concepts of protein structure and function at both the high school and the undergraduate levels. At the high school level, physical models are used in a…

  9. Novel models on fluid's variable thermo-physical properties for extensive study on convection heat and mass transfer

    NASA Astrophysics Data System (ADS)

    Shang, De-Yi; Zhong, Liang-Cai

    2017-01-01

    Our novel models for fluid's variable physical properties are improved and reported systematically in this work for enhancement of theoretical and practical value on study of convection heat and mass transfer. It consists of three models, namely (1) temperature parameter model, (2) polynomial model, and (3) weighted-sum model, respectively for treatment of temperature-dependent physical properties of gases, temperature-dependent physical properties of liquids, and concentration- and temperature-dependent physical properties of vapour-gas mixture. Two related components are proposed, and involved in each model for fluid's variable physical properties. They are basic physic property equations and theoretical similarity equations on physical property factors. The former, as the foundation of the latter, is based on the typical experimental data and physical analysis. The latter is built up by similarity analysis and mathematical derivation based on the former basic physical properties equations. These models are available for smooth simulation and treatment of fluid's variable physical properties for assurance of theoretical and practical value of study on convection of heat and mass transfer. Especially, so far, there has been lack of available study on heat and mass transfer of film condensation convection of vapour-gas mixture, and the wrong heat transfer results existed in widespread studies on the related research topics, due to ignorance of proper consideration of the concentration- and temperature-dependent physical properties of vapour-gas mixture. For resolving such difficult issues, the present novel physical property models have their special advantages.

  10. Problem Solving: Physics Modeling-Based Interactive Engagement

    ERIC Educational Resources Information Center

    Ornek, Funda

    2009-01-01

    The purpose of this study was to investigate how modeling-based instruction combined with an interactive-engagement teaching approach promotes students' problem solving abilities. I focused on students in a calculus-based introductory physics course, based on the matter and interactions curriculum of Chabay & Sherwood (2002) at a large state…

  11. Adaptive Modeling of Details for Physically-Based Sound Synthesis and Propagation

    DTIC Science & Technology

    2015-03-21

    the interface that ensures the consistency and validity of the solution given by the two methods. Transfer functions are used to model two-way...release; distribution is unlimited. Adaptive modeling of details for physically-based sound synthesis and propagation The views, opinions and/or...Research Triangle Park, NC 27709-2211 Applied sciences, Adaptive modeling , Physcially-based, Sound synthesis, Propagation, Virtual world REPORT

  12. Development , Implementation and Evaluation of a Physics-Base Windblown Dust Emission Model

    EPA Science Inventory

    A physics-based windblown dust emission parametrization scheme is developed and implemented in the CMAQ modeling system. A distinct feature of the present model includes the incorporation of a newly developed, dynamic relation for the surface roughness length, which is important ...

  13. New mathematics for old physics: The case of lattice fluids

    NASA Astrophysics Data System (ADS)

    Barberousse, Anouk; Imbert, Cyrille

    2013-08-01

    We analyze the effects of the introduction of new mathematical tools on an old branch of physics by focusing on lattice fluids, which are cellular automata (CA)-based hydrodynamical models. We examine the nature of these discrete models, the type of novelty they bring about within scientific practice and the role they play in the field of fluid dynamics. We critically analyze Rohrlich's, Fox Keller's and Hughes' claims about CA-based models. We distinguish between different senses of the predicates "phenomenological" and "theoretical" for scientific models and argue that it is erroneous to conclude, as they do, that CA-based models are necessarily phenomenological in any sense of the term. We conversely claim that CA-based models of fluids, though at first sight blatantly misrepresenting fluids, are in fact conservative as far as the basic laws of statistical physics are concerned and not less theoretical than more traditional models in the field. Based on our case-study, we propose a general discussion of the prospect of CA for modeling in physics. We finally emphasize that lattice fluids are not just exotic oddities but do bring about new advantages in the investigation of fluids' behavior.

  14. Physics-based statistical model and simulation method of RF propagation in urban environments

    DOEpatents

    Pao, Hsueh-Yuan; Dvorak, Steven L.

    2010-09-14

    A physics-based statistical model and simulation/modeling method and system of electromagnetic wave propagation (wireless communication) in urban environments. In particular, the model is a computationally efficient close-formed parametric model of RF propagation in an urban environment which is extracted from a physics-based statistical wireless channel simulation method and system. The simulation divides the complex urban environment into a network of interconnected urban canyon waveguides which can be analyzed individually; calculates spectral coefficients of modal fields in the waveguides excited by the propagation using a database of statistical impedance boundary conditions which incorporates the complexity of building walls in the propagation model; determines statistical parameters of the calculated modal fields; and determines a parametric propagation model based on the statistical parameters of the calculated modal fields from which predictions of communications capability may be made.

  15. Validation and upgrading of physically based mathematical models

    NASA Technical Reports Server (NTRS)

    Duval, Ronald

    1992-01-01

    The validation of the results of physically-based mathematical models against experimental results was discussed. Systematic techniques are used for: (1) isolating subsets of the simulator mathematical model and comparing the response of each subset to its experimental response for the same input conditions; (2) evaluating the response error to determine whether it is the result of incorrect parameter values, incorrect structure of the model subset, or unmodeled external effects of cross coupling; and (3) modifying and upgrading the model and its parameter values to determine the most physically appropriate combination of changes.

  16. Physics-based Space Weather Forecasting in the Project for Solar-Terrestrial Environment Prediction (PSTEP) in Japan

    NASA Astrophysics Data System (ADS)

    Kusano, K.

    2016-12-01

    Project for Solar-Terrestrial Environment Prediction (PSTEP) is a Japanese nation-wide research collaboration, which was recently launched. PSTEP aims to develop a synergistic interaction between predictive and scientific studies of the solar-terrestrial environment and to establish the basis for next-generation space weather forecasting using the state-of-the-art observation systems and the physics-based models. For this project, we coordinate the four research groups, which develop (1) the integration of space weather forecast system, (2) the physics-based solar storm prediction, (3) the predictive models of magnetosphere and ionosphere dynamics, and (4) the model of solar cycle activity and its impact on climate, respectively. In this project, we will build the coordinated physics-based model to answer the fundamental questions concerning the onset of solar eruptions and the mechanism for radiation belt dynamics in the Earth's magnetosphere. In this paper, we will show the strategy of PSTEP, and discuss about the role and prospect of the physics-based space weather forecasting system being developed by PSTEP.

  17. Hunting Solomonoff's Swans: Exploring the Boundary Between Physics and Statistics in Hydrological Modeling

    NASA Astrophysics Data System (ADS)

    Nearing, G. S.

    2014-12-01

    Statistical models consistently out-perform conceptual models in the short term, however to account for a nonstationary future (or an unobserved past) scientists prefer to base predictions on unchanging and commutable properties of the universe - i.e., physics. The problem with physically-based hydrology models is, of course, that they aren't really based on physics - they are based on statistical approximations of physical interactions, and we almost uniformly lack an understanding of the entropy associated with these approximations. Thermodynamics is successful precisely because entropy statistics are computable for homogeneous (well-mixed) systems, and ergodic arguments explain the success of Newton's laws to describe systems that are fundamentally quantum in nature. Unfortunately, similar arguments do not hold for systems like watersheds that are heterogeneous at a wide range of scales. Ray Solomonoff formalized the situation in 1968 by showing that given infinite evidence, simultaneously minimizing model complexity and entropy in predictions always leads to the best possible model. The open question in hydrology is about what happens when we don't have infinite evidence - for example, when the future will not look like the past, or when one watershed does not behave like another. How do we isolate stationary and commutable components of watershed behavior? I propose that one possible answer to this dilemma lies in a formal combination of physics and statistics. In this talk I outline my recent analogue (Solomonoff's theorem was digital) of Solomonoff's idea that allows us to quantify the complexity/entropy tradeoff in a way that is intuitive to physical scientists. I show how to formally combine "physical" and statistical methods for model development in a way that allows us to derive the theoretically best possible model given any given physics approximation(s) and available observations. Finally, I apply an analogue of Solomonoff's theorem to evaluate the tradeoff between model complexity and prediction power.

  18. Soil moisture modeling review

    NASA Technical Reports Server (NTRS)

    Hildreth, W. W.

    1978-01-01

    A determination of the state of the art in soil moisture transport modeling based on physical or physiological principles was made. It was found that soil moisture models based on physical principles have been under development for more than 10 years. However, these models were shown to represent infiltration and redistribution of soil moisture quite well. Evapotranspiration has not been as adequately incorporated into the models.

  19. Physics-based deformable organisms for medical image analysis

    NASA Astrophysics Data System (ADS)

    Hamarneh, Ghassan; McIntosh, Chris

    2005-04-01

    Previously, "Deformable organisms" were introduced as a novel paradigm for medical image analysis that uses artificial life modelling concepts. Deformable organisms were designed to complement the classical bottom-up deformable models methodologies (geometrical and physical layers), with top-down intelligent deformation control mechanisms (behavioral and cognitive layers). However, a true physical layer was absent and in order to complete medical image segmentation tasks, deformable organisms relied on pure geometry-based shape deformations guided by sensory data, prior structural knowledge, and expert-generated schedules of behaviors. In this paper we introduce the use of physics-based shape deformations within the deformable organisms framework yielding additional robustness by allowing intuitive real-time user guidance and interaction when necessary. We present the results of applying our physics-based deformable organisms, with an underlying dynamic spring-mass mesh model, to segmenting and labelling the corpus callosum in 2D midsagittal magnetic resonance images.

  20. Toward Inverse Control of Physics-Based Sound Synthesis

    NASA Astrophysics Data System (ADS)

    Pfalz, A.; Berdahl, E.

    2017-05-01

    Long Short-Term Memory networks (LSTMs) can be trained to realize inverse control of physics-based sound synthesizers. Physics-based sound synthesizers simulate the laws of physics to produce output sound according to input gesture signals. When a user's gestures are measured in real time, she or he can use them to control physics-based sound synthesizers, thereby creating simulated virtual instruments. An intriguing question is how to program a computer to learn to play such physics-based models. This work demonstrates that LSTMs can be trained to accomplish this inverse control task with four physics-based sound synthesizers.

  1. Enhancing Pre-Service Physics Teachers' Perceived Self-Efficacy of Argumentation-Based Pedagogy through Modelling and Mastery Experiences

    ERIC Educational Resources Information Center

    Ogan-Bekiroglu, Feral; Aydeniz, Mehmet

    2013-01-01

    This study explored the impact of explicit instruction on argumentation-based pedagogy, coupled with modelling and hands-on learning activities on pre-service physics teachers' perceived self-efficacy to teach science through argumentation. Participants consisted of 24 pre-service physics teachers attending an established teacher education program…

  2. Can We Practically Bring Physics-based Modeling Into Operational Analytics Tools?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granderson, Jessica; Bonvini, Marco; Piette, Mary Ann

    We present that analytics software is increasingly used to improve and maintain operational efficiency in commercial buildings. Energy managers, owners, and operators are using a diversity of commercial offerings often referred to as Energy Information Systems, Fault Detection and Diagnostic (FDD) systems, or more broadly Energy Management and Information Systems, to cost-effectively enable savings on the order of ten to twenty percent. Most of these systems use data from meters and sensors, with rule-based and/or data-driven models to characterize system and building behavior. In contrast, physics-based modeling uses first-principles and engineering models (e.g., efficiency curves) to characterize system and buildingmore » behavior. Historically, these physics-based approaches have been used in the design phase of the building life cycle or in retrofit analyses. Researchers have begun exploring the benefits of integrating physics-based models with operational data analytics tools, bridging the gap between design and operations. In this paper, we detail the development and operator use of a software tool that uses hybrid data-driven and physics-based approaches to cooling plant FDD and optimization. Specifically, we describe the system architecture, models, and FDD and optimization algorithms; advantages and disadvantages with respect to purely data-driven approaches; and practical implications for scaling and replicating these techniques. Finally, we conclude with an evaluation of the future potential for such tools and future research opportunities.« less

  3. Prediction of physical workload in reduced gravity environments

    NASA Technical Reports Server (NTRS)

    Goldberg, Joseph H.

    1987-01-01

    The background, development, and application of a methodology to predict human energy expenditure and physical workload in low gravity environments, such as a Lunar or Martian base, is described. Based on a validated model to predict energy expenditures in Earth-based industrial jobs, the model relies on an elemental analysis of the proposed job. Because the job itself need not physically exist, many alternative job designs may be compared in their physical workload. The feasibility of using the model for prediction of low gravity work was evaluated by lowering body and load weights, while maintaining basal energy expenditure. Comparison of model results was made both with simulated low gravity energy expenditure studies and with reported Apollo 14 Lunar EVA expenditure. Prediction accuracy was very good for walking and for cart pulling on slopes less than 15 deg, but the model underpredicted the most difficult work conditions. This model was applied to example core sampling and facility construction jobs, as presently conceptualized for a Lunar or Martian base. Resultant energy expenditures and suggested work-rest cycles were well within the range of moderate work difficulty. Future model development requirements were also discussed.

  4. A machine-learning approach for computation of fractional flow reserve from coronary computed tomography.

    PubMed

    Itu, Lucian; Rapaka, Saikiran; Passerini, Tiziano; Georgescu, Bogdan; Schwemmer, Chris; Schoebinger, Max; Flohr, Thomas; Sharma, Puneet; Comaniciu, Dorin

    2016-07-01

    Fractional flow reserve (FFR) is a functional index quantifying the severity of coronary artery lesions and is clinically obtained using an invasive, catheter-based measurement. Recently, physics-based models have shown great promise in being able to noninvasively estimate FFR from patient-specific anatomical information, e.g., obtained from computed tomography scans of the heart and the coronary arteries. However, these models have high computational demand, limiting their clinical adoption. In this paper, we present a machine-learning-based model for predicting FFR as an alternative to physics-based approaches. The model is trained on a large database of synthetically generated coronary anatomies, where the target values are computed using the physics-based model. The trained model predicts FFR at each point along the centerline of the coronary tree, and its performance was assessed by comparing the predictions against physics-based computations and against invasively measured FFR for 87 patients and 125 lesions in total. Correlation between machine-learning and physics-based predictions was excellent (0.9994, P < 0.001), and no systematic bias was found in Bland-Altman analysis: mean difference was -0.00081 ± 0.0039. Invasive FFR ≤ 0.80 was found in 38 lesions out of 125 and was predicted by the machine-learning algorithm with a sensitivity of 81.6%, a specificity of 83.9%, and an accuracy of 83.2%. The correlation was 0.729 (P < 0.001). Compared with the physics-based computation, average execution time was reduced by more than 80 times, leading to near real-time assessment of FFR. Average execution time went down from 196.3 ± 78.5 s for the CFD model to ∼2.4 ± 0.44 s for the machine-learning model on a workstation with 3.4-GHz Intel i7 8-core processor. Copyright © 2016 the American Physiological Society.

  5. Development and evaluation of a physics-based windblown dust emission scheme implemented in the CMAQ modeling system

    EPA Science Inventory

    A new windblown dust emission treatment was incorporated in the Community Multiscale Air Quality (CMAQ) modeling system. This new model treatment has been built upon previously developed physics-based parameterization schemes from the literature. A distinct and novel feature of t...

  6. Modeling Instruction in AP Physics C: Mechanics and Electricity and Magnetism

    NASA Astrophysics Data System (ADS)

    Belcher, Nathan Tillman

    This action research study used data from multiple assessments in Mechanics and Electricity and Magnetism to determine the viability of Modeling Instruction as a pedagogy for students in AP Physics C: Mechanics and Electricity and Magnetism. Modeling Instruction is a guided-inquiry approach to teaching science in which students progress through the Modeling Cycle to develop a fully-constructed model for a scientific concept. AP Physics C: Mechanics and Electricity and Magnetism are calculus-based physics courses, approximately equivalent to first-year calculus-based physics courses at the collegiate level. Using a one-group pretest-posttest design, students were assessed in Mechanics using the Force Concept Inventory, Mechanics Baseline Test, and 2015 AP Physics C: Mechanics Practice Exam. With the same design, students were assessed in Electricity and Magnetism on the Brief Electricity and Magnetism Assessment, Electricity and Magnetism Conceptual Assessment, and 2015 AP Physics C: Electricity and Magnetism Practice Exam. In a one-shot case study design, student scores were collected from the 2017 AP Physics C: Mechanics and Electricity and Magnetism Exams. Students performed moderately well on the assessments in Mechanics and Electricity and Magnetism, demonstrating that Modeling Instruction is a viable pedagogy in AP Physics C: Electricity and Magnetism.

  7. A physics-based algorithm for real-time simulation of electrosurgery procedures in minimally invasive surgery.

    PubMed

    Lu, Zhonghua; Arikatla, Venkata S; Han, Zhongqing; Allen, Brian F; De, Suvranu

    2014-12-01

    High-frequency electricity is used in the majority of surgical interventions. However, modern computer-based training and simulation systems rely on physically unrealistic models that fail to capture the interplay of the electrical, mechanical and thermal properties of biological tissue. We present a real-time and physically realistic simulation of electrosurgery by modelling the electrical, thermal and mechanical properties as three iteratively solved finite element models. To provide subfinite-element graphical rendering of vaporized tissue, a dual-mesh dynamic triangulation algorithm based on isotherms is proposed. The block compressed row storage (BCRS) structure is shown to be critical in allowing computationally efficient changes in the tissue topology due to vaporization. We have demonstrated our physics-based electrosurgery cutting algorithm through various examples. Our matrix manipulation algorithms designed for topology changes have shown low computational cost. Our simulator offers substantially greater physical fidelity compared to previous simulators that use simple geometry-based heat characterization. Copyright © 2013 John Wiley & Sons, Ltd.

  8. Final Report for The Creation of a Physics-based Ground-effect Model, Phase 2 - Inclusion of the Effects of Wind, Stratification, and Shear into the New Ground Effect Model

    NASA Technical Reports Server (NTRS)

    Sarpkaya, Turgut

    2006-01-01

    The reduction of the separation of the leading and following aircrafts is desirable to enhance the airport capacity provided that there is a physics-based operational model applicable to all regions of the flight domain (out of ground effect, OGE; near ground effect, NGE; and in ground effect, IGE) and that the quality of the quantitative input from the measurements of the prevailing atmospheric conditions and the quality of the total airport operations regarding the safety and the sound interpretation of the prevailing conditions match the quality of the analysis and numerical simulations. In the absence of an analytical solution, the physics of the flow is best expressed by a mathematical model based on numerical simulations, field and laboratory experiments, and heuristic reasoning. This report deals with the creation of a sound physics-based real-time IGE model of the aircraft wake vortices subjected to crosswind, stratification and shear.

  9. A Stratified Acoustic Model Accounting for Phase Shifts for Underwater Acoustic Networks

    PubMed Central

    Wang, Ping; Zhang, Lin; Li, Victor O. K.

    2013-01-01

    Accurate acoustic channel models are critical for the study of underwater acoustic networks. Existing models include physics-based models and empirical approximation models. The former enjoy good accuracy, but incur heavy computational load, rendering them impractical in large networks. On the other hand, the latter are computationally inexpensive but inaccurate since they do not account for the complex effects of boundary reflection losses, the multi-path phenomenon and ray bending in the stratified ocean medium. In this paper, we propose a Stratified Acoustic Model (SAM) based on frequency-independent geometrical ray tracing, accounting for each ray's phase shift during the propagation. It is a feasible channel model for large scale underwater acoustic network simulation, allowing us to predict the transmission loss with much lower computational complexity than the traditional physics-based models. The accuracy of the model is validated via comparisons with the experimental measurements in two different oceans. Satisfactory agreements with the measurements and with other computationally intensive classical physics-based models are demonstrated. PMID:23669708

  10. A stratified acoustic model accounting for phase shifts for underwater acoustic networks.

    PubMed

    Wang, Ping; Zhang, Lin; Li, Victor O K

    2013-05-13

    Accurate acoustic channel models are critical for the study of underwater acoustic networks. Existing models include physics-based models and empirical approximation models. The former enjoy good accuracy, but incur heavy computational load, rendering them impractical in large networks. On the other hand, the latter are computationally inexpensive but inaccurate since they do not account for the complex effects of boundary reflection losses, the multi-path phenomenon and ray bending in the stratified ocean medium. In this paper, we propose a Stratified Acoustic Model (SAM) based on frequency-independent geometrical ray tracing, accounting for each ray's phase shift during the propagation. It is a feasible channel model for large scale underwater acoustic network simulation, allowing us to predict the transmission loss with much lower computational complexity than the traditional physics-based models. The accuracy of the model is validated via comparisons with the experimental measurements in two different oceans. Satisfactory agreements with the measurements and with other computationally intensive classical physics-based models are demonstrated.

  11. A Model-Based Prognostics Approach Applied to Pneumatic Valves

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew J.; Goebel, Kai

    2011-01-01

    Within the area of systems health management, the task of prognostics centers on predicting when components will fail. Model-based prognostics exploits domain knowledge of the system, its components, and how they fail by casting the underlying physical phenomena in a physics-based model that is derived from first principles. Uncertainty cannot be avoided in prediction, therefore, algorithms are employed that help in managing these uncertainties. The particle filtering algorithm has become a popular choice for model-based prognostics due to its wide applicability, ease of implementation, and support for uncertainty management. We develop a general model-based prognostics methodology within a robust probabilistic framework using particle filters. As a case study, we consider a pneumatic valve from the Space Shuttle cryogenic refueling system. We develop a detailed physics-based model of the pneumatic valve, and perform comprehensive simulation experiments to illustrate our prognostics approach and evaluate its effectiveness and robustness. The approach is demonstrated using historical pneumatic valve data from the refueling system.

  12. Physics-based signal processing algorithms for micromachined cantilever arrays

    DOEpatents

    Candy, James V; Clague, David S; Lee, Christopher L; Rudd, Robert E; Burnham, Alan K; Tringe, Joseph W

    2013-11-19

    A method of using physics-based signal processing algorithms for micromachined cantilever arrays. The methods utilize deflection of a micromachined cantilever that represents the chemical, biological, or physical element being detected. One embodiment of the method comprises the steps of modeling the deflection of the micromachined cantilever producing a deflection model, sensing the deflection of the micromachined cantilever and producing a signal representing the deflection, and comparing the signal representing the deflection with the deflection model.

  13. Comparison of Pre-Service Physics Teachers' Conceptual Understanding of Dynamics in Model-Based Scientific Inquiry and Scientific Inquiry Environments

    ERIC Educational Resources Information Center

    Arslan Buyruk, Arzu; Ogan Bekiroglu, Feral

    2018-01-01

    The focus of this study was to evaluate the impact of model-based inquiry on pre-service physics teachers' conceptual understanding of dynamics. Theoretical framework of this research was based on models-of-data theory. True-experimental design using quantitative and qualitative research methods was carried out for this research. Participants of…

  14. A measurement error model for physical activity level as measured by a questionnaire with application to the 1999-2006 NHANES questionnaire.

    PubMed

    Tooze, Janet A; Troiano, Richard P; Carroll, Raymond J; Moshfegh, Alanna J; Freedman, Laurence S

    2013-06-01

    Systematic investigations into the structure of measurement error of physical activity questionnaires are lacking. We propose a measurement error model for a physical activity questionnaire that uses physical activity level (the ratio of total energy expenditure to basal energy expenditure) to relate questionnaire-based reports of physical activity level to true physical activity levels. The 1999-2006 National Health and Nutrition Examination Survey physical activity questionnaire was administered to 433 participants aged 40-69 years in the Observing Protein and Energy Nutrition (OPEN) Study (Maryland, 1999-2000). Valid estimates of participants' total energy expenditure were also available from doubly labeled water, and basal energy expenditure was estimated from an equation; the ratio of those measures estimated true physical activity level ("truth"). We present a measurement error model that accommodates the mixture of errors that arise from assuming a classical measurement error model for doubly labeled water and a Berkson error model for the equation used to estimate basal energy expenditure. The method was then applied to the OPEN Study. Correlations between the questionnaire-based physical activity level and truth were modest (r = 0.32-0.41); attenuation factors (0.43-0.73) indicate that the use of questionnaire-based physical activity level would lead to attenuated estimates of effect size. Results suggest that sample sizes for estimating relationships between physical activity level and disease should be inflated, and that regression calibration can be used to provide measurement error-adjusted estimates of relationships between physical activity and disease.

  15. Physically-Based Models for the Reflection, Transmission and Subsurface Scattering of Light by Smooth and Rough Surfaces, with Applications to Realistic Image Synthesis

    NASA Astrophysics Data System (ADS)

    He, Xiao Dong

    This thesis studies light scattering processes off rough surfaces. Analytic models for reflection, transmission and subsurface scattering of light are developed. The results are applicable to realistic image generation in computer graphics. The investigation focuses on the basic issue of how light is scattered locally by general surfaces which are neither diffuse nor specular; Physical optics is employed to account for diffraction and interference which play a crucial role in the scattering of light for most surfaces. The thesis presents: (1) A new reflectance model; (2) A new transmittance model; (3) A new subsurface scattering model. All of these models are physically-based, depend on only physical parameters, apply to a wide range of materials and surface finishes and more importantly, provide a smooth transition from diffuse-like to specular reflection as the wavelength and incidence angle are increased or the surface roughness is decreased. The reflectance and transmittance models are based on the Kirchhoff Theory and the subsurface scattering model is based on Energy Transport Theory. They are valid only for surfaces with shallow slopes. The thesis shows that predicted reflectance distributions given by the reflectance model compare favorably with experiment. The thesis also investigates and implements fast ways of computing the reflectance and transmittance models. Furthermore, the thesis demonstrates that a high level of realistic image generation can be achieved due to the physically -correct treatment of the scattering processes by the reflectance model.

  16. Physics-Based Fragment Acceleration Modeling for Pressurized Tank Burst Risk Assessments

    NASA Technical Reports Server (NTRS)

    Manning, Ted A.; Lawrence, Scott L.

    2014-01-01

    As part of comprehensive efforts to develop physics-based risk assessment techniques for space systems at NASA, coupled computational fluid and rigid body dynamic simulations were carried out to investigate the flow mechanisms that accelerate tank fragments in bursting pressurized vessels. Simulations of several configurations were compared to analyses based on the industry-standard Baker explosion model, and were used to formulate an improved version of the model. The standard model, which neglects an external fluid, was found to agree best with simulation results only in configurations where the internal-to-external pressure ratio is very high and fragment curvature is small. The improved model introduces terms that accommodate an external fluid and better account for variations based on circumferential fragment count. Physics-based analysis was critical in increasing the model's range of applicability. The improved tank burst model can be used to produce more accurate risk assessments of space vehicle failure modes that involve high-speed debris, such as exploding propellant tanks and bursting rocket engines.

  17. An Analysis of the Educational Value of Low-Fidelity Anatomy Models as External Representations

    ERIC Educational Resources Information Center

    Chan, Lap Ki; Cheng, Maurice M. W.

    2011-01-01

    Although high-fidelity digital models of human anatomy based on actual cross-sectional images of the human body have been developed, reports on the use of physical models in anatomy teaching continue to appear. This article aims to examine the common features shared by these physical models and analyze their educational value based on the…

  18. A physically based analytical spatial air temperature and humidity model

    Treesearch

    Yang Yang; Theodore A. Endreny; David J. Nowak

    2013-01-01

    Spatial variation of urban surface air temperature and humidity influences human thermal comfort, the settling rate of atmospheric pollutants, and plant physiology and growth. Given the lack of observations, we developed a Physically based Analytical Spatial Air Temperature and Humidity (PASATH) model. The PASATH model calculates spatial solar radiation and heat...

  19. Lumped Parameter Models for Predicting Nitrogen Transport in Lower Coastal Plain Watersheds

    Treesearch

    Devendra M. Amatya; George M. Chescheir; Glen P. Fernandez; R. Wayne Skaggs; F. Birgand; J.W. Gilliam

    2003-01-01

    hl recent years physically based comprehensive disfributed watershed scale hydrologic/water quality models have been developed and applied 10 evaluate cumulative effects of land arld water management practices on receiving waters, Although fhesc complex physically based models are capable of simulating the impacts ofthese changes in large watersheds, they are often...

  20. QUANTIFYING AGGREGATE CHLORPYRIFOS EXPOSURE AND DOSE TO CHILDREN USING A PHYSICALLY-BASED TWO-STAGE MONTE CARLO PROBABILISTIC MODEL

    EPA Science Inventory

    To help address the Food Quality Protection Act of 1996, a physically-based, two-stage Monte Carlo probabilistic model has been developed to quantify and analyze aggregate exposure and dose to pesticides via multiple routes and pathways. To illustrate model capabilities and ide...

  1. Neonatal physical therapy. Part II: Practice frameworks and evidence-based practice guidelines.

    PubMed

    Sweeney, Jane K; Heriza, Carolyn B; Blanchard, Yvette; Dusing, Stacey C

    2010-01-01

    (1) To outline frameworks for neonatal physical therapy based on 3 theoretical models, (2) to describe emerging literature supporting neonatal physical therapy practice, and (3) to identify evidence-based practice recommendations. Three models are presented as a framework for neonatal practice: (1) dynamic systems theory including synactive theory and the theory of neuronal group selection, (2) the International Classification of Functioning, Disability and Health, and (3) family-centered care. Literature is summarized to support neonatal physical therapists in the areas of examination, developmental care, intervention, and parent education. Practice recommendations are offered with levels of evidence identified. Neonatal physical therapy practice has a theoretical and evidence-based structure, and evidence is emerging for selected clinical procedures. Continued research to expand the science of neonatal physical therapy is critical to elevate the evidence and support practice recommendations.

  2. Physics-Based Modeling and Measurement of High-Flux Condensation Heat Transfer

    DTIC Science & Technology

    2011-09-01

    TRANSFER (Contract No. N000140811139) by Prof. Issam Mudawar Sung-Min Kim Joseph Kim Boiling and Two-Phase Flow Laboratory School of...Final 01-10-2008 to 30-09-2011 Physics-Based Modeling and Measurement of High-Flux Condensation Heat Transfer NA N00014-08-1-1139 NA NA NA NA Mudawar ...respectively. phase change, condensation, electronics cooling, micro-channel, high-flux U U U UU 107 Mudawar , Issam 765-494-5705 Reset PHYSICS-BASED

  3. Overview of physical models of liquid entrainment in annular gas-liquid flow

    NASA Astrophysics Data System (ADS)

    Cherdantsev, Andrey V.

    2018-03-01

    A number of recent papers devoted to development of physically-based models for prediction of liquid entrainment in annular regime of two-phase flow are analyzed. In these models shearing-off the crests of disturbance waves by the gas drag force is supposed to be the physical mechanism of entrainment phenomenon. The models are based on a number of assumptions on wavy structure, including inception of disturbance waves due to Kelvin-Helmholtz instability, linear velocity profile inside liquid film and high degree of three-dimensionality of disturbance waves. Validity of the assumptions is analyzed by comparison to modern experimental observations. It was shown that nearly every assumption is in strong qualitative and quantitative disagreement with experiments, which leads to massive discrepancies between the modeled and real properties of the disturbance waves. As a result, such models over-predict the entrained fraction by several orders of magnitude. The discrepancy is usually reduced using various kinds of empirical corrections. This, combined with empiricism already included in the models, turns the models into another kind of empirical correlations rather than physically-based models.

  4. Sensitivity analysis and calibration of a dynamic physically based slope stability model

    NASA Astrophysics Data System (ADS)

    Zieher, Thomas; Rutzinger, Martin; Schneider-Muntau, Barbara; Perzl, Frank; Leidinger, David; Formayer, Herbert; Geitner, Clemens

    2017-06-01

    Physically based modelling of slope stability on a catchment scale is still a challenging task. When applying a physically based model on such a scale (1 : 10 000 to 1 : 50 000), parameters with a high impact on the model result should be calibrated to account for (i) the spatial variability of parameter values, (ii) shortcomings of the selected model, (iii) uncertainties of laboratory tests and field measurements or (iv) parameters that cannot be derived experimentally or measured in the field (e.g. calibration constants). While systematic parameter calibration is a common task in hydrological modelling, this is rarely done using physically based slope stability models. In the present study a dynamic, physically based, coupled hydrological-geomechanical slope stability model is calibrated based on a limited number of laboratory tests and a detailed multitemporal shallow landslide inventory covering two landslide-triggering rainfall events in the Laternser valley, Vorarlberg (Austria). Sensitive parameters are identified based on a local one-at-a-time sensitivity analysis. These parameters (hydraulic conductivity, specific storage, angle of internal friction for effective stress, cohesion for effective stress) are systematically sampled and calibrated for a landslide-triggering rainfall event in August 2005. The identified model ensemble, including 25 behavioural model runs with the highest portion of correctly predicted landslides and non-landslides, is then validated with another landslide-triggering rainfall event in May 1999. The identified model ensemble correctly predicts the location and the supposed triggering timing of 73.0 % of the observed landslides triggered in August 2005 and 91.5 % of the observed landslides triggered in May 1999. Results of the model ensemble driven with raised precipitation input reveal a slight increase in areas potentially affected by slope failure. At the same time, the peak run-off increases more markedly, suggesting that precipitation intensities during the investigated landslide-triggering rainfall events were already close to or above the soil's infiltration capacity.

  5. Dynamic Emulation Modelling (DEMo) of large physically-based environmental models

    NASA Astrophysics Data System (ADS)

    Galelli, S.; Castelletti, A.

    2012-12-01

    In environmental modelling large, spatially-distributed, physically-based models are widely adopted to describe the dynamics of physical, social and economic processes. Such an accurate process characterization comes, however, to a price: the computational requirements of these models are considerably high and prevent their use in any problem requiring hundreds or thousands of model runs to be satisfactory solved. Typical examples include optimal planning and management, data assimilation, inverse modelling and sensitivity analysis. An effective approach to overcome this limitation is to perform a top-down reduction of the physically-based model by identifying a simplified, computationally efficient emulator, constructed from and then used in place of the original model in highly resource-demanding tasks. The underlying idea is that not all the process details in the original model are equally important and relevant to the dynamics of the outputs of interest for the type of problem considered. Emulation modelling has been successfully applied in many environmental applications, however most of the literature considers non-dynamic emulators (e.g. metamodels, response surfaces and surrogate models), where the original dynamical model is reduced to a static map between input and the output of interest. In this study we focus on Dynamic Emulation Modelling (DEMo), a methodological approach that preserves the dynamic nature of the original physically-based model, with consequent advantages in a wide variety of problem areas. In particular, we propose a new data-driven DEMo approach that combines the many advantages of data-driven modelling in representing complex, non-linear relationships, but preserves the state-space representation typical of process-based models, which is both particularly effective in some applications (e.g. optimal management and data assimilation) and facilitates the ex-post physical interpretation of the emulator structure, thus enhancing the credibility of the model to stakeholders and decision-makers. Numerical results from the application of the approach to the reduction of 3D coupled hydrodynamic-ecological models in several real world case studies, including Marina Reservoir (Singapore) and Googong Reservoir (Australia), are illustrated.

  6. Operational Space Weather Models: Trials, Tribulations and Rewards

    NASA Astrophysics Data System (ADS)

    Schunk, R. W.; Scherliess, L.; Sojka, J. J.; Thompson, D. C.; Zhu, L.

    2009-12-01

    There are many empirical, physics-based, and data assimilation models that can probably be used for space weather applications and the models cover the entire domain from the surface of the Sun to the Earth’s surface. At Utah State University we developed two physics-based data assimilation models of the terrestrial ionosphere as part of a program called Global Assimilation of Ionospheric Measurements (GAIM). One of the data assimilation models is now in operational use at the Air Force Weather Agency (AFWA) in Omaha, Nebraska. This model is a Gauss-Markov Kalman Filter (GAIM-GM) model, and it uses a physics-based model of the ionosphere and a Kalman filter as a basis for assimilating a diverse set of real-time (or near real-time) measurements. The physics-based model is the Ionosphere Forecast Model (IFM), which is global and covers the E-region, F-region, and topside ionosphere from 90 to 1400 km. It takes account of five ion species (NO+, O2+, N2+, O+, H+), but the main output of the model is a 3-dimensional electron density distribution at user specified times. The second data assimilation model uses a physics-based Ionosphere-Plasmasphere Model (IPM) and an ensemble Kalman filter technique as a basis for assimilating a diverse set of real-time (or near real-time) measurements. This Full Physics model (GAIM-FP) is global, covers the altitude range from 90 to 30,000 km, includes six ions (NO+, O2+, N2+, O+, H+, He+), and calculates the self-consistent ionospheric drivers (electric fields and neutral winds). The GAIM-FP model is scheduled for delivery in 2012. Both of these GAIM models assimilate bottom-side Ne profiles from a variable number of ionosondes, slant TEC from a variable number of ground GPS/TEC stations, in situ Ne from four DMSP satellites, line-of-sight UV emissions measured by satellites, and occultation data. Quality control algorithms for all of the data types are provided as an integral part of the GAIM models and these models take account of latent data (up to 3 hours). The trials, tribulations and rewards of constructing and maintaining operational data assimilation models will be discussed.

  7. Tactical Games Model and Its Effects on Student Physical Activity and Gameplay Performance in Secondary Physical Education

    ERIC Educational Resources Information Center

    Hodges, Michael; Wicke, Jason; Flores-Marti, Ismael

    2018-01-01

    Many have examined game-based instructional models, though few have examined the effects of the Tactical Games Model (TGM) on secondary-aged students. Therefore, this study examined the effects TGM has on secondary students' physical activity (PA) and gameplay performance (GPP) in three secondary schools. Physical education teachers (N = 3) were…

  8. The Goddard Snow Radiance Assimilation Project: An Integrated Snow Radiance and Snow Physics Modeling Framework for Snow/cold Land Surface Modeling

    NASA Technical Reports Server (NTRS)

    Kim, E.; Tedesco, M.; Reichle, R.; Choudhury, B.; Peters-Lidard C.; Foster, J.; Hall, D.; Riggs, G.

    2006-01-01

    Microwave-based retrievals of snow parameters from satellite observations have a long heritage and have so far been generated primarily by regression-based empirical "inversion" methods based on snapshots in time. Direct assimilation of microwave radiance into physical land surface models can be used to avoid errors associated with such retrieval/inversion methods, instead utilizing more straightforward forward models and temporal information. This approach has been used for years for atmospheric parameters by the operational weather forecasting community with great success. Recent developments in forward radiative transfer modeling, physical land surface modeling, and land data assimilation are converging to allow the assembly of an integrated framework for snow/cold lands modeling and radiance assimilation. The objective of the Goddard snow radiance assimilation project is to develop such a framework and explore its capabilities. The key elements of this framework include: a forward radiative transfer model (FRTM) for snow, a snowpack physical model, a land surface water/energy cycle model, and a data assimilation scheme. In fact, multiple models are available for each element enabling optimization to match the needs of a particular study. Together these form a modular and flexible framework for self-consistent, physically-based remote sensing and water/energy cycle studies. In this paper we will describe the elements and the integration plan. All modules will operate within the framework of the Land Information System (LIS), a land surface modeling framework with data assimilation capabilities running on a parallel-node computing cluster. Capabilities for assimilation of snow retrieval products are already under development for LIS. We will describe plans to add radiance-based assimilation capabilities. Plans for validation activities using field measurements will also be discussed.

  9. A new method of search design of refrigerating systems containing a liquid and gaseous working medium based on the graph model of the physical operating principle

    NASA Astrophysics Data System (ADS)

    Yakovlev, A. A.; Sorokin, V. S.; Mishustina, S. N.; Proidakova, N. V.; Postupaeva, S. G.

    2017-01-01

    The article describes a new method of search design of refrigerating systems, the basis of which is represented by a graph model of the physical operating principle based on thermodynamical description of physical processes. The mathematical model of the physical operating principle has been substantiated, and the basic abstract theorems relatively semantic load applied to nodes and edges of the graph have been represented. The necessity and the physical operating principle, sufficient for the given model and intended for the considered device class, were demonstrated by the example of a vapour-compression refrigerating plant. The example of obtaining a multitude of engineering solutions of a vapour-compression refrigerating plant has been considered.

  10. Best Practices in Physics-Based Fault Rupture Models for Seismic Hazard Assessment of Nuclear Installations

    NASA Astrophysics Data System (ADS)

    Dalguer, Luis A.; Fukushima, Yoshimitsu; Irikura, Kojiro; Wu, Changjiang

    2017-09-01

    Inspired by the first workshop on Best Practices in Physics-Based Fault Rupture Models for Seismic Hazard Assessment of Nuclear Installations (BestPSHANI) conducted by the International Atomic Energy Agency (IAEA) on 18-20 November, 2015 in Vienna (http://www-pub.iaea.org/iaeameetings/50896/BestPSHANI), this PAGEOPH topical volume collects several extended articles from this workshop as well as several new contributions. A total of 17 papers have been selected on topics ranging from the seismological aspects of earthquake cycle simulations for source-scaling evaluation, seismic source characterization, source inversion and ground motion modeling (based on finite fault rupture using dynamic, kinematic, stochastic and empirical Green's functions approaches) to the engineering application of simulated ground motion for the analysis of seismic response of structures. These contributions include applications to real earthquakes and description of current practice to assess seismic hazard in terms of nuclear safety in low seismicity areas, as well as proposals for physics-based hazard assessment for critical structures near large earthquakes. Collectively, the papers of this volume highlight the usefulness of physics-based models to evaluate and understand the physical causes of observed and empirical data, as well as to predict ground motion beyond the range of recorded data. Relevant importance is given on the validation and verification of the models by comparing synthetic results with observed data and empirical models.

  11. Tinamit: Making coupled system dynamics models accessible to stakeholders

    NASA Astrophysics Data System (ADS)

    Malard, Julien; Inam Baig, Azhar; Rojas Díaz, Marcela; Hassanzadeh, Elmira; Adamowski, Jan; Tuy, Héctor; Melgar-Quiñonez, Hugo

    2017-04-01

    Model coupling is increasingly used as a method of combining the best of two models when representing socio-environmental systems, though barriers to successful model adoption by stakeholders are particularly present with the use of coupled models, due to their high complexity and typically low implementation flexibility. Coupled system dynamics - physically-based modelling is a promising method to improve stakeholder participation in environmental modelling while retaining a high level of complexity for physical process representation, as the system dynamics components are readily understandable and can be built by stakeholders themselves. However, this method is not without limitations in practice, including 1) inflexible and complicated coupling methods, 2) difficult model maintenance after the end of the project, and 3) a wide variety of end-user cultures and languages. We have developed the open-source Python-language software tool Tinamit to overcome some of these limitations to the adoption of stakeholder-based coupled system dynamics - physically-based modelling. The software is unique in 1) its inclusion of both a graphical user interface (GUI) and a library of available commands (API) that allow users with little or no coding abilities to rapidly, effectively, and flexibly couple models, 2) its multilingual support for the GUI, allowing users to couple models in their preferred language (and to add new languages as necessary for their community work), and 3) its modular structure allowing for very easy model coupling and modification without the direct use of code, and to which programming-savvy users can easily add support for new types of physically-based models. We discuss how the use of Tinamit for model coupling can greatly increase the accessibility of coupled models to stakeholders, using an example of a stakeholder-built system dynamics model of soil salinity issues in Pakistan coupled with the physically-based soil salinity and water flow model SAHYSMOD. Different socioeconomic and environmental policies for soil salinity remediation are tested within the coupled model, allowing for the identification of the most efficient actions from an environmental and a farmer economy standpoint while taking into account the complex feedbacks between socioeconomics and the physical environment.

  12. Validating an operational physical method to compute surface radiation from geostationary satellites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sengupta, Manajit; Dhere, Neelkanth G.; Wohlgemuth, John H.

    We developed models to compute global horizontal irradiance (GHI) and direct normal irradiance (DNI) over the last three decades. These models can be classified as empirical or physical based on the approach. Empirical models relate ground-based observations with satellite measurements and use these relations to compute surface radiation. Physical models consider the physics behind the radiation received at the satellite and create retrievals to estimate surface radiation. Furthermore, while empirical methods have been traditionally used for computing surface radiation for the solar energy industry, the advent of faster computing has made operational physical models viable. The Global Solar Insolation Projectmore » (GSIP) is a physical model that computes DNI and GHI using the visible and infrared channel measurements from a weather satellite. GSIP uses a two-stage scheme that first retrieves cloud properties and uses those properties in a radiative transfer model to calculate GHI and DNI. Developed for polar orbiting satellites, GSIP has been adapted to NOAA's Geostationary Operation Environmental Satellite series and can run operationally at high spatial resolutions. Our method holds the possibility of creating high quality datasets of GHI and DNI for use by the solar energy industry. We present an outline of the methodology and results from running the model as well as a validation study using ground-based instruments.« less

  13. Pre-Service Physics Teachers' Knowledge of Models and Perceptions of Modelling

    ERIC Educational Resources Information Center

    Ogan-Bekiroglu, Feral

    2006-01-01

    One of the purposes of this study was to examine the differences between knowledge of pre-service physics teachers who experienced model-based teaching in pre-service education and those who did not. Moreover, it was aimed to determine pre-service physics teachers' perceptions of modelling. Posttest-only control group experimental design was used…

  14. Physics Model-Based Scatter Correction in Multi-Source Interior Computed Tomography.

    PubMed

    Gong, Hao; Li, Bin; Jia, Xun; Cao, Guohua

    2018-02-01

    Multi-source interior computed tomography (CT) has a great potential to provide ultra-fast and organ-oriented imaging at low radiation dose. However, X-ray cross scattering from multiple simultaneously activated X-ray imaging chains compromises imaging quality. Previously, we published two hardware-based scatter correction methods for multi-source interior CT. Here, we propose a software-based scatter correction method, with the benefit of no need for hardware modifications. The new method is based on a physics model and an iterative framework. The physics model was derived analytically, and was used to calculate X-ray scattering signals in both forward direction and cross directions in multi-source interior CT. The physics model was integrated to an iterative scatter correction framework to reduce scatter artifacts. The method was applied to phantom data from both Monte Carlo simulations and physical experimentation that were designed to emulate the image acquisition in a multi-source interior CT architecture recently proposed by our team. The proposed scatter correction method reduced scatter artifacts significantly, even with only one iteration. Within a few iterations, the reconstructed images fast converged toward the "scatter-free" reference images. After applying the scatter correction method, the maximum CT number error at the region-of-interests (ROIs) was reduced to 46 HU in numerical phantom dataset and 48 HU in physical phantom dataset respectively, and the contrast-noise-ratio at those ROIs increased by up to 44.3% and up to 19.7%, respectively. The proposed physics model-based iterative scatter correction method could be useful for scatter correction in dual-source or multi-source CT.

  15. Soil erosion model predictions using parent material/soil texture-based parameters compared to using site-specific parameters

    Treesearch

    R. B. Foltz; W. J. Elliot; N. S. Wagenbrenner

    2011-01-01

    Forested areas disturbed by access roads produce large amounts of sediment. One method to predict erosion and, hence, manage forest roads is the use of physically based soil erosion models. A perceived advantage of a physically based model is that it can be parameterized at one location and applied at another location with similar soil texture or geological parent...

  16. Probabilistic short-term forecasting of eruption rate at Kīlauea Volcano using a physics-based model

    NASA Astrophysics Data System (ADS)

    Anderson, K. R.

    2016-12-01

    Deterministic models of volcanic eruptions yield predictions of future activity conditioned on uncertainty in the current state of the system. Physics-based eruption models are well-suited for deterministic forecasting as they can relate magma physics with a wide range of observations. Yet, physics-based eruption forecasting is strongly limited by an inadequate understanding of volcanic systems, and the need for eruption models to be computationally tractable. At Kīlauea Volcano, Hawaii, episodic depressurization-pressurization cycles of the magma system generate correlated, quasi-exponential variations in ground deformation and surface height of the active summit lava lake. Deflations are associated with reductions in eruption rate, or even brief eruptive pauses, and thus partly control lava flow advance rates and associated hazard. Because of the relatively well-understood nature of Kīlauea's shallow magma plumbing system, and because more than 600 of these events have been recorded to date, they offer a unique opportunity to refine a physics-based effusive eruption forecasting approach and apply it to lava eruption rates over short (hours to days) time periods. A simple physical model of the volcano ascribes observed data to temporary reductions in magma supply to an elastic reservoir filled with compressible magma. This model can be used to predict the evolution of an ongoing event, but because the mechanism that triggers events is unknown, event durations are modeled stochastically from previous observations. A Bayesian approach incorporates diverse data sets and prior information to simultaneously estimate uncertain model parameters and future states of the system. Forecasts take the form of probability distributions for eruption rate or cumulative erupted volume at some future time. Results demonstrate the significant uncertainties that still remain even for short-term eruption forecasting at a well-monitored volcano - but also the value of a physics-based, mixed deterministic-probabilistic eruption forecasting approach in reducing and quantifying these uncertainties.

  17. The effectiveness of collaborative problem based physics learning (CPBPL) model to improve student’s self-confidence on physics learning

    NASA Astrophysics Data System (ADS)

    Prahani, B. K.; Suprapto, N.; Suliyanah; Lestari, N. A.; Jauhariyah, M. N. R.; Admoko, S.; Wahyuni, S.

    2018-03-01

    In the previous research, Collaborative Problem Based Physic Learning (CPBPL) model has been developed to improve student’s science process skills, collaborative problem solving, and self-confidence on physics learning. This research is aimed to analyze the effectiveness of CPBPL model towards the improvement of student’s self-confidence on physics learning. This research implemented quasi experimental design on 140 senior high school students who were divided into 4 groups. Data collection was conducted through questionnaire, observation, and interview. Self-confidence measurement was conducted through Self-Confidence Evaluation Sheet (SCES). The data was analyzed using Wilcoxon test, n-gain, and Kruskal Wallis test. Result shows that: (1) There is a significant score improvement on student’s self-confidence on physics learning (α=5%), (2) n-gain value student’s self-confidence on physics learning is high, and (3) n-gain average student’s self-confidence on physics learning was consistent throughout all groups. It can be concluded that CPBPL model is effective to improve student’s self-confidence on physics learning.

  18. Modeling the Water Balloon Slingshot

    NASA Astrophysics Data System (ADS)

    Bousquet, Benjamin D.; Figura, Charles C.

    2013-01-01

    In the introductory physics courses at Wartburg College, we have been working to create a lab experience focused on the scientific process itself rather than verification of physical laws presented in the classroom or textbook. To this end, we have developed a number of open-ended modeling exercises suitable for a variety of learning environments, from non-science major classes to algebra-based and calculus-based introductory physics classes.

  19. Workshop Physics Activity Guide, Module 4: Electricity and Magnetism

    NASA Astrophysics Data System (ADS)

    Laws, Priscilla W.

    2004-05-01

    The Workshop Physics Activity Guide is a set of student workbooks designed to serve as the foundation for a two-semester calculus-based introductory physics course. It consists of 28 units that interweave text materials with activities that include prediction, qualitative observation, explanation, equation derivation, mathematical modeling, quantitative experiments, and problem solving. Students use a powerful set of computer tools to record, display, and analyze data, as well as to develop mathematical models of physical phenomena. The design of many of the activities is based on the outcomes of physics education research. The Workshop Physics Activity Guide is supported by an Instructor's Website that: (1) describes the history and philosophy of the Workshop Physics Project; (2) provides advice on how to integrate the Guide into a variety of educational settings; (3) provides information on computer tools (hardware and software) and apparatus; and (4) includes suggested homework assignments for each unit. Log on to the Workshop Physics Project website at http://physics.dickinson.edu/ Workshop Physics is a component of the Physics Suite--a collection of materials created by a group of educational reformers known as the Activity Based Physics Group. The Physics Suite contains a broad array of curricular materials that are based on physics education research, including:

      Understanding Physics, by Cummings, Laws, Redish and Cooney (an introductory textbook based on the best-selling text by Halliday/Resnick/Walker) RealTime Physics Laboratory Modules Physics by Inquiry (intended for use in a workshop setting) Interactive Lecture Demonstration Tutorials in Introductory Physics Activity Based Tutorials (designed primarily for use in recitations)

    • A novel medical image data-based multi-physics simulation platform for computational life sciences.

      PubMed

      Neufeld, Esra; Szczerba, Dominik; Chavannes, Nicolas; Kuster, Niels

      2013-04-06

      Simulating and modelling complex biological systems in computational life sciences requires specialized software tools that can perform medical image data-based modelling, jointly visualize the data and computational results, and handle large, complex, realistic and often noisy anatomical models. The required novel solvers must provide the power to model the physics, biology and physiology of living tissue within the full complexity of the human anatomy (e.g. neuronal activity, perfusion and ultrasound propagation). A multi-physics simulation platform satisfying these requirements has been developed for applications including device development and optimization, safety assessment, basic research, and treatment planning. This simulation platform consists of detailed, parametrized anatomical models, a segmentation and meshing tool, a wide range of solvers and optimizers, a framework for the rapid development of specialized and parallelized finite element method solvers, a visualization toolkit-based visualization engine, a Python scripting interface for customized applications, a coupling framework, and more. Core components are cross-platform compatible and use open formats. Several examples of applications are presented: hyperthermia cancer treatment planning, tumour growth modelling, evaluating the magneto-haemodynamic effect as a biomarker and physics-based morphing of anatomical models.

  1. Integrating 3D geological information with a national physically-based hydrological modelling system

    NASA Astrophysics Data System (ADS)

    Lewis, Elizabeth; Parkin, Geoff; Kessler, Holger; Whiteman, Mark

    2016-04-01

    Robust numerical models are an essential tool for informing flood and water management and policy around the world. Physically-based hydrological models have traditionally not been used for such applications due to prohibitively large data, time and computational resource requirements. Given recent advances in computing power and data availability, a robust, physically-based hydrological modelling system for Great Britain using the SHETRAN model and national datasets has been created. Such a model has several advantages over less complex systems. Firstly, compared with conceptual models, a national physically-based model is more readily applicable to ungauged catchments, in which hydrological predictions are also required. Secondly, the results of a physically-based system may be more robust under changing conditions such as climate and land cover, as physical processes and relationships are explicitly accounted for. Finally, a fully integrated surface and subsurface model such as SHETRAN offers a wider range of applications compared with simpler schemes, such as assessments of groundwater resources, sediment and nutrient transport and flooding from multiple sources. As such, SHETRAN provides a robust means of simulating numerous terrestrial system processes which will add physical realism when coupled to the JULES land surface model. 306 catchments spanning Great Britain have been modelled using this system. The standard configuration of this system performs satisfactorily (NSE > 0.5) for 72% of catchments and well (NSE > 0.7) for 48%. Many of the remaining 28% of catchments that performed relatively poorly (NSE < 0.5) are located in the chalk in the south east of England. As such, the British Geological Survey 3D geology model for Great Britain (GB3D) has been incorporated, for the first time in any hydrological model, to pave the way for improvements to be made to simulations of catchments with important groundwater regimes. This coupling has involved development of software to allow for easy incorporation of geological information into SHETRAN for any model setup. The addition of more realistic subsurface representation following this approach is shown to greatly improve model performance in areas dominated by groundwater processes. The resulting modelling system has great potential to be used as a resource at national, regional and local scales in an array of different applications, including climate change impact assessments, land cover change studies and integrated assessments of groundwater and surface water resources.

  2. Teaching Personal and Social Responsibility Model-Based Programmes in Physical Education: A Systematic Review

    ERIC Educational Resources Information Center

    Pozo, Pablo; Grao-Cruces, Alberto; Pérez-Ordás, Raquel

    2018-01-01

    The purpose of this study was to conduct a review of research on the Teaching Personal and Social Responsibility model-based programme within physical education. Papers selected for analysis were found through searches of Web of Science, SportDiscus (EBSCO), SCOPUS, and ERIC (ProQuest) databases. The keywords "responsibility model" and…

  3. Evaluating crown fire rate of spread predictions from physics-based models

    Treesearch

    C. M. Hoffman; J. Ziegler; J. Canfield; R. R. Linn; W. Mell; C. H. Sieg; F. Pimont

    2015-01-01

    Modeling the behavior of crown fires is challenging due to the complex set of coupled processes that drive the characteristics of a spreading wildfire and the large range of spatial and temporal scales over which these processes occur. Detailed physics-based modeling approaches such as FIRETEC and the Wildland Urban Interface Fire Dynamics Simulator (WFDS) simulate...

  4. Improved Characters and Student Learning Outcomes through Development of Character Education Based General Physics Learning Model

    ERIC Educational Resources Information Center

    Derlina; Sabani; Mihardi, Satria

    2015-01-01

    Education Research in Indonesia has begun to lead to the development of character education and is no longer fixated on the outcomes of cognitive learning. This study purposed to produce character education based general physics learning model (CEBGP Learning Model) and with valid, effective and practical peripheral devices to improve character…

  5. Evaluation of SCS-CN method using a fully distributed physically based coupled surface-subsurface flow model

    NASA Astrophysics Data System (ADS)

    Shokri, Ali

    2017-04-01

    The hydrological cycle contains a wide range of linked surface and subsurface flow processes. In spite of natural connections between surface water and groundwater, historically, these processes have been studied separately. The current trend in hydrological distributed physically based model development is to combine distributed surface water models with distributed subsurface flow models. This combination results in a better estimation of the temporal and spatial variability of the interaction between surface and subsurface flow. On the other hand, simple lumped models such as the Soil Conservation Service Curve Number (SCS-CN) are still quite common because of their simplicity. In spite of the popularity of the SCS-CN method, there have always been concerns about the ambiguity of the SCS-CN method in explaining physical mechanism of rainfall-runoff processes. The aim of this study is to minimize these ambiguity by establishing a method to find an equivalence of the SCS-CN solution to the DrainFlow model, which is a fully distributed physically based coupled surface-subsurface flow model. In this paper, two hypothetical v-catchment tests are designed and the direct runoff from a storm event are calculated by both SCS-CN and DrainFlow models. To find a comparable solution to runoff prediction through the SCS-CN and DrainFlow, the variance between runoff predictions by the two models are minimized by changing Curve Number (CN) and initial abstraction (Ia) values. Results of this study have led to a set of lumped model parameters (CN and Ia) for each catchment that is comparable to a set of physically based parameters including hydraulic conductivity, Manning roughness coefficient, ground surface slope, and specific storage. Considering the lack of physical interpretation in CN and Ia is often argued as a weakness of SCS-CN method, the novel method in this paper gives a physical explanation to CN and Ia.

  6. Rock.XML - Towards a library of rock physics models

    NASA Astrophysics Data System (ADS)

    Jensen, Erling Hugo; Hauge, Ragnar; Ulvmoen, Marit; Johansen, Tor Arne; Drottning, Åsmund

    2016-08-01

    Rock physics modelling provides tools for correlating physical properties of rocks and their constituents to the geophysical observations we measure on a larger scale. Many different theoretical and empirical models exist, to cover the range of different types of rocks. However, upon reviewing these, we see that they are all built around a few main concepts. Based on this observation, we propose a format for digitally storing the specifications for rock physics models which we have named Rock.XML. It does not only contain data about the various constituents, but also the theories and how they are used to combine these building blocks to make a representative model for a particular rock. The format is based on the Extensible Markup Language XML, making it flexible enough to handle complex models as well as scalable towards extending it with new theories and models. This technology has great advantages as far as documenting and exchanging models in an unambiguous way between people and between software. Rock.XML can become a platform for creating a library of rock physics models; making them more accessible to everyone.

  7. A Physics-Based Vibrotactile Feedback Library for Collision Events.

    PubMed

    Park, Gunhyuk; Choi, Seungmoon

    2017-01-01

    We present PhysVib: a software solution on the mobile platform extending an open-source physics engine in a multi-rate rendering architecture for automatic vibrotactile feedback upon collision events. PhysVib runs concurrently with a physics engine at a low update rate and generates vibrotactile feedback commands at a high update rate based on the simulation results of the physics engine using an exponentially-decaying sinusoidal model. We demonstrate through a user study that this vibration model is more appropriate to our purpose in terms of perceptual quality than more complex models based on sound synthesis. We also evaluated the perceptual performance of PhysVib by comparing eight vibrotactile rendering methods. Experimental results suggested that PhysVib enables more realistic vibrotactile feedback than the other methods as to perceived similarity to the visual events. PhysVib is an effective solution for providing physically plausible vibrotactile responses while reducing application development time to great extent.

  8. Standard solar model

    NASA Technical Reports Server (NTRS)

    Guenther, D. B.; Demarque, P.; Kim, Y.-C.; Pinsonneault, M. H.

    1992-01-01

    A set of solar models have been constructed, each based on a single modification to the physics of a reference solar model. In addition, a model combining several of the improvements has been calculated to provide a best solar model. Improvements were made to the nuclear reaction rates, the equation of state, the opacities, and the treatment of the atmosphere. The impact on both the structure and the frequencies of the low-l p-modes of the model to these improvements are discussed. It is found that the combined solar model, which is based on the best physics available (and does not contain any ad hoc assumptions), reproduces the observed oscillation spectrum (for low-l) within the errors associated with the uncertainties in the model physics (primarily opacities).

  9. Effect of Payment Model on Patient Outcomes in Outpatient Physical Therapy.

    PubMed

    Charles, Derek; Boyd, Sylvester; Heckert, Logan; Lake, Austin; Petersen, Kevin

    2018-01-01

    Although the literature has well recognized the effectiveness of physical therapy for treating musculoskeletal injuries, reimbursement is evolving towards value-based or alternative payment models and away from procedure orientated, fee-for-service in the outpatient setting. Alternative models include cased-based clinics, pay-for-performance, out-of-network services, accountable care organizations, and concierge practices. There is the possibility that alternative payment models could produce different and even superior patient outcomes. Physical therapists should be alert to this possibility, and research is warranted in this area to conclude if outcomes in patient care are related to method of reimbursement.

  10. Physical Modeling of the Polyfrequency Filter-Compensating Device Based on the Capacitor-Coil

    NASA Astrophysics Data System (ADS)

    Butyrin, P. A.; Gusev, G. G.; Mikheev, D. V.; Shakirzianov, F. N.

    2017-12-01

    The paper presents the results of physical modeling and experimental study of the frequency characteristics of the polyfrequency filter-compensating device (PFCD) based on a capacitor-coil. The amplitude- frequency and phase-frequency characteristics of the physical PFCD model were constructed and its equivalent parameters were identified. The feasibility of a PFCD in the form of a single technical device with high technical and economic characteristics was experimentally proven. In the paper, recommendations for practical applications of the capacitor-coil-based PFCD are made and the advantages of the device over known standard passive filter-compensating devices are evaluated.

  11. Physical principles for DNA tile self-assembly.

    PubMed

    Evans, Constantine G; Winfree, Erik

    2017-06-19

    DNA tiles provide a promising technique for assembling structures with nanoscale resolution through self-assembly by basic interactions rather than top-down assembly of individual structures. Tile systems can be programmed to grow based on logical rules, allowing for a small number of tile types to assemble large, complex assemblies that can retain nanoscale resolution. Such algorithmic systems can even assemble different structures using the same tiles, based on inputs that seed the growth. While programming and theoretical analysis of tile self-assembly often makes use of abstract logical models of growth, experimentally implemented systems are governed by nanoscale physical processes that can lead to very different behavior, more accurately modeled by taking into account the thermodynamics and kinetics of tile attachment and detachment in solution. This review discusses the relationships between more abstract and more physically realistic tile assembly models. A central concern is how consideration of model differences enables the design of tile systems that robustly exhibit the desired abstract behavior in realistic physical models and in experimental implementations. Conversely, we identify situations where self-assembly in abstract models can not be well-approximated by physically realistic models, putting constraints on physical relevance of the abstract models. To facilitate the discussion, we introduce a unified model of tile self-assembly that clarifies the relationships between several well-studied models in the literature. Throughout, we highlight open questions regarding the physical principles for DNA tile self-assembly.

