A conceptual snow model with an analytic resolution of the heat and phase change equations
NASA Astrophysics Data System (ADS)
Riboust, Philippe; Le Moine, Nicolas; Thirel, Guillaume; Ribstein, Pierre
2017-04-01
Compared to degree-day snow models, physically-based snow models resolve more processes in an attempt to achieve a better representation of reality. Often these physically-based models resolve the heat transport equations in snow using a vertical discretization of the snowpack. The snowpack is decomposed into several layers in which the mechanical and thermal states of the snow are calculated. A higher number of layers in the snowpack allow for better accuracy but it also tends to increase the computational costs. In order to develop a snow model that estimates the temperature profile of snow with a lower computational cost, we used an analytical decomposition of the vertical profile using eigenfunctions (i.e. trigonometric functions adapted to the specific boundary conditions). The mass transfer of snow melt has also been estimated using an analytical conceptualization of runoff fingering and matrix flow. As external meteorological forcing, the model uses solar and atmospheric radiation, air temperature, atmospheric humidity and precipitations. It has been tested and calibrated at point scale at two different stations in the Alps: Col de Porte (France, 1325 m) and Weissfluhjoch (Switzerland, 2540 m). A sensitivity analysis of model parameters and model inputs will be presented together with a comparison with measured snow surface temperature, SWE, snow depth, temperature profile and snow melt data. The snow model is created in order to be ultimately coupled with hydrological models for rainfall-runoff modeling in mountainous areas. We hope to create a model faster than physically-based models but capable to estimate more physical processes than degree-day snow models. This should help to build a more reliable snow model capable of being easily calibrated by remote sensing and in situ observation or to assimilate these data for forecasting purposes.
NASA Technical Reports Server (NTRS)
Kim, E.; Tedesco, M.; Reichle, R.; Choudhury, B.; Peters-Lidard C.; Foster, J.; Hall, D.; Riggs, G.
2006-01-01
Microwave-based retrievals of snow parameters from satellite observations have a long heritage and have so far been generated primarily by regression-based empirical "inversion" methods based on snapshots in time. Direct assimilation of microwave radiance into physical land surface models can be used to avoid errors associated with such retrieval/inversion methods, instead utilizing more straightforward forward models and temporal information. This approach has been used for years for atmospheric parameters by the operational weather forecasting community with great success. Recent developments in forward radiative transfer modeling, physical land surface modeling, and land data assimilation are converging to allow the assembly of an integrated framework for snow/cold lands modeling and radiance assimilation. The objective of the Goddard snow radiance assimilation project is to develop such a framework and explore its capabilities. The key elements of this framework include: a forward radiative transfer model (FRTM) for snow, a snowpack physical model, a land surface water/energy cycle model, and a data assimilation scheme. In fact, multiple models are available for each element enabling optimization to match the needs of a particular study. Together these form a modular and flexible framework for self-consistent, physically-based remote sensing and water/energy cycle studies. In this paper we will describe the elements and the integration plan. All modules will operate within the framework of the Land Information System (LIS), a land surface modeling framework with data assimilation capabilities running on a parallel-node computing cluster. Capabilities for assimilation of snow retrieval products are already under development for LIS. We will describe plans to add radiance-based assimilation capabilities. Plans for validation activities using field measurements will also be discussed.
NASA Astrophysics Data System (ADS)
Varade, D. M.; Dikshit, O.
2017-12-01
Modeling and forecasting of snowmelt runoff are significant for understanding the hydrological processes in the cryosphere which requires timely information regarding snow physical properties such as liquid water content and density of snow in the topmost layer of the snowpack. Both the seasonal runoffs and avalanche forecasting are vastly dependent on the inherent physical characteristics of the snowpack which are conventionally measured by field surveys in difficult terrains at larger impending costs and manpower. With advances in remote sensing technology and the increase in the availability of satellite data, the frequency and extent of these surveys could see a declining trend in future. In this study, we present a novel approach for estimating snow wetness and snow density using visible and infrared bands that are available with most multi-spectral sensors. We define a trapezoidal feature space based on the spectral reflectance in the near infrared band and the Normalized Differenced Snow Index (NDSI), referred to as NIR-NDSI space, where dry snow and wet snow are observed in the left diagonal upper and lower right corners, respectively. The corresponding pixels are extracted by approximating the dry and wet edges which are used to develop a linear physical model to estimate snow wetness. Snow density is then estimated using the modeled snow wetness. Although the proposed approach has used Sentinel-2 data, it can be extended to incorporate data from other multi-spectral sensors. The estimated values for snow wetness and snow density show a high correlation with respect to in-situ measurements. The proposed model opens a new avenue for remote sensing of snow physical properties using multi-spectral data, which were limited in the literature.
USDA-ARS?s Scientific Manuscript database
Snow cover and its melt dominate regional climate and water resources in many of the world’s mountainous regions. Snowmelt timing and magnitude in mountains tend to be controlled by absorption of solar radiation and snow water equivalent, respectively, and yet both of these are very poorly known ev...
Rajiv Prasad; David G. Tarboton; Glen E. Liston; Charles H. Luce; Mark S. Seyfried
2001-01-01
In this paper a physically based snow transport model (SnowTran-3D) was used to simulate snow drifting over a 30 m grid and was compared to detailed snow water equivalence (SWE) surveys on three dates within a small 0.25 km2 subwatershed, Upper Sheep Creek. Two precipitation scenarios and two vegetation scenarios were used to carry out four snow transport model runs in...
Climate Sensitivity to Realistic Solar Heating of Snow and Ice
NASA Astrophysics Data System (ADS)
Flanner, M.; Zender, C. S.
2004-12-01
Snow and ice-covered surfaces are highly reflective and play an integral role in the planetary radiation budget. However, GCMs typically prescribe snow reflection and absorption based on minimal knowledge of snow physical characteristics. We performed climate sensitivity simulations with the NCAR CCSM including a new physically-based multi-layer snow radiative transfer model. The model predicts the effects of vertically resolved heating, absorbing aerosol, and snowpack transparency on snowpack evolution and climate. These processes significantly reduce the model's near-infrared albedo bias over deep snowpacks. While the current CCSM implementation prescribes all solar radiative absorption to occur in the top 2 cm of snow, we estimate that about 65% occurs beneath this level. Accounting for the vertical distribution of snowpack heating and more realistic reflectance significantly alters snowpack depth, surface albedo, and surface air temperature over Northern Hemisphere regions. Implications for the strength of the ice-albedo feedback will be discussed.
Physics-based distributed snow models in the operational arena: Current and future challenges
NASA Astrophysics Data System (ADS)
Winstral, A. H.; Jonas, T.; Schirmer, M.; Helbig, N.
2017-12-01
The demand for modeling tools robust to climate change and weather extremes along with coincident increases in computational capabilities have led to an increase in the use of physics-based snow models in operational applications. Current operational applications include the WSL-SLF's across Switzerland, ASO's in California, and USDA-ARS's in Idaho. While the physics-based approaches offer many advantages there remain limitations and modeling challenges. The most evident limitation remains computation times that often limit forecasters to a single, deterministic model run. Other limitations however remain less conspicuous amidst the assumptions that these models require little to no calibration based on their foundation on physical principles. Yet all energy balance snow models seemingly contain parameterizations or simplifications of processes where validation data are scarce or present understanding is limited. At the research-basin scale where many of these models were developed these modeling elements may prove adequate. However when applied over large areas, spatially invariable parameterizations of snow albedo, roughness lengths and atmospheric exchange coefficients - all vital to determining the snowcover energy balance - become problematic. Moreover as we apply models over larger grid cells, the representation of sub-grid variability such as the snow-covered fraction adds to the challenges. Here, we will demonstrate some of the major sensitivities of distributed energy balance snow models to particular model constructs, the need for advanced and spatially flexible methods and parameterizations, and prompt the community for open dialogue and future collaborations to further modeling capabilities.
NASA Astrophysics Data System (ADS)
King, J. M.; Kasurak, A.; Kelly, R. E.; Duguay, C. R.; Derksen, C.; Rutter, N.; Sandells, M.; Watts, T.
2012-12-01
During the winter of 2010-2011 ground-based Ku- (17.2 GHz) and X-band (9.6 GHz) scatterometers were deployed near Churchill, Manitoba, Canada to evaluate the potential for dual-frequency observation of tundra snow properties. Field-based scatterometer observations when combined with in-situ snowpack properties and physically based models, provide the means necessary to develop and evaluate local scale property retrievals. To form meaningful analysis of the observed physical interaction space, potential sources of bias and error in the observed backscatter must be identified and quantified. This paper explores variation in observed Ku- and X-band backscatter in relation to the physical complexities of shallow tundra snow whose properties evolve at scales smaller than the observing instrument. The University of Waterloo scatterometer (UW-Scat) integrates observations over wide azimuth sweeps, several meters in length, to minimize errors resulting from radar fade and poor signal-to-noise ratios. Under ideal conditions, an assumption is made that the observed snow target is homogeneous. Despite an often-outward appearance of homogeneity, topographic elements of the Canadian open tundra produce significant local scale variability in snow properties, including snow water equivalent (SWE). Snow at open tundra sites observed during this campaign was found to vary by as much as 20 cm in depth and 40 mm in SWE within the scatterometer field of view. Previous studies suggest that changes in snow properties on this order will produce significant variation in backscatter, potentially introducing bias into products used for analysis. To assess the influence of sub-scan variability, extensive snow surveys were completed within the scatterometer field of view immediately after each scan at 32 sites. A standardized sampling protocol captured a grid of geo-located measurements, characterizing the horizontal variability of bulk properties including depth, density, and SWE. Based upon these measurements, continuous surfaces were generated to represent the observed snow target. Two snow pits were also completed within the field of view, quantifying vertical variability in density, permittivity, temperature, grain size, and stratigraphy. A new post-processing method is applied to divide the previously aggregated scatterometer observations into smaller sub-sets, which are then co-located with the physical snow observations. Sub-scan backscatter coefficients and their relationship to tundra snowpack parameters are then explored. The results presented here provide quantitative methods relevant to the radar observation science of snow and, therefore, to potential future space-borne missions such as the Cold Regions Hydrology High-resolution Observatory (CoReH2O), a candidate European Space Agency Earth Explorer mission. Moreover, this paper provides guidelines for future studies exploring ground-based scatterometer observations of tundra snow.
Snow multivariable data assimilation for hydrological predictions in Alpine sites
NASA Astrophysics Data System (ADS)
Piazzi, Gaia; Thirel, Guillaume; Campo, Lorenzo; Gabellani, Simone; Stevenin, Hervè
2017-04-01
Snowpack dynamics (snow accumulation and ablation) strongly impacts on hydrological processes in Alpine areas. During the winter season the presence of snow cover (snow accumulation) reduces the drainage in the basin with a resulting lower watershed time of concentration in case of possible rainfall events. Moreover, the release of the significant water volume stored in winter (snowmelt) considerably contributes to the total discharge during the melting period. Therefore when modeling hydrological processes in snow-dominated catchments the quality of predictions deeply depends on how the model succeeds in catching snowpack dynamics. The integration of a hydrological model with a snow module allows improving predictions of river discharges. Besides the well-known modeling limitations (uncertainty in parameterizations; possible errors affecting both meteorological forcing data and initial conditions; approximations in boundary conditions), there are physical factors that make an exhaustive reconstruction of snow dynamics complicated: snow intermittence in space and time, stratification and slow phenomena like metamorphism processes, uncertainty in snowfall evaluation, wind transportation, etc. Data Assimilation (DA) techniques provide an objective methodology to combine several independent snow-related data sources (model simulations, ground-based measurements and remote sensed observations) in order to obtain the most likely estimate of snowpack state. This study presents SMASH (Snow Multidata Assimilation System for Hydrology), a multi-layer snow dynamic model strengthened by a multivariable DA framework for hydrological purposes. The model is physically based on mass and energy balances and can be used to reproduce the main physical processes occurring within the snowpack: accumulation, density dynamics, melting, sublimation, radiative balance, heat and mass exchanges. The model is driven by observed forcing meteorological data (air temperature, wind velocity, relative air humidity, precipitation and incident solar radiation) to provide a complete estimate of snowpack state. The implementation of a DA scheme enables to assimilate simultaneously ground-based observations of different snow-related variables (snow depth, snow density, surface temperature and albedo). SMASH performances are evaluated by using observed data supplied by meteorological stations located in three experimental Alpine sites: Col de Porte (1325 m, France); Torgnon (2160 m, Italy); Weissfluhjoch (2540 m, Switzerland). A comparison analysis between the resulting performaces of Particle Filter and Ensemble Kalman Filter schemes is shown.
Physical and Chemical Properties of Seasonal Snow and the Impacts on Albedo in New Hampshire, USA
NASA Astrophysics Data System (ADS)
Adolph, A. C.; Albert, M. R.; Amante, J.; Dibb, J. E.
2014-12-01
Snow albedo is critical to surface energy budgets and thus to the timing of mid-winter and vernal melt events in seasonal snow packs. Timing of these melt events is important in predicting flooding, understanding plant and animal phenology, and the availability of winter recreational activity. The state of New Hampshire experiences large spatial and temporal variability in snow albedo as a result of differences in meteorological conditions, physical snow structure, and chemical impurities in the snow, particularly highly absorptive black carbon (BC) and dust particles. This work focuses on the winters of 2012-2013 and 2013-2014, comparing three intensive study sites. Data collected at these sites include sub-hourly meteorological data, near daily measurements of snow depth, snow density, surface IR temperature, specific surface area (SSA) from contact spectroscopy, and spectrally resolved snow albedo using an ASD FieldSpec4 throughout the winter season. Additionally, snow samples were analyzed for black carbon content and other chemical impurities including Cl-, NO3-, NH4 , K , Na , Mg2+ , Ca2+ and SO42-. For each storm event at the three intensive sites, moisture sources and paths were determined using HYPLIT back trajectory modeling to determine potential sources of black carbon and other impurities in the snow. Storms with terrestrial-based paths across the US Midwest and Canada resulted in higher BC content than storms with ocean-based paths and sources. In addition to the variable storm path between sites and between years, the second year of study was on average 2.5°C colder than the first year, impacting duration of snow cover at each site and the SSA of surface snow which is sensitive to frequency of snow events and relies on cold temperatures to reduce grain metamorphism. Combining an understanding of storm frequency and path with physical and chemical attributes of the snow allows us to investigate snow albedo sensitivities with implications for understanding the impacts of future climate change on snow albedo in the Northeastern US.
a Physical Parameterization of Snow Albedo for Use in Climate Models.
NASA Astrophysics Data System (ADS)
Marshall, Susan Elaine
The albedo of a natural snowcover is highly variable ranging from 90 percent for clean, new snow to 30 percent for old, dirty snow. This range in albedo represents a difference in surface energy absorption of 10 to 70 percent of incident solar radiation. Most general circulation models (GCMs) fail to calculate the surface snow albedo accurately, yet the results of these models are sensitive to the assumed value of the snow albedo. This study replaces the current simple empirical parameterizations of snow albedo with a physically-based parameterization which is accurate (within +/- 3% of theoretical estimates) yet efficient to compute. The parameterization is designed as a FORTRAN subroutine (called SNOALB) which can be easily implemented into model code. The subroutine requires less then 0.02 seconds of computer time (CRAY X-MP) per call and adds only one new parameter to the model calculations, the snow grain size. The snow grain size can be calculated according to one of the two methods offered in this thesis. All other input variables to the subroutine are available from a climate model. The subroutine calculates a visible, near-infrared and solar (0.2-5 μm) snow albedo and offers a choice of two wavelengths (0.7 and 0.9 mu m) at which the solar spectrum is separated into the visible and near-infrared components. The parameterization is incorporated into the National Center for Atmospheric Research (NCAR) Community Climate Model, version 1 (CCM1), and the results of a five -year, seasonal cycle, fixed hydrology experiment are compared to the current model snow albedo parameterization. The results show the SNOALB albedos to be comparable to the old CCM1 snow albedos for current climate conditions, with generally higher visible and lower near-infrared snow albedos using the new subroutine. However, this parameterization offers a greater predictability for climate change experiments outside the range of current snow conditions because it is physically-based and not tuned to current empirical results.