  12. Orbit-Attitude Changes of Objects in Near Earth Space Induced by Natural Charging

    DTIC Science & Technology

    2017-05-02

    depends upon Earth’s magnetosphere. Typically, magneto-sphere models can be grouped under two classes: statistical and physics -based. The Physics ...models were primarily physics -based due to unavailability of sufficient space-data, but over the last three decades, with the availability of huge...Attitude Determination and Control,” Astrophysics and Space Sci- ence Library, Vol. 73, D. Reidel Publishing Company, London, 1978 [17] Fairfield

  13. Neonatal physical therapy. Part I: clinical competencies and neonatal intensive care unit clinical training models.

    PubMed

    Sweeney, Jane K; Heriza, Carolyn B; Blanchard, Yvette

    2009-01-01

    To describe clinical training models, delineate clinical competencies, and outline a clinical decision-making algorithm for neonatal physical therapy. In these updated practice guidelines, advanced clinical training models, including precepted practicum and residency or fellowship training, are presented to guide practitioners in organizing mentored, competency-based preparation for neonatal care. Clinical competencies in neonatal physical therapy are outlined with advanced clinical proficiencies and knowledge areas specific to each role. An algorithm for decision making on examination, evaluation, intervention, and re-examination processes provides a framework for clinical reasoning. Because of advanced-level competency requirements and the continuous examination, evaluation, and modification of procedures during each patient contact, the intensive care unit is a restricted practice area for physical therapist assistants, physical therapist generalists, and physical therapy students. Accountable, ethical physical therapy for neonates requires advanced, competency-based training with a preceptor in the pediatric subspecialty of neonatology.

  14. Comparison of a Conceptual Groundwater Model and Physically Based Groundwater Mode

    NASA Astrophysics Data System (ADS)

    Yang, J.; Zammit, C.; Griffiths, J.; Moore, C.; Woods, R. A.

    2017-12-01

    Groundwater is a vital resource for human activities including agricultural practice and urban water demand. Hydrologic modelling is an important way to study groundwater recharge, movement and discharge, and its response to both human activity and climate change. To understand the groundwater hydrologic processes nationally in New Zealand, we have developed a conceptually based groundwater flow model, which is fully integrated into a national surface-water model (TopNet), and able to simulate groundwater recharge, movement, and interaction with surface water. To demonstrate the capability of this groundwater model (TopNet-GW), we applied the model to an irrigated area with water shortage and pollution problems in the upper Ruamahanga catchment in Great Wellington Region, New Zealand, and compared its performance with a physically-based groundwater model (MODFLOW). The comparison includes river flow at flow gauging sites, and interaction between groundwater and river. Results showed that the TopNet-GW produced similar flow and groundwater interaction patterns as the MODFLOW model, but took less computation time. This shows the conceptually-based groundwater model has the potential to simulate national groundwater process, and could be used as a surrogate for the more physically based model.

  15. Alternative Model for Administration and Analysis of Research-Based Assessments

    ERIC Educational Resources Information Center

    Wilcox, Bethany R.; Zwickl, Benjamin M.; Hobbs, Robert D.; Aiken, John M.; Welch, Nathan M.; Lewandowski, H. J.

    2016-01-01

    Research-based assessments represent a valuable tool for both instructors and researchers interested in improving undergraduate physics education. However, the historical model for disseminating and propagating conceptual and attitudinal assessments developed by the physics education research (PER) community has not resulted in widespread adoption…

  16. Self-consistent core-pedestal transport simulations with neural network accelerated models

    DOE PAGES

    Meneghini, Orso; Smith, Sterling P.; Snyder, Philip B.; ...

    2017-07-12

    Fusion whole device modeling simulations require comprehensive models that are simultaneously physically accurate, fast, robust, and predictive. In this paper we describe the development of two neural-network (NN) based models as a means to perform a snon-linear multivariate regression of theory-based models for the core turbulent transport fluxes, and the pedestal structure. Specifically, we find that a NN-based approach can be used to consistently reproduce the results of the TGLF and EPED1 theory-based models over a broad range of plasma regimes, and with a computational speedup of several orders of magnitudes. These models are then integrated into a predictive workflowmore » that allows prediction with self-consistent core-pedestal coupling of the kinetic profiles within the last closed flux surface of the plasma. Finally, the NN paradigm is capable of breaking the speed-accuracy trade-off that is expected of traditional numerical physics models, and can provide the missing link towards self-consistent coupled core-pedestal whole device modeling simulations that are physically accurate and yet take only seconds to run.« less

  17. Self-consistent core-pedestal transport simulations with neural network accelerated models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meneghini, Orso; Smith, Sterling P.; Snyder, Philip B.

    Fusion whole device modeling simulations require comprehensive models that are simultaneously physically accurate, fast, robust, and predictive. In this paper we describe the development of two neural-network (NN) based models as a means to perform a snon-linear multivariate regression of theory-based models for the core turbulent transport fluxes, and the pedestal structure. Specifically, we find that a NN-based approach can be used to consistently reproduce the results of the TGLF and EPED1 theory-based models over a broad range of plasma regimes, and with a computational speedup of several orders of magnitudes. These models are then integrated into a predictive workflowmore » that allows prediction with self-consistent core-pedestal coupling of the kinetic profiles within the last closed flux surface of the plasma. Finally, the NN paradigm is capable of breaking the speed-accuracy trade-off that is expected of traditional numerical physics models, and can provide the missing link towards self-consistent coupled core-pedestal whole device modeling simulations that are physically accurate and yet take only seconds to run.« less

  18. Self-consistent core-pedestal transport simulations with neural network accelerated models

    NASA Astrophysics Data System (ADS)

    Meneghini, O.; Smith, S. P.; Snyder, P. B.; Staebler, G. M.; Candy, J.; Belli, E.; Lao, L.; Kostuk, M.; Luce, T.; Luda, T.; Park, J. M.; Poli, F.

    2017-08-01

    Fusion whole device modeling simulations require comprehensive models that are simultaneously physically accurate, fast, robust, and predictive. In this paper we describe the development of two neural-network (NN) based models as a means to perform a snon-linear multivariate regression of theory-based models for the core turbulent transport fluxes, and the pedestal structure. Specifically, we find that a NN-based approach can be used to consistently reproduce the results of the TGLF and EPED1 theory-based models over a broad range of plasma regimes, and with a computational speedup of several orders of magnitudes. These models are then integrated into a predictive workflow that allows prediction with self-consistent core-pedestal coupling of the kinetic profiles within the last closed flux surface of the plasma. The NN paradigm is capable of breaking the speed-accuracy trade-off that is expected of traditional numerical physics models, and can provide the missing link towards self-consistent coupled core-pedestal whole device modeling simulations that are physically accurate and yet take only seconds to run.

  19. Next-Generation NATO Reference Mobility Model (NRMM) Development (Developpement de la nouvella generation du modele de mobilite de reference de l’OTAN (NRMM))

    DTIC Science & Technology

    2018-01-01

    Profile Database E-17 Attachment 2: NRMM Data Input Requirements E-25 Attachment 3: General Physics -Based Model Data Input Requirements E-28...E-15 Figure E-11 Examples of Unique Surface Types E-20 Figure E-12 Correlating Physical Testing with Simulation E-21 Figure E-13 Simplified Tire...Table 10-8 Scoring Values 10-19 Table 10-9 Accuracy – Physics -Based 10-20 Table 10-10 Accuracy – Validation Through Measurement 10-22 Table 10-11

  20. Workshop Physics Activity Guide, Module 2: Mechanics II, Momentum, Energy, Rotational and Harmonic Motion, and Chaos (Units 8 - 15)

    NASA Astrophysics Data System (ADS)

    Laws, Priscilla W.

    2004-05-01

    The Workshop Physics Activity Guide is a set of student workbooks designed to serve as the foundation for a two-semester calculus-based introductory physics course. It consists of 28 units that interweave text materials with activities that include prediction, qualitative observation, explanation, equation derivation, mathematical modeling, quantitative experiments, and problem solving. Students use a powerful set of computer tools to record, display, and analyze data, as well as to develop mathematical models of physical phenomena. The design of many of the activities is based on the outcomes of physics education research. The Workshop Physics Activity Guide is supported by an Instructor's Website that: (1) describes the history and philosophy of the Workshop Physics Project; (2) provides advice on how to integrate the Guide into a variety of educational settings; (3) provides information on computer tools (hardware and software) and apparatus; and (4) includes suggested homework assignments for each unit. Log on to the Workshop Physics Project website at http://physics.dickinson.edu/ Workshop Physics is a component of the Physics Suite--a collection of materials created by a group of educational reformers known as the Activity Based Physics Group. The Physics Suite contains a broad array of curricular materials that are based on physics education research, including:

      Understanding Physics, by Cummings, Laws, Redish and Cooney (an introductory textbook based on the best-selling text by Halliday/Resnick/Walker) RealTime Physics Laboratory Modules Physics by Inquiry (intended for use in a workshop setting) Interactive Lecture Demonstration Tutorials in Introductory Physics Activity Based Tutorials (designed primarily for use in recitations)

  1. Prediction of HDR quality by combining perceptually transformed display measurements with machine learning

    NASA Astrophysics Data System (ADS)

    Choudhury, Anustup; Farrell, Suzanne; Atkins, Robin; Daly, Scott

    2017-09-01

    We present an approach to predict overall HDR display quality as a function of key HDR display parameters. We first performed subjective experiments on a high quality HDR display that explored five key HDR display parameters: maximum luminance, minimum luminance, color gamut, bit-depth and local contrast. Subjects rated overall quality for different combinations of these display parameters. We explored two models | a physical model solely based on physically measured display characteristics and a perceptual model that transforms physical parameters using human vision system models. For the perceptual model, we use a family of metrics based on a recently published color volume model (ICT-CP), which consists of the PQ luminance non-linearity (ST2084) and LMS-based opponent color, as well as an estimate of the display point spread function. To predict overall visual quality, we apply linear regression and machine learning techniques such as Multilayer Perceptron, RBF and SVM networks. We use RMSE and Pearson/Spearman correlation coefficients to quantify performance. We found that the perceptual model is better at predicting subjective quality than the physical model and that SVM is better at prediction than linear regression. The significance and contribution of each display parameter was investigated. In addition, we found that combined parameters such as contrast do not improve prediction. Traditional perceptual models were also evaluated and we found that models based on the PQ non-linearity performed better.

  2. Examining a conceptual model of parental nurturance, parenting practices and physical activity among 5-6 year olds.

    PubMed

    Sebire, Simon J; Jago, Russell; Wood, Lesley; Thompson, Janice L; Zahra, Jezmond; Lawlor, Deborah A

    2016-01-01

    Parenting is an often-studied correlate of children's physical activity, however there is little research examining the associations between parenting styles, practices and the physical activity of younger children. This study aimed to investigate whether physical activity-based parenting practices mediate the association between parenting styles and 5-6 year-old children's objectively-assessed physical activity. 770 parents self-reported parenting style (nurturance and control) and physical activity-based parenting practices (logistic and modeling support). Their 5-6 year old child wore an accelerometer for five days to measure moderate-to-vigorous physical activity (MVPA). Linear regression was used to examine direct and indirect (mediation) associations. Data were collected in the United Kingdom in 2012/13 and analyzed in 2014. Parent nurturance was positively associated with provision of modeling (adjusted unstandardized coefficient, β = 0.11; 95% CI = 0.02, 0.21) and logistic support (β = 0.14; 0.07, 0.21). Modeling support was associated with greater child MVPA (β = 2.41; 0.23, 4.60) and a small indirect path from parent nurturance to child's MVPA was identified (β = 0.27; 0.04, 0.70). Physical activity-based parenting practices are more strongly associated with 5-6 year old children's MVPA than parenting styles. Further research examining conceptual models of parenting is needed to understand in more depth the possible antecedents to adaptive parenting practices beyond parenting styles. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Advantages and Challenges of Using Physics Curricula as a Model for Reforming an Undergraduate Biology Course

    ERIC Educational Resources Information Center

    Donovan, D. A.; Atkins, L. J.; Salter, I. Y.; Gallagher, D. J.; Kratz, R. F.; Rousseau, J. V.; Nelson, G. D.

    2013-01-01

    We report on the development of a life sciences curriculum, targeted to undergraduate students, which was modeled after a commercially available physics curriculum and based on aspects of how people learn. Our paper describes the collaborative development process and necessary modifications required to apply a physics pedagogical model in a life…

  4. Development of a Conceptual Model to Predict Physical Activity Participation in Adults with Brain Injuries

    ERIC Educational Resources Information Center

    Driver, Simon

    2008-01-01

    The purpose was to examine psychosocial factors that influence the physical activity behaviors of adults with brain injuries. Two differing models, based on Harter's model of self-worth, were proposed to examine the relationship between perceived competence, social support, physical self-worth, affect, and motivation. Adults numbering 384 with…

  5. Physics through the 1990s: Gravitation, cosmology and cosmic-ray physics

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The volume contains recommendations for space-and ground-based programs in gravitational physics, cosmology, and cosmic-ray physics. The section on gravitation examines current and planned experimental tests of general relativity; the theory behind, and search for, gravitational waves, including sensitive laser-interferometric tests and other observations; and advances in gravitation theory (for example, incorporating quantum effects). The section on cosmology deals with the big-bang model, the standard model from elementary-particle theory, the inflationary model of the Universe. Computational needs are presented for both gravitation and cosmology. Finally, cosmic-ray physics theory (nucleosynthesis, acceleration models, high-energy physics) and experiment (ground and spaceborne detectors) are discussed.

  6. Competency Based Teaching of College Physics: The Philosophy and The Practice

    ERIC Educational Resources Information Center

    Rajapaksha, Ajith; Hirsch, Andrew S.

    2017-01-01

    The practice of learning physics contributes to the development of many transdisciplinary skills learners are able to exercise independent of the physics discipline. However, the standard practices of physics instruction do not explicitly include the monitoring or evaluation of these skills. In a competency-based (CB) learning model, the skills…

  7. Physics-based distributed snow models in the operational arena: Current and future challenges

    NASA Astrophysics Data System (ADS)

    Winstral, A. H.; Jonas, T.; Schirmer, M.; Helbig, N.

    2017-12-01

    The demand for modeling tools robust to climate change and weather extremes along with coincident increases in computational capabilities have led to an increase in the use of physics-based snow models in operational applications. Current operational applications include the WSL-SLF's across Switzerland, ASO's in California, and USDA-ARS's in Idaho. While the physics-based approaches offer many advantages there remain limitations and modeling challenges. The most evident limitation remains computation times that often limit forecasters to a single, deterministic model run. Other limitations however remain less conspicuous amidst the assumptions that these models require little to no calibration based on their foundation on physical principles. Yet all energy balance snow models seemingly contain parameterizations or simplifications of processes where validation data are scarce or present understanding is limited. At the research-basin scale where many of these models were developed these modeling elements may prove adequate. However when applied over large areas, spatially invariable parameterizations of snow albedo, roughness lengths and atmospheric exchange coefficients - all vital to determining the snowcover energy balance - become problematic. Moreover as we apply models over larger grid cells, the representation of sub-grid variability such as the snow-covered fraction adds to the challenges. Here, we will demonstrate some of the major sensitivities of distributed energy balance snow models to particular model constructs, the need for advanced and spatially flexible methods and parameterizations, and prompt the community for open dialogue and future collaborations to further modeling capabilities.

  8. The illness/non-illness model: hypnotherapy for physically ill patients.

    PubMed

    Navon, Shaul

    2014-07-01

    This article proposes a focused, novel sub-set of the cognitive behavioral therapy approach to hypnotherapy for physically ill patients, based upon the illness/non-illness psychotherapeutic model for physically ill patients. The model is based on three logical rules used in differentiating illness from non-illness: duality, contradiction, and complementarity. The article discusses the use of hypnotic interventions to help physically ill and/or disabled patients distinguish between illness and non-illness in their psychotherapeutic themes and attitudes. Two case studies illustrate that patients in this special population group can be taught to learn the language of change and to use this language to overcome difficult situations. The model suggests a new clinical mode of treatment in which individuals who are physically ill and/or disabled are helped in coping with actual motifs and thoughts related to non-illness or non-disability.

  9. Linking Statistically- and Physically-Based Models for Improved Streamflow Simulation in Gaged and Ungaged Areas

    NASA Astrophysics Data System (ADS)

    Lafontaine, J.; Hay, L.; Archfield, S. A.; Farmer, W. H.; Kiang, J. E.

    2014-12-01

    The U.S. Geological Survey (USGS) has developed a National Hydrologic Model (NHM) to support coordinated, comprehensive and consistent hydrologic model development, and facilitate the application of hydrologic simulations within the continental US. The portion of the NHM located within the Gulf Coastal Plains and Ozarks Landscape Conservation Cooperative (GCPO LCC) is being used to test the feasibility of improving streamflow simulations in gaged and ungaged watersheds by linking statistically- and physically-based hydrologic models. The GCPO LCC covers part or all of 12 states and 5 sub-geographies, totaling approximately 726,000 km2, and is centered on the lower Mississippi Alluvial Valley. A total of 346 USGS streamgages in the GCPO LCC region were selected to evaluate the performance of this new calibration methodology for the period 1980 to 2013. Initially, the physically-based models are calibrated to measured streamflow data to provide a baseline for comparison. An enhanced calibration procedure then is used to calibrate the physically-based models in the gaged and ungaged areas of the GCPO LCC using statistically-based estimates of streamflow. For this application, the calibration procedure is adjusted to address the limitations of the statistically generated time series to reproduce measured streamflow in gaged basins, primarily by incorporating error and bias estimates. As part of this effort, estimates of uncertainty in the model simulations are also computed for the gaged and ungaged watersheds.

  10. Enriching Triangle Mesh Animations with Physically Based Simulation.

    PubMed

    Li, Yijing; Xu, Hongyi; Barbic, Jernej

    2017-10-01

    We present a system to combine arbitrary triangle mesh animations with physically based Finite Element Method (FEM) simulation, enabling control over the combination both in space and time. The input is a triangle mesh animation obtained using any method, such as keyframed animation, character rigging, 3D scanning, or geometric shape modeling. The input may be non-physical, crude or even incomplete. The user provides weights, specified using a minimal user interface, for how much physically based simulation should be allowed to modify the animation in any region of the model, and in time. Our system then computes a physically-based animation that is constrained to the input animation to the amount prescribed by these weights. This permits smoothly turning physics on and off over space and time, making it possible for the output to strictly follow the input, to evolve purely based on physically based simulation, and anything in between. Achieving such results requires a careful combination of several system components. We propose and analyze these components, including proper automatic creation of simulation meshes (even for non-manifold and self-colliding undeformed triangle meshes), converting triangle mesh animations into animations of the simulation mesh, and resolving collisions and self-collisions while following the input.

  11. Cancer Pain: A Critical Review of Mechanism-based Classification and Physical Therapy Management in Palliative Care

    PubMed Central

    Kumar, Senthil P

    2011-01-01

    Mechanism-based classification and physical therapy management of pain is essential to effectively manage painful symptoms in patients attending palliative care. The objective of this review is to provide a detailed review of mechanism-based classification and physical therapy management of patients with cancer pain. Cancer pain can be classified based upon pain symptoms, pain mechanisms and pain syndromes. Classification based upon mechanisms not only addresses the underlying pathophysiology but also provides us with an understanding behind patient's symptoms and treatment responses. Existing evidence suggests that the five mechanisms – central sensitization, peripheral sensitization, sympathetically maintained pain, nociceptive and cognitive-affective – operate in patients with cancer pain. Summary of studies showing evidence for physical therapy treatment methods for cancer pain follows with suggested therapeutic implications. Effective palliative physical therapy care using a mechanism-based classification model should be tailored to suit each patient's findings, using a biopsychosocial model of pain. PMID:21976851

  12. Coupling System Dynamics and Physically-based Models for Participatory Water Management - A Methodological Framework, with Two Case Studies: Water Quality in Quebec, and Soil Salinity in Pakistan

    NASA Astrophysics Data System (ADS)

    Boisvert-Chouinard, J.; Halbe, J.; Baig, A. I.; Adamowski, J. F.

    2014-12-01

    The principles of Integrated Water Resource Management outline the importance of stakeholder participation in water management processes, but in practice, there is a lack of meaningful engagement in water planning and implementation, and participation is often limited to public consultation and education. When models are used to support water planning, stakeholders are usually not involved in their development and use, and the models commonly fail to represent important feedbacks between socio-economic and physical processes. This paper presents the development of holistic models of the Du Chêne basin in Quebec, and the Rechna Doab basin in Pakistan, that simulate socio-economic and physical processes related to, respectively, water quality management, and soil salinity management. The models each consists of two sub-components: a System Dynamics (SD) model, and a physically based model. The SD component was developed in collaboration with key stakeholders in the basins. The Du Chêne SD model was coupled with a Soil and Water Assessment Tool (SWAT) model, while the Rechna Doab SD model was coupled with SahysMod, a soil salinity model. The coupled models were used to assess the environmental and socio-economic impacts of different management scenarios proposed by stakeholders. Results indicate that coupled SD - physically-based models can be used as effective tools for participatory water planning and implementation. The participatory modeling process provides a structure for meaningful stakeholder engagement, and the models themselves can be used to transparently and coherently assess and compare different management options.

  13. Design and implementation of space physics multi-model application integration based on web

    NASA Astrophysics Data System (ADS)

    Jiang, Wenping; Zou, Ziming

    With the development of research on space environment and space science, how to develop network online computing environment of space weather, space environment and space physics models for Chinese scientific community is becoming more and more important in recent years. Currently, There are two software modes on space physics multi-model application integrated system (SPMAIS) such as C/S and B/S. the C/S mode which is traditional and stand-alone, demands a team or workshop from many disciplines and specialties to build their own multi-model application integrated system, that requires the client must be deployed in different physical regions when user visits the integrated system. Thus, this requirement brings two shortcomings: reducing the efficiency of researchers who use the models to compute; inconvenience of accessing the data. Therefore, it is necessary to create a shared network resource access environment which could help users to visit the computing resources of space physics models through the terminal quickly for conducting space science research and forecasting spatial environment. The SPMAIS develops high-performance, first-principles in B/S mode based on computational models of the space environment and uses these models to predict "Space Weather", to understand space mission data and to further our understanding of the solar system. the main goal of space physics multi-model application integration system (SPMAIS) is to provide an easily and convenient user-driven online models operating environment. up to now, the SPMAIS have contained dozens of space environment models , including international AP8/AE8 IGRF T96 models and solar proton prediction model geomagnetic transmission model etc. which are developed by Chinese scientists. another function of SPMAIS is to integrate space observation data sets which offers input data for models online high-speed computing. In this paper, service-oriented architecture (SOA) concept that divides system into independent modules according to different business needs is applied to solve the problem of the independence of the physical space between multiple models. The classic MVC(Model View Controller) software design pattern is concerned to build the architecture of space physics multi-model application integrated system. The JSP+servlet+javabean technology is used to integrate the web application programs of space physics multi-model. It solves the problem of multi-user requesting the same job of model computing and effectively balances each server computing tasks. In addition, we also complete follow tasks: establishing standard graphical user interface based on Java Applet application program; Designing the interface between model computing and model computing results visualization; Realizing three-dimensional network visualization without plug-ins; Using Java3D technology to achieve a three-dimensional network scene interaction; Improved ability to interact with web pages and dynamic execution capabilities, including rendering three-dimensional graphics, fonts and color control. Through the design and implementation of the SPMAIS based on Web, we provide an online computing and application runtime environment of space physics multi-model. The practical application improves that researchers could be benefit from our system in space physics research and engineering applications.

  14. Modelling of the Thermo-Physical and Physical Properties for Solidification of Al-Alloys

    NASA Astrophysics Data System (ADS)

    Saunders, N.; Li, X.; Miodownik, A. P.; Schillé, J.-P.

    The thermo-physical and physical properties of the liquid and solid phases are critical components in casting simulations. Such properties include the fraction solid transformed, enthalpy release, thermal conductivity, volume and density, all as a function of temperature. Due to the difficulty in experimentally determining such properties at solidification temperatures, little information exists for multi-component alloys. As part of the development of a new computer program for modelling of materials properties (JMatPro) extensive work has been carried out on the development of sound, physically based models for these properties. Wide ranging results will presented for Al-based alloys, which will include more detailed information concerning the density change of the liquid that intrinsically occurs during solidification due to its change in composition.

  15. Models in Science Education: Applications of Models in Learning and Teaching Science

    ERIC Educational Resources Information Center

    Ornek, Funda

    2008-01-01

    In this paper, I discuss different types of models in science education and applications of them in learning and teaching science, in particular physics. Based on the literature, I categorize models as conceptual and mental models according to their characteristics. In addition to these models, there is another model called "physics model" by the…

  16. Exploring the relationships among performance-based functional ability, self-rated disability, perceived instrumental support, and depression: a structural equation model analysis.

    PubMed

    Weil, Joyce; Hutchinson, Susan R; Traxler, Karen

    2014-11-01

    Data from the Women's Health and Aging Study were used to test a model of factors explaining depressive symptomology. The primary purpose of the study was to explore the association between performance-based measures of functional ability and depression and to examine the role of self-rated physical difficulties and perceived instrumental support in mediating the relationship between performance-based functioning and depression. The inclusion of performance-based measures allows for the testing of functional ability as a clinical precursor to disability and depression: a critical, but rarely examined, association in the disablement process. Structural equation modeling supported the overall fit of the model and found an indirect relationship between performance-based functioning and depression, with perceived physical difficulties serving as a significant mediator. Our results highlight the complementary nature of performance-based and self-rated measures and the importance of including perception of self-rated physical difficulties when examining depression in older persons. © The Author(s) 2014.

  17. The Trans-Contextual Model of Autonomous Motivation in Education

    PubMed Central

    Hagger, Martin S.; Chatzisarantis, Nikos L. D.

    2015-01-01

    The trans-contextual model outlines the processes by which autonomous motivation toward activities in a physical education context predicts autonomous motivation toward physical activity outside of school, and beliefs about, intentions toward, and actual engagement in, out-of-school physical activity. In the present article, we clarify the fundamental propositions of the model and resolve some outstanding conceptual issues, including its generalizability across multiple educational domains, criteria for its rejection or failed replication, the role of belief-based antecedents of intentions, and the causal ordering of its constructs. We also evaluate the consistency of model relationships in previous tests of the model using path-analytic meta-analysis. The analysis supported model hypotheses but identified substantial heterogeneity in the hypothesized relationships across studies unattributed to sampling and measurement error. Based on our meta-analysis, future research needs to provide further replications of the model in diverse educational settings beyond physical education and test model hypotheses using experimental methods. PMID:27274585

  18. The Trans-Contextual Model of Autonomous Motivation in Education: Conceptual and Empirical Issues and Meta-Analysis.

    PubMed

    Hagger, Martin S; Chatzisarantis, Nikos L D

    2016-06-01

    The trans-contextual model outlines the processes by which autonomous motivation toward activities in a physical education context predicts autonomous motivation toward physical activity outside of school, and beliefs about, intentions toward, and actual engagement in, out-of-school physical activity. In the present article, we clarify the fundamental propositions of the model and resolve some outstanding conceptual issues, including its generalizability across multiple educational domains, criteria for its rejection or failed replication, the role of belief-based antecedents of intentions, and the causal ordering of its constructs. We also evaluate the consistency of model relationships in previous tests of the model using path-analytic meta-analysis. The analysis supported model hypotheses but identified substantial heterogeneity in the hypothesized relationships across studies unattributed to sampling and measurement error. Based on our meta-analysis, future research needs to provide further replications of the model in diverse educational settings beyond physical education and test model hypotheses using experimental methods.

  19. Effects of Model-Based Teaching on Pre-Service Physics Teachers' Conceptions of the Moon, Moon Phases, and Other Lunar Phenomena

    ERIC Educational Resources Information Center

    Ogan-Bekiroglu, Feral

    2007-01-01

    The purpose of this study was twofold. First, it was aimed to identify Turkish pre-service physics teachers' knowledge and understanding of the Moon, Moon phases, and other lunar phenomena. Second, the effects of model-based teaching on pre-service teachers' conceptions were examined. Conceptions were proposed as mental models in this study. Four…

  20. Workshop Physics Activity Guide, Module 3: Heat Temperature and Nuclear Radiation, Thermodynamics, Kinetic Theory, Heat Engines, Nuclear Decay, and Random Monitoring (Units 16 - 18 & 28)

    NASA Astrophysics Data System (ADS)

    Laws, Priscilla W.

    2004-05-01

    The Workshop Physics Activity Guide is a set of student workbooks designed to serve as the foundation for a two-semester calculus-based introductory physics course. It consists of 28 units that interweave text materials with activities that include prediction, qualitative observation, explanation, equation derivation, mathematical modeling, quantitative experiments, and problem solving. Students use a powerful set of computer tools to record, display, and analyze data, as well as to develop mathematical models of physical phenomena. The design of many of the activities is based on the outcomes of physics education research.

  1. Stochastic Human Exposure and Dose Simulation Model for Pesticides

    EPA Science Inventory

    SHEDS-Pesticides (Stochastic Human Exposure and Dose Simulation Model for Pesticides) is a physically-based stochastic model developed to quantify exposure and dose of humans to multimedia, multipathway pollutants. Probabilistic inputs are combined in physical/mechanistic algorit...

  2. A physical data model for fields and agents

    NASA Astrophysics Data System (ADS)

    de Jong, Kor; de Bakker, Merijn; Karssenberg, Derek

    2016-04-01

    Two approaches exist in simulation modeling: agent-based and field-based modeling. In agent-based (or individual-based) simulation modeling, the entities representing the system's state are represented by objects, which are bounded in space and time. Individual objects, like an animal, a house, or a more abstract entity like a country's economy, have properties representing their state. In an agent-based model this state is manipulated. In field-based modeling, the entities representing the system's state are represented by fields. Fields capture the state of a continuous property within a spatial extent, examples of which are elevation, atmospheric pressure, and water flow velocity. With respect to the technology used to create these models, the domains of agent-based and field-based modeling have often been separate worlds. In environmental modeling, widely used logical data models include feature data models for point, line and polygon objects, and the raster data model for fields. Simulation models are often either agent-based or field-based, even though the modeled system might contain both entities that are better represented by individuals and entities that are better represented by fields. We think that the reason for this dichotomy in kinds of models might be that the traditional object and field data models underlying those models are relatively low level. We have developed a higher level conceptual data model for representing both non-spatial and spatial objects, and spatial fields (De Bakker et al. 2016). Based on this conceptual data model we designed a logical and physical data model for representing many kinds of data, including the kinds used in earth system modeling (e.g. hydrological and ecological models). The goal of this work is to be able to create high level code and tools for the creation of models in which entities are representable by both objects and fields. Our conceptual data model is capable of representing the traditional feature data models and the raster data model, among many other data models. Our physical data model is capable of storing a first set of kinds of data, like omnipresent scalars, mobile spatio-temporal points and property values, and spatio-temporal rasters. With our poster we will provide an overview of the physical data model expressed in HDF5 and show examples of how it can be used to capture both object- and field-based information. References De Bakker, M, K. de Jong, D. Karssenberg. 2016. A conceptual data model and language for fields and agents. European Geosciences Union, EGU General Assembly, 2016, Vienna.

  3. Prediction of objectively measured physical activity and sedentariness among blue-collar workers using survey questionnaires.

    PubMed

    Gupta, Nidhi; Heiden, Marina; Mathiassen, Svend Erik; Holtermann, Andreas

    2016-05-01

    We aimed at developing and evaluating statistical models predicting objectively measured occupational time spent sedentary or in physical activity from self-reported information available in large epidemiological studies and surveys. Two-hundred-and-fourteen blue-collar workers responded to a questionnaire containing information about personal and work related variables, available in most large epidemiological studies and surveys. Workers also wore accelerometers for 1-4 days measuring time spent sedentary and in physical activity, defined as non-sedentary time. Least-squares linear regression models were developed, predicting objectively measured exposures from selected predictors in the questionnaire. A full prediction model based on age, gender, body mass index, job group, self-reported occupational physical activity (OPA), and self-reported occupational sedentary time (OST) explained 63% (R (2)adjusted) of the variance of both objectively measured time spent sedentary and in physical activity since these two exposures were complementary. Single-predictor models based only on self-reported information about either OPA or OST explained 21% and 38%, respectively, of the variance of the objectively measured exposures. Internal validation using bootstrapping suggested that the full and single-predictor models would show almost the same performance in new datasets as in that used for modelling. Both full and single-predictor models based on self-reported information typically available in most large epidemiological studies and surveys were able to predict objectively measured occupational time spent sedentary or in physical activity, with explained variances ranging from 21-63%.

  4. Physically-based Assessment of Tropical Cyclone Damage and Economic Losses

    NASA Astrophysics Data System (ADS)

    Lin, N.

    2012-12-01

    Estimating damage and economic losses caused by tropical cyclones (TC) is a topic of considerable research interest in many scientific fields, including meteorology, structural and coastal engineering, and actuarial sciences. One approach is based on the empirical relationship between TC characteristics and loss data. Another is to model the physical mechanism of TC-induced damage. In this talk we discuss about the physically-based approach to predict TC damage and losses due to extreme wind and storm surge. We first present an integrated vulnerability model, which, for the first time, explicitly models the essential mechanisms causing wind damage to residential areas during storm passage, including windborne-debris impact and the pressure-debris interaction that may lead, in a chain reaction, to structural failures (Lin and Vanmarcke 2010; Lin et al. 2010a). This model can be used to predict the economic losses in a residential neighborhood (with hundreds of buildings) during a specific TC (Yau et al. 2011) or applied jointly with a TC risk model (e.g., Emanuel et al 2008) to estimate the expected losses over long time periods. Then we present a TC storm surge risk model that has been applied to New York City (Lin et al. 2010b; Lin et al. 2012; Aerts et al. 2012), Miami-Dade County, Florida (Klima et al. 2011), Galveston, Texas (Lickley, 2012), and other coastal areas around the world (e.g., Tampa, Florida; Persian Gulf; Darwin, Australia; Shanghai, China). These physically-based models are applicable to various coastal areas and have the capability to account for the change of the climate and coastal exposure over time. We also point out that, although made computationally efficient for risk assessment, these models are not suitable for regional or global analysis, which has been a focus of the empirically-based economic analysis (e.g., Hsiang and Narita 2012). A future research direction is to simplify the physically-based models, possibly through parameterization, and make connections to the global loss data and economic analysis.

  5. Model-assisted probability of detection of flaws in aluminum blocks using polynomial chaos expansions

    NASA Astrophysics Data System (ADS)

    Du, Xiaosong; Leifsson, Leifur; Grandin, Robert; Meeker, William; Roberts, Ronald; Song, Jiming

    2018-04-01

    Probability of detection (POD) is widely used for measuring reliability of nondestructive testing (NDT) systems. Typically, POD is determined experimentally, while it can be enhanced by utilizing physics-based computational models in combination with model-assisted POD (MAPOD) methods. With the development of advanced physics-based methods, such as ultrasonic NDT testing, the empirical information, needed for POD methods, can be reduced. However, performing accurate numerical simulations can be prohibitively time-consuming, especially as part of stochastic analysis. In this work, stochastic surrogate models for computational physics-based measurement simulations are developed for cost savings of MAPOD methods while simultaneously ensuring sufficient accuracy. The stochastic surrogate is used to propagate the random input variables through the physics-based simulation model to obtain the joint probability distribution of the output. The POD curves are then generated based on those results. Here, the stochastic surrogates are constructed using non-intrusive polynomial chaos (NIPC) expansions. In particular, the NIPC methods used are the quadrature, ordinary least-squares (OLS), and least-angle regression sparse (LARS) techniques. The proposed approach is demonstrated on the ultrasonic testing simulation of a flat bottom hole flaw in an aluminum block. The results show that the stochastic surrogates have at least two orders of magnitude faster convergence on the statistics than direct Monte Carlo sampling (MCS). Moreover, the evaluation of the stochastic surrogate models is over three orders of magnitude faster than the underlying simulation model for this case, which is the UTSim2 model.

  6. Inhibitors to Responsibility-Based Professional Development with In-Service Teachers

    ERIC Educational Resources Information Center

    Hemphill, Michael A.

    2015-01-01

    Researchers of continuing professional development (CPD) in physical education have called for new models that move beyond the traditional CPD model. The outcomes of CPD protocols are hard to predict even when they align with the best practices. Responsibility-based CPD has become the focus of recent attention to assist physical educators in…

  7. A physical-based gas-surface interaction model for rarefied gas flow simulation

    NASA Astrophysics Data System (ADS)

    Liang, Tengfei; Li, Qi; Ye, Wenjing

    2018-01-01

    Empirical gas-surface interaction models, such as the Maxwell model and the Cercignani-Lampis model, are widely used as the boundary condition in rarefied gas flow simulations. The accuracy of these models in the prediction of macroscopic behavior of rarefied gas flows is less satisfactory in some cases especially the highly non-equilibrium ones. Molecular dynamics simulation can accurately resolve the gas-surface interaction process at atomic scale, and hence can predict accurate macroscopic behavior. They are however too computationally expensive to be applied in real problems. In this work, a statistical physical-based gas-surface interaction model, which complies with the basic relations of boundary condition, is developed based on the framework of the washboard model. In virtue of its physical basis, this new model is capable of capturing some important relations/trends for which the classic empirical models fail to model correctly. As such, the new model is much more accurate than the classic models, and in the meantime is more efficient than MD simulations. Therefore, it can serve as a more accurate and efficient boundary condition for rarefied gas flow simulations.

  8. Computer Model of the Empirical Knowledge of Physics Formation: Coordination with Testing Results

    ERIC Educational Resources Information Center

    Mayer, Robert V.

    2016-01-01

    The use of method of imitational modeling to study forming the empirical knowledge in pupil's consciousness is discussed. The offered model is based on division of the physical facts into three categories: 1) the facts established in everyday life; 2) the facts, which the pupil can experimentally establish at a physics lesson; 3) the facts which…

  9. Real-time physics-based 3D biped character animation using an inverted pendulum model.

    PubMed

    Tsai, Yao-Yang; Lin, Wen-Chieh; Cheng, Kuangyou B; Lee, Jehee; Lee, Tong-Yee

    2010-01-01

    We present a physics-based approach to generate 3D biped character animation that can react to dynamical environments in real time. Our approach utilizes an inverted pendulum model to online adjust the desired motion trajectory from the input motion capture data. This online adjustment produces a physically plausible motion trajectory adapted to dynamic environments, which is then used as the desired motion for the motion controllers to track in dynamics simulation. Rather than using Proportional-Derivative controllers whose parameters usually cannot be easily set, our motion tracking adopts a velocity-driven method which computes joint torques based on the desired joint angular velocities. Physically correct full-body motion of the 3D character is computed in dynamics simulation using the computed torques and dynamical model of the character. Our experiments demonstrate that tracking motion capture data with real-time response animation can be achieved easily. In addition, physically plausible motion style editing, automatic motion transition, and motion adaptation to different limb sizes can also be generated without difficulty.

  10. Physically based modeling in catchment hydrology at 50: Survey and outlook

    NASA Astrophysics Data System (ADS)

    Paniconi, Claudio; Putti, Mario

    2015-09-01

    Integrated, process-based numerical models in hydrology are rapidly evolving, spurred by novel theories in mathematical physics, advances in computational methods, insights from laboratory and field experiments, and the need to better understand and predict the potential impacts of population, land use, and climate change on our water resources. At the catchment scale, these simulation models are commonly based on conservation principles for surface and subsurface water flow and solute transport (e.g., the Richards, shallow water, and advection-dispersion equations), and they require robust numerical techniques for their resolution. Traditional (and still open) challenges in developing reliable and efficient models are associated with heterogeneity and variability in parameters and state variables; nonlinearities and scale effects in process dynamics; and complex or poorly known boundary conditions and initial system states. As catchment modeling enters a highly interdisciplinary era, new challenges arise from the need to maintain physical and numerical consistency in the description of multiple processes that interact over a range of scales and across different compartments of an overall system. This paper first gives an historical overview (past 50 years) of some of the key developments in physically based hydrological modeling, emphasizing how the interplay between theory, experiments, and modeling has contributed to advancing the state of the art. The second part of the paper examines some outstanding problems in integrated catchment modeling from the perspective of recent developments in mathematical and computational science.

  11. A new physically-based model considered antecedent rainfall for shallow landslide

    NASA Astrophysics Data System (ADS)

    Luo, Yu; He, Siming

    2017-04-01

    Rainfall is the most significant factor to cause landslide especially shallow landslide. In previous studies, rainfall intensity and duration are take part in the physically based model to determining the occurrence of the rainfall-induced landslides, but seldom considered the antecedent rainfall. In this study, antecedent rainfall is took into account to derive a new physically based model for shallow landslides prone area predicting at the basin scale. Based on the Rosso's equation of seepage flow considering the antecedent rainfall to construct the hillslope hydrology model. And then, the infinite slope stability theory is using to construct the slope stability model. At last, the model is apply in the Baisha river basin of Chengdu, Sichuan, China, and the results are compared with the one's from unconsidered antecedent rainfall. The results show that the model is simple, but has the capability of consider antecedent rainfall in the triggering mechanism of shallow landslide. Meanwhile, antecedent rainfall can make an obvious effect on shallow landslides, so in shallow landslide hazard assessment, the influence of the antecedent rainfall can't be ignored.

  12. Modeling an integrative physical examination program for the Departments of Defense and Veterans Affairs.

    PubMed

    Goodrich, Scott G

    2006-10-01

    Current policies governing the Departments of Defense and Veterans Affairs physical examination programs are out of step with current evidence-based medical practice. Replacing periodic and other routine physical examination types with annual preventive health assessments would afford our service members additional health benefit at reduced cost. Additionally, the Departments of Defense and Veterans Affairs repeat the physical examination process at separation and have been unable to reconcile their respective disability evaluation systems to reduce duplication and waste. A clear, coherent, and coordinated strategy to improve the relevance and utility of our physical examination programs is long overdue. This article discusses existing physical examination programs and proposes a model for a new integrative physical examination program based on need, science, and common sense.

  13. A mathematical model for predicting photo-induced voltage and photostriction of PLZT with coupled multi-physics fields and its application

    NASA Astrophysics Data System (ADS)

    Huang, J. H.; Wang, X. J.; Wang, J.

    2016-02-01

    The primary purpose of this paper is to propose a mathematical model of PLZT ceramic with coupled multi-physics fields, e.g. thermal, electric, mechanical and light field. To this end, the coupling relationships of multi-physics fields and the mechanism of some effects resulting in the photostrictive effect are analyzed theoretically, based on which a mathematical model considering coupled multi-physics fields is established. According to the analysis and experimental results, the mathematical model can explain the hysteresis phenomenon and the variation trend of the photo-induced voltage very well and is in agreement with the experimental curves. In addition, the PLZT bimorph is applied as an energy transducer for a photovoltaic-electrostatic hybrid actuated micromirror, and the relation of the rotation angle and the photo-induced voltage is discussed based on the novel photostrictive mathematical model.

  14. The effectiveness of flipped classroom learning model in secondary physics classroom setting

    NASA Astrophysics Data System (ADS)

    Prasetyo, B. D.; Suprapto, N.; Pudyastomo, R. N.

    2018-03-01

    The research aimed to describe the effectiveness of flipped classroom learning model on secondary physics classroom setting during Fall semester of 2017. The research object was Secondary 3 Physics group of Singapore School Kelapa Gading. This research was initiated by giving a pre-test, followed by treatment setting of the flipped classroom learning model. By the end of the learning process, the pupils were given a post-test and questionnaire to figure out pupils' response to the flipped classroom learning model. Based on the data analysis, 89% of pupils had passed the minimum criteria of standardization. The increment level in the students' mark was analysed by normalized n-gain formula, obtaining a normalized n-gain score of 0.4 which fulfil medium category range. Obtains from the questionnaire distributed to the students that 93% of students become more motivated to study physics and 89% of students were very happy to carry on hands-on activity based on the flipped classroom learning model. Those three aspects were used to generate a conclusion that applying flipped classroom learning model in Secondary Physics Classroom setting is effectively applicable.

  15. Guided-Inquiry Experiments for Physical Chemistry: The POGIL-PCL Model

    ERIC Educational Resources Information Center

    Hunnicutt, Sally S.; Grushow, Alexander; Whitnell, Robert

    2015-01-01

    The POGIL-PCL project implements the principles of process-oriented, guided-inquiry learning (POGIL) in order to improve student learning in the physical chemistry laboratory (PCL) course. The inquiry-based physical chemistry experiments being developed emphasize modeling of chemical phenomena. In each experiment, students work through at least…

  16. A Study of Physics Faculty's Instructional Practices: Implications for Experiential STEM Faculty Development Model

    NASA Astrophysics Data System (ADS)

    Soto, Marissa; Suskavcevic, Miliana; Forrest, Rebecca; Cheung, Margaret; Kapral, Andrew; Khon, Lawrence

    When teaching physics, many factors determine the final impact the course will have on a student. Using STEP, a teacher content professional development program, we are studying the incorporation of inquiry-based teaching strategies in the professional development of university professors through an active engagement program. Through the professors' involvement in the program, they gain experience with inquiry-based instruction that can be put into effect in their own classrooms to possibly create a shift in understanding and success ratesat physics undergraduate courses. This model consists of faculty peer mentoring, facilitating instruction within a community of practice, and implementation of undergraduate inquiry-based physics teaching strategies. Here, professors are facilitating the physics lessons to in-service high school teachers while using inquiry strategies and interactive activities rather than traditional lecture. This project aided the creation of an undergraduate inquiry-based physics course at the University of Houston. It could lead to a new form of professor professional development workshop that does not only benefit the professor, but also highschoolteachers not properly trained in the field of physics.

  17. Computer-based creativity enhanced conceptual design model for non-routine design of mechanical systems

    NASA Astrophysics Data System (ADS)

    Li, Yutong; Wang, Yuxin; Duffy, Alex H. B.

    2014-11-01

    Computer-based conceptual design for routine design has made great strides, yet non-routine design has not been given due attention, and it is still poorly automated. Considering that the function-behavior-structure(FBS) model is widely used for modeling the conceptual design process, a computer-based creativity enhanced conceptual design model(CECD) for non-routine design of mechanical systems is presented. In the model, the leaf functions in the FBS model are decomposed into and represented with fine-grain basic operation actions(BOA), and the corresponding BOA set in the function domain is then constructed. Choosing building blocks from the database, and expressing their multiple functions with BOAs, the BOA set in the structure domain is formed. Through rule-based dynamic partition of the BOA set in the function domain, many variants of regenerated functional schemes are generated. For enhancing the capability to introduce new design variables into the conceptual design process, and dig out more innovative physical structure schemes, the indirect function-structure matching strategy based on reconstructing the combined structure schemes is adopted. By adjusting the tightness of the partition rules and the granularity of the divided BOA subsets, and making full use of the main function and secondary functions of each basic structure in the process of reconstructing of the physical structures, new design variables and variants are introduced into the physical structure scheme reconstructing process, and a great number of simpler physical structure schemes to accomplish the overall function organically are figured out. The creativity enhanced conceptual design model presented has a dominant capability in introducing new deign variables in function domain and digging out simpler physical structures to accomplish the overall function, therefore it can be utilized to solve non-routine conceptual design problem.

  18. Examining a conceptual model of parental nurturance, parenting practices and physical activity among 5–6 year olds

    PubMed Central

    Sebire, Simon J.; Jago, Russell; Wood, Lesley; Thompson, Janice L.; Zahra, Jezmond; Lawlor, Deborah A.

    2016-01-01

    Rationale Parenting is an often-studied correlate of children's physical activity, however there is little research examining the associations between parenting styles, practices and the physical activity of younger children. Objective This study aimed to investigate whether physical activity-based parenting practices mediate the association between parenting styles and 5–6 year-old children's objectively-assessed physical activity. Methods 770 parents self-reported parenting style (nurturance and control) and physical activity-based parenting practices (logistic and modeling support). Their 5–6 year old child wore an accelerometer for five days to measure moderate-to-vigorous physical activity (MVPA). Linear regression was used to examine direct and indirect (mediation) associations. Data were collected in the United Kingdom in 2012/13 and analyzed in 2014. Results Parent nurturance was positively associated with provision of modeling (adjusted unstandardized coefficient, β = 0.11; 95% CI = 0.02, 0.21) and logistic support (β = 0.14; 0.07, 0.21). Modeling support was associated with greater child MVPA (β = 2.41; 0.23, 4.60) and a small indirect path from parent nurturance to child's MVPA was identified (β = 0.27; 0.04, 0.70). Conclusions Physical activity-based parenting practices are more strongly associated with 5–6 year old children's MVPA than parenting styles. Further research examining conceptual models of parenting is needed to understand in more depth the possible antecedents to adaptive parenting practices beyond parenting styles. PMID:26647364

  19. Effects of Problem-Based Learning Model versus Expository Model and Motivation to Achieve for Student's Physic Learning Result of Senior High School at Class XI

    ERIC Educational Resources Information Center

    Prayekti

    2016-01-01

    "Problem-based learning" (PBL) is one of an innovative learning model which can provide an active learning to student, include the motivation to achieve showed by student when the learning is in progress. This research is aimed to know: (1) differences of physic learning result for student group which taught by PBL versus expository…

  20. Moment-Based Physical Models of Broadband Clutter due to Aggregations of Fish

    DTIC Science & Technology

    2013-09-30

    statistical models for signal-processing algorithm development. These in turn will help to develop a capability to statistically forecast the impact of...aggregations of fish based on higher-order statistical measures describable in terms of physical and system parameters. Environmentally , these models...processing. In this experiment, we had good ground truth on (1) and (2), and had control over (3) and (4) except for environmentally -imposed restrictions

  1. Aligning Learning Activities with Instructional Models

    ERIC Educational Resources Information Center

    Gurvitch, Rachel; Metzler, Michael

    2013-01-01

    Model-based instruction has been increasingly used in physical education for the past two decades. Metzler (2011) identified eight instructional models that are commonly used in physical education today. Each model is designed to promote certain kinds of learning outcomes for students and to address different combinations of the national…

  2. An acoustic glottal source for vocal tract physical models

    NASA Astrophysics Data System (ADS)

    Hannukainen, Antti; Kuortti, Juha; Malinen, Jarmo; Ojalammi, Antti

    2017-11-01

    A sound source is proposed for the acoustic measurement of physical models of the human vocal tract. The physical models are produced by fast prototyping, based on magnetic resonance imaging during prolonged vowel production. The sound source, accompanied by custom signal processing algorithms, is used for two kinds of measurements from physical models of the vocal tract: (i) amplitude frequency response and resonant frequency measurements, and (ii) signal reconstructions at the source output according to a target pressure waveform with measurements at the mouth position. The proposed source and the software are validated by computational acoustics experiments and measurements on a physical model of the vocal tract corresponding to the vowels [] of a male speaker.

  3. Model-Based Reasoning in Upper-division Lab Courses

    NASA Astrophysics Data System (ADS)

    Lewandowski, Heather

    2015-05-01

    Modeling, which includes developing, testing, and refining models, is a central activity in physics. Well-known examples from AMO physics include everything from the Bohr model of the hydrogen atom to the Bose-Hubbard model of interacting bosons in a lattice. Modeling, while typically considered a theoretical activity, is most fully represented in the laboratory where measurements of real phenomena intersect with theoretical models, leading to refinement of models and experimental apparatus. However, experimental physicists use models in complex ways and the process is often not made explicit in physics laboratory courses. We have developed a framework to describe the modeling process in physics laboratory activities. The framework attempts to abstract and simplify the complex modeling process undertaken by expert experimentalists. The framework can be applied to understand typical processes such the modeling of the measurement tools, modeling ``black boxes,'' and signal processing. We demonstrate that the framework captures several important features of model-based reasoning in a way that can reveal common student difficulties in the lab and guide the development of curricula that emphasize modeling in the laboratory. We also use the framework to examine troubleshooting in the lab and guide students to effective methods and strategies.

  4. Design of Soil Salinity Policies with Tinamit, a Flexible and Rapid Tool to Couple Stakeholder-Built System Dynamics Models with Physically-Based Models

    NASA Astrophysics Data System (ADS)

    Malard, J. J.; Baig, A. I.; Hassanzadeh, E.; Adamowski, J. F.; Tuy, H.; Melgar-Quiñonez, H.

    2016-12-01

    Model coupling is a crucial step to constructing many environmental models, as it allows for the integration of independently-built models representing different system sub-components to simulate the entire system. Model coupling has been of particular interest in combining socioeconomic System Dynamics (SD) models, whose visual interface facilitates their direct use by stakeholders, with more complex physically-based models of the environmental system. However, model coupling processes are often cumbersome and inflexible and require extensive programming knowledge, limiting their potential for continued use by stakeholders in policy design and analysis after the end of the project. Here, we present Tinamit, a flexible Python-based model-coupling software tool whose easy-to-use API and graphical user interface make the coupling of stakeholder-built SD models with physically-based models rapid, flexible and simple for users with limited to no coding knowledge. The flexibility of the system allows end users to modify the SD model as well as the linking variables between the two models themselves with no need for recoding. We use Tinamit to couple a stakeholder-built socioeconomic model of soil salinization in Pakistan with the physically-based soil salinity model SAHYSMOD. As climate extremes increase in the region, policies to slow or reverse soil salinity buildup are increasing in urgency and must take both socioeconomic and biophysical spheres into account. We use the Tinamit-coupled model to test the impact of integrated policy options (economic and regulatory incentives to farmers) on soil salinity in the region in the face of future climate change scenarios. Use of the Tinamit model allowed for rapid and flexible coupling of the two models, allowing the end user to continue making model structure and policy changes. In addition, the clear interface (in contrast to most model coupling code) makes the final coupled model easily accessible to stakeholders with limited technical background.

  5. A unified dislocation density-dependent physical-based constitutive model for cold metal forming

    NASA Astrophysics Data System (ADS)

    Schacht, K.; Motaman, A. H.; Prahl, U.; Bleck, W.

    2017-10-01

    Dislocation-density-dependent physical-based constitutive models of metal plasticity while are computationally efficient and history-dependent, can accurately account for varying process parameters such as strain, strain rate and temperature; different loading modes such as continuous deformation, creep and relaxation; microscopic metallurgical processes; and varying chemical composition within an alloy family. Since these models are founded on essential phenomena dominating the deformation, they have a larger range of usability and validity. Also, they are suitable for manufacturing chain simulations since they can efficiently compute the cumulative effect of the various manufacturing processes by following the material state through the entire manufacturing chain and also interpass periods and give a realistic prediction of the material behavior and final product properties. In the physical-based constitutive model of cold metal plasticity introduced in this study, physical processes influencing cold and warm plastic deformation in polycrystalline metals are described using physical/metallurgical internal variables such as dislocation density and effective grain size. The evolution of these internal variables are calculated using adequate equations that describe the physical processes dominating the material behavior during cold plastic deformation. For validation, the model is numerically implemented in general implicit isotropic elasto-viscoplasticity algorithm as a user-defined material subroutine (UMAT) in ABAQUS/Standard and used for finite element simulation of upsetting tests and a complete cold forging cycle of case hardenable MnCr steel family.

  6. Human Robotic Swarm Interaction Using an Artificial Physics Approach

    DTIC Science & Technology

    2014-12-01

    calculates virtual forces that are summed and translated into velocity commands. The virtual forces are modeled after real physical forces such as...results from the physical experiments show that an artificial physics-based framework is an effective way to allow multiple agents to follow a human... modeled after real physical forces such as gravitational and Coulomb, forces but are not restricted to them, for example, the force magnitude may not be

  7. A Novel Multiscale Physics Based Progressive Failure Methodology for Laminated Composite Structures

    NASA Technical Reports Server (NTRS)

    Pineda, Evan J.; Waas, Anthony M.; Bednarcyk, Brett A.; Collier, Craig S.; Yarrington, Phillip W.

    2008-01-01

    A variable fidelity, multiscale, physics based finite element procedure for predicting progressive damage and failure of laminated continuous fiber reinforced composites is introduced. At every integration point in a finite element model, progressive damage is accounted for at the lamina-level using thermodynamically based Schapery Theory. Separate failure criteria are applied at either the global-scale or the microscale in two different FEM models. A micromechanics model, the Generalized Method of Cells, is used to evaluate failure criteria at the micro-level. The stress-strain behavior and observed failure mechanisms are compared with experimental results for both models.

  8. Studio Physics at the Colorado School of Mines: A model for iterative development and assessment

    NASA Astrophysics Data System (ADS)

    Kohl, Patrick; Kuo, Vincent

    2009-05-01

    The Colorado School of Mines (CSM) has taught its first-semester introductory physics course using a hybrid lecture/Studio Physics format for several years. Based on this previous success, over the past 18 months we have converted the second semester of our traditional calculus-based introductory physics course (Physics II) to a Studio Physics format. In this talk, we describe the recent history of the Physics II course and of Studio at Mines, discuss the PER-based improvements that we are implementing, and characterize our progress via several metrics, including pre/post Conceptual Survey of Electricity and Magnetism (CSEM) scores, Colorado Learning About Science Survey scores (CLASS), failure rates, and exam scores. We also report on recent attempts to involve students in the department's Senior Design program with our course. Our ultimate goal is to construct one possible model for a practical and successful transition from a lecture course to a Studio (or Studio-like) course.

  9. A Physically Based Coupled Chemical and Physical Weathering Model for Simulating Soilscape Evolution

    NASA Astrophysics Data System (ADS)

    Willgoose, G. R.; Welivitiya, D.; Hancock, G. R.

    2015-12-01

    A critical missing link in existing landscape evolution models is a dynamic soil evolution models where soils co-evolve with the landform. Work by the authors over the last decade has demonstrated a computationally manageable model for soil profile evolution (soilscape evolution) based on physical weathering. For chemical weathering it is clear that full geochemistry models such as CrunchFlow and PHREEQC are too computationally intensive to be couplable to existing soilscape and landscape evolution models. This paper presents a simplification of CrunchFlow chemistry and physics that makes the task feasible, and generalises it for hillslope geomorphology applications. Results from this simplified model will be compared with field data for soil pedogenesis. Other researchers have previously proposed a number of very simple weathering functions (e.g. exponential, humped, reverse exponential) as conceptual models of the in-profile weathering process. The paper will show that all of these functions are possible for specific combinations of in-soil environmental, geochemical and geologic conditions, and the presentation will outline the key variables controlling which of these conceptual models can be realistic models of in-profile processes and under what conditions. The presentation will finish by discussing the coupling of this model with a physical weathering model, and will show sample results from our SSSPAM soilscape evolution model to illustrate the implications of including chemical weathering in the soilscape evolution model.

  10. Physics Based Modeling in Design and Development for U.S. Defense Held in Denver, Colorado on November 14-17, 2011. Volume 2: Audio and Movie Files

    DTIC Science & Technology

    2011-11-17

    Mr. Frank Salvatore, High Performance Technologies FIXED AND ROTARY WING AIRCRAFT 13274 - “CREATE-AV DaVinci : Model-Based Engineering for Systems... Tools for Reliability Improvement and Addressing Modularity Issues in Evaluation and Physical Testing”, Dr. Richard Heine, Army Materiel Systems

  11. Pathways to Children's Academic Performance and Prosocial Behaviour: Roles of Physical Health Status, Environmental, Family, and Child Factors

    ERIC Educational Resources Information Center

    King, Gillian; McDougall, Janette; DeWit, David; Hong, Sungjin; Miller, Linda; Offord, David; Meyer, Katherine; LaPorta, John

    2005-01-01

    The objective of this article is to examine the pathways by which children's physical health status, environmental, family, and child factors affect children's academic performance and prosocial behaviour, using a theoretically-based and empirically-based model of competence development. The model proposes that 3 types of relational processes,…

  12. Computational studies of physical properties of Nb-Si based alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouyang, Lizhi

    2015-04-16

    The overall goal is to provide physical properties data supplementing experiments for thermodynamic modeling and other simulations such as phase filed simulation for microstructure and continuum simulations for mechanical properties. These predictive computational modeling and simulations may yield insights that can be used to guide materials design, processing, and manufacture. Ultimately, they may lead to usable Nb-Si based alloy which could play an important role in current plight towards greener energy. The main objectives of the proposed projects are: (1) developing a first principles method based supercell approach for calculating thermodynamic and mechanic properties of ordered crystals and disordered latticesmore » including solid solution; (2) application of the supercell approach to Nb-Si base alloy to compute physical properties data that can be used for thermodynamic modeling and other simulations to guide the optimal design of Nb-Si based alloy.« less

  13. Analyzing Log Files to Predict Students' Problem Solving Performance in a Computer-Based Physics Tutor

    ERIC Educational Resources Information Center

    Lee, Young-Jin

    2015-01-01

    This study investigates whether information saved in the log files of a computer-based tutor can be used to predict the problem solving performance of students. The log files of a computer-based physics tutoring environment called Andes Physics Tutor was analyzed to build a logistic regression model that predicted success and failure of students'…

  14. Models-Based Practice: Great White Hope or White Elephant?

    ERIC Educational Resources Information Center

    Casey, Ashley

    2014-01-01

    Background: Many critical curriculum theorists in physical education have advocated a model- or models-based approach to teaching in the subject. This paper explores the literature base around models-based practice (MBP) and asks if this multi-models approach to curriculum planning has the potential to be the great white hope of pedagogical change…

  15. Real time polymer nanocomposites-based physical nanosensors: theory and modeling.

    PubMed

    Bellucci, Stefano; Shunin, Yuri; Gopeyenko, Victor; Lobanova-Shunina, Tamara; Burlutskaya, Nataly; Zhukovskii, Yuri

    2017-09-01

    Functionalized carbon nanotubes and graphene nanoribbons nanostructures, serving as the basis for the creation of physical pressure and temperature nanosensors, are considered as tools for ecological monitoring and medical applications. Fragments of nanocarbon inclusions with different morphologies, presenting a disordered system, are regarded as models for nanocomposite materials based on carbon nanoсluster suspension in dielectric polymer environments (e.g., epoxy resins). We have formulated the approach of conductivity calculations for carbon-based polymer nanocomposites using the effective media cluster approach, disordered systems theory and conductivity mechanisms analysis, and obtained the calibration dependences. Providing a proper description of electric responses in nanosensoring systems, we demonstrate the implementation of advanced simulation models suitable for real time control nanosystems. We also consider the prospects and prototypes of the proposed physical nanosensor models providing the comparisons with experimental calibration dependences.

  16. Real time polymer nanocomposites-based physical nanosensors: theory and modeling

    NASA Astrophysics Data System (ADS)

    Bellucci, Stefano; Shunin, Yuri; Gopeyenko, Victor; Lobanova-Shunina, Tamara; Burlutskaya, Nataly; Zhukovskii, Yuri

    2017-09-01

    Functionalized carbon nanotubes and graphene nanoribbons nanostructures, serving as the basis for the creation of physical pressure and temperature nanosensors, are considered as tools for ecological monitoring and medical applications. Fragments of nanocarbon inclusions with different morphologies, presenting a disordered system, are regarded as models for nanocomposite materials based on carbon nanoсluster suspension in dielectric polymer environments (e.g., epoxy resins). We have formulated the approach of conductivity calculations for carbon-based polymer nanocomposites using the effective media cluster approach, disordered systems theory and conductivity mechanisms analysis, and obtained the calibration dependences. Providing a proper description of electric responses in nanosensoring systems, we demonstrate the implementation of advanced simulation models suitable for real time control nanosystems. We also consider the prospects and prototypes of the proposed physical nanosensor models providing the comparisons with experimental calibration dependences.