A comparison study of two snow models using data from different Alpine sites
NASA Astrophysics Data System (ADS)
Piazzi, Gaia; Riboust, Philippe; Campo, Lorenzo; Cremonese, Edoardo; Gabellani, Simone; Le Moine, Nicolas; Morra di Cella, Umberto; Ribstein, Pierre; Thirel, Guillaume
2017-04-01
The hydrological balance of an Alpine catchment is strongly affected by snowpack dynamics. Melt-water supplies a significant component of the annual water budget, both in terms of soil moisture and runoff, which play a critical role in floods generation and impact water resource management in snow-dominated basins. Several snow models have been developed with variable degrees of complexity, mainly depending on their target application and the availability of computational resources and data. According to the level of detail, snow models range from statistical snowmelt-runoff and degree-day methods using composite snow-soil or explicit snow layer(s), to physically-based and energy balance snow models, consisting of detailed internal snow-process schemes. Intermediate-complexity approaches have been widely developed resulting in simplified versions of the physical parameterization schemes with a reduced snowpack layering. Nevertheless, an increasing model complexity does not necessarily entail improved model simulations. This study presents a comparison analysis between two snow models designed for hydrological purposes. The snow module developed at UPMC and IRSTEA is a mono-layer energy balance model analytically resolving heat and phase change equations into the snowpack. Vertical mass exchange into the snowpack is also analytically resolved. The model is intended to be used for hydrological studies but also to give a realistic estimation of the snowpack state at watershed scale (SWE and snow depth). The structure of the model allows it to be easily calibrated using snow observation. This model is further presented in EGU2017-7492. The snow module of SMASH (Snow Multidata Assimilation System for Hydrology) consists in a multi-layer snow dynamic scheme. It is physically based on mass and energy balances and it reproduces the main physical processes occurring within the snowpack: accumulation, density dynamics, melting, sublimation, radiative balance, heat and mass exchanges. The model is driven by observed forcing meteorological data (air temperature, wind velocity, relative air humidity, precipitation and incident solar radiation) to provide an estimation of the snowpack state. In this study, no DA is used. For more details on the DA scheme, please see EGU2017-7777. Observed data supplied by meteorological stations located in three experimental Alpine sites are used: Col de Porte (1325 m, France); Torgnon (2160 m, Italy); Weissfluhjoch (2540 m, Switzerland). Performances of the two models are compared through evaluations of snow mass, snow depth, albedo and surface temperature simulations in order to better understand and pinpoint limits and potentialities of the analyzed schemes and the impact of different parameterizations on models simulations.
NASA Astrophysics Data System (ADS)
Raleigh, M. S.; Lundquist, J. D.; Clark, M. P.
2015-07-01
Physically based models provide insights into key hydrologic processes but are associated with uncertainties due to deficiencies in forcing data, model parameters, and model structure. Forcing uncertainty is enhanced in snow-affected catchments, where weather stations are scarce and prone to measurement errors, and meteorological variables exhibit high variability. Hence, there is limited understanding of how forcing error characteristics affect simulations of cold region hydrology and which error characteristics are most important. Here we employ global sensitivity analysis to explore how (1) different error types (i.e., bias, random errors), (2) different error probability distributions, and (3) different error magnitudes influence physically based simulations of four snow variables (snow water equivalent, ablation rates, snow disappearance, and sublimation). We use the Sobol' global sensitivity analysis, which is typically used for model parameters but adapted here for testing model sensitivity to coexisting errors in all forcings. We quantify the Utah Energy Balance model's sensitivity to forcing errors with 1 840 000 Monte Carlo simulations across four sites and five different scenarios. Model outputs were (1) consistently more sensitive to forcing biases than random errors, (2) generally less sensitive to forcing error distributions, and (3) critically sensitive to different forcings depending on the relative magnitude of errors. For typical error magnitudes found in areas with drifting snow, precipitation bias was the most important factor for snow water equivalent, ablation rates, and snow disappearance timing, but other forcings had a more dominant impact when precipitation uncertainty was due solely to gauge undercatch. Additionally, the relative importance of forcing errors depended on the model output of interest. Sensitivity analysis can reveal which forcing error characteristics matter most for hydrologic modeling.
NASA Technical Reports Server (NTRS)
Stieglitz, Marc; Ducharne, Agnes; Koster, Randy; Suarez, Max; Busalacchi, Antonio J. (Technical Monitor)
2000-01-01
The three-layer snow model is coupled to the global catchment-based Land Surface Model (LSM) of the NASA Seasonal to Interannual Prediction Project (NSIPP) project, and the combined models are used to simulate the growth and ablation of snow cover over the North American continent for the period 1987-1988. The various snow processes included in the three-layer model, such as snow melting and re-freezing, dynamic changes in snow density, and snow insulating properties, are shown (through a comparison with the corresponding simulation using a much simpler snow model) to lead to an improved simulation of ground thermodynamics on the continental scale.
Simulation of snow and soil water content as a basis for satellite retrievals
USDA-ARS?s Scientific Manuscript database
It is not yet possible to determine whether the snow has changed over time despite collection of passive microwave data for more than thirty years. Physically-based, but computationally simple snow and soil models have been coupled to form the basis of a data assimilation system for retrievals of sn...
Snow multivariable data assimilation for hydrological predictions in mountain areas
NASA Astrophysics Data System (ADS)
Piazzi, Gaia; Campo, Lorenzo; Gabellani, Simone; Rudari, Roberto; Castelli, Fabio; Cremonese, Edoardo; Morra di Cella, Umberto; Stevenin, Hervé; Ratto, Sara Maria
2016-04-01
The seasonal presence of snow on alpine catchments strongly impacts both surface energy balance and water resource. Thus, the knowledge of the snowpack dynamics is of critical importance for several applications, such as water resource management, floods prediction and hydroelectric power production. Several independent data sources provide information about snowpack state: ground-based measurements, satellite data and physical models. Although all these data types are reliable, each of them is affected by specific flaws and errors (respectively dependency on local conditions, sensor biases and limitations, initialization and poor quality forcing data). Moreover, there are physical factors that make an exhaustive reconstruction of snow dynamics complicated: snow intermittence in space and time, stratification and slow phenomena like metamorphism processes, uncertainty in snowfall evaluation, wind transportation, etc. Data Assimilation (DA) techniques provide an objective methodology to combine observational and modeled information to obtain the most likely estimate of snowpack state. Indeed, by combining all the available sources of information, the implementation of DA schemes can quantify and reduce the uncertainties of the estimations. This study presents SMASH (Snow Multidata Assimilation System for Hydrology), a multi-layer snow dynamic model, strengthened by a robust multivariable data assimilation algorithm. The model is physically based on mass and energy balances and can be used to reproduce the main physical processes occurring within the snowpack: accumulation, density dynamics, melting, sublimation, radiative balance, heat and mass exchanges. The model is driven by observed forcing meteorological data (air temperature, wind velocity, relative air humidity, precipitation and incident solar radiation) to provide a complete estimate of snowpack state. The implementation of an Ensemble Kalman Filter (EnKF) scheme enables to assimilate simultaneously ground-based and remotely sensed data of different snow-related variables (snow albedo and surface temperature, Snow Water Equivalent from passive microwave sensors and Snow Cover Area). SMASH performance was evaluated in the period June 2012 - December 2013 at the meteorological station of Torgnon (Tellinod, 2 160 msl), located in Aosta Valley, a mountain region in northwestern Italy. The EnKF algorithm was firstly tested by assimilating several ground-based measurements: snow depth, land surface temperature, snow density and albedo. The assimilation of snow observed data revealed an overall considerable enhancement of model predictions with respect to the open loop experiments. A first attempt to integrate also remote sensed information was performed by assimilating the Land Surface Temperature (LST) from METEOSAT Second Generation (MSG), leading to good results. The analysis allowed identifying the snow depth and the snowpack surface temperature as the most impacting variables in the assimilation process. In order to pinpoint an optimal number of ensemble instances, SMASH performances were also quantitatively evaluated by varying the instances amount. Furthermore, the impact of the data assimilation frequency was analyzed by varying the assimilation time step (3h, 6h, 12h, 24h).
NASA Technical Reports Server (NTRS)
Picard, Ghislain; Brucker, Ludovic; Roy, Alexandre; DuPont, FLorent; Champollion, Nicolas; Morin, Samuel
2014-01-01
Microwave radiometer observations have been used to retrieve snow depth and snow water equivalent on both land and sea ice, snow accumulation on ice sheets, melt events, snow temperature, and snow grain size. Modeling the microwave emission from snow and ice physical properties is crucial to improve the quality of these retrievals. It also is crucial to improve our understanding of the radiative transfer processes within the snow cover, and the snow properties most relevant in microwave remote sensing. Our objective is to present a recent microwave emission model and its validation. The model is named DMRT-ML (DMRT Multi-Layer).
NASA Technical Reports Server (NTRS)
Mocko, David M.; Sud, Y. C.
2000-01-01
Refinements to the snow-physics scheme of SSiB (Simplified Simple Biosphere Model) are described and evaluated. The upgrades include a partial redesign of the conceptual architecture to better simulate the diurnal temperature of the snow surface. For a deep snowpack, there are two separate prognostic temperature snow layers - the top layer responds to diurnal fluctuations in the surface forcing, while the deep layer exhibits a slowly varying response. In addition, the use of a very deep soil temperature and a treatment of snow aging with its influence on snow density is parameterized and evaluated. The upgraded snow scheme produces better timing of snow melt in GSWP-style simulations using ISLSCP Initiative I data for 1987-1988 in the Russian Wheat Belt region. To simulate more realistic runoff in regions with high orographic variability, additional improvements are made to SSiB's soil hydrology. These improvements include an orography-based surface runoff scheme as well as interaction with a water table below SSiB's three soil layers. The addition of these parameterizations further help to simulate more realistic runoff and accompanying prognostic soil moisture fields in the GSWP-style simulations. In intercomparisons of the performance of the new snow-physics SSiB with its earlier versions using an 18-year single-site dataset from Valdai Russia, the version of SSiB described in this paper again produces the earliest onset of snow melt. Soil moisture and deep soil temperatures also compare favorably with observations.
NASA Astrophysics Data System (ADS)
François, Hugues; Spandre, Pierre; Morin, Samuel; George-Marcelpoil, Emmanuelle; Lafaysse, Matthieu; Lejeune, Yves
2016-04-01
In order to face climate change, meteorological variability and the recurrent lack of natural snow on the ground, ski resorts adaptation often rely on technical responses. Indeed, since the occurrence of episodes with insufficient snowfalls in the early 1990's, snowmaking has become an ordinary practice of snow management, comparable to grooming, and contributes to optimise the operation of ski resorts. It also participates to the growth of investments and is associated with significant operating costs, and thus represents a new source of vulnerability. The assessment of the actual effects of snowmaking and of snow management practices in general is a real concern for the future of the ski industry. The principal model use to simulate snow conditions in resorts, Ski Sim, has also been moving this way. Its developers introduced an artificial input of snow on ski area to complete natural snowfalls and considered different organisations of ski lifts (lower and upper zones). However the use of a degree-day model prevents them to consider the specific properties of artificial snow and the impact of grooming on the snowpack. A first proof of concept in the French Alps has shown the feasibility and the interest to cross the geographic model of ski areas and the output of the physically-based reanalysis of snow conditions SAFRAN - Crocus (François et al., CRST 2014). Since these initial developments, several ways have been explored to refine our model. A new model of ski areas has been developed. Our representation is now based on gravity derived from a DEM and ski lift localisation. A survey about snow management practices also allowed us to define criteria in order to model snowmaking areas given ski areas properties and tourism infrastructures localisation. We also suggest to revisit the assessment of ski resort viability based on the "one hundred days rule" based on natural snow depth only. Indeed, the impact of snow management must be considered so as to propose reliability indices that are both physically and socio-economically meaningful. Our contribution proposes to present these works in the context of a test resort in the French Alps and its snow conditions during the period 2000-2012. In order to show the impact of different management practices three configurations are considered: natural snowfalls, groomed natural snowfalls and managed snow (natural and artificial snowpack combined with grooming) and discuss the implications of the results in terms of the assessment of the climate vulnerability of ski resorts.
Modeling snow-crystal growth: a three-dimensional mesoscopic approach.
Gravner, Janko; Griffeath, David
2009-01-01
We introduce a three-dimensional, computationally feasible, mesoscopic model for snow-crystal growth, based on diffusion of vapor, anisotropic attachment, and a boundary layer. Several case studies are presented that faithfully replicate most observed snow-crystal morphology, an unusual achievement for a mathematical model. In particular, many of the most striking physical specimens feature both facets and branches, and our model provides an explanation for this phenomenon. We also duplicate many other observed traits, including ridges, ribs, sandwich plates, and hollow columns, as well as various dynamic instabilities. The concordance of observed phenomena suggests that the ingredients in our model are the most important ones in the development of physical snow crystals.
NASA Astrophysics Data System (ADS)
Costa, D.; Pomeroy, J. W.; Wheater, H. S.
2017-12-01
Early ionic pulses in spring snowmelt can cause the temporary acidification of streams and account for a significant portion of the total annual nutrient export, particularly in seasonally snow-covered areas where the frozen ground may limit runoff-soil contact and cause the rapid delivery of these ions to streams. Ionic pulses are a consequence of snow ion exclusion, a process induced by snow metamorphism where ions are segregated from the snow grains losing mass to the surface of the grains gaining mass. While numerous studies have been successful in providing quantitative evidence of this process, few mechanistic mathematical models have been proposed for diagnostic and prediction. A few early modelling attempts have been successful in capturing this process assuming transport through porous media with variable porosity, however their implementation is difficult because they require complex models of snow physics to resolve the evolution of in-snow properties and processes during snowmelt, such as heat conduction, metamorphism, melt and water flow. Furthermore, initial snowpack to snow-surface ion concentration ratios are difficult to measure but are required to initiate these models and ion exclusion processes are not represented in a physically-based transparent fashion. In this research, a standalone numerical model has been developed to capture ionic pulses in snowmelt by emulating solute leaching from snow grains during melt and its subsequent transport by the percolating meltwater. Estimating snow porosity and water content dynamics is shown to be a viable alternative to deployment of complex snow physics models for this purpose. The model was applied to four study sites located in the Arctic and in Sierra Nevada to test for different climatic and hydrological conditions. The model compares very well with observations and could capture both the timing and magnitude of early melt ionic pulses accurately. This study demonstrates how physically based approaches can provide successful simulations of the spatial and temporal fluxes of snowmelt ions, which can be used to improve the prediction of nutrient export in cold regions for the spring freshet.
NASA Astrophysics Data System (ADS)
Clark, M. P.; Nijssen, B.; Lundquist, J. D.; Luce, C. H.; Musselman, K. N.; Wayand, N. E.; Ou, M.; Lapo, K. E.
2016-12-01
Early ionic pulses in spring snowmelt can cause the temporary acidification of streams and account for a significant portion of the total annual nutrient export, particularly in seasonally snow-covered areas where the frozen ground may limit runoff-soil contact and cause the rapid delivery of these ions to streams. Ionic pulses are a consequence of snow ion exclusion, a process induced by snow metamorphism where ions are segregated from the snow grains losing mass to the surface of the grains gaining mass. While numerous studies have been successful in providing quantitative evidence of this process, few mechanistic mathematical models have been proposed for diagnostic and prediction. A few early modelling attempts have been successful in capturing this process assuming transport through porous media with variable porosity, however their implementation is difficult because they require complex models of snow physics to resolve the evolution of in-snow properties and processes during snowmelt, such as heat conduction, metamorphism, melt and water flow. Furthermore, initial snowpack to snow-surface ion concentration ratios are difficult to measure but are required to initiate these models and ion exclusion processes are not represented in a physically-based transparent fashion. In this research, a standalone numerical model has been developed to capture ionic pulses in snowmelt by emulating solute leaching from snow grains during melt and its subsequent transport by the percolating meltwater. Estimating snow porosity and water content dynamics is shown to be a viable alternative to deployment of complex snow physics models for this purpose. The model was applied to four study sites located in the Arctic and in Sierra Nevada to test for different climatic and hydrological conditions. The model compares very well with observations and could capture both the timing and magnitude of early melt ionic pulses accurately. This study demonstrates how physically based approaches can provide successful simulations of the spatial and temporal fluxes of snowmelt ions, which can be used to improve the prediction of nutrient export in cold regions for the spring freshet.
The application of depletion curves for parameterization of subgrid variability of snow
C. H. Luce; D. G. Tarboton
2004-01-01
Parameterization of subgrid-scale variability in snow accumulation and melt is important for improvements in distributed snowmelt modelling. We have taken the approach of using depletion curves that relate fractional snowcovered area to element-average snow water equivalent to parameterize the effect of snowpack heterogeneity within a physically based mass and energy...
Monitoring Snow Using Geostationary Satellite Retrievals During the SAAWSO Project
NASA Astrophysics Data System (ADS)
Rabin, Robert M.; Gultepe, Ismail; Kuligowski, Robert J.; Heidinger, Andrew K.
2016-09-01
The SAAWSO (Satellite Applications for Arctic Weather and SAR (Search And Rescue) Operations) field programs were conducted by Environment Canada near St. Johns, NL and Goose Bay, NL in the winters of 2012-13 and 2013-14, respectively. The goals of these programs were to validate satellite-based nowcasting products, including snow amount, wind intensity, and cloud physical parameters (e.g., cloud cover), over northern latitudes with potential applications to Search And Rescue (SAR) operations. Ground-based in situ sensors and remote sensing platforms were used to measure microphysical properties of precipitation, clouds and fog, radiation, temperature, moisture and wind profiles. Multi-spectral infrared observations obtained from Geostationary Operational Environmental Satellite (GOES)-13 provided estimates of cloud top temperature and height, phase (water, ice), hydrometer size, extinction, optical depth, and horizontal wind patterns at 15 min intervals. In this work, a technique developed for identifying clouds capable of producing high snowfall rates and incorporating wind information from the satellite observations is described. The cloud top physical properties retrieved from operational satellite observations are validated using measurements obtained from the ground-based in situ and remote sensing platforms collected during two precipitation events: a blizzard heavy snow storm case and a moderate snow event. The retrieved snow precipitation rates are found to be comparable to those of ground-based platform measurements in the heavy snow event.
NASA Technical Reports Server (NTRS)
Brucker, Ludovic; Picard, Ghislain; Roy, Alexandre; Dupont, Florent; Fily, Michel; Royer, Alain
2014-01-01
Microwave radiometer observations have been used to retrieve snow depth and snow water equivalent on both land and sea ice, snow accumulation on ice sheets, melt events, snow temperature, and snow grain size. Modeling the microwave emission from snow and ice physical properties is crucial to improve the quality of these retrievals. It also is crucial to improve our understanding of the radiative transfer processes within the snow cover, and the snow properties most relevant in microwave remote sensing. Our objective is to present a recent microwave emission model and its validation. The model is named DMRT-ML (DMRT Multi-Layer), and is available at http:lgge.osug.frpicarddmrtml.
Developing an A Priori Database for Passive Microwave Snow Water Retrievals Over Ocean
NASA Astrophysics Data System (ADS)
Yin, Mengtao; Liu, Guosheng
2017-12-01
A physically optimized a priori database is developed for Global Precipitation Measurement Microwave Imager (GMI) snow water retrievals over ocean. The initial snow water content profiles are derived from CloudSat Cloud Profiling Radar (CPR) measurements. A radiative transfer model in which the single-scattering properties of nonspherical snowflakes are based on the discrete dipole approximate results is employed to simulate brightness temperatures and their gradients. Snow water content profiles are then optimized through a one-dimensional variational (1D-Var) method. The standard deviations of the difference between observed and simulated brightness temperatures are in a similar magnitude to the observation errors defined for observation error covariance matrix after the 1D-Var optimization, indicating that this variational method is successful. This optimized database is applied in a Bayesian retrieval snow water algorithm. The retrieval results indicated that the 1D-Var approach has a positive impact on the GMI retrieved snow water content profiles by improving the physical consistency between snow water content profiles and observed brightness temperatures. Global distribution of snow water contents retrieved from the a priori database is compared with CloudSat CPR estimates. Results showed that the two estimates have a similar pattern of global distribution, and the difference of their global means is small. In addition, we investigate the impact of using physical parameters to subset the database on snow water retrievals. It is shown that using total precipitable water to subset the database with 1D-Var optimization is beneficial for snow water retrievals.
Development of a land surface model with coupled snow and frozen soil physics
NASA Astrophysics Data System (ADS)
Wang, Lei; Zhou, Jing; Qi, Jia; Sun, Litao; Yang, Kun; Tian, Lide; Lin, Yanluan; Liu, Wenbin; Shrestha, Maheswor; Xue, Yongkang; Koike, Toshio; Ma, Yaoming; Li, Xiuping; Chen, Yingying; Chen, Deliang; Piao, Shilong; Lu, Hui
2017-06-01
Snow and frozen soil are important factors that influence terrestrial water and energy balances through snowpack accumulation and melt and soil freeze-thaw. In this study, a new land surface model (LSM) with coupled snow and frozen soil physics was developed based on a hydrologically improved LSM (HydroSiB2). First, an energy-balance-based three-layer snow model was incorporated into HydroSiB2 (hereafter HydroSiB2-S) to provide an improved description of the internal processes of the snow pack. Second, a universal and simplified soil model was coupled with HydroSiB2-S to depict soil water freezing and thawing (hereafter HydroSiB2-SF). In order to avoid the instability caused by the uncertainty in estimating water phase changes, enthalpy was adopted as a prognostic variable instead of snow/soil temperature in the energy balance equation of the snow/frozen soil module. The newly developed models were then carefully evaluated at two typical sites of the Tibetan Plateau (TP) (one snow covered and the other snow free, both with underlying frozen soil). At the snow-covered site in northeastern TP (DY), HydroSiB2-SF demonstrated significant improvements over HydroSiB2-F (same as HydroSiB2-SF but using the original single-layer snow module of HydroSiB2), showing the importance of snow internal processes in three-layer snow parameterization. At the snow-free site in southwestern TP (Ngari), HydroSiB2-SF reasonably simulated soil water phase changes while HydroSiB2-S did not, indicating the crucial role of frozen soil parameterization in depicting the soil thermal and water dynamics. Finally, HydroSiB2-SF proved to be capable of simulating upward moisture fluxes toward the freezing front from the underlying soil layers in winter.
Snow Water Equivalent estimation based on satellite observation
NASA Astrophysics Data System (ADS)
Macchiavello, G.; Pesce, F.; Boni, G.; Gabellani, S.
2009-09-01
The availability of remotely sensed images and them analysis is a powerful tool for monitoring the extension and typology of snow cover over territory where the in situ measurements are often difficult. Information on snow are fundamental for monitoring and forecasting the available water above all in regions at mid latitudes as Mediterranean where snowmelt may cause floods. The hydrological model requirements and the daily acquisitions of MODIS (Moderate Resolution Imaging Spectroradiometer), drove, in previous research activities, to the development of a method to automatically map the snow cover from multi-spectral images. But, the major hydrological parameter related to the snow pack is the Snow Water Equivalent (SWE). This represents a direct measure of stored water in the basin. Because of it, the work was focused to the daily estimation of SWE from MODIS images. But, the complexity of this aim, based only on optical data, doesn’t find any information in literature. Since, from the spectral range of MODIS data it is not possible to extract a direct relation between spectral information and the SWE. Then a new method, respectful of the physic of the snow, was defined and developed. Reminding that the snow water equivalent is the product of the three factors as snow density, snow depth and the snow covered areas, the proposed approach works separately on each of these physical behaviors. Referring to the physical characteristic of snow, the snow density is function of the snow age, then it was studied a new method to evaluate this. Where, a module for snow age simulation from albedo information was developed. It activates an age counter updated by new snow information set to estimate snow age from zero accumulation status to the end of melting season. The height of the snow pack, can be retrieved by adopting relation between vegetation and snow depth distributions. This computes snow height distribution by the relation between snow cover fraction and the forest canopy density. Finally, the SWE has to be calculated for the snow covered areas, detected by means of a previously developed decision tree classifier able to classify snow cover by self selecting rules in a statistically optimum way. The advantages introduced from this work are many. Firstly, applying a suitable method with data features, it is possible to automatically obtain snow cover description with high frequency. Moreover, the advantages of the modularity in the proposed approach allows to improve the three factors estimation in an independent way. Limitations lie into clouds problem that affects results by obscuring the observed territory, that is bounded by fusing temporal and spatial information. Then the spatial resolution of data, satisfactory with the scale of hydrological models, mismatch with the available in situ point information, causing difficulties for a method validation or calibration. However this working flow results computationally cost-effectiveness, robust to the radiometric noise of the original data, provides spatially extended and frequent information.
NASA Astrophysics Data System (ADS)
Kim, R. S.; Durand, M. T.; Li, D.; Baldo, E.; Margulis, S. A.; Dumont, M.; Morin, S.
2017-12-01
This paper presents a newly-proposed snow depth retrieval approach for mountainous deep snow using airborne multifrequency passive microwave (PM) radiance observation. In contrast to previous snow depth estimations using satellite PM radiance assimilation, the newly-proposed method utilized single flight observation and deployed the snow hydrologic models. This method is promising since the satellite-based retrieval methods have difficulties to estimate snow depth due to their coarse resolution and computational effort. Indeed, this approach consists of particle filter using combinations of multiple PM frequencies and multi-layer snow physical model (i.e., Crocus) to resolve melt-refreeze crusts. The method was performed over NASA Cold Land Processes Experiment (CLPX) area in Colorado during 2002 and 2003. Results showed that there was a significant improvement over the prior snow depth estimates and the capability to reduce the prior snow depth biases. When applying our snow depth retrieval algorithm using a combination of four PM frequencies (10.7,18.7, 37.0 and 89.0 GHz), the RMSE values were reduced by 48 % at the snow depth transects sites where forest density was less than 5% despite deep snow conditions. This method displayed a sensitivity to different combinations of frequencies, model stratigraphy (i.e. different number of layering scheme for snow physical model) and estimation methods (particle filter and Kalman filter). The prior RMSE values at the forest-covered areas were reduced by 37 - 42 % even in the presence of forest cover.
NASA Astrophysics Data System (ADS)
Spandre, Pierre; François, Hugues; Morin, Samuel; George-Marcelpoil, Emmanuelle; Lafaysse, Matthieu
2017-04-01
Investigations of the capacity of ski resorts to anticipate, cope with and recover from the impact of natural snow scarcity through snow management (grooming, snowmaking) have been realized in most of the major regions in terms of international ski offer although not in the French Alps hitherto. The present work therefore introduces an innovative approach for the investigation of socio economic implications of changes in snow conditions for the French Alps ski resorts based on a panel of 129 resorts representing 96% of the total French Alps ski lifts infrastructures. We integrated detailed spatial representations of ski resorts (including priority areas for snowmaking equipment) along with physically based snowpack modelling (including the physical impact of grooming and snowmaking). The viability of ski resorts was further adressed thanks to a commonly used rule based on the snow season duration at the village and ski lifts average elevations along with the development of original viability indicators of snow conditions in the French Alps ski resorts based on the specific periods for the economic success of winter sports: Christmas and February school holidays. Such indicators were correlated to the number of ski lifts tickets sales over the 2001 - 2014 period and proved to be relevant to investigate and predict the evolutions of ski lifts tickets sales under the current ski market conditions in the French Alps. Our results outlined the contrast of snow conditions between French Alps ski resorts, even when accounting for snow management, particularly regarding the geographical location of resorts (Southern versus Northern Alps), the size and related elevation range of ski resorts. Our physically based approach also allowed to compute the water and energy requirements for the production of Machine Made snow since the start of the development of snowguns in the French Alps. Our computations proved to be strongly correlated to the observed amounts of water from the existing literature and confirmed that the increasing surface equipped with snowmaking facilities in the French Alps is the major factor for the increasing water and energy requirements since 1985. Such approach therefore provides objective information on the impact of snow conditions on the economic activity of winter sports in the French Alps under past and present conditions and may be considered as a relevant approach for further investigations, including the impact of climate change on the winter tourism in the French Alps.
A Physical Based Formula for Calculating the Critical Stress of Snow Movement
NASA Astrophysics Data System (ADS)
He, S.; Ohara, N.
2016-12-01
In snow redistribution modeling, one of the most important parameters is the critical stress of snow movement, which is difficult to estimate from field data because it is influenced by various factors. In this study, a new formula for calculating critical stress of snow movement was derived based on the ice particle sintering process modeling and the moment balance of a snow particle. Through this formula, the influences of snow particle size, air temperature, and deposited time on the critical stress were explicitly taken into consideration. It was found that some of the model parameters were sensitive to the critical stress estimation through the sensitivity analysis using Sobol's method. The two sensitive parameters of the sintering process modeling were determined by a calibration-validation procedure using the observed snow flux data via FlowCapt. Based on the snow flux and metrological data observed at the ISAW stations (http://www.iav.ch), it was shown that the results of this formula were able to describe very well the evolution of the minimum friction wind speed required for the snow motion. This new formula suggested that when the snow just reaches the surface, the smaller snowflake can move easier than the larger particles. However, smaller snow particles require more force to move as the sintering between the snowflakes progresses. This implied that compact snow with small snow particles may be harder to erode by wind although smaller particles may have a higher chance to be suspended once they take off.
Projected climate change impacts on winter recreation in the ...
A physically-based water and energy balance model is used to simulate natural snow accumulation at 247 winter recreation locations across the continental United States. We combine this model with projections of snowmaking conditions to determine downhill skiing, cross-country skiing, and snowmobiling season lengths under baseline and future climates, using data from five climate models and two emissions scenarios. The present-day simulations from the snow model without snowmaking are validated with observations of snow-water-equivalent from snow monitoring sites. Projected season lengths are combined with baseline estimates of winter recreation activity to monetize impacts to the selected winter recreation activity categories for the years 2050 and 2090. Estimate the physical and economic impact of climate change on winter recreation in the contiguous U.S.
NASA Astrophysics Data System (ADS)
Bach, Heike; Appel, Florian; Rust, Felix; Mauser, Wolfram
2010-12-01
Information on snow cover and snow properties are important for hydrology and runoff modelling. Frequent updates of snow cover observation, especially for areas characterized by short-term snow dynamics, can help to improve water balance and discharge calculations. Within the GMES service element Polar View, VISTA offers a snow mapping service for Central Europe since several years [1, 2]. We outline the use of this near-real- time product for hydrological applications in Alpine environment. In particular we discuss the integration of the Polar View product into a physically based hydrological model (PROMET). This allows not only the provision of snow equivalent values, but also enhances river runoff modelling and its use in hydropower energy yield prediction. The GMES snow products of Polar View are thus used in a downstream service for water resources management, providing information services for renewable energy suppliers and energy traders.