  17. Use of machine learning methods to reduce predictive error of groundwater models.

    PubMed

    Xu, Tianfang; Valocchi, Albert J; Choi, Jaesik; Amir, Eyal

    2014-01-01

    Quantitative analyses of groundwater flow and transport typically rely on a physically-based model, which is inherently subject to error. Errors in model structure, parameter and data lead to both random and systematic error even in the output of a calibrated model. We develop complementary data-driven models (DDMs) to reduce the predictive error of physically-based groundwater models. Two machine learning techniques, the instance-based weighting and support vector regression, are used to build the DDMs. This approach is illustrated using two real-world case studies of the Republican River Compact Administration model and the Spokane Valley-Rathdrum Prairie model. The two groundwater models have different hydrogeologic settings, parameterization, and calibration methods. In the first case study, cluster analysis is introduced for data preprocessing to make the DDMs more robust and computationally efficient. The DDMs reduce the root-mean-square error (RMSE) of the temporal, spatial, and spatiotemporal prediction of piezometric head of the groundwater model by 82%, 60%, and 48%, respectively. In the second case study, the DDMs reduce the RMSE of the temporal prediction of piezometric head of the groundwater model by 77%. It is further demonstrated that the effectiveness of the DDMs depends on the existence and extent of the structure in the error of the physically-based model. © 2013, National GroundWater Association.

  18. The Monash University Interactive Simple Climate Model

    NASA Astrophysics Data System (ADS)

    Dommenget, D.

    2013-12-01

    The Monash university interactive simple climate model is a web-based interface that allows students and the general public to explore the physical simulation of the climate system with a real global climate model. It is based on the Globally Resolved Energy Balance (GREB) model, which is a climate model published by Dommenget and Floeter [2011] in the international peer review science journal Climate Dynamics. The model simulates most of the main physical processes in the climate system in a very simplistic way and therefore allows very fast and simple climate model simulations on a normal PC computer. Despite its simplicity the model simulates the climate response to external forcings, such as doubling of the CO2 concentrations very realistically (similar to state of the art climate models). The Monash simple climate model web-interface allows you to study the results of more than a 2000 different model experiments in an interactive way and it allows you to study a number of tutorials on the interactions of physical processes in the climate system and solve some puzzles. By switching OFF/ON physical processes you can deconstruct the climate and learn how all the different processes interact to generate the observed climate and how the processes interact to generate the IPCC predicted climate change for anthropogenic CO2 increase. The presentation will illustrate how this web-base tool works and what are the possibilities in teaching students with this tool are.

  19. Development of a dynamic framework to explain population patterns of leisure-time physical activity through agent-based modeling.

    PubMed

    Garcia, Leandro M T; Diez Roux, Ana V; Martins, André C R; Yang, Yong; Florindo, Alex A

    2017-08-22

    Despite the increasing body of evidences on the factors influencing leisure-time physical activity, our understanding of the mechanisms and interactions that lead to the formation and evolution of population patterns is still limited. Moreover, most frameworks in this field fail to capture dynamic processes. Our aim was to create a dynamic conceptual model depicting the interaction between key psychological attributes of individuals and main aspects of the built and social environments in which they live. This conceptual model will inform and support the development of an agent-based model aimed to explore how population patterns of LTPA in adults may emerge from the dynamic interplay between psychological traits and built and social environments. We integrated existing theories and models as well as available empirical data (both from literature reviews), and expert opinions (based on a systematic expert assessment of an intermediary version of the model). The model explicitly presents intention as the proximal determinant of leisure-time physical activity, a relationship dynamically moderated by the built environment (access, quality, and available activities) - with the strength of the moderation varying as a function of the person's intention- and influenced both by the social environment (proximal network's and community's behavior) and the person's behavior. Our conceptual model is well supported by evidence and experts' opinions and will inform the design of our agent-based model, as well as data collection and analysis of future investigations on population patterns of leisure-time physical activity among adults.

  20. Individual, social environmental, and physical environmental influences on physical activity among black and white adults: a structural equation analysis.

    PubMed

    McNeill, Lorna Haughton; Wyrwich, Kathleen W; Brownson, Ross C; Clark, Eddie M; Kreuter, Matthew W

    2006-02-01

    Social ecological models suggest that conditions in the social and physical environment, in addition to individual factors, play important roles in health behavior change. Using structural equation modeling, this study tested a theoretically and empirically based explanatory model of physical activity to examine theorized direct and indirect effects of individual (e.g., motivation and self-efficacy), social environmental (e.g., social support), and physical environmental factors (e.g., neighborhood quality and availability of facilities). A community-based sample of adults (N = 910) was recruited from 2 public health centers (67% female, 43% African American, 43% < $20,000/year, M age = 33 years) and completed a self-administered survey assessing their current physical activity level, intrinsic and extrinsic motivation for physical activity, perceived social support, self-efficacy, and perceptions of the physical environment. Results indicated that (a) perceptions of the physical environment had direct effects on physical activity, (b) both the social and physical environments had indirect effects on physical activity through motivation and self-efficacy, and (c) social support influenced physical activity indirectly through intrinsic and extrinsic motivation. For all forms of activity, self-efficacy was the strongest direct correlate of physical activity, and evidence of a positive dose-response relation emerged between self-efficacy and intensity of physical activity. Findings from this research highlight the interactive role of individual and environmental influences on physical activity.

  1. Prediction of AL and Dst Indices from ACE Measurements Using Hybrid Physics/Black-Box Techniques

    NASA Astrophysics Data System (ADS)

    Spencer, E.; Rao, A.; Horton, W.; Mays, L.

    2008-12-01

    ACE measurements of the solar wind velocity, IMF and proton density is used to drive a hybrid Physics/Black- Box model of the nightside magnetosphere. The core physics is contained in a low order nonlinear dynamical model of the nightside magnetosphere called WINDMI. The model is augmented by wavelet based nonlinear mappings between the solar wind quantities and the input into the physics model, followed by further wavelet based mappings of the model output field aligned currents onto the ground based magnetometer measurements of the AL index and Dst index. The black box mappings are introduced at the input stage to account for uncertainties in the way the solar wind quantities are transported from the ACE spacecraft at L1 to the magnetopause. Similar mappings are introduced at the output stage to account for a spatially and temporally varying westward auroral electrojet geometry. The parameters of the model are tuned using a genetic algorithm, and trained using the large geomagnetic storm dataset of October 3-7 2000. It's predictive performance is then evaluated on subsequent storm datasets, in particular the April 15-24 2002 storm. This work is supported by grant NSF 7020201

  2. Quasi-dynamic earthquake fault systems with rheological heterogeneity

    NASA Astrophysics Data System (ADS)

    Brietzke, G. B.; Hainzl, S.; Zoeller, G.; Holschneider, M.

    2009-12-01

    Seismic risk and hazard estimates mostly use pure empirical, stochastic models of earthquake fault systems tuned specifically to the vulnerable areas of interest. Although such models allow for reasonable risk estimates, such models cannot allow for physical statements of the described seismicity. In contrary such empirical stochastic models, physics based earthquake fault systems models allow for a physical reasoning and interpretation of the produced seismicity and system dynamics. Recently different fault system earthquake simulators based on frictional stick-slip behavior have been used to study effects of stress heterogeneity, rheological heterogeneity, or geometrical complexity on earthquake occurrence, spatial and temporal clustering of earthquakes, and system dynamics. Here we present a comparison of characteristics of synthetic earthquake catalogs produced by two different formulations of quasi-dynamic fault system earthquake simulators. Both models are based on discretized frictional faults embedded in an elastic half-space. While one (1) is governed by rate- and state-dependent friction with allowing three evolutionary stages of independent fault patches, the other (2) is governed by instantaneous frictional weakening with scheduled (and therefore causal) stress transfer. We analyze spatial and temporal clustering of events and characteristics of system dynamics by means of physical parameters of the two approaches.

  3. Increasing precision of turbidity-based suspended sediment concentration and load estimates.

    PubMed

    Jastram, John D; Zipper, Carl E; Zelazny, Lucian W; Hyer, Kenneth E

    2010-01-01

    Turbidity is an effective tool for estimating and monitoring suspended sediments in aquatic systems. Turbidity can be measured in situ remotely and at fine temporal scales as a surrogate for suspended sediment concentration (SSC), providing opportunity for a more complete record of SSC than is possible with physical sampling approaches. However, there is variability in turbidity-based SSC estimates and in sediment loadings calculated from those estimates. This study investigated the potential to improve turbidity-based SSC, and by extension the resulting sediment loading estimates, by incorporating hydrologic variables that can be monitored remotely and continuously (typically 15-min intervals) into the SSC estimation procedure. On the Roanoke River in southwestern Virginia, hydrologic stage, turbidity, and other water-quality parameters were monitored with in situ instrumentation; suspended sediments were sampled manually during elevated turbidity events; samples were analyzed for SSC and physical properties including particle-size distribution and organic C content; and rainfall was quantified by geologic source area. The study identified physical properties of the suspended-sediment samples that contribute to SSC estimation variance and hydrologic variables that explained variability of those physical properties. Results indicated that the inclusion of any of the measured physical properties in turbidity-based SSC estimation models reduces unexplained variance. Further, the use of hydrologic variables to represent these physical properties, along with turbidity, resulted in a model, relying solely on data collected remotely and continuously, that estimated SSC with less variance than a conventional turbidity-based univariate model, allowing a more precise estimate of sediment loading, Modeling results are consistent with known mechanisms governing sediment transport in hydrologic systems.

  4. Performance of the air2stream model that relates air and stream water temperatures depends on the calibration method

    NASA Astrophysics Data System (ADS)

    Piotrowski, Adam P.; Napiorkowski, Jaroslaw J.

    2018-06-01

    A number of physical or data-driven models have been proposed to evaluate stream water temperatures based on hydrological and meteorological observations. However, physical models require a large amount of information that is frequently unavailable, while data-based models ignore the physical processes. Recently the air2stream model has been proposed as an intermediate alternative that is based on physical heat budget processes, but it is so simplified that the model may be applied like data-driven ones. However, the price for simplicity is the need to calibrate eight parameters that, although have some physical meaning, cannot be measured or evaluated a priori. As a result, applicability and performance of the air2stream model for a particular stream relies on the efficiency of the calibration method. The original air2stream model uses an inefficient 20-year old approach called Particle Swarm Optimization with inertia weight. This study aims at finding an effective and robust calibration method for the air2stream model. Twelve different optimization algorithms are examined on six different streams from northern USA (states of Washington, Oregon and New York), Poland and Switzerland, located in both high mountains, hilly and lowland areas. It is found that the performance of the air2stream model depends significantly on the calibration method. Two algorithms lead to the best results for each considered stream. The air2stream model, calibrated with the chosen optimization methods, performs favorably against classical streamwater temperature models. The MATLAB code of the air2stream model and the chosen calibration procedure (CoBiDE) are available as Supplementary Material on the Journal of Hydrology web page.

  5. Testing a self-determination theory model of children's physical activity motivation: a cross-sectional study.

    PubMed

    Sebire, Simon J; Jago, Russell; Fox, Kenneth R; Edwards, Mark J; Thompson, Janice L

    2013-09-26

    Understanding children's physical activity motivation, its antecedents and associations with behavior is important and can be advanced by using self-determination theory. However, research among youth is largely restricted to adolescents and studies of motivation within certain contexts (e.g., physical education). There are no measures of self-determination theory constructs (physical activity motivation or psychological need satisfaction) for use among children and no previous studies have tested a self-determination theory-based model of children's physical activity motivation. The purpose of this study was to test the reliability and validity of scores derived from scales adapted to measure self-determination theory constructs among children and test a motivational model predicting accelerometer-derived physical activity. Cross-sectional data from 462 children aged 7 to 11 years from 20 primary schools in Bristol, UK were analysed. Confirmatory factor analysis was used to examine the construct validity of adapted behavioral regulation and psychological need satisfaction scales. Structural equation modelling was used to test cross-sectional associations between psychological need satisfaction, motivation types and physical activity assessed by accelerometer. The construct validity and reliability of the motivation and psychological need satisfaction measures were supported. Structural equation modelling provided evidence for a motivational model in which psychological need satisfaction was positively associated with intrinsic and identified motivation types and intrinsic motivation was positively associated with children's minutes in moderate-to-vigorous physical activity. The study provides evidence for the psychometric properties of measures of motivation aligned with self-determination theory among children. Children's motivation that is based on enjoyment and inherent satisfaction of physical activity is associated with their objectively-assessed physical activity and such motivation is positively associated with perceptions of psychological need satisfaction. These psychological factors represent potential malleable targets for interventions to increase children's physical activity.

  6. Comparisons between physics-based, engineering, and statistical learning models for outdoor sound propagation.

    PubMed

    Hart, Carl R; Reznicek, Nathan J; Wilson, D Keith; Pettit, Chris L; Nykaza, Edward T

    2016-05-01

    Many outdoor sound propagation models exist, ranging from highly complex physics-based simulations to simplified engineering calculations, and more recently, highly flexible statistical learning methods. Several engineering and statistical learning models are evaluated by using a particular physics-based model, namely, a Crank-Nicholson parabolic equation (CNPE), as a benchmark. Narrowband transmission loss values predicted with the CNPE, based upon a simulated data set of meteorological, boundary, and source conditions, act as simulated observations. In the simulated data set sound propagation conditions span from downward refracting to upward refracting, for acoustically hard and soft boundaries, and low frequencies. Engineering models used in the comparisons include the ISO 9613-2 method, Harmonoise, and Nord2000 propagation models. Statistical learning methods used in the comparisons include bagged decision tree regression, random forest regression, boosting regression, and artificial neural network models. Computed skill scores are relative to sound propagation in a homogeneous atmosphere over a rigid ground. Overall skill scores for the engineering noise models are 0.6%, -7.1%, and 83.8% for the ISO 9613-2, Harmonoise, and Nord2000 models, respectively. Overall skill scores for the statistical learning models are 99.5%, 99.5%, 99.6%, and 99.6% for bagged decision tree, random forest, boosting, and artificial neural network regression models, respectively.

  7. Physics-Based Hazard Assessment for Critical Structures Near Large Earthquake Sources

    NASA Astrophysics Data System (ADS)

    Hutchings, L.; Mert, A.; Fahjan, Y.; Novikova, T.; Golara, A.; Miah, M.; Fergany, E.; Foxall, W.

    2017-09-01

    We argue that for critical structures near large earthquake sources: (1) the ergodic assumption, recent history, and simplified descriptions of the hazard are not appropriate to rely on for earthquake ground motion prediction and can lead to a mis-estimation of the hazard and risk to structures; (2) a physics-based approach can address these issues; (3) a physics-based source model must be provided to generate realistic phasing effects from finite rupture and model near-source ground motion correctly; (4) wave propagations and site response should be site specific; (5) a much wider search of possible sources of ground motion can be achieved computationally with a physics-based approach; (6) unless one utilizes a physics-based approach, the hazard and risk to structures has unknown uncertainties; (7) uncertainties can be reduced with a physics-based approach, but not with an ergodic approach; (8) computational power and computer codes have advanced to the point that risk to structures can be calculated directly from source and site-specific ground motions. Spanning the variability of potential ground motion in a predictive situation is especially difficult for near-source areas, but that is the distance at which the hazard is the greatest. The basis of a "physical-based" approach is ground-motion syntheses derived from physics and an understanding of the earthquake process. This is an overview paper and results from previous studies are used to make the case for these conclusions. Our premise is that 50 years of strong motion records is insufficient to capture all possible ranges of site and propagation path conditions, rupture processes, and spatial geometric relationships between source and site. Predicting future earthquake scenarios is necessary; models that have little or no physical basis but have been tested and adjusted to fit available observations can only "predict" what happened in the past, which should be considered description as opposed to prediction. We have developed a methodology for synthesizing physics-based broadband ground motion that incorporates the effects of realistic earthquake rupture along specific faults and the actual geology between the source and site.

  8. Active lifestyles in older adults: an integrated predictive model of physical activity and exercise

    PubMed Central

    Galli, Federica; Chirico, Andrea; Mallia, Luca; Girelli, Laura; De Laurentiis, Michelino; Lucidi, Fabio; Giordano, Antonio; Botti, Gerardo

    2018-01-01

    Physical activity and exercise have been identified as behaviors to preserve physical and mental health in older adults. The aim of the present study was to test the Integrated Behavior Change model in exercise and physical activity behaviors. The study evaluated two different samples of older adults: the first engaged in exercise class, the second doing spontaneous physical activity. The key analyses relied on Variance-Based Structural Modeling, which were performed by means of WARP PLS 6.0 statistical software. The analyses estimated the Integrated Behavior Change model in predicting exercise and physical activity, in a longitudinal design across two months of assessment. The tested models exhibited a good fit with the observed data derived from the model focusing on exercise, as well as with those derived from the model focusing on physical activity. Results showed, also, some effects and relations specific to each behavioral context. Results may form a starting point for future experimental and intervention research. PMID:29875997

  9. Modelling Systems of Classical/Quantum Identical Particles by Focusing on Algorithms

    ERIC Educational Resources Information Center

    Guastella, Ivan; Fazio, Claudio; Sperandeo-Mineo, Rosa Maria

    2012-01-01

    A procedure modelling ideal classical and quantum gases is discussed. The proposed approach is mainly based on the idea that modelling and algorithm analysis can provide a deeper understanding of particularly complex physical systems. Appropriate representations and physical models able to mimic possible pseudo-mechanisms of functioning and having…

  10. Semiparametric modeling: Correcting low-dimensional model error in parametric models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, Tyrus, E-mail: thb11@psu.edu; Harlim, John, E-mail: jharlim@psu.edu; Department of Meteorology, the Pennsylvania State University, 503 Walker Building, University Park, PA 16802-5013

    2016-03-01

    In this paper, a semiparametric modeling approach is introduced as a paradigm for addressing model error arising from unresolved physical phenomena. Our approach compensates for model error by learning an auxiliary dynamical model for the unknown parameters. Practically, the proposed approach consists of the following steps. Given a physics-based model and a noisy data set of historical observations, a Bayesian filtering algorithm is used to extract a time-series of the parameter values. Subsequently, the diffusion forecast algorithm is applied to the retrieved time-series in order to construct the auxiliary model for the time evolving parameters. The semiparametric forecasting algorithm consistsmore » of integrating the existing physics-based model with an ensemble of parameters sampled from the probability density function of the diffusion forecast. To specify initial conditions for the diffusion forecast, a Bayesian semiparametric filtering method that extends the Kalman-based filtering framework is introduced. In difficult test examples, which introduce chaotically and stochastically evolving hidden parameters into the Lorenz-96 model, we show that our approach can effectively compensate for model error, with forecasting skill comparable to that of the perfect model.« less

  11. A New 3D Multi-fluid Model: A Study of Kinetic Effects and Variations of Physical Conditions in the Cometary Coma

    NASA Astrophysics Data System (ADS)

    Shou, Y.; Combi, M.; Toth, G.; Tenishev, V.; Fougere, N.; Jia, X.; Rubin, M.; Huang, Z.; Hansen, K.; Gombosi, T.; Bieler, A.

    2016-12-01

    Physics-based numerical coma models are desirable whether to interpret the spacecraft observations of the inner coma or to compare with the ground-based observations of the outer coma. In this work, we develop a multi-neutral-fluid model based on the BATS-R-US code of the University of Michigan, which is capable of computing both the inner and outer coma and simulating time-variable phenomena. It treats H2O, OH, H2, O, and H as separate fluids and each fluid has its own velocity and temperature, with collisions coupling all fluids together. The self-consistent collisional interactions decrease the velocity differences, re-distribute the excess energy deposited by chemical reactions among all species, and account for the varying heating efficiency under various physical conditions. Recognizing that the fluid approach has limitations in capturing all of the correct physics for certain applications, especially for very low density environment, we applied our multi-fluid coma model to comet 67P/Churyumov-Gerasimenko at various heliocentric distances and demonstrated that it yields comparable results to the Direct Simulation Monte Carlo (DSMC) model, which is based on a kinetic approach that is valid under these conditions. Therefore, our model may be a powerful alternative to the particle-based model, especially for some computationally intensive simulations. In addition, by running the model with several combinations of production rates and heliocentric distances, we characterize the cometary H2O expansion speeds and demonstrate the nonlinear dependencies of production rate and heliocentric distance. Our results are also compared to previous modeling work and remote observations, which serve as further validation of our model.

  12. Launch Vehicle Debris Models and Crew Vehicle Ascent Abort Risk

    NASA Technical Reports Server (NTRS)

    Gee, Ken; Lawrence, Scott

    2013-01-01

    For manned space launch systems, a reliable abort system is required to reduce the risks associated with a launch vehicle failure during ascent. Understanding the risks associated with failure environments can be achieved through the use of physics-based models of these environments. Debris fields due to destruction of the launch vehicle is one such environment. To better analyze the risk posed by debris, a physics-based model for generating launch vehicle debris catalogs has been developed. The model predicts the mass distribution of the debris field based on formulae developed from analysis of explosions. Imparted velocity distributions are computed using a shock-physics code to model the explosions within the launch vehicle. A comparison of the debris catalog with an existing catalog for the Shuttle external tank show good comparison in the debris characteristics and the predicted debris strike probability. The model is used to analyze the effects of number of debris pieces and velocity distributions on the strike probability and risk.

  13. Joint inversion of marine seismic AVA and CSEM data using statistical rock-physics models and Markov random fields: Stochastic inversion of AVA and CSEM data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, J.; Hoversten, G.M.

    2011-09-15

    Joint inversion of seismic AVA and CSEM data requires rock-physics relationships to link seismic attributes to electrical properties. Ideally, we can connect them through reservoir parameters (e.g., porosity and water saturation) by developing physical-based models, such as Gassmann’s equations and Archie’s law, using nearby borehole logs. This could be difficult in the exploration stage because information available is typically insufficient for choosing suitable rock-physics models and for subsequently obtaining reliable estimates of the associated parameters. The use of improper rock-physics models and the inaccuracy of the estimates of model parameters may cause misleading inversion results. Conversely, it is easy tomore » derive statistical relationships among seismic and electrical attributes and reservoir parameters from distant borehole logs. In this study, we develop a Bayesian model to jointly invert seismic AVA and CSEM data for reservoir parameter estimation using statistical rock-physics models; the spatial dependence of geophysical and reservoir parameters are carried out by lithotypes through Markov random fields. We apply the developed model to a synthetic case, which simulates a CO{sub 2} monitoring application. We derive statistical rock-physics relations from borehole logs at one location and estimate seismic P- and S-wave velocity ratio, acoustic impedance, density, electrical resistivity, lithotypes, porosity, and water saturation at three different locations by conditioning to seismic AVA and CSEM data. Comparison of the inversion results with their corresponding true values shows that the correlation-based statistical rock-physics models provide significant information for improving the joint inversion results.« less

  14. Inadequacy representation of flamelet-based RANS model for turbulent non-premixed flame

    NASA Astrophysics Data System (ADS)

    Lee, Myoungkyu; Oliver, Todd; Moser, Robert

    2017-11-01

    Stochastic representations for model inadequacy in RANS-based models of non-premixed jet flames are developed and explored. Flamelet-based RANS models are attractive for engineering applications relative to higher-fidelity methods because of their low computational costs. However, the various assumptions inherent in such models introduce errors that can significantly affect the accuracy of computed quantities of interest. In this work, we develop an approach to represent the model inadequacy of the flamelet-based RANS model. In particular, we pose a physics-based, stochastic PDE for the triple correlation of the mixture fraction. This additional uncertain state variable is then used to construct perturbations of the PDF for the instantaneous mixture fraction, which is used to obtain an uncertain perturbation of the flame temperature. A hydrogen-air non-premixed jet flame is used to demonstrate the representation of the inadequacy of the flamelet-based RANS model. This work was supported by DARPA-EQUiPS(Enabling Quantification of Uncertainty in Physical Systems) program.

  15. Pain, pain intensity and pain disability in high school students are differently associated with physical activity, screening hours and sleep.

    PubMed

    Silva, Anabela G; Sa-Couto, Pedro; Queirós, Alexandra; Neto, Maritza; Rocha, Nelson P

    2017-05-16

    Studies exploring the association between physical activity, screen time and sleep and pain usually focus on a limited number of painful body sites. Nevertheless, pain at different body sites is likely to be of different nature. Therefore, this study aims to explore and compare the association between time spent in self-reported physical activity, in screen based activities and sleeping and i) pain presence in the last 7-days for 9 different body sites; ii) pain intensity at 9 different body sites and iii) global disability. Nine hundred sixty nine students completed a questionnaire on pain, time spent in moderate and vigorous physical activity, screen based time watching TV/DVD, playing, using mobile phones and computers and sleeping hours. Univariate and multivariate associations between pain presence, pain intensity and disability and physical activity, screen based time and sleeping hours were investigated. Pain presence: sleeping remained in the multivariable model for the neck, mid back, wrists, knees and ankles/feet (OR 1.17 to 2.11); moderate physical activity remained in the multivariate model for the neck, shoulders, wrists, hips and ankles/feet (OR 1.06 to 1.08); vigorous physical activity remained in the multivariate model for mid back, knees and ankles/feet (OR 1.05 to 1.09) and screen time remained in the multivariate model for the low back (OR = 2.34. Pain intensity: screen time and moderate physical activity remained in the multivariable model for pain intensity at the neck, mid back, low back, shoulder, knees and ankles/feet (Rp 2 0.02 to 0.04) and at the wrists (Rp 2  = 0.04), respectively. Disability showed no association with sleeping, screen time or physical activity. This study suggests both similarities and differences in the patterns of association between time spent in physical activity, sleeping and in screen based activities and pain presence at 8 different body sites. In addition, they also suggest that the factors associated with the presence of pain, pain intensity and pain associated disability are different.

  16. Event-driven simulation in SELMON: An overview of EDSE

    NASA Technical Reports Server (NTRS)

    Rouquette, Nicolas F.; Chien, Steve A.; Charest, Leonard, Jr.

    1992-01-01

    EDSE (event-driven simulation engine), a model-based event-driven simulator implemented for SELMON, a tool for sensor selection and anomaly detection in real-time monitoring is described. The simulator is used in conjunction with a causal model to predict future behavior of the model from observed data. The behavior of the causal model is interpreted as equivalent to the behavior of the physical system being modeled. An overview of the functionality of the simulator and the model-based event-driven simulation paradigm on which it is based is provided. Included are high-level descriptions of the following key properties: event consumption and event creation, iterative simulation, synchronization and filtering of monitoring data from the physical system. Finally, how EDSE stands with respect to the relevant open issues of discrete-event and model-based simulation is discussed.

  17. Hybrid modeling of nitrate fate in large catchments using fuzzy-rules

    NASA Astrophysics Data System (ADS)

    van der Heijden, Sven; Haberlandt, Uwe

    2010-05-01

    Especially for nutrient balance simulations, physically based ecohydrological modeling needs an abundance of measured data and model parameters, which for large catchments all too often are not available in sufficient spatial or temporal resolution or are simply unknown. For efficient large-scale studies it is thus beneficial to have methods at one's disposal which are parsimonious concerning the number of model parameters and the necessary input data. One such method is fuzzy-rule based modeling, which compared to other machine-learning techniques has the advantages to produce models (the fuzzy-rules) which are physically interpretable to a certain extent, and to allow the explicit introduction of expert knowledge through pre-defined rules. The study focuses on the application of fuzzy-rule based modeling for nitrate simulation in large catchments, in particular concerning decision support. Fuzzy-rule based modeling enables the generation of simple, efficient, easily understandable models with nevertheless satisfactory accuracy for problems of decision support. The chosen approach encompasses a hybrid metamodeling, which includes the generation of fuzzy-rules with data originating from physically based models as well as a coupling with a physically based water balance model. For the generation of the needed training data and also as coupled water balance model the ecohydrological model SWAT is employed. The conceptual model divides the nitrate pathway into three parts. The first fuzzy-module calculates nitrate leaching with the percolating water from soil surface to groundwater, the second module simulates groundwater passage, and the final module replaces the in-stream processes. The aim of this modularization is to create flexibility for using each of the modules on its own, for changing or completely replacing it. For fuzzy-rule based modeling this can explicitly mean that the re-training of one of the modules with newly available data will be possible without problem, while the module assembly does not have to be modified. Apart from the concept of hybrid metamodeling first results are presented for the fuzzy-module for nitrate passage through the unsaturated zone.

  18. Implementing a modeling software for animated protein-complex interactions using a physics simulation library.

    PubMed

    Ueno, Yutaka; Ito, Shuntaro; Konagaya, Akihiko

    2014-12-01

    To better understand the behaviors and structural dynamics of proteins within a cell, novel software tools are being developed that can create molecular animations based on the findings of structural biology. This study proposes our method developed based on our prototypes to detect collisions and examine the soft-body dynamics of molecular models. The code was implemented with a software development toolkit for rigid-body dynamics simulation and a three-dimensional graphics library. The essential functions of the target software system included the basic molecular modeling environment, collision detection in the molecular models, and physical simulations of the movement of the model. Taking advantage of recent software technologies such as physics simulation modules and interpreted scripting language, the functions required for accurate and meaningful molecular animation were implemented efficiently.

  19. An Illumination- and Temperature-Dependent Analytical Model for Copper Indium Gallium Diselenide (CIGS) Solar Cells

    DOE PAGES

    Sun, Xingshu; Silverman, Timothy; Garris, Rebekah; ...

    2016-07-18

    In this study, we present a physics-based analytical model for copper indium gallium diselenide (CIGS) solar cells that describes the illumination- and temperature-dependent current-voltage (I-V) characteristics and accounts for the statistical shunt variation of each cell. The model is derived by solving the drift-diffusion transport equation so that its parameters are physical and, therefore, can be obtained from independent characterization experiments. The model is validated against CIGS I-V characteristics as a function of temperature and illumination intensity. This physics-based model can be integrated into a large-scale simulation framework to optimize the performance of solar modules, as well as predict themore » long-term output yields of photovoltaic farms under different environmental conditions.« less

  20. Potential Teachers' Appropriate and Inappropriate Application of Pedagogical Resources in a Model-Based Physics Course: A "Knowledge in Pieces" Perspective on Teacher Learning

    ERIC Educational Resources Information Center

    Harlow, Danielle B.; Bianchini, Julie A.; Swanson, Lauren H.; Dwyer, Hilary A.

    2013-01-01

    We used a "knowledge in pieces" perspective on teacher learning to document undergraduates' pedagogical resources in a model-based physics course for potential teachers. We defined pedagogical resources as small, discrete ideas about teaching science that are applied appropriately or inappropriately in specific contexts. Neither…

  1. New agrophysics divisions: application of ANFIS, fuzzy indicator modeling, physic-technical bases of plant breeding, and materials based on humic acids (review)

    USDA-ARS?s Scientific Manuscript database

    This work is devoted to review the new scientific divisions that emerged in agrophysics in the last 10-15 years. Among them are the following: 1) application of Adaptive Neuro-Fuzzy Inference System (ANFIS), 2) development and application of fuzzy indicator modeling, 3) agrophysical and physic-tech...

  2. A Data Based Gymnasium: A Systematic Approach to Physical Education for the Handicapped.

    ERIC Educational Resources Information Center

    Dunn, John M.; And Others

    The authors describe a data based physical education curriculum designed for low incidence severely handicapped students by Oregon State University in conjunction with Teaching Research. Chapter 1 provides a brief introduction to the physical education curriculum and the Teaching Research model with emphasis placed on the importance of…

  3. Data Based Physical Education for the Severely Handicapped.

    ERIC Educational Resources Information Center

    Dunn, John M.; Morehouse, Jim W.

    The paper provides an overview of a data based physical education program for the severely handicapped which has been developed at Oregon State University's Department of Physical Education in cooperation with the Special Education Department of Teaching Research. Concepts which form the basis of the model include that there is no way of…

  4. Combination of statistical and physically based methods to assess shallow slide susceptibility at the basin scale

    NASA Astrophysics Data System (ADS)

    Oliveira, Sérgio C.; Zêzere, José L.; Lajas, Sara; Melo, Raquel

    2017-07-01

    Approaches used to assess shallow slide susceptibility at the basin scale are conceptually different depending on the use of statistical or physically based methods. The former are based on the assumption that the same causes are more likely to produce the same effects, whereas the latter are based on the comparison between forces which tend to promote movement along the slope and the counteracting forces that are resistant to motion. Within this general framework, this work tests two hypotheses: (i) although conceptually and methodologically distinct, the statistical and deterministic methods generate similar shallow slide susceptibility results regarding the model's predictive capacity and spatial agreement; and (ii) the combination of shallow slide susceptibility maps obtained with statistical and physically based methods, for the same study area, generate a more reliable susceptibility model for shallow slide occurrence. These hypotheses were tested at a small test site (13.9 km2) located north of Lisbon (Portugal), using a statistical method (the information value method, IV) and a physically based method (the infinite slope method, IS). The landslide susceptibility maps produced with the statistical and deterministic methods were combined into a new landslide susceptibility map. The latter was based on a set of integration rules defined by the cross tabulation of the susceptibility classes of both maps and analysis of the corresponding contingency tables. The results demonstrate a higher predictive capacity of the new shallow slide susceptibility map, which combines the independent results obtained with statistical and physically based models. Moreover, the combination of the two models allowed the identification of areas where the results of the information value and the infinite slope methods are contradictory. Thus, these areas were classified as uncertain and deserve additional investigation at a more detailed scale.

  5. Physics and financial economics (1776-2014): puzzles, Ising and agent-based models.

    PubMed

    Sornette, Didier

    2014-06-01

    This short review presents a selected history of the mutual fertilization between physics and economics--from Isaac Newton and Adam Smith to the present. The fundamentally different perspectives embraced in theories developed in financial economics compared with physics are dissected with the examples of the volatility smile and of the excess volatility puzzle. The role of the Ising model of phase transitions to model social and financial systems is reviewed, with the concepts of random utilities and the logit model as the analog of the Boltzmann factor in statistical physics. Recent extensions in terms of quantum decision theory are also covered. A wealth of models are discussed briefly that build on the Ising model and generalize it to account for the many stylized facts of financial markets. A summary of the relevance of the Ising model and its extensions is provided to account for financial bubbles and crashes. The review would be incomplete if it did not cover the dynamical field of agent-based models (ABMs), also known as computational economic models, of which the Ising-type models are just special ABM implementations. We formulate the 'Emerging Intelligence Market Hypothesis' to reconcile the pervasive presence of 'noise traders' with the near efficiency of financial markets. Finally, we note that evolutionary biology, more than physics, is now playing a growing role to inspire models of financial markets.

  6. Physics and financial economics (1776-2014): puzzles, Ising and agent-based models

    NASA Astrophysics Data System (ADS)

    Sornette, Didier

    2014-06-01

    This short review presents a selected history of the mutual fertilization between physics and economics—from Isaac Newton and Adam Smith to the present. The fundamentally different perspectives embraced in theories developed in financial economics compared with physics are dissected with the examples of the volatility smile and of the excess volatility puzzle. The role of the Ising model of phase transitions to model social and financial systems is reviewed, with the concepts of random utilities and the logit model as the analog of the Boltzmann factor in statistical physics. Recent extensions in terms of quantum decision theory are also covered. A wealth of models are discussed briefly that build on the Ising model and generalize it to account for the many stylized facts of financial markets. A summary of the relevance of the Ising model and its extensions is provided to account for financial bubbles and crashes. The review would be incomplete if it did not cover the dynamical field of agent-based models (ABMs), also known as computational economic models, of which the Ising-type models are just special ABM implementations. We formulate the ‘Emerging Intelligence Market Hypothesis’ to reconcile the pervasive presence of ‘noise traders’ with the near efficiency of financial markets. Finally, we note that evolutionary biology, more than physics, is now playing a growing role to inspire models of financial markets.

  7. Intuitive Physics: Current Research and Controversies.

    PubMed

    Kubricht, James R; Holyoak, Keith J; Lu, Hongjing

    2017-10-01

    Early research in the field of intuitive physics provided extensive evidence that humans succumb to common misconceptions and biases when predicting, judging, and explaining activity in the physical world. Recent work has demonstrated that, across a diverse range of situations, some biases can be explained by the application of normative physical principles to noisy perceptual inputs. However, it remains unclear how knowledge of physical principles is learned, represented, and applied to novel situations. In this review we discuss theoretical advances from heuristic models to knowledge-based, probabilistic simulation models, as well as recent deep-learning models. We also consider how recent work may be reconciled with earlier findings that favored heuristic models. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Simulation-based Education for Endoscopic Third Ventriculostomy: A Comparison Between Virtual and Physical Training Models.

    PubMed

    Breimer, Gerben E; Haji, Faizal A; Bodani, Vivek; Cunningham, Melissa S; Lopez-Rios, Adriana-Lucia; Okrainec, Allan; Drake, James M

    2017-02-01

    The relative educational benefits of virtual reality (VR) and physical simulation models for endoscopic third ventriculostomy (ETV) have not been evaluated "head to head." To compare and identify the relative utility of a physical and VR ETV simulation model for use in neurosurgical training. Twenty-three neurosurgical residents and 3 fellows performed an ETV on both a physical and VR simulation model. Trainees rated the models using 5-point Likert scales evaluating the domains of anatomy, instrument handling, procedural content, and the overall fidelity of the simulation. Paired t tests were performed for each domain's mean overall score and individual items. The VR model has relative benefits compared with the physical model with respect to realistic representation of intraventricular anatomy at the foramen of Monro (4.5, standard deviation [SD] = 0.7 vs 4.1, SD = 0.6; P = .04) and the third ventricle floor (4.4, SD = 0.6 vs 4.0, SD = 0.9; P = .03), although the overall anatomy score was similar (4.2, SD = 0.6 vs 4.0, SD = 0.6; P = .11). For overall instrument handling and procedural content, the physical simulator outperformed the VR model (3.7, SD = 0.8 vs 4.5; SD = 0.5, P < .001 and 3.9; SD = 0.8 vs 4.2, SD = 0.6; P = .02, respectively). Overall task fidelity across the 2 simulators was not perceived as significantly different. Simulation model selection should be based on educational objectives. Training focused on learning anatomy or decision-making for anatomic cues may be aided with the VR simulation model. A focus on developing manual dexterity and technical skills using endoscopic equipment in the operating room may be better learned on the physical simulation model. Copyright © 2016 by the Congress of Neurological Surgeons

  9. Atmospheric Signatures and Effects of Space-based Relativistic Electron Beam Injection

    NASA Astrophysics Data System (ADS)

    Marshall, R. A.; Sanchez, E. R.; Kero, A.; Turunen, E. S.; Marsh, D. R.

    2017-12-01

    Future relativistic electron beam injection experiments have the potential to provide groundbreaking insights into the physics of wave-particle interactions and beam-neutral interactions, relevant to space physics and to fundamental plasma physics. However, these experiments are only useful if their signatures can be detected. In this work, we use a physics-based forward modeling framework to investigate the observable signatures of a relativistic beam interacting with the upper atmosphere. The modeling framework is based around the Electron Precipitation Monte Carlo (EPMC) model, used to simulate electron precipitation in the upper atmosphere. That model is coupled to physics-based models of i) optical emission production; ii) bremsstrahlung photon production and propagation; iii) D-region ion chemistry; and iv) VLF wave propagation in the Earth-ionosphere waveguide. Using these modeling tools, we predict the optical, X-ray, chemical, radar, and VLF signatures of a realistic beam injection, based on recent space-based accelerator designs. In particular, we inject a beam pulse of 10 mA for a duration of 500 μs at an energy of 1 MeV, providing a total pulse energy of 5 J. We further investigate variations in these parameters, in particular the total energy and the electron energy. Our modeling shows that for this 5 J pulse injection at 1 MeV electron energy, the optical signal is easily detectable from the ground in common emission bands, but the X-ray signal is likely too weak to be seen from either balloons or LEO orbiting spacecraft. We further predict the optical signal-to-noise ratio that would be expected in different optical systems. Chemical signatures such as changes to NOx and HOx concentrations are too short-lived to be detectable; however our modeling provides a valuable estimate of the total chemical response. Electron density perturbations should be easily measurable from ground-based high-power radars and via VLF subionospheric remote sensing. However, the VLF diagnostic is complicated by the geometry of the problem, in that the perturbation in the upper atmosphere is much smaller than the VLF wavelength, so wide-angle scattering needs to be taken into account.

  10. A haptic model of vibration modes in spherical geometry and its application in atomic physics, nuclear physics and beyond

    NASA Astrophysics Data System (ADS)

    Ubben, Malte; Heusler, Stefan

    2018-07-01

    Vibration modes in spherical geometry can be classified based on the number and position of nodal planes. However, the geometry of these planes is non-trivial and cannot be easily displayed in two dimensions. We present 3D-printed models of those vibration modes, enabling a haptic approach for understanding essential features of bound states in quantum physics and beyond. In particular, when applied to atomic physics, atomic orbitals are obtained in a natural manner. Applied to nuclear physics, the same patterns of vibration modes emerge as cornerstone for the nuclear shell model. These applications of the very same model in a range of more than 5 orders of magnitude in length scales leads to a general discussion of the applicability and limits of validity of physical models in general.

  11. A review of physically based models for soil erosion by water

    NASA Astrophysics Data System (ADS)

    Le, Minh-Hoang; Cerdan, Olivier; Sochala, Pierre; Cheviron, Bruno; Brivois, Olivier; Cordier, Stéphane

    2010-05-01

    Physically-based models rely on fundamental physical equations describing stream flow and sediment and associated nutrient generation in a catchment. This paper reviews several existing erosion and sediment transport approaches. The process of erosion include soil detachment, transport and deposition, we present various forms of equations and empirical formulas used when modelling and quantifying each of these processes. In particular, we detail models describing rainfall and infiltration effects and the system of equations to describe the overland flow and the evolution of the topography. We also present the formulas for the flow transport capacity and the erodibility functions. Finally, we present some recent numerical schemes to approach the shallow water equations and it's coupling with infiltration and erosion source terms.

  12. Examining the Relationship between Students' Understanding of the Nature of Models and Conceptual Learning in Biology, Physics, and Chemistry

    ERIC Educational Resources Information Center

    Gobert, Janice D.; O'Dwyer, Laura; Horwitz, Paul; Buckley, Barbara C.; Levy, Sharona Tal; Wilensky, Uri

    2011-01-01

    This research addresses high school students' understandings of the nature of models, and their interaction with model-based software in three science domains, namely, biology, physics, and chemistry. Data from 736 high school students' understandings of models were collected using the Students' Understanding of Models in Science (SUMS) survey as…

  13. Matter Gravitates, but Does Gravity Matter?

    ERIC Educational Resources Information Center

    Groetsch, C. W.

    2011-01-01

    The interplay of physical intuition, computational evidence, and mathematical rigor in a simple trajectory model is explored. A thought experiment based on the model is used to elicit student conjectures on the influence of a physical parameter; a mathematical model suggests a computational investigation of the conjectures, and rigorous analysis…

  14. Ionic polymer-metal composite torsional sensor: physics-based modeling and experimental validation

    NASA Astrophysics Data System (ADS)

    Aidi Sharif, Montassar; Lei, Hong; Khalid Al-Rubaiai, Mohammed; Tan, Xiaobo

    2018-07-01

    Ionic polymer-metal composites (IPMCs) have intrinsic sensing and actuation properties. Typical IPMC sensors are in the shape of beams and only respond to stimuli acting along beam-bending directions. Rod or tube-shaped IPMCs have been explored as omnidirectional bending actuators or sensors. In this paper, physics-based modeling is studied for a tubular IPMC sensor under pure torsional stimulus. The Poisson–Nernst–Planck model is used to describe the fundamental physics within the IPMC, where it is hypothesized that the anion concentration is coupled to the sum of shear strains induced by the torsional stimulus. Finite element simulation is conducted to solve for the torsional sensing response, where some of the key parameters are identified based on experimental measurements using an artificial neural network. Additional experimental results suggest that the proposed model is able to capture the torsional sensing dynamics for different amplitudes and rates of the torsional stimulus.

  15. A new physics-based modeling approach for tsunami-ionosphere coupling

    NASA Astrophysics Data System (ADS)

    Meng, X.; Komjathy, A.; Verkhoglyadova, O. P.; Yang, Y.-M.; Deng, Y.; Mannucci, A. J.

    2015-06-01

    Tsunamis can generate gravity waves propagating upward through the atmosphere, inducing total electron content (TEC) disturbances in the ionosphere. To capture this process, we have implemented tsunami-generated gravity waves into the Global Ionosphere-Thermosphere Model (GITM) to construct a three-dimensional physics-based model WP (Wave Perturbation)-GITM. WP-GITM takes tsunami wave properties, including the wave height, wave period, wavelength, and propagation direction, as inputs and time-dependently characterizes the responses of the upper atmosphere between 100 km and 600 km altitudes. We apply WP-GITM to simulate the ionosphere above the West Coast of the United States around the time when the tsunami associated with the March 2011 Tohuku-Oki earthquke arrived. The simulated TEC perturbations agree with Global Positioning System observations reasonably well. For the first time, a fully self-consistent and physics-based model has reproduced the GPS-observed traveling ionospheric signatures of an actual tsunami event.

  16. Model-Based Diagnostics for Propellant Loading Systems

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew John; Foygel, Michael; Smelyanskiy, Vadim N.

    2011-01-01

    The loading of spacecraft propellants is a complex, risky operation. Therefore, diagnostic solutions are necessary to quickly identify when a fault occurs, so that recovery actions can be taken or an abort procedure can be initiated. Model-based diagnosis solutions, established using an in-depth analysis and understanding of the underlying physical processes, offer the advanced capability to quickly detect and isolate faults, identify their severity, and predict their effects on system performance. We develop a physics-based model of a cryogenic propellant loading system, which describes the complex dynamics of liquid hydrogen filling from a storage tank to an external vehicle tank, as well as the influence of different faults on this process. The model takes into account the main physical processes such as highly nonequilibrium condensation and evaporation of the hydrogen vapor, pressurization, and also the dynamics of liquid hydrogen and vapor flows inside the system in the presence of helium gas. Since the model incorporates multiple faults in the system, it provides a suitable framework for model-based diagnostics and prognostics algorithms. Using this model, we analyze the effects of faults on the system, derive symbolic fault signatures for the purposes of fault isolation, and perform fault identification using a particle filter approach. We demonstrate the detection, isolation, and identification of a number of faults using simulation-based experiments.

  17. Simulation-Based Training for Colonoscopy

    PubMed Central

    Preisler, Louise; Svendsen, Morten Bo Søndergaard; Nerup, Nikolaj; Svendsen, Lars Bo; Konge, Lars

    2015-01-01

    Abstract The aim of this study was to create simulation-based tests with credible pass/fail standards for 2 different fidelities of colonoscopy models. Only competent practitioners should perform colonoscopy. Reliable and valid simulation-based tests could be used to establish basic competency in colonoscopy before practicing on patients. Twenty-five physicians (10 consultants with endoscopic experience and 15 fellows with very little endoscopic experience) were tested on 2 different simulator models: a virtual-reality simulator and a physical model. Tests were repeated twice on each simulator model. Metrics with discriminatory ability were identified for both modalities and reliability was determined. The contrasting-groups method was used to create pass/fail standards and the consequences of these were explored. The consultants significantly performed faster and scored higher than the fellows on both the models (P < 0.001). Reliability analysis showed Cronbach α = 0.80 and 0.87 for the virtual-reality and the physical model, respectively. The established pass/fail standards failed one of the consultants (virtual-reality simulator) and allowed one fellow to pass (physical model). The 2 tested simulations-based modalities provided reliable and valid assessments of competence in colonoscopy and credible pass/fail standards were established for both the tests. We propose to use these standards in simulation-based training programs before proceeding to supervised training on patients. PMID:25634177

  18. [Students' physical activity: an analysis according to Pender's health promotion model].

    PubMed

    Guedes, Nirla Gomes; Moreira, Rafaella Pessoa; Cavalcante, Tahissa Frota; de Araujo, Thelma Leite; Ximenes, Lorena Barbosa

    2009-12-01

    The objective of this study was to describe the everyday physical activity habits of students and analyze the practice of physical activity and its determinants, based on the first component of Pender's health promotion model. This cross-sectional study was performed from 2004 to 2005 with 79 students in a public school in Fortaleza, Ceará, Brazil. Data collection was performed by interviews and physical examinations. The data were analyzed according to the referred theoretical model. Most students (n=60) were physically active. Proportionally, adolescents were the most active (80.4%). Those with a sedentary lifestyle had higher rates for overweight and obesity (21.1%). Many students practiced outdoor physical activities, which did not require any physical structure and good financial conditions. The results show that it is possible to associate the first component of Pender's health promotion model with the everyday lives of students in terms of the physical activity practice.

  19. Physics-driven Spatiotemporal Regularization for High-dimensional Predictive Modeling: A Novel Approach to Solve the Inverse ECG Problem

    NASA Astrophysics Data System (ADS)

    Yao, Bing; Yang, Hui

    2016-12-01

    This paper presents a novel physics-driven spatiotemporal regularization (STRE) method for high-dimensional predictive modeling in complex healthcare systems. This model not only captures the physics-based interrelationship between time-varying explanatory and response variables that are distributed in the space, but also addresses the spatial and temporal regularizations to improve the prediction performance. The STRE model is implemented to predict the time-varying distribution of electric potentials on the heart surface based on the electrocardiogram (ECG) data from the distributed sensor network placed on the body surface. The model performance is evaluated and validated in both a simulated two-sphere geometry and a realistic torso-heart geometry. Experimental results show that the STRE model significantly outperforms other regularization models that are widely used in current practice such as Tikhonov zero-order, Tikhonov first-order and L1 first-order regularization methods.

  20. Mechanical relaxation in a Zr-based bulk metallic glass: Analysis based on physical models

    NASA Astrophysics Data System (ADS)

    Qiao, J. C.; Pelletier, J. M.

    2012-08-01

    The mechanical relaxation behavior in a Zr55Cu30Ni5Al10 bulk metallic glass is investigated by dynamic mechanical analysis in both temperature and frequency domains. Master curves can be obtained for the storage modulus G' and for the loss modulus G'', confirming the validity of the time-temperature superposition principle. Different models are discussed to describe the main (α) relaxation, e.g., Debye model, Havriliak-Negami (HN) model, Kohlrausch-Williams-Watt (KWW) model, and quasi-point defects (QPDs) model. The main relaxation in bulk metallic glass cannot be described using a single relaxation time. The HN model, the KWW model, and the QPD theory can be used to fit the data of mechanical spectroscopy experiments. However, unlike the HN model and the KWW model, some physical parameters are introduced in QPD model, i.e., atomic mobility and correlation factor, giving, therefore, a new physical approach to understand the mechanical relaxation in bulk metallic glasses.

  1. Variable cycle control model for intersection based on multi-source information

    NASA Astrophysics Data System (ADS)

    Sun, Zhi-Yuan; Li, Yue; Qu, Wen-Cong; Chen, Yan-Yan

    2018-05-01

    In order to improve the efficiency of traffic control system in the era of big data, a new variable cycle control model based on multi-source information is presented for intersection in this paper. Firstly, with consideration of multi-source information, a unified framework based on cyber-physical system is proposed. Secondly, taking into account the variable length of cell, hysteresis phenomenon of traffic flow and the characteristics of lane group, a Lane group-based Cell Transmission Model is established to describe the physical properties of traffic flow under different traffic signal control schemes. Thirdly, the variable cycle control problem is abstracted into a bi-level programming model. The upper level model is put forward for cycle length optimization considering traffic capacity and delay. The lower level model is a dynamic signal control decision model based on fairness analysis. Then, a Hybrid Intelligent Optimization Algorithm is raised to solve the proposed model. Finally, a case study shows the efficiency and applicability of the proposed model and algorithm.

  2. Towards a physics-based multiscale modelling of the electro-mechanical coupling in electro-active polymers.

    PubMed

    Cohen, Noy; Menzel, Andreas; deBotton, Gal

    2016-02-01

    Owing to the increasing number of industrial applications of electro-active polymers (EAPs), there is a growing need for electromechanical models which accurately capture their behaviour. To this end, we compare the predicted behaviour of EAPs undergoing homogeneous deformations according to three electromechanical models. The first model is a phenomenological continuum-based model composed of the mechanical Gent model and a linear relationship between the electric field and the polarization. The electrical and the mechanical responses according to the second model are based on the physical structure of the polymer chain network. The third model incorporates a neo-Hookean mechanical response and a physically motivated microstructurally based long-chains model for the electrical behaviour. In the microstructural-motivated models, the integration from the microscopic to the macroscopic levels is accomplished by the micro-sphere technique. Four types of homogeneous boundary conditions are considered and the behaviours determined according to the three models are compared. For the microstructurally motivated models, these analyses are performed and compared with the widely used phenomenological model for the first time. Some of the aspects revealed in this investigation, such as the dependence of the intensity of the polarization field on the deformation, highlight the need for an in-depth investigation of the relationships between the structure and the behaviours of the EAPs at the microscopic level and their overall macroscopic response.

  3. Review Article: A comparison of flood and earthquake vulnerability assessment indicators

    NASA Astrophysics Data System (ADS)

    de Ruiter, Marleen C.; Ward, Philip J.; Daniell, James E.; Aerts, Jeroen C. J. H.

    2017-07-01

    In a cross-disciplinary study, we carried out an extensive literature review to increase understanding of vulnerability indicators used in the disciplines of earthquake- and flood vulnerability assessments. We provide insights into potential improvements in both fields by identifying and comparing quantitative vulnerability indicators grouped into physical and social categories. Next, a selection of index- and curve-based vulnerability models that use these indicators are described, comparing several characteristics such as temporal and spatial aspects. Earthquake vulnerability methods traditionally have a strong focus on object-based physical attributes used in vulnerability curve-based models, while flood vulnerability studies focus more on indicators applied to aggregated land-use classes in curve-based models. In assessing the differences and similarities between indicators used in earthquake and flood vulnerability models, we only include models that separately assess either of the two hazard types. Flood vulnerability studies could be improved using approaches from earthquake studies, such as developing object-based physical vulnerability curve assessments and incorporating time-of-the-day-based building occupation patterns. Likewise, earthquake assessments could learn from flood studies by refining their selection of social vulnerability indicators. Based on the lessons obtained in this study, we recommend future studies for exploring risk assessment methodologies across different hazard types.

  4. Effects of large vessel on temperature distribution based on photothermal coupling interaction model

    NASA Astrophysics Data System (ADS)

    Li, Zhifang; Zhang, Xiyang; Li, Zuoran; Li, Hui

    2016-10-01

    This paper is based on the finite element analysis method for studying effects of large blood vessel on temperature based on photothermal coupling interaction model, and it couples the physical field of optical transmission with the physical field of heat transfer in biological tissue by using COMSOL Multiphysics 4.4 software. The results demonstrate the cooling effect of large blood vessel, which can be potential application for the treatment of liver tumors.

  5. Development of a Logic Model for a Physical Activity–Based Employee Wellness Program for Mass Transit Workers

    PubMed Central

    Petruzzello, Steven J.; Ryan, Katherine E.

    2014-01-01

    Transportation workers, who constitute a large sector of the workforce, have worksite factors that harm their health. Worksite wellness programs must target this at-risk population. Although physical activity is often a component of worksite wellness logic models, we consider it the cornerstone for improving the health of mass transit employees. Program theory was based on in-person interviews and focus groups of employees. We identified 4 short-term outcome categories, which provided a chain of responses based on the program activities that should lead to the desired end results. This logic model may have significant public health impact, because it can serve as a framework for other US mass transit districts and worksite populations that face similar barriers to wellness, including truck drivers, railroad employees, and pilots. The objective of this article is to discuss the development of a logic model for a physical activity–based mass-transit employee wellness program by describing the target population, program theory, the components of the logic model, and the process of its development. PMID:25032838

  6. Development of a logic model for a physical activity-based employee wellness program for mass transit workers.

    PubMed

    Das, Bhibha M; Petruzzello, Steven J; Ryan, Katherine E

    2014-07-17

    Transportation workers, who constitute a large sector of the workforce, have worksite factors that harm their health. Worksite wellness programs must target this at-risk population. Although physical activity is often a component of worksite wellness logic models, we consider it the cornerstone for improving the health of mass transit employees. Program theory was based on in-person interviews and focus groups of employees. We identified 4 short-term outcome categories, which provided a chain of responses based on the program activities that should lead to the desired end results. This logic model may have significant public health impact, because it can serve as a framework for other US mass transit districts and worksite populations that face similar barriers to wellness, including truck drivers, railroad employees, and pilots. The objective of this article is to discuss the development of a logic model for a physical activity-based mass-transit employee wellness program by describing the target population, program theory, the components of the logic model, and the process of its development.

  7. Comparative Effectiveness of After-School Programs to Increase Physical Activity

    PubMed Central

    Gesell, Sabina B.; Sommer, Evan C.; Lambert, E. Warren; Vides de Andrade, Ana Regina; Davis, Lauren; Beech, Bettina M.; Mitchell, Stephanie J.; Neloms, Stevon; Ryan, Colleen K.

    2013-01-01

    Background. We conducted a comparative effectiveness analysis to evaluate the difference in the amount of physical activity children engaged in when enrolled in a physical activity-enhanced after-school program based in a community recreation center versus a standard school-based after-school program. Methods. The study was a natural experiment with 54 elementary school children attending the community ASP and 37 attending the school-based ASP. Accelerometry was used to measure physical activity. Data were collected at baseline, 6 weeks, and 12 weeks, with 91% retention. Results. At baseline, 43% of the multiethnic sample was overweight/obese, and the mean age was 7.9 years (SD = 1.7). Linear latent growth models suggested that the average difference between the two groups of children at Week 12 was 14.7 percentage points in moderate-vigorous physical activity (P < .001). Cost analysis suggested that children attending traditional school-based ASPs—at an average cost of $17.67 per day—would need an additional daily investment of $1.59 per child for 12 weeks to increase their moderate-vigorous physical activity by a model-implied 14.7 percentage points. Conclusions. A low-cost, alternative after-school program featuring adult-led physical activities in a community recreation center was associated with increased physical activity compared to standard-of-care school-based after-school program. PMID:23984052

  8. Video Extrapolation Method Based on Time-Varying Energy Optimization and CIP.

    PubMed

    Sakaino, Hidetomo

    2016-09-01

    Video extrapolation/prediction methods are often used to synthesize new videos from images. For fluid-like images and dynamic textures as well as moving rigid objects, most state-of-the-art video extrapolation methods use non-physics-based models that learn orthogonal bases from a number of images but at high computation cost. Unfortunately, data truncation can cause image degradation, i.e., blur, artifact, and insufficient motion changes. To extrapolate videos that more strictly follow physical rules, this paper proposes a physics-based method that needs only a few images and is truncation-free. We utilize physics-based equations with image intensity and velocity: optical flow, Navier-Stokes, continuity, and advection equations. These allow us to use partial difference equations to deal with the local image feature changes. Image degradation during extrapolation is minimized by updating model parameters, where a novel time-varying energy balancer model that uses energy based image features, i.e., texture, velocity, and edge. Moreover, the advection equation is discretized by high-order constrained interpolation profile for lower quantization error than can be achieved by the previous finite difference method in long-term videos. Experiments show that the proposed energy based video extrapolation method outperforms the state-of-the-art video extrapolation methods in terms of image quality and computation cost.

  9. A multi-scale ''soil water structure'' model based on the pedostructure concept

    NASA Astrophysics Data System (ADS)

    Braudeau, E.; Mohtar, R. H.; El Ghezal, N.; Crayol, M.; Salahat, M.; Martin, P.

    2009-02-01

    Current soil water models do not take into account the internal organization of the soil medium and, a fortiori, the physical interaction between the water film surrounding the solid particles of the soil structure, and the surface charges of this structure. In that sense they empirically deal with the physical soil properties that are all generated from this soil water-structure interaction. As a result, the thermodynamic state of the soil water medium, which constitutes the local physical conditions, namely the pedo-climate, for biological and geo-chemical processes in soil, is not defined in these models. The omission of soil structure from soil characterization and modeling does not allow for coupling disciplinary models for these processes with soil water models. This article presents a soil water structure model, Kamel®, which was developed based on a new paradigm in soil physics where the hierarchical soil structure is taken into account allowing for defining its thermodynamic properties. After a review of soil physics principles which forms the basis of the paradigm, we describe the basic relationships and functionality of the model. Kamel® runs with a set of 15 soil input parameters, the pedohydral parameters, which are parameters of the physically-based equations of four soil characteristic curves that can be measured in the laboratory. For cases where some of these parameters are not available, we show how to estimate these parameters from commonly available soil information using published pedotransfer functions. A published field experimental study on the dynamics of the soil moisture profile following a pounded infiltration rainfall event was used as an example to demonstrate soil characterization and Kamel® simulations. The simulated soil moisture profile for a period of 60 days showed very good agreement with experimental field data. Simulations using input data calculated from soil texture and pedotransfer functions were also generated and compared to simulations of the more ideal characterization. The later comparison illustrates how Kamel® can be used and adapt to any case of soil data availability. As physically based model on soil structure, it may be used as a standard reference to evaluate other soil-water models and also pedotransfer functions at a given location or agronomical situation.

  10. Alternative model for administration and analysis of research-based assessments

    NASA Astrophysics Data System (ADS)

    Wilcox, Bethany R.; Zwickl, Benjamin M.; Hobbs, Robert D.; Aiken, John M.; Welch, Nathan M.; Lewandowski, H. J.

    2016-06-01

    Research-based assessments represent a valuable tool for both instructors and researchers interested in improving undergraduate physics education. However, the historical model for disseminating and propagating conceptual and attitudinal assessments developed by the physics education research (PER) community has not resulted in widespread adoption of these assessments within the broader community of physics instructors. Within this historical model, assessment developers create high quality, validated assessments, make them available for a wide range of instructors to use, and provide minimal (if any) support to assist with administration or analysis of the results. Here, we present and discuss an alternative model for assessment dissemination, which is characterized by centralized data collection and analysis. This model provides a greater degree of support for both researchers and instructors in order to more explicitly support adoption of research-based assessments. Specifically, we describe our experiences developing a centralized, automated system for an attitudinal assessment we previously created to examine students' epistemologies and expectations about experimental physics. This system provides a proof of concept that we use to discuss the advantages associated with centralized administration and data collection for research-based assessments in PER. We also discuss the challenges that we encountered while developing, maintaining, and automating this system. Ultimately, we argue that centralized administration and data collection for standardized assessments is a viable and potentially advantageous alternative to the default model characterized by decentralized administration and analysis. Moreover, with the help of online administration and automation, this model can support the long-term sustainability of centralized assessment systems.

  11. Using Video-Based Modeling to Promote Acquisition of Fundamental Motor Skills

    ERIC Educational Resources Information Center

    Obrusnikova, Iva; Rattigan, Peter J.

    2016-01-01

    Video-based modeling is becoming increasingly popular for teaching fundamental motor skills to children in physical education. Two frequently used video-based instructional strategies that incorporate modeling are video prompting (VP) and video modeling (VM). Both strategies have been used across multiple disciplines and populations to teach a…

  12. A physics-based probabilistic forecasting model for rainfall-induced shallow landslides at regional scale

    NASA Astrophysics Data System (ADS)

    Zhang, Shaojie; Zhao, Luqiang; Delgado-Tellez, Ricardo; Bao, Hongjun

    2018-03-01

    Conventional outputs of physics-based landslide forecasting models are presented as deterministic warnings by calculating the safety factor (Fs) of potentially dangerous slopes. However, these models are highly dependent on variables such as cohesion force and internal friction angle which are affected by a high degree of uncertainty especially at a regional scale, resulting in unacceptable uncertainties of Fs. Under such circumstances, the outputs of physical models are more suitable if presented in the form of landslide probability values. In order to develop such models, a method to link the uncertainty of soil parameter values with landslide probability is devised. This paper proposes the use of Monte Carlo methods to quantitatively express uncertainty by assigning random values to physical variables inside a defined interval. The inequality Fs < 1 is tested for each pixel in n simulations which are integrated in a unique parameter. This parameter links the landslide probability to the uncertainties of soil mechanical parameters and is used to create a physics-based probabilistic forecasting model for rainfall-induced shallow landslides. The prediction ability of this model was tested in a case study, in which simulated forecasting of landslide disasters associated with heavy rainfalls on 9 July 2013 in the Wenchuan earthquake region of Sichuan province, China, was performed. The proposed model successfully forecasted landslides in 159 of the 176 disaster points registered by the geo-environmental monitoring station of Sichuan province. Such testing results indicate that the new model can be operated in a highly efficient way and show more reliable results, attributable to its high prediction accuracy. Accordingly, the new model can be potentially packaged into a forecasting system for shallow landslides providing technological support for the mitigation of these disasters at regional scale.