Remote sensing, hydrological modeling and in situ observations in snow cover research: A review
NASA Astrophysics Data System (ADS)
Dong, Chunyu
2018-06-01
Snow is an important component of the hydrological cycle. As a major part of the cryosphere, snow cover also represents a valuable terrestrial water resource. In the context of climate change, the dynamics of snow cover play a crucial role in rebalancing the global energy and water budgets. Remote sensing, hydrological modeling and in situ observations are three techniques frequently utilized for snow cover investigations. However, the uncertainties caused by systematic errors, scale gaps, and complicated snow physics, among other factors, limit the usability of these three approaches in snow studies. In this paper, an overview of the advantages, limitations and recent progress of the three methods is presented, and more effective ways to estimate snow cover properties are evaluated. The possibility of improving remotely sensed snow information using ground-based observations is discussed. As a rapidly growing source of volunteered geographic information (VGI), web-based geotagged photos have great potential to provide ground truth data for remotely sensed products and hydrological models and thus contribute to procedures for cloud removal, correction, validation, forcing and assimilation. Finally, this review proposes a synergistic framework for the future of snow cover research. This framework highlights the cross-scale integration of in situ and remotely sensed snow measurements and the assimilation of improved remote sensing data into hydrological models.
Evaluating Multispectral Snowpack Reflectivity With Changing Snow Correlation Lengths
NASA Technical Reports Server (NTRS)
Kang, Do Hyuk; Barros, Ana P.; Kim, Edward J.
2016-01-01
This study investigates the sensitivity of multispectral reflectivity to changing snow correlation lengths. Matzler's ice-lamellae radiative transfer model was implemented and tested to evaluate the reflectivity of snow correlation lengths at multiple frequencies from the ultraviolet (UV) to the microwave bands. The model reveals that, in the UV to infrared (IR) frequency range, the reflectivity and correlation length are inversely related, whereas reflectivity increases with snow correlation length in the microwave frequency range. The model further shows that the reflectivity behavior can be mainly attributed to scattering rather than absorption for shallow snowpacks. The largest scattering coefficients and reflectivity occur at very small correlation lengths (approximately 10(exp -5 m) for frequencies higher than the IR band. In the microwave range, the largest scattering coefficients are found at millimeter wavelengths. For validation purposes, the ice-lamella model is coupled with a multilayer snow physics model to characterize the reflectivity response of realistic snow hydrological processes. The evolution of the coupled model simulated reflectivities in both the visible and the microwave bands is consistent with satellite-based reflectivity observations in the same frequencies. The model results are also compared with colocated in situ snow correlation length measurements (Cold Land Processes Field Experiment 2002-2003). The analysis and evaluation of model results indicate that the coupled multifrequency radiative transfer and snow hydrology modeling system can be used as a forward operator in a data-assimilation framework to predict the status of snow physical properties, including snow correlation length.
NASA Astrophysics Data System (ADS)
Luks, B.; Osuch, M.; Romanowicz, R. J.
2012-04-01
We compare two approaches to modelling snow cover dynamics at the Polish Polar Station at Hornsund. In the first approach we apply physically-based Utah Energy Balance Snow Accumulation and Melt Model (UEB) (Tarboton et al., 1995; Tarboton and Luce, 1996). The model uses a lumped representation of the snowpack with two primary state variables: snow water equivalence and energy. Its main driving inputs are: air temperature, precipitation, wind speed, humidity and radiation (estimated from the diurnal temperature range). Those variables are used for physically-based calculations of radiative, sensible, latent and advective heat exchanges with a 3 hours time step. The second method is an application of a statistically efficient lumped parameter time series approach to modelling the dynamics of snow cover , based on daily meteorological measurements from the same area. A dynamic Stochastic Transfer Function model is developed that follows the Data Based Mechanistic approach, where a stochastic data-based identification of model structure and an estimation of its parameters are followed by a physical interpretation. We focus on the analysis of uncertainty of both model outputs. In the time series approach, the applied techniques also provide estimates of the modeling errors and the uncertainty of the model parameters. In the first, physically-based approach the applied UEB model is deterministic. It assumes that the observations are without errors and that the model structure perfectly describes the processes within the snowpack. To take into account the model and observation errors, we applied a version of the Generalized Likelihood Uncertainty Estimation technique (GLUE). This technique also provide estimates of the modelling errors and the uncertainty of the model parameters. The observed snowpack water equivalent values are compared with those simulated with 95% confidence bounds. This work was supported by National Science Centre of Poland (grant no. 7879/B/P01/2011/40). Tarboton, D. G., T. G. Chowdhury and T. H. Jackson, 1995. A Spatially Distributed Energy Balance Snowmelt Model. In K. A. Tonnessen, M. W. Williams and M. Tranter (Ed.), Proceedings of a Boulder Symposium, July 3-14, IAHS Publ. no. 228, pp. 141-155. Tarboton, D. G. and C. H. Luce, 1996. Utah Energy Balance Snow Accumulation and Melt Model (UEB). Computer model technical description and users guide, Utah Water Research Laboratory and USDA Forest Service Intermountain Research Station (http://www.engineering.usu.edu/dtarb/). 64 pp.
NASA Astrophysics Data System (ADS)
Kelly, R. E. J.; Saberi, N.; Li, Q.
2017-12-01
With moderate to high spatial resolution (<1 km) regional to global snow water equivalent (SWE) observation approaches yet to be fully scoped and developed, the long-term satellite passive microwave record remains an important tool for cryosphere-climate diagnostics. A new satellite microwave remote sensing approach is described for estimating snow depth (SD) and snow water equivalent (SWE). The algorithm, called the Satellite-based Microwave Snow Algorithm (SMSA), uses Advanced Microwave Scanning Radiometer - 2 (AMSR2) observations aboard the Global Change Observation Mission - Water mission launched by the Japan Aerospace Exploration Agency in 2012. The approach is unique since it leverages observed brightness temperatures (Tb) with static ancillary data to parameterize a physically-based retrieval without requiring parameter constraints from in situ snow depth observations or historical snow depth climatology. After screening snow from non-snow surface targets (water bodies [including freeze/thaw state], rainfall, high altitude plateau regions [e.g. Tibetan plateau]), moderate and shallow snow depths are estimated by minimizing the difference between Dense Media Radiative Transfer model estimates (Tsang et al., 2000; Picard et al., 2011) and AMSR2 Tb observations to retrieve SWE and SD. Parameterization of the model combines a parsimonious snow grain size and density approach originally developed by Kelly et al. (2003). Evaluation of the SMSA performance is achieved using in situ snow depth data from a variety of standard and experiment data sources. Results presented from winter seasons 2012-13 to 2016-17 illustrate the improved performance of the new approach in comparison with the baseline AMSR2 algorithm estimates and approach the performance of the model assimilation-based approach of GlobSnow. Given the variation in estimation power of SWE by different land surface/climate models and selected satellite-derived passive microwave approaches, SMSA provides SWE estimates that are independent of real or near real-time in situ and model data.
1D-Var multilayer assimilation of X-band SAR data into a detailed snowpack model
NASA Astrophysics Data System (ADS)
Phan, X. V.; Ferro-Famil, L.; Gay, M.; Durand, Y.; Dumont, M.; Morin, S.; Allain, S.; D'Urso, G.; Girard, A.
2014-10-01
The structure and physical properties of a snowpack and their temporal evolution may be simulated using meteorological data and a snow metamorphism model. Such an approach may meet limitations related to potential divergences and accumulated errors, to a limited spatial resolution, to wind or topography-induced local modulations of the physical properties of a snow cover, etc. Exogenous data are then required in order to constrain the simulator and improve its performance over time. Synthetic-aperture radars (SARs) and, in particular, recent sensors provide reflectivity maps of snow-covered environments with high temporal and spatial resolutions. The radiometric properties of a snowpack measured at sufficiently high carrier frequencies are known to be tightly related to some of its main physical parameters, like its depth, snow grain size and density. SAR acquisitions may then be used, together with an electromagnetic backscattering model (EBM) able to simulate the reflectivity of a snowpack from a set of physical descriptors, in order to constrain a physical snowpack model. In this study, we introduce a variational data assimilation scheme coupling TerraSAR-X radiometric data into the snowpack evolution model Crocus. The physical properties of a snowpack, such as snow density and optical diameter of each layer, are simulated by Crocus, fed by the local reanalysis of meteorological data (SAFRAN) at a French Alpine location. These snowpack properties are used as inputs of an EBM based on dense media radiative transfer (DMRT) theory, which simulates the total backscattering coefficient of a dry snow medium at X and higher frequency bands. After evaluating the sensitivity of the EBM to snowpack parameters, a 1D-Var data assimilation scheme is implemented in order to minimize the discrepancies between EBM simulations and observations obtained from TerraSAR-X acquisitions by modifying the physical parameters of the Crocus-simulated snowpack. The algorithm then re-initializes Crocus with the modified snowpack physical parameters, allowing it to continue the simulation of snowpack evolution, with adjustments based on remote sensing information. This method is evaluated using multi-temporal TerraSAR-X images acquired over the specific site of the Argentière glacier (Mont-Blanc massif, French Alps) to constrain the evolution of Crocus. Results indicate that X-band SAR data can be taken into account to modify the evolution of snowpack simulated by Crocus.
NASA Astrophysics Data System (ADS)
Bormann, K.; Painter, T. H.; Marks, D. G.; Kirchner, P. B.; Winstral, A. H.; Ramirez, P.; Goodale, C. E.; Richardson, M.; Berisford, D. F.
2014-12-01
In the western US, snowmelt from the mountains contribute the vast majority of fresh water supply, in an otherwise dry region. With much of California currently experiencing extreme drought, it is critical for water managers to have accurate basin-wide estimations of snow water content during the spring melt season. At the forefront of basin-scale snow monitoring is the Jet Propulsion Laboratory's Airborne Snow Observatory (ASO). With combined LiDAR /spectrometer instruments and weekly flights over key basins throughout California, the ASO suite is capable of retrieving high-resolution basin-wide snow depth and albedo observations. To make best use of these high-resolution snow depths, spatially distributed snow density data are required to leverage snow water equivalent (SWE) from the measured depths. Snow density is a spatially and temporally variable property and is difficult to estimate at basin scales. Currently, ASO uses a physically based snow model (iSnobal) to resolve distributed snow density dynamics across the basin. However, there are issues with the density algorithms in iSnobal, particularly with snow depths below 0.50 m. This shortcoming limited the use of snow density fields from iSnobal during the poor snowfall year of 2014 in the Sierra Nevada, where snow depths were generally low. A deeper understanding of iSnobal model performance and uncertainty for snow density estimation is required. In this study, the model is compared to an existing climate-based statistical method for basin-wide snow density estimation in the Tuolumne basin in the Sierra Nevada and sparse field density measurements. The objective of this study is to improve the water resource information provided to water managers during ASO operation in the future by reducing the uncertainty introduced during the snow depth to SWE conversion.
Analysis of passive microwave signatures over snow-covered mountainous area
NASA Astrophysics Data System (ADS)
Kim, R. S.; Durand, M. T.
2015-12-01
Accurate knowledge of snow distribution over mountainous area is critical for climate studies and the passive microwave(PM) measurements have been widely used and invested in order to obtain information about snowpack properties. Understanding and analyzing the signatures for the explicit inversion of the remote sensing data from land surfaces is required for successful using of passive microwave sensors but this task is often ambiguous due to the large variability of physical conditions and object types. In this paper, we discuss the pattern of measured brightness temperatures and emissivities at vertical and horizontal polarization over the frequency range of 10.7 to 89 GHz of land surfaces under various snow and vegetation conditions. The Multiband polarimetric Scanning Radiometer(PSR) imagery is used over NASA Cold Land Processes Field Experiment(CLPX) study area with ground-based measurements of snow depth and snow properties. Classification of snow under various conditions in mountainous area is implemented based on different patterns of microwave signatures.
Obtaining sub-daily new snow density from automated measurements in high mountain regions
NASA Astrophysics Data System (ADS)
Helfricht, Kay; Hartl, Lea; Koch, Roland; Marty, Christoph; Olefs, Marc
2018-05-01
The density of new snow is operationally monitored by meteorological or hydrological services at daily time intervals, or occasionally measured in local field studies. However, meteorological conditions and thus settling of the freshly deposited snow rapidly alter the new snow density until measurement. Physically based snow models and nowcasting applications make use of hourly weather data to determine the water equivalent of the snowfall and snow depth. In previous studies, a number of empirical parameterizations were developed to approximate the new snow density by meteorological parameters. These parameterizations are largely based on new snow measurements derived from local in situ measurements. In this study a data set of automated snow measurements at four stations located in the European Alps is analysed for several winter seasons. Hourly new snow densities are calculated from the height of new snow and the water equivalent of snowfall. Considering the settling of the new snow and the old snowpack, the average hourly new snow density is 68 kg m-3, with a standard deviation of 9 kg m-3. Seven existing parameterizations for estimating new snow densities were tested against these data, and most calculations overestimate the hourly automated measurements. Two of the tested parameterizations were capable of simulating low new snow densities observed at sheltered inner-alpine stations. The observed variability in new snow density from the automated measurements could not be described with satisfactory statistical significance by any of the investigated parameterizations. Applying simple linear regressions between new snow density and wet bulb temperature based on the measurements' data resulted in significant relationships (r2 > 0.5 and p ≤ 0.05) for single periods at individual stations only. Higher new snow density was calculated for the highest elevated and most wind-exposed station location. Whereas snow measurements using ultrasonic devices and snow pillows are appropriate for calculating station mean new snow densities, we recommend instruments with higher accuracy e.g. optical devices for more reliable investigations of the variability of new snow densities at sub-daily intervals.
Snow Based Winter Tourism and Kinds of Adaptations to Climate Change
NASA Astrophysics Data System (ADS)
Breiling, M.
2009-04-01
Austria is the most intensive winter tourism country in the world with some 4% contribution in the national GNP. Snow based winter tourism became the lead economy of mountain areas, covering two thirds of the country and is by far economically more important than agriculture and forestry. While natural snow was the precondition for the establishment of winter tourism, artificial snow is nowadays the precondition to maintain winter tourism in the current economic intensity. Skiing originally low tech, is developing increasingly into high tech. While skiing was comparatively cheap in previous days due to natural snow, skiing is getting more expensive and exclusive for a higher income class due to the relative high production costs. Measures to adapt to a warmer climate can be divided into three principle types: physical adaptation, technical adaptation - where artificial snow production plays a major role - and social adaptation. It will be discussed under which conditions each adaptation type seems feasible in dependence of the level of warming. In particular physical and technical adaptations are related to major investments. Practically every ski resort has to decide about what is an appropriate, economically cost efficient level of adaptation. Adapting too much reduces profits. Adapting too little does not bring enough income. The optimal level is often not clear. In many cases public subsidies help to collect funds for adaptation and to keep skiing profitable. The possibility to adapt on local, regional or on national scales will depend on the degree of warming, the future price of artificial snow production and the public means foreseen to support the winter tourism industry.
NASA Astrophysics Data System (ADS)
Raleigh, M. S.; Smyth, E.; Small, E. E.
2017-12-01
The spatial distribution of snow water equivalent (SWE) is not sufficiently monitored with either remotely sensed or ground-based observations for water resources management. Recent applications of airborne Lidar have yielded basin-wide mapping of SWE when combined with a snow density model. However, in the absence of snow density observations, the uncertainty in these SWE maps is dominated by uncertainty in modeled snow density rather than in Lidar measurement of snow depth. Available observations tend to have a bias in physiographic regime (e.g., flat open areas) and are often insufficient in number to support testing of models across a range of conditions. Thus, there is a need for targeted sampling strategies and controlled model experiments to understand where and why different snow density models diverge. This will enable identification of robust model structures that represent dominant processes controlling snow densification, in support of basin-scale estimation of SWE with remotely-sensed snow depth datasets. The NASA SnowEx mission is a unique opportunity to evaluate sampling strategies of snow density and to quantify and reduce uncertainty in modeled snow density. In this presentation, we present initial field data analyses and modeling results over the Colorado SnowEx domain in the 2016-2017 winter campaign. We detail a framework for spatially mapping the uncertainty in snowpack density, as represented across multiple models. Leveraging the modular SUMMA model, we construct a series of physically-based models to assess systematically the importance of specific process representations to snow density estimates. We will show how models and snow pit observations characterize snow density variations with forest cover in the SnowEx domains. Finally, we will use the spatial maps of density uncertainty to evaluate the selected locations of snow pits, thereby assessing the adequacy of the sampling strategy for targeting uncertainty in modeled snow density.
The layered evolution of fabric and microstructure of snow at Point Barnola, Central East Antarctica
NASA Astrophysics Data System (ADS)
Calonne, Neige; Montagnat, Maurine; Matzl, Margret; Schneebeli, Martin
2017-02-01
Snow fabric, defined as the distribution of the c-axis orientations of the ice crystals in snow, is poorly known. So far, only one study exits that measured snow fabric based on a statistically representative technique. This recent study has revealed the impact of temperature gradient metamorphism on the evolution of fabric in natural snow, based on cold laboratory experiments. On polar ice sheets, snow properties are currently investigated regarding their strong variability in time and space, notably because of their potential influence on firn processes and consequently on ice core analysis. Here, we present measurements of fabric and microstructure of snow from Point Barnola, East Antarctica (close to Dome C). We analyzed a snow profile from 0 to 3 m depth, where temperature gradients occur. The main contributions of the paper are (1) a detailed characterization of snow in the upper meters of the ice sheet, especially by providing data on snow fabric, and (2) the study of a fundamental snow process, never observed up to now in a natural snowpack, namely the role of temperature gradient metamorphism on the evolution of the snow fabric. Snow samples were scanned by micro-tomography to measure continuous profiles of microstructural properties (density, specific surface area and pore thickness). Fabric analysis was performed using an automatic ice texture analyzer on 77 representative thin sections cut out from the samples. Different types of snow fabric could be identified and persist at depth. Snow fabric is significantly correlated with snow microstructure, pointing to the simultaneous influence of temperature gradient metamorphism on both properties. We propose a mechanism based on preferential grain growth to explain the fabric evolution under temperature gradients. Our work opens the question of how such a layered profile of fabric and microstructure evolves at depth and further influences the physical and mechanical properties of snow and firn. More generally, it opens the way to further studies on the influence of the snow fabric in snow processes related to anisotropic properties of ice such as grain growth, mechanical response, electromagnetic behavior.
NASA Astrophysics Data System (ADS)
Hanzer, F.; Marke, T.; Steiger, R.; Strasser, U.
2012-04-01
Tourism and particularly winter tourism is a key factor for the Austrian economy. Judging from currently available climate simulations, the Austrian Alps show a particularly high vulnerability to climatic changes. To reduce the exposure of ski areas towards changes in natural snow conditions as well as to generally enhance snow conditions at skiing sites, technical snowmaking is widely utilized across Austrian ski areas. While such measures result in better snow conditions at the skiing sites and are important for the local skiing industry, its economic efficiency has also to be taken into account. The current work emerges from the project CC-Snow II, where improved future climate scenario simulations are used to determine future natural and artificial snow conditions and their effects on tourism and economy in the Austrian Alps. In a first step, a simple technical snowmaking approach is incorporated into the process based snow model AMUNDSEN, which operates at a spatial resolution of 10-50 m and a temporal resolution of 1-3 hours. Locations of skiing slopes within a ski area in Styria, Austria, were digitized and imported into the model environment. During a predefined time frame in the beginning of the ski season, the model produces a maximum possible amount of technical snow and distributes the associated snow on the slopes, whereas afterwards, until to the end of the ski season, the model tries to maintain a certain snow depth threshold value on the slopes. Due to only few required input parameters, this approach is easily transferable to other ski areas. In our poster contribution, we present first results of this snowmaking approach and give an overview of the data and methodology applied. In a further step in CC-Snow, this simple bulk approach will be extended to consider actual snow cannon locations and technical specifications, which will allow a more detailed description of technical snow production as well as cannon-based recordings of water and energy consumption.
NASA Astrophysics Data System (ADS)
Karsten, L. R.; Gochis, D.; Dugger, A. L.; McCreight, J. L.; Barlage, M. J.; Fall, G. M.; Olheiser, C.
2017-12-01
Since version 1.0 of the National Water Model (NWM) has gone operational in Summer 2016, several upgrades to the model have occurred to improve hydrologic prediction for the continental United States. Version 1.1 of the NWM (Spring 2017) includes upgrades to parameter datasets impacting land surface hydrologic processes. These parameter datasets were upgraded using an automated calibration workflow that utilizes the Dynamic Data Search (DDS) algorithm to adjust parameter values using observed streamflow. As such, these upgrades to parameter values took advantage of various observations collected for snow analysis. In particular, in-situ SNOTEL observations in the Western US, volunteer in-situ observations across the entire US, gamma-derived snow water equivalent (SWE) observations courtesy of the NWS NOAA Corps program, gridded snow depth and SWE products from the Jet Propulsion Laboratory (JPL) Airborne Snow Observatory (ASO), gridded remotely sensed satellite-based snow products (MODIS,AMSR2,VIIRS,ATMS), and gridded SWE from the NWS Snow Data Assimilation System (SNODAS). This study explores the use of these observations to quantify NWM error and improvements from version 1.0 to version 1.1, along with subsequent work since then. In addition, this study explores the use of snow observations for use within the automated calibration workflow. Gridded parameter fields impacting the accumulation and ablation of snow states in the NWM were adjusted and calibrated using gridded remotely sensed snow states, SNODAS products, and in-situ snow observations. This calibration adjustment took place over various ecological regions in snow-dominated parts of the US for a retrospective period of time to capture a variety of climatological conditions. Specifically, the latest calibrated parameters impacting streamflow were held constant and only parameters impacting snow physics were tuned using snow observations and analysis. The adjusted parameter datasets were then used to force the model over an independent period for analysis against both snow and streamflow observations to see if improvements took place. The goal of this work is to further improve snow physics in the NWM, along with identifying areas where further work will take place in the future, such as data assimilation or further forcing improvements.
NASA Astrophysics Data System (ADS)
Carroll, T. R.; Cline, D. W.; Olheiser, C. M.; Rost, A. A.; Nilsson, A. O.; Fall, G. M.; Li, L.; Bovitz, C. T.
2005-12-01
NOAA's National Operational Hydrologic Remote Sensing Center (NOHRSC) routinely ingests all of the electronically available, real-time, ground-based, snow data; airborne snow water equivalent data; satellite areal extent of snow cover information; and numerical weather prediction (NWP) model forcings for the coterminous U.S. The NWP model forcings are physically downscaled from their native 13 km2 spatial resolution to a 1 km2 resolution for the CONUS. The downscaled NWP forcings drive an energy-and-mass-balance snow accumulation and ablation model at a 1 km2 spatial resolution and at a 1 hour temporal resolution for the country. The ground-based, airborne, and satellite snow observations are assimilated into the snow model's simulated state variables using a Newtonian nudging technique. The principle advantages of the assimilation technique are: (1) approximate balance is maintained in the snow model, (2) physical processes are easily accommodated in the model, and (3) asynoptic data are incorporated at the appropriate times. The snow model is reinitialized with the assimilated snow observations to generate a variety of snow products that combine to form NOAA's NOHRSC National Snow Analyses (NSA). The NOHRSC NSA incorporate all of the available information necessary and available to produce a "best estimate" of real-time snow cover conditions at 1 km2 spatial resolution and 1 hour temporal resolution for the country. The NOHRSC NSA consist of a variety of daily, operational, products that characterize real-time snowpack conditions including: snow water equivalent, snow depth, surface and internal snowpack temperatures, surface and blowing snow sublimation, and snowmelt for the CONUS. The products are generated and distributed in a variety of formats including: interactive maps, time-series, alphanumeric products (e.g., mean areal snow water equivalent on a hydrologic basin-by-basin basis), text and map discussions, map animations, and quantitative gridded products. The NOHRSC NSA products are used operationally by NOAA's National Weather Service field offices when issuing hydrologic forecasts and warnings including river and flood forecasts, water supply forecasts, and spring flood outlooks for the nation. Additionally, the NOHRSC NSA products are used by a wide variety of federal, state, local, municipal, private-sector, and general-public end-users with a requirement for real-time snowpack information. The paper discusses, in detail, the techniques and procedures used to create the NOHRSC NSA products and gives a number of examples of the real-time snow products generated and distributed over the NOHRSC web site (www.nohrsc.noaa.gov). Also discussed are major limitations of the approach, the most notable being deficiencies in observation of snow water equivalent. Snow observation networks generally lack the consistency and coverage needed to significantly improve confidence in snow model states through updating. Many regions of the world simply lack snow water equivalent observations altogether, a significant constraint on global application of the NSA approach.
NASA Astrophysics Data System (ADS)
McGowan, L. E.; Paw U, K. T.; Dahlke, H. E.
2017-12-01
In the Western U.S., future water resources depend on the forested mountain snowpack. The variations in and estimates of forest mountain snow volume are vital to projecting annual water availability; yet, snow forest processes are not fully known. Most snow models calculate snow-canopy unloading based on time, temperature, Leaf Area Index (LAI), and/or wind speed. While models crudely consider the canopy shape via LAI, current models typically do not consider the vertical canopy structure or varied energetics within multiple canopy layers. Vertical canopy structure influences the spatiotemporal distribution of snow, and therefore ultimately determines the degree and extent by which snow alters both the surface energy balance and water availability. Within the canopy both the snowpack and energetic exposures to the snowpack (wind, shortwave and longwave radiation, turbulent heat fluxes etc.) vary widely in the vertical. The water and energy balance in each layer is dependent on all other layers. For example, increased snow canopy content in the top of the canopy will reduce available shortwave radiation at the bottom and snow unloading in a mid-layer can cascade and remove snow from all the lower layers. We examined vertical interactions and structures of the forest canopy on the impact of unloading utilizing the Advanced Canopy-Atmosphere-Soil-Algorithm (ACASA), a multilayer soil-vegetation-atmosphere numerical model based on higher-order closure of turbulence equations. Our results demonstrate how a multilayer model can be used to elucidate the physical processes of snow unloading, and could help researchers better parameterize unloading in snow-hydrology models.
A Physical Model to Determine Snowfall over Land by Microwave Radiometry
NASA Technical Reports Server (NTRS)
Skofronick-Jackson, G.; Kim, M.-J.; Weinman, J. A.; Chang, D.-E.
2003-01-01
Because microwave brightness temperatures emitted by snow covered surfaces are highly variable, snowfall above such surfaces is difficult to observe using window channels that occur at low frequencies (v less than 100 GHz). Furthermore, at frequencies v less than or equal to 37 GHz, sensitivity to liquid hydrometeors is dominant. These problems are mitigated at high frequencies (v greater than 100 GHz) where water vapor screens the surface emission and sensitivity to frozen hydrometeors is significant. However the scattering effect of snowfall in the atmosphere at those higher frequencies is also impacted by water vapor in the upper atmosphere. This work describes the methodology and results of physically-based retrievals of snow falling over land surfaces. The theory of scattering by randomly oriented dry snow particles at high microwave frequencies appears to be better described by regarding snow as a concatenation of equivalent ice spheres rather than as a sphere with the effective dielectric constant of an air-ice mixture. An equivalent sphere snow scattering model was validated against high frequency attenuation measurements. Satellite-based high frequency observations from an Advanced Microwave Sounding Unit (AMSU-B) instrument during the March 5-6, 2001 New England blizzard were used to retrieve snowfall over land. Vertical distributions of snow, temperature and relative humidity profiles were derived from the Pennsylvania State University-National Center for Atmospheric Research (PSU-NCAR) fifth-generation Mesoscale Model (MM5). Those data were applied and modified in a radiative transfer model that derived brightness temperatures consistent with the AMSU-B observations. The retrieved snowfall distribution was validated with radar reflectivity measurements obtained from the National Oceanic and Atmospheric Administration (NOAA) National Weather Service (NWS) ground-based radar network.
From the clouds to the ground - snow precipitation patterns vs. snow accumulation patterns
NASA Astrophysics Data System (ADS)
Gerber, Franziska; Besic, Nikola; Mott, Rebecca; Gabella, Marco; Germann, Urs; Bühler, Yves; Marty, Mauro; Berne, Alexis; Lehning, Michael
2017-04-01
Knowledge about snow distribution and snow accumulation patterns is important and valuable for different applications such as the prediction of seasonal water resources or avalanche forecasting. Furthermore, accumulated snow on the ground is an important ground truth for validating meteorological and climatological model predictions of precipitation in high mountains and polar regions. Snow accumulation patterns are determined by many different processes from ice crystal nucleation in clouds to snow redistribution by wind and avalanches. In between, snow precipitation undergoes different dynamical and microphysical processes, such as ice crystal growth, aggregation and riming, which determine the growth of individual particles and thereby influence the intensity and structure of the snowfall event. In alpine terrain the interaction of different processes and the topography (e.g. lifting condensation and low level cloud formation, which may result in a seeder-feeder effect) may lead to orographic enhancement of precipitation. Furthermore, the redistribution of snow particles in the air by wind results in preferential deposition of precipitation. Even though orographic enhancement is addressed in numerous studies, the relative importance of micro-physical and dynamically induced mechanisms on local snowfall amounts and especially snow accumulation patterns is hardly known. To better understand the relative importance of different processes on snow precipitation and accumulation we analyze snowfall and snow accumulation between January and March 2016 in Davos (Switzerland). We compare MeteoSwiss operational weather radar measurements on Weissfluhgipfel to a spatially continuous snow accumulation map derived from airborne digital sensing (ADS) snow height for the area of Dischma valley in the vicinity of the weather radar. Additionally, we include snow height measurements from automatic snow stations close to the weather radar. Large-scale radar snow accumulation patterns show a snowfall gradient consistent with the prevailing wind direction. Deriving snow accumulation based on radar data is challenging as the close-ground precipitation patters cannot be resolved by the radar due to shielding and ground clutter in highly complex terrain. Nonetheless, radar measurements show distinct patterns of snowfall and accumulation, which may be the result of orographic enhancement. Station-based snow accumulation measurements are in reasonable agreement with the estimated large-scale radar snow accumulation. The ADS-based snow accumulation maps feature much smaller scale snow accumulation patterns likely due to close-ground wind effects and snow redistribution on top of an altitudinal gradient. To evaluate microphysical processes and patterns influenced by the topography we run a hydrometeor classification on the radar data. The relative importance of topographically induced effects on snow accumulation patterns is investigated based on vertical cross sections of hydrometeor data and corresponding snow accumulation.
How to Use the Science of Snow to Engage Middle School Students in an Interdisciplinary Experience
ERIC Educational Resources Information Center
Lange, Catherine; Huff, Kenneth L.; Silverman, Scott; Wallace, Karen
2012-01-01
In this interdisciplinary and field-based activity, grade 5 to 9 students engage in a comprehensive scientific study of snow. Through a series of in-class and out-of-class structured interdisciplinary and team-teaching lesson progressions, students will collect data to be able to analyze and apply knowledge about weather, the physical properties…
NASA Astrophysics Data System (ADS)
Stillinger, T.; Dozier, J.; Phares, N.; Rittger, K.