  13. A new physically-based windblown dust emission ...

    EPA Pesticide Factsheets

    Dust has significant impacts on weather and climate, air quality and visibility, and human health; therefore, it is important to include a windblown dust emission module in atmospheric and air quality models. In this presentation, we summarize our efforts in development of a physics-based windblown dust emission scheme and its implementation in the CMAQ modeling system. The new model incorporates the effect of the surface wind speed, soil texture, soil moisture, and surface roughness in a physically sound manner. Specifically, a newly developed dynamic relation for the surface roughness length in this model is believed to adequately represent the physics of the surface processes involved in the dust generation. Furthermore, careful attention is paid in integrating the new windblown dust module within the CMAQ to ensure that the required input parameters are correctly configured. The new model is evaluated for the case studies including the continental United States and the Northern hemisphere, and is shown to be able to capture the occurrence of the dust outbreak and the level of the soil concentration. We discuss the uncertainties and limitations of the model and briefly describe our path forward for further improvements. The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, decision-support tools, and models to be applied to media-specific or receptor-specific problem areas. CED uses modeling-based

  14. Simulated western spruce budworm defoliation reduces torching and crowning potential: A sensitivity analysis using a physics-based fire model

    Treesearch

    Gregory M. Cohn; Russell A. Parsons; Emily K. Heyerdahl; Daniel G. Gavin; Aquila Flower

    2014-01-01

    The widespread, native defoliator western spruce budworm (Choristoneura occidentalis Freeman) reduces canopy fuels, which might affect the potential for surface fires to torch (ignite the crowns of individual trees) or crown (spread between tree crowns). However, the effects of defoliation on fire behaviour are poorly understood. We used a physics-based fire model to...

  15. Simplified Physics Based Models Research Topical Report on Task #2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Srikanta; Ganesh, Priya

    We present a simplified-physics based approach, where only the most important physical processes are modeled, to develop and validate simplified predictive models of CO2 sequestration in deep saline formation. The system of interest is a single vertical well injecting supercritical CO2 into a 2-D layered reservoir-caprock system with variable layer permeabilities. We use a set of well-designed full-physics compositional simulations to understand key processes and parameters affecting pressure propagation and buoyant plume migration. Based on these simulations, we have developed correlations for dimensionless injectivity as a function of the slope of fractional-flow curve, variance of layer permeability values, and themore » nature of vertical permeability arrangement. The same variables, along with a modified gravity number, can be used to develop a correlation for the total storage efficiency within the CO2 plume footprint. Similar correlations are also developed to predict the average pressure within the injection reservoir, and the pressure buildup within the caprock.« less

  16. Recontextualizing and Delivering the Biomedical Model as a Physical Education Curriculum

    ERIC Educational Resources Information Center

    Johns, David P.

    2005-01-01

    This paper examines the problem of delivering a body of knowledge based on biomedical research as a school physical education discourse. The paper attempts to deconstruct the ideology of healthism upon which the discourse is based in order to show how ascetic practices in school physical education are promoted as a way of combating the hedonistic…

  17. Spatial Modeling for Resources Framework (SMRF): A modular framework for developing spatial forcing data for snow modeling in mountain basins

    NASA Astrophysics Data System (ADS)

    Havens, Scott; Marks, Danny; Kormos, Patrick; Hedrick, Andrew

    2017-12-01

    In the Western US and many mountainous regions of the world, critical water resources and climate conditions are difficult to monitor because the observation network is generally very sparse. The critical resource from the mountain snowpack is water flowing into streams and reservoirs that will provide for irrigation, flood control, power generation, and ecosystem services. Water supply forecasting in a rapidly changing climate has become increasingly difficult because of non-stationary conditions. In response, operational water supply managers have begun to move from statistical techniques towards the use of physically based models. As we begin to transition physically based models from research to operational use, we must address the most difficult and time-consuming aspect of model initiation: the need for robust methods to develop and distribute the input forcing data. In this paper, we present a new open source framework, the Spatial Modeling for Resources Framework (SMRF), which automates and simplifies the common forcing data distribution methods. It is computationally efficient and can be implemented for both research and operational applications. We present an example of how SMRF is able to generate all of the forcing data required to a run physically based snow model at 50-100 m resolution over regions of 1000-7000 km2. The approach has been successfully applied in real time and historical applications for both the Boise River Basin in Idaho, USA and the Tuolumne River Basin in California, USA. These applications use meteorological station measurements and numerical weather prediction model outputs as input. SMRF has significantly streamlined the modeling workflow, decreased model set up time from weeks to days, and made near real-time application of a physically based snow model possible.

  18. Principal axes estimation using the vibration modes of physics-based deformable models.

    PubMed

    Krinidis, Stelios; Chatzis, Vassilios

    2008-06-01

    This paper addresses the issue of accurate, effective, computationally efficient, fast, and fully automated 2-D object orientation and scaling factor estimation. The object orientation is calculated using object principal axes estimation. The approach relies on the object's frequency-based features. The frequency-based features used by the proposed technique are extracted by a 2-D physics-based deformable model that parameterizes the objects shape. The method was evaluated on synthetic and real images. The experimental results demonstrate the accuracy of the method, both in orientation and the scaling estimations.

  19. Investigating the Effect of Damage Progression Model Choice on Prognostics Performance

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew; Roychoudhury, Indranil; Narasimhan, Sriram; Saha, Sankalita; Saha, Bhaskar; Goebel, Kai

    2011-01-01

    The success of model-based approaches to systems health management depends largely on the quality of the underlying models. In model-based prognostics, it is especially the quality of the damage progression models, i.e., the models describing how damage evolves as the system operates, that determines the accuracy and precision of remaining useful life predictions. Several common forms of these models are generally assumed in the literature, but are often not supported by physical evidence or physics-based analysis. In this paper, using a centrifugal pump as a case study, we develop different damage progression models. In simulation, we investigate how model changes influence prognostics performance. Results demonstrate that, in some cases, simple damage progression models are sufficient. But, in general, the results show a clear need for damage progression models that are accurate over long time horizons under varied loading conditions.

  20. A skeleton family generator via physics-based deformable models.

    PubMed

    Krinidis, Stelios; Chatzis, Vassilios

    2009-01-01

    This paper presents a novel approach for object skeleton family extraction. The introduced technique utilizes a 2-D physics-based deformable model that parameterizes the objects shape. Deformation equations are solved exploiting modal analysis, and proportional to model physical characteristics, a different skeleton is produced every time, generating, in this way, a family of skeletons. The theoretical properties and the experiments presented demonstrate that obtained skeletons match to hand-labeled skeletons provided by human subjects, even in the presence of significant noise and shape variations, cuts and tears, and have the same topology as the original skeletons. In particular, the proposed approach produces no spurious branches without the need of any known skeleton pruning method.

  1. Physical Modeling of Activation Energy in Organic Semiconductor Devices based on Energy and Momentum Conservations

    PubMed Central

    Mao, Ling-Feng; Ning, H.; Hu, Changjun; Lu, Zhaolin; Wang, Gaofeng

    2016-01-01

    Field effect mobility in an organic device is determined by the activation energy. A new physical model of the activation energy is proposed by virtue of the energy and momentum conservation equations. The dependencies of the activation energy on the gate voltage and the drain voltage, which were observed in the experiments in the previous independent literature, can be well explained using the proposed model. Moreover, the expression in the proposed model, which has clear physical meanings in all parameters, can have the same mathematical form as the well-known Meyer-Neldel relation, which lacks of clear physical meanings in some of its parameters since it is a phenomenological model. Thus it not only describes a physical mechanism but also offers a possibility to design the next generation of high-performance optoelectronics and integrated flexible circuits by optimizing device physical parameter. PMID:27103586

  2. Integration of Advanced Probabilistic Analysis Techniques with Multi-Physics Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cetiner, Mustafa Sacit; none,; Flanagan, George F.

    2014-07-30

    An integrated simulation platform that couples probabilistic analysis-based tools with model-based simulation tools can provide valuable insights for reactive and proactive responses to plant operating conditions. The objective of this work is to demonstrate the benefits of a partial implementation of the Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Detailed Framework Specification through the coupling of advanced PRA capabilities and accurate multi-physics plant models. Coupling a probabilistic model with a multi-physics model will aid in design, operations, and safety by providing a more accurate understanding of plant behavior. This represents the first attempt at actually integrating these two typesmore » of analyses for a control system used for operations, on a faster than real-time basis. This report documents the development of the basic communication capability to exchange data with the probabilistic model using Reliability Workbench (RWB) and the multi-physics model using Dymola. The communication pathways from injecting a fault (i.e., failing a component) to the probabilistic and multi-physics models were successfully completed. This first version was tested with prototypic models represented in both RWB and Modelica. First, a simple event tree/fault tree (ET/FT) model was created to develop the software code to implement the communication capabilities between the dynamic-link library (dll) and RWB. A program, written in C#, successfully communicates faults to the probabilistic model through the dll. A systems model of the Advanced Liquid-Metal Reactor–Power Reactor Inherently Safe Module (ALMR-PRISM) design developed under another DOE project was upgraded using Dymola to include proper interfaces to allow data exchange with the control application (ConApp). A program, written in C+, successfully communicates faults to the multi-physics model. The results of the example simulation were successfully plotted.« less

  3. Concurrent and convergent validity of the mobility- and multidimensional-hierarchical disability categorization models with physical performance in community older adults.

    PubMed

    Hu, Ming-Hsia; Yeh, Chih-Jun; Chen, Tou-Rong; Wang, Ching-Yi

    2014-01-01

    A valid, time-efficient and easy-to-use instrument is important for busy clinical settings, large scale surveys, or community screening use. The purpose of this study was to validate the mobility hierarchical disability categorization model (an abbreviated model) by investigating its concurrent validity with the multidimensional hierarchical disability categorization model (a comprehensive model) and triangulating both models with physical performance measures in older adults. 604 community-dwelling older adults of at least 60 years in age volunteered to participate. Self-reported function on mobility, instrumental activities of daily living (IADL) and activities of daily living (ADL) domains were recorded and then the disability status determined based on both the multidimensional hierarchical categorization model and the mobility hierarchical categorization model. The physical performance measures, consisting of grip strength and usual and fastest gait speeds (UGS, FGS), were collected on the same day. Both categorization models showed high correlation (γs = 0.92, p < 0.001) and agreement (kappa = 0.61, p < 0.0001). Physical performance measures demonstrated significant different group means among the disability subgroups based on both categorization models. The results of multiple regression analysis indicated that both models individually explain similar amount of variance on all physical performances, with adjustments for age, sex, and number of comorbidities. Our results found that the mobility hierarchical disability categorization model is a valid and time efficient tool for large survey or screening use.

  4. How to Make Our Models More Physically-based

    NASA Astrophysics Data System (ADS)

    Savenije, H. H. G.

    2016-12-01

    Models that are generally called "physically-based" unfortunately only have a partial view of the physical processes at play in hydrology. Although the coupled partial differential equations in these models reflect the water balance equations and the flow descriptors at laboratory scale, they miss essential characteristics of what determines the functioning of catchments. The most important active agent in catchments is the ecosystem (and sometimes people). What these agents do is manipulate the substrate in a way that it supports the essential functions of survival and productivity: infiltration of water, retention of moisture, mobilization and retention of nutrients, and drainage. Ecosystems do this in the most efficient way, in agreement with the landscape, and in response to climatic drivers. In brief, our hydrological system is alive and has a strong capacity to adjust to prevailing and changing circumstances. Although most physically based models take Newtonian theory at heart, as best they can, what they generally miss is Darwinian thinking on how an ecosystem evolves and adjusts its environment to maintain crucial hydrological functions. If this active agent is not reflected in our models, then they miss essential physics. Through a Darwinian approach, we can determine the root zone storage capacity of ecosystems, as a crucial component of hydrological models, determining the partitioning of fluxes and the conservation of moisture to bridge periods of drought. Another crucial element of physical systems is the evolution of drainage patterns, both on and below the surface. On the surface, such patterns facilitate infiltration or surface drainage with minimal erosion; in the unsaturated zone, patterns facilitate efficient replenishment of moisture deficits and preferential drainage when there is excess moisture; in the groundwater, patterns facilitate the efficient and gradual drainage of groundwater, resulting in linear reservoir recession. Models that do not incorporate these patterns are not physical. The parameters in the equations may be adjusted to compensate for the lake of patterns, but this involves scale-dependent calibration. In contrast to what is widely believed, relatively simple conceptual models can accommodate these physical processes accurately and very efficiently.

  5. Automated method for the systematic interpretation of resonance peaks in spectrum data

    DOEpatents

    Damiano, B.; Wood, R.T.

    1997-04-22

    A method is described for spectral signature interpretation. The method includes the creation of a mathematical model of a system or process. A neural network training set is then developed based upon the mathematical model. The neural network training set is developed by using the mathematical model to generate measurable phenomena of the system or process based upon model input parameter that correspond to the physical condition of the system or process. The neural network training set is then used to adjust internal parameters of a neural network. The physical condition of an actual system or process represented by the mathematical model is then monitored by extracting spectral features from measured spectra of the actual process or system. The spectral features are then input into said neural network to determine the physical condition of the system or process represented by the mathematical model. More specifically, the neural network correlates the spectral features (i.e. measurable phenomena) of the actual process or system with the corresponding model input parameters. The model input parameters relate to specific components of the system or process, and, consequently, correspond to the physical condition of the process or system. 1 fig.

  6. Network Interventions on Physical Activity in an Afterschool Program: An Agent-Based Social Network Study

    PubMed Central

    Zhang, Jun; Shoham, David A.; Tesdahl, Eric

    2015-01-01

    Objectives. We studied simulated interventions that leveraged social networks to increase physical activity in children. Methods. We studied a real-world social network of 81 children (average age = 7.96 years) who lived in low socioeconomic status neighborhoods, and attended public schools and 1 of 2 structured afterschool programs. The sample was ethnically diverse, and 44% were overweight or obese. We used social network analysis and agent-based modeling simulations to test whether implementing a network intervention would increase children’s physical activity. We tested 3 intervention strategies. Results. The intervention that targeted opinion leaders was effective in increasing the average level of physical activity across the entire network. However, the intervention that targeted the most sedentary children was the best at increasing their physical activity levels. Conclusions. Which network intervention to implement depends on whether the goal is to shift the entire distribution of physical activity or to influence those most adversely affected by low physical activity. Agent-based modeling could be an important complement to traditional project planning tools, analogous to sample size and power analyses, to help researchers design more effective interventions for increasing children’s physical activity. PMID:25689202

  7. A physics based method for combining multiple anatomy models with application to medical simulation.

    PubMed

    Zhu, Yanong; Magee, Derek; Ratnalingam, Rishya; Kessel, David

    2009-01-01

    We present a physics based approach to the construction of anatomy models by combining components from different sources; different image modalities, protocols, and patients. Given an initial anatomy, a mass-spring model is generated which mimics the physical properties of the solid anatomy components. This helps maintain valid spatial relationships between the components, as well as the validity of their shapes. Combination can be either replacing/modifying an existing component, or inserting a new component. The external forces that deform the model components to fit the new shape are estimated from Gradient Vector Flow and Distance Transform maps. We demonstrate the applicability and validity of the described approach in the area of medical simulation, by showing the processes of non-rigid surface alignment, component replacement, and component insertion.

  8. Translation of an Action Learning Collaborative Model Into a Community-Based Intervention to Promote Physical Activity and Healthy Eating.

    PubMed

    Schifferdecker, Karen E; Adachi-Mejia, Anna M; Butcher, Rebecca L; O'Connor, Sharon; Li, Zhigang; Bazos, Dorothy A

    2016-01-01

    Action Learning Collaboratives (ALCs), whereby teams apply quality improvement (QI) tools and methods, have successfully improved patient care delivery and outcomes. We adapted and tested the ALC model as a community-based obesity prevention intervention focused on physical activity and healthy eating. The intervention used QI tools (e.g., progress monitoring) and team-based activities and was implemented in three communities through nine monthly meetings. To assess process and outcomes, we used a longitudinal repeated-measures and mixed-methods triangulation approach with a quasi-experimental design including objective measures at three time points. Most of the 97 participants were female (85.4%), White (93.8%), and non-Hispanic/Latino (95.9%). Average age was 52 years; 28.0% had annual household income of $20,000 or less; and mean body mass index was 35. Through mixed-effects models, we found some physical activity outcomes improved. Other outcomes did not significantly change. Although participants favorably viewed the QI tools, components of the QI process such as sharing goals and data on progress in teams and during meetings were limited. Participants' requests for more education or activities around physical activity and healthy eating, rather than progress monitoring and data sharing required for QI activities, challenged ALC model implementation. An ALC model for community-based obesity prevention may be more effective when applied to preexisting teams in community-based organizations. © 2015 Society for Public Health Education.

  9. A new model of physical evolution of Jupiter-family comets

    NASA Astrophysics Data System (ADS)

    Rickman, H.; Szutowicz, S.; Wójcikowski, K.

    2014-07-01

    We aim to find the statistical physical lifetimes of Jupiter Family comets. For this purpose, we try to model the processes that govern the dynamical and physical evolution of comets. We pay special attention to physical evolution; attempts at such modelling have been made before, but we propose a more accurate model, which will include more physical effects. The model is tested on a sample of fictitious comets based on real Jupiter Family comets with some orbital elements changed to a state before the capture by Jupiter. We model four different physical effects: erosion by sublimation, dust mantling, rejuvenation (mantle blow-off), and splitting. While for sublimation and splitting there already are some models, like di Sisto et. al. (2009), and we only wish to make them more accurate, dust mantling and rejuvenation have not been included in previous, statistical physical evolution models. Each of these effects depends on one or more tunable parameters, which we establish by choosing the model that best fits the observed comet sample in a way similar to di Sisto et. al. (2009). In contrast to di Sisto et. al., our comparison also involves the observed active fractions vs. nuclear radii.

  10. Integrating Mathematical Modeling for Undergraduate Pre-Service Science Education Learning and Instruction in Middle School Classrooms

    ERIC Educational Resources Information Center

    Carrejo, David; Robertson, William H.

    2011-01-01

    Computer-based mathematical modeling in physics is a process of constructing models of concepts and the relationships between them in the scientific characteristics of work. In this manner, computer-based modeling integrates the interactions of natural phenomenon through the use of models, which provide structure for theories and a base for…

  11. An Efficient Interactive Model for On-Demand Sensing-As-A-Servicesof Sensor-Cloud

    PubMed Central

    Dinh, Thanh; Kim, Younghan

    2016-01-01

    This paper proposes an efficient interactive model for the sensor-cloud to enable the sensor-cloud to efficiently provide on-demand sensing services for multiple applications with different requirements at the same time. The interactive model is designed for both the cloud and sensor nodes to optimize the resource consumption of physical sensors, as well as the bandwidth consumption of sensing traffic. In the model, the sensor-cloud plays a key role in aggregating application requests to minimize the workloads required for constrained physical nodes while guaranteeing that the requirements of all applications are satisfied. Physical sensor nodes perform their sensing under the guidance of the sensor-cloud. Based on the interactions with the sensor-cloud, physical sensor nodes adapt their scheduling accordingly to minimize their energy consumption. Comprehensive experimental results show that our proposed system achieves a significant improvement in terms of the energy consumption of physical sensors, the bandwidth consumption from the sink node to the sensor-cloud, the packet delivery latency, reliability and scalability, compared to current approaches. Based on the obtained results, we discuss the economical benefits and how the proposed system enables a win-win model in the sensor-cloud. PMID:27367689

  12. An Efficient Interactive Model for On-Demand Sensing-As-A-Servicesof Sensor-Cloud.

    PubMed

    Dinh, Thanh; Kim, Younghan

    2016-06-28

    This paper proposes an efficient interactive model for the sensor-cloud to enable the sensor-cloud to efficiently provide on-demand sensing services for multiple applications with different requirements at the same time. The interactive model is designed for both the cloud and sensor nodes to optimize the resource consumption of physical sensors, as well as the bandwidth consumption of sensing traffic. In the model, the sensor-cloud plays a key role in aggregating application requests to minimize the workloads required for constrained physical nodes while guaranteeing that the requirements of all applications are satisfied. Physical sensor nodes perform their sensing under the guidance of the sensor-cloud. Based on the interactions with the sensor-cloud, physical sensor nodes adapt their scheduling accordingly to minimize their energy consumption. Comprehensive experimental results show that our proposed system achieves a significant improvement in terms of the energy consumption of physical sensors, the bandwidth consumption from the sink node to the sensor-cloud, the packet delivery latency, reliability and scalability, compared to current approaches. Based on the obtained results, we discuss the economical benefits and how the proposed system enables a win-win model in the sensor-cloud.

  13. Retrieving hydrological connectivity from empirical causality in karst systems

    NASA Astrophysics Data System (ADS)

    Delforge, Damien; Vanclooster, Marnik; Van Camp, Michel; Poulain, Amaël; Watlet, Arnaud; Hallet, Vincent; Kaufmann, Olivier; Francis, Olivier

    2017-04-01

    Because of their complexity, karst systems exhibit nonlinear dynamics. Moreover, if one attempts to model a karst, the hidden behavior complicates the choice of the most suitable model. Therefore, both intense investigation methods and nonlinear data analysis are needed to reveal the underlying hydrological connectivity as a prior for a consistent physically based modelling approach. Convergent Cross Mapping (CCM), a recent method, promises to identify causal relationships between time series belonging to the same dynamical systems. The method is based on phase space reconstruction and is suitable for nonlinear dynamics. As an empirical causation detection method, it could be used to highlight the hidden complexity of a karst system by revealing its inner hydrological and dynamical connectivity. Hence, if one can link causal relationships to physical processes, the method should show great potential to support physically based model structure selection. We present the results of numerical experiments using karst model blocks combined in different structures to generate time series from actual rainfall series. CCM is applied between the time series to investigate if the empirical causation detection is consistent with the hydrological connectivity suggested by the karst model.

  14. Models of Integrating Physical Therapists into Family Health Teams in Ontario, Canada: Challenges and Opportunities

    PubMed Central

    Mandoda, Shilpa; Landry, Michel D.

    2011-01-01

    ABSTRACT Purpose: To explore the potential for different models of incorporating physical therapy (PT) services within the emerging network of family health teams (FHTs) in Ontario and to identify challenges and opportunities of each model. Methods: A two-phase mixed-methods qualitative descriptive approach was used. First, FHTs were mapped in relation to existing community-based PT practices. Second, semi-structured key-informant interviews were conducted with representatives from urban and rural FHTs and from a variety of community-based PT practices. Interviews were digitally recorded, transcribed verbatim, and analyzed using a categorizing/editing approach. Results: Most participants agreed that the ideal model involves embedding physical therapists directly into FHTs; in some situations, however, partnering with an existing external PT provider may be more feasible and sustainable. Access and funding remain the key issues, regardless of the model adopted. Conclusion: Although there are differences across the urban/rural divide, there exist opportunities to enhance and optimize existing delivery models so as to improve client access and address emerging demand for community-based PT services. PMID:22654231

  15. Analysis of the 20th November 2003 Extreme Geomagnetic Storm using CTIPe Model and GNSS Data

    NASA Astrophysics Data System (ADS)

    Fernandez-Gomez, I.; Borries, C.; Codrescu, M.

    2016-12-01

    The ionospheric instabilities produced by solar activity generate disturbances in ionospheric density (ionospheric storms) with important terrestrial consequences such as disrupting communications and positioning. During the 20th November 2003 extreme geomagnetic storm, significant perturbations were produced in the ionosphere - thermosphere system. In this work, we replicate how this system responded to the onset of this particular storm, using the Coupled Thermosphere Ionosphere Plasmasphere electrodynamics physics based model. CTIPe simulates the changes in the neutral winds, temperature, composition and electron densities. Although modelling the ionosphere under this conditions is a challenging task due to energy flow uncertainties, the model reproduces some of the storm features necessary to interpret the physical mechanisms behind the Total Electron Content (TEC) increase and the dramatic changes in composition during this event.Corresponding effects are observed in the TEC simulations from other physics based models and from observations derived from Global Navigation Satellite System (GNSS) and ground-based measurements.The study illustrates the necessity of using both, measurements and models, to have a complete understanding of the processes that are most likely responsible for the observed effects.

  16. Psychophysically based model of surface gloss perception

    NASA Astrophysics Data System (ADS)

    Ferwerda, James A.; Pellacini, Fabio; Greenberg, Donald P.

    2001-06-01

    In this paper we introduce a new model of surface appearance that is based on quantitative studies of gloss perception. We use image synthesis techniques to conduct experiments that explore the relationships between the physical dimensions of glossy reflectance and the perceptual dimensions of glossy appearance. The product of these experiments is a psychophysically-based model of surface gloss, with dimensions that are both physically and perceptually meaningful and scales that reflect our sensitivity to gloss variations. We demonstrate that the model can be used to describe and control the appearance of glossy surfaces in synthesis images, allowing prediction of gloss matches and quantification of gloss differences. This work represents some initial steps toward developing psychophyscial models of the goniometric aspects of surface appearance to complement widely-used colorimetric models.

  17. A prospective examination of the relationship between physical activity and dementia risk in later life.

    PubMed

    Bowen, Mary Elizabeth

    2012-01-01

    To examine the relationship between vigorous physical activity and dementia risk. Prospective study design utilizing physical activity data from the Health and Retirement Study and cognitive outcome data from the Aging, Demographics, and Memory Study. Community-based. Adults age 71 and over (N  =  808) with 3 to 7 years of physical activity information prior to dementia/no dementia diagnosis. Physical activity was measured by participation in vigorous activities such as aerobics, sports, running, bicycling, and heavy housework three or more times per week (yes/no). Dementia diagnosis was based on an expert panel (e.g., neuropsychologists, neurologists, geropsychiatrists) who performed and reviewed a battery of neuropsychological tests. Binary logistic regression models were used to account for demographic characteristics, genetic risk factors (one or two apolipoprotein E ε4 alleles), health behaviors (e.g., smoking, drinking alcohol), health indicators (body mass index), and health conditions (e.g., diabetes, heart disease) in a sequential model-building process. The relationship between vigorous physical activity and dementia risk remained robust across models. In the final model, older adults who were physically active were 21% (p ≤ .05) less likely than their counterparts to be diagnosed with dementia. Vigorous physical activity may reduce the risk for dementia independently of the factors examined here. This study's findings are important given that few preventative strategies for dementia have been explored beyond hormonal therapy and anti-inflammatory drugs.

  18. A simple and fast physics-based analytical method to calculate therapeutic and stray doses from external beam, megavoltage x-ray therapy

    PubMed Central

    Wilson, Lydia J; Newhauser, Wayne D

    2015-01-01

    State-of-the-art radiotherapy treatment planning systems provide reliable estimates of the therapeutic radiation but are known to underestimate or neglect the stray radiation exposures. Most commonly, stray radiation exposures are reconstructed using empirical formulas or lookup tables. The purpose of this study was to develop the basic physics of a model capable of calculating the total absorbed dose both inside and outside of the therapeutic radiation beam for external beam photon therapy. The model was developed using measurements of total absorbed dose in a water-box phantom from a 6 MV medical linear accelerator to calculate dose profiles in both the in-plane and cross-plane direction for a variety of square field sizes and depths in water. The water-box phantom facilitated development of the basic physical aspects of the model. RMS discrepancies between measured and calculated total absorbed dose values in water were less than 9.3% for all fields studied. Computation times for 10 million dose points within a homogeneous phantom were approximately 4 minutes. These results suggest that the basic physics of the model are sufficiently simple, fast, and accurate to serve as a foundation for a variety of clinical and research applications, some of which may require that the model be extended or simplified based on the needs of the user. A potentially important advantage of a physics-based approach is that the model is more readily adaptable to a wide variety of treatment units and treatment techniques than with empirical models. PMID:26040833

  19. A simple and fast physics-based analytical method to calculate therapeutic and stray doses from external beam, megavoltage x-ray therapy.

    PubMed

    Jagetic, Lydia J; Newhauser, Wayne D

    2015-06-21

    State-of-the-art radiotherapy treatment planning systems provide reliable estimates of the therapeutic radiation but are known to underestimate or neglect the stray radiation exposures. Most commonly, stray radiation exposures are reconstructed using empirical formulas or lookup tables. The purpose of this study was to develop the basic physics of a model capable of calculating the total absorbed dose both inside and outside of the therapeutic radiation beam for external beam photon therapy. The model was developed using measurements of total absorbed dose in a water-box phantom from a 6 MV medical linear accelerator to calculate dose profiles in both the in-plane and cross-plane direction for a variety of square field sizes and depths in water. The water-box phantom facilitated development of the basic physical aspects of the model. RMS discrepancies between measured and calculated total absorbed dose values in water were less than 9.3% for all fields studied. Computation times for 10 million dose points within a homogeneous phantom were approximately 4 min. These results suggest that the basic physics of the model are sufficiently simple, fast, and accurate to serve as a foundation for a variety of clinical and research applications, some of which may require that the model be extended or simplified based on the needs of the user. A potentially important advantage of a physics-based approach is that the model is more readily adaptable to a wide variety of treatment units and treatment techniques than with empirical models.

  20. Agent autonomy approach to probabilistic physics-of-failure modeling of complex dynamic systems with interacting failure mechanisms

    NASA Astrophysics Data System (ADS)

    Gromek, Katherine Emily

    A novel computational and inference framework of the physics-of-failure (PoF) reliability modeling for complex dynamic systems has been established in this research. The PoF-based reliability models are used to perform a real time simulation of system failure processes, so that the system level reliability modeling would constitute inferences from checking the status of component level reliability at any given time. The "agent autonomy" concept is applied as a solution method for the system-level probabilistic PoF-based (i.e. PPoF-based) modeling. This concept originated from artificial intelligence (AI) as a leading intelligent computational inference in modeling of multi agents systems (MAS). The concept of agent autonomy in the context of reliability modeling was first proposed by M. Azarkhail [1], where a fundamentally new idea of system representation by autonomous intelligent agents for the purpose of reliability modeling was introduced. Contribution of the current work lies in the further development of the agent anatomy concept, particularly the refined agent classification within the scope of the PoF-based system reliability modeling, new approaches to the learning and the autonomy properties of the intelligent agents, and modeling interacting failure mechanisms within the dynamic engineering system. The autonomous property of intelligent agents is defined as agent's ability to self-activate, deactivate or completely redefine their role in the analysis. This property of agents and the ability to model interacting failure mechanisms of the system elements makes the agent autonomy fundamentally different from all existing methods of probabilistic PoF-based reliability modeling. 1. Azarkhail, M., "Agent Autonomy Approach to Physics-Based Reliability Modeling of Structures and Mechanical Systems", PhD thesis, University of Maryland, College Park, 2007.

  1. A new 3D multi-fluid model: a study of kinetic effects and variations of physical conditions in the cometary coma

    NASA Astrophysics Data System (ADS)

    Shou, Yinsi; Combi, Michael R.; Toth, Gabor; Huang, Zhenguang; Jia, Xianzhe; Fougere, Nicolas; Tenishev, Valeriy; Gombosi, T. I.; Hansen, Kenneth C.; Bieler, Andre

    2016-10-01

    Physics-based numerical coma models are desirable whether to interpret the spacecraft observations of the inner coma or to compare with the ground-based observations of the outer coma. In this work, we develop a multi-neutral-fluid model based on BATS-R-US in the University of Michigan's SWMF (Space Weather Modeling Framework), which is capable of computing both the inner and the outer coma and simulating time-variable phenomena. It treats H2O, OH, H2, O, and H as separate fluids and each fluid has its own velocity and temperature, with collisions coupling all fluids together. The self-consistent collisional interactions decrease the velocity differences, re-distribute the excess energy deposited by chemical reactions among all species, and account for the varying heating efficiency under various physical conditions. Recognizing that the fluid approach has limitations in capturing all of the correct physics for certain applications, especially for very low density environment, we applied our multi-fluid coma model to comet 67P/Churyumov-Gerasimenko (CG) at various heliocentric distances and demonstrated that it is able to yield comparable results as the Direct Simulation Monte Carlo (DSMC) model, which is based on a kinetic approach that is valid under these conditions. Therefore, our model may be a powerful alternative to the particle-based model, especially for some computationally intensive simulations. In addition, by running the model with several combinations of production rates and heliocentric distances, we can characterize the cometary H2O expansion speeds and demonstrate the nonlinear effect of production rates or photochemical heating. Our results are also compared to previous modeling work (e.g., Bockelee-Morvan & Crovisier 1987) and remote observations (e.g., Tseng et al. 2007), which serve as further validation of our model. This work has been partially supported by grant NNX14AG84G from the NASA Planetary Atmospheres Program, and US Rosetta contracts JPL #1266313, JPL #1266314 and JPL #1286489.

  2. Promotion of Autonomy for Participation in Physical Activity: A Study Based on the Trans-Contextual Model of Motivation

    ERIC Educational Resources Information Center

    González-Cutre, David; Ferriz, Roberto; Beltrán-Carrillo, Vicente J.; Andrés-Fabra, José A.; Montero-Carretero, Carlos; Cervelló, Eduardo; Moreno-Murcia, Juan Antonio

    2014-01-01

    The aim of this study was to analyse the effects of a school-based intervention to promote physical activity, utilising the postulates of the trans-contextual model of motivation. The study examined two separate classes of elementary school students (mean age 11.28?years), one of which served as the control group (n?=?26) and the other as the…

  3. Integrated Formulation of Beacon-Based Exception Analysis for Multimissions

    NASA Technical Reports Server (NTRS)

    Mackey, Ryan; James, Mark; Park, Han; Zak, Mickail

    2003-01-01

    Further work on beacon-based exception analysis for multimissions (BEAM), a method of real-time, automated diagnosis of a complex electromechanical systems, has greatly expanded its capability and suitability of application. This expanded formulation, which fully integrates physical models and symbolic analysis, is described. The new formulation of BEAM expands upon previous advanced techniques for analysis of signal data, utilizing mathematical modeling of the system physics, and expert-system reasoning,

  4. The Effect of Scientific Inquiry Learning Model Based on Conceptual Change on Physics Cognitive Competence and Science Process Skill (SPS) of Students at Senior High School

    ERIC Educational Resources Information Center

    Sahhyar; Nst, Febriani Hastini

    2017-01-01

    The purpose of this research was to analyze the physics cognitive competence and science process skill of students using scientific inquiry learning model based on conceptual change better than using conventional learning. The research type was quasi experiment and two group pretest-posttest designs were used in this study. The sample were Class…

  5. Haptics-based dynamic implicit solid modeling.

    PubMed

    Hua, Jing; Qin, Hong

    2004-01-01

    This paper systematically presents a novel, interactive solid modeling framework, Haptics-based Dynamic Implicit Solid Modeling, which is founded upon volumetric implicit functions and powerful physics-based modeling. In particular, we augment our modeling framework with a haptic mechanism in order to take advantage of additional realism associated with a 3D haptic interface. Our dynamic implicit solids are semi-algebraic sets of volumetric implicit functions and are governed by the principles of dynamics, hence responding to sculpting forces in a natural and predictable manner. In order to directly manipulate existing volumetric data sets as well as point clouds, we develop a hierarchical fitting algorithm to reconstruct and represent discrete data sets using our continuous implicit functions, which permit users to further design and edit those existing 3D models in real-time using a large variety of haptic and geometric toolkits, and visualize their interactive deformation at arbitrary resolution. The additional geometric and physical constraints afford more sophisticated control of the dynamic implicit solids. The versatility of our dynamic implicit modeling enables the user to easily modify both the geometry and the topology of modeled objects, while the inherent physical properties can offer an intuitive haptic interface for direct manipulation with force feedback.

  6. A Modeling Framework for Optimal Computational Resource Allocation Estimation: Considering the Trade-offs between Physical Resolutions, Uncertainty and Computational Costs

    NASA Astrophysics Data System (ADS)

    Moslehi, M.; de Barros, F.; Rajagopal, R.

    2014-12-01

    Hydrogeological models that represent flow and transport in subsurface domains are usually large-scale with excessive computational complexity and uncertain characteristics. Uncertainty quantification for predicting flow and transport in heterogeneous formations often entails utilizing a numerical Monte Carlo framework, which repeatedly simulates the model according to a random field representing hydrogeological characteristics of the field. The physical resolution (e.g. grid resolution associated with the physical space) for the simulation is customarily chosen based on recommendations in the literature, independent of the number of Monte Carlo realizations. This practice may lead to either excessive computational burden or inaccurate solutions. We propose an optimization-based methodology that considers the trade-off between the following conflicting objectives: time associated with computational costs, statistical convergence of the model predictions and physical errors corresponding to numerical grid resolution. In this research, we optimally allocate computational resources by developing a modeling framework for the overall error based on a joint statistical and numerical analysis and optimizing the error model subject to a given computational constraint. The derived expression for the overall error explicitly takes into account the joint dependence between the discretization error of the physical space and the statistical error associated with Monte Carlo realizations. The accuracy of the proposed framework is verified in this study by applying it to several computationally extensive examples. Having this framework at hand aims hydrogeologists to achieve the optimum physical and statistical resolutions to minimize the error with a given computational budget. Moreover, the influence of the available computational resources and the geometric properties of the contaminant source zone on the optimum resolutions are investigated. We conclude that the computational cost associated with optimal allocation can be substantially reduced compared with prevalent recommendations in the literature.

  7. A Goddard Multi-Scale Modeling System with Unified Physics

    NASA Technical Reports Server (NTRS)

    Tao, W.K.; Anderson, D.; Atlas, R.; Chern, J.; Houser, P.; Hou, A.; Lang, S.; Lau, W.; Peters-Lidard, C.; Kakar, R.; hide

    2008-01-01

    Numerical cloud resolving models (CRMs), which are based the non-hydrostatic equations of motion, have been extensively applied to cloud-scale and mesoscale processes during the past four decades. Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that CRMs agree with observations in simulating various types of clouds and cloud systems from different geographic locations. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that Numerical Weather Prediction (NWP) and regional scale model can be run in grid size similar to cloud resolving model through nesting technique. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a szrper-parameterization or multi-scale modeling -framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign can provide initial conditions as well as validation through utilizing the Earth Satellite simulators. At Goddard, we have developed a multi-scale modeling system with unified physics. The modeling system consists a coupled GCM-CRM (or MMF); a state-of-the-art weather research forecast model (WRF) and a cloud-resolving model (Goddard Cumulus Ensemble model). In these models, the same microphysical schemes (2ICE, several 3ICE), radiation (including explicitly calculated cloud optical properties), and surface models are applied. In addition, a comprehensive unified Earth Satellite simulator has been developed at GSFC, which is designed to fully utilize the multi-scale modeling system. A brief review of the multi-scale modeling system with unified physics/simulator and examples is presented in this article.

  8. Quantitative Analyses about Market- and Prevalence-Based Needs for Adapted Physical Education Teachers in the Public Schools in the United States

    ERIC Educational Resources Information Center

    Zhang, Jiabei

    2011-01-01

    The purpose of this study was to analyze quantitative needs for more adapted physical education (APE) teachers based on both market- and prevalence-based models. The market-based need for more APE teachers was examined based on APE teacher positions funded, while the prevalence-based need for additional APE teachers was analyzed based on students…

  9. Predictive Analytical Model for Isolator Shock-Train Location in a Mach 2.2 Direct-Connect Supersonic Combustion Tunnel

    NASA Astrophysics Data System (ADS)

    Lingren, Joe; Vanstone, Leon; Hashemi, Kelley; Gogineni, Sivaram; Donbar, Jeffrey; Akella, Maruthi; Clemens, Noel

    2016-11-01

    This study develops an analytical model for predicting the leading shock of a shock-train in the constant area isolator section in a Mach 2.2 direct-connect scramjet simulation tunnel. The effective geometry of the isolator is assumed to be a weakly converging duct owing to boundary-layer growth. For some given pressure rise across the isolator, quasi-1D equations relating to isentropic or normal shock flows can be used to predict the normal shock location in the isolator. The surface pressure distribution through the isolator was measured during experiments and both the actual and predicted locations can be calculated. Three methods of finding the shock-train location are examined, one based on the measured pressure rise, one using a non-physics-based control model, and one using the physics-based analytical model. It is shown that the analytical model performs better than the non-physics-based model in all cases. The analytic model is less accurate than the pressure threshold method but requires significantly less information to compute. In contrast to other methods for predicting shock-train location, this method is relatively accurate and requires as little as a single pressure measurement. This makes this method potentially useful for unstart control applications.

  10. An Empirical Model-based MOE for Friction Reduction by Slot-Ejected Polymer Solutions in an Aqueous Environment

    DTIC Science & Technology

    2007-12-21

    of hydrodynamics and the physical characteristics of the polymers. The physics models include both analytical models and numerical simulations ...the experimental observations. The numerical simulations also succeed in replicating some experimental measurements. However, there is still no...become quite significant. 4.5 Documentation The complete model is coded in MatLab . In the model, all units are cgs, so distances are in

  11. NASA GPM GV Science Implementation

    NASA Technical Reports Server (NTRS)

    Petersen, W. A.

    2009-01-01

    Pre-launch algorithm development & post-launch product evaluation: The GPM GV paradigm moves beyond traditional direct validation/comparison activities by incorporating improved algorithm physics & model applications (end-to-end validation) in the validation process. Three approaches: 1) National Network (surface): Operational networks to identify and resolve first order discrepancies (e.g., bias) between satellite and ground-based precipitation estimates. 2) Physical Process (vertical column): Cloud system and microphysical studies geared toward testing and refinement of physically-based retrieval algorithms. 3) Integrated (4-dimensional): Integration of satellite precipitation products into coupled prediction models to evaluate strengths/limitations of satellite precipitation producers.

  12. Testing a self-determination theory model of children’s physical activity motivation: a cross-sectional study

    PubMed Central

    2013-01-01

    Background Understanding children’s physical activity motivation, its antecedents and associations with behavior is important and can be advanced by using self-determination theory. However, research among youth is largely restricted to adolescents and studies of motivation within certain contexts (e.g., physical education). There are no measures of self-determination theory constructs (physical activity motivation or psychological need satisfaction) for use among children and no previous studies have tested a self-determination theory-based model of children’s physical activity motivation. The purpose of this study was to test the reliability and validity of scores derived from scales adapted to measure self-determination theory constructs among children and test a motivational model predicting accelerometer-derived physical activity. Methods Cross-sectional data from 462 children aged 7 to 11 years from 20 primary schools in Bristol, UK were analysed. Confirmatory factor analysis was used to examine the construct validity of adapted behavioral regulation and psychological need satisfaction scales. Structural equation modelling was used to test cross-sectional associations between psychological need satisfaction, motivation types and physical activity assessed by accelerometer. Results The construct validity and reliability of the motivation and psychological need satisfaction measures were supported. Structural equation modelling provided evidence for a motivational model in which psychological need satisfaction was positively associated with intrinsic and identified motivation types and intrinsic motivation was positively associated with children’s minutes in moderate-to-vigorous physical activity. Conclusions The study provides evidence for the psychometric properties of measures of motivation aligned with self-determination theory among children. Children’s motivation that is based on enjoyment and inherent satisfaction of physical activity is associated with their objectively-assessed physical activity and such motivation is positively associated with perceptions of psychological need satisfaction. These psychological factors represent potential malleable targets for interventions to increase children’s physical activity. PMID:24067078

  13. A Software Toolkit to Study Systematic Uncertainties of the Physics Models of the Geant4 Simulation Package

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genser, Krzysztof; Hatcher, Robert; Kelsey, Michael

    The Geant4 simulation toolkit is used to model interactions between particles and matter. Geant4 employs a set of validated physics models that span a wide range of interaction energies. These models rely on measured cross-sections and phenomenological models with the physically motivated parameters that are tuned to cover many application domains. To study what uncertainties are associated with the Geant4 physics models we have designed and implemented a comprehensive, modular, user-friendly software toolkit that allows the variation of one or more parameters of one or more Geant4 physics models involved in simulation studies. It also enables analysis of multiple variantsmore » of the resulting physics observables of interest in order to estimate the uncertainties associated with the simulation model choices. Based on modern event-processing infrastructure software, the toolkit offers a variety of attractive features, e.g. exible run-time con gurable work ow, comprehensive bookkeeping, easy to expand collection of analytical components. Design, implementation technology, and key functionalities of the toolkit are presented in this paper and illustrated with selected results.« less

  14. Physically based modeling of bedrock incision by abrasion, plucking, and macroabrasion

    NASA Astrophysics Data System (ADS)

    Chatanantavet, Phairot; Parker, Gary

    2009-11-01

    Many important insights into the dynamic coupling among climate, erosion, and tectonics in mountain areas have derived from several numerical models of the past few decades which include descriptions of bedrock incision. However, many questions regarding incision processes and morphology of bedrock streams still remain unanswered. A more mechanistically based incision model is needed as a component to study landscape evolution. Major bedrock incision processes include (among other mechanisms) abrasion by bed load, plucking, and macroabrasion (a process of fracturing of the bedrock into pluckable sizes mediated by particle impacts). The purpose of this paper is to develop a physically based model of bedrock incision that includes all three processes mentioned above. To build the model, we start by developing a theory of abrasion, plucking, and macroabrasion mechanisms. We then incorporate hydrology, the evaluation of boundary shear stress, capacity transport, an entrainment relation for pluckable particles, a routing model linking in-stream sediment and hillslopes, a formulation for alluvial channel coverage, a channel width relation, Hack's law, and Exner equation into the model so that we can simulate the evolution of bedrock channels. The model successfully simulates various features of bed elevation profiles of natural bedrock rivers under a variety of input or boundary conditions. The results also illustrate that knickpoints found in bedrock rivers may be autogenic in addition to being driven by base level fall and lithologic changes. This supports the concept that bedrock incision by knickpoint migration may be an integral part of normal incision processes. The model is expected to improve the current understanding of the linkage among physically meaningful input parameters, the physics of incision process, and morphological changes in bedrock streams.

  15. Methodology for Physics and Engineering of Reliable Products

    NASA Technical Reports Server (NTRS)

    Cornford, Steven L.; Gibbel, Mark

    1996-01-01

    Physics of failure approaches have gained wide spread acceptance within the electronic reliability community. These methodologies involve identifying root cause failure mechanisms, developing associated models, and utilizing these models to inprove time to market, lower development and build costs and higher reliability. The methodology outlined herein sets forth a process, based on integration of both physics and engineering principles, for achieving the same goals.

  16. Estimating Escherichia coli loads in streams based on various physical, chemical, and biological factors

    PubMed Central

    Dwivedi, Dipankar; Mohanty, Binayak P.; Lesikar, Bruce J.

    2013-01-01

    Microbes have been identified as a major contaminant of water resources. Escherichia coli (E. coli) is a commonly used indicator organism. It is well recognized that the fate of E. coli in surface water systems is governed by multiple physical, chemical, and biological factors. The aim of this work is to provide insight into the physical, chemical, and biological factors along with their interactions that are critical in the estimation of E. coli loads in surface streams. There are various models to predict E. coli loads in streams, but they tend to be system or site specific or overly complex without enhancing our understanding of these factors. Hence, based on available data, a Bayesian Neural Network (BNN) is presented for estimating E. coli loads based on physical, chemical, and biological factors in streams. The BNN has the dual advantage of overcoming the absence of quality data (with regards to consistency in data) and determination of mechanistic model parameters by employing a probabilistic framework. This study evaluates whether the BNN model can be an effective alternative tool to mechanistic models for E. coli loads estimation in streams. For this purpose, a comparison with a traditional model (LOADEST, USGS) is conducted. The models are compared for estimated E. coli loads based on available water quality data in Plum Creek, Texas. All the model efficiency measures suggest that overall E. coli loads estimations by the BNN model are better than the E. coli loads estimations by the LOADEST model on all the three occasions (three-fold cross validation). Thirteen factors were used for estimating E. coli loads with the exhaustive feature selection technique, which indicated that six of thirteen factors are important for estimating E. coli loads. Physical factors included temperature and dissolved oxygen; chemical factors include phosphate and ammonia; biological factors include suspended solids and chlorophyll. The results highlight that the LOADEST model estimates E. coli loads better in the smaller ranges, whereas the BNN model estimates E. coli loads better in the higher ranges. Hence, the BNN model can be used to design targeted monitoring programs and implement regulatory standards through TMDL programs. PMID:24511166

  17. Physically-Derived Dynamical Cores in Atmospheric General Circulation Models

    NASA Technical Reports Server (NTRS)

    Rood, Richard B.; Lin, Shian-Jiann

    1999-01-01

    The algorithm chosen to represent the advection in atmospheric models is often used as the primary attribute to classify the model. Meteorological models are generally classified as spectral or grid point, with the term grid point implying discretization using finite differences. These traditional approaches have a number of shortcomings that render them non-physical. That is, they provide approximate solutions to the conservation equations that do not obey the fundamental laws of physics. The most commonly discussed shortcomings are overshoots and undershoots which manifest themselves most overtly in the constituent continuity equation. For this reason many climate models have special algorithms to model water vapor advection. This talk focuses on the development of an atmospheric general circulation model which uses a consistent physically-based advection algorithm in all aspects of the model formulation. The shallow-water model is generalized to three dimensions and combined with the physics parameterizations of NCAR's Community Climate Model. The scientific motivation for the development is to increase the integrity of the underlying fluid dynamics so that the physics terms can be more effectively isolated, examined, and improved. The expected benefits of the new model are discussed and results from the initial integrations will be presented.

  18. Physically-Derived Dynamical Cores in Atmospheric General Circulation Models

    NASA Technical Reports Server (NTRS)

    Rood, Richard B.; Lin, Shian-Kiann

    1999-01-01

    The algorithm chosen to represent the advection in atmospheric models is often used as the primary attribute to classify the model. Meteorological models are generally classified as spectral or grid point, with the term grid point implying discretization using finite differences. These traditional approaches have a number of shortcomings that render them non-physical. That is, they provide approximate solutions to the conservation equations that do not obey the fundamental laws of physics. The most commonly discussed shortcomings are overshoots and undershoots which manifest themselves most overtly in the constituent continuity equation. For this reason many climate models have special algorithms to model water vapor advection. This talk focuses on the development of an atmospheric general circulation model which uses a consistent physically-based advection algorithm in all aspects of the model formulation. The shallow-water model of Lin and Rood (QJRMS, 1997) is generalized to three dimensions and combined with the physics parameterizations of NCAR's Community Climate Model. The scientific motivation for the development is to increase the integrity of the underlying fluid dynamics so that the physics terms can be more effectively isolated, examined, and improved. The expected benefits of the new model are discussed and results from the initial integrations will be presented.

  19. A simulation model for analysing brain structure deformations.

    PubMed

    Di Bona, Sergio; Lutzemberger, Ludovico; Salvetti, Ovidio

    2003-12-21

    Recent developments of medical software applications--from the simulation to the planning of surgical operations--have revealed the need for modelling human tissues and organs, not only from a geometric point of view but also from a physical one, i.e. soft tissues, rigid body, viscoelasticity, etc. This has given rise to the term 'deformable objects', which refers to objects with a morphology, a physical and a mechanical behaviour of their own and that reflects their natural properties. In this paper, we propose a model, based upon physical laws, suitable for the realistic manipulation of geometric reconstructions of volumetric data taken from MR and CT scans. In particular, a physically based model of the brain is presented that is able to simulate the evolution of different nature pathological intra-cranial phenomena such as haemorrhages, neoplasm, haematoma, etc and to describe the consequences that are caused by their volume expansions and the influences they have on the anatomical and neuro-functional structures of the brain.

  20. Automated method for the systematic interpretation of resonance peaks in spectrum data

    DOEpatents

    Damiano, Brian; Wood, Richard T.

    1997-01-01

    A method for spectral signature interpretation. The method includes the creation of a mathematical model of a system or process. A neural network training set is then developed based upon the mathematical model. The neural network training set is developed by using the mathematical model to generate measurable phenomena of the system or process based upon model input parameter that correspond to the physical condition of the system or process. The neural network training set is then used to adjust internal parameters of a neural network. The physical condition of an actual system or process represented by the mathematical model is then monitored by extracting spectral features from measured spectra of the actual process or system. The spectral features are then input into said neural network to determine the physical condition of the system or process represented by the mathematical. More specifically, the neural network correlates the spectral features (i.e. measurable phenomena) of the actual process or system with the corresponding model input parameters. The model input parameters relate to specific components of the system or process, and, consequently, correspond to the physical condition of the process or system.

  1. A conceptual snow model with an analytic resolution of the heat and phase change equations

    NASA Astrophysics Data System (ADS)

    Riboust, Philippe; Le Moine, Nicolas; Thirel, Guillaume; Ribstein, Pierre

    2017-04-01

    Compared to degree-day snow models, physically-based snow models resolve more processes in an attempt to achieve a better representation of reality. Often these physically-based models resolve the heat transport equations in snow using a vertical discretization of the snowpack. The snowpack is decomposed into several layers in which the mechanical and thermal states of the snow are calculated. A higher number of layers in the snowpack allow for better accuracy but it also tends to increase the computational costs. In order to develop a snow model that estimates the temperature profile of snow with a lower computational cost, we used an analytical decomposition of the vertical profile using eigenfunctions (i.e. trigonometric functions adapted to the specific boundary conditions). The mass transfer of snow melt has also been estimated using an analytical conceptualization of runoff fingering and matrix flow. As external meteorological forcing, the model uses solar and atmospheric radiation, air temperature, atmospheric humidity and precipitations. It has been tested and calibrated at point scale at two different stations in the Alps: Col de Porte (France, 1325 m) and Weissfluhjoch (Switzerland, 2540 m). A sensitivity analysis of model parameters and model inputs will be presented together with a comparison with measured snow surface temperature, SWE, snow depth, temperature profile and snow melt data. The snow model is created in order to be ultimately coupled with hydrological models for rainfall-runoff modeling in mountainous areas. We hope to create a model faster than physically-based models but capable to estimate more physical processes than degree-day snow models. This should help to build a more reliable snow model capable of being easily calibrated by remote sensing and in situ observation or to assimilate these data for forecasting purposes.

  2. Analytic expressions for the black-sky and white-sky albedos of the cosine lobe model.

    PubMed

    Goodin, Christopher

    2013-05-01

    The cosine lobe model is a bidirectional reflectance distribution function (BRDF) that is commonly used in computer graphics to model specular reflections. The model is both simple and physically plausible, but physical quantities such as albedo have not been related to the parameterization of the model. In this paper, analytic expressions for calculating the black-sky and white-sky albedos from the cosine lobe BRDF model with integer exponents will be derived, to the author's knowledge for the first time. These expressions for albedo can be used to place constraints on physics-based simulations of radiative transfer such as high-fidelity ray-tracing simulations.

  3. In situ measurement and modeling of biomechanical response of human cadaveric soft tissues for physics-based surgical simulation.

    PubMed

    Lim, Yi-Je; Deo, Dhanannjay; Singh, Tejinder P; Jones, Daniel B; De, Suvranu

    2009-06-01

    Development of a laparoscopic surgery simulator that delivers high-fidelity visual and haptic (force) feedback, based on the physical models of soft tissues, requires the use of empirical data on the mechanical behavior of intra-abdominal organs under the action of external forces. As experiments on live human patients present significant risks, the use of cadavers presents an alternative. We present techniques of measuring and modeling the mechanical response of human cadaveric tissue for the purpose of developing a realistic model. The major contribution of this paper is the development of physics-based models of soft tissues that range from linear elastic models to nonlinear viscoelastic models which are efficient for application within the framework of a real-time surgery simulator. To investigate the in situ mechanical, static, and dynamic properties of intra-abdominal organs, we have developed a high-precision instrument by retrofitting a robotic device from Sensable Technologies (position resolution of 0.03 mm) with a six-axis Nano 17 force-torque sensor from ATI Industrial Automation (force resolution of 1/1,280 N along each axis), and used it to apply precise displacement stimuli and record the force response of liver and stomach of ten fresh human cadavers. The mean elastic modulus of liver and stomach is estimated as 5.9359 kPa and 1.9119 kPa, respectively over the range of indentation depths tested. We have also obtained the parameters of a quasilinear viscoelastic (QLV) model to represent the nonlinear viscoelastic behavior of the cadaver stomach and liver over a range of indentation depths and speeds. The models are found to have an excellent goodness of fit (with R (2) > 0.99). The data and models presented in this paper together with additional ones based on the principles presented in this paper would result in realistic physics-based surgical simulators.

  4. Modelling strategies to predict the multi-scale effects of rural land management change

    NASA Astrophysics Data System (ADS)

    Bulygina, N.; Ballard, C. E.; Jackson, B. M.; McIntyre, N.; Marshall, M.; Reynolds, B.; Wheater, H. S.

    2011-12-01

    Changes to the rural landscape due to agricultural land management are ubiquitous, yet predicting the multi-scale effects of land management change on hydrological response remains an important scientific challenge. Much empirical research has been of little generic value due to inadequate design and funding of monitoring programmes, while the modelling issues challenge the capability of data-based, conceptual and physics-based modelling approaches. In this paper we report on a major UK research programme, motivated by a national need to quantify effects of agricultural intensification on flood risk. Working with a consortium of farmers in upland Wales, a multi-scale experimental programme (from experimental plots to 2nd order catchments) was developed to address issues of upland agricultural intensification. This provided data support for a multi-scale modelling programme, in which highly detailed physics-based models were conditioned on the experimental data and used to explore effects of potential field-scale interventions. A meta-modelling strategy was developed to represent detailed modelling in a computationally-efficient manner for catchment-scale simulation; this allowed catchment-scale quantification of potential management options. For more general application to data-sparse areas, alternative approaches were needed. Physics-based models were developed for a range of upland management problems, including the restoration of drained peatlands, afforestation, and changing grazing practices. Their performance was explored using literature and surrogate data; although subject to high levels of uncertainty, important insights were obtained, of practical relevance to management decisions. In parallel, regionalised conceptual modelling was used to explore the potential of indices of catchment response, conditioned on readily-available catchment characteristics, to represent ungauged catchments subject to land management change. Although based in part on speculative relationships, significant predictive power was derived from this approach. Finally, using a formal Bayesian procedure, these different sources of information were combined with local flow data in a catchment-scale conceptual model application , i.e. using small-scale physical properties, regionalised signatures of flow and available flow measurements.

  5. A Novel Model-Based Driving Behavior Recognition System Using Motion Sensors.

    PubMed

    Wu, Minglin; Zhang, Sheng; Dong, Yuhan

    2016-10-20

    In this article, a novel driving behavior recognition system based on a specific physical model and motion sensory data is developed to promote traffic safety. Based on the theory of rigid body kinematics, we build a specific physical model to reveal the data change rule during the vehicle moving process. In this work, we adopt a nine-axis motion sensor including a three-axis accelerometer, a three-axis gyroscope and a three-axis magnetometer, and apply a Kalman filter for noise elimination and an adaptive time window for data extraction. Based on the feature extraction guided by the built physical model, various classifiers are accomplished to recognize different driving behaviors. Leveraging the system, normal driving behaviors (such as accelerating, braking, lane changing and turning with caution) and aggressive driving behaviors (such as accelerating, braking, lane changing and turning with a sudden) can be classified with a high accuracy of 93.25%. Compared with traditional driving behavior recognition methods using machine learning only, the proposed system possesses a solid theoretical basis, performs better and has good prospects.

  6. A Novel Model-Based Driving Behavior Recognition System Using Motion Sensors

    PubMed Central

    Wu, Minglin; Zhang, Sheng; Dong, Yuhan

    2016-01-01

    In this article, a novel driving behavior recognition system based on a specific physical model and motion sensory data is developed to promote traffic safety. Based on the theory of rigid body kinematics, we build a specific physical model to reveal the data change rule during the vehicle moving process. In this work, we adopt a nine-axis motion sensor including a three-axis accelerometer, a three-axis gyroscope and a three-axis magnetometer, and apply a Kalman filter for noise elimination and an adaptive time window for data extraction. Based on the feature extraction guided by the built physical model, various classifiers are accomplished to recognize different driving behaviors. Leveraging the system, normal driving behaviors (such as accelerating, braking, lane changing and turning with caution) and aggressive driving behaviors (such as accelerating, braking, lane changing and turning with a sudden) can be classified with a high accuracy of 93.25%. Compared with traditional driving behavior recognition methods using machine learning only, the proposed system possesses a solid theoretical basis, performs better and has good prospects. PMID:27775625

  7. The Relationship Between Lower Extremily Strength and Shoulder Overuse Symptoms: A Model Based on Polio Survivors

    DTIC Science & Technology

    1998-01-01

    developed based on a questionnaire designed to measure habitual physical activity.9 The survey 124 included specific activities that might predispose...manual strength examination was then performed by a physical therapist using a hand- 149 held dynamometer (Empi Microfet2, St. Paul, MN). The physical ...subject pushed against the padded dynamometer force plate, 157 which the physical therapist held stationary. The peak force was measured in pounds, and

  8. Physically Based Modeling and Simulation with Dynamic Spherical Volumetric Simplex Splines

    PubMed Central

    Tan, Yunhao; Hua, Jing; Qin, Hong

    2009-01-01

    In this paper, we present a novel computational modeling and simulation framework based on dynamic spherical volumetric simplex splines. The framework can handle the modeling and simulation of genus-zero objects with real physical properties. In this framework, we first develop an accurate and efficient algorithm to reconstruct the high-fidelity digital model of a real-world object with spherical volumetric simplex splines which can represent with accuracy geometric, material, and other properties of the object simultaneously. With the tight coupling of Lagrangian mechanics, the dynamic volumetric simplex splines representing the object can accurately simulate its physical behavior because it can unify the geometric and material properties in the simulation. The visualization can be directly computed from the object’s geometric or physical representation based on the dynamic spherical volumetric simplex splines during simulation without interpolation or resampling. We have applied the framework for biomechanic simulation of brain deformations, such as brain shifting during the surgery and brain injury under blunt impact. We have compared our simulation results with the ground truth obtained through intra-operative magnetic resonance imaging and the real biomechanic experiments. The evaluations demonstrate the excellent performance of our new technique. PMID:20161636

  9. Workforce Projections 2010-2020: Annual Supply and Demand Forecasting Models for Physical Therapists Across the United States.

    PubMed

    Landry, Michel D; Hack, Laurita M; Coulson, Elizabeth; Freburger, Janet; Johnson, Michael P; Katz, Richard; Kerwin, Joanne; Smith, Megan H; Wessman, Henry C Bud; Venskus, Diana G; Sinnott, Patricia L; Goldstein, Marc

    2016-01-01

    Health human resources continue to emerge as a critical health policy issue across the United States. The purpose of this study was to develop a strategy for modeling future workforce projections to serve as a basis for analyzing annual supply of and demand for physical therapists across the United States into 2020. A traditional stock-and-flow methodology or model was developed and populated with publicly available data to produce estimates of supply and demand for physical therapists by 2020. Supply was determined by adding the estimated number of physical therapists and the approximation of new graduates to the number of physical therapists who immigrated, minus US graduates who never passed the licensure examination, and an estimated attrition rate in any given year. Demand was determined by using projected US population with health care insurance multiplied by a demand ratio in any given year. The difference between projected supply and demand represented a shortage or surplus of physical therapists. Three separate projection models were developed based on best available data in the years 2011, 2012, and 2013, respectively. Based on these projections, demand for physical therapists in the United States outstrips supply under most assumptions. Workforce projection methodology research is based on assumptions using imperfect data; therefore, the results must be interpreted in terms of overall trends rather than as precise actuarial data-generated absolute numbers from specified forecasting. Outcomes of this projection study provide a foundation for discussion and debate regarding the most effective and efficient ways to influence supply-side variables so as to position physical therapists to meet current and future population demand. Attrition rates or permanent exits out of the profession can have important supply-side effects and appear to have an effect on predicting future shortage or surplus of physical therapists. © 2016 American Physical Therapy Association.