2015-12-01
Discrimination between snow and clouds poses a serious but tractable challenge to the consistent delivery of high-quality information on mountain snow from remote sensing. Clouds obstruct the surface from the sensor's view, and the similar optical properties of clouds and snow make accurate discrimination difficult. We assess the performance of the current Landsat 8 operational snow and cloud mask products (LDCM CCA and CFmask), along with a new method, using over one million manually identified snow and clouds pixels in Landsat 8 scenes. The new method uses physically based scattering models to generate spectra in each Landsat 8 band, at that scene's solar illumination, for snow and cloud particle sizes that cover the plausible range for each. The modeled spectra are compared to pixels' spectra via several independent ways to identify snow and clouds. The results are synthesized to create a final snow/cloud mask, and the method can be applied to any multispectral imager with bands covering the visible, near-infrared, and shortwave-infrared regions. Each algorithm we tested misidentifies snow and clouds in both directions to varying degrees. We assess performance with measures of Precision, Recall, and the F statistic, which are based on counts of true and false positives and negatives. Tests for significance in differences between spectra in the measured and modeled values among incorrectly identified pixels help ascertain reasons for misidentification. A cloud mask specifically designed to separate snow from clouds is a valuable tool for those interested in remotely sensing snow cover. Given freely available remote sensing datasets and computational tools to feasibly process entire mission histories for an area of interest, enabling researchers to reliably identify and separate snow and clouds increases the usability of the data for hydrological and climatological studies.
Warscher, M; Strasser, U; Kraller, G; Marke, T; Franz, H; Kunstmann, H
2013-05-01
[1] Runoff generation in Alpine regions is typically affected by snow processes. Snow accumulation, storage, redistribution, and ablation control the availability of water. In this study, several robust parameterizations describing snow processes in Alpine environments were implemented in a fully distributed, physically based hydrological model. Snow cover development is simulated using different methods from a simple temperature index approach, followed by an energy balance scheme, to additionally accounting for gravitational and wind-driven lateral snow redistribution. Test site for the study is the Berchtesgaden National Park (Bavarian Alps, Germany) which is characterized by extreme topography and climate conditions. The performance of the model system in reproducing snow cover dynamics and resulting discharge generation is analyzed and validated via measurements of snow water equivalent and snow depth, satellite-based remote sensing data, and runoff gauge data. Model efficiency (the Nash-Sutcliffe coefficient) for simulated runoff increases from 0.57 to 0.68 in a high Alpine headwater catchment and from 0.62 to 0.64 in total with increasing snow model complexity. In particular, the results show that the introduction of the energy balance scheme reproduces daily fluctuations in the snowmelt rates that trace down to the channel stream. These daily cycles measured in snowmelt and resulting runoff rates could not be reproduced by using the temperature index approach. In addition, accounting for lateral snow transport changes the seasonal distribution of modeled snowmelt amounts, which leads to a higher accuracy in modeling runoff characteristics.
Balk, Benjamin; Elder, Kelly
2000-01-01
We model the spatial distribution of snow across a mountain basin using an approach that combines binary decision tree and geostatistical techniques. In April 1997 and 1998, intensive snow surveys were conducted in the 6.9‐km2 Loch Vale watershed (LVWS), Rocky Mountain National Park, Colorado. Binary decision trees were used to model the large‐scale variations in snow depth, while the small‐scale variations were modeled through kriging interpolation methods. Binary decision trees related depth to the physically based independent variables of net solar radiation, elevation, slope, and vegetation cover type. These decision tree models explained 54–65% of the observed variance in the depth measurements. The tree‐based modeled depths were then subtracted from the measured depths, and the resulting residuals were spatially distributed across LVWS through kriging techniques. The kriged estimates of the residuals were added to the tree‐based modeled depths to produce a combined depth model. The combined depth estimates explained 60–85% of the variance in the measured depths. Snow densities were mapped across LVWS using regression analysis. Snow‐covered area was determined from high‐resolution aerial photographs. Combining the modeled depths and densities with a snow cover map produced estimates of the spatial distribution of snow water equivalence (SWE). This modeling approach offers improvement over previous methods of estimating SWE distribution in mountain basins.
Snow model design for operational purposes
NASA Astrophysics Data System (ADS)
Kolberg, Sjur
2017-04-01
A parsimonious distributed energy balance snow model intended for operational use is evaluated using discharge, snow covered area and grain size; the latter two as observed from the MODIS sensor. The snow model is an improvement of the existing GamSnow model, which is a part of the Enki modelling framework. Core requirements for the new version have been: 1. Reduction of calibration freedom, motivated by previous experience of non-identifiable parameters in the existing version 2. Improvement of process representation based on recent advances in physically based snow modelling 3. Limiting the sensitivity to forcing data which are poorly known over the spatial domain of interest (often in mountainous areas) 4. Preference for observable states, and the ability to improve from updates. The albedo calculation is completely revised, now based on grain size through an emulation of the SNICAR model (Flanner and Zender, 2006; Gardener and Sharp, 2010). The number of calibration parameters in the albedo model is reduced from 6 to 2. The wind function governing turbulent energy fluxes has been reduced from 2 to 1 parameter. Following Raleigh et al (2011), snow surface radiant temperature is split from the top layer thermodynamic temperature, using bias-corrected wet-bulb temperature to model the former. Analyses are ongoing, and the poster will bring evaluation results from 16 years of MODIS observations and more than 25 catchments in southern Norway.
Permafrost, Seasonally Frozen Ground, Snow Cover and Vegetation in the USSR
1984-12-01
Snow Cover in Physical Geographic Processes (1948). He covered aspects of the dynamics of the snow cover, its properties and the connection between...Bigl, Research Physical Scientist, of the Geotechnical Research Branch, Experimental Engineering Division, un- der the general supervision of Dr...generalized from a detailed vegetation map in the volume Physical Geographic Atlas of the World (Gerasimov 1964), The tundra zone consists mostly of
A Distributed Snow Evolution Modeling System (SnowModel)
NASA Astrophysics Data System (ADS)
Liston, G. E.; Elder, K.
2004-12-01
A spatially distributed snow-evolution modeling system (SnowModel) has been specifically designed to be applicable over a wide range of snow landscapes, climates, and conditions. To reach this goal, SnowModel is composed of four sub-models: MicroMet defines the meteorological forcing conditions, EnBal calculates surface energy exchanges, SnowMass simulates snow depth and water-equivalent evolution, and SnowTran-3D accounts for snow redistribution by wind. While other distributed snow models exist, SnowModel is unique in that it includes a well-tested blowing-snow sub-model (SnowTran-3D) for application in windy arctic, alpine, and prairie environments where snowdrifts are common. These environments comprise 68% of the seasonally snow-covered Northern Hemisphere land surface. SnowModel also accounts for snow processes occurring in forested environments (e.g., canopy interception related processes). SnowModel is designed to simulate snow-related physical processes occurring at spatial scales of 5-m and greater, and temporal scales of 1-hour and greater. These include: accumulation from precipitation; wind redistribution and sublimation; loading, unloading, and sublimation within forest canopies; snow-density evolution; and snowpack ripening and melt. To enhance its wide applicability, SnowModel includes the physical calculations required to simulate snow evolution within each of the global snow classes defined by Sturm et al. (1995), e.g., tundra, taiga, alpine, prairie, maritime, and ephemeral snow covers. The three, 25-km by 25-km, Cold Land Processes Experiment (CLPX) mesoscale study areas (MSAs: Fraser, North Park, and Rabbit Ears) are used as SnowModel simulation examples to highlight model strengths, weaknesses, and features in forested, semi-forested, alpine, and shrubland environments.
NASA Astrophysics Data System (ADS)
Xu, Jianhui; Shu, Hong
2014-09-01
This study assesses the analysis performance of assimilating the Moderate Resolution Imaging Spectroradiometer (MODIS)-based albedo and snow cover fraction (SCF) separately or jointly into the physically based Common Land Model (CoLM). A direct insertion method (DI) is proposed to assimilate the black and white-sky albedos into the CoLM. The MODIS-based albedo is calculated with the MODIS bidirectional reflectance distribution function (BRDF) model parameters product (MCD43B1) and the solar zenith angle as estimated in the CoLM for each time step. Meanwhile, the MODIS SCF (MOD10A1) is assimilated into the CoLM using the deterministic ensemble Kalman filter (DEnKF) method. A new DEnKF-albedo assimilation scheme for integrating the DI and DEnKF assimilation schemes is proposed. Our assimilation results are validated against in situ snow depth observations from November 2008 to March 2009 at five sites in the Altay region of China. The experimental results show that all three data assimilation schemes can improve snow depth simulations. But overall, the DEnKF-albedo assimilation shows the best analysis performance as it significantly reduces the bias and root-mean-square error (RMSE) during the snow accumulation and ablation periods at all sites except for the Fuyun site. The SCF assimilation via DEnKF produces better results than the albedo assimilation via DI, implying that the albedo assimilation that indirectly updates the snow depth state variable is less efficient than the direct SCF assimilation. For the Fuyun site, the DEnKF-albedo scheme tends to overestimate the snow depth accumulation with the maximum bias and RMSE values because of the large positive innovation (observation minus forecast).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Micah Johnson, Andrew Slaughter
PIKA is a MOOSE-based application for modeling micro-structure evolution of seasonal snow. The model will be useful for environmental, atmospheric, and climate scientists. Possible applications include application to energy balance models, ice sheet modeling, and avalanche forecasting. The model implements physics from published, peer-reviewed articles. The main purpose is to foster university and laboratory collaboration to build a larger multi-scale snow model using MOOSE. The main feature of the code is that it is implemented using the MOOSE framework, thus making features such as multiphysics coupling, adaptive mesh refinement, and parallel scalability native to the application. PIKA implements three equations:more » the phase-field equation for tracking the evolution of the ice-air interface within seasonal snow at the grain-scale; the heat equation for computing the temperature of both the ice and air within the snow; and the mass transport equation for monitoring the diffusion of water vapor in the pore space of the snow.« less
Sensitivity of Alpine Snow and Streamflow Regimes to Climate Changes
NASA Astrophysics Data System (ADS)
Rasouli, K.; Pomeroy, J. W.; Marks, D. G.; Bernhardt, M.
2014-12-01
Understanding the sensitivity of hydrological processes to climate change in alpine areas with snow dominated regimes is of paramount importance as alpine basins show both high runoff efficiency associated with the melt of the seasonal snowpack and great sensitivity of snow processes to temperature change. In this study, meteorological data measured in a selection of alpine headwaters basins including Reynolds Mountain East, Idaho, USA, Wolf Creek, Yukon in Canada, and Zugspitze Mountain, Germany with climates ranging from arctic to continental temperate were used to study the snow and streamflow sensitivity to climate change. All research sites have detailed multi-decadal meteorological and snow measurements. The Cold Regions Hydrological Modelling platform (CRHM) was used to create a model representing a typical alpine headwater basin discretized into hydrological response units with physically based representations of snow redistribution by wind, complex terrain snowmelt energetics and runoff processes in alpine tundra. The sensitivity of snow hydrology to climate change was investigated by changing air temperature and precipitation using weather generating methods based on the change factors obtained from different climate model projections for future and current periods. The basin mean and spatial variability of peak snow water equivalent, sublimation loss, duration of snow season, snowmelt rates, streamflow peak, and basin discharge were assessed under varying climate scenarios and the most sensitive hydrological mechanisms to the changes in the different alpine climates were detected. The results show that snow hydrology in colder alpine climates is more resilient to warming than that in warmer climates, but that compensatory factors to warming such as reduced blowing snow sublimation loss and reduced melt rate should also be assessed when considering climate change impacts on alpine hydrology.
Wang, Tao; Peng, Shushi; Krinner, Gerhard; Ryder, James; Li, Yue; Dantec-Nédélec, Sarah; Ottlé, Catherine
2015-01-01
Seasonal snow cover in the Northern Hemisphere is the largest component of the terrestrial cryosphere and plays a major role in the climate system through strong positive feedbacks related to albedo. The snow-albedo feedback is invoked as an important cause for the polar amplification of ongoing and projected climate change, and its parameterization across models is an important source of uncertainty in climate simulations. Here, instead of developing a physical snow albedo scheme, we use a direct insertion approach to assimilate satellite-based surface albedo during the snow season (hereafter as snow albedo assimilation) into the land surface model ORCHIDEE (ORganizing Carbon and Hydrology In Dynamic EcosystEms) and assess the influences of such assimilation on offline and coupled simulations. Our results have shown that snow albedo assimilation in both ORCHIDEE and ORCHIDEE-LMDZ (a general circulation model of Laboratoire de Météorologie Dynamique) improve the simulation accuracy of mean seasonal (October throughout May) snow water equivalent over the region north of 40 degrees. The sensitivity of snow water equivalent to snow albedo assimilation is more pronounced in the coupled simulation than the offline simulation since the feedback of albedo on air temperature is allowed in ORCHIDEE-LMDZ. We have also shown that simulations of air temperature at 2 meters in ORCHIDEE-LMDZ due to snow albedo assimilation are significantly improved during the spring in particular over the eastern Siberia region. This is a result of the fact that high amounts of shortwave radiation during the spring can maximize its snow albedo feedback, which is also supported by the finding that the spatial sensitivity of temperature change to albedo change is much larger during the spring than during the autumn and winter. In addition, the radiative forcing at the top of the atmosphere induced by snow albedo assimilation during the spring is estimated to be -2.50 W m-2, the magnitude of which is almost comparable to that due to CO2 (2.83 W m-2) increases since 1750. Our results thus highlight the necessity of realistic representation of snow albedo in the model and demonstrate the use of satellite-based snow albedo to improve model behaviors, which opens new avenues for constraining snow albedo feedback in earth system models.