  10. Femur Model Reconstruction Based on Reverse Engineering and Rapid Prototyping

    NASA Astrophysics Data System (ADS)

    Tang, Tongming; Zhang, Zheng; Ni, Hongjun; Deng, Jiawen; Huang, Mingyu

    Precise reconstruction of 3D models is fundamental and crucial to the researches of human femur. In this paper we present our approach towards tackling this problem. The surface of a human femur was scanned using a hand-held 3D laser scanner. The data obtained, in the form of point cloud, was then processed using the reverse engineering software Geomagic and the CAD/CAM software CimatronE to reconstruct a digital 3D model. The digital model was then used by the rapid prototyping machine to build a physical model of human femur using 3D printing. The geometric characteristics of the obtained physical model matched that of the original femur. The process of "physical object - 3D data - digital 3D model - physical model" presented in this paper provides a foundation of precise modeling for the digital manufacturing, virtual assembly, stress analysis, and simulated surgery of artificial bionic femurs.

  11. Scalable Methods for Uncertainty Quantification, Data Assimilation and Target Accuracy Assessment for Multi-Physics Advanced Simulation of Light Water Reactors

    NASA Astrophysics Data System (ADS)

    Khuwaileh, Bassam

    High fidelity simulation of nuclear reactors entails large scale applications characterized with high dimensionality and tremendous complexity where various physics models are integrated in the form of coupled models (e.g. neutronic with thermal-hydraulic feedback). Each of the coupled modules represents a high fidelity formulation of the first principles governing the physics of interest. Therefore, new developments in high fidelity multi-physics simulation and the corresponding sensitivity/uncertainty quantification analysis are paramount to the development and competitiveness of reactors achieved through enhanced understanding of the design and safety margins. Accordingly, this dissertation introduces efficient and scalable algorithms for performing efficient Uncertainty Quantification (UQ), Data Assimilation (DA) and Target Accuracy Assessment (TAA) for large scale, multi-physics reactor design and safety problems. This dissertation builds upon previous efforts for adaptive core simulation and reduced order modeling algorithms and extends these efforts towards coupled multi-physics models with feedback. The core idea is to recast the reactor physics analysis in terms of reduced order models. This can be achieved via identifying the important/influential degrees of freedom (DoF) via the subspace analysis, such that the required analysis can be recast by considering the important DoF only. In this dissertation, efficient algorithms for lower dimensional subspace construction have been developed for single physics and multi-physics applications with feedback. Then the reduced subspace is used to solve realistic, large scale forward (UQ) and inverse problems (DA and TAA). Once the elite set of DoF is determined, the uncertainty/sensitivity/target accuracy assessment and data assimilation analysis can be performed accurately and efficiently for large scale, high dimensional multi-physics nuclear engineering applications. Hence, in this work a Karhunen-Loeve (KL) based algorithm previously developed to quantify the uncertainty for single physics models is extended for large scale multi-physics coupled problems with feedback effect. Moreover, a non-linear surrogate based UQ approach is developed, used and compared to performance of the KL approach and brute force Monte Carlo (MC) approach. On the other hand, an efficient Data Assimilation (DA) algorithm is developed to assess information about model's parameters: nuclear data cross-sections and thermal-hydraulics parameters. Two improvements are introduced in order to perform DA on the high dimensional problems. First, a goal-oriented surrogate model can be used to replace the original models in the depletion sequence (MPACT -- COBRA-TF - ORIGEN). Second, approximating the complex and high dimensional solution space with a lower dimensional subspace makes the sampling process necessary for DA possible for high dimensional problems. Moreover, safety analysis and design optimization depend on the accurate prediction of various reactor attributes. Predictions can be enhanced by reducing the uncertainty associated with the attributes of interest. Accordingly, an inverse problem can be defined and solved to assess the contributions from sources of uncertainty; and experimental effort can be subsequently directed to further improve the uncertainty associated with these sources. In this dissertation a subspace-based gradient-free and nonlinear algorithm for inverse uncertainty quantification namely the Target Accuracy Assessment (TAA) has been developed and tested. The ideas proposed in this dissertation were first validated using lattice physics applications simulated using SCALE6.1 package (Pressurized Water Reactor (PWR) and Boiling Water Reactor (BWR) lattice models). Ultimately, the algorithms proposed her were applied to perform UQ and DA for assembly level (CASL progression problem number 6) and core wide problems representing Watts Bar Nuclear 1 (WBN1) for cycle 1 of depletion (CASL Progression Problem Number 9) modeled via simulated using VERA-CS which consists of several multi-physics coupled models. The analysis and algorithms developed in this dissertation were encoded and implemented in a newly developed tool kit algorithms for Reduced Order Modeling based Uncertainty/Sensitivity Estimator (ROMUSE).

  12. An Integrated Scenario Ensemble-Based Framework for Hurricane Evacuation Modeling: Part 2-Hazard Modeling.

    PubMed

    Blanton, Brian; Dresback, Kendra; Colle, Brian; Kolar, Randy; Vergara, Humberto; Hong, Yang; Leonardo, Nicholas; Davidson, Rachel; Nozick, Linda; Wachtendorf, Tricia

    2018-04-25

    Hurricane track and intensity can change rapidly in unexpected ways, thus making predictions of hurricanes and related hazards uncertain. This inherent uncertainty often translates into suboptimal decision-making outcomes, such as unnecessary evacuation. Representing this uncertainty is thus critical in evacuation planning and related activities. We describe a physics-based hazard modeling approach that (1) dynamically accounts for the physical interactions among hazard components and (2) captures hurricane evolution uncertainty using an ensemble method. This loosely coupled model system provides a framework for probabilistic water inundation and wind speed levels for a new, risk-based approach to evacuation modeling, described in a companion article in this issue. It combines the Weather Research and Forecasting (WRF) meteorological model, the Coupled Routing and Excess STorage (CREST) hydrologic model, and the ADvanced CIRCulation (ADCIRC) storm surge, tide, and wind-wave model to compute inundation levels and wind speeds for an ensemble of hurricane predictions. Perturbations to WRF's initial and boundary conditions and different model physics/parameterizations generate an ensemble of storm solutions, which are then used to drive the coupled hydrologic + hydrodynamic models. Hurricane Isabel (2003) is used as a case study to illustrate the ensemble-based approach. The inundation, river runoff, and wind hazard results are strongly dependent on the accuracy of the mesoscale meteorological simulations, which improves with decreasing lead time to hurricane landfall. The ensemble envelope brackets the observed behavior while providing "best-case" and "worst-case" scenarios for the subsequent risk-based evacuation model. © 2018 Society for Risk Analysis.

  13. Application of physical scaling towards downscaling climate model precipitation data

    NASA Astrophysics Data System (ADS)

    Gaur, Abhishek; Simonovic, Slobodan P.

    2018-04-01

    Physical scaling (SP) method downscales climate model data to local or regional scales taking into consideration physical characteristics of the area under analysis. In this study, multiple SP method based models are tested for their effectiveness towards downscaling North American regional reanalysis (NARR) daily precipitation data. Model performance is compared with two state-of-the-art downscaling methods: statistical downscaling model (SDSM) and generalized linear modeling (GLM). The downscaled precipitation is evaluated with reference to recorded precipitation at 57 gauging stations located within the study region. The spatial and temporal robustness of the downscaling methods is evaluated using seven precipitation based indices. Results indicate that SP method-based models perform best in downscaling precipitation followed by GLM, followed by the SDSM model. Best performing models are thereafter used to downscale future precipitations made by three global circulation models (GCMs) following two emission scenarios: representative concentration pathway (RCP) 2.6 and RCP 8.5 over the twenty-first century. The downscaled future precipitation projections indicate an increase in mean and maximum precipitation intensity as well as a decrease in the total number of dry days. Further an increase in the frequency of short (1-day), moderately long (2-4 day), and long (more than 5-day) precipitation events is projected.

  14. Statistical analysis of target acquisition sensor modeling experiments

    NASA Astrophysics Data System (ADS)

    Deaver, Dawne M.; Moyer, Steve

    2015-05-01

    The U.S. Army RDECOM CERDEC NVESD Modeling and Simulation Division is charged with the development and advancement of military target acquisition models to estimate expected soldier performance when using all types of imaging sensors. Two elements of sensor modeling are (1) laboratory-based psychophysical experiments used to measure task performance and calibrate the various models and (2) field-based experiments used to verify the model estimates for specific sensors. In both types of experiments, it is common practice to control or measure environmental, sensor, and target physical parameters in order to minimize uncertainty of the physics based modeling. Predicting the minimum number of test subjects required to calibrate or validate the model should be, but is not always, done during test planning. The objective of this analysis is to develop guidelines for test planners which recommend the number and types of test samples required to yield a statistically significant result.

  15. Performance Modeling of Experimental Laser Lightcrafts

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Chen, Yen-Sen; Liu, Jiwen; Myrabo, Leik N.; Mead, Franklin B., Jr.; Turner, Jim (Technical Monitor)

    2001-01-01

    A computational plasma aerodynamics model is developed to study the performance of a laser propelled Lightcraft. The computational methodology is based on a time-accurate, three-dimensional, finite-difference, chemically reacting, unstructured grid, pressure-based formulation. The underlying physics are added and tested systematically using a building-block approach. The physics modeled include non-equilibrium thermodynamics, non-equilibrium air-plasma finite-rate kinetics, specular ray tracing, laser beam energy absorption and refraction by plasma, non-equilibrium plasma radiation, and plasma resonance. A series of transient computations are performed at several laser pulse energy levels and the simulated physics are discussed and compared with those of tests and literatures. The predicted coupling coefficients for the Lightcraft compared reasonably well with those of tests conducted on a pendulum apparatus.

  16. Competency based teaching of college physics: The philosophy and the practice

    NASA Astrophysics Data System (ADS)

    Rajapaksha, Ajith; Hirsch, Andrew S.

    2017-12-01

    The practice of learning physics contributes to the development of many transdisciplinary skills learners are able to exercise independent of the physics discipline. However, the standard practices of physics instruction do not explicitly include the monitoring or evaluation of these skills. In a competency-based (CB) learning model, the skills (competencies) are clearly defined and evaluated. We envisioned that a CB approach, where the underlying competencies are highlighted within the instructional process, would be more suitable to teaching physics to learners with diversified disciplinary interests. A model CB course curriculum was developed and practiced at Purdue University to teach introductory college physics to learners who were majoring in the technology disciplines. The experiment took place from the spring semester in 2015 until the spring semester in 2017. The practice provided a means to monitor and evaluate a set of developmental transdisciplinary competencies that underlie the learning of force and motion concepts in classical physics. Additionally, the CB practice contributed to produce substantial physics learning outcomes among learners who were underprepared to learn physics in college.

  17. Model-Based Anomaly Detection for a Transparent Optical Transmission System

    NASA Astrophysics Data System (ADS)

    Bengtsson, Thomas; Salamon, Todd; Ho, Tin Kam; White, Christopher A.

    In this chapter, we present an approach for anomaly detection at the physical layer of networks where detailed knowledge about the devices and their operations is available. The approach combines physics-based process models with observational data models to characterize the uncertainties and derive the alarm decision rules. We formulate and apply three different methods based on this approach for a well-defined problem in optical network monitoring that features many typical challenges for this methodology. Specifically, we address the problem of monitoring optically transparent transmission systems that use dynamically controlled Raman amplification systems. We use models of amplifier physics together with statistical estimation to derive alarm decision rules and use these rules to automatically discriminate between measurement errors, anomalous losses, and pump failures. Our approach has led to an efficient tool for systematically detecting anomalies in the system behavior of a deployed network, where pro-active measures to address such anomalies are key to preventing unnecessary disturbances to the system's continuous operation.

  18. Π4U: A high performance computing framework for Bayesian uncertainty quantification of complex models

    NASA Astrophysics Data System (ADS)

    Hadjidoukas, P. E.; Angelikopoulos, P.; Papadimitriou, C.; Koumoutsakos, P.

    2015-03-01

    We present Π4U, an extensible framework, for non-intrusive Bayesian Uncertainty Quantification and Propagation (UQ+P) of complex and computationally demanding physical models, that can exploit massively parallel computer architectures. The framework incorporates Laplace asymptotic approximations as well as stochastic algorithms, along with distributed numerical differentiation and task-based parallelism for heterogeneous clusters. Sampling is based on the Transitional Markov Chain Monte Carlo (TMCMC) algorithm and its variants. The optimization tasks associated with the asymptotic approximations are treated via the Covariance Matrix Adaptation Evolution Strategy (CMA-ES). A modified subset simulation method is used for posterior reliability measurements of rare events. The framework accommodates scheduling of multiple physical model evaluations based on an adaptive load balancing library and shows excellent scalability. In addition to the software framework, we also provide guidelines as to the applicability and efficiency of Bayesian tools when applied to computationally demanding physical models. Theoretical and computational developments are demonstrated with applications drawn from molecular dynamics, structural dynamics and granular flow.

  19. A comparison of two approaches to modelling snow cover dynamics at the Polish Polar Station at Hornsund

    NASA Astrophysics Data System (ADS)

    Luks, B.; Osuch, M.; Romanowicz, R. J.

    2012-04-01

    We compare two approaches to modelling snow cover dynamics at the Polish Polar Station at Hornsund. In the first approach we apply physically-based Utah Energy Balance Snow Accumulation and Melt Model (UEB) (Tarboton et al., 1995; Tarboton and Luce, 1996). The model uses a lumped representation of the snowpack with two primary state variables: snow water equivalence and energy. Its main driving inputs are: air temperature, precipitation, wind speed, humidity and radiation (estimated from the diurnal temperature range). Those variables are used for physically-based calculations of radiative, sensible, latent and advective heat exchanges with a 3 hours time step. The second method is an application of a statistically efficient lumped parameter time series approach to modelling the dynamics of snow cover , based on daily meteorological measurements from the same area. A dynamic Stochastic Transfer Function model is developed that follows the Data Based Mechanistic approach, where a stochastic data-based identification of model structure and an estimation of its parameters are followed by a physical interpretation. We focus on the analysis of uncertainty of both model outputs. In the time series approach, the applied techniques also provide estimates of the modeling errors and the uncertainty of the model parameters. In the first, physically-based approach the applied UEB model is deterministic. It assumes that the observations are without errors and that the model structure perfectly describes the processes within the snowpack. To take into account the model and observation errors, we applied a version of the Generalized Likelihood Uncertainty Estimation technique (GLUE). This technique also provide estimates of the modelling errors and the uncertainty of the model parameters. The observed snowpack water equivalent values are compared with those simulated with 95% confidence bounds. This work was supported by National Science Centre of Poland (grant no. 7879/B/P01/2011/40). Tarboton, D. G., T. G. Chowdhury and T. H. Jackson, 1995. A Spatially Distributed Energy Balance Snowmelt Model. In K. A. Tonnessen, M. W. Williams and M. Tranter (Ed.), Proceedings of a Boulder Symposium, July 3-14, IAHS Publ. no. 228, pp. 141-155. Tarboton, D. G. and C. H. Luce, 1996. Utah Energy Balance Snow Accumulation and Melt Model (UEB). Computer model technical description and users guide, Utah Water Research Laboratory and USDA Forest Service Intermountain Research Station (http://www.engineering.usu.edu/dtarb/). 64 pp.

  20. Multiple Damage Progression Paths in Model-Based Prognostics

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew; Goebel, Kai Frank

    2011-01-01

    Model-based prognostics approaches employ domain knowledge about a system, its components, and how they fail through the use of physics-based models. Component wear is driven by several different degradation phenomena, each resulting in their own damage progression path, overlapping to contribute to the overall degradation of the component. We develop a model-based prognostics methodology using particle filters, in which the problem of characterizing multiple damage progression paths is cast as a joint state-parameter estimation problem. The estimate is represented as a probability distribution, allowing the prediction of end of life and remaining useful life within a probabilistic framework that supports uncertainty management. We also develop a novel variance control mechanism that maintains an uncertainty bound around the hidden parameters to limit the amount of estimation uncertainty and, consequently, reduce prediction uncertainty. We construct a detailed physics-based model of a centrifugal pump, to which we apply our model-based prognostics algorithms. We illustrate the operation of the prognostic solution with a number of simulation-based experiments and demonstrate the performance of the chosen approach when multiple damage mechanisms are active

  1. Integration of a three-dimensional process-based hydrological model into the Object Modeling System

    USDA-ARS?s Scientific Manuscript database

    The integration of a spatial process model into an environmental modelling framework can enhance the model’s capabilities. We present the integration of the GEOtop model into the Object Modeling System (OMS) version 3.0 and illustrate its application in a small watershed. GEOtop is a physically base...

  2. A methodology for the rigorous verification of plasma simulation codes

    NASA Astrophysics Data System (ADS)

    Riva, Fabio

    2016-10-01

    The methodology used to assess the reliability of numerical simulation codes constitutes the Verification and Validation (V&V) procedure. V&V is composed by two separate tasks: the verification, which is a mathematical issue targeted to assess that the physical model is correctly solved, and the validation, which determines the consistency of the code results, and therefore of the physical model, with experimental data. In the present talk we focus our attention on the verification, which in turn is composed by the code verification, targeted to assess that a physical model is correctly implemented in a simulation code, and the solution verification, that quantifies the numerical error affecting a simulation. Bridging the gap between plasma physics and other scientific domains, we introduced for the first time in our domain a rigorous methodology for the code verification, based on the method of manufactured solutions, as well as a solution verification based on the Richardson extrapolation. This methodology was applied to GBS, a three-dimensional fluid code based on a finite difference scheme, used to investigate the plasma turbulence in basic plasma physics experiments and in the tokamak scrape-off layer. Overcoming the difficulty of dealing with a numerical method intrinsically affected by statistical noise, we have now generalized the rigorous verification methodology to simulation codes based on the particle-in-cell algorithm, which are employed to solve Vlasov equation in the investigation of a number of plasma physics phenomena.

  3. Statistical and engineering methods for model enhancement

    NASA Astrophysics Data System (ADS)

    Chang, Chia-Jung

    Models which describe the performance of physical process are essential for quality prediction, experimental planning, process control and optimization. Engineering models developed based on the underlying physics/mechanics of the process such as analytic models or finite element models are widely used to capture the deterministic trend of the process. However, there usually exists stochastic randomness in the system which may introduce the discrepancy between physics-based model predictions and observations in reality. Alternatively, statistical models can be used to develop models to obtain predictions purely based on the data generated from the process. However, such models tend to perform poorly when predictions are made away from the observed data points. This dissertation contributes to model enhancement research by integrating physics-based model and statistical model to mitigate the individual drawbacks and provide models with better accuracy by combining the strengths of both models. The proposed model enhancement methodologies including the following two streams: (1) data-driven enhancement approach and (2) engineering-driven enhancement approach. Through these efforts, more adequate models are obtained, which leads to better performance in system forecasting, process monitoring and decision optimization. Among different data-driven enhancement approaches, Gaussian Process (GP) model provides a powerful methodology for calibrating a physical model in the presence of model uncertainties. However, if the data contain systematic experimental errors, the GP model can lead to an unnecessarily complex adjustment of the physical model. In Chapter 2, we proposed a novel enhancement procedure, named as “Minimal Adjustment”, which brings the physical model closer to the data by making minimal changes to it. This is achieved by approximating the GP model by a linear regression model and then applying a simultaneous variable selection of the model and experimental bias terms. Two real examples and simulations are presented to demonstrate the advantages of the proposed approach. Different from enhancing the model based on data-driven perspective, an alternative approach is to focus on adjusting the model by incorporating the additional domain or engineering knowledge when available. This often leads to models that are very simple and easy to interpret. The concepts of engineering-driven enhancement are carried out through two applications to demonstrate the proposed methodologies. In the first application where polymer composite quality is focused, nanoparticle dispersion has been identified as a crucial factor affecting the mechanical properties. Transmission Electron Microscopy (TEM) images are commonly used to represent nanoparticle dispersion without further quantifications on its characteristics. In Chapter 3, we developed the engineering-driven nonhomogeneous Poisson random field modeling strategy to characterize nanoparticle dispersion status of nanocomposite polymer, which quantitatively represents the nanomaterial quality presented through image data. The model parameters are estimated through the Bayesian MCMC technique to overcome the challenge of limited amount of accessible data due to the time consuming sampling schemes. The second application is to calibrate the engineering-driven force models of laser-assisted micro milling (LAMM) process statistically, which facilitates a systematic understanding and optimization of targeted processes. In Chapter 4, the force prediction interval has been derived by incorporating the variability in the runout parameters as well as the variability in the measured cutting forces. The experimental results indicate that the model predicts the cutting force profile with good accuracy using a 95% confidence interval. To conclude, this dissertation is the research drawing attention to model enhancement, which has considerable impacts on modeling, design, and optimization of various processes and systems. The fundamental methodologies of model enhancement are developed and further applied to various applications. These research activities developed engineering compliant models for adequate system predictions based on observational data with complex variable relationships and uncertainty, which facilitate process planning, monitoring, and real-time control.

  4. Simulating Fire Disturbance and Plant Mortality Using Antecedent Eco-hydrological Conditions to Inform a Physically Based Combustion Model

    NASA Astrophysics Data System (ADS)

    Atchley, A. L.; Linn, R.; Middleton, R. S.; Runde, I.; Coon, E.; Michaletz, S. T.

    2016-12-01

    Wildfire is a complex agent of change that both affects and depends on eco-hydrological systems, thereby constituting a tightly linked system of disturbances and eco-hydrological conditions. For example, structure, build-up, and moisture content of fuel are dependent on eco-hydrological regimes, which impacts fire spread and intensity. Fire behavior, on the other hand, determines the severity and extent of eco-hydrological disturbance, often resulting in a mosaic of untouched, stressed, damaged, or completely destroyed vegetation within the fire perimeter. This in turn drives new eco-hydrological system behavior. The cycles of disturbance and recovery present a complex evolving system with many unknowns especially in the face of climate change that has implications for fire risk, water supply, and forest composition. Physically-based numerical experiments that attempt to capture the complex linkages between eco-hydrological regimes that affect fire behavior and the echo-hydrological response from those fire disturbances help build the understanding required to project how fire disturbance and eco-hydrological conditions coevolve over time. Here we explore the use of FIRETEC—a physically-based 3D combustion model that solves conservation of mass, momentum, energy, and chemical species—to resolve fire spread over complex terrain and fuel structures. Uniquely, we couple a physically-based plant mortality model with FIRETEC and examine the resultant hydrologic impact. In this proof of concept demonstration we spatially distribute fuel structure and moisture content based on the eco-hydrological condition to use as input for FIRETEC. The fire behavior simulation then produces localized burn severity and heat injures which are used as input to a spatially-informed plant mortality model. Ultimately we demonstrate the applicability of physically-based models to explore integrated disturbance and eco-hydrologic response to wildfire behavior and specifically map how fire spread and intensity is affect by the antecedent eco-hydrological condition, which then affects the resulting tree mortality patterns.

  5. Flipping the Physical Examination: Web-Based Instruction and Live Assessment of Bedside Technique.

    PubMed

    Williams, Dustyn E; Thornton, John W

    2016-01-01

    The skill of physicians teaching the physical examination skill has decreased, with newer faculty underperforming compared to their seniors. Improved methods of instruction with an emphasis on physical examinations are necessary to both improve the quality of medical education and alleviate the teaching burden of faculty physicians. We developed a curriculum that combines web-based instruction with real-life practice and features individualized feedback. This innovative medical education model should allow the physical examination to be taught and assessed in an effective manner. The model is under study at Baton Rouge General Medical Center. Our goals are to limit faculty burden, maximize student involvement as learners and evaluators, and effectively develop students' critical skills in performing bedside assessments.

  6. A Bayesian approach for parameter estimation and prediction using a computationally intensive model

    DOE PAGES

    Higdon, Dave; McDonnell, Jordan D.; Schunck, Nicolas; ...

    2015-02-05

    Bayesian methods have been successful in quantifying uncertainty in physics-based problems in parameter estimation and prediction. In these cases, physical measurements y are modeled as the best fit of a physics-based modelmore » $$\\eta (\\theta )$$, where θ denotes the uncertain, best input setting. Hence the statistical model is of the form $$y=\\eta (\\theta )+\\epsilon ,$$ where $$\\epsilon $$ accounts for measurement, and possibly other, error sources. When nonlinearity is present in $$\\eta (\\cdot )$$, the resulting posterior distribution for the unknown parameters in the Bayesian formulation is typically complex and nonstandard, requiring computationally demanding computational approaches such as Markov chain Monte Carlo (MCMC) to produce multivariate draws from the posterior. Although generally applicable, MCMC requires thousands (or even millions) of evaluations of the physics model $$\\eta (\\cdot )$$. This requirement is problematic if the model takes hours or days to evaluate. To overcome this computational bottleneck, we present an approach adapted from Bayesian model calibration. This approach combines output from an ensemble of computational model runs with physical measurements, within a statistical formulation, to carry out inference. A key component of this approach is a statistical response surface, or emulator, estimated from the ensemble of model runs. We demonstrate this approach with a case study in estimating parameters for a density functional theory model, using experimental mass/binding energy measurements from a collection of atomic nuclei. Lastly, we also demonstrate how this approach produces uncertainties in predictions for recent mass measurements obtained at Argonne National Laboratory.« less

  7. Physics-based modeling of live wildland fuel ignition experiments in the Forced Ignition and Flame Spread Test apparatus

    Treesearch

    C. Anand; B. Shotorban; S. Mahalingam; S. McAllister; D. R. Weise

    2017-01-01

    A computational study was performed to improve our understanding of the ignition of live fuel in the forced ignition and flame spread test apparatus, a setup where the impact of the heating mode is investigated by subjecting the fuel to forced convection and radiation. An improvement was first made in the physics-based model WFDS where the fuel is treated as fixed...

  8. A Computational Efficient Physics Based Methodology for Modeling Ceramic Matrix Composites (Preprint)

    DTIC Science & Technology

    2011-11-01

    elastic range, and with some simple forms of progressing damage . However, a general physics-based methodology to assess the initial and lifetime... damage evolution in the RVE for all possible load histories. Microstructural data on initial configuration and damage progression in CMCs were...the damaged elements will have changed, hence, a progressive damage model. The crack opening for each crack type in each element is stored as a

  9. Regional Assessment of Storm-triggered Shall Landslide Risks using the SLIDE (SLope-Infiltration-Distributed Equilibrium) Model

    NASA Astrophysics Data System (ADS)

    Hong, Y.; Kirschbaum, D. B.; Fukuoka, H.

    2011-12-01

    The key to advancing the predictability of rainfall-triggered landslides is to use physically based slope-stability models that simulate the dynamical response of the subsurface moisture to spatiotemporal variability of rainfall in complex terrains. An early warning system applying such physical models has been developed to predict rainfall-induced shallow landslides over Java Island in Indonesia and Honduras. The prototyped early warning system integrates three major components: (1) a susceptibility mapping or hotspot identification component based on a land surface geospatial database (topographical information, maps of soil properties, and local landslide inventory etc.); (2) a satellite-based precipitation monitoring system (http://trmm.gsfc.nasa.gov) and a precipitation forecasting model (i.e. Weather Research Forecast); and (3) a physically-based, rainfall-induced landslide prediction model SLIDE (SLope-Infiltration-Distributed Equilibrium). The system utilizes the modified physical model to calculate a Factor of Safety (FS) that accounts for the contribution of rainfall infiltration and partial saturation to the shear strength of the soil in topographically complex terrains. The system's prediction performance has been evaluated using a local landslide inventory. In Java Island, Indonesia, evaluation of SLIDE modeling results by local news reports shows that the system successfully predicted landslides in correspondence to the time of occurrence of the real landslide events. Further study of SLIDE is implemented in Honduras where Hurricane Mitch triggered widespread landslides in 1998. Results shows within the approximately 1,200 square kilometers study areas, the values of hit rates reached as high as 78% and 75%, while the error indices were 35% and 49%. Despite positive model performance, the SLIDE model is limited in the early warning system by several assumptions including, using general parameter calibration rather than in situ tests and neglecting geologic information. Advantages and limitations of this model will be discussed with respect to future applications of landslide assessment and prediction over large scales. In conclusion, integration of spatially distributed remote sensing precipitation products and in-situ datasets and physical models in this prototype system enable us to further develop a regional early warning tool in the future for forecasting storm-induced landslides.

  10. Control-based continuation: Bifurcation and stability analysis for physical experiments

    NASA Astrophysics Data System (ADS)

    Barton, David A. W.

    2017-02-01

    Control-based continuation is technique for tracking the solutions and bifurcations of nonlinear experiments. The idea is to apply the method of numerical continuation to a feedback-controlled physical experiment such that the control becomes non-invasive. Since in an experiment it is not (generally) possible to set the state of the system directly, the control target becomes a proxy for the state. Control-based continuation enables the systematic investigation of the bifurcation structure of a physical system, much like if it was numerical model. However, stability information (and hence bifurcation detection and classification) is not readily available due to the presence of stabilising feedback control. This paper uses a periodic auto-regressive model with exogenous inputs (ARX) to approximate the time-varying linearisation of the experiment around a particular periodic orbit, thus providing the missing stability information. This method is demonstrated using a physical nonlinear tuned mass damper.

  11. A Model-Based Approach to Support Validation of Medical Cyber-Physical Systems.

    PubMed

    Silva, Lenardo C; Almeida, Hyggo O; Perkusich, Angelo; Perkusich, Mirko

    2015-10-30

    Medical Cyber-Physical Systems (MCPS) are context-aware, life-critical systems with patient safety as the main concern, demanding rigorous processes for validation to guarantee user requirement compliance and specification-oriented correctness. In this article, we propose a model-based approach for early validation of MCPS, focusing on promoting reusability and productivity. It enables system developers to build MCPS formal models based on a library of patient and medical device models, and simulate the MCPS to identify undesirable behaviors at design time. Our approach has been applied to three different clinical scenarios to evaluate its reusability potential for different contexts. We have also validated our approach through an empirical evaluation with developers to assess productivity and reusability. Finally, our models have been formally verified considering functional and safety requirements and model coverage.

  12. A Model-Based Approach to Support Validation of Medical Cyber-Physical Systems

    PubMed Central

    Silva, Lenardo C.; Almeida, Hyggo O.; Perkusich, Angelo; Perkusich, Mirko

    2015-01-01

    Medical Cyber-Physical Systems (MCPS) are context-aware, life-critical systems with patient safety as the main concern, demanding rigorous processes for validation to guarantee user requirement compliance and specification-oriented correctness. In this article, we propose a model-based approach for early validation of MCPS, focusing on promoting reusability and productivity. It enables system developers to build MCPS formal models based on a library of patient and medical device models, and simulate the MCPS to identify undesirable behaviors at design time. Our approach has been applied to three different clinical scenarios to evaluate its reusability potential for different contexts. We have also validated our approach through an empirical evaluation with developers to assess productivity and reusability. Finally, our models have been formally verified considering functional and safety requirements and model coverage. PMID:26528982

  13. Advanced Machine Learning Emulators of Radiative Transfer Models

    NASA Astrophysics Data System (ADS)

    Camps-Valls, G.; Verrelst, J.; Martino, L.; Vicent, J.

    2017-12-01

    Physically-based model inversion methodologies are based on physical laws and established cause-effect relationships. A plethora of remote sensing applications rely on the physical inversion of a Radiative Transfer Model (RTM), which lead to physically meaningful bio-geo-physical parameter estimates. The process is however computationally expensive, needs expert knowledge for both the selection of the RTM, its parametrization and the the look-up table generation, as well as its inversion. Mimicking complex codes with statistical nonlinear machine learning algorithms has become the natural alternative very recently. Emulators are statistical constructs able to approximate the RTM, although at a fraction of the computational cost, providing an estimation of uncertainty, and estimations of the gradient or finite integral forms. We review the field and recent advances of emulation of RTMs with machine learning models. We posit Gaussian processes (GPs) as the proper framework to tackle the problem. Furthermore, we introduce an automatic methodology to construct emulators for costly RTMs. The Automatic Gaussian Process Emulator (AGAPE) methodology combines the interpolation capabilities of GPs with the accurate design of an acquisition function that favours sampling in low density regions and flatness of the interpolation function. We illustrate the good capabilities of our emulators in toy examples, leaf and canopy levels PROSPECT and PROSAIL RTMs, and for the construction of an optimal look-up-table for atmospheric correction based on MODTRAN5.

  14. A physics-based fractional order model and state of energy estimation for lithium ion batteries. Part II: Parameter identification and state of energy estimation for LiFePO4 battery

    NASA Astrophysics Data System (ADS)

    Li, Xiaoyu; Pan, Ke; Fan, Guodong; Lu, Rengui; Zhu, Chunbo; Rizzoni, Giorgio; Canova, Marcello

    2017-11-01

    State of energy (SOE) is an important index for the electrochemical energy storage system in electric vehicles. In this paper, a robust state of energy estimation method in combination with a physical model parameter identification method is proposed to achieve accurate battery state estimation at different operating conditions and different aging stages. A physics-based fractional order model with variable solid-state diffusivity (FOM-VSSD) is used to characterize the dynamic performance of a LiFePO4/graphite battery. In order to update the model parameter automatically at different aging stages, a multi-step model parameter identification method based on the lexicographic optimization is especially designed for the electric vehicle operating conditions. As the battery available energy changes with different applied load current profiles, the relationship between the remaining energy loss and the state of charge, the average current as well as the average squared current is modeled. The SOE with different operating conditions and different aging stages are estimated based on an adaptive fractional order extended Kalman filter (AFEKF). Validation results show that the overall SOE estimation error is within ±5%. The proposed method is suitable for the electric vehicle online applications.

  15. The evolution of process-based hydrologic models: historical challenges and the collective quest for physical realism

    NASA Astrophysics Data System (ADS)

    Clark, Martyn P.; Bierkens, Marc F. P.; Samaniego, Luis; Woods, Ross A.; Uijlenhoet, Remko; Bennett, Katrina E.; Pauwels, Valentijn R. N.; Cai, Xitian; Wood, Andrew W.; Peters-Lidard, Christa D.

    2017-07-01

    The diversity in hydrologic models has historically led to great controversy on the correct approach to process-based hydrologic modeling, with debates centered on the adequacy of process parameterizations, data limitations and uncertainty, and computational constraints on model analysis. In this paper, we revisit key modeling challenges on requirements to (1) define suitable model equations, (2) define adequate model parameters, and (3) cope with limitations in computing power. We outline the historical modeling challenges, provide examples of modeling advances that address these challenges, and define outstanding research needs. We illustrate how modeling advances have been made by groups using models of different type and complexity, and we argue for the need to more effectively use our diversity of modeling approaches in order to advance our collective quest for physically realistic hydrologic models.

  16. The evolution of process-based hydrologic models: historical challenges and the collective quest for physical realism

    NASA Astrophysics Data System (ADS)

    Clark, M. P.; Nijssen, B.; Wood, A.; Mizukami, N.; Newman, A. J.

    2017-12-01

    The diversity in hydrologic models has historically led to great controversy on the "correct" approach to process-based hydrologic modeling, with debates centered on the adequacy of process parameterizations, data limitations and uncertainty, and computational constraints on model analysis. In this paper, we revisit key modeling challenges on requirements to (1) define suitable model equations, (2) define adequate model parameters, and (3) cope with limitations in computing power. We outline the historical modeling challenges, provide examples of modeling advances that address these challenges, and define outstanding research needs. We illustrate how modeling advances have been made by groups using models of different type and complexity, and we argue for the need to more effectively use our diversity of modeling approaches in order to advance our collective quest for physically realistic hydrologic models.

  17. The influence of HOPE VI neighborhood revitalization on neighborhood-based physical activity: A mixed-methods approach.

    PubMed

    Dulin-Keita, Akilah; Clay, Olivio; Whittaker, Shannon; Hannon, Lonnie; Adams, Ingrid K; Rogers, Michelle; Gans, Kim

    2015-08-01

    This study uses a mixed methods approach to 1) identify surrounding residents' perceived expectations for Housing Opportunities for People Everywhere (HOPE VI) policy on physical activity outcomes and to 2) quantitatively examine the odds of neighborhood-based physical activity pre-/post-HOPE VI in a low socioeconomic status, predominantly African American community in Birmingham, Alabama. To address aim one, we used group concept mapping which is a structured approach for data collection and analyses that produces pictures/maps of ideas. Fifty-eight residents developed statements about potential influences of HOPE VI on neighborhood-based physical activity. In the quantitative study, we examined whether these potential influences increased the odds of neighborhood walking/jogging. We computed block entry logistic regression models with a larger cohort of residents at baseline (n = 184) and six-months (n = 142, 77% retention; n = 120 for all informative variables). We examined perceived neighborhood disorder (perceived neighborhood disorder scale), walkability and aesthetics (Neighborhood Environment Walkability Scale) and HOPE VI-related community safety and safety for physical activity as predictors. During concept mapping, residents generated statements that clustered into three distinct concepts, "Increased Leisure Physical Activity," "Safe Play Areas," and "Generating Health Promoting Resources." The quantitative analyses indicated that changes in neighborhood walkability increased the odds of neighborhood-based physical activity (p = 0.04). When HOPE VI-related safety for physical activity was entered into the model, it was associated with increased odds of physical activity (p = 0.04). Walkability was no longer statistically significant. These results suggest that housing policies that create walkable neighborhoods and that improve perceptions of safety for physical activity may increase neighborhood-based physical activity. However, the longer term impacts of neighborhood-level policies on physical activity require more longitudinal evidence to determine whether increased participation in physical activity is sustained. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Psychosocial predictors of physical activity and health-related quality of life among adults with physical disabilities: an integrative framework.

    PubMed

    Kosma, Maria; Ellis, Rebecca; Cardinal, Bradley J; Bauer, Jeremy J; McCubbin, Jeffrey A

    2009-04-01

    People with disabilities report lower physical activity (PA) and health-related quality of life (HRQOL) levels than people without disabilities. Therefore, it is important to identify factors that motivate individuals with disabilities to be physically active and thus increase their HRQOL. The purpose of the study was to prospectively explore the effects of past theory of planned behavior (TPB) constructs on future (6-month) HRQOL (physical and mental health) through past stages of change (SOC) and future (6-month) PA among adults with physical disabilities. Two models were tested whereby the SOC and PA served as the mediators between the TPB constructs, physical health (PH-Model), and mental health (MH-Model). It was hypothesized that both models would fit the sample data. Participants were 141 adults with physical disabilities (mean age = 46.04, females = 70.9%). The online survey was completed at two different time periods. First, the TPB constructs and SOC were assessed using self-report standardized questionnaires. Six months later, participants completed standardized self-report scales about their PA and HRQOL levels. Using LISREL 8, two path analyses were conducted to examine the two study models (PH-Model and MH-Model). Based on the two path analyses, attitude had the highest effect on SOC followed by perceived behavioral control within both well-fit models. The PH-Model explained more variance in PA (26%) and physical health (55%) than the MH-Model. Health promoters should reinforce both positive intentions and behavioral experiences to increase PA and HRQOL among adults with physical disabilities.

  19. PlayPhysics: An Emotional Games Learning Environment for Teaching Physics

    NASA Astrophysics Data System (ADS)

    Muñoz, Karla; Kevitt, Paul Mc; Lunney, Tom; Noguez, Julieta; Neri, Luis

    To ensure learning, game-based learning environments must incorporate assessment mechanisms, e.g. Intelligent Tutoring Systems (ITSs). ITSs are focused on recognising and influencing the learner's emotional or motivational states. This research focuses on designing and implementing an affective student model for intelligent gaming, which reasons about the learner's emotional state from cognitive and motivational variables using observable behaviour. A Probabilistic Relational Models (PRMs) approach is employed to derive Dynamic Bayesian Networks (DBNs). The model uses the Control-Value theory of 'achievement emotions' as a basis. A preliminary test was conducted to recognise the students' prospective-outcome emotions with results presented and discussed. PlayPhysics is an emotional games learning environment for teaching Physics. Once the affective student model proves effective it will be incorporated into PlayPhysics' architecture. The design, evaluation and postevaluation of PlayPhysics are also discussed. Future work will focus on evaluating the affective student model with a larger population of students, and on providing affective feedback.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorissen, BL; Giantsoudi, D; Unkelbach, J

    Purpose: Cell survival experiments suggest that the relative biological effectiveness (RBE) of proton beams depends on linear energy transfer (LET), leading to higher RBE near the end of range. With intensity-modulated proton therapy (IMPT), multiple treatment plans that differ in the dose contribution per field may yield a similar physical dose distribution, but the RBE-weighted dose distribution may be disparate. RBE models currently do not have the required predictive power to be included in an optimization model due to the variations in experimental data. We propose an LET-based planning method that guides IMPT optimization models towards plans with reduced RBE-weightedmore » dose in surrounding organs at risk (OARs) compared to inverse planning based on physical dose alone. Methods: Optimization models for physical dose are extended with a term for dose times LET (doseLET). Monte Carlo code is used to generate the physical dose and doseLET distribution of each individual pencil beam. The method is demonstrated for an atypical meningioma patient where the target volume abuts the brainstem and partially overlaps with the optic nerve. Results: A reference plan optimized based on physical dose alone yields high doseLET values in parts of the brainstem and optic nerve. Minimizing doseLET in these critical structures as an additional planning goal reduces the risk of high RBE-weighted dose. The resulting treatment plan avoids the distal fall-off of the Bragg peaks for shaping the dose distribution in front of critical stuctures. The maximum dose in the OARs evaluated with RBE models from literature is reduced by 8–14\\% with our method compared to conventional planning. Conclusion: LET-based inverse planning for IMPT offers the ability to reduce the RBE-weighted dose in OARs without sacrificing target dose. This project was in part supported by NCI - U19 CA 21239.« less

  1. Lift, Squeeze, Stretch, and Twist: Research-Based Inquiry Physics Experiences (RIPE) of Energy for Kindergartners

    ERIC Educational Resources Information Center

    Van Hook, Stephen J.; Huziak-Clark, Tracy L.

    2008-01-01

    This study examines changes in kindergarten students' understanding of energy after participating in a series of lessons developed using an inquiry-based early childhood science teaching model: Research-based Inquiry Physics Experiences (RIPE). The lessons addressed where objects get their energy and what they use their energy to do, and how…

  2. The Nature and Role of Physical Models in Enhancing Sixth Grade Students' Mental Models of Groundwater and Groundwater Processes

    ERIC Educational Resources Information Center

    Duffy, Debra Lynne Foster

    2012-01-01

    Through a non-experimental descriptive and comparative mixed-methods approach, this study investigated the experiences of sixth grade earth science students with groundwater physical models through an extended SE learning cycle format. The data collection was based on a series of quantitative and qualitative research tools intended to investigate…

  3. A simple physical model for forest fire spread

    Treesearch

    E. Koo; P. Pagni; J. Woycheese; S. Stephens; D. Weise; J. Huff

    2005-01-01

    Based on energy conservation and detailed heat transfer mechanisms, a simple physical model for fire spread is presented for the limit of one-dimensional steady-state contiguous spread of a line fire in a thermally-thin uniform porous fuel bed. The solution for the fire spread rate is found as an eigenvalue from this model with appropriate boundary conditions through a...

  4. Perspective: Sloppiness and emergent theories in physics, biology, and beyond.

    PubMed

    Transtrum, Mark K; Machta, Benjamin B; Brown, Kevin S; Daniels, Bryan C; Myers, Christopher R; Sethna, James P

    2015-07-07

    Large scale models of physical phenomena demand the development of new statistical and computational tools in order to be effective. Many such models are "sloppy," i.e., exhibit behavior controlled by a relatively small number of parameter combinations. We review an information theoretic framework for analyzing sloppy models. This formalism is based on the Fisher information matrix, which is interpreted as a Riemannian metric on a parameterized space of models. Distance in this space is a measure of how distinguishable two models are based on their predictions. Sloppy model manifolds are bounded with a hierarchy of widths and extrinsic curvatures. The manifold boundary approximation can extract the simple, hidden theory from complicated sloppy models. We attribute the success of simple effective models in physics as likewise emerging from complicated processes exhibiting a low effective dimensionality. We discuss the ramifications and consequences of sloppy models for biochemistry and science more generally. We suggest that the reason our complex world is understandable is due to the same fundamental reason: simple theories of macroscopic behavior are hidden inside complicated microscopic processes.

  5. Physical Modeling of Microtubules Network

    NASA Astrophysics Data System (ADS)

    Allain, Pierre; Kervrann, Charles

    2014-10-01

    Microtubules (MT) are highly dynamic tubulin polymers that are involved in many cellular processes such as mitosis, intracellular cell organization and vesicular transport. Nevertheless, the modeling of cytoskeleton and MT dynamics based on physical properties is difficult to achieve. Using the Euler-Bernoulli beam theory, we propose to model the rigidity of microtubules on a physical basis using forces, mass and acceleration. In addition, we link microtubules growth and shrinkage to the presence of molecules (e.g. GTP-tubulin) in the cytosol. The overall model enables linking cytosol to microtubules dynamics in a constant state space thus allowing usage of data assimilation techniques.

  6. Ladder physics in the spin fermion model

    NASA Astrophysics Data System (ADS)

    Tsvelik, A. M.

    2017-05-01

    A link is established between the spin fermion (SF) model of the cuprates and the approach based on the analogy between the physics of doped Mott insulators in two dimensions and the physics of fermionic ladders. This enables one to use nonperturbative results derived for fermionic ladders to move beyond the large-N approximation in the SF model. It is shown that the paramagnon exchange postulated in the SF model has exactly the right form to facilitate the emergence of the fully gapped d -Mott state in the region of the Brillouin zone at the hot spots of the Fermi surface. Hence, the SF model provides an adequate description of the pseudogap.

  7. Predicting cognitive function from clinical measures of physical function and health status in older adults.

    PubMed

    Bolandzadeh, Niousha; Kording, Konrad; Salowitz, Nicole; Davis, Jennifer C; Hsu, Liang; Chan, Alison; Sharma, Devika; Blohm, Gunnar; Liu-Ambrose, Teresa

    2015-01-01

    Current research suggests that the neuropathology of dementia-including brain changes leading to memory impairment and cognitive decline-is evident years before the onset of this disease. Older adults with cognitive decline have reduced functional independence and quality of life, and are at greater risk for developing dementia. Therefore, identifying biomarkers that can be easily assessed within the clinical setting and predict cognitive decline is important. Early recognition of cognitive decline could promote timely implementation of preventive strategies. We included 89 community-dwelling adults aged 70 years and older in our study, and collected 32 measures of physical function, health status and cognitive function at baseline. We utilized an L1-L2 regularized regression model (elastic net) to identify which of the 32 baseline measures were strongly predictive of cognitive function after one year. We built three linear regression models: 1) based on baseline cognitive function, 2) based on variables consistently selected in every cross-validation loop, and 3) a full model based on all the 32 variables. Each of these models was carefully tested with nested cross-validation. Our model with the six variables consistently selected in every cross-validation loop had a mean squared prediction error of 7.47. This number was smaller than that of the full model (115.33) and the model with baseline cognitive function (7.98). Our model explained 47% of the variance in cognitive function after one year. We built a parsimonious model based on a selected set of six physical function and health status measures strongly predictive of cognitive function after one year. In addition to reducing the complexity of the model without changing the model significantly, our model with the top variables improved the mean prediction error and R-squared. These six physical function and health status measures can be easily implemented in a clinical setting.

  8. Implementing and Assessing Computational Modeling in Introductory Mechanics

    ERIC Educational Resources Information Center

    Caballero, Marcos D.; Kohlmyer, Matthew A.; Schatz, Michael F.

    2012-01-01

    Students taking introductory physics are rarely exposed to computational modeling. In a one-semester large lecture introductory calculus-based mechanics course at Georgia Tech, students learned to solve physics problems using the VPython programming environment. During the term, 1357 students in this course solved a suite of 14 computational…

  9. Impact of the Second Semester University Modeling Instruction Course on Students' Representation Choices

    ERIC Educational Resources Information Center

    McPadden, Daryl; Brewe, Eric

    2017-01-01

    Representation use is a critical skill for learning, problem solving, and communicating in science, especially in physics where multiple representations often scaffold the understanding of a phenomenon. University Modeling Instruction, which is an active-learning, research-based introductory physics curriculum centered on students' use of…

  10. Restructuring Introductory Physics by Adapting an Active Learning Studio Model

    ERIC Educational Resources Information Center

    Gatch, Delena

    2010-01-01

    Despite efforts to engage students in the traditional lecture environment, faculty in Georgia Southern University's Physics Department became dissatisfied with lecture as the primary means of instruction. During the fall semester of 2006, our department began adapting the studio model to suit the needs of introductory calculus-based physics…

  11. Systems Models for Transportation Problems : Part 2. The Social Physics for Modern Societies - the Role of the Cities

    DOT National Transportation Integrated Search

    1977-09-01

    The objective of the research was to make use of a physically based social systems model, developed earlier, to study the determinants of city sizes and their national interactions. In particular, information on the role of a transportation system in...

  12. An integrated physiology model to study regional lung damage effects and the physiologic response

    PubMed Central

    2014-01-01

    Background This work expands upon a previously developed exercise dynamic physiology model (DPM) with the addition of an anatomic pulmonary system in order to quantify the impact of lung damage on oxygen transport and physical performance decrement. Methods A pulmonary model is derived with an anatomic structure based on morphometric measurements, accounting for heterogeneous ventilation and perfusion observed experimentally. The model is incorporated into an existing exercise physiology model; the combined system is validated using human exercise data. Pulmonary damage from blast, blunt trauma, and chemical injury is quantified in the model based on lung fluid infiltration (edema) which reduces oxygen delivery to the blood. The pulmonary damage component is derived and calibrated based on published animal experiments; scaling laws are used to predict the human response to lung injury in terms of physical performance decrement. Results The augmented dynamic physiology model (DPM) accurately predicted the human response to hypoxia, altitude, and exercise observed experimentally. The pulmonary damage parameters (shunt and diffusing capacity reduction) were fit to experimental animal data obtained in blast, blunt trauma, and chemical damage studies which link lung damage to lung weight change; the model is able to predict the reduced oxygen delivery in damage conditions. The model accurately estimates physical performance reduction with pulmonary damage. Conclusions We have developed a physiologically-based mathematical model to predict performance decrement endpoints in the presence of thoracic damage; simulations can be extended to estimate human performance and escape in extreme situations. PMID:25044032

  13. Investigation of resistance switching in SiO x RRAM cells using a 3D multi-scale kinetic Monte Carlo simulator

    NASA Astrophysics Data System (ADS)

    Sadi, Toufik; Mehonic, Adnan; Montesi, Luca; Buckwell, Mark; Kenyon, Anthony; Asenov, Asen

    2018-02-01

    We employ an advanced three-dimensional (3D) electro-thermal simulator to explore the physics and potential of oxide-based resistive random-access memory (RRAM) cells. The physical simulation model has been developed recently, and couples a kinetic Monte Carlo study of electron and ionic transport to the self-heating phenomenon while accounting carefully for the physics of vacancy generation and recombination, and trapping mechanisms. The simulation framework successfully captures resistance switching, including the electroforming, set and reset processes, by modeling the dynamics of conductive filaments in the 3D space. This work focuses on the promising yet less studied RRAM structures based on silicon-rich silica (SiO x ) RRAMs. We explain the intrinsic nature of resistance switching of the SiO x layer, analyze the effect of self-heating on device performance, highlight the role of the initial vacancy distributions acting as precursors for switching, and also stress the importance of using 3D physics-based models to capture accurately the switching processes. The simulation work is backed by experimental studies. The simulator is useful for improving our understanding of the little-known physics of SiO x resistive memory devices, as well as other oxide-based RRAM systems (e.g. transition metal oxide RRAMs), offering design and optimization capabilities with regard to the reliability and variability of memory cells.

  14. 2008 GEM Modeling Challenge: Metrics Study of the Dst Index in Physics-Based Magnetosphere and Ring Current Models and in Statistical and Analytic Specifications

    NASA Technical Reports Server (NTRS)

    Rastaetter, L.; Kuznetsova, M.; Hesse, M.; Pulkkinen, A.; Glocer, A.; Yu, Y.; Meng, X.; Raeder, J.; Wiltberger, M.; Welling, D.; hide

    2011-01-01

    In this paper the metrics-based results of the Dst part of the 2008-2009 GEM Metrics Challenge are reported. The Metrics Challenge asked modelers to submit results for 4 geomagnetic storm events and 5 different types of observations that can be modeled by statistical or climatological or physics-based (e.g. MHD) models of the magnetosphere-ionosphere system. We present the results of over 25 model settings that were run at the Community Coordinated Modeling Center (CCMC) and at the institutions of various modelers for these events. To measure the performance of each of the models against the observations we use comparisons of one-hour averaged model data with the Dst index issued by the World Data Center for Geomagnetism, Kyoto, Japan, and direct comparison of one-minute model data with the one-minute Dst index calculated by the United States Geologic Survey (USGS).

  15. Let’s have a coffee with the Standard Model of particle physics!

    NASA Astrophysics Data System (ADS)

    Woithe, Julia; Wiener, Gerfried J.; Van der Veken, Frederik F.

    2017-05-01

    The Standard Model of particle physics is one of the most successful theories in physics and describes the fundamental interactions between elementary particles. It is encoded in a compact description, the so-called ‘Lagrangian’, which even fits on t-shirts and coffee mugs. This mathematical formulation, however, is complex and only rarely makes it into the physics classroom. Therefore, to support high school teachers in their challenging endeavour of introducing particle physics in the classroom, we provide a qualitative explanation of the terms of the Lagrangian and discuss their interpretation based on associated Feynman diagrams.

  16. A Diagnostic Model for Impending Death in Cancer Patients: Preliminary Report

    PubMed Central

    Hui, David; Hess, Kenneth; dos Santos, Renata; Chisholm, Gary; Bruera, Eduardo

    2015-01-01

    Background We recently identified several highly specific bedside physical signs associated with impending death within 3 days among patients with advanced cancer. In this study, we developed and assessed a diagnostic model for impending death based on these physical signs. Methods We systematically documented 62 physical signs every 12 hours from admission to death or discharge in 357 patients with advanced cancer admitted to acute palliative care units (APCUs) at two tertiary care cancer centers. We used recursive partitioning analysis (RPA) to develop a prediction model for impending death in 3 days using admission data. We validated the model with 5 iterations of 10-fold cross-validation, and also applied the model to APCU days 2/3/4/5/6. Results Among 322/357 (90%) patients with complete data for all signs, the 3-day mortality was 24% on admission. The final model was based on 2 variables (palliative performance scale [PPS] and drooping of nasolabial fold) and had 4 terminal leaves: PPS≤20% and drooping of nasolabial fold present, PPS≤20% and drooping of nasolabial fold absent, PPS 30–60% and PPS ≥ 70%, with 3-day mortality of 94%, 42%, 16% and 3%, respectively. The diagnostic accuracy was 81% for the original tree, 80% for cross-validation, and 79%–84% for subsequent APCU days. Conclusion(s) We developed a diagnostic model for impending death within 3 days based on 2 objective bedside physical signs. This model was applicable to both APCU admission and subsequent days. Upon further external validation, this model may help clinicians to formulate the diagnosis of impending death. PMID:26218612

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habte, A.; Sengupta, M.; Wilcox, S.

    Models to compute Global Horizontal Irradiance (GHI) and Direct Normal Irradiance (DNI) have been in development over the last 3 decades. These models can be classified as empirical or physical, based on the approach. Empirical models relate ground based observations with satellite measurements and use these relations to compute surface radiation. Physical models consider the radiation received from the earth at the satellite and create retrievals to estimate surface radiation. While empirical methods have been traditionally used for computing surface radiation for the solar energy industry the advent of faster computing has made operational physical models viable. The Global Solarmore » Insolation Project (GSIP) is an operational physical model from NOAA that computes GHI using the visible and infrared channel measurements from the GOES satellites. GSIP uses a two-stage scheme that first retrieves cloud properties and uses those properties in a radiative transfer model to calculate surface radiation. NREL, University of Wisconsin and NOAA have recently collaborated to adapt GSIP to create a 4 km GHI and DNI product every 30 minutes. This paper presents an outline of the methodology and a comprehensive validation using high quality ground based solar data from the National Oceanic and Atmospheric Administration (NOAA) Surface Radiation (SURFRAD) (http://www.srrb.noaa.gov/surfrad/sitepage.html) and Integrated Surface Insolation Study (ISIS) http://www.srrb.noaa.gov/isis/isissites.html), the Solar Radiation Research Laboratory (SRRL) at National Renewable Energy Laboratory (NREL), and Sun Spot One (SS1) stations.« less

  18. Minding the Cyber-Physical Gap: Model-Based Analysis and Mitigation of Systemic Perception-Induced Failure.

    PubMed

    Mordecai, Yaniv; Dori, Dov

    2017-07-17

    The cyber-physical gap (CPG) is the difference between the 'real' state of the world and the way the system perceives it. This discrepancy often stems from the limitations of sensing and data collection technologies and capabilities, and is inevitable at some degree in any cyber-physical system (CPS). Ignoring or misrepresenting such limitations during system modeling, specification, design, and analysis can potentially result in systemic misconceptions, disrupted functionality and performance, system failure, severe damage, and potential detrimental impacts on the system and its environment. We propose CPG-Aware Modeling & Engineering (CPGAME), a conceptual model-based approach to capturing, explaining, and mitigating the CPG. CPGAME enhances the systems engineer's ability to cope with CPGs, mitigate them by design, and prevent erroneous decisions and actions. We demonstrate CPGAME by applying it for modeling and analysis of the 1979 Three Miles Island 2 nuclear accident, and show how its meltdown could be mitigated. We use ISO-19450:2015-Object Process Methodology as our conceptual modeling framework.

  19. Resolving the Antarctic contribution to sea-level rise: a hierarchical modelling framework.

    PubMed

    Zammit-Mangion, Andrew; Rougier, Jonathan; Bamber, Jonathan; Schön, Nana

    2014-06-01

    Determining the Antarctic contribution to sea-level rise from observational data is a complex problem. The number of physical processes involved (such as ice dynamics and surface climate) exceeds the number of observables, some of which have very poor spatial definition. This has led, in general, to solutions that utilise strong prior assumptions or physically based deterministic models to simplify the problem. Here, we present a new approach for estimating the Antarctic contribution, which only incorporates descriptive aspects of the physically based models in the analysis and in a statistical manner. By combining physical insights with modern spatial statistical modelling techniques, we are able to provide probability distributions on all processes deemed to play a role in both the observed data and the contribution to sea-level rise. Specifically, we use stochastic partial differential equations and their relation to geostatistical fields to capture our physical understanding and employ a Gaussian Markov random field approach for efficient computation. The method, an instantiation of Bayesian hierarchical modelling, naturally incorporates uncertainty in order to reveal credible intervals on all estimated quantities. The estimated sea-level rise contribution using this approach corroborates those found using a statistically independent method. © 2013 The Authors. Environmetrics Published by John Wiley & Sons, Ltd.

  20. Resolving the Antarctic contribution to sea-level rise: a hierarchical modelling framework†

    PubMed Central

    Zammit-Mangion, Andrew; Rougier, Jonathan; Bamber, Jonathan; Schön, Nana

    2014-01-01

    Determining the Antarctic contribution to sea-level rise from observational data is a complex problem. The number of physical processes involved (such as ice dynamics and surface climate) exceeds the number of observables, some of which have very poor spatial definition. This has led, in general, to solutions that utilise strong prior assumptions or physically based deterministic models to simplify the problem. Here, we present a new approach for estimating the Antarctic contribution, which only incorporates descriptive aspects of the physically based models in the analysis and in a statistical manner. By combining physical insights with modern spatial statistical modelling techniques, we are able to provide probability distributions on all processes deemed to play a role in both the observed data and the contribution to sea-level rise. Specifically, we use stochastic partial differential equations and their relation to geostatistical fields to capture our physical understanding and employ a Gaussian Markov random field approach for efficient computation. The method, an instantiation of Bayesian hierarchical modelling, naturally incorporates uncertainty in order to reveal credible intervals on all estimated quantities. The estimated sea-level rise contribution using this approach corroborates those found using a statistically independent method. © 2013 The Authors. Environmetrics Published by John Wiley & Sons, Ltd. PMID:25505370

  1. A physics-based crystallographic modeling framework for describing the thermal creep behavior of Fe-Cr alloys

    DOE PAGES

    Wen, Wei; Capolungo, Laurent; Patra, Anirban; ...

    2017-02-23

    In this work, a physics-based thermal creep model is developed based on the understanding of the microstructure in Fe-Cr alloys. This model is associated with a transition state theory based framework that considers the distribution of internal stresses at sub-material point level. The thermally activated dislocation glide and climb mechanisms are coupled in the obstacle-bypass processes for both dislocation and precipitate-type barriers. A kinetic law is proposed to track the dislocation densities evolution in the subgrain interior and in the cell wall. The predicted results show that this model, embedded in the visco-plastic self-consistent (VPSC) framework, captures well the creepmore » behaviors for primary and steady-state stages under various loading conditions. We also discuss the roles of the mechanisms involved.« less

  2. Identifying Multiple Levels of Discussion-Based Teaching Strategies for Constructing Scientific Models

    ERIC Educational Resources Information Center

    Williams, Grant; Clement, John

    2015-01-01

    This study sought to identify specific types of discussion-based strategies that two successful high school physics teachers using a model-based approach utilized in attempting to foster students' construction of explanatory models for scientific concepts. We found evidence that, in addition to previously documented dialogical strategies that…

  3. The Possibilities of "Doing" Outdoor and/or Adventure Education in Physical Education/Teacher Education

    ERIC Educational Resources Information Center

    Sutherland, Sue; Legge, Maureen

    2016-01-01

    Background: Physical education has a long association with teaching outdoor and/or adventure education (OAE). As physical education teacher educators, with a special interest in teaching OAE, we wanted to examine perceptions of models based practices in physical education/teacher education. Purpose: This manuscript; explores and critiques a range…

  4. Physical models and primary design of reactor based slow positron source at CMRR

    NASA Astrophysics Data System (ADS)

    Wang, Guanbo; Li, Rundong; Qian, Dazhi; Yang, Xin

    2018-07-01

    Slow positron facilities are widely used in material science. A high intensity slow positron source is now at the design stage based on the China Mianyang Research Reactor (CMRR). This paper describes the physical models and our primary design. We use different computer programs or mathematical formula to simulate different physical process, and validate them by proper experiments. Considering the feasibility, we propose a primary design, containing a cadmium shield, a honeycomb arranged W tubes assembly, electrical lenses, and a solenoid. It is planned to be vertically inserted in the Si-doping channel. And the beam intensity is expected to be 5 ×109

  5. Subsystem functional and the missing ingredient of confinement physics in density functionals.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armiento, Rickard Roberto; Mattsson, Ann Elisabet; Hao, Feng

    2010-08-01

    The subsystem functional scheme is a promising approach recently proposed for constructing exchange-correlation density functionals. In this scheme, the physics in each part of real materials is described by mapping to a characteristic model system. The 'confinement physics,' an essential physical ingredient that has been left out in present functionals, is studied by employing the harmonic-oscillator (HO) gas model. By performing the potential {yields} density and the density {yields} exchange energy per particle mappings based on two model systems characterizing the physics in the interior (uniform electron-gas model) and surface regions (Airy gas model) of materials for the HO gases,more » we show that the confinement physics emerges when only the lowest subband of the HO gas is occupied by electrons. We examine the approximations of the exchange energy by several state-of-the-art functionals for the HO gas, and none of them produces adequate accuracy in the confinement dominated cases. A generic functional that incorporates the description of the confinement physics is needed.« less

  6. Patients' mental models and adherence to outpatient physical therapy home exercise programs.

    PubMed

    Rizzo, Jon

    2015-05-01

    Within physical therapy, patient adherence usually relates to attending appointments, following advice, and/or undertaking prescribed exercise. Similar to findings for general medical adherence, patient adherence to physical therapy home exercise programs (HEP) is estimated between 35 and 72%. Adherence to HEPs is a multifactorial and poorly understood phenomenon, with no consensus regarding a common theoretical framework that best guides empirical or clinical efforts. Mental models, a construct used to explain behavior and decision-making in the social sciences, may serve as this framework. Mental models comprise an individual's tacit thoughts about how the world works. They include assumptions about new experiences and expectations for the future based on implicit comparisons between current and past experiences. Mental models play an important role in decision-making and guiding actions. This professional theoretical article discusses empirical research demonstrating relationships among mental models, prior experience, and adherence decisions in medical and physical therapy contexts. Specific issues related to mental models and physical therapy patient adherence are discussed, including the importance of articulation of patients' mental models, assessment of patients' mental models that relate to exercise program adherence, discrepancy between patient and provider mental models, and revision of patients' mental models in ways that enhance adherence. The article concludes with practical implications for physical therapists and recommendations for further research to better understand the role of mental models in physical therapy patient adherence behavior.