Wang, Tao; Peng, Shushi; Krinner, Gerhard; Ryder, James; Li, Yue; Dantec-Nédélec, Sarah; Ottlé, Catherine
2015-01-01
Seasonal snow cover in the Northern Hemisphere is the largest component of the terrestrial cryosphere and plays a major role in the climate system through strong positive feedbacks related to albedo. The snow-albedo feedback is invoked as an important cause for the polar amplification of ongoing and projected climate change, and its parameterization across models is an important source of uncertainty in climate simulations. Here, instead of developing a physical snow albedo scheme, we use a direct insertion approach to assimilate satellite-based surface albedo during the snow season (hereafter as snow albedo assimilation) into the land surface model ORCHIDEE (ORganizing Carbon and Hydrology In Dynamic EcosystEms) and assess the influences of such assimilation on offline and coupled simulations. Our results have shown that snow albedo assimilation in both ORCHIDEE and ORCHIDEE-LMDZ (a general circulation model of Laboratoire de Météorologie Dynamique) improve the simulation accuracy of mean seasonal (October throughout May) snow water equivalent over the region north of 40 degrees. The sensitivity of snow water equivalent to snow albedo assimilation is more pronounced in the coupled simulation than the offline simulation since the feedback of albedo on air temperature is allowed in ORCHIDEE-LMDZ. We have also shown that simulations of air temperature at 2 meters in ORCHIDEE-LMDZ due to snow albedo assimilation are significantly improved during the spring in particular over the eastern Siberia region. This is a result of the fact that high amounts of shortwave radiation during the spring can maximize its snow albedo feedback, which is also supported by the finding that the spatial sensitivity of temperature change to albedo change is much larger during the spring than during the autumn and winter. In addition, the radiative forcing at the top of the atmosphere induced by snow albedo assimilation during the spring is estimated to be -2.50 W m-2, the magnitude of which is almost comparable to that due to CO2 (2.83 W m-2) increases since 1750. Our results thus highlight the necessity of realistic representation of snow albedo in the model and demonstrate the use of satellite-based snow albedo to improve model behaviors, which opens new avenues for constraining snow albedo feedback in earth system models. PMID:26366564
A Refined Methodology for Modelling Climate Change Impacts on Snow Sports Tourism
NASA Astrophysics Data System (ADS)
Demiroglu, O. Cenk; Turp, M. Tufan; Ozturk, Tugba; An, Nazan; Kurnaz, M. Levent
2015-04-01
Nature-based tourism is one of the most vulnerable sectors of the economy against climate change. Among its types, winter tourism stands out as the most critical due to the relatively high exposure and sensitivity of snow cover to the anthropogenic warming trends. In this study, we aim at improving previous works by Ozturk et al. where snow reliability of ski resorts have been examined through projections based on regional climate model outputs downscaled from various GCMs. Major improvements to these studies will be related to increasing the resolution, obtaining snow depth values from snow-water equivalent outputs, and hourly, instead of the daily, calculations of wet bulb temperatures. Daily snow depth values will be utilized for 100-days rule that looks for at least 100 days of snow cover at a minimum of 30 cm in order for a ski resort to be viable, whereas the wet bulb temperatures below -7 oC will indicate the snowmaking capacity. The domain of analysis will be the Balkans, the Middle East and the Caucasus. Therefore the spatial gap in the mostly Euro- and Amero-centric literature will also be improved. The domain will be modelled through RegCM 4.4.2 of the International Centre for Theoretical Physics basing its resolution on MPI-ESM-MR of Max Planck Institut für Meteorologie and the concentration scenario RCP 4.5 for a realistic tourism development future of 2020-2050.
Seasonal Changes of Arctic Sea Ice Physical Properties Observed During N-ICE2015: An Overview
NASA Astrophysics Data System (ADS)
Gerland, S.; Spreen, G.; Granskog, M. A.; Divine, D.; Ehn, J. K.; Eltoft, T.; Gallet, J. C.; Haapala, J. J.; Hudson, S. R.; Hughes, N. E.; Itkin, P.; King, J.; Krumpen, T.; Kustov, V. Y.; Liston, G. E.; Mundy, C. J.; Nicolaus, M.; Pavlov, A.; Polashenski, C.; Provost, C.; Richter-Menge, J.; Rösel, A.; Sennechael, N.; Shestov, A.; Taskjelle, T.; Wilkinson, J.; Steen, H.
2015-12-01
Arctic sea ice is changing, and for improving the understanding of the cryosphere, data is needed to describe the status and processes controlling current seasonal sea ice growth, change and decay. We present preliminary results from in-situ observations on sea ice in the Arctic Basin north of Svalbard from January to June 2015. Over that time, the Norwegian research vessel «Lance» was moored to in total four ice floes, drifting with the sea ice and allowing an international group of scientists to conduct detailed research. Each drift lasted until the ship reached the marginal ice zone and ice started to break up, before moving further north and starting the next drift. The ship stayed within the area approximately 80°-83° N and 5°-25° E. While the expedition covered measurements in the atmosphere, the snow and sea ice system, and in the ocean, as well as biological studies, in this presentation we focus on physics of snow and sea ice. Different ice types could be investigated: young ice in refrozen leads, first year ice, and old ice. Snow surveys included regular snow pits with standardized measurements of physical properties and sampling. Snow and ice thickness were measured at stake fields, along transects with electromagnetics, and in drillholes. For quantifying ice physical properties and texture, ice cores were obtained regularly and analyzed. Optical properties of snow and ice were measured both with fixed installed radiometers, and from mobile systems, a sledge and an ROV. For six weeks, the surface topography was scanned with a ground LIDAR system. Spatial scales of surveys ranged from spot measurements to regional surveys from helicopter (ice thickness, photography) during two months of the expedition, and by means of an array of autonomous buoys in the region. Other regional information was obtained from SAR satellite imagery and from satellite based radar altimetry. The analysis of the data collected has started, and first results will be presented.
NASA Astrophysics Data System (ADS)
Heldmyer, A.; Livneh, B.; Barsugli, J. J.; Dewes, C.; Ray, A. J.; Rangwala, I.; Guinotte, J. M.; Torbit, S.
2017-12-01
A major gap in research on the future of snowpack in the western United States is accounting for snow persistence in relation to topographical effects like terrain aspect and slope, which have important consequences for species that rely on snow for habitat in alpine regions, such as the wolverine (Gulo gulo). Previous work has shown a predicted loss of snow-covered area in Montana (which encompasses much of the Wolverine's extent range) ranging from 50 - 85%. However, these estimates use coarse model grid-boxes (6 - 12 km per side) that lack topographic shading, with mean elevations below the higher elevations where the wolverine tends to live. We address these informational gaps by applying a physically-based, high-resolution hydrologic model (250 m spatial resolution), the Distributed Hydrologic Soil and Vegetation Model (DHSVM), to project snow water equivalent (SWE) in two regions important to the survival of the wolverine within Glacier and Rocky Mountain National Parks. Because snowpack evolution is driven primarily by the energy balance at the surface, particularly during melt season, the inclusion of a realistic, physically-based energy balance together with topographic shading enables a clearer understanding of how projected climatic perturbations will affect future snowpack. We apply a diverse sample of future (2035-2064) climate conditions from CMIP5 General Circulation Models (GCMs) to meteorological forcing data from a baseline historical period (1998-2013) through the delta method, after validating historical simulations with SNOTEL and MODIS satellite data. Despite considerable variability across models, the results show a consistent decrease in Snow-Covered Area (SCA) across investigated future climate projections, an increased loss of snowpack during years of drought, and a fragmentation of land with deep snow available for refuge.
NASA Astrophysics Data System (ADS)
Jones, H. G.; Pomeroy, J. W.; Walker, D. A.; Hoham, R. W.
2001-01-01
In this volume, a multidisciplinary group of acknowledged experts fully intergrate the physical, chemical, and biological sciences to provide a complete understanding of the interrelationships between snow structure and life. This volume opens a new perspecitve on snow cover as a habitat for organisms under extreme environmental conditions and as a key factor in the ecology of much of the Earth's surface. The contributors describe the fundamental physical and small-scale chemical processes that characterize the evolution of snow and their influence on the life cycles of true snow organisms and the biota of cold regions with extended snow cover. The book further expands on the role of snow in the biosphere by the study of the relationship between snow and climate and the paleo-ecological evidence for the influence of past snow regimes on plant communities. Snow Ecology will form a main textbook on advanced courses in biology, ecology, geography, environmental science, and earth science where an important component is devoted to the study of the cryosphere. It will also be useful as a reference text for graduate students, researchers, and professionals at academic institutions and in government and nongovernmental agencies with environmental concerns.
NASA Technical Reports Server (NTRS)
Neale, Christopher M. U.; Mcdonnell, Jeffrey J.; Ramsey, Douglas; Hipps, Lawrence; Tarboton, David
1993-01-01
Since the launch of the DMSP Special Sensor Microwave/Imager (SSM/I), several algorithms have been developed to retrieve overland parameters. These include the present operational algorithms resulting from the Navy calibration/validation effort such as land surface type (Neale et al. 1990), land surface temperature (McFarland et al. 1990), surface moisture (McFarland and Neale, 1991) and snow parameters (McFarland and Neale, 1991). In addition, other work has been done including the classification of snow cover and precipitation using the SSM/I (Grody, 1991). Due to the empirical nature of most of the above mentioned algorithms, further research is warranted and improvements can probably be obtained through a combination of radiative transfer modelling to study the physical processes governing the microwave emissions at the SSM/I frequencies, and the incorporation of additional ground truth data and special cases into the regression data sets. We have proposed specifically to improve the retrieval of surface moisture and snow parameters using the WetNet SSM/I data sets along with ground truth information namely climatic variables from the NOAA cooperative network of weather stations as well as imagery from other satellite sensors such as the AVHRR and Thematic Mapper. In the case of surface moisture retrievals the characterization of vegetation density is of primary concern. The higher spatial resolution satellite imagery collected at concurrent periods will be used to characterize vegetation types and amounts which, along with radiative transfer modelling should lead to more physically based retrievals. Snow parameter retrieval algorithm improvement will initially concentrate on the classification of snowpacks (dry snow, wet snow, refrozen snow) and later on specific products such as snow water equivalent. Significant accomplishments in the past year are presented.
NASA Astrophysics Data System (ADS)
Feng, L.; An, Y.; Xu, J.; Kang, S.; Xiaofei, L.
2017-12-01
The physical evolution (metamorphism) of snow is known to affect the chemical composition of dissolved organic matter (DOM) within it. Here we present a comprehensive study on the Dongkemadi glacier in the central Tibetan Plateau by collecting surface snow/ice samples from May to October 2015. The samples were grouped into four categories based on their physical descriptions, representing the different stages of the snowmelt (i.e., fresh snow, fine firn, coarse firn, and glacier ice). The concentrations of dissolved organic carbon (DOC) decreased from fresh snow (26.8 μmol L-1) to fine firn (15.0 μmol L-1) and enriched from fine firn to coarse firn (26.1 μmol L-1) and glacier ice (34.4 μmol L-1). This reflected the dynamic variation of DOC during the snowmelt. Excitation emission matrix fluorescence with parallel factor analysis (EEM-PARAFAC) identified three protein-like components (C1, C2 and C4) and one microbial humic-like component (C3), which indicated a significant microbially derived DOM in the surface snow/ice. Molecular level composition of DOM identified by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) also shown newly produced molecular during the snowmelt. These results suggest that the snowmelt could not only induce a loss of DOM but also intensified the in situ microbial activities that enriched and modified it. These findings are important in understanding the evolution of the physical and chemical characteristics of the DOM during the ablation season and shed some light on the nature of the biogeochemical cycles in cryospheric regions.
A multiphysical ensemble system of numerical snow modelling
NASA Astrophysics Data System (ADS)
Lafaysse, Matthieu; Cluzet, Bertrand; Dumont, Marie; Lejeune, Yves; Vionnet, Vincent; Morin, Samuel
2017-05-01
Physically based multilayer snowpack models suffer from various modelling errors. To represent these errors, we built the new multiphysical ensemble system ESCROC (Ensemble System Crocus) by implementing new representations of different physical processes in the deterministic coupled multilayer ground/snowpack model SURFEX/ISBA/Crocus. This ensemble was driven and evaluated at Col de Porte (1325 m a.s.l., French alps) over 18 years with a high-quality meteorological and snow data set. A total number of 7776 simulations were evaluated separately, accounting for the uncertainties of evaluation data. The ability of the ensemble to capture the uncertainty associated to modelling errors is assessed for snow depth, snow water equivalent, bulk density, albedo and surface temperature. Different sub-ensembles of the ESCROC system were studied with probabilistic tools to compare their performance. Results show that optimal members of the ESCROC system are able to explain more than half of the total simulation errors. Integrating members with biases exceeding the range corresponding to observational uncertainty is necessary to obtain an optimal dispersion, but this issue can also be a consequence of the fact that meteorological forcing uncertainties were not accounted for. The ESCROC system promises the integration of numerical snow-modelling errors in ensemble forecasting and ensemble assimilation systems in support of avalanche hazard forecasting and other snowpack-modelling applications.
NASA Astrophysics Data System (ADS)
Strasser, Ulrich; Hanzer, Florian; Marke, Thomas; Rothleitner, Michael
2017-04-01
The production of technical snow today is a self-evident feature of modern alpine skiing resort management. Millions of Euros are invested every year for the technical infrastructure and its operation to produce a homogeneous and continuing snow cover on the skiing slopes for the winter season in almost every larger destination in the Alps. In Austria, skiing tourism is a significant factor of the national economic structure. We present the framing conditions of technical snow production in the mid-size skiing resort of Mayrhofen (Zillertal Alps/Austria, 136 km slopes, elevation range 630 - 2.500 m a.s.l.). Production conditions are defined by the availability of water, the planned date for the season opening, and the climatic conditions in the weeks before. By means of an adapted snow production strategy an attempt is made to ecologically and economically optimize the use of water and energy resources. Monitoring of the snow cover is supported by a network of low-cost sensors and mobile snow depth recordings. Finally, technical snow production is simulated with the spatially distributed, physically based hydroclimatological model AMUNDSEN. The model explicitly considers individual snow guns and distributes the produced snow along the slopes. The amount of simulated snow produced by each device is a function of its type, of actual wet-bulb temperature at the location, of ski area infrastructure (in terms of water supply and pumping capacity), and of snow demand.
On the extraordinary snow on the sea ice off East Antarctica in late winter, 2012
NASA Astrophysics Data System (ADS)
Toyota, Takenobu; Massom, Robert; Lecomte, Olivier; Nomura, Daiki; Heil, Petra; Tamura, Takeshi; Fraser, Alexander D.
2016-09-01
In late winter-early spring 2012, the second Sea Ice Physics and Ecosystems Experiment (SIPEX II) was conducted off Wilkes Land, East Antarctica, onboard R/V Aurora Australis. The sea-ice conditions were characterized by significantly thick first-year ice and snow, trapping the ship for about 10 days in the near coastal region. The deep snow cover was particularly remarkable, in that its average value of 0.45 m was almost three times that observed between 1992 and 2007 in the region. To reveal factors responsible, we used in situ observations and ERA-Interim reanalysis (1990-2012) to examine the relative contribution of the different components of the local-regional snow mass balance equation i.e., snow accumulation on sea ice, precipitation minus evaporation (P-E), and loss by (i) snow-ice formation and (ii) entering into leads due to drifting snow. Results show no evidence for significantly high P-E in the winter of 2012. Ice core analysis has shown that although the snow-ice layer was relatively thin, indicating less transformation from snow to snow-ice in 2012 as compared to measurements from 2007, the difference was not enough to explain the extraordinarily deep snow. Based on these results, we deduce that lower loss of snow into leads was probably responsible for the extraordinary snow in 2012. Statistical analysis and satellite images suggest that the reduction in loss of snow into leads is attributed to rough ice surface associated with active deformation processes and larger floe size due to sea-ice expansion. This highlights the importance of snow-sea ice interaction in determining the mean snow depth on Antarctic sea ice.
NASA Astrophysics Data System (ADS)
Bormann, K.; Hedrick, A. R.; Marks, D. G.; Painter, T. H.
2017-12-01
The spatial and temporal distribution of snow water resources (SWE) in the mountains has been examined extensively through the use of models, in-situ networks and remote sensing techniques. However, until the Airborne Snow Observatory (http://aso.jpl.nasa.gov), our understanding of SWE dynamics has been limited due to a lack of well-constrained spatial distributions of SWE in complex terrain, particularly at high elevations and at regional scales (100km+). ASO produces comprehensive snow depth measurements and well-constrained SWE products providing the opportunity to re-examine our current understanding of SWE distributions with a robust and rich data source. We collected spatially-distributed snow depth and SWE data from over 150 individual ASO acquisitions spanning seven basins in California during the five-year operational period of 2013 - 2017. For each of these acquisitions, we characterized the spatial distribution of snow depth and SWE and examined how these distributions changed with time during snowmelt. We compared these distribution patterns between each of the seven basins and finally, examined the predictability of the SWE distributions using statistical extrapolations through both space and time. We compare and contrast these observationally-based characteristics with those from a physically-based snow model to highlight the strengths and weaknesses of the implementation of our understanding of SWE processes in the model environment. In practice, these results may be used to support or challenge our current understanding of mountain SWE dynamics and provide techniques for enhanced evaluation of high-resolution snow models that go beyond in-situ point comparisons. In application, this work may provide guidance on the potential of ASO to guide backfilling of sparse spaceborne measurements of snow depth and snow water equivalent.