  7. Informatics and physics intersubject communications in the 7th and 8th grades of the basics level by means of computer modeling

    NASA Astrophysics Data System (ADS)

    Vasina, A. V.

    2017-01-01

    The author of the article imparts pedagogical experience of realization of intersubject communications of school basic courses of informatics, technology and physics through research activity of students with the use of specialized programs for the development and studying of computer models of physical processes. The considered technique is based on the principles of independent scholar activity of students, intersubject communications such as educational disciplines of technology, physics and informatics; it helps to develop the research activity of students and a professional and practical orientation of education. As an example the lesson of modeling of flotation with the use of the environment "1C Physical simulator" is considered.

  8. Quantifying Astronaut Tasks: Robotic Technology and Future Space Suit Design

    NASA Technical Reports Server (NTRS)

    Newman, Dava

    2003-01-01

    The primary aim of this research effort was to advance the current understanding of astronauts' capabilities and limitations in space-suited EVA by developing models of the constitutive and compatibility relations of a space suit, based on experimental data gained from human test subjects as well as a 12 degree-of-freedom human-sized robot, and utilizing these fundamental relations to estimate a human factors performance metric for space suited EVA work. The three specific objectives are to: 1) Compile a detailed database of torques required to bend the joints of a space suit, using realistic, multi- joint human motions. 2) Develop a mathematical model of the constitutive relations between space suit joint torques and joint angular positions, based on experimental data and compare other investigators' physics-based models to experimental data. 3) Estimate the work envelope of a space suited astronaut, using the constitutive and compatibility relations of the space suit. The body of work that makes up this report includes experimentation, empirical and physics-based modeling, and model applications. A detailed space suit joint torque-angle database was compiled with a novel experimental approach that used space-suited human test subjects to generate realistic, multi-joint motions and an instrumented robot to measure the torques required to accomplish these motions in a space suit. Based on the experimental data, a mathematical model is developed to predict joint torque from the joint angle history. Two physics-based models of pressurized fabric cylinder bending are compared to experimental data, yielding design insights. The mathematical model is applied to EVA operations in an inverse kinematic analysis coupled to the space suit model to calculate the volume in which space-suited astronauts can work with their hands, demonstrating that operational human factors metrics can be predicted from fundamental space suit information.

  9. Physical activity interventions using mass media, print media, and information technology.

    PubMed

    Marcus, B H; Owen, N; Forsyth, L H; Cavill, N A; Fridinger, F

    1998-11-01

    Media-based physical activity interventions include a variety of print, graphic, audiovisual, and broadcast media programs intended to influence behavior change. New information technology allows print to be delivered in personalized, interactive formats that may enhance efficacy. Media-based interventions have been shaped by conceptual models from health education, Social Cognitive Theory, the Transtheoretical Model, and Social Marketing frameworks. We reviewed 28 studies of media-based interventions of which seven were mass media campaigns at the state or national level and the remaining 21 were delivered through health care, the workplace, or in the community. Recall of mass-media messages generally was high, but mass-media campaigns had very little impact on physical activity behavior. Interventions using print and/or telephone were effective in changing behavior in the short term. Studies in which there were more contacts and interventions tailored to the target audience were most effective. A key issue for research on media-based physical activity interventions is reaching socially disadvantaged groups for whom access, particularly to new forms of communication technology, may be limited. There is a clear need for controlled trials comparing different forms and intensities of media-based physical activity interventions. Controlled studies of personalized print, interactive computer-mediated programs, and web-based formats for program delivery also are needed. The integration of media-based methods into public and private sector service delivery has much potential for innovation.

  10. Application of experiential learning model using simple physical kit to increase attitude toward physics student senior high school in fluid

    NASA Astrophysics Data System (ADS)

    Johari, A. H.; Muslim

    2018-05-01

    Experiential learning model using simple physics kit has been implemented to get a picture of improving attitude toward physics senior high school students on Fluid. This study aims to obtain a description of the increase attitudes toward physics senior high school students. The research method used was quasi experiment with non-equivalent pretest -posttest control group design. Two class of tenth grade were involved in this research 28, 26 students respectively experiment class and control class. Increased Attitude toward physics of senior high school students is calculated using an attitude scale consisting of 18 questions. Based on the experimental class test average of 86.5% with the criteria of almost all students there is an increase and in the control class of 53.75% with the criteria of half students. This result shows that the influence of experiential learning model using simple physics kit can improve attitude toward physics compared to experiential learning without using simple physics kit.

  11. Performance Modeling of an Experimental Laser Propelled Lightcraft

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Chen, Yen-Sen; Liu, Jiwen; Myrabo, Leik N.; Mead, Franklin B., Jr.

    2000-01-01

    A computational plasma aerodynamics model is developed to study the performance of an experimental laser propelled lightcraft. The computational methodology is based on a time-accurate, three-dimensional, finite-difference, chemically reacting, unstructured grid, pressure- based formulation. The underlying physics are added and tested systematically using a building-block approach. The physics modeled include non-equilibn'um thermodynamics, non-equilibrium air-plasma finite-rate kinetics, specular ray tracing, laser beam energy absorption and equi refraction by plasma, non-equilibrium plasma radiation, and plasma resonance. A series of transient computations are performed at several laser pulse energy levels and the simulated physics are discussed and compared with those of tests and literature. The predicted coupling coefficients for the lightcraft compared reasonably well with those of tests conducted on a pendulum apparatus.

  12. Different Cognitive Frailty Models and Health- and Cognitive-related Outcomes in Older Age: From Epidemiology to Prevention

    PubMed Central

    Panza, Francesco; Lozupone, Madia; Solfrizzi, Vincenzo; Sardone, Rodolfo; Dibello, Vittorio; Di Lena, Luca; D’Urso, Francesca; Stallone, Roberta; Petruzzi, Massimo; Giannelli, Gianluigi; Quaranta, Nicola; Bellomo, Antonello; Greco, Antonio; Daniele, Antonio; Seripa, Davide; Logroscino, Giancarlo

    2018-01-01

    Frailty, a critical intermediate status of the aging process that is at increased risk for negative health-related events, includes physical, cognitive, and psychosocial domains or phenotypes. Cognitive frailty is a condition recently defined by operationalized criteria describing coexisting physical frailty and mild cognitive impairment (MCI), with two proposed subtypes: potentially reversible cognitive frailty (physical frailty/MCI) and reversible cognitive frailty (physical frailty/pre-MCI subjective cognitive decline). In the present article, we reviewed the framework for the definition, different models, and the current epidemiology of cognitive frailty, also describing neurobiological mechanisms, and exploring the possible prevention of the cognitive frailty progression. Several studies suggested a relevant heterogeneity with prevalence estimates ranging 1.0–22.0% (10.7–22.0% in clinical-based settings and 1.0–4.4% in population-based settings). Cross-sectional and longitudinal population-based studies showed that different cognitive frailty models may be associated with increased risk of functional disability, worsened quality of life, hospitalization, mortality, incidence of dementia, vascular dementia, and neurocognitive disorders. The operationalization of clinical constructs based on cognitive impairment related to physical causes (physical frailty, motor function decline, or other physical factors) appears to be interesting for dementia secondary prevention given the increased risk for progression to dementia of these clinical entities. Multidomain interventions have the potential to be effective in preventing cognitive frailty. In the near future, we need to establish more reliable clinical and research criteria, using different operational definitions for frailty and cognitive impairment, and useful clinical, biological, and imaging markers to implement intervention programs targeted to improve frailty, so preventing also late-life cognitive disorders. PMID:29562543

  13. Precision Cosmology: The First Half Million Years

    NASA Astrophysics Data System (ADS)

    Jones, Bernard J. T.

    2017-06-01

    Cosmology seeks to characterise our Universe in terms of models based on well-understood and tested physics. Today we know our Universe with a precision that once would have been unthinkable. This book develops the entire mathematical, physical and statistical framework within which this has been achieved. It tells the story of how we arrive at our profound conclusions, starting from the early twentieth century and following developments up to the latest data analysis of big astronomical datasets. It provides an enlightening description of the mathematical, physical and statistical basis for understanding and interpreting the results of key space- and ground-based data. Subjects covered include general relativity, cosmological models, the inhomogeneous Universe, physics of the cosmic background radiation, and methods and results of data analysis. Extensive online supplementary notes, exercises, teaching materials, and exercises in Python make this the perfect companion for researchers, teachers and students in physics, mathematics, and astrophysics.

  14. A consistent approach to estimate the breakdown voltage of high voltage electrodes under positive switching impulses

    NASA Astrophysics Data System (ADS)

    Arevalo, L.; Wu, D.; Jacobson, B.

    2013-08-01

    The main propose of this paper is to present a physical model of long air gap electrical discharges under positive switching impulses. The development and progression of discharges in long air gaps are attributable to two intertwined physical phenomena, namely, the leader channel and the streamer zone. Experimental studies have been used to develop empirical and physical models capable to represent the streamer zone and the leader channel. The empirical ones have led to improvements in the electrical design of high voltage apparatus and insulation distances, but they cannot take into account factors associated with fundamental physics and/or the behavior of materials. The physical models have been used to describe and understand the discharge phenomena of laboratory and lightning discharges. However, because of the complex simulations necessary to reproduce real cases, they are not in widespread use in the engineering of practical applications. Hence, the aim of the work presented here is to develop a model based on physics of the discharge capable to validate and complement the existing engineering models. The model presented here proposes a new geometrical approximation for the representation of the streamer and the calculation of the accumulated electrical charge. The model considers a variable streamer region that changes with the temporal and spatial variations of the electric field. The leader channel is modeled using the non local thermo-equilibrium equations. Furthermore, statistical delays before the inception of the first corona, and random distributions to represent the tortuous nature of the path taken by the leader channel were included based on the behavior observed in experimental tests, with the intention of ensuring the discharge behaved in a realistic manner. For comparison purposes, two different gap configurations were simulated. A reasonable agreement was found between the physical model and the experimental test results.

  15. Effects of Learning Support in Simulation-Based Physics Learning

    ERIC Educational Resources Information Center

    Chang, Kuo-En; Chen, Yu-Lung; Lin, He-Yan; Sung, Yao-Ting

    2008-01-01

    This paper describes the effects of learning support on simulation-based learning in three learning models: experiment prompting, a hypothesis menu, and step guidance. A simulation learning system was implemented based on these three models, and the differences between simulation-based learning and traditional laboratory learning were explored in…

  16. The effect of the flipped model on achievement in an introductory college physics course

    NASA Astrophysics Data System (ADS)

    Winter, Joshua Brian

    The flipped or inverted classroom model is one in which the time and place for traditional lecture and homework are reversed. Traditional lecture is replaced by online videos assigned as homework. This frees up time in class to be spent with more student centered activities such as discussion based concept questions and group problem solving. While growing in popularity, research on the effectiveness of this format is sparse. In this quasi-experimental study, two sections of an introductory algebra-based college physics course were examined over a five week period. Each section was taught with either the traditional or flipped model and physics knowledge achieved was compared using independent samples t-tests on both the instructor's unit exam and the Mechanics Baseline Test pre/posttest normalized gain. Results indicated that there was no statistically significant difference between the flipped model and the traditional lecture format. Avenues for further research are discussed.

  17. A review of selected topics in physics based modeling for tunnel field-effect transistors

    NASA Astrophysics Data System (ADS)

    Esseni, David; Pala, Marco; Palestri, Pierpaolo; Alper, Cem; Rollo, Tommaso

    2017-08-01

    The research field on tunnel-FETs (TFETs) has been rapidly developing in the last ten years, driven by the quest for a new electronic switch operating at a supply voltage well below 1 V and thus delivering substantial improvements in the energy efficiency of integrated circuits. This paper reviews several aspects related to physics based modeling in TFETs, and shows how the description of these transistors implies a remarkable innovation and poses new challenges compared to conventional MOSFETs. A hierarchy of numerical models exist for TFETs covering a wide range of predictive capabilities and computational complexities. We start by reviewing seminal contributions on direct and indirect band-to-band tunneling (BTBT) modeling in semiconductors, from which most TCAD models have been actually derived. Then we move to the features and limitations of TCAD models themselves and to the discussion of what we define non-self-consistent quantum models, where BTBT is computed with rigorous quantum-mechanical models starting from frozen potential profiles and closed-boundary Schrödinger equation problems. We will then address models that solve the open-boundary Schrödinger equation problem, based either on the non-equilibrium Green’s function NEGF or on the quantum-transmitting-boundary formalism, and show how the computational burden of these models may vary in a wide range depending on the Hamiltonian employed in the calculations. A specific section is devoted to TFETs based on 2D crystals and van der Waals hetero-structures. The main goal of this paper is to provide the reader with an introduction to the most important physics based models for TFETs, and with a possible guidance to the wide and rapidly developing literature in this exciting research field.

  18. Fractional-order difference equations for physical lattices and some applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarasov, Vasily E., E-mail: tarasov@theory.sinp.msu.ru

    2015-10-15

    Fractional-order operators for physical lattice models based on the Grünwald-Letnikov fractional differences are suggested. We use an approach based on the models of lattices with long-range particle interactions. The fractional-order operators of differentiation and integration on physical lattices are represented by kernels of lattice long-range interactions. In continuum limit, these discrete operators of non-integer orders give the fractional-order derivatives and integrals with respect to coordinates of the Grünwald-Letnikov types. As examples of the fractional-order difference equations for physical lattices, we give difference analogs of the fractional nonlocal Navier-Stokes equations and the fractional nonlocal Maxwell equations for lattices with long-range interactions.more » Continuum limits of these fractional-order difference equations are also suggested.« less

  19. Physical and Hydrological Meaning of the Spectral Information from Hydrodynamic Signals at Karst Springs

    NASA Astrophysics Data System (ADS)

    Dufoyer, A.; Lecoq, N.; Massei, N.; Marechal, J. C.

    2017-12-01

    Physics-based modeling of karst systems remains almost impossible without enough accurate information about the inner physical characteristics. Usually, the only available hydrodynamic information is the flow rate at the karst outlet. Numerous works in the past decades have used and proven the usefulness of time-series analysis and spectral techniques applied to spring flow, precipitations or even physico-chemical parameters, for interpreting karst hydrological functioning. However, identifying or interpreting the karst systems physical features that control statistical or spectral characteristics of spring flow variations is still challenging, not to say sometimes controversial. The main objective of this work is to determine how the statistical and spectral characteristics of the hydrodynamic signal at karst springs can be related to inner physical and hydraulic properties. In order to address this issue, we undertake an empirical approach based on the use of both distributed and physics-based models, and on synthetic systems responses. The first step of the research is to conduct a sensitivity analysis of time-series/spectral methods to karst hydraulic and physical properties. For this purpose, forward modeling of flow through several simple, constrained and synthetic cases in response to precipitations is undertaken. It allows us to quantify how the statistical and spectral characteristics of flow at the outlet are sensitive to changes (i) in conduit geometries, and (ii) in hydraulic parameters of the system (matrix/conduit exchange rate, matrix hydraulic conductivity and storativity). The flow differential equations resolved by MARTHE, a computer code developed by the BRGM, allows karst conduits modeling. From signal processing on simulated spring responses, we hope to determine if specific frequencies are always modified, thanks to Fourier series and multi-resolution analysis. We also hope to quantify which parameters are the most variable with auto-correlation analysis: first results seem to show higher variations due to conduit conductivity than the ones due to matrix/conduit exchange rate. Future steps will be using another computer code, based on double-continuum approach and allowing turbulent conduit flow, and modeling a natural system.

  20. A charge-based model of Junction Barrier Schottky rectifiers

    NASA Astrophysics Data System (ADS)

    Latorre-Rey, Alvaro D.; Mudholkar, Mihir; Quddus, Mohammed T.; Salih, Ali

    2018-06-01

    A new charge-based model of the electric field distribution for Junction Barrier Schottky (JBS) diodes is presented, based on the description of the charge-sharing effect between the vertical Schottky junction and the lateral pn-junctions that constitute the active cell of the device. In our model, the inherently 2-D problem is transformed into a simple but accurate 1-D problem which has a closed analytical solution that captures the reshaping and reduction of the electric field profile responsible for the improved electrical performance of these devices, while preserving physically meaningful expressions that depend on relevant device parameters. The validation of the model is performed by comparing calculated electric field profiles with drift-diffusion simulations of a JBS device showing good agreement. Even though other fully 2-D models already available provide higher accuracy, they lack physical insight making the proposed model an useful tool for device design.

  1. Student use of model-based reasoning when troubleshooting an electronic circuit

    NASA Astrophysics Data System (ADS)

    Lewandowski, Heather; Stetzer, Mackenzie; van de Bogart, Kevin; Dounas-Frazer, Dimitri

    2016-03-01

    Troubleshooting systems is an integral part of experimental physics in both research and educational settings. Accordingly, ability to troubleshoot is an important learning goal for undergraduate physics lab courses. We investigate students' model-based reasoning on a troubleshooting task using data collected in think-aloud interviews during which pairs of students from two institutions attempted to diagnose and repair a malfunctioning circuit. Our analysis scheme was informed by the Experimental Modeling Framework, which describes physicists' use of mathematical and conceptual models when reasoning about experimental systems. We show that system and subsystem models were crucial for the evaluation of repairs to the circuit and played an important role in some troubleshooting strategies. Finally, drawing on data from interviews with electronics instructors from a broad range of institution types, we outline recommendations for model-based approaches to teaching and learning troubleshooting skills.

  2. Student use of model-based reasoning when troubleshooting an electric circuit

    NASA Astrophysics Data System (ADS)

    Dounas-Frazer, Dimitri

    2016-05-01

    Troubleshooting systems is an integral part of experimental physics in both research and educational settings. Accordingly, ability to troubleshoot is an important learning goal for undergraduate physics lab courses. We investigate students' model-based reasoning on a troubleshooting task using data collected in think-aloud interviews during which pairs of students from two institutions attempted to diagnose and repair a malfunctioning circuit. Our analysis scheme was informed by the Experimental Modeling Framework, which describes physicists' use of mathematical and conceptual models when reasoning about experimental systems. We show that system and subsystem models were crucial for the evaluation of repairs to the circuit and played an important role in some troubleshooting strategies. Finally, drawing on data from interviews with electronics instructors from a broad range of institution types, we outline recommendations for model-based approaches to teaching and learning troubleshooting skills.

  3. A Comparison between Physics-based and Polytropic MHD Models for Stellar Coronae and Stellar Winds of Solar Analogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, O.

    The development of the Zeeman–Doppler Imaging (ZDI) technique has provided synoptic observations of surface magnetic fields of low-mass stars. This led the stellar astrophysics community to adopt modeling techniques that have been used in solar physics using solar magnetograms. However, many of these techniques have been neglected by the solar community due to their failure to reproduce solar observations. Nevertheless, some of these techniques are still used to simulate the coronae and winds of solar analogs. Here we present a comparative study between two MHD models for the solar corona and solar wind. The first type of model is amore » polytropic wind model, and the second is the physics-based AWSOM model. We show that while the AWSOM model consistently reproduces many solar observations, the polytropic model fails to reproduce many of them, and in the cases where it does, its solutions are unphysical. Our recommendation is that polytropic models, which are used to estimate mass-loss rates and other parameters of solar analogs, must first be calibrated with solar observations. Alternatively, these models can be calibrated with models that capture more detailed physics of the solar corona (such as the AWSOM model) and that can reproduce solar observations in a consistent manner. Without such a calibration, the results of the polytropic models cannot be validated, but they can be wrongly used by others.« less

  4. Comparison of Two Conceptually Different Physically-based Hydrological Models - Looking Beyond Streamflows

    NASA Astrophysics Data System (ADS)

    Rousseau, A. N.; Álvarez; Yu, X.; Savary, S.; Duffy, C.

    2015-12-01

    Most physically-based hydrological models simulate to various extents the relevant watershed processes occurring at different spatiotemporal scales. These models use different physical domain representations (e.g., hydrological response units, discretized control volumes) and numerical solution techniques (e.g., finite difference method, finite element method) as well as a variety of approximations for representing the physical processes. Despite the fact that several models have been developed so far, very few inter-comparison studies have been conducted to check beyond streamflows whether different modeling approaches could simulate in a similar fashion the other processes at the watershed scale. In this study, PIHM (Qu and Duffy, 2007), a fully coupled, distributed model, and HYDROTEL (Fortin et al., 2001; Turcotte et al., 2003, 2007), a pseudo-coupled, semi-distributed model, were compared to check whether the models could corroborate observed streamflows while equally representing other processes as well such as evapotranspiration, snow accumulation/melt or infiltration, etc. For this study, the Young Womans Creek watershed, PA, was used to compare: streamflows (channel routing), actual evapotranspiration, snow water equivalent (snow accumulation and melt), infiltration, recharge, shallow water depth above the soil surface (surface flow), lateral flow into the river (surface and subsurface flow) and height of the saturated soil column (subsurface flow). Despite a lack of observed data for contrasting most of the simulated processes, it can be said that the two models can be used as simulation tools for streamflows, actual evapotranspiration, infiltration, lateral flows into the river, and height of the saturated soil column. However, each process presents particular differences as a result of the physical parameters and the modeling approaches used by each model. Potentially, these differences should be object of further analyses to definitively confirm or reject modeling hypotheses.

  5. Testing a Theoretical Model of Immigration Transition and Physical Activity.

    PubMed

    Chang, Sun Ju; Im, Eun-Ok

    2015-01-01

    The purposes of the study were to develop a theoretical model to explain the relationships between immigration transition and midlife women's physical activity and test the relationships among the major variables of the model. A theoretical model, which was developed based on transitions theory and the midlife women's attitudes toward physical activity theory, consists of 4 major variables, including length of stay in the United States, country of birth, level of acculturation, and midlife women's physical activity. To test the theoretical model, a secondary analysis with data from 127 Hispanic women and 123 non-Hispanic (NH) Asian women in a national Internet study was used. Among the major variables of the model, length of stay in the United States was negatively associated with physical activity in Hispanic women. Level of acculturation in NH Asian women was positively correlated with women's physical activity. Country of birth and level of acculturation were significant factors that influenced physical activity in both Hispanic and NH Asian women. The findings support the theoretical model that was developed to examine relationships between immigration transition and physical activity; it shows that immigration transition can play an essential role in influencing health behaviors of immigrant populations in the United States. The NH theoretical model can be widely used in nursing practice and research that focus on immigrant women and their health behaviors. Health care providers need to consider the influences of immigration transition to promote immigrant women's physical activity.

  6. Are Physics-Based Simulators Ready for Prime Time? Comparisons of RSQSim with UCERF3 and Observations.

    NASA Astrophysics Data System (ADS)

    Milner, K. R.; Shaw, B. E.; Gilchrist, J. J.; Jordan, T. H.

    2017-12-01

    Probabilistic seismic hazard analysis (PSHA) is typically performed by combining an earthquake rupture forecast (ERF) with a set of empirical ground motion prediction equations (GMPEs). ERFs have typically relied on observed fault slip rates and scaling relationships to estimate the rate of large earthquakes on pre-defined fault segments, either ignoring or relying on expert opinion to set the rates of multi-fault or multi-segment ruptures. Version 3 of the Uniform California Earthquake Rupture Forecast (UCERF3) is a significant step forward, replacing expert opinion and fault segmentation with an inversion approach that matches observations better than prior models while incorporating multi-fault ruptures. UCERF3 is a statistical model, however, and doesn't incorporate the physics of earthquake nucleation, rupture propagation, and stress transfer. We examine the feasibility of replacing UCERF3, or components therein, with physics-based rupture simulators such as the Rate-State Earthquake Simulator (RSQSim), developed by Dieterich & Richards-Dinger (2010). RSQSim simulations on the UCERF3 fault system produce catalogs of seismicity that match long term rates on major faults, and produce remarkable agreement with UCERF3 when carried through to PSHA calculations. Averaged over a representative set of sites, the RSQSim-UCERF3 hazard-curve differences are comparable to the small differences between UCERF3 and its predecessor, UCERF2. The hazard-curve agreement between the empirical and physics-based models provides substantial support for the PSHA methodology. RSQSim catalogs include many complex multi-fault ruptures, which we compare with the UCERF3 rupture-plausibility metrics as well as recent observations. Complications in generating physically plausible kinematic descriptions of multi-fault ruptures have thus far prevented us from using UCERF3 in the CyberShake physics-based PSHA platform, which replaces GMPEs with deterministic ground motion simulations. RSQSim produces full slip/time histories that can be directly implemented as sources in CyberShake, without relying on the conditional hypocenter and slip distributions needed for the UCERF models. We also compare RSQSim with time-dependent PSHA calculations based on multi-fault renewal models.

  7. Modern meta-heuristics based on nonlinear physics processes: A review of models and design procedures

    NASA Astrophysics Data System (ADS)

    Salcedo-Sanz, S.

    2016-10-01

    Meta-heuristic algorithms are problem-solving methods which try to find good-enough solutions to very hard optimization problems, at a reasonable computation time, where classical approaches fail, or cannot even been applied. Many existing meta-heuristics approaches are nature-inspired techniques, which work by simulating or modeling different natural processes in a computer. Historically, many of the most successful meta-heuristic approaches have had a biological inspiration, such as evolutionary computation or swarm intelligence paradigms, but in the last few years new approaches based on nonlinear physics processes modeling have been proposed and applied with success. Non-linear physics processes, modeled as optimization algorithms, are able to produce completely new search procedures, with extremely effective exploration capabilities in many cases, which are able to outperform existing optimization approaches. In this paper we review the most important optimization algorithms based on nonlinear physics, how they have been constructed from specific modeling of a real phenomena, and also their novelty in terms of comparison with alternative existing algorithms for optimization. We first review important concepts on optimization problems, search spaces and problems' difficulty. Then, the usefulness of heuristics and meta-heuristics approaches to face hard optimization problems is introduced, and some of the main existing classical versions of these algorithms are reviewed. The mathematical framework of different nonlinear physics processes is then introduced as a preparatory step to review in detail the most important meta-heuristics based on them. A discussion on the novelty of these approaches, their main computational implementation and design issues, and the evaluation of a novel meta-heuristic based on Strange Attractors mutation will be carried out to complete the review of these techniques. We also describe some of the most important application areas, in broad sense, of meta-heuristics, and describe free-accessible software frameworks which can be used to make easier the implementation of these algorithms.

  8. High Fidelity Modeling of Field Reversed Configuration (FRC) Thrusters

    DTIC Science & Technology

    2016-06-01

    space propulsion . This effort consists of numerical model development, physical model development, and systematic studies of the non-linear plasma...studies of the physical characteristics of Field Reversed Configuration (FRC) plasma for advanced space propulsion . This effort consists of numerical...FRCs for propulsion application. Two of the most advanced designs are based on the theta-pinch formation and the RMF formation mechanism, which

  9. Data assimilation of ground GPG total electron content into a physics-based ionosheric model by use of the Kalman filter

    NASA Technical Reports Server (NTRS)

    Hajj, G. A.; Wilson, B. D.; Wang, C.; Pi, X.; Rosen, I. G.

    2004-01-01

    A three-dimensional (3-D) Global Assimilative Ionospheric Model (GAIM) is currently being developed by a joint University of Southern California and Jet Propulsion Laboratory (JPL) team. To estimate the electron density on a global grid, GAIM uses a first-principles ionospheric physics model and the Kalman filter as one of its possible estimation techniques.

  10. The LUE data model for representation of agents and fields

    NASA Astrophysics Data System (ADS)

    de Jong, Kor; Schmitz, Oliver; Karssenberg, Derek

    2017-04-01

    Traditionally, agents-based and field-based modelling environments use different data models to represent the state of information they manipulate. In agent-based modelling, involving the representation of phenomena as objects bounded in space and time, agents are often represented by classes, each of which represents a particular kind of agent and all its properties. Such classes can be used to represent entities like people, birds, cars and countries. In field-based modelling, involving the representation of the environment as continuous fields, fields are often represented by a discretization of space, using multidimensional arrays, each storing mostly a single attribute. Such arrays can be used to represent the elevation of the land-surface, the pH of the soil, or the population density in an area, for example. Representing a population of agents by class instances grouped in collections is an intuitive way of organizing information. A drawback, though, is that models in which class instances grouping properties are stored in collections are less efficient (execute slower) than models in which collections of properties are grouped. The field representation, on the other hand, is convenient for the efficient execution of models. Another drawback is that, because the data models used are so different, integrating agent-based and field-based models becomes difficult, since the model builder has to deal with multiple concepts, and often multiple modelling environments. With the development of the LUE data model [1] we aim at representing agents and fields within a single paradigm, by combining the advantages of the data models used in agent-based and field-based data modelling. This removes the barrier for writing integrated agent-based and field-based models. The resulting data model is intuitive to use and allows for efficient execution of models. LUE is both a high-level conceptual data model and a low-level physical data model. The LUE conceptual data model is a generalization of the data models used in agent-based and field-based modelling. The LUE physical data model [2] is an implementation of the LUE conceptual data model in HDF5. In our presentation we will provide details of our approach to organizing information about agents and fields. We will show examples of agent and field data represented by the conceptual and physical data model. References: [1] de Bakker, M.P., de Jong, K., Schmitz, O., Karssenberg, D., 2016. Design and demonstration of a data model to integrate agent-based and field-based modelling. Environmental Modelling and Software. http://dx.doi.org/10.1016/j.envsoft.2016.11.016 [2] de Jong, K., 2017. LUE source code. https://github.com/pcraster/lue

  11. Novel residual-based large eddy simulation turbulence models for incompressible magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Sondak, David

    The goal of this work was to develop, introduce, and test a promising computational paradigm for the development of turbulence models for incompressible magnetohydrodynamics (MHD). MHD governs the behavior of an electrically conducting fluid in the presence of an external electromagnetic (EM) field. The incompressible MHD model is used in many engineering and scientific disciplines from the development of nuclear fusion as a sustainable energy source to the study of space weather and solar physics. Many interesting MHD systems exhibit the phenomenon of turbulence which remains an elusive problem from all scientific perspectives. This work focuses on the computational perspective and proposes techniques that enable the study of systems involving MHD turbulence. Direct numerical simulation (DNS) is not a feasible approach for studying MHD turbulence. In this work, turbulence models for incompressible MHD were developed from the variational multiscale (VMS) formulation wherein the solution fields were decomposed into resolved and unresolved components. The unresolved components were modeled with a term that is proportional to the residual of the resolved scales. Two additional MHD models were developed based off of the VMS formulation: a residual-based eddy viscosity (RBEV) model and a mixed model that partners the VMS formulation with the RBEV model. These models are endowed with several special numerical and physics features. Included in the numerical features is the internal numerical consistency of each of the models. Physically, the new models are able to capture desirable MHD physics such as the inverse cascade of magnetic energy and the subgrid dynamo effect. The models were tested with a Fourier-spectral numerical method and the finite element method (FEM). The primary test problem was the Taylor-Green vortex. Results comparing the performance of the new models to DNS were obtained. The performance of the new models was compared to classic and cutting-edge dynamic Smagorinsky eddy viscosity (DSEV) models. The new models typically outperform the classical models.

  12. Multi-model comparison on the effects of climate change on tree species in the eastern U.S.: results from an enhanced niche model and process-based ecosystem and landscape models

    Treesearch

    Louis R. Iverson; Frank R. Thompson; Stephen Matthews; Matthew Peters; Anantha Prasad; William D. Dijak; Jacob Fraser; Wen J. Wang; Brice Hanberry; Hong He; Maria Janowiak; Patricia Butler; Leslie Brandt; Chris Swanston

    2016-01-01

    Context. Species distribution models (SDM) establish statistical relationships between the current distribution of species and key attributes whereas process-based models simulate ecosystem and tree species dynamics based on representations of physical and biological processes. TreeAtlas, which uses DISTRIB SDM, and Linkages and LANDIS PRO, process...

  13. An appraisal of the literature on teaching physical examination skills.

    PubMed

    Easton, Graham; Stratford-Martin, James; Atherton, Helen

    2012-07-01

    To discover which models for teaching physical examination skills have been proposed, and to appraise the evidence for each. We conducted a narrative review of relevant literature from 1990-2010. We searched the databases MEDLINE, PsycINFO, and ERIC (The Education Resource Information Centre) for the terms: 'physical examination' AND 'teaching' as both MESH terms and keyword searches. We excluded web-based or video teaching, non-physical examination skills (e.g. communication skills), and articles about simulated patients or models. We identified five relevant articles. These five studies outlined several approaches to teaching physical examination skills, including Peyton's 4-step model, an adaptation of his model to a 6-step model; the silent run through; and collaborative discovery. There was little evidence to support one method over others. One controlled trial suggested that silent run-through could improve performance of complex motor tasks, and another suggested that collaborative discovery improves students' ability to recognise key findings in cardiac examinations. There are several models for teaching physical examinations, but few are designed specifically for that purpose and there is little evidence to back any one model over another. We propose an approach which adopts several key features of these models. Future research could usefully evaluate the effectiveness of the proposed models, or develop innovative practical models for teaching examination skills.

  14. The evolution of process-based hydrologic models: historical challenges and the collective quest for physical realism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Martyn P.; Bierkens, Marc F. P.; Samaniego, Luis

    The diversity in hydrologic models has historically led to great controversy on the correct approach to process-based hydrologic modeling, with debates centered on the adequacy of process parameterizations, data limitations and uncertainty, and computational constraints on model analysis. Here, we revisit key modeling challenges on requirements to (1) define suitable model equations, (2) define adequate model parameters, and (3) cope with limitations in computing power. We outline the historical modeling challenges, provide examples of modeling advances that address these challenges, and define outstanding research needs. We also illustrate how modeling advances have been made by groups using models of different type and complexity,more » and we argue for the need to more effectively use our diversity of modeling approaches in order to advance our collective quest for physically realistic hydrologic models.« less

  15. The evolution of process-based hydrologic models: historical challenges and the collective quest for physical realism

    DOE PAGES

    Clark, Martyn P.; Bierkens, Marc F. P.; Samaniego, Luis; ...

    2017-07-11

    The diversity in hydrologic models has historically led to great controversy on the correct approach to process-based hydrologic modeling, with debates centered on the adequacy of process parameterizations, data limitations and uncertainty, and computational constraints on model analysis. Here, we revisit key modeling challenges on requirements to (1) define suitable model equations, (2) define adequate model parameters, and (3) cope with limitations in computing power. We outline the historical modeling challenges, provide examples of modeling advances that address these challenges, and define outstanding research needs. We also illustrate how modeling advances have been made by groups using models of different type and complexity,more » and we argue for the need to more effectively use our diversity of modeling approaches in order to advance our collective quest for physically realistic hydrologic models.« less

  16. Analytical Formulation for Sizing and Estimating the Dimensions and Weight of Wind Turbine Hub and Drivetrain Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Y.; Parsons, T.; King, R.

    This report summarizes the theory, verification, and validation of a new sizing tool for wind turbine drivetrain components, the Drivetrain Systems Engineering (DriveSE) tool. DriveSE calculates the dimensions and mass properties of the hub, main shaft, main bearing(s), gearbox, bedplate, transformer if up-tower, and yaw system. The level of fi¬ delity for each component varies depending on whether semiempirical parametric or physics-based models are used. The physics-based models have internal iteration schemes based on system constraints and design criteria. Every model is validated against available industry data or finite-element analysis. The verification and validation results show that the models reasonablymore » capture primary drivers for the sizing and design of major drivetrain components.« less

  17. A Laborative Model of Geomagnetism as an Example of Creative Learning

    ERIC Educational Resources Information Center

    Prytz, Kjell

    2015-01-01

    Creative learning is discussed with respect to a specific physics topic. A teaching example, based on an apparatus that demonstrates the standard dynamo model of geomagnetism, is presented. It features many of the basic physics concepts within the syllabus of electromagnetism at high-school and university. To stimulate conceptual learning and to…

  18. On Practising in Physical Education: Outline for a Pedagogical Model

    ERIC Educational Resources Information Center

    Aggerholm, K.; Standal, O.; Barker, D. M.; Larsson, H.

    2018-01-01

    Background: Models-based approaches to physical education have in recent years developed as a way for teachers and students to concentrate on a manageable number of learning objectives, and align pedagogical approaches with learning subject matter and context. This paper draws on Hannah Arendt's account of "vita activa" to map existing…

  19. Physical Foundations for Socio-Economic Modeling for Transportation Planning : Part 1. Interaction Between Urban Centers as a Potential Process.

    DOT National Transportation Integrated Search

    1977-09-01

    The objective of this research is to make use of a physically based social system model to study the determinants of city sizes and their interactions in a nation. In particular, it was required that attention be paid to how new transportation system...

  20. Effect of Lime Stabilization on Vertical Deformation of Laterite Halmahera Soil

    NASA Astrophysics Data System (ADS)

    Saing, Zubair; Djainal, Herry

    2018-04-01

    In this paper, the study was conducted to determine the lime effect on vertical deformation of road base physical model of laterite Halmahera soil. The samples of laterite soil were obtained from Halmahera Island, North Maluku Province, Indonesia. Soil characteristics were obtained from laboratory testing, according to American Standard for Testing and Materials (ASTM), consists of physical, mechanical, minerals, and chemical. The base layer of physical model testing with the dimension; 2m of length, 2m of width, and 1.5m of height. The addition of lime with variations of 3, 5, 7, an 10%, based on maximum dry density of standard Proctor test results and cured for 28 days. The model of lime treated laterite Halmahera soil with 0,1m thickness placed on subgrade layer with 1,5m thickness. Furthermore, the physical model was given static vertical loading. Some dial gauge is placed on the lime treated soil surface with distance interval 20cm, to read the vertical deformation that occurs during loading. The experimentals data was analyzed and validated with numerical analysis using finite element method. The results showed that the vertical deformation reduced significantly on 10% lime content (three times less than untreated soil), and qualify for maximum deflection (standard requirement L/240) on 7-10% lime content.

  1. Development Instrument’s Learning of Physics Through Scientific Inquiry Model Based Batak Culture to Improve Science Process Skill and Student’s Curiosity

    NASA Astrophysics Data System (ADS)

    Nasution, Derlina; Syahreni Harahap, Putri; Harahap, Marabangun

    2018-03-01

    This research aims to: (1) developed a instrument’s learning (lesson plan, worksheet, student’s book, teacher’s guide book, and instrument test) of physics learning through scientific inquiry learning model based Batak culture to achieve skills improvement process of science students and the students’ curiosity; (2) describe the quality of the result of develop instrument’s learning in high school using scientific inquiry learning model based Batak culture (lesson plan, worksheet, student’s book, teacher’s guide book, and instrument test) to achieve the science process skill improvement of students and the student curiosity. This research is research development. This research developed a instrument’s learning of physics by using a development model that is adapted from the development model Thiagarajan, Semmel, and Semmel. The stages are traversed until retrieved a valid physics instrument’s learning, practical, and effective includes :(1) definition phase, (2) the planning phase, and (3) stages of development. Test performed include expert test/validation testing experts, small groups, and test classes is limited. Test classes are limited to do in SMAN 1 Padang Bolak alternating on a class X MIA. This research resulted in: 1) the learning of physics static fluid material specially for high school grade 10th consisted of (lesson plan, worksheet, student’s book, teacher’s guide book, and instrument test) and quality worthy of use in the learning process; 2) each component of the instrument’s learning meet the criteria have valid learning, practical, and effective way to reach the science process skill improvement and curiosity in students.

  2. Thermal stability of static coronal loops: Part 1: Effects of boundary conditions

    NASA Technical Reports Server (NTRS)

    Antiochos, S. K.; Shoub, E. C.; An, C. H.; Emslie, A. G.

    1985-01-01

    The linear stability of static coronal-loop models undergoing thermal perturbations was investigated. The effect of conditions at the loop base on the stability properties of the models was considered in detail. The question of appropriate boundary conditions at the loop base was considered and it was concluded that the most physical assumptions are that the temperature and density (or pressure) perturbations vanish there. However, if the base is taken to be sufficiently deep in the chromosphere, either several chromospheric scale heights or several coronal loop lengths in depth, then the effect of the boundary conditions on loop stability becomes negligible so that all physically acceptable conditions are equally appropriate. For example, one could as well assume that the velocity vanishes at the base. The growth rates and eigenmodes of static models in which gravity is neglected and in which the coronal heating is a relatively simple function, either constant per-unit mass or per-unit volume were calculated. It was found that all such models are unstable with a growth rate of the order of the coronal cooling time. The physical implications of these results for the solar corona and transition region are discussed.

  3. Physical consistency of subgrid-scale models for large-eddy simulation of incompressible turbulent flows

    NASA Astrophysics Data System (ADS)

    Silvis, Maurits H.; Remmerswaal, Ronald A.; Verstappen, Roel

    2017-01-01

    We study the construction of subgrid-scale models for large-eddy simulation of incompressible turbulent flows. In particular, we aim to consolidate a systematic approach of constructing subgrid-scale models, based on the idea that it is desirable that subgrid-scale models are consistent with the mathematical and physical properties of the Navier-Stokes equations and the turbulent stresses. To that end, we first discuss in detail the symmetries of the Navier-Stokes equations, and the near-wall scaling behavior, realizability and dissipation properties of the turbulent stresses. We furthermore summarize the requirements that subgrid-scale models have to satisfy in order to preserve these important mathematical and physical properties. In this fashion, a framework of model constraints arises that we apply to analyze the behavior of a number of existing subgrid-scale models that are based on the local velocity gradient. We show that these subgrid-scale models do not satisfy all the desired properties, after which we explain that this is partly due to incompatibilities between model constraints and limitations of velocity-gradient-based subgrid-scale models. However, we also reason that the current framework shows that there is room for improvement in the properties and, hence, the behavior of existing subgrid-scale models. We furthermore show how compatible model constraints can be combined to construct new subgrid-scale models that have desirable properties built into them. We provide a few examples of such new models, of which a new model of eddy viscosity type, that is based on the vortex stretching magnitude, is successfully tested in large-eddy simulations of decaying homogeneous isotropic turbulence and turbulent plane-channel flow.

  4. An Example-Based Brain MRI Simulation Framework.

    PubMed

    He, Qing; Roy, Snehashis; Jog, Amod; Pham, Dzung L

    2015-02-21

    The simulation of magnetic resonance (MR) images plays an important role in the validation of image analysis algorithms such as image segmentation, due to lack of sufficient ground truth in real MR images. Previous work on MRI simulation has focused on explicitly modeling the MR image formation process. However, because of the overwhelming complexity of MR acquisition these simulations must involve simplifications and approximations that can result in visually unrealistic simulated images. In this work, we describe an example-based simulation framework, which uses an "atlas" consisting of an MR image and its anatomical models derived from the hard segmentation. The relationships between the MR image intensities and its anatomical models are learned using a patch-based regression that implicitly models the physics of the MR image formation. Given the anatomical models of a new brain, a new MR image can be simulated using the learned regression. This approach has been extended to also simulate intensity inhomogeneity artifacts based on the statistical model of training data. Results show that the example based MRI simulation method is capable of simulating different image contrasts and is robust to different choices of atlas. The simulated images resemble real MR images more than simulations produced by a physics-based model.

  5. Prediction of shallow landslide occurrence: Validation of a physically-based approach through a real case study.

    PubMed

    Schilirò, Luca; Montrasio, Lorella; Scarascia Mugnozza, Gabriele

    2016-11-01

    In recent years, physically-based numerical models have frequently been used in the framework of early-warning systems devoted to rainfall-induced landslide hazard monitoring and mitigation. For this reason, in this work we describe the potential of SLIP (Shallow Landslides Instability Prediction), a simplified physically-based model for the analysis of shallow landslide occurrence. In order to test the reliability of this model, a back analysis of recent landslide events occurred in the study area (located SW of Messina, northeastern Sicily, Italy) on October 1st, 2009 was performed. The simulation results have been compared with those obtained for the same event by using TRIGRS, another well-established model for shallow landslide prediction. Afterwards, a simulation over a 2-year span period has been performed for the same area, with the aim of evaluating the performance of SLIP as early warning tool. The results confirm the good predictive capability of the model, both in terms of spatial and temporal prediction of the instability phenomena. For this reason, we recommend an operating procedure for the real-time definition of shallow landslide triggering scenarios at the catchment scale, which is based on the use of SLIP calibrated through a specific multi-methodological approach. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Sustainable Street Vendors Spatial Zoning Models in Surakarta

    NASA Astrophysics Data System (ADS)

    Rahayu, M. J.; Putri, R. A.; Rini, E. F.

    2018-02-01

    Various strategies that have been carried out by Surakarta’s government to organize street vendors have not achieved the goal of street vendors’ arrangement comprehensively. The street vendors arrangement strategy consists of physical (spatial) and non-physical. One of the physical arrangements is to define the street vendor’s zoning. Based on the street vendors’ characteristics, there are two alternative locations of stabilization (as one kind of street vendors’ arrangement) that can be used. The aim of this study is to examine those alternative locations to set the street vendor’s zoning models. Quatitative method is used to formulate the spatial zoning model. The street vendor’s zoning models are formulated based on two approaches, which are the distance to their residences and previous trading locations. Geographic information system is used to indicate all street vendors’ residences and trading locations based on their type of goods. Through proximity point distance tool on ArcGIS, we find the closeness of residential location and previous trading location with the alternative location of street vendors’ stabilization. The result shows that the location was chosen by the street vendors to sell their goods mainly consider the proximity to their homes. It also shows street vendor’s zoning models which based on the type of street vendor’s goods.

  7. Adopting a Models-Based Approach to Teaching Physical Education

    ERIC Educational Resources Information Center

    Casey, Ashley; MacPhail, Ann

    2018-01-01

    Background: The popularised notion of models-based practice (MBP) is one that focuses on the delivery of a model, e.g. Cooperative Learning, Sport Education, Teaching Personal and Social Responsibility, Teaching Games for Understanding. Indeed, while an abundance of research studies have examined the delivery of a single model and some have…

  8. A PHYSIOLOGICALLY-BASED PHARMACOKINETIC MODEL FOR TOLUENE IN THE LONG EVANS RAT: BODY COMPOSITION AND PHYSICAL ACTIVITY.

    EPA Science Inventory

    A physiologically-based pharmacokinetic (PBPK) model for inhaled toluene was developed for Long-Evans rats as a component of an exposure-dose-response (EDR) model for volatile organic compounds. The PBPK model was needed to link airborne toluene exposure to its concentration in b...

  9. Stolen Base Physics

    NASA Astrophysics Data System (ADS)

    Kagan, David

    2013-05-01

    Few plays in baseball are as consistently close and exciting as the stolen base. While there are several studies of sprinting,2-4 the art of base stealing is much more nuanced. This article describes the motion of the base-stealing runner using a very basic kinematic model. The model will be compared to some data from a Major League game. The predictions of the model show consistency with the skills needed for effective base stealing.

  10. Coupling of the simultaneous heat and water model with a distributed hydrological model and evaluation of the combined model in a cold region watershed

    USDA-ARS?s Scientific Manuscript database

    To represent the effects of frozen soil on hydrology in cold regions, a new physically based distributed hydrological model has been developed by coupling the simultaneous heat and water model (SHAW) with the geomorphology based distributed hydrological model (GBHM), under the framework of the water...

  11. On the use of Empirical Data to Downscale Non-scientific Scepticism About Results From Complex Physical Based Models

    NASA Astrophysics Data System (ADS)

    Germer, S.; Bens, O.; Hüttl, R. F.

    2008-12-01

    The scepticism of non-scientific local stakeholders about results from complex physical based models is a major problem concerning the development and implementation of local climate change adaptation measures. This scepticism originates from the high complexity of such models. Local stakeholders perceive complex models as black-box models, as it is impossible to gasp all underlying assumptions and mathematically formulated processes at a glance. The use of physical based models is, however, indispensible to study complex underlying processes and to predict future environmental changes. The increase of climate change adaptation efforts following the release of the latest IPCC report indicates that the communication of facts about what has already changed is an appropriate tool to trigger climate change adaptation. Therefore we suggest increasing the practice of empirical data analysis in addition to modelling efforts. The analysis of time series can generate results that are easier to comprehend for non-scientific stakeholders. Temporal trends and seasonal patterns of selected hydrological parameters (precipitation, evapotranspiration, groundwater levels and river discharge) can be identified and the dependence of trends and seasonal patters to land use, topography and soil type can be highlighted. A discussion about lag times between the hydrological parameters can increase the awareness of local stakeholders for delayed environment responses.

  12. The Influence of Life History Variability on Population Connectivity: Development and Application of a Trait-Based Biophysical Model of Individuals

    NASA Astrophysics Data System (ADS)

    Wong-Ala, J.; Neuheimer, A. B.; Hixon, M.; Powell, B.

    2016-02-01

    Connectivity estimates, which measure the exchange of individuals among populations, are necessary to create effective reserves for marine life. Connectivity can be influenced by a combination of biology (e.g. spawning time) and physics (e.g. currents). In the past a dispersal model was created in an effort to explain connectivity for the highly sought after reef fish Lau`ipala (Yellow Tang, Zebrasoma flavescens) around Hawai`i Island using physics alone, but this was shown to be insufficient. Here we created an individual based model (IBM) to describe Lau`ipala life history and behavior forced with ocean currents and temperature (via coupling to a physical model) to examine biophysical interactions. The IBM allows for tracking of individual fish from spawning to settlement, and individual variability in modeled processes. We first examined the influence of different reproductive (e.g. batch vs. constant spawners), developmental (e.g. pelagic larval duration), and behavioral (e.g. active vs. passive buoyancy control) traits on modeled connectivity estimates for larval reef fish around Hawai`i Island and compared results to genetic observations of parent-offspring pair distribution. Our model is trait-based which allows individuals to vary in life history strategies enabling mechanistic links between predictions and underlying traits and straightforward applications to other species and sites.

  13. Update of global TC simulations using a variable resolution non-hydrostatic model

    NASA Astrophysics Data System (ADS)

    Park, S. H.

    2017-12-01

    Using in a variable resolution meshes in MPAS during 2017 summer., Tropical cyclone (TC) forecasts are simulated. Two physics suite are tested to explore performance and bias of each physics suite for TC forecasting. A WRF physics suite is selected from experience on weather forecasting and CAM (Community Atmosphere Model) physics is taken from a AMIP type climate simulation. Based on the last year results from CAM5 physical parameterization package and comparing with WRF physics, we investigated a issue with intensity bias using updated version of CAM physics (CAM6). We also compared these results with coupled version of TC simulations. During this talk, TC structure will be compared specially around of boundary layer and investigate their relationship between TC intensity and different physics package.

  14. Novel Physical Model for DC Partial Discharge in Polymeric Insulators

    NASA Astrophysics Data System (ADS)

    Andersen, Allen; Dennison, J. R.

    The physics of DC partial discharge (DCPD) continues to pose a challenge to researchers. We present a new physically-motivated model of DCPD in amorphous polymers based on our dual-defect model of dielectric breakdown. The dual-defect model is an extension of standard static mean field theories, such as the Crine model, that describe avalanche breakdown of charge carriers trapped on uniformly distributed defect sites. It assumes the presence of both high-energy chemical defects and low-energy thermally-recoverable physical defects. We present our measurements of breakdown and DCPD for several common polymeric materials in the context of this model. Improved understanding of DCPD and how it relates to eventual dielectric breakdown is critical to the fields of spacecraft charging, high voltage DC power distribution, high density capacitors, and microelectronics. This work was supported by a NASA Space Technology Research Fellowship.

  15. Physics-based elastic image registration using splines and including landmark localization uncertainties.

    PubMed

    Wörz, Stefan; Rohr, Karl

    2006-01-01

    We introduce an elastic registration approach which is based on a physical deformation model and uses Gaussian elastic body splines (GEBS). We formulate an extended energy functional related to the Navier equation under Gaussian forces which also includes landmark localization uncertainties. These uncertainties are characterized by weight matrices representing anisotropic errors. Since the approach is based on a physical deformation model, cross-effects in elastic deformations can be taken into account. Moreover, we have a free parameter to control the locality of the transformation for improved registration of local geometric image differences. We demonstrate the applicability of our scheme based on 3D CT images from the Truth Cube experiment, 2D MR images of the brain, as well as 2D gel electrophoresis images. It turns out that the new scheme achieves more accurate results compared to previous approaches.

  16. The Impact and Promise of Open-Source Computational Material for Physics Teaching

    NASA Astrophysics Data System (ADS)

    Christian, Wolfgang

    2017-01-01

    A computer-based modeling approach to teaching must be flexible because students and teachers have different skills and varying levels of preparation. Learning how to run the ``software du jour'' is not the objective for integrating computational physics material into the curriculum. Learning computational thinking, how to use computation and computer-based visualization to communicate ideas, how to design and build models, and how to use ready-to-run models to foster critical thinking is the objective. Our computational modeling approach to teaching is a research-proven pedagogy that predates computers. It attempts to enhance student achievement through the Modeling Cycle. This approach was pioneered by Robert Karplus and the SCIS Project in the 1960s and 70s and later extended by the Modeling Instruction Program led by Jane Jackson and David Hestenes at Arizona State University. This talk describes a no-cost open-source computational approach aligned with a Modeling Cycle pedagogy. Our tools, curricular material, and ready-to-run examples are freely available from the Open Source Physics Collection hosted on the AAPT-ComPADRE digital library. Examples will be presented.

  17. Physically-Based Modelling and Real-Time Simulation of Fluids.

    NASA Astrophysics Data System (ADS)

    Chen, Jim Xiong

    1995-01-01

    Simulating physically realistic complex fluid behaviors presents an extremely challenging problem for computer graphics researchers. Such behaviors include the effects of driving boats through water, blending differently colored fluids, rain falling and flowing on a terrain, fluids interacting in a Distributed Interactive Simulation (DIS), etc. Such capabilities are useful in computer art, advertising, education, entertainment, and training. We present a new method for physically-based modeling and real-time simulation of fluids in computer graphics and dynamic virtual environments. By solving the 2D Navier -Stokes equations using a CFD method, we map the surface into 3D using the corresponding pressures in the fluid flow field. This achieves realistic real-time fluid surface behaviors by employing the physical governing laws of fluids but avoiding extensive 3D fluid dynamics computations. To complement the surface behaviors, we calculate fluid volume and external boundary changes separately to achieve full 3D general fluid flow. To simulate physical activities in a DIS, we introduce a mechanism which uses a uniform time scale proportional to the clock-time and variable time-slicing to synchronize physical models such as fluids in the networked environment. Our approach can simulate many different fluid behaviors by changing the internal or external boundary conditions. It can model different kinds of fluids by varying the Reynolds number. It can simulate objects moving or floating in fluids. It can also produce synchronized general fluid flows in a DIS. Our model can serve as a testbed to simulate many other fluid phenomena which have never been successfully modeled previously.

  18. Ladder physics in the spin fermion model

    DOE PAGES

    Tsvelik, A. M.

    2017-05-01

    A link is established between the spin fermion (SF) model of the cuprates and the approach based on the analogy between the physics of doped Mott insulators in two dimensions and the physics of fermionic ladders. This enables one to use nonperturbative results derived for fermionic ladders to move beyond the large-N approximation in the SF model. Here, it is shown that the paramagnon exchange postulated in the SF model has exactly the right form to facilitate the emergence of the fully gapped d-Mott state in the region of the Brillouin zone at the hot spots of the Fermi surface.more » Hence, the SF model provides an adequate description of the pseudogap.« less

  19. Data Assimilation Into Physics-Based Models Via Kalman Filters

    NASA Astrophysics Data System (ADS)

    Schunk, R. W.; Scherliess, L.; Sojka, J. J.

    2002-12-01

    The magnetosphere-ionosphere-thermosphere (M-I-T) system is a highly dynamic, coupled, and nonlinear system that can vary significantly from hour to hour at any location. The coupling is particularly strong during geomagnetic storms and substorms, but there are appreciable time delays associated with the transfer of mass, momentum, and energy between the domains. Therefore, both global physics-based models and vast observational data sets are needed to elucidate the dynamics, energetics, and coupling in the M-I-T system. Fortunately, during the coming decade, tens of millions of measurements of the global M-I-T system could become available from a variety of in situ and remote sensing instruments. Some of the measurements will provide direct information about the state variables (densities, drift velocities, and temperatures), while others will provide indirect information, such as optical emissions and magnetic perturbations. The data sources available could include: thousands of ground-based GPS Total Electron Content (TEC) receivers; a world-wide network of ionosondes; hundreds of magnetometers both on the ground and in space; occultations from the COSMIC Satellites, numerous ground-based tomography chains; auroral images from the POLAR Satellite; images of the magnetosphere and plasmasphere from the IMAGE Satellite; SuperDARN radar measurements in the polar regions; the Living With a Star (LWS) Solar Dynamics Observatory and the LWS Radiation Belt and Ionosphere-Thermosphere Storm Probes; and the world-wide network of incoherent scatter radars. To optimize the scientific return and to provide specifications and forecasts for societal applications, the global models and data must be combined in an optimum way. A powerful way of assimilating multiple data types into a time-dependent, physics-based, numerical model is via a Kalman filter. The basic principle of this approach is to combine measurements from multiple instrument types with the information obtained from a physics-based model, taking into account the uncertainties in both the model and measurements. The advantages of this technique and the data sources that might be available will be discussed.

  20. Predictors and subsequent decisions of physical therapy and nursing students to work with geriatric clients: an application of the theory of reasoned action.

    PubMed

    Dunkle, S E; Hyde, R S

    1995-07-01

    In this study, the theory-based model of Ajzen and Fishbein was used to identify factors that influence physical therapist and registered nurse (RN) students' intentions toward working with elderly individuals. A follow-up identified actual job selection. Accredited physical therapist and RN education programs in the Northwest and California were surveyed. Two hundred one students responded; 176 survey questionnaires were usable. A survey instrument was developed based on Ajzen and Fishbein's theory-based model to assess student intention to work with elderly individuals and factors influencing this intention. Graduates were later contacted to determine whether job selection matched intention. For all students, factors influencing intention were student attitudes and student perceptions regarding their families' expectations about the student working with elderly persons. Intention had a positive correlation with job selection. Important underlying beliefs influencing student attitudes, which could be emphasized in academia, include the advantages of getting to know elderly patients and their families and having pleasant patients to work with. Faculty are encouraged to positively reinforce these beliefs throughout the curricula. Results of this study support using a theory-based model to identify predictors of job selection among physical therapist and RN graduates.

  1. [Design of a communicative model from a social perspective oriented toward physical activity].

    PubMed

    Prieto-Rodríguez, Adriana; Moreno-Angarita, Marisol; Cardozo-Vásquez, Yency S

    2006-12-01

    A communication model was designed and put into practice, in the form of a Network throughout three regions in Colombia; Bogotá, Antioquia and Quindío. Based on a macro-intentional model, this network was aimed at strengthening understanding around the subject of physical activity among those people affected by the issue, from a multidimensional perspective. The test population was defined and working groups were formed around three strategies: social production, transmission and democratization, during a three-month period. RESULTS Messages were developed based around the ideas of the community producers themselves; the initial concepts were widened to include the body, self care, physical activity and health. Communication models related to health, aimed at developing personal skills including the ability to communicate and build shared experience, can be assimilated and incorporated into broadcasts on health issues. This model serves as a communication strategy which strengthens the building of shared broadcasts on health issues. This kind of focus requires the development of local activity and capacity-building within the community.

  2. Technical Manual for the SAM Physical Trough Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, M. J.; Gilman, P.

    2011-06-01

    NREL, in conjunction with Sandia National Lab and the U.S Department of Energy, developed the System Advisor Model (SAM) analysis tool for renewable energy system performance and economic analysis. This paper documents the technical background and engineering formulation for one of SAM's two parabolic trough system models in SAM. The Physical Trough model calculates performance relationships based on physical first principles where possible, allowing the modeler to predict electricity production for a wider range of component geometries than is possible in the Empirical Trough model. This document describes the major parabolic trough plant subsystems in detail including the solar field,more » power block, thermal storage, piping, auxiliary heating, and control systems. This model makes use of both existing subsystem performance modeling approaches, and new approaches developed specifically for SAM.« less

  3. Parametric model of servo-hydraulic actuator coupled with a nonlinear system: Experimental validation

    NASA Astrophysics Data System (ADS)

    Maghareh, Amin; Silva, Christian E.; Dyke, Shirley J.

    2018-05-01

    Hydraulic actuators play a key role in experimental structural dynamics. In a previous study, a physics-based model for a servo-hydraulic actuator coupled with a nonlinear physical system was developed. Later, this dynamical model was transformed into controllable canonical form for position tracking control purposes. For this study, a nonlinear device is designed and fabricated to exhibit various nonlinear force-displacement profiles depending on the initial condition and the type of materials used as replaceable coupons. Using this nonlinear system, the controllable canonical dynamical model is experimentally validated for a servo-hydraulic actuator coupled with a nonlinear physical system.

  4. On the physical basis of a theory of human thermoregulation.

    NASA Technical Reports Server (NTRS)

    Iberall, A. S.; Schindler, A. M.

    1973-01-01

    Theoretical study of the physical factors which are responsible for thermoregulation in nude resting humans in a physical steady state. The behavior of oxidative metabolism, evaporative and convective thermal fluxes, fluid heat transfer, internal and surface temperatures, and evaporative phase transitions is studied by physiological/physical modeling techniques. The modeling is based on the theories that the body has a vital core with autothermoregulation, that the vital core contracts longitudinally, that the temperature of peripheral regions and extremities decreases towards the ambient, and that a significant portion of the evaporative heat may be lost underneath the skin. A theoretical basis is derived for a consistent modeling of steady-state thermoregulation on the basis of these theories.

  5. Improving vulnerability models: lessons learned from a comparison between flood and earthquake assessments

    NASA Astrophysics Data System (ADS)

    de Ruiter, Marleen; Ward, Philip; Daniell, James; Aerts, Jeroen

    2017-04-01

    In a cross-discipline study, an extensive literature review has been conducted to increase the understanding of vulnerability indicators used in both earthquake- and flood vulnerability assessments, and to provide insights into potential improvements of earthquake and flood vulnerability assessments. It identifies and compares indicators used to quantitatively assess earthquake and flood vulnerability, and discusses their respective differences and similarities. Indicators have been categorized into Physical- and Social categories, and further subdivided into (when possible) measurable and comparable indicators. Physical vulnerability indicators have been differentiated to exposed assets such as buildings and infrastructure. Social indicators are grouped in subcategories such as demographics, economics and awareness. Next, two different vulnerability model types have been described that use these indicators: index- and curve-based vulnerability models. A selection of these models (e.g. HAZUS) have been described, and compared on several characteristics such as temporal- and spatial aspects. It appears that earthquake vulnerability methods are traditionally strongly developed towards physical attributes at an object scale and used in vulnerability curve models, whereas flood vulnerability studies focus more on indicators applied to aggregated land-use scales. Flood risk studies could be improved using approaches from earthquake studies, such as incorporating more detailed lifeline and building indicators, and developing object-based vulnerability curve assessments of physical vulnerability, for example by defining building material based flood vulnerability curves. Related to this, is the incorporation of time of the day based building occupation patterns (at 2am most people will be at home while at 2pm most people will be in the office). Earthquake assessments could learn from flood studies when it comes to the refined selection of social vulnerability indicators. Based on the lessons obtained in this study, we recommend future studies to further explore cross-hazard studies.

  6. Mastery Learning in Physical Education.

    ERIC Educational Resources Information Center

    Annarino, Anthony

    This paper discusses the design of a physical education curriculum to be used in advanced secondary physical education programs and in university basic instructional programs; the design is based on the premise of mastery learning and employs programed instructional techniques. The effective implementation of a mastery learning model necessitates…

  7. Semantic modeling of the structural and process entities during plastic deformation of crystals and rocks

    NASA Astrophysics Data System (ADS)

    Babaie, Hassan; Davarpanah, Armita

    2016-04-01

    We are semantically modeling the structural and dynamic process components of the plastic deformation of minerals and rocks in the Plastic Deformation Ontology (PDO). Applying the Ontology of Physics in Biology, the PDO classifies the spatial entities that participate in the diverse processes of plastic deformation into the Physical_Plastic_Deformation_Entity and Nonphysical_Plastic_Deformation_Entity classes. The Material_Physical_Plastic_Deformation_Entity class includes things such as microstructures, lattice defects, atoms, liquid, and grain boundaries, and the Immaterial_Physical_Plastic_Deformation_Entity class includes vacancies in crystals and voids along mineral grain boundaries. The objects under the many subclasses of these classes (e.g., crystal, lattice defect, layering) have spatial parts that are related to each other through taxonomic (e.g., Line_Defect isA Lattice_Defect), structural (mereological, e.g., Twin_Plane partOf Twin), spatial-topological (e.g., Vacancy adjacentTo Atom, Fluid locatedAlong Grain_Boundary), and domain specific (e.g., displaces, Fluid crystallizes Dissolved_Ion, Void existsAlong Grain_Boundary) relationships. The dynamic aspect of the plastic deformation is modeled under the dynamical Process_Entity class that subsumes classes such as Recrystallization and Pressure_Solution that define the flow of energy amongst the physical entities. The values of the dynamical state properties of the physical entities (e.g., Chemical_Potential, Temperature, Particle_Velocity) change while they take part in the deformational processes such as Diffusion and Dislocation_Glide. The process entities have temporal parts (phases) that are related to each other through temporal relations such as precedes, isSubprocessOf, and overlaps. The properties of the physical entities, defined under the Physical_Property class, change as they participate in the plastic deformational processes. The properties are categorized into dynamical, constitutive, spatial, temporal, statistical, and thermodynamical. The dynamical properties, categorized under the Dynamical_Rate_Property and Dynamical_State_Property classes, subsume different classes of properties (e.g., Fluid_Flow_Rate, Temperature, Chemical_Potential, Displacement, Electrical_Charge) based on the physical domain (e.g., fluid, heat, chemical, solid, electrical). The properties are related to the objects under the Physical_Entity class through diverse object type (e.g., physicalPropertyOf) and data type (e.g., Fluid_Pressure unit 'MPa') properties. The changes of the dynamical properties of the physical entities, described by the empirical laws (equations) modeled by experimental structural geologists, are modeled through the Physical_Property_Dependency class that subsumes the more specialized constitutive, kinetic, and thermodynamic expressions of the relationships among the dynamic properties. Annotation based on the PDO will make it possible to integrate and reuse experimental plastic deformation data, knowledge, and simulation models, and conduct semantic-based search of the source data originating from different rock testing laboratories.

  8. Physical Therapists' Perceptions of School-Based Practices.

    PubMed

    Holt, Sheryl L; Kuperstein, Janice; Effgen, Susan K

    2015-01-01

    Surveys have reported that most school-based physical therapists perceive ideal practices are not commonly implemented in their settings. Our aim was to obtain a more in-depth understanding of these perceptions through open-ended inquiry. Qualitative data were derived from voluntary open-ended responses provided upon completion of a survey regarding school-based physical therapy practice. Of the survey's 561 participants, 250 provided open-ended commentaries that were analyzed using interpretive phenomenology. Six qualitative themes emerged from the open-ended responses, including: In quest: Meeting students' school-based needs via physical therapy; Seeking relatedness: Finding working teams in the school system; Building understanding: Developing a voice/identity in the school context; Stretched beyond limits: Managing workloads; Networking: Coordinating services outside school to meet student needs; Defying definition: What does working in an educational model mean? School-based physical therapists seek to meet educationally relevant physical therapy needs of students, ages 3 to 21 years. Successes appear woven of a multitude of factors such as therapist expertise, team dynamics, and district supports.

  9. Improving Computational Efficiency of Prediction in Model-Based Prognostics Using the Unscented Transform

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew John; Goebel, Kai Frank

    2010-01-01

    Model-based prognostics captures system knowledge in the form of physics-based models of components, and how they fail, in order to obtain accurate predictions of end of life (EOL). EOL is predicted based on the estimated current state distribution of a component and expected profiles of future usage. In general, this requires simulations of the component using the underlying models. In this paper, we develop a simulation-based prediction methodology that achieves computational efficiency by performing only the minimal number of simulations needed in order to accurately approximate the mean and variance of the complete EOL distribution. This is performed through the use of the unscented transform, which predicts the means and covariances of a distribution passed through a nonlinear transformation. In this case, the EOL simulation acts as that nonlinear transformation. In this paper, we review the unscented transform, and describe how this concept is applied to efficient EOL prediction. As a case study, we develop a physics-based model of a solenoid valve, and perform simulation experiments to demonstrate improved computational efficiency without sacrificing prediction accuracy.

  10. Physically based model for extracting dual permeability parameters using non-Newtonian fluids

    NASA Astrophysics Data System (ADS)

    Abou Najm, M. R.; Basset, C.; Stewart, R. D.; Hauswirth, S.

    2017-12-01

    Dual permeability models are effective for the assessment of flow and transport in structured soils with two dominant structures. The major challenge to those models remains in the ability to determine appropriate and unique parameters through affordable, simple, and non-destructive methods. This study investigates the use of water and a non-Newtonian fluid in saturated flow experiments to derive physically-based parameters required for improved flow predictions using dual permeability models. We assess the ability of these two fluids to accurately estimate the representative pore sizes in dual-domain soils, by determining the effective pore sizes of macropores and micropores. We developed two sub-models that solve for the effective macropore size assuming either cylindrical (e.g., biological pores) or planar (e.g., shrinkage cracks and fissures) pore geometries, with the micropores assumed to be represented by a single effective radius. Furthermore, the model solves for the percent contribution to flow (wi) corresponding to the representative macro and micro pores. A user-friendly solver was developed to numerically solve the system of equations, given that relevant non-Newtonian viscosity models lack forms conducive to analytical integration. The proposed dual-permeability model is a unique attempt to derive physically based parameters capable of measuring dual hydraulic conductivities, and therefore may be useful in reducing parameter uncertainty and improving hydrologic model predictions.

  11. Passive Optical Technique to Measure Physical Properties of a Vibrating Surface

    DTIC Science & Technology

    2014-01-01

    it is not necessary to understand the details of a non-Lambertian BRDF to detect surface vibration phenomena, an accurate model incorporating physics...summarize the discussion of BRDF , while a physics-based BRDF model is not necessary to use scattered light as a surface vibration diagnostic, it may...penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 2014 2

  12. "Let's get physical": advantages of a physical model over 3D computer models and textbooks in learning imaging anatomy.

    PubMed

    Preece, Daniel; Williams, Sarah B; Lam, Richard; Weller, Renate

    2013-01-01

    Three-dimensional (3D) information plays an important part in medical and veterinary education. Appreciating complex 3D spatial relationships requires a strong foundational understanding of anatomy and mental 3D visualization skills. Novel learning resources have been introduced to anatomy training to achieve this. Objective evaluation of their comparative efficacies remains scarce in the literature. This study developed and evaluated the use of a physical model in demonstrating the complex spatial relationships of the equine foot. It was hypothesized that the newly developed physical model would be more effective for students to learn magnetic resonance imaging (MRI) anatomy of the foot than textbooks or computer-based 3D models. Third year veterinary medicine students were randomly assigned to one of three teaching aid groups (physical model; textbooks; 3D computer model). The comparative efficacies of the three teaching aids were assessed through students' abilities to identify anatomical structures on MR images. Overall mean MRI assessment scores were significantly higher in students utilizing the physical model (86.39%) compared with students using textbooks (62.61%) and the 3D computer model (63.68%) (P < 0.001), with no significant difference between the textbook and 3D computer model groups (P = 0.685). Student feedback was also more positive in the physical model group compared with both the textbook and 3D computer model groups. Our results suggest that physical models may hold a significant advantage over alternative learning resources in enhancing visuospatial and 3D understanding of complex anatomical architecture, and that 3D computer models have significant limitations with regards to 3D learning. © 2013 American Association of Anatomists.

  13. A diagnostic model for impending death in cancer patients: Preliminary report.

    PubMed

    Hui, David; Hess, Kenneth; dos Santos, Renata; Chisholm, Gary; Bruera, Eduardo

    2015-11-01

    Several highly specific bedside physical signs associated with impending death within 3 days for patients with advanced cancer were recently identified. A diagnostic model for impending death based on these physical signs was developed and assessed. Sixty-two physical signs were systematically documented every 12 hours from admission to death or discharge for 357 patients with advanced cancer who were admitted to acute palliative care units (APCUs) at 2 tertiary care cancer centers. Recursive partitioning analysis was used to develop a prediction model for impending death within 3 days with admission data. The model was validated with 5 iterations of 10-fold cross-validation, and the model was also applied to APCU days 2 to 6. For the 322 of 357 patients (90%) with complete data for all signs, the 3-day mortality rate was 24% on admission. The final model was based on 2 variables (Palliative Performance Scale [PPS] and drooping of nasolabial folds) and had 4 terminal leaves: PPS score ≤ 20% and drooping of nasolabial folds present, PPS score ≤ 20% and drooping of nasolabial folds absent, PPS score of 30% to 60%, and PPS score ≥ 70%. The 3-day mortality rates were 94%, 42%, 16%, and 3%, respectively. The diagnostic accuracy was 81% for the original tree, 80% for cross-validation, and 79% to 84% for subsequent APCU days. Based on 2 objective bedside physical signs, a diagnostic model was developed for impending death within 3 days. This model was applicable to both APCU admission and subsequent days. Upon further external validation, this model may help clinicians to formulate the diagnosis of impending death. © 2015 American Cancer Society.

  14. Integrating non-colocated well and geophysical data to capture subsurface heterogeneity at an aquifer recharge and recovery site

    NASA Astrophysics Data System (ADS)

    Gottschalk, Ian P.; Hermans, Thomas; Knight, Rosemary; Caers, Jef; Cameron, David A.; Regnery, Julia; McCray, John E.

    2017-12-01

    Geophysical data have proven to be very useful for lithological characterization. However, quantitatively integrating the information gained from acquiring geophysical data generally requires colocated lithological and geophysical data for constructing a rock-physics relationship. In this contribution, the issue of integrating noncolocated geophysical and lithological data is addressed, and the results are applied to simulate groundwater flow in a heterogeneous aquifer in the Prairie Waters Project North Campus aquifer recharge site, Colorado. Two methods of constructing a rock-physics transform between electrical resistivity tomography (ERT) data and lithology measurements are assessed. In the first approach, a maximum likelihood estimation (MLE) is used to fit a bimodal lognormal distribution to horizontal crosssections of the ERT resistivity histogram. In the second approach, a spatial bootstrap is applied to approximate the rock-physics relationship. The rock-physics transforms provide soft data for multiple point statistics (MPS) simulations. Subsurface models are used to run groundwater flow and tracer test simulations. Each model's uncalibrated, predicted breakthrough time is evaluated based on its agreement with measured subsurface travel time values from infiltration basins to selected groundwater recovery wells. We find that incorporating geophysical information into uncalibrated flow models reduces the difference with observed values, as compared to flow models without geophysical information incorporated. The integration of geophysical data also narrows the variance of predicted tracer breakthrough times substantially. Accuracy is highest and variance is lowest in breakthrough predictions generated by the MLE-based rock-physics transform. Calibrating the ensemble of geophysically constrained models would help produce a suite of realistic flow models for predictive purposes at the site. We find that the success of breakthrough predictions is highly sensitive to the definition of the rock-physics transform; it is therefore important to model this transfer function accurately.

  15. Bell's Inequality: Revolution in Quantum Physics or Just AN Inadequate Mathematical Model?

    NASA Astrophysics Data System (ADS)

    Khrennikov, Andrei

    The main aim of this review is to stress the role of mathematical models in physics. The Bell inequality (BI) is often called the "most famous inequality of the 20th century." It is commonly accepted that its violation in corresponding experiments induced a revolution in quantum physics. Unlike "old quantum mechanics" (of Einstein, Schrodinger Bohr, Heisenberg, Pauli, Landau, Fock), "modern quantum mechanics" (of Bell, Aspect, Zeilinger, Shimony, Green-berger, Gisin, Mermin) takes seriously so called quantum non-locality. We will show that the conclusion that one has to give up the realism (i.e., a possibility to assign results of measurements to physical systems) or the locality (i.e., to assume action at a distance) is heavily based on one special mathematical model. This model was invented by A. N. Kolmogorov in 1933. One should pay serious attention to the role of mathematical models in physics. The problems of the realism and locality induced by Bell's argument can be solved by using non-Kolmogorovian probabilistic models. We compare this situation with non-Euclidean geometric models in relativity theory.

  16. Stolen Base Physics

    ERIC Educational Resources Information Center

    Kagan, David

    2013-01-01

    Few plays in baseball are as consistently close and exciting as the stolen base. While there are several studies of sprinting, the art of base stealing is much more nuanced. This article describes the motion of the base-stealing runner using a very basic kinematic model. The model will be compared to some data from a Major League game. The…

  17. Life cycle assessment of vehicle lightweighting: a physics-based model of mass-induced fuel consumption.

    PubMed

    Kim, Hyung Chul; Wallington, Timothy J

    2013-12-17

    Lightweighting is a key strategy used to improve vehicle fuel economy. Replacing conventional materials (e.g., steel) with lighter alternatives (e.g., aluminum, magnesium, and composites) decreases energy consumption and greenhouse gas (GHG) emissions during vehicle use, but often increases energy consumption and GHG emissions during materials and vehicle production. Assessing the life-cycle benefits of mass reduction requires a quantitative description of the mass-induced fuel consumption during vehicle use. A new physics-based method for estimating mass-induced fuel consumption (MIF) is proposed. We illustrate the utility of this method by using publicly available data to calculate MIF values in the range of 0.2-0.5 L/(100 km 100 kg) based on 106 records of fuel economy tests by the U.S. Environmental Protection Agency for 2013 model year vehicles. Lightweighting is shown to have the most benefit when applied to vehicles with high fuel consumption and high power. Use of the physics-based model presented here would place future life cycle assessment studies of vehicle lightweighting on a firmer scientific foundation.

  18. Development of the Mathematical Model for Ingot Quality Forecasting with Consideration of Thermal and Physical Characteristics of Mould Powder

    NASA Astrophysics Data System (ADS)

    Anisimov, K. N.; Loginov, A. M.; Gusev, M. P.; Zarubin, S. V.; Nikonov, S. V.; Krasnov, A. V.

    2017-12-01

    This paper presents the results of physical modelling of the mould powder skull in the gap between an ingot and the mould. Based on the results obtained from this and previous works, the mathematical model of mould powder behaviour in the gap and its influence on formation of surface defects was developed. The results of modelling satisfactorily conform to the industrial data on ingot surface defects.

  19. A Comparison of Video-Based and Interaction-Based Affect Detectors in Physics Playground

    ERIC Educational Resources Information Center

    Kai, Shiming; Paquette, Luc; Baker, Ryan S.; Bosch, Nigel; D'Mello, Sidney; Ocumpaugh, Jaclyn; Shute, Valerie; Ventura, Matthew

    2015-01-01

    Increased attention to the relationships between affect and learning has led to the development of machine-learned models that are able to identify students' affective states in computerized learning environments. Data for these affect detectors have been collected from multiple modalities including physical sensors, dialogue logs, and logs of…

  20. A Prototype Physical Database for Passive Microwave Retrievals of Precipitation over the US Southern Great Plains

    NASA Technical Reports Server (NTRS)

    Ringerud, S.; Kummerow, C. D.; Peters-Lidard, C. D.

    2015-01-01

    An accurate understanding of the instantaneous, dynamic land surface emissivity is necessary for a physically based, multi-channel passive microwave precipitation retrieval scheme over land. In an effort to assess the feasibility of the physical approach for land surfaces, a semi-empirical emissivity model is applied for calculation of the surface component in a test area of the US Southern Great Plains. A physical emissivity model, using land surface model data as input, is used to calculate emissivity at the 10GHz frequency, combining contributions from the underlying soil and vegetation layers, including the dielectric and roughness effects of each medium. An empirical technique is then applied, based upon a robust set of observed channel covariances, extending the emissivity calculations to all channels. For calculation of the hydrometeor contribution, reflectivity profiles from the Tropical Rainfall Measurement Mission Precipitation Radar (TRMM PR) are utilized along with coincident brightness temperatures (Tbs) from the TRMM Microwave Imager (TMI), and cloud-resolving model profiles. Ice profiles are modified to be consistent with the higher frequency microwave Tbs. Resulting modeled top of the atmosphere Tbs show correlations to observations of 0.9, biases of 1K or less, root-mean-square errors on the order of 5K, and improved agreement over the use of climatological emissivity values. The synthesis of these models and data sets leads to the creation of a simple prototype Tb database that includes both dynamic surface and atmospheric information physically consistent with the land surface model, emissivity model, and atmospheric information.

  1. Symétries et nomenclature des baryons: Proposition d'une nouvelle nomenclature

    NASA Astrophysics Data System (ADS)

    Landry, Gaëtan

    Baryons, such as protons and neutrons, are matter particles made of three quarks. Their current nomenclature is based on the concept of isospin, introduced by Werner Heisenberg in 1932 to explain the similarity between the masses of protons and neutrons, as well as the similarity of their behaviour under the strong interaction. It is a refinement of a nomenclature designed in 1964, before the acceptance of the quark model, for light baryons. A historical review of baryon physics before the advent of the quark model is given to understand the motivations behind the light baryon nomenclature. Then, an overview of the quark model is given to understand the extensions done to this nomenclature in 1986, as well as to understand the physics of baryons and of properties such as isospin and flavour quantum numbers. Since baryon properties are in general explained by the quark model, a nomenclature based on isospin leads to several issues of physics and of clarity. To resolve these issues, the concepts of isospin and mass groups are generalized to all flavours of quarks, the Gell-Mann--Okubo formalism is extended to generalized mass groups, and a baryon nomenclature based on the quark model, reflecting modern knowledge, is proposed.

  2. Photoresist and stochastic modeling

    NASA Astrophysics Data System (ADS)

    Hansen, Steven G.

    2018-01-01

    Analysis of physical modeling results can provide unique insights into extreme ultraviolet stochastic variation, which augment, and sometimes refute, conclusions based on physical intuition and even wafer experiments. Simulations verify the primacy of "imaging critical" counting statistics (photons, electrons, and net acids) and the image/blur-dependent dose sensitivity in describing the local edge or critical dimension variation. But the failure of simple counting when resist thickness is varied highlights a limitation of this exact analytical approach, so a calibratable empirical model offers useful simplicity and convenience. Results presented here show that a wide range of physical simulation results can be well matched by an empirical two-parameter model based on blurred image log-slope (ILS) for lines/spaces and normalized ILS for holes. These results are largely consistent with a wide range of published experimental results; however, there is some disagreement with the recently published dataset of De Bisschop. The present analysis suggests that the origin of this model failure is an unexpected blurred ILS:dose-sensitivity relationship failure in that resist process. It is shown that a photoresist mechanism based on high photodecomposable quencher loading and high quencher diffusivity can give rise to pitch-dependent blur, which may explain the discrepancy.

  3. Multi-Physics MRI-Based Two-Layer Fluid-Structure Interaction Anisotropic Models of Human Right and Left Ventricles with Different Patch Materials: Cardiac Function Assessment and Mechanical Stress Analysis

    PubMed Central

    Tang, Dalin; Yang, Chun; Geva, Tal; Gaudette, Glenn; del Nido, Pedro J.

    2011-01-01

    Multi-physics right and left ventricle (RV/LV) fluid-structure interaction (FSI) models were introduced to perform mechanical stress analysis and evaluate the effect of patch materials on RV function. The FSI models included three different patch materials (Dacron scaffold, treated pericardium, and contracting myocardium), two-layer construction, fiber orientation, and active anisotropic material properties. The models were constructed based on cardiac magnetic resonance (CMR) images acquired from a patient with severe RV dilatation and solved by ADINA. Our results indicate that the patch model with contracting myocardium leads to decreased stress level in the patch area, improved RV function and patch area contractility. PMID:21765559

  4. Multicomponent ensemble models to forecast induced seismicity

    NASA Astrophysics Data System (ADS)

    Király-Proag, E.; Gischig, V.; Zechar, J. D.; Wiemer, S.

    2018-01-01

    In recent years, human-induced seismicity has become a more and more relevant topic due to its economic and social implications. Several models and approaches have been developed to explain underlying physical processes or forecast induced seismicity. They range from simple statistical models to coupled numerical models incorporating complex physics. We advocate the need for forecast testing as currently the best method for ascertaining if models are capable to reasonably accounting for key physical governing processes—or not. Moreover, operational forecast models are of great interest to help on-site decision-making in projects entailing induced earthquakes. We previously introduced a standardized framework following the guidelines of the Collaboratory for the Study of Earthquake Predictability, the Induced Seismicity Test Bench, to test, validate, and rank induced seismicity models. In this study, we describe how to construct multicomponent ensemble models based on Bayesian weightings that deliver more accurate forecasts than individual models in the case of Basel 2006 and Soultz-sous-Forêts 2004 enhanced geothermal stimulation projects. For this, we examine five calibrated variants of two significantly different model groups: (1) Shapiro and Smoothed Seismicity based on the seismogenic index, simple modified Omori-law-type seismicity decay, and temporally weighted smoothed seismicity; (2) Hydraulics and Seismicity based on numerically modelled pore pressure evolution that triggers seismicity using the Mohr-Coulomb failure criterion. We also demonstrate how the individual and ensemble models would perform as part of an operational Adaptive Traffic Light System. Investigating seismicity forecasts based on a range of potential injection scenarios, we use forecast periods of different durations to compute the occurrence probabilities of seismic events M ≥ 3. We show that in the case of the Basel 2006 geothermal stimulation the models forecast hazardous levels of seismicity days before the occurrence of felt events.

  5. Development of a culturally appropriate, home-based nutrition and physical activity curriculum for Wisconsin American Indian families.

    PubMed

    LaRowe, Tara L; Wubben, Deborah P; Cronin, Kate A; Vannatter, SuAnne M; Adams, Alexandra K

    2007-10-01

    We designed an obesity prevention intervention for American Indian families called Healthy Children, Strong Families using a participatory approach involving three Wisconsin tribes. Healthy Children, Strong Families promotes healthy eating and physical activity for preschool children and their caregivers while respecting each community's cultural and structural framework. Academic researchers, tribal wellness staff, and American Indian community mentors participated in development of the Healthy Children, Strong Families educational curriculum. The curriculum is based on social cognitive and family systems theories as well as on community eating and activity patterns with adaptation to American Indian cultural values. The curricular materials, which were delivered through a home-based mentoring model, have been successfully received and are being modified so that they can be tailored to individual family needs. The curriculum can serve as a nutrition and physical activity model for health educators that can be adapted for other American Indian preschool children and their families or as a model for development of a culturally specific curriculum.

  6. Physical mechanism and numerical simulation of the inception of the lightning upward leader

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Qingmin; Lu Xinchang; Shi Wei

    2012-12-15

    The upward leader is a key physical process of the leader progression model of lightning shielding. The inception mechanism and criterion of the upward leader need further understanding and clarification. Based on leader discharge theory, this paper proposes the critical electric field intensity of the stable upward leader (CEFISUL) and characterizes it by the valve electric field intensity on the conductor surface, E{sub L}, which is the basis of a new inception criterion for the upward leader. Through numerical simulation under various physical conditions, we verified that E{sub L} is mainly related to the conductor radius, and data fitting yieldsmore » the mathematical expression of E{sub L}. We further establish a computational model for lightning shielding performance of the transmission lines based on the proposed CEFISUL criterion, which reproduces the shielding failure rate of typical UHV transmission lines. The model-based calculation results agree well with the statistical data from on-site operations, which show the effectiveness and validity of the CEFISUL criterion.« less

  7. Perceived sports competence mediates the relationship between childhood motor skill proficiency and adolescent physical activity and fitness: a longitudinal assessment.

    PubMed

    Barnett, Lisa M; Morgan, Philip J; van Beurden, Eric; Beard, John R

    2008-08-08

    The purpose of this paper was to investigate whether perceived sports competence mediates the relationship between childhood motor skill proficiency and subsequent adolescent physical activity and fitness. In 2000, children's motor skill proficiency was assessed as part of a school-based physical activity intervention. In 2006/07, participants were followed up as part of the Physical Activity and Skills Study and completed assessments for perceived sports competence (Physical Self-Perception Profile), physical activity (Adolescent Physical Activity Recall Questionnaire) and cardiorespiratory fitness (Multistage Fitness Test). Structural equation modelling techniques were used to determine whether perceived sports competence mediated between childhood object control skill proficiency (composite score of kick, catch and overhand throw), and subsequent adolescent self-reported time in moderate-to-vigorous physical activity and cardiorespiratory fitness. Of 928 original intervention participants, 481 were located in 28 schools and 276 (57%) were assessed with at least one follow-up measure. Slightly more than half were female (52.4%) with a mean age of 16.4 years (range 14.2 to 18.3 yrs). Relevant assessments were completed by 250 (90.6%) students for the Physical Activity Model and 227 (82.3%) for the Fitness Model. Both hypothesised mediation models had a good fit to the observed data, with the Physical Activity Model accounting for 18% (R2 = 0.18) of physical activity variance and the Fitness Model accounting for 30% (R2 = 0.30) of fitness variance. Sex did not act as a moderator in either model. Developing a high perceived sports competence through object control skill development in childhood is important for both boys and girls in determining adolescent physical activity participation and fitness. Our findings highlight the need for interventions to target and improve the perceived sports competence of youth.

  8. A social discounting model based on Tsallis’ statistics

    NASA Astrophysics Data System (ADS)

    Takahashi, Taiki

    2010-09-01

    Social decision making (e.g. social discounting and social preferences) has been attracting attention in economics, econophysics, social physics, behavioral psychology, and neuroeconomics. This paper proposes a novel social discounting model based on the deformed algebra developed in the Tsallis’ non-extensive thermostatistics. Furthermore, it is suggested that this model can be utilized to quantify the degree of consistency in social discounting in humans and analyze the relationships between behavioral tendencies in social discounting and other-regarding economic decision making under game-theoretic conditions. Future directions in the application of the model to studies in econophysics, neuroeconomics, and social physics, as well as real-world problems such as the supply of live organ donations, are discussed.

  9. The Politics of Pleasure: An Ethnographic Examination Exploring the Dominance of the Multi-Activity Sport-Based Physical Education Model

    ERIC Educational Resources Information Center

    Gerdin, Göran; Pringle, Richard

    2017-01-01

    Kirk warns that physical education (PE) exists in a precarious situation as the dominance of the multi-activity sport-techniques model, and its associated problems, threatens the long-term educational survival of PE. Yet he also notes that although the model is problematic it is highly resistant to change. In this paper, we draw on the results of…

  10. Analysis of Learning Tools in the study of Developmental of Interactive Multimedia Based Physic Learning Charged in Problem Solving

    NASA Astrophysics Data System (ADS)

    Manurung, Sondang; Demonta Pangabean, Deo

    2017-05-01

    The main purpose of this study is to produce needs analysis, literature review, and learning tools in the study of developmental of interactive multimedia based physic learning charged in problem solving to improve thinking ability of physic prospective student. The first-year result of the study is: result of the draft based on a needs analysis of the facts on the ground, the conditions of existing learning and literature studies. Following the design of devices and instruments performed as well the development of media. Result of the second study is physics learning device -based interactive multimedia charged problem solving in the form of textbooks and scientific publications. Previous learning models tested in a limited sample, then in the evaluation and repair. Besides, the product of research has an economic value on the grounds: (1) a virtual laboratory to offer this research provides a solution purchases physics laboratory equipment is expensive; (2) address the shortage of teachers of physics in remote areas as a learning tool can be accessed offline and online; (3). reducing material or consumables as tutorials can be done online; Targeted research is the first year: i.e story board learning physics that have been scanned in a web form CD (compact disk) and the interactive multimedia of gas Kinetic Theory concept. This draft is based on a needs analysis of the facts on the ground, the existing learning conditions, and literature studies. Previous learning models tested in a limited sample, then in the evaluation and repair.

  11. Evaluation of a standard provision versus an autonomy promotive exercise referral programme: rationale and study design.

    PubMed

    Jolly, Kate; Duda, Joan L; Daley, Amanda; Eves, Frank F; Mutrie, Nanette; Ntoumanis, Nikos; Rouse, Peter C; Lodhia, Rekha; Williams, Geoffrey C

    2009-06-08

    The National Institute of Clinical Excellence in the UK has recommended that the effectiveness of ongoing exercise referral schemes to promote physical activity should be examined in research trials. Recent empirical evidence in health care and physical activity promotion contexts provides a foundation for testing the utility of a Self Determination Theory (SDT)-based exercise referral consultation. An exploratory cluster randomised controlled trial comparing standard provision exercise on prescription with a Self Determination Theory-based (SDT) exercise on prescription intervention. 347 people referred to the Birmingham Exercise on Prescription scheme between November 2007 and July 2008. The 13 exercise on prescription sites in Birmingham were randomised to current practice (n = 7) or to the SDT-based intervention (n = 6).Outcomes measured at 3 and 6-months: Minutes of moderate or vigorous physical activity per week assessed using the 7-day Physical Activity Recall; physical health: blood pressure and weight; health status measured using the Dartmouth CO-OP charts; anxiety and depression measured by the Hospital Anxiety and Depression Scale and vitality measured by the subjective vitality score; motivation and processes of change: perceptions of autonomy support from the advisor, satisfaction of the needs for competence, autonomy, and relatedness via physical activity, and motivational regulations for exercise. This trial will determine whether an exercise referral programme based on Self Determination Theory increases physical activity and other health outcomes compared to a standard programme and will test the underlying SDT-based process model (perceived autonomy support, need satisfaction, motivation regulations, outcomes) via structural equation modelling. The trial is registered as Current Controlled trials ISRCTN07682833.

  12. Modelling and control issues of dynamically substructured systems: adaptive forward prediction taken as an example

    PubMed Central

    Tu, Jia-Ying; Hsiao, Wei-De; Chen, Chih-Ying

    2014-01-01

    Testing techniques of dynamically substructured systems dissects an entire engineering system into parts. Components can be tested via numerical simulation or physical experiments and run synchronously. Additional actuator systems, which interface numerical and physical parts, are required within the physical substructure. A high-quality controller, which is designed to cancel unwanted dynamics introduced by the actuators, is important in order to synchronize the numerical and physical outputs and ensure successful tests. An adaptive forward prediction (AFP) algorithm based on delay compensation concepts has been proposed to deal with substructuring control issues. Although the settling performance and numerical conditions of the AFP controller are improved using new direct-compensation and singular value decomposition methods, the experimental results show that a linear dynamics-based controller still outperforms the AFP controller. Based on experimental observations, the least-squares fitting technique, effectiveness of the AFP compensation and differences between delay and ordinary differential equations are discussed herein, in order to reflect the fundamental issues of actuator modelling in relevant literature and, more specifically, to show that the actuator and numerical substructure are heterogeneous dynamic components and should not be collectively modelled as a homogeneous delay differential equation. PMID:25104902

  13. The functional IME: A linkage of expertise across the disability continuum.

    PubMed

    Clifton, David W

    2006-01-01

    Disability assessment remains a significant challenge especially in welfare systems like workers' compensation and disability insurance. Many of today's managed care strategies do not impact on the seminal issue of return to gainful employment. Employers, insurers, attorneys and case managers routinely request independent medical examinations (IMEs) as a means of determining degree of disability, functional limitations, work restrictions and "estimated" physical capacities. However, this approach is limited because physicians are not trained in the functional model of disability assessment. IMEs address pathology and impairments which represent a portion of the disability continuum described by the World Health Organization, Nagi, Guccione and others [e.g. pathology-impairment-disability-handicap]. Functional capacity evaluations or FCEs are often performed by physical and occupational therapists who are trained in a function-based model of disability assessment. Unlike an IME physician who completes "Estimated Physical Capacities", therapists measure actual physical functioning. The value of both IMEs and FCEs can be enhanced through a "functional IME" that combines both models; medical-based examination and a function-based disability evaluation. This combination enhances the assessment of the relationship of pathology to impairment and impairment to disability status especially, in musculoskeletal disorders which tend to drive costs in workers' compensation.

  14. Using the PhysX engine for physics-based virtual surgery with force feedback.

    PubMed

    Maciel, Anderson; Halic, Tansel; Lu, Zhonghua; Nedel, Luciana P; De, Suvranu

    2009-09-01

    The development of modern surgical simulators is highly challenging, as they must support complex simulation environments. The demand for higher realism in such simulators has driven researchers to adopt physics-based models, which are computationally very demanding. This poses a major problem, since real-time interactions must permit graphical updates of 30 Hz and a much higher rate of 1 kHz for force feedback (haptics). Recently several physics engines have been developed which offer multi-physics simulation capabilities, including rigid and deformable bodies, cloth and fluids. While such physics engines provide unique opportunities for the development of surgical simulators, their higher latencies, compared to what is necessary for real-time graphics and haptics, offer significant barriers to their use in interactive simulation environments. In this work, we propose solutions to this problem and demonstrate how a multimodal surgical simulation environment may be developed based on NVIDIA's PhysX physics library. Hence, models that are undergoing relatively low-frequency updates in PhysX can exist in an environment that demands much higher frequency updates for haptics. We use a collision handling layer to interface between the physical response provided by PhysX and the haptic rendering device to provide both real-time tissue response and force feedback. Our simulator integrates a bimanual haptic interface for force feedback and per-pixel shaders for graphics realism in real time. To demonstrate the effectiveness of our approach, we present the simulation of the laparoscopic adjustable gastric banding (LAGB) procedure as a case study. To develop complex and realistic surgical trainers with realistic organ geometries and tissue properties demands stable physics-based deformation methods, which are not always compatible with the interaction level required for such trainers. We have shown that combining different modelling strategies for behaviour, collision and graphics is possible and desirable. Such multimodal environments enable suitable rates to simulate the major steps of the LAGB procedure.

  15. Rotorcraft Performance Model (RPM) for use in AEDT.

    DOT National Transportation Integrated Search

    2015-11-01

    This report documents a rotorcraft performance model for use in the FAAs Aviation Environmental Design Tool. The new rotorcraft performance model is physics-based. This new model replaces the existing helicopter trajectory modeling methods in the ...

  16. Assessing the detail needed to capture rainfall-runoff dynamics with physics-based hydrologic response simulation

    USGS Publications Warehouse

    Mirus, B.B.; Ebel, B.A.; Heppner, C.S.; Loague, K.

    2011-01-01

    Concept development simulation with distributed, physics-based models provides a quantitative approach for investigating runoff generation processes across environmental conditions. Disparities within data sets employed to design and parameterize boundary value problems used in heuristic simulation inevitably introduce various levels of bias. The objective was to evaluate the impact of boundary value problem complexity on process representation for different runoff generation mechanisms. The comprehensive physics-based hydrologic response model InHM has been employed to generate base case simulations for four well-characterized catchments. The C3 and CB catchments are located within steep, forested environments dominated by subsurface stormflow; the TW and R5 catchments are located in gently sloping rangeland environments dominated by Dunne and Horton overland flows. Observational details are well captured within all four of the base case simulations, but the characterization of soil depth, permeability, rainfall intensity, and evapotranspiration differs for each. These differences are investigated through the conversion of each base case into a reduced case scenario, all sharing the same level of complexity. Evaluation of how individual boundary value problem characteristics impact simulated runoff generation processes is facilitated by quantitative analysis of integrated and distributed responses at high spatial and temporal resolution. Generally, the base case reduction causes moderate changes in discharge and runoff patterns, with the dominant process remaining unchanged. Moderate differences between the base and reduced cases highlight the importance of detailed field observations for parameterizing and evaluating physics-based models. Overall, similarities between the base and reduced cases indicate that the simpler boundary value problems may be useful for concept development simulation to investigate fundamental controls on the spectrum of runoff generation mechanisms. Copyright 2011 by the American Geophysical Union.

  17. Exploring Physics in the Classroom

    ERIC Educational Resources Information Center

    Amann, George

    2005-01-01

    The key to learning is student involvement! This American Association of Physics Teachers/Physics Teaching Resource Agents (AAPT/PTRA) manual presents examples of two techniques that are proven to increase student involvement in your classroom. Based on the "5E" model of learning, exploratories are designed to get your students excited about the…

  18. Advanced Computing Tools and Models for Accelerator Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryne, Robert; Ryne, Robert D.

    2008-06-11

    This paper is based on a transcript of my EPAC'08 presentation on advanced computing tools for accelerator physics. Following an introduction I present several examples, provide a history of the development of beam dynamics capabilities, and conclude with thoughts on the future of large scale computing in accelerator physics.

  19. An Enhanced Studio Physics Model: Which Technologies are Productive?

    ERIC Educational Resources Information Center

    MacKinnon, Gregory R.; Williams, Peter

    2006-01-01

    The notion of problem-based physics laboratories enhanced by computer technology has been coined "studio physics" (Wilson, 1994) and has been practised at various institutions for some time (Cummings, Marx, Thornton, & Kuhl, 1999; Williams, MacLatchy, Backman, & Retson, 1997). In recent years, new technology tools have been available to supplement…

  20. Steel Alloy Hot Roll Simulations and Through-Thickness Variation Using Dislocation Density-Based Modeling

    NASA Astrophysics Data System (ADS)

    Jansen Van Rensburg, G. J.; Kok, S.; Wilke, D. N.

    2017-10-01

    Different roll pass reduction schedules have different effects on the through-thickness properties of hot-rolled metal slabs. In order to assess or improve a reduction schedule using the finite element method, a material model is required that captures the relevant deformation mechanisms and physics. The model should also report relevant field quantities to assess variations in material state through the thickness of a simulated rolled metal slab. In this paper, a dislocation density-based material model with recrystallization is presented and calibrated on the material response of a high-strength low-alloy steel. The model has the ability to replicate and predict material response to a fair degree thanks to the physically motivated mechanisms it is built on. An example study is also presented to illustrate the possible effect different reduction schedules could have on the through-thickness material state and the ability to assess these effects based on finite element simulations.

  1. Physics-Based Modeling of Electric Operation, Heat Transfer, and Scrap Melting in an AC Electric Arc Furnace

    NASA Astrophysics Data System (ADS)

    Opitz, Florian; Treffinger, Peter

    2016-04-01

    Electric arc furnaces (EAF) are complex industrial plants whose actual behavior depends upon numerous factors. Due to its energy intensive operation, the EAF process has always been subject to optimization efforts. For these reasons, several models have been proposed in literature to analyze and predict different modes of operation. Most of these models focused on the processes inside the vessel itself. The present paper introduces a dynamic, physics-based model of a complete EAF plant which consists of the four subsystems vessel, electric system, electrode regulation, and off-gas system. Furthermore the solid phase is not treated to be homogenous but a simple spatial discretization is employed. Hence it is possible to simulate the energy input by electric arcs and fossil fuel burners depending on the state of the melting progress. The model is implemented in object-oriented, equation-based language Modelica. The simulation results are compared to literature data.

  2. An architecture for the development of real-time fault diagnosis systems using model-based reasoning

    NASA Technical Reports Server (NTRS)

    Hall, Gardiner A.; Schuetzle, James; Lavallee, David; Gupta, Uday

    1992-01-01

    Presented here is an architecture for implementing real-time telemetry based diagnostic systems using model-based reasoning. First, we describe Paragon, a knowledge acquisition tool for offline entry and validation of physical system models. Paragon provides domain experts with a structured editing capability to capture the physical component's structure, behavior, and causal relationships. We next describe the architecture of the run time diagnostic system. The diagnostic system, written entirely in Ada, uses the behavioral model developed offline by Paragon to simulate expected component states as reflected in the telemetry stream. The diagnostic algorithm traces causal relationships contained within the model to isolate system faults. Since the diagnostic process relies exclusively on the behavioral model and is implemented without the use of heuristic rules, it can be used to isolate unpredicted faults in a wide variety of systems. Finally, we discuss the implementation of a prototype system constructed using this technique for diagnosing faults in a science instrument. The prototype demonstrates the use of model-based reasoning to develop maintainable systems with greater diagnostic capabilities at a lower cost.

  3. The effectiveness of CPI model to improve positive attitude toward science (PATS) for pre-service physics teacher

    NASA Astrophysics Data System (ADS)

    Sunarti, T.; Wasis; Madlazim; Suyidno; Prahani, B. K.

    2018-03-01

    In the previous research, learning material based Construction, Production, and Implementation (CPI) model has been developed to improve scientific literacy and positive attitude toward science for pre-service physics teacher. CPI model has 4 phases, included: 1) Motivation; 2) Construction (Cycle I); 3) Production (Cycle II); and 4) Evaluation. This research is aimed to analyze the effectiveness of CPI model towards the improvement Positive Attitude toward Science (PATS) for pre-service physics teacher. This research used one group pre-test and post-test design on 160 pre-service physics teacher divided into 4 groups at Lambung Mangkurat University and Surabaya State University (Indonesia), academic year 2016/2017. Data collection was conducted through questioner, observation, and interview. Positive attitude toward science for pre-service physics teacher measurement were conducted through Positive Attitude toward Science Evaluation Sheet (PATSES). The data analysis technique was done by using Wilcoxon test and n-gain. The results showed that there was a significant increase in positive attitude toward science for pre-service physics teacher at α = 5%, with n-gain average of high category. Thus, the CPI model is effective for improving positive attitude toward science for pre-service physics teacher.

  4. A Model of the Creative Process Based on Quantum Physics and Vedic Science.

    ERIC Educational Resources Information Center

    Rose, Laura Hall

    1988-01-01

    Using tenets from Vedic science and quantum physics, this model of the creative process suggests that the unified field of creation is pure consciousness, and that the development of the creative process within individuals mirrors the creative process within the universe. Rational and supra-rational creative thinking techniques are also described.…

  5. Fundamental Studies of Strength Physics--Methodology of Longevity Prediction of Materials under Arbitrary Thermally and Forced Effects

    ERIC Educational Resources Information Center

    Petrov, Mark G.

    2016-01-01

    Thermally activated analysis of experimental data allows considering about the structure features of each material. By modelling the structural heterogeneity of materials by means of rheological models, general and local plastic flows in metals and alloys can be described over. Based on physical fundamentals of failure and deformation of materials…

  6. The Implementation of Models-Based Practice in Physical Education through Action Research

    ERIC Educational Resources Information Center

    Casey, Ashley; Dyson, Ben

    2009-01-01

    The purpose of this study was to explore the use of action research as a framework to investigate cooperative learning and tactical games as instructional models in physical education (PE). The teacher/researcher taught a tennis unit using a combination of Cooperative Learning and Teaching Games for Understanding to three classes of boys aged…

  7. Observation-Based Dissipation and Input Terms for Spectral Wave Models, with End-User Testing

    DTIC Science & Technology

    2014-09-30

    scale influence of the Great barrier reef matrix on wave attenuation, Coral Reefs [published, refereed] Ghantous, M., and A.V. Babanin, 2014: One...Observation-Based Dissipation and Input Terms for Spectral Wave Models...functions, based on advanced understanding of physics of air-sea interactions, wave breaking and swell attenuation, in wave - forecast models. OBJECTIVES The

  8. Ecological Correlates of Spanish Adolescents' Physical Activity during Physical Education Classes

    ERIC Educational Resources Information Center

    Molina-García, Javier; Queralt, Ana; Estevan, Isaac; Sallis, James F.

    2016-01-01

    The public health benefit of school physical education (PE) depends in large part on physical activity (PA) provided during class. According to the literature, PE has a valuable role in public health, and PA levels during PE classes depend on a wide range of factors. The main objective of this study, based on ecological models of behaviour, was to…

  9. Comparison between two statistically based methods, and two physically based models developed to compute daily mean streamflow at ungaged locations in the Cedar River Basin, Iowa

    USGS Publications Warehouse

    Linhart, S. Mike; Nania, Jon F.; Christiansen, Daniel E.; Hutchinson, Kasey J.; Sanders, Curtis L.; Archfield, Stacey A.

    2013-01-01

    A variety of individuals from water resource managers to recreational users need streamflow information for planning and decisionmaking at locations where there are no streamgages. To address this problem, two statistically based methods, the Flow Duration Curve Transfer method and the Flow Anywhere method, were developed for statewide application and the two physically based models, the Precipitation Runoff Modeling-System and the Soil and Water Assessment Tool, were only developed for application for the Cedar River Basin. Observed and estimated streamflows for the two methods and models were compared for goodness of fit at 13 streamgages modeled in the Cedar River Basin by using the Nash-Sutcliffe and the percent-bias efficiency values. Based on median and mean Nash-Sutcliffe values for the 13 streamgages the Precipitation Runoff Modeling-System and Soil and Water Assessment Tool models appear to have performed similarly and better than Flow Duration Curve Transfer and Flow Anywhere methods. Based on median and mean percent bias values, the Soil and Water Assessment Tool model appears to have generally overestimated daily mean streamflows, whereas the Precipitation Runoff Modeling-System model and statistical methods appear to have underestimated daily mean streamflows. The Flow Duration Curve Transfer method produced the lowest median and mean percent bias values and appears to perform better than the other models.

  10. Physically-based in silico light sheet microscopy for visualizing fluorescent brain models

    PubMed Central

    2015-01-01

    Background We present a physically-based computational model of the light sheet fluorescence microscope (LSFM). Based on Monte Carlo ray tracing and geometric optics, our method simulates the operational aspects and image formation process of the LSFM. This simulated, in silico LSFM creates synthetic images of digital fluorescent specimens that can resemble those generated by a real LSFM, as opposed to established visualization methods producing visually-plausible images. We also propose an accurate fluorescence rendering model which takes into account the intrinsic characteristics of fluorescent dyes to simulate the light interaction with fluorescent biological specimen. Results We demonstrate first results of our visualization pipeline to a simplified brain tissue model reconstructed from the somatosensory cortex of a young rat. The modeling aspects of the LSFM units are qualitatively analysed, and the results of the fluorescence model were quantitatively validated against the fluorescence brightness equation and characteristic emission spectra of different fluorescent dyes. AMS subject classification Modelling and simulation PMID:26329404

  11. Spatial Modeling for Resources Framework (SMRF): A modular framework for developing spatial forcing data in mountainous terrain

    NASA Astrophysics Data System (ADS)

    Havens, S.; Marks, D. G.; Kormos, P.; Hedrick, A. R.; Johnson, M.; Robertson, M.; Sandusky, M.

    2017-12-01

    In the Western US, operational water supply managers rely on statistical techniques to forecast the volume of water left to enter the reservoirs. As the climate changes and the demand increases for stored water utilized for irrigation, flood control, power generation, and ecosystem services, water managers have begun to move from statistical techniques towards using physically based models. To assist with the transition, a new open source framework was developed, the Spatial Modeling for Resources Framework (SMRF), to automate and simplify the most common forcing data distribution methods. SMRF is computationally efficient and can be implemented for both research and operational applications. Currently, SMRF is able to generate all of the forcing data required to run physically based snow or hydrologic models at 50-100 m resolution over regions of 500-10,000 km2, and has been successfully applied in real time and historical applications for the Boise River Basin in Idaho, USA, the Tuolumne River Basin and San Joaquin in California, USA, and Reynolds Creek Experimental Watershed in Idaho, USA. These applications use meteorological station measurements and numerical weather prediction model outputs as input data. SMRF has significantly streamlined the modeling workflow, decreased model set up time from weeks to days, and made near real-time application of physics-based snow and hydrologic models possible.

  12. Development and testing of a physically based model of streambank erosion for coupling with a basin-scale hydrologic model SWAT

    USDA-ARS?s Scientific Manuscript database

    A comprehensive stream bank erosion model based on excess shear stress has been developed and incorporated in the hydrological model Soil and Water Assessment Tool (SWAT). It takes into account processes such as weathering, vegetative cover, and channel meanders to adjust critical and effective str...

  13. Prediction of Vehicle Mobility on Large-Scale Soft-Soil Terrain Maps Using Physics-Based Simulation

    DTIC Science & Technology

    2016-08-04

    soil type. The modeling approach is based on (i) a seamless integration of multibody dynamics and discrete element method (DEM) solvers, and (ii...ensure that the vehicle follows a desired path. The soil is modeled as a Discrete Element Model (DEM) with a general cohesive material model that is

  14. The Binary System Laboratory Activities Based on Students Mental Model

    NASA Astrophysics Data System (ADS)

    Albaiti, A.; Liliasari, S.; Sumarna, O.; Martoprawiro, M. A.

    2017-09-01

    Generic science skills (GSS) are required to develop student conception in learning binary system. The aim of this research was to know the improvement of students GSS through the binary system labotoratory activities based on their mental model using hypothetical-deductive learning cycle. It was a mixed methods embedded experimental model research design. This research involved 15 students of a university in Papua, Indonesia. Essay test of 7 items was used to analyze the improvement of students GSS. Each items was designed to interconnect macroscopic, sub-microscopic and symbolic levels. Students worksheet was used to explore students mental model during investigation in laboratory. The increase of students GSS could be seen in their N-Gain of each GSS indicators. The results were then analyzed descriptively. Students mental model and GSS have been improved from this study. They were interconnect macroscopic and symbolic levels to explain binary systems phenomena. Furthermore, they reconstructed their mental model with interconnecting the three levels of representation in Physical Chemistry. It necessary to integrate the Physical Chemistry Laboratory into a Physical Chemistry course for effectiveness and efficiency.

  15. Minding the Cyber-Physical Gap: Model-Based Analysis and Mitigation of Systemic Perception-Induced Failure

    PubMed Central

    2017-01-01

    The cyber-physical gap (CPG) is the difference between the ‘real’ state of the world and the way the system perceives it. This discrepancy often stems from the limitations of sensing and data collection technologies and capabilities, and is inevitable at some degree in any cyber-physical system (CPS). Ignoring or misrepresenting such limitations during system modeling, specification, design, and analysis can potentially result in systemic misconceptions, disrupted functionality and performance, system failure, severe damage, and potential detrimental impacts on the system and its environment. We propose CPG-Aware Modeling & Engineering (CPGAME), a conceptual model-based approach to capturing, explaining, and mitigating the CPG. CPGAME enhances the systems engineer’s ability to cope with CPGs, mitigate them by design, and prevent erroneous decisions and actions. We demonstrate CPGAME by applying it for modeling and analysis of the 1979 Three Miles Island 2 nuclear accident, and show how its meltdown could be mitigated. We use ISO-19450:2015—Object Process Methodology as our conceptual modeling framework. PMID:28714910

  16. Integrating physically based simulators with Event Detection Systems: Multi-site detection approach.

    PubMed

    Housh, Mashor; Ohar, Ziv

    2017-03-01

    The Fault Detection (FD) Problem in control theory concerns of monitoring a system to identify when a fault has occurred. Two approaches can be distinguished for the FD: Signal processing based FD and Model-based FD. The former concerns of developing algorithms to directly infer faults from sensors' readings, while the latter uses a simulation model of the real-system to analyze the discrepancy between sensors' readings and expected values from the simulation model. Most contamination Event Detection Systems (EDSs) for water distribution systems have followed the signal processing based FD, which relies on analyzing the signals from monitoring stations independently of each other, rather than evaluating all stations simultaneously within an integrated network. In this study, we show that a model-based EDS which utilizes a physically based water quality and hydraulics simulation models, can outperform the signal processing based EDS. We also show that the model-based EDS can facilitate the development of a Multi-Site EDS (MSEDS), which analyzes the data from all the monitoring stations simultaneously within an integrated network. The advantage of the joint analysis in the MSEDS is expressed by increased detection accuracy (higher true positive alarms and fewer false alarms) and shorter detection time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. 2D Flood Modelling Using Advanced Terrain Analysis Techniques And A Fully Continuous DEM-Based Rainfall-Runoff Algorithm

    NASA Astrophysics Data System (ADS)

    Nardi, F.; Grimaldi, S.; Petroselli, A.

    2012-12-01

    Remotely sensed Digital Elevation Models (DEMs), largely available at high resolution, and advanced terrain analysis techniques built in Geographic Information Systems (GIS), provide unique opportunities for DEM-based hydrologic and hydraulic modelling in data-scarce river basins paving the way for flood mapping at the global scale. This research is based on the implementation of a fully continuous hydrologic-hydraulic modelling optimized for ungauged basins with limited river flow measurements. The proposed procedure is characterized by a rainfall generator that feeds a continuous rainfall-runoff model producing flow time series that are routed along the channel using a bidimensional hydraulic model for the detailed representation of the inundation process. The main advantage of the proposed approach is the characterization of the entire physical process during hydrologic extreme events of channel runoff generation, propagation, and overland flow within the floodplain domain. This physically-based model neglects the need for synthetic design hyetograph and hydrograph estimation that constitute the main source of subjective analysis and uncertainty of standard methods for flood mapping. Selected case studies show results and performances of the proposed procedure as respect to standard event-based approaches.

  18. Novel schemes for measurement-based quantum computation.

    PubMed

    Gross, D; Eisert, J

    2007-06-01

    We establish a framework which allows one to construct novel schemes for measurement-based quantum computation. The technique develops tools from many-body physics-based on finitely correlated or projected entangled pair states-to go beyond the cluster-state based one-way computer. We identify resource states radically different from the cluster state, in that they exhibit nonvanishing correlations, can be prepared using nonmaximally entangling gates, or have very different local entanglement properties. In the computational models, randomness is compensated in a different manner. It is shown that there exist resource states which are locally arbitrarily close to a pure state. We comment on the possibility of tailoring computational models to specific physical systems.

  19. Comparison of physical and semi-empirical hydraulic models for flood inundation mapping

    NASA Astrophysics Data System (ADS)

    Tavakoly, A. A.; Afshari, S.; Omranian, E.; Feng, D.; Rajib, A.; Snow, A.; Cohen, S.; Merwade, V.; Fekete, B. M.; Sharif, H. O.; Beighley, E.

    2016-12-01

    Various hydraulic/GIS-based tools can be used for illustrating spatial extent of flooding for first-responders, policy makers and the general public. The objective of this study is to compare four flood inundation modeling tools: HEC-RAS-2D, Gridded Surface Subsurface Hydrologic Analysis (GSSHA), AutoRoute and Height Above the Nearest Drainage (HAND). There is a trade-off among accuracy, workability and computational demand in detailed, physics-based flood inundation models (e.g. HEC-RAS-2D and GSSHA) in contrast with semi-empirical, topography-based, computationally less expensive approaches (e.g. AutoRoute and HAND). The motivation for this study is to evaluate this trade-off and offer guidance to potential large-scale application in an operational prediction system. The models were assessed and contrasted via comparability analysis (e.g. overlapping statistics) by using three case studies in the states of Alabama, Texas, and West Virginia. The sensitivity and accuracy of physical and semi-eimpirical models in producing inundation extent were evaluated for the following attributes: geophysical characteristics (e.g. high topographic variability vs. flat natural terrain, urbanized vs. rural zones, effect of surface roughness paratermer value), influence of hydraulic structures such as dams and levees compared to unobstructed flow condition, accuracy in large vs. small study domain, effect of spatial resolution in topographic data (e.g. 10m National Elevation Dataset vs. 0.3m LiDAR). Preliminary results suggest that semi-empericial models tend to underestimate in a flat, urbanized area with controlled/managed river channel around 40% of the inundation extent compared to the physical models, regardless of topographic resolution. However, in places where there are topographic undulations, semi-empericial models attain relatively higher level of accuracy than they do in flat non-urbanized terrain.

  20. Development of physical and mathematical models for the Porous Ceramic Tube Plant Nutrification System (PCTPNS)

    NASA Technical Reports Server (NTRS)

    Tsao, D. Teh-Wei; Okos, M. R.; Sager, J. C.; Dreschel, T. W.

    1992-01-01

    A physical model of the Porous Ceramic Tube Plant Nutrification System (PCTPNS) was developed through microscopic observations of the tube surface under various operational conditions. In addition, a mathematical model of this system was developed which incorporated the effects of the applied suction pressure, surface tension, and gravitational forces as well as the porosity and physical dimensions of the tubes. The flow of liquid through the PCTPNS was thus characterized for non-biological situations. One of the key factors in the verification of these models is the accurate and rapid measurement of the 'wetness' or holding capacity of the ceramic tubes. This study evaluated a thermistor based moisture sensor device and recommendations for future research on alternative sensing devices are proposed. In addition, extensions of the physical and mathematical models to include the effects of plant physiology and growth are also discussed for future research.

  1. The new car following model considering vehicle dynamics influence and numerical simulation

    NASA Astrophysics Data System (ADS)

    Sun, Dihua; Liu, Hui; Zhang, Geng; Zhao, Min

    2015-12-01

    In this paper, the car following model is investigated by considering the vehicle dynamics in a cyber physical view. In fact, that driving is a typical cyber physical process which couples the cyber aspect of the vehicles' information and driving decision tightly with the dynamics and physics of the vehicles and traffic environment. However, the influence from the physical (vehicle) view was been ignored in the previous car following models. In order to describe the car following behavior more reasonably in real traffic, a new car following model by considering vehicle dynamics (for short, D-CFM) is proposed. In this paper, we take the full velocity difference (FVD) car following model as a case. The stability condition is given on the base of the control theory. The analytical method and numerical simulation results show that the new models can describe the evolution of traffic congestion. The simulations also show vehicles with a more actual acceleration of starting process than early models.

  2. Applicability of Satellite Freeze Forecasting and Cold Climate Mapping to the Other Parts of the United States

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Tasks performed to determine the value of using GOES satellite thermal imagery to enhance fruit crop production in Michigan are described. An overview is presented of the system developed for image processing and thermal image and surface environmental data bases prepared to assess the physical models developed in Florida. These data bases were used to identify correlations between satellite apparent temperatures patterns and Earth surface factors. Significant freeze events in 1981 and the physical models used to provide a perspective on how Florida models can be applied in the context of the Michigan environment are discussed.

  3. Testing a Longitudinal Integrated Self-Efficacy and Self-Determination Theory Model for Physical Activity Post-Cardiac Rehabilitation

    PubMed Central

    Sweet, Shane N.; Fortier, Michelle S.; Strachan, Shaelyn M.; Blanchard, Chris M.; Boulay, Pierre

    2014-01-01

    Self-determination theory and self-efficacy theory are prominent theories in the physical activity literature, and studies have begun integrating their concepts. Sweet, Fortier, Strachan and Blanchard (2012) have integrated these two theories in a cross-sectional study. Therefore, this study sought to test a longitudinal integrated model to predict physical activity at the end of a 4-month cardiac rehabilitation program based on theory, research and Sweet et al.’s cross-sectional model. Participants from two cardiac rehabilitation programs (N=109) answered validated self-report questionnaires at baseline, two and four months. Data were analyzed using Amos to assess the path analysis and model fit. Prior to integration, perceived competence and self-efficacy were combined, and labeled as confidence. After controlling for 2-month physical activity and cardiac rehabilitation site, no motivational variables significantly predicted residual change in 4-month physical activity. Although confidence at two months did not predict residual change in 4-month physical activity, it had a strong positive relationship with 2-month physical activity (β=0.30, P<0.001). The overall model retained good fit indices. In conclusion, results diverged from theoretical predictions of physical activity, but self-determination and self-efficacy theory were still partially supported. Because the model had good fit, this study demonstrated that theoretical integration is feasible. PMID:26973926

  4. Development and evaluation of social cognitive measures related to adolescent physical activity.

    PubMed

    Dewar, Deborah L; Lubans, David Revalds; Morgan, Philip James; Plotnikoff, Ronald C

    2013-05-01

    This study aimed to develop and evaluate the construct validity and reliability of modernized social cognitive measures relating to physical activity behaviors in adolescents. An instrument was developed based on constructs from Bandura's Social Cognitive Theory and included the following scales: self-efficacy, situation (perceived physical environment), social support, behavioral strategies, and outcome expectations and expectancies. The questionnaire was administered in a sample of 171 adolescents (age = 13.6 ± 1.2 years, females = 61%). Confirmatory factor analysis was employed to examine model-fit for each scale using multiple indices, including chi-square index, comparative-fit index (CFI), goodness-of-fit index (GFI), and the root mean square error of approximation (RMSEA). Reliability properties were also examined (ICC and Cronbach's alpha). Each scale represented a statistically sound measure: fit indices indicated each model to be an adequate-to-exact fit to the data; internal consistency was acceptable to good (α = 0.63-0.79); rank order repeatability was strong (ICC = 0.82-0.91). Results support the validity and reliability of social cognitive scales relating to physical activity among adolescents. As such, the developed scales have utility for the identification of potential social cognitive correlates of youth physical activity, mediators of physical activity behavior changes and the testing of theoretical models based on Social Cognitive Theory.

  5. A Correlation-Based Transition Model using Local Variables. Part 1; Model Formation

    NASA Technical Reports Server (NTRS)

    Menter, F. R.; Langtry, R. B.; Likki, S. R.; Suzen, Y. B.; Huang, P. G.; Volker, S.

    2006-01-01

    A new correlation-based transition model has been developed, which is based strictly on local variables. As a result, the transition model is compatible with modern computational fluid dynamics (CFD) approaches, such as unstructured grids and massive parallel execution. The model is based on two transport equations, one for intermittency and one for the transition onset criteria in terms of momentum thickness Reynolds number. The proposed transport equations do not attempt to model the physics of the transition process (unlike, e.g., turbulence models) but from a framework for the implementation of correlation-based models into general-purpose CFD methods.

  6. Models of Individual Dietary Behavior Based on Smartphone Data: The Influence of Routine, Physical Activity, Emotion, and Food Environment.

    PubMed

    Seto, Edmund; Hua, Jenna; Wu, Lemuel; Shia, Victor; Eom, Sue; Wang, May; Li, Yan

    2016-01-01

    Smartphone applications (apps) facilitate the collection of data on multiple aspects of behavior that are useful for characterizing baseline patterns and for monitoring progress in interventions aimed at promoting healthier lifestyles. Individual-based models can be used to examine whether behavior, such as diet, corresponds to certain typological patterns. The objectives of this paper are to demonstrate individual-based modeling methods relevant to a person's eating behavior, and the value of such approach compared to typical regression models. Using a mobile app, 2 weeks of physical activity and ecological momentary assessment (EMA) data, and 6 days of diet data were collected from 12 university students recruited from a university in Kunming, a rapidly developing city in southwest China. Phone GPS data were collected for the entire 2-week period, from which exposure to various food environments along each subject's activity space was determined. Physical activity was measured using phone accelerometry. Mobile phone EMA was used to assess self-reported emotion/feelings. The portion size of meals and food groups was determined from voice-annotated videos of meals. Individual-based regression models were used to characterize subjects as following one of 4 diet typologies: those with a routine portion sizes determined by time of day, those with portion sizes that balance physical activity (energy balance), those with portion sizes influenced by emotion, and those with portion sizes associated with food environments. Ample compliance with the phone-based behavioral assessment was observed for all participants. Across all individuals, 868 consumed food items were recorded, with fruits, grains and dairy foods dominating the portion sizes. On average, 218 hours of accelerometry and 35 EMA responses were recorded for each participant. For some subjects, the routine model was able to explain up to 47% of the variation in portion sizes, and the energy balance model was able to explain over 88% of the variation in portion sizes. Across all our subjects, the food environment was an important predictor of eating patterns. Generally, grouping all subjects into a pooled model performed worse than modeling each individual separately. A typological modeling approach was useful in understanding individual dietary behaviors in our cohort. This approach may be applicable to the study of other human behaviors, particularly those that collect repeated measures on individuals, and those involving smartphone-based behavioral measurement.

  7. Advancing reservoir operation description in physically based hydrological models

    NASA Astrophysics Data System (ADS)

    Anghileri, Daniela; Giudici, Federico; Castelletti, Andrea; Burlando, Paolo

    2016-04-01

    Last decades have seen significant advances in our capacity of characterizing and reproducing hydrological processes within physically based models. Yet, when the human component is considered (e.g. reservoirs, water distribution systems), the associated decisions are generally modeled with very simplistic rules, which might underperform in reproducing the actual operators' behaviour on a daily or sub-daily basis. For example, reservoir operations are usually described by a target-level rule curve, which represents the level that the reservoir should track during normal operating conditions. The associated release decision is determined by the current state of the reservoir relative to the rule curve. This modeling approach can reasonably reproduce the seasonal water volume shift due to reservoir operation. Still, it cannot capture more complex decision making processes in response, e.g., to the fluctuations of energy prices and demands, the temporal unavailability of power plants or varying amount of snow accumulated in the basin. In this work, we link a physically explicit hydrological model with detailed hydropower behavioural models describing the decision making process by the dam operator. In particular, we consider two categories of behavioural models: explicit or rule-based behavioural models, where reservoir operating rules are empirically inferred from observational data, and implicit or optimization based behavioural models, where, following a normative economic approach, the decision maker is represented as a rational agent maximising a utility function. We compare these two alternate modelling approaches on the real-world water system of Lake Como catchment in the Italian Alps. The water system is characterized by the presence of 18 artificial hydropower reservoirs generating almost 13% of the Italian hydropower production. Results show to which extent the hydrological regime in the catchment is affected by different behavioural models and reservoir operating strategies.

  8. Measurement of Pressure Responses in a Physical Model of a Human Head with High Shape Fidelity Based on Ct/mri Data

    NASA Astrophysics Data System (ADS)

    Miyazaki, Yusuke; Tachiya, Hiroshi; Anata, Kenji; Hojo, Akihiro

    This study discusses a head injury mechanism in case of a human head subjected to impact, from results of impact experiments by using a physical model of a human head with high-shape fidelity. The physical model was constructed by using rapid prototyping technology from the three-dimensional CAD data, which obtained from CT/MRI images of a subject's head. As results of the experiments, positive pressure responses occurred at the impacted site, whereas negative pressure responses occurred at opposite the impacted site. Moreover, the absolute maximum value of pressure occurring at the frontal region of the intracranial space of the head model resulted in same or higher than that at the occipital site in each case that the impact force was imposed on frontal or occipital region. This result has not been showed in other study using simple shape physical models. And, the result corresponds with clinical evidences that brain contusion mainly occurs at the frontal part in each impact direction. Thus, physical model with accurate skull shape is needed to clarify the mechanism of brain contusion.

  9. Towards using musculoskeletal models for intelligent control of physically assistive robots.

    PubMed

    Carmichael, Marc G; Liu, Dikai

    2011-01-01

    With the increasing number of robots being developed to physically assist humans in tasks such as rehabilitation and assistive living, more intelligent and personalized control systems are desired. In this paper we propose the use of a musculoskeletal model to estimate the strength of the user, from which information can be utilized to improve control schemes in which robots physically assist humans. An optimization model is developed utilizing a musculoskeletal model to estimate human strength in a specified dynamic state. Results of this optimization as well as methods of using it to observe muscle-based weaknesses in task space are presented. Lastly potential methods and problems in incorporating this model into a robot control system are discussed.

  10. Source Physics Experiments at the Nevada Test Site

    DTIC Science & Technology

    2010-09-01

    not display a currently valid OMB control number. 1. REPORT DATE SEP 2010 2. REPORT TYPE 3. DATES COVERED 00-00-2010 to 00-00-2010 4. TITLE AND...seismograms through three-dimensional models of the earth will move monitoring science into a physics- based era. This capability should enable...the advanced ability to model synthetic seismograms in three-dimensional earth models should also lead to advances in the ability to locate and

  11. A Model for the Design of Puzzle-Based Games Including Virtual and Physical Objects

    ERIC Educational Resources Information Center

    Melero, Javier; Hernandez-Leo, Davinia

    2014-01-01

    Multiple evidences in the Technology-Enhanced Learning domain indicate that Game-Based Learning can lead to positive effects in students' performance and motivation. Educational games can be completely virtual or can combine the use of physical objects or spaces in the real world. However, the potential effectiveness of these approaches…

  12. Innovative Interdisciplinary Training in and Delivery of Evidence-Based Geriatric Services: Creating a Bridge with Social Work and Physical Therapy

    ERIC Educational Resources Information Center

    Rowan, Noell L.; Gillette, Patricia D.; Faul, Anna C.; Yankeelov, Pamela A.; Borders, Kevin W.; Deck, Stacy; Nicholas, Lori D.; Wiegand, Mark

    2009-01-01

    With focus on interdisciplinary education models, social work and physical therapy faculty from two proximate universities partnered to create an evidence-based geriatric assessment and brief intervention research, training, and service project for community-dwelling older adults. Assessment tools and interventions were selected from the…

  13. Physics-based simulations of the impacts forest management practices have on hydrologic response

    Treesearch

    Adrianne Carr; Keith Loague

    2012-01-01

    The impacts of logging on near-surface hydrologic response at the catchment and watershed scales were examined quantitatively using numerical simulation. The simulations were conducted with the Integrated Hydrology Model (InHM) for the North Fork of Caspar Creek Experimental Watershed, located near Fort Bragg, California. InHM is a comprehensive physics-based...

  14. Multi-views storage model and access methods of conversation history in converged IP messaging system

    NASA Astrophysics Data System (ADS)

    Lu, Meilian; Yang, Dong; Zhou, Xing

    2013-03-01

    Based on the analysis of the requirements of conversation history storage in CPM (Converged IP Messaging) system, a Multi-views storage model and access methods of conversation history are proposed. The storage model separates logical views from physical storage and divides the storage into system managed region and user managed region. It simultaneously supports conversation view, system pre-defined view and user-defined view of storage. The rationality and feasibility of multi-view presentation, the physical storage model and access methods are validated through the implemented prototype. It proves that, this proposal has good scalability, which will help to optimize the physical data storage structure and improve storage performance.

  15. Results and Lessons Learned from a Coupled Social and Physical Hydrology Model: Testing Alternative Water Management Policies and Institutional Structures Using Agent-Based Modeling and Regional Hydrology

    NASA Astrophysics Data System (ADS)

    Murphy, J.; Lammers, R. B.; Prousevitch, A.; Ozik, J.; Altaweel, M.; Collier, N. T.; Kliskey, A. D.; Alessa, L.

    2015-12-01

    Water Management in the U.S. Southwest is under increasing scrutiny as many areas endure persistent drought. The impact of these prolonged dry conditions is a product of regional climate and hydrological conditions, but also of a highly engineered water management infrastructure and a complex web of social arrangements whereby water is allocated, shared, exchanged, used, re-used, and finally consumed. We coupled an agent-based model with a regional hydrological model to understand the dynamics in one richly studied and highly populous area: southern Arizona, U.S.A., including metropolitan Phoenix and Tucson. There, multiple management entities representing an array of municipalities and other water providers and customers, including private companies and Native American tribes are enmeshed in a complex legal and economic context in which water is bought, leased, banked, and exchanged in a variety of ways and on multiple temporal and physical scales. A recurrent question in the literature of adaptive management is the impact of management structure on overall system performance. To explore this, we constructed an agent-based model to capture this social complexity, and coupled this with a physical hydrological model that we used to drive the system under a variety of water stress scenarios and to assess the regional impact of the social system's performance. We report the outcomes of ensembles of runs in which varieties of alternative policy constraints and management strategies are considered. We hope to contribute to policy discussions in this area and connected and legislatively similar areas (such as California) as current conditions change and existing legal and policy structures are revised. Additionally, we comment on the challenges of integrating models that ostensibly are in different domains (physical and social) but that independently represent a system in which physical processes and human actions are closely intertwined and difficult to disentangle.

  16. A closed-loop hybrid physiological model relating to subjects under physical stress.

    PubMed

    El-Samahy, Emad; Mahfouf, Mahdi; Linkens, Derek A

    2006-11-01

    The objective of this research study is to derive a comprehensive physiological model relating to subjects under physical stress conditions. The model should describe the behaviour of the cardiovascular system, respiratory system, thermoregulation and brain activity in response to physical workload. An experimental testing rig was built which consists of recumbent high performance bicycle for inducing the physical load and a data acquisition system comprising monitors and PCs. The signals acquired and used within this study are the blood pressure, heart rate, respiration, body temperature, and EEG signals. The proposed model is based on a grey-box based modelling approach which was used because of the sufficient level of details it provides. Cardiovascular and EEG Data relating to 16 healthy subject volunteers (data from 12 subjects were used for training/validation and the data from 4 subjects were used for model testing) were collected using the Finapres and the ProComp+ monitors. For model validation, residual analysis via the computing of the confidence intervals as well as related histograms was performed. Closed-loop simulations for different subjects showed that the model can provide reliable predictions for heart rate, blood pressure, body temperature, respiration, and the EEG signals. These findings were also reinforced by the residual analyses data obtained, which suggested that the residuals were within the 90% confidence bands and that the corresponding histograms were of a normal distribution. A higher intelligent level was added to the model, based on neural networks, to extend the capabilities of the model to predict over a wide range of subjects dynamics. The elicited physiological model describing the effect of physiological stress on several physiological variables can be used to predict performance breakdown of operators in critical environments. Such a model architecture lends itself naturally to exploitation via feedback control in a 'reverse-engineering' fashion to control stress via the specification of a safe operating range for the psycho-physiological variables.

  17. Problem-Based Learning Model Used to Scientific Approach Based Worksheet for Physics to Develop Senior High School Students Characters

    NASA Astrophysics Data System (ADS)

    Yulianti, D.

    2017-04-01

    The purpose of this study is to explore the application of Problem Based Learning(PBL) model aided withscientific approach and character integrated physics worksheets (LKS). Another purpose is to investigate the increase in cognitive and psychomotor learning outcomes and to know the character development of students. The method used in this study was the quasi-experiment. The instruments were observation and cognitive test. Worksheets can improve students’ cognitive, psychomotor learning outcomes. Improvements in cognitive learning results of students who have learned using worksheets are higher than students who received learning without worksheets. LKS can also develop the students’ character.

  18. Computer Model Of Fragmentation Of Atomic Nuclei

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Townsend, Lawrence W.; Tripathi, Ram K.; Norbury, John W.; KHAN FERDOUS; Badavi, Francis F.

    1995-01-01

    High Charge and Energy Semiempirical Nuclear Fragmentation Model (HZEFRG1) computer program developed to be computationally efficient, user-friendly, physics-based program for generating data bases on fragmentation of atomic nuclei. Data bases generated used in calculations pertaining to such radiation-transport applications as shielding against radiation in outer space, radiation dosimetry in outer space, cancer therapy in laboratories with beams of heavy ions, and simulation studies for designing detectors for experiments in nuclear physics. Provides cross sections for production of individual elements and isotopes in breakups of high-energy heavy ions by combined nuclear and Coulomb fields of interacting nuclei. Written in ANSI FORTRAN 77.

  19. Relationships among exercise beliefs, physical exercise, and subjective well-being: Evidence from Korean middle-aged adults.

    PubMed

    You, Sukkyung; Shin, Kyulee

    2017-12-01

    Physically active leisure plays a key role in successful aging. Exercise beliefs are one of the key predictors of exercise behavior. We used structural equation modeling to assess the plausibility of a conceptual model specifying hypothesized linkages among middle-aged adults' perceptions of (a) exercise beliefs, (b) physical exercise behavior, and (c) subjective well-being. Four hundred two adults in South Korea responded to survey questions designed to capture the above constructs. We found that physically active leisure participation leads to subjective well-being for both middle-aged men and women. However, men and women exercised for different reasons. Women exercised for the sake of their physical appearance and mental and emotional functioning, whereas men exercised for the sake of their social desirability and vulnerability to disease and aging. Based on our results, we suggest that men tend to show higher social face sensitivity, while women show more appearance management behavior. Based on these findings, we discussed the implications and future research directions.

  20. A place for agent-based models. Comment on "Statistical physics of crime: A review" by M.R. D'Orsogna and M. Perc

    NASA Astrophysics Data System (ADS)

    Barbaro, Alethea

    2015-03-01

    Agent-based models have been widely applied in theoretical ecology to explain migrations and other collective animal movements [2,5,8]. As D'Orsogna and Perc have expertly highlighted in [6], the recent emergence of crime modeling has opened another interesting avenue for mathematical investigation. The area of crime modeling is particularly suited to agent-based models, because these models offer a great deal of flexibility within the model and also ease of communication among criminologist, law enforcement and modelers.

  1. A Physically Based Runoff Routing Model for Land Surface and Earth System Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hongyi; Wigmosta, Mark S.; Wu, Huan

    2013-06-13

    A new physically based runoff routing model, called the Model for Scale Adaptive River Transport (MOSART), has been developed to be applicable across local, regional, and global scales. Within each spatial unit, surface runoff is first routed across hillslopes and then discharged along with subsurface runoff into a ‘‘tributary subnetwork’’ before entering the main channel. The spatial units are thus linked via routing through the main channel network, which is constructed in a scale-consistent way across different spatial resolutions. All model parameters are physically based, and only a small subset requires calibration.MOSART has been applied to the Columbia River basinmore » at 1/ 168, 1/ 88, 1/ 48, and 1/ 28 spatial resolutions and was evaluated using naturalized or observed streamflow at a number of gauge stations. MOSART is compared to two other routing models widely used with land surface models, the River Transport Model (RTM) in the Community Land Model (CLM) and the Lohmann routing model, included as a postprocessor in the Variable Infiltration Capacity (VIC) model package, yielding consistent performance at multiple resolutions. MOSART is further evaluated using the channel velocities derived from field measurements or a hydraulic model at various locations and is shown to be capable of producing the seasonal variation and magnitude of channel velocities reasonably well at different resolutions. Moreover, the impacts of spatial resolution on model simulations are systematically examined at local and regional scales. Finally, the limitations ofMOSART and future directions for improvements are discussed.« less

  2. Advancing Physically-Based Flow Simulations of Alluvial Systems Through Atmospheric Noble Gases and the Novel 37Ar Tracer Method

    NASA Astrophysics Data System (ADS)

    Schilling, Oliver S.; Gerber, Christoph; Partington, Daniel J.; Purtschert, Roland; Brennwald, Matthias S.; Kipfer, Rolf; Hunkeler, Daniel; Brunner, Philip

    2017-12-01

    To provide a sound understanding of the sources, pathways, and residence times of groundwater water in alluvial river-aquifer systems, a combined multitracer and modeling experiment was carried out in an important alluvial drinking water wellfield in Switzerland. 222Rn, 3H/3He, atmospheric noble gases, and the novel 37Ar-method were used to quantify residence times and mixing ratios of water from different sources. With a half-life of 35.1 days, 37Ar allowed to successfully close a critical observational time gap between 222Rn and 3H/3He for residence times of weeks to months. Covering the entire range of residence times of groundwater in alluvial systems revealed that, to quantify the fractions of water from different sources in such systems, atmospheric noble gases and helium isotopes are tracers suited for end-member mixing analysis. A comparison between the tracer-based mixing ratios and mixing ratios simulated with a fully-integrated, physically-based flow model showed that models, which are only calibrated against hydraulic heads, cannot reliably reproduce mixing ratios or residence times of alluvial river-aquifer systems. However, the tracer-based mixing ratios allowed the identification of an appropriate flow model parametrization. Consequently, for alluvial systems, we recommend the combination of multitracer studies that cover all relevant residence times with fully-coupled, physically-based flow modeling to better characterize the complex interactions of river-aquifer systems.

  3. Geant4-DNA track-structure simulations for gold nanoparticles: The importance of electron discrete models in nanometer volumes.

    PubMed

    Sakata, Dousatsu; Kyriakou, Ioanna; Okada, Shogo; Tran, Hoang N; Lampe, Nathanael; Guatelli, Susanna; Bordage, Marie-Claude; Ivanchenko, Vladimir; Murakami, Koichi; Sasaki, Takashi; Emfietzoglou, Dimitris; Incerti, Sebastien

    2018-05-01

    Gold nanoparticles (GNPs) are known to enhance the absorbed dose in their vicinity following photon-based irradiation. To investigate the therapeutic effectiveness of GNPs, previous Monte Carlo simulation studies have explored GNP dose enhancement using mostly condensed-history models. However, in general, such models are suitable for macroscopic volumes and for electron energies above a few hundred electron volts. We have recently developed, for the Geant4-DNA extension of the Geant4 Monte Carlo simulation toolkit, discrete physics models for electron transport in gold which include the description of the full atomic de-excitation cascade. These models allow event-by-event simulation of electron tracks in gold down to 10 eV. The present work describes how such specialized physics models impact simulation-based studies on GNP-radioenhancement in a context of x-ray radiotherapy. The new discrete physics models are compared to the Geant4 Penelope and Livermore condensed-history models, which are being widely used for simulation-based NP radioenhancement studies. An ad hoc Geant4 simulation application has been developed to calculate the absorbed dose in liquid water around a GNP and its radioenhancement, caused by secondary particles emitted from the GNP itself, when irradiated with a monoenergetic electron beam. The effect of the new physics models is also quantified in the calculation of secondary particle spectra, when originating in the GNP and when exiting from it. The new physics models show similar backscattering coefficients with the existing Geant4 Livermore and Penelope models in large volumes for 100 keV incident electrons. However, in submicron sized volumes, only the discrete models describe the high backscattering that should still be present around GNPs at these length scales. Sizeable differences (mostly above a factor of 2) are also found in the radial distribution of absorbed dose and secondary particles between the new and the existing Geant4 models. The degree to which these differences are due to intrinsic limitations of the condensed-history models or to differences in the underling scattering cross sections requires further investigation. Improved physics models for gold are necessary to better model the impact of GNPs in radiotherapy via Monte Carlo simulations. We implemented discrete electron transport models for gold in Geant4 that is applicable down to 10 eV including the modeling of the full de-excitation cascade. It is demonstrated that the new model has a significant positive impact on particle transport simulations in gold volumes with submicron dimensions compared to the existing Livermore and Penelope condensed-history models of Geant4. © 2018 American Association of Physicists in Medicine.

  4. A Framework for Understanding Physics Students' Computational Modeling Practices

    NASA Astrophysics Data System (ADS)

    Lunk, Brandon Robert

    With the growing push to include computational modeling in the physics classroom, we are faced with the need to better understand students' computational modeling practices. While existing research on programming comprehension explores how novices and experts generate programming algorithms, little of this discusses how domain content knowledge, and physics knowledge in particular, can influence students' programming practices. In an effort to better understand this issue, I have developed a framework for modeling these practices based on a resource stance towards student knowledge. A resource framework models knowledge as the activation of vast networks of elements called "resources." Much like neurons in the brain, resources that become active can trigger cascading events of activation throughout the broader network. This model emphasizes the connectivity between knowledge elements and provides a description of students' knowledge base. Together with resources resources, the concepts of "epistemic games" and "frames" provide a means for addressing the interaction between content knowledge and practices. Although this framework has generally been limited to describing conceptual and mathematical understanding, it also provides a means for addressing students' programming practices. In this dissertation, I will demonstrate this facet of a resource framework as well as fill in an important missing piece: a set of epistemic games that can describe students' computational modeling strategies. The development of this theoretical framework emerged from the analysis of video data of students generating computational models during the laboratory component of a Matter & Interactions: Modern Mechanics course. Student participants across two semesters were recorded as they worked in groups to fix pre-written computational models that were initially missing key lines of code. Analysis of this video data showed that the students' programming practices were highly influenced by their existing physics content knowledge, particularly their knowledge of analytic procedures. While this existing knowledge was often applied in inappropriate circumstances, the students were still able to display a considerable amount of understanding of the physics content and of analytic solution procedures. These observations could not be adequately accommodated by the existing literature of programming comprehension. In extending the resource framework to the task of computational modeling, I model students' practices in terms of three important elements. First, a knowledge base includes re- sources for understanding physics, math, and programming structures. Second, a mechanism for monitoring and control describes students' expectations as being directed towards numerical, analytic, qualitative or rote solution approaches and which can be influenced by the problem representation. Third, a set of solution approaches---many of which were identified in this study---describe what aspects of the knowledge base students use and how they use that knowledge to enact their expectations. This framework allows us as researchers to track student discussions and pinpoint the source of difficulties. This work opens up many avenues of potential research. First, this framework gives researchers a vocabulary for extending Resource Theory to other domains of instruction, such as modeling how physics students use graphs. Second, this framework can be used as the basis for modeling expert physicists' programming practices. Important instructional implications also follow from this research. Namely, as we broaden the use of computational modeling in the physics classroom, our instructional practices should focus on helping students understand the step-by-step nature of programming in contrast to the already salient analytic procedures.

  5. Modeling subjective evaluation of soundscape quality in urban open spaces: An artificial neural network approach.

    PubMed

    Yu, Lei; Kang, Jian

    2009-09-01

    This research aims to explore the feasibility of using computer-based models to predict the soundscape quality evaluation of potential users in urban open spaces at the design stage. With the data from large scale field surveys in 19 urban open spaces across Europe and China, the importance of various physical, behavioral, social, demographical, and psychological factors for the soundscape evaluation has been statistically analyzed. Artificial neural network (ANN) models have then been explored at three levels. It has been shown that for both subjective sound level and acoustic comfort evaluation, a general model for all the case study sites is less feasible due to the complex physical and social environments in urban open spaces; models based on individual case study sites perform well but the application range is limited; and specific models for certain types of location/function would be reliable and practical. The performance of acoustic comfort models is considerably better than that of sound level models. Based on the ANN models, soundscape quality maps can be produced and this has been demonstrated with an example.

  6. Phase space deformations in phantom cosmology

    NASA Astrophysics Data System (ADS)

    López, J. L.; Sabido, M.; Yee-Romero, C.

    2018-03-01

    We discuss the physical consequences of general phase space deformations on the minisuperspace of phantom cosmology. Based on the principle of physically equivalent descriptions in the deformed theory, we investigate for what values of the deformation parameters the arising descriptions are physically equivalent. We also construct and solve the quantum model and derive the semiclassical dynamics.

  7. Fecal indicator organism modeling and microbial source tracking in environmental waters: Chapter 3.4.6

    USGS Publications Warehouse

    Nevers, Meredith; Byappanahalli, Muruleedhara; Phanikumar, Mantha S.; Whitman, Richard L.

    2016-01-01

    Mathematical models have been widely applied to surface waters to estimate rates of settling, resuspension, flow, dispersion, and advection in order to calculate movement of particles that influence water quality. Of particular interest are the movement, survival, and persistence of microbial pathogens or their surrogates, which may contaminate recreational water, drinking water, or shellfish. Most models devoted to microbial water quality have been focused on fecal indicator organisms (FIO), which act as a surrogate for pathogens and viruses. Process-based modeling and statistical modeling have been used to track contamination events to source and to predict future events. The use of these two types of models require different levels of expertise and input; process-based models rely on theoretical physical constructs to explain present conditions and biological distribution while data-based, statistical models use extant paired data to do the same. The selection of the appropriate model and interpretation of results is critical to proper use of these tools in microbial source tracking. Integration of the modeling approaches could provide insight for tracking and predicting contamination events in real time. A review of modeling efforts reveals that process-based modeling has great promise for microbial source tracking efforts; further, combining the understanding of physical processes influencing FIO contamination developed with process-based models and molecular characterization of the population by gene-based (i.e., biological) or chemical markers may be an effective approach for locating sources and remediating contamination in order to protect human health better.

  8. Predicting Forearm Physical Exposures During Computer Work Using Self-Reports, Software-Recorded Computer Usage Patterns, and Anthropometric and Workstation Measurements.

    PubMed

    Huysmans, Maaike A; Eijckelhof, Belinda H W; Garza, Jennifer L Bruno; Coenen, Pieter; Blatter, Birgitte M; Johnson, Peter W; van Dieën, Jaap H; van der Beek, Allard J; Dennerlein, Jack T

    2017-12-15

    Alternative techniques to assess physical exposures, such as prediction models, could facilitate more efficient epidemiological assessments in future large cohort studies examining physical exposures in relation to work-related musculoskeletal symptoms. The aim of this study was to evaluate two types of models that predict arm-wrist-hand physical exposures (i.e. muscle activity, wrist postures and kinematics, and keyboard and mouse forces) during computer use, which only differed with respect to the candidate predicting variables; (i) a full set of predicting variables, including self-reported factors, software-recorded computer usage patterns, and worksite measurements of anthropometrics and workstation set-up (full models); and (ii) a practical set of predicting variables, only including the self-reported factors and software-recorded computer usage patterns, that are relatively easy to assess (practical models). Prediction models were build using data from a field study among 117 office workers who were symptom-free at the time of measurement. Arm-wrist-hand physical exposures were measured for approximately two hours while workers performed their own computer work. Each worker's anthropometry and workstation set-up were measured by an experimenter, computer usage patterns were recorded using software and self-reported factors (including individual factors, job characteristics, computer work behaviours, psychosocial factors, workstation set-up characteristics, and leisure-time activities) were collected by an online questionnaire. We determined the predictive quality of the models in terms of R2 and root mean squared (RMS) values and exposure classification agreement to low-, medium-, and high-exposure categories (in the practical model only). The full models had R2 values that ranged from 0.16 to 0.80, whereas for the practical models values ranged from 0.05 to 0.43. Interquartile ranges were not that different for the two models, indicating that only for some physical exposures the full models performed better. Relative RMS errors ranged between 5% and 19% for the full models, and between 10% and 19% for the practical model. When the predicted physical exposures were classified into low, medium, and high, classification agreement ranged from 26% to 71%. The full prediction models, based on self-reported factors, software-recorded computer usage patterns, and additional measurements of anthropometrics and workstation set-up, show a better predictive quality as compared to the practical models based on self-reported factors and recorded computer usage patterns only. However, predictive quality varied largely across different arm-wrist-hand exposure parameters. Future exploration of the relation between predicted physical exposure and symptoms is therefore only recommended for physical exposures that can be reasonably well predicted. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  9. Nature as a network of morphological infocomputational processes for cognitive agents

    NASA Astrophysics Data System (ADS)

    Dodig-Crnkovic, Gordana

    2017-01-01

    This paper presents a view of nature as a network of infocomputational agents organized in a dynamical hierarchy of levels. It provides a framework for unification of currently disparate understandings of natural, formal, technical, behavioral and social phenomena based on information as a structure, differences in one system that cause the differences in another system, and computation as its dynamics, i.e. physical process of morphological change in the informational structure. We address some of the frequent misunderstandings regarding the natural/morphological computational models and their relationships to physical systems, especially cognitive systems such as living beings. Natural morphological infocomputation as a conceptual framework necessitates generalization of models of computation beyond the traditional Turing machine model presenting symbol manipulation, and requires agent-based concurrent resource-sensitive models of computation in order to be able to cover the whole range of phenomena from physics to cognition. The central role of agency, particularly material vs. cognitive agency is highlighted.

  10. From ancient Greece to the cognitive revolution: A comprehensive view of physical rehabilitation sciences.

    PubMed

    Martínez-Pernía, David; González-Castán, Óscar; Huepe, David

    2017-02-01

    The development of rehabilitation has traditionally focused on measurements of motor disorders and measurements of the improvements produced during the therapeutic process; however, physical rehabilitation sciences have not focused on understanding the philosophical and scientific principles in clinical intervention and how they are interrelated. The main aim of this paper is to explain the foundation stones of the disciplines of physical therapy, occupational therapy, and speech/language therapy in recovery from motor disorder. To reach our goals, the mechanistic view and how it is integrated into physical rehabilitation will first be explained. Next, a classification into mechanistic therapy based on an old version (automaton model) and a technological version (cyborg model) will be shown. Then, it will be shown how physical rehabilitation sciences found a new perspective in motor recovery, which is based on functionalism, during the cognitive revolution in the 1960s. Through this cognitive theory, physical rehabilitation incorporated into motor recovery of those therapeutic strategies that solicit the activation of the brain and/or symbolic processing; aspects that were not taken into account in mechanistic therapy. In addition, a classification into functionalist rehabilitation based on a computational therapy and a brain therapy will be shown. At the end of the article, the methodological principles in physical rehabilitation sciences will be explained. It will allow us to go deeper into the differences and similarities between therapeutic mechanism and therapeutic functionalism.

  11. A hybrid hydrologically complemented warning model for shallow landslides induced by extreme rainfall in Korean Mountain

    NASA Astrophysics Data System (ADS)

    Singh Pradhan, Ananta Man; Kang, Hyo-Sub; Kim, Yun-Tae

    2016-04-01

    This study uses a physically based approach to evaluate the factor of safety of the hillslope for different hydrological conditions, in Mt Umyeon, south of Seoul. The hydrological conditions were determined using intensity and duration of whole Korea of known landslide inventory data. Quantile regression statistical method was used to ascertain different probability warning levels on the basis of rainfall thresholds. Physically based models are easily interpreted and have high predictive capabilities but rely on spatially explicit and accurate parameterization, which is commonly not possible. Statistical probabilistic methods can include other causative factors which influence the slope stability such as forest, soil and geology, but rely on good landslide inventories of the site. In this study a hybrid approach has described that combines the physically-based landslide susceptibility for different hydrological conditions. A presence-only based maximum entropy model was used to hybrid and analyze relation of landslide with conditioning factors. About 80% of the landslides were listed among the unstable sites identified in the proposed model, thereby presenting its effectiveness and accuracy in determining unstable areas and areas that require evacuation. These cumulative rainfall thresholds provide a valuable reference to guide disaster prevention authorities in the issuance of warning levels with the ability to reduce losses and save lives.

  12. DEM code-based modeling of energy accumulation and release in structurally heterogeneous rock masses

    NASA Astrophysics Data System (ADS)

    Lavrikov, S. V.; Revuzhenko, A. F.

    2015-10-01

    Based on discrete element method, the authors model loading of a physical specimen to describe its capacity to accumulate and release elastic energy. The specimen is modeled as a packing of particles with viscoelastic coupling and friction. The external elastic boundary of the packing is represented by particles connected by elastic springs. The latter means introduction of an additional special potential of interaction between the boundary particles, that exercises effect even when there is no direct contact between the particles. On the whole, the model specimen represents an element of a medium capable of accumulation of deformation energy in the form of internal stresses. The data of the numerical modeling of the physical specimen compression and the laboratory testing results show good qualitative consistency.

  13. Plasma Physics of the Subauroral Space Weather

    DTIC Science & Technology

    2016-03-20

    AFRL-RV-PS- AFRL-RV-PS- TR-2016-0068 TR-2016-0068 PLASMA PHYSICS OF THE SUBAURORAL SPACE WEATHER Evgeny V. Mishin, et al. 20 March 2016 Final...Oct 2013 to 30 Sep 2015 4. TITLE AND SUBTITLE Plasma Physics of the Subauroral Space Weather 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...5 4.3. Physics -based hybrid model with finite Larmor radius effects

  14. A new physical model with multilayer architecture for facial expression animation using dynamic adaptive mesh.

    PubMed

    Zhang, Yu; Prakash, Edmond C; Sung, Eric

    2004-01-01

    This paper presents a new physically-based 3D facial model based on anatomical knowledge which provides high fidelity for facial expression animation while optimizing the computation. Our facial model has a multilayer biomechanical structure, incorporating a physically-based approximation to facial skin tissue, a set of anatomically-motivated facial muscle actuators, and underlying skull structure. In contrast to existing mass-spring-damper (MSD) facial models, our dynamic skin model uses the nonlinear springs to directly simulate the nonlinear visco-elastic behavior of soft tissue and a new kind of edge repulsion spring is developed to prevent collapse of the skin model. Different types of muscle models have been developed to simulate distribution of the muscle force applied on the skin due to muscle contraction. The presence of the skull advantageously constrain the skin movements, resulting in more accurate facial deformation and also guides the interactive placement of facial muscles. The governing dynamics are computed using a local semi-implicit ODE solver. In the dynamic simulation, an adaptive refinement automatically adapts the local resolution at which potential inaccuracies are detected depending on local deformation. The method, in effect, ensures the required speedup by concentrating computational time only where needed while ensuring realistic behavior within a predefined error threshold. This mechanism allows more pleasing animation results to be produced at a reduced computational cost.

  15. Safe Maneuvering Envelope Estimation Based on a Physical Approach

    NASA Technical Reports Server (NTRS)

    Lombaerts, Thomas J. J.; Schuet, Stefan R.; Wheeler, Kevin R.; Acosta, Diana; Kaneshige, John T.

    2013-01-01

    This paper discusses a computationally efficient algorithm for estimating the safe maneuvering envelope of damaged aircraft. The algorithm performs a robust reachability analysis through an optimal control formulation while making use of time scale separation and taking into account uncertainties in the aerodynamic derivatives. This approach differs from others since it is physically inspired. This more transparent approach allows interpreting data in each step, and it is assumed that these physical models based upon flight dynamics theory will therefore facilitate certification for future real life applications.

  16. The Influence of the Sport Education Model on Amotivated Students' In-Class Physical Activity

    ERIC Educational Resources Information Center

    Perlman, Dana

    2012-01-01

    The Sport Education Model (SEM) was designed by Siedentop to provide students with a holistic sport-based experience. As research on the SEM continues, an aspect that has gained interest is the influence on (a) students with low levels of motivation and (b) opportunities to engage in health-enhancing levels of physical activity. The purpose of…

  17. Development of CAG Model for Developing Instructional Materials for Teaching Physical Science Concepts for Grade 8 Students.

    ERIC Educational Resources Information Center

    Hse, Shun-Yi

    1991-01-01

    The development of an instructional model based on a learning cycle including correlation, analysis, and generalization (CAG) is described. A module developed for heat and temperature was administered to test its effects by comparing its use with the same unit in the New Physical Science Curriculum (NPSC). The methodology, results, and discussion…

  18. Reactive solute transport in streams: 1. Development of an equilibrium- based model

    USGS Publications Warehouse

    Runkel, Robert L.; Bencala, Kenneth E.; Broshears, Robert E.; Chapra, Steven C.

    1996-01-01

    An equilibrium-based solute transport model is developed for the simulation of trace metal fate and transport in streams. The model is formed by coupling a solute transport model with a chemical equilibrium submodel based on MINTEQ. The solute transport model considers the physical processes of advection, dispersion, lateral inflow, and transient storage, while the equilibrium submodel considers the speciation and complexation of aqueous species, precipitation/dissolution and sorption. Within the model, reactions in the water column may result in the formation of solid phases (precipitates and sorbed species) that are subject to downstream transport and settling processes. Solid phases on the streambed may also interact with the water column through dissolution and sorption/desorption reactions. Consideration of both mobile (water-borne) and immobile (streambed) solid phases requires a unique set of governing differential equations and solution techniques that are developed herein. The partial differential equations describing physical transport and the algebraic equations describing chemical equilibria are coupled using the sequential iteration approach.

  19. 3Mo: A Model for Music-Based Biofeedback

    PubMed Central

    Maes, Pieter-Jan; Buhmann, Jeska; Leman, Marc

    2016-01-01

    In the domain of sports and motor rehabilitation, it is of major importance to regulate and control physiological processes and physical motion in most optimal ways. For that purpose, real-time auditory feedback of physiological and physical information based on sound signals, often termed “sonification,” has been proven particularly useful. However, the use of music in biofeedback systems has been much less explored. In the current article, we assert that the use of music, and musical principles, can have a major added value, on top of mere sound signals, to the benefit of psychological and physical optimization of sports and motor rehabilitation tasks. In this article, we present the 3Mo model to describe three main functions of music that contribute to these benefits. These functions relate the power of music to Motivate, and to Monitor and Modify physiological and physical processes. The model brings together concepts and theories related to human sensorimotor interaction with music, and specifies the underlying psychological and physiological principles. This 3Mo model is intended to provide a conceptual framework that guides future research on musical biofeedback systems in the domain of sports and motor rehabilitation. PMID:27994535

  20. Quantifying Post- Laser Ablation Prostate Therapy Changes on MRI via a Domain-Specific Biomechanical Model: Preliminary Findings

    PubMed Central

    Toth, Robert; Sperling, Dan; Madabhushi, Anant

    2016-01-01

    Focal laser ablation destroys cancerous cells via thermal destruction of tissue by a laser. Heat is absorbed, causing thermal necrosis of the target region. It combines the aggressive benefits of radiation treatment (destroying cancer cells) without the harmful side effects (due to its precise localization). MRI is typically used pre-treatment to determine the targeted area, and post-treatment to determine efficacy by detecting necrotic tissue, or tumor recurrence. However, no system exists to quantitatively evaluate the post-treatment effects on the morphology and structure via MRI. To quantify these changes, the pre- and post-treatment MR images must first be spatially aligned. The goal is to quantify (a) laser-induced shape-based changes, and (b) changes in MRI parameters post-treatment. The shape-based changes may be correlated with treatment efficacy, and the quantitative effects of laser treatment over time is currently poorly understood. This work attempts to model changes in gland morphology following laser treatment due to (1) patient alignment, (2) changes due to surrounding organs such as the bladder and rectum, and (3) changes due to the treatment itself. To isolate the treatment-induced shape-based changes, the changes from (1) and (2) are first modeled and removed using a finite element model (FEM). A FEM models the physical properties of tissue. The use of a physical biomechanical model is important since a stated goal of this work is to determine the physical shape-based changes to the prostate from the treatment, and therefore only physical real deformations are to be allowed. A second FEM is then used to isolate the physical, shape-based, treatment-induced changes. We applied and evaluated our model in capturing the laser induced changes to the prostate morphology on eight patients with 3.0 Tesla, T2-weighted MRI, acquired approximately six months following treatment. Our results suggest the laser treatment causes a decrease in prostate volume, which appears to manifest predominantly at the site of ablation. After spatially aligning the images, changes to MRI intensity values are clearly visible at the site of ablation. Our results suggest that our new methodology is able to capture and quantify the degree of laser-induced changes to the prostate. The quantitative measurements reflecting of the deformation changes can be used to track treatment response over time. PMID:27088600

  1. Electromagnetic Thermography Nondestructive Evaluation: Physics-based Modeling and Pattern Mining

    PubMed Central

    Gao, Bin; Woo, Wai Lok; Tian, Gui Yun

    2016-01-01

    Electromagnetic mechanism of Joule heating and thermal conduction on conductive material characterization broadens their scope for implementation in real thermography based Nondestructive testing and evaluation (NDT&E) systems by imparting sensitivity, conformability and allowing fast and imaging detection, which is necessary for efficiency. The issue of automatic material evaluation has not been fully addressed by researchers and it marks a crucial first step to analyzing the structural health of the material, which in turn sheds light on understanding the production of the defects mechanisms. In this study, we bridge the gap between the physics world and mathematical modeling world. We generate physics-mathematical modeling and mining route in the spatial-, time-, frequency-, and sparse-pattern domains. This is a significant step towards realizing the deeper insight in electromagnetic thermography (EMT) and automatic defect identification. This renders the EMT a promising candidate for the highly efficient and yet flexible NDT&E. PMID:27158061

  2. DEVELOPMENT OF A RATIONALLY BASED DESIGN PROTOCOL FOR THE ULTRAVIOLET LIGHT DISINFECTION PROCESS

    EPA Science Inventory

    A protocol is demonstrated for the design and evaluation of ultraviolet (UV) disinfection systems based on a mathematical model. The disinfection model incorporates the system's physical dimensions, the residence time distribution of the reactor and dispersion characteristics, th...

  3. Physical Analytics: An emerging field with real-world applications and impact

    NASA Astrophysics Data System (ADS)

    Hamann, Hendrik

    2015-03-01

    In the past most information on the internet has been originated by humans or computers. However with the emergence of cyber-physical systems, vast amount of data is now being created by sensors from devices, machines etc digitizing the physical world. While cyber-physical systems are subject to active research around the world, the vast amount of actual data generated from the physical world has attracted so far little attention from the engineering and physics community. In this presentation we use examples to highlight the opportunities in this new subject of ``Physical Analytics'' for highly inter-disciplinary research (including physics, engineering and computer science), which aims understanding real-world physical systems by leveraging cyber-physical technologies. More specifically, the convergence of the physical world with the digital domain allows applying physical principles to everyday problems in a much more effective and informed way than what was possible in the past. Very much like traditional applied physics and engineering has made enormous advances and changed our lives by making detailed measurements to understand the physics of an engineered device, we can now apply the same rigor and principles to understand large-scale physical systems. In the talk we first present a set of ``configurable'' enabling technologies for Physical Analytics including ultralow power sensing and communication technologies, physical big data management technologies, numerical modeling for physical systems, machine learning based physical model blending, and physical analytics based automation and control. Then we discuss in detail several concrete applications of Physical Analytics ranging from energy management in buildings and data centers, environmental sensing and controls, precision agriculture to renewable energy forecasting and management.

  4. Evaluating performances of simplified physically based landslide susceptibility models.

    NASA Astrophysics Data System (ADS)

    Capparelli, Giovanna; Formetta, Giuseppe; Versace, Pasquale

    2015-04-01

    Rainfall induced shallow landslides cause significant damages involving loss of life and properties. Prediction of shallow landslides susceptible locations is a complex task that involves many disciplines: hydrology, geotechnical science, geomorphology, and statistics. Usually to accomplish this task two main approaches are used: statistical or physically based model. This paper presents a package of GIS based models for landslide susceptibility analysis. It was integrated in the NewAge-JGrass hydrological model using the Object Modeling System (OMS) modeling framework. The package includes three simplified physically based models for landslides susceptibility analysis (M1, M2, and M3) and a component for models verifications. It computes eight goodness of fit indices (GOF) by comparing pixel-by-pixel model results and measurements data. Moreover, the package integration in NewAge-JGrass allows the use of other components such as geographic information system tools to manage inputs-output processes, and automatic calibration algorithms to estimate model parameters. The system offers the possibility to investigate and fairly compare the quality and the robustness of models and models parameters, according a procedure that includes: i) model parameters estimation by optimizing each of the GOF index separately, ii) models evaluation in the ROC plane by using each of the optimal parameter set, and iii) GOF robustness evaluation by assessing their sensitivity to the input parameter variation. This procedure was repeated for all three models. The system was applied for a case study in Calabria (Italy) along the Salerno-Reggio Calabria highway, between Cosenza and Altilia municipality. The analysis provided that among all the optimized indices and all the three models, Average Index (AI) optimization coupled with model M3 is the best modeling solution for our test case. This research was funded by PON Project No. 01_01503 "Integrated Systems for Hydrogeological Risk Monitoring, Early Warning and Mitigation Along the Main Lifelines", CUP B31H11000370005, in the framework of the National Operational Program for "Research and Competitiveness" 2007-2013.

  5. Lithium-ion battery models: a comparative study and a model-based powerline communication

    NASA Astrophysics Data System (ADS)

    Saidani, Fida; Hutter, Franz X.; Scurtu, Rares-George; Braunwarth, Wolfgang; Burghartz, Joachim N.

    2017-09-01

    In this work, various Lithium-ion (Li-ion) battery models are evaluated according to their accuracy, complexity and physical interpretability. An initial classification into physical, empirical and abstract models is introduced. Also known as white, black and grey boxes, respectively, the nature and characteristics of these model types are compared. Since the Li-ion battery cell is a thermo-electro-chemical system, the models are either in the thermal or in the electrochemical state-space. Physical models attempt to capture key features of the physical process inside the cell. Empirical models describe the system with empirical parameters offering poor analytical, whereas abstract models provide an alternative representation. In addition, a model selection guideline is proposed based on applications and design requirements. A complex model with a detailed analytical insight is of use for battery designers but impractical for real-time applications and in situ diagnosis. In automotive applications, an abstract model reproducing the battery behavior in an equivalent but more practical form, mainly as an equivalent circuit diagram, is recommended for the purpose of battery management. As a general rule, a trade-off should be reached between the high fidelity and the computational feasibility. Especially if the model is embedded in a real-time monitoring unit such as a microprocessor or a FPGA, the calculation time and memory requirements rise dramatically with a higher number of parameters. Moreover, examples of equivalent circuit models of Lithium-ion batteries are covered. Equivalent circuit topologies are introduced and compared according to the previously introduced criteria. An experimental sequence to model a 20 Ah cell is presented and the results are used for the purposes of powerline communication.

  6. Radiative Transfer Modeling and Retrievals for Advanced Hyperspectral Sensors

    NASA Technical Reports Server (NTRS)

    Liu, Xu; Zhou, Daniel K.; Larar, Allen M.; Smith, William L., Sr.; Mango, Stephen A.

    2009-01-01

    A novel radiative transfer model and a physical inversion algorithm based on principal component analysis will be presented. Instead of dealing with channel radiances, the new approach fits principal component scores of these quantities. Compared to channel-based radiative transfer models, the new approach compresses radiances into a much smaller dimension making both forward modeling and inversion algorithm more efficient.

  7. Applying Model Analysis to a Resource-Based Analysis of the Force and Motion Conceptual Evaluation

    ERIC Educational Resources Information Center

    Smith, Trevor I.; Wittmann, Michael C.; Carter, Tom

    2014-01-01

    Previously, we analyzed the Force and Motion Conceptual Evaluation in terms of a resources-based model that allows for clustering of questions so as to provide useful information on how students correctly or incorrectly reason about physics. In this paper, we apply model analysis to show that the associated model plots provide more information…

  8. Mechanistic equivalent circuit modelling of a commercial polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Giner-Sanz, J. J.; Ortega, E. M.; Pérez-Herranz, V.

    2018-03-01

    Electrochemical impedance spectroscopy (EIS) has been widely used in the fuel cell field since it allows deconvolving the different physic-chemical processes that affect the fuel cell performance. Typically, EIS spectra are modelled using electric equivalent circuits. In this work, EIS spectra of an individual cell of a commercial PEM fuel cell stack were obtained experimentally. The goal was to obtain a mechanistic electric equivalent circuit in order to model the experimental EIS spectra. A mechanistic electric equivalent circuit is a semiempirical modelling technique which is based on obtaining an equivalent circuit that does not only correctly fit the experimental spectra, but which elements have a mechanistic physical meaning. In order to obtain the aforementioned electric equivalent circuit, 12 different models with defined physical meanings were proposed. These equivalent circuits were fitted to the obtained EIS spectra. A 2 step selection process was performed. In the first step, a group of 4 circuits were preselected out of the initial list of 12, based on general fitting indicators as the determination coefficient and the fitted parameter uncertainty. In the second step, one of the 4 preselected circuits was selected on account of the consistency of the fitted parameter values with the physical meaning of each parameter.

  9. Probabilistic inversion of AVO seismic data for reservoir properties and related uncertainty estimation

    NASA Astrophysics Data System (ADS)

    Zunino, Andrea; Mosegaard, Klaus

    2017-04-01

    Sought-after reservoir properties of interest are linked only indirectly to the observable geophysical data which are recorded at the earth's surface. In this framework, seismic data represent one of the most reliable tool to study the structure and properties of the subsurface for natural resources. Nonetheless, seismic analysis is not an end in itself, as physical properties such as porosity are often of more interest for reservoir characterization. As such, inference of those properties implies taking into account also rock physics models linking porosity and other physical properties to elastic parameters. In the framework of seismic reflection data, we address this challenge for a reservoir target zone employing a probabilistic method characterized by a multi-step complex nonlinear forward modeling that combines: 1) a rock physics model with 2) the solution of full Zoeppritz equations and 3) a convolutional seismic forward modeling. The target property of this work is porosity, which is inferred using a Monte Carlo approach where porosity models, i.e., solutions to the inverse problem, are directly sampled from the posterior distribution. From a theoretical point of view, the Monte Carlo strategy can be particularly useful in the presence of nonlinear forward models, which is often the case when employing sophisticated rock physics models and full Zoeppritz equations and to estimate related uncertainty. However, the resulting computational challenge is huge. We propose to alleviate this computational burden by assuming some smoothness of the subsurface parameters and consequently parameterizing the model in terms of spline bases. This allows us a certain flexibility in that the number of spline bases and hence the resolution in each spatial direction can be controlled. The method is tested on a 3-D synthetic case and on a 2-D real data set.

  10. Innovative quantum technologies for microgravity fundamental physics and biological research

    NASA Technical Reports Server (NTRS)

    Kierk, I. K.

    2002-01-01

    This paper presents a new technology program, within the fundamental physics, focusing on four quantum technology areas: quantum atomics, quantum optics, space superconductivity and quantum sensor technology, and quantum field based sensor and modeling technology.

  11. [Advance in researches on the effect of forest on hydrological process].

    PubMed

    Zhang, Zhiqiang; Yu, Xinxiao; Zhao, Yutao; Qin, Yongsheng

    2003-01-01

    According to the effects of forest on hydrological process, forest hydrology can be divided into three related aspects: experimental research on the effects of forest changing on hydrological process quantity and water quality; mechanism study on the effects of forest changing on hydrological cycle, and establishing and exploitating physical-based distributed forest hydrological model for resource management and engineering construction. Orientation experiment research can not only support the first-hand data for forest hydrological model, but also make clear the precipitation-runoff mechanisms. Research on runoff mechanisms can be valuable for the exploitation and improvement of physical based hydrological models. Moreover, the model can also improve the experimental and runoff mechanism researches. A review of above three aspects are summarized in this paper.

  12. Model-Based Battery Management Systems: From Theory to Practice

    NASA Astrophysics Data System (ADS)

    Pathak, Manan

    Lithium-ion batteries are now extensively being used as the primary storage source. Capacity and power fade, and slow recharging times are key issues that restrict its use in many applications. Battery management systems are critical to address these issues, along with ensuring its safety. This dissertation focuses on exploring various control strategies using detailed physics-based electrochemical models developed previously for lithium-ion batteries, which could be used in advanced battery management systems. Optimal charging profiles for minimizing capacity fade based on SEI-layer formation are derived and the benefits of using such control strategies are shown by experimentally testing them on a 16 Ah NMC-based pouch cell. This dissertation also explores different time-discretization strategies for non-linear models, which gives an improved order of convergence for optimal control problems. Lastly, this dissertation also explores a physics-based model for predicting the linear impedance of a battery, and develops a freeware that is extremely robust and computationally fast. Such a code could be used for estimating transport, kinetic and material properties of the battery based on the linear impedance spectra.

  13. The association between anthropometric measures and lung function in a population-based study of Canadian adults.

    PubMed

    Rowe, A; Hernandez, P; Kuhle, S; Kirkland, S

    2017-10-01

    Decreased lung function has health impacts beyond diagnosable lung disease. It is therefore important to understand the factors that may influence even small changes in lung function including obesity, physical fitness and physical activity. The aim of this study was to determine the anthropometric measure most useful in examining the association with lung function and to determine how physical activity and physical fitness influence this association. The current study used cross-sectional data on 4662 adults aged 40-79 years from the Canadian Health Measures Survey Cycles 1 and 2. Linear regression models were used to examine the association between the anthropometric and lung function measures (forced expiratory volume in 1 s [FEV 1 ] and forced vital capacity [FVC]); R 2 values were compared among models. Physical fitness and physical activity terms were added to the models and potential confounding was assessed. Models using sum of 5 skinfolds and waist circumference consistently had the highest R 2 values for FEV 1 and FVC, while models using body mass index consistently had among the lowest R 2 values for FEV 1 and FVC and for men and women. Physical activity and physical fitness were confounders of the relationships between waist circumference and the lung function measures. Waist circumference remained a significant predictor of FVC but not FEV 1 after adjustment for physical activity or physical fitness. Waist circumference is an important predictor of lung function. Physical activity and physical fitness should be considered as potential confounders of the relationship between anthropometric measures and lung function. Copyright © 2017. Published by Elsevier Ltd.

  14. Identifying Hydrogeological Controls of Catchment Low-Flow Dynamics Using Physically Based Modelling

    NASA Astrophysics Data System (ADS)

    Cochand, F.; Carlier, C.; Staudinger, M.; Seibert, J.; Hunkeler, D.; Brunner, P.

    2017-12-01

    Identifying key catchment characteristics and processes which control the hydrological response under low-flow conditions is important to assess the catchments' vulnerability to dry periods. In the context of a Swiss Federal Office for the Environment (FOEN) project, the low-flow behaviours of two mountainous catchments were investigated. These neighboring catchments are characterized by the same meteorological conditions, but feature completely different river flow dynamics. The Roethenbach is characterized by high peak flows and low mean flows. Conversely, the Langete is characterized by relatively low peak flows and high mean flow rates. To understand the fundamentally different behaviour of the two catchments, a physically-based surface-subsurface flow HydroGeoSphere (HGS) model for each catchment was developed. The main advantage of a physically-based model is its ability to realistically reproduce processes which play a key role during low-flow periods such as surface-subsurface interactions or evapotranspiration. Both models were calibrated to reproduce measured groundwater heads and the surface flow dynamics. Subsequently, the calibrated models were used to explore the fundamental physics that control hydrological processes during low-flow periods. To achieve this, a comparative sensitivity analysis of model parameters of both catchments was carried out. Results show that the hydraulic conductivity of the bedrock (and weathered bedrock) controls the catchment water dynamics in both models. Conversely, the properties of other geological formations such as alluvial aquifer or soil layer hydraulic conductivity or porosity play a less important role. These results change significantly our perception of the streamflow catchment dynamics and more specifically the way to assess catchment vulnerability to dry period. This study suggests that by analysing catchment scale bedrock properties, the catchment dynamics and the vulnerability to dry period may be assessed.

  15. Dynamical simulation priors for human motion tracking.

    PubMed

    Vondrak, Marek; Sigal, Leonid; Jenkins, Odest Chadwicke

    2013-01-01

    We propose a simulation-based dynamical motion prior for tracking human motion from video in presence of physical ground-person interactions. Most tracking approaches to date have focused on efficient inference algorithms and/or learning of prior kinematic motion models; however, few can explicitly account for the physical plausibility of recovered motion. Here, we aim to recover physically plausible motion of a single articulated human subject. Toward this end, we propose a full-body 3D physical simulation-based prior that explicitly incorporates a model of human dynamics into the Bayesian filtering framework. We consider the motion of the subject to be generated by a feedback “control loop” in which Newtonian physics approximates the rigid-body motion dynamics of the human and the environment through the application and integration of interaction forces, motor forces, and gravity. Interaction forces prevent physically impossible hypotheses, enable more appropriate reactions to the environment (e.g., ground contacts), and are produced from detected human-environment collisions. Motor forces actuate the body, ensure that proposed pose transitions are physically feasible, and are generated using a motion controller. For efficient inference in the resulting high-dimensional state space, we utilize an exemplar-based control strategy that reduces the effective search space of motor forces. As a result, we are able to recover physically plausible motion of human subjects from monocular and multiview video. We show, both quantitatively and qualitatively, that our approach performs favorably with respect to Bayesian filtering methods with standard motion priors.

  16. Physical and JIT Model Based Hybrid Modeling Approach for Building Thermal Load Prediction

    NASA Astrophysics Data System (ADS)

    Iino, Yutaka; Murai, Masahiko; Murayama, Dai; Motoyama, Ichiro

    Energy conservation in building fields is one of the key issues in environmental point of view as well as that of industrial, transportation and residential fields. The half of the total energy consumption in a building is occupied by HVAC (Heating, Ventilating and Air Conditioning) systems. In order to realize energy conservation of HVAC system, a thermal load prediction model for building is required. This paper propose a hybrid modeling approach with physical and Just-in-Time (JIT) model for building thermal load prediction. The proposed method has features and benefits such as, (1) it is applicable to the case in which past operation data for load prediction model learning is poor, (2) it has a self checking function, which always supervises if the data driven load prediction and the physical based one are consistent or not, so it can find if something is wrong in load prediction procedure, (3) it has ability to adjust load prediction in real-time against sudden change of model parameters and environmental conditions. The proposed method is evaluated with real operation data of an existing building, and the improvement of load prediction performance is illustrated.

  17. Physics-model-based nonlinear actuator trajectory optimization and safety factor profile feedback control for advanced scenario development in DIII-D

    DOE PAGES

    Barton, Justin E.; Boyer, Mark D.; Shi, Wenyu; ...

    2015-07-30

    DIII-D experimental results are reported to demonstrate the potential of physics-model-based safety factor profile control for robust and reproducible sustainment of advanced scenarios. In the absence of feedback control, variability in wall conditions and plasma impurities, as well as drifts due to external disturbances, can limit the reproducibility of discharges with simple pre-programmed scenario trajectories. The control architecture utilized is a feedforward + feedback scheme where the feedforward commands are computed off-line and the feedback commands are computed on-line. In this work, firstly a first-principles-driven (FPD), physics-based model of the q profile and normalized beta (β N) dynamics is embeddedmore » into a numerical optimization algorithm to design feedforward actuator trajectories that sheer the plasma through the tokamak operating space to reach a desired stationary target state that is characterized by the achieved q profile and β N. Good agreement between experimental results and simulations demonstrates the accuracy of the models employed for physics-model-based control design. Secondly, a feedback algorithm for q profile control is designed following a FPD approach, and the ability of the controller to achieve and maintain a target q profile evolution is tested in DIII-D high confinement (H-mode) experiments. The controller is shown to be able to effectively control the q profile when β N is relatively close to the target, indicating the need for integrated q profile and β N control to further enhance the ability to achieve robust scenario execution. Furthermore, the ability of an integrated q profile + β N feedback controller to track a desired target is demonstrated through simulation.« less

  18. High-frequency techniques for RCS prediction of plate geometries and a physical optics/equivalent currents model for the RCS of trihedral corner reflectors, parts 1 and 2

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Polka, Lesley A.; Polycarpou, Anastasis C.

    1994-01-01

    Formulations for scattering from the coated plate and the coated dihedral corner reflector are included. A coated plate model based upon the Uniform Theory of Diffraction (UTD) for impedance wedges was presented in the last report. In order to resolve inaccuracies and discontinuities in the predicted patterns using the UTD-based model, an improved model that uses more accurate diffraction coefficients is presented. A Physical Optics (PO) model for the coated dihedral corner reflector is presented as an intermediary step in developing a high-frequency model for this structure. The PO model is based upon the reflection coefficients for a metal-backed lossy material. Preliminary PO results for the dihedral corner reflector suggest that, in addition to being much faster computationally, this model may be more accurate than existing moment method (MM) models. An improved Physical Optics (PO)/Equivalent Currents model for modeling the Radar Cross Section (RCS) of both square and triangular, perfectly conducting, trihedral corner reflectors is presented. The new model uses the PO approximation at each reflection for the first- and second-order reflection terms. For the third-order reflection terms, a Geometrical Optics (GO) approximation is used for the first reflection; and PO approximations are used for the remaining reflections. The previously reported model used GO for all reflections except the terminating reflection. Using PO for most of the reflections results in a computationally slower model because many integrations must be performed numerically, but the advantage is that the predicted RCS using the new model is much more accurate. Comparisons between the two PO models, Finite-Difference Time-Domain (FDTD) and experimental data are presented for validation of the new model.

  19. Evaluation of a standard provision versus an autonomy promotive exercise referral programme: rationale and study design

    PubMed Central

    Jolly, Kate; Duda, Joan L; Daley, Amanda; Eves, Frank F; Mutrie, Nanette; Ntoumanis, Nikos; Rouse, Peter C; Lodhia, Rekha; Williams, Geoffrey C

    2009-01-01

    Background The National Institute of Clinical Excellence in the UK has recommended that the effectiveness of ongoing exercise referral schemes to promote physical activity should be examined in research trials. Recent empirical evidence in health care and physical activity promotion contexts provides a foundation for testing the utility of a Self Determination Theory (SDT)-based exercise referral consultation. Methods/Design Design: An exploratory cluster randomised controlled trial comparing standard provision exercise on prescription with a Self Determination Theory-based (SDT) exercise on prescription intervention. Participants: 347 people referred to the Birmingham Exercise on Prescription scheme between November 2007 and July 2008. The 13 exercise on prescription sites in Birmingham were randomised to current practice (n = 7) or to the SDT-based intervention (n = 6). Outcomes measured at 3 and 6-months: Minutes of moderate or vigorous physical activity per week assessed using the 7-day Physical Activity Recall; physical health: blood pressure and weight; health status measured using the Dartmouth CO-OP charts; anxiety and depression measured by the Hospital Anxiety and Depression Scale and vitality measured by the subjective vitality score; motivation and processes of change: perceptions of autonomy support from the advisor, satisfaction of the needs for competence, autonomy, and relatedness via physical activity, and motivational regulations for exercise. Discussion This trial will determine whether an exercise referral programme based on Self Determination Theory increases physical activity and other health outcomes compared to a standard programme and will test the underlying SDT-based process model (perceived autonomy support, need satisfaction, motivation regulations, outcomes) via structural equation modelling. Trial registration The trial is registered as Current Controlled trials ISRCTN07682833. PMID:19505293

  20. Physics-based animation of large-scale splashing liquids, elastoplastic solids, and model-reduced flow

    NASA Astrophysics Data System (ADS)

    Gerszewski, Daniel James

    Physical simulation has become an essential tool in computer animation. As the use of visual effects increases, the need for simulating real-world materials increases. In this dissertation, we consider three problems in physics-based animation: large-scale splashing liquids, elastoplastic material simulation, and dimensionality reduction techniques for fluid simulation. Fluid simulation has been one of the greatest successes of physics-based animation, generating hundreds of research papers and a great many special effects over the last fifteen years. However, the animation of large-scale, splashing liquids remains challenging. We show that a novel combination of unilateral incompressibility, mass-full FLIP, and blurred boundaries is extremely well-suited to the animation of large-scale, violent, splashing liquids. Materials that incorporate both plastic and elastic deformations, also referred to as elastioplastic materials, are frequently encountered in everyday life. Methods for animating such common real-world materials are useful for effects practitioners and have been successfully employed in films. We describe a point-based method for animating elastoplastic materials. Our primary contribution is a simple method for computing the deformation gradient for each particle in the simulation. Given the deformation gradient, we can apply arbitrary constitutive models and compute the resulting elastic forces. Our method has two primary advantages: we do not store or compare to an initial rest configuration and we work directly with the deformation gradient. The first advantage avoids poor numerical conditioning and the second naturally leads to a multiplicative model of deformation appropriate for finite deformations. One of the most significant drawbacks of physics-based animation is that ever-higher fidelity leads to an explosion in the number of degrees of freedom. This problem leads us to the consideration of dimensionality reduction techniques. We present several enhancements to model-reduced fluid simulation that allow improved simulation bases and two-way solid-fluid coupling. Specifically, we present a basis enrichment scheme that allows us to combine data-driven or artistically derived bases with more general analytic bases derived from Laplacian Eigenfunctions. Additionally, we handle two-way solid-fluid coupling in a time-splitting fashion---we alternately timestep the fluid and rigid body simulators, while taking into account the effects of the fluid on the rigid bodies and vice versa. We employ the vortex panel method to handle solid-fluid coupling and use dynamic pressure to compute the effect of the fluid on rigid bodies. Taken together, these contributions have advanced the state-of-the art in physics-based animation and are practical enough to be used in production pipelines.

Top