New Developments for Physically-based Falling Snow Retrievals over Land in Preparation for GPM
NASA Technical Reports Server (NTRS)
Jackson, Gail S.; Tokay, Ali; Kramer, Anne W.; Hudak, David
2008-01-01
The NASA Global Precipitation Measurement mission (GPM) concept centers on deploying a Core spacecraft carrying a dual-frequency precipitation radar and a microwave radiometric imager with channels from 10 to 183 GHz to serve as a precipitation physics observatory and a calibration reference to unify a constellation of dedicated and operational passive microwave sensors. Because of the extended orbit of the Core (plus or minus 65 deg) and the enhanced dual frequency radar and high frequency radiometer, GPM will be able to sense falling snow precipitation and light rain over land. Accordingly, GPM has partnered with the Canadian CloudSat/CALIPSO Validation Project (C3VP) to obtain observations to provide one of several important ground-based validation data sets around which the falling snow models and retrieval algorithms can be further developed and tested. In this work we compare and correlate the long time series (Nov.'06 - March '07) measurements of precipitation rate from parsivels to the passive (89, 150, 183 plus or minus 1, plus or minus 3, plus or minus 7 GHz) observations of NOAA's AMSU-B radiometer. We separate the comparisons into categories of no precipitation, liquid rain and falling snow precipitation. We found that there are similar TBs (especially at 89 and 150 GHz) for cases with falling snow and for non-precipitating cases. The comparisons indicate that surface emissivity contributions to the satellite observed TB over land can add uncertainty in detecting and estimating falling snow. The newest results show that by computing brightness temperatures based on CARE radiosonde data and a rough estimate of surface emissivity show that the cloud ice scattering signal in the AMSU-B data is detected. That is the differences in computed TB and AMSU-B TB for precipitating and non-precipitating cases are unique such that the precipitating and non-precipitating cases can be identified. These results require that the radiosonde releases are within an hour of the AMSU-B data. Forest fraction, snow cover, and measured emissivities were combined to calculate the surface emissivities.
NASA Astrophysics Data System (ADS)
Shrestha, M.; Wang, L.; Koike, T.; Xue, Y.; Hirabayashi, Y.; Ahmad, S.
2012-12-01
A spatially distributed biosphere hydrological model with energy balance-based multilayer snow physics and multilayer glacier model, including debris free and debris covered surface (enhanced WEB-DHM-S) has been developed and applied to the Hunza river basin in the Pakistan Karakoram Himalayan region, where about 34% of the basin area is covered by glaciers. The spatial distribution of seasonal snow and glacier cover, snow and glacier melt runoff along with rainfall-contributed runoff, and glacier mass balances are simulated. The simulations are carried out at hourly time steps and at 1-km spatial resolution for the two hydrological years (2002-2003) with the use of APHRODITE precipitation dataset, observed temperature, and other atmospheric forcing variables from the Global Land Data Assimilation System (GLDAS). The pixel-to-pixel comparisons for the snow-free and snow-covered grids over the region reveal that the simulation agrees well with the Moderate Resolution Imaging Spectroradiometer (MODIS) eight-day maximum snow-cover extent data (MOD10A2) with an accuracy of 83% and a positive bias of 2.8 %. The quantitative evaluation also shows that the model is able to reproduce the river discharge satisfactorily with Nash efficiency of 0.92. It is found that the contribution of rainfall to total streamflow is small (about 10-12%) while the contribution of snow and glacier is considerably large (35-40% for snowmelt and 50-53% for glaciermelt, respectively). The model simulates the state of snow and glaciers at each model grid prognostically and thus can estimate the net annual mass balance. The net mass balance varies from -2 m to +2 m water equivalent. Additionally, the hypsography analysis for the equilibrium line altitude (ELA) suggests that the average ELA in this region is about 5700 m with substantial variation from glacier to glacier and region to region. This study is the first to adopt a distributed biosphere hydrological model with the energy balance- based multilayer snow and glacier module to estimate the spatial distribution of snow/glacier cover and snow and glacier melt runoff for a river basin in the Karakoram Himalayan region.
Dust on Snow Processes and Impacts in the Upper Colorado River Basin
NASA Astrophysics Data System (ADS)
Skiles, M.; Painter, T. H.; Okin, G. S.
2015-12-01
In the Upper Colorado River Basin episodic deposition of mineral dust onto mountain snow cover frequently occurs in the spring when wind speeds and dust emission peaks on the nearby Colorado Plateau, and deposition rates have increased since the intensive settlement in the western USA in the mid 1880s. Dust deposition darkens the snow surface, and accelerates snowmelt through reduction of albedo and further indirect reduction of albedo by accelerating the growth of snow grain size. Observation and modeling of dust-on-snow processes began in 2005 at Senator Beck Basin Study Area (SBBSA) in the San Juan Mountains, CO, work which has shown that dust advances melt, shifts runoff timing and intensity, and reduces total water yield. The consistency of deposition and magnitude of impacts highlighted the need for more detailed understanding of the radiative impacts of dust-on-snow in this region. Here I will present results from a novel, high resolution, daily snow property dataset, collected at SBBSA over the 2013 ablation season, to facilitate physically based radiative transfer and snowmelt modeling. Measurements included snow albedo and vertical profiles of snow density, optical snow grain size, and dust/black carbon concentrations. This dataset was used to assess the relationship between episodic dust events, snow grain growth, and albedo over time, and observe the relation between deposited dust and melt water. Additionally, modeling results include the determination of the regionally specific dust-on-snow complex refractive index and radiative forcing partitioning between dust and black carbon, and dust and snow grain growth.
Energy expenditure and clearing snow: a comparison of shovel and snow pusher.
Smolander, J; Louhevaara, V; Ahonen, E; Polari, J; Klen, T
1995-04-01
In order to assess the energy demands of manual clearing of snow, nine men did snow clearing work for 15 min with a shovel and a snow pusher. The depth of the snowcover was 400-600 mm representing a very heavy snowfall. Heart rate (HR), oxygen consumption (VO2), pulmonary ventilation (VE), respiratory exchange ratio (R), and rating of perceived exertion (RPE) were determined during the work tasks. HR, VE, R, and RPE were not significantly different between the shovel and snow pusher. HR averaged (+/- SD) 141 +/- 20 b min-1 with the shovel, and 142 +/- 19 beats.min-1 with the snow pusher. VO2 was 2.1 +/- 0.41.min-1 (63 +/- 12%VO2 max) in shovelling and 2.6 +/- 0.51.min-1 (75 +/- 14%VO2max) in snow pushing (p < 0.001). In conclusion manual clearing of snow in conditions representing heavy snowfalls was found to be strenuous physical work, not suitable for persons with cardiac risk factors, but which may serve as a mode of physical training in healthy adults.
Application of dGNSS in Alpine Ski Racing: Basis for Evaluating Physical Demands and Safety
Gilgien, Matthias; Kröll, Josef; Spörri, Jörg; Crivelli, Philip; Müller, Erich
2018-01-01
External forces, such as ground reaction force or air drag acting on athletes' bodies in sports, determine the sport-specific demands on athletes' physical fitness. In order to establish appropriate physical conditioning regimes, which adequately prepare athletes for the loads and physical demands occurring in their sports and help reduce the risk of injury, sport-and/or discipline-specific knowledge of the external forces is needed. However, due to methodological shortcomings in biomechanical research, data comprehensively describing the external forces that occur in alpine super-G (SG) and downhill (DH) are so far lacking. Therefore, this study applied new and accurate wearable sensor-based technology to determine the external forces acting on skiers during World Cup (WC) alpine skiing competitions in the disciplines of SG and DH and to compare these with those occurring in giant slalom (GS), for which previous research knowledge exists. External forces were determined using WC forerunners carrying a differential global navigation satellite system (dGNSS). Combining the dGNSS data with a digital terrain model of the snow surface and an air drag model, the magnitudes of ground reaction forces were computed. It was found that the applied methodology may not only be used to track physical demands and loads on athletes, but also to simultaneously investigate safety aspects, such as the effectiveness of speed control through increased air drag and ski–snow friction forces in the respective disciplines. Therefore, the component of the ground reaction force in the direction of travel (ski–snow friction) and air drag force were computed. This study showed that (1) the validity of high-end dGNSS systems allows meaningful investigations such as characterization of physical demands and effectiveness of safety measures in highly dynamic sports; (2) physical demands were substantially different between GS, SG, and DH; and (3) safety-related reduction of skiing speed might be most effectively achieved by increasing the ski–snow friction force in GS and SG. For DH an increase in the ski–snow friction force might be equally as effective as an increase in air drag force. PMID:29559918
Modeling the Interaction of Radiation Between Vegetation and the Seasonal Snowcover
NASA Astrophysics Data System (ADS)
Tribbeck, M. J.; Gurney, R. J.; Morris, E. M.; Pearson, D.
2001-12-01
Prediction of meltwater runoff is crucial to communities where the seasonal snowpack is the major water supply. Water is itself a vital resource and it carries nutrients both in solution and in suspension. Simulation of snowpack depletion at a point in open areas has previously been shown to produce accurate results using physically based models such as SNTHERM. However, the radiation balance is more complex under a forest canopy as radiation is scattered and absorbed by canopy elements. This can alter the timing and magnitude of snowpack runoff substantially. The interaction of radiation between a forest canopy and its underlying snowcover is modeled by the coupling of a physically based snow model and an optical and thermal radiation canopy model. The snow model, which is based on SNTHERM (Jordan, 1991), is a discrete, multi-layer, one-dimensional mass and energy budget model for snow and is formulated with an adaptive grid system that compresses with the compacting snowpack and allows retention of snowpack stratigraphy. The vegetation canopy model approximates the canopy as a series of discrete, randomly orientated elements that scatter and absorb optical and thermal radiation. Multiple scattering of radiation between canopy and snow surface is modeled to conserve energy. The coupled model SNOWCAN differs from other vegetation-snow models such as GORT or SNOBAL as it models the albedo feedback mechanism. This is important as the albedo both affects and is affected by (through grain growth) the radiation balance. SNOWCAN is driven by standard atmospheric variables (including incident solar and thermal radiation) measured outside of the canopy and simulates snowpack properties such as temperature and density profiles as well as the sub-canopy radiation balance. The coupled snow and vegetation energy budget model was used to simulate snow depth at an old jack pine site during the 1994 BOREAS campaign. Measured and simulated snow depth showed good agreement throughout the accumulation and ablation periods, yielding an r2 correlation coefficient of 0.94. The snowpack development was also simulated at a point site within a fir stand in Reynolds Creek Experimental Watershed, Idaho, USA for the water year 2000-2001. A sensitivity analysis was carried out and comparisons were made with field observations of snowpack properties and sub-canopy radiation data for model validation.
NASA Technical Reports Server (NTRS)
Tedescol, Marco; Kim, Edward J.; Cline, Don; Graf, Tobias; Koike, Toshio; Armstrong, Richard; Brodzik, Mary J.; Hardy, Janet
2004-01-01
Microwave remote sensing offers distinct advantages for observing the cryosphere. Solar illumination is not required, and spatial and temporal coverage are excellent from polar-orbiting satellites. Passive microwave measurements are sensitive to the two most useful physical quantities for many hydrological applications: physical temperature and water content/state. Sensitivity to the latter is a direct result of the microwave sensitivity to the dielectric properties of natural media, including snow, ice, soil (frozen or thawed), and vegetation. These considerations are factors motivating the development of future cryospheric satellite remote sensing missions, continuing and improving on a 26-year microwave measurement legacy. Perhaps the biggest issues regarding the use of such satellite measurements involve how to relate parameter values at spatial scales as small as a hectare to observations with sensor footprints that may be up to 25 x 25 km. The NASA Cold-land Processes Field Experiment (CLPX) generated a dataset designed to enhance understanding of such scaling issues. CLPX observations were made in February (dry snow) and March (wet snow), 2003 in Colorado, USA, at scales ranging from plot scale to 25 x 25 km satellite footprints. Of interest here are passive microwave observations from ground-based, airborne, and satellite sensors, as well as meteorological and snowpack measurements that will enable studies of the effects of spatial heterogeneity of surface conditions on the observations. Prior to performing such scaling studies, an evaluation of snowpack forward modelling at the plot scale (least heterogeneous scale) is in order. This is the focus of this paper. Many forward models of snow signatures (brightness temperatures) have been developed over the years. It is now recognized that a dense medium radiative transfer (DMRT) treatment represents a high degree of physical fidelity for snow modeling, yet dense medium models are particularly sensitive to snowpack structural parameters such as grain size, density, and depth---parameters that may vary substantially within a snowpack. Microwave radiometric data and snow pit measurements collected at the Local-Scale Observation Site (LSOS) during the third Intensive Observation Period (IOP3) of the CLPX have been used to test the capabilities of a DMRT model using the Quasi Crystalline Approximation with Coherent Potential (QCA-CP). The radiometric measurements were made by the University of Tokyo s Ground Based Microwave Radiometer-7 (GBMR-7) system. We evaluate the degree to which a DMRT-based model can accurately reproduce the GBMR-7 brightness temperatures at different frequencies and incidence angles.
Improved Passive Microwave Algorithms for North America and Eurasia
NASA Technical Reports Server (NTRS)
Foster, James; Chang, Alfred; Hall, Dorothy
1997-01-01
Microwave algorithms simplify complex physical processes in order to estimate geophysical parameters such as snow cover and snow depth. The microwave radiances received at the satellite sensor and expressed as brightness temperatures are a composite of contributions from the Earth's surface, the Earth's atmosphere and from space. Owing to the coarse resolution inherent to passive microwave sensors, each pixel value represents a mixture of contributions from different surface types including deep snow, shallow snow, forests and open areas. Algorithms are generated in order to resolve these mixtures. The accuracy of the retrieved information is affected by uncertainties in the assumptions used in the radiative transfer equation (Steffen et al., 1992). One such uncertainty in the Chang et al., (1987) snow algorithm is that the snow grain radius is 0.3 mm for all layers of the snowpack and for all physiographic regions. However, this is not usually the case. The influence of larger grain sizes appears to be of more importance for deeper snowpacks in the interior of Eurasia. Based on this consideration and the effects of forests, a revised SMMR snow algorithm produces more realistic snow mass values. The purpose of this study is to present results of the revised algorithm (referred to for the remainder of this paper as the GSFC 94 snow algorithm) which incorporates differences in both fractional forest cover and snow grain size. Results from the GSFC 94 algorithm will be compared to the original Chang et al. (1987) algorithm and to climatological snow depth data as well.
Dependence of Snowmelt Simulations on Scaling of the Forcing Processes (Invited)
NASA Astrophysics Data System (ADS)
Winstral, A. H.; Marks, D. G.; Gurney, R. J.
2009-12-01
The spatial organization and scaling relationships of snow distribution in mountain environs is ultimately dependent on the controlling processes. These processes include interactions between weather, topography, vegetation, snow state, and seasonally-dependent radiation inputs. In large scale snow modeling it is vital to know these dependencies to obtain accurate predictions while reducing computational costs. This study examined the scaling characteristics of the forcing processes and the dependency of distributed snowmelt simulations to their scaling. A base model simulation characterized these processes with 10m resolution over a 14.0 km2 basin with an elevation range of 1474 - 2244 masl. Each of the major processes affecting snow accumulation and melt - precipitation, wind speed, solar radiation, thermal radiation, temperature, and vapor pressure - were independently degraded to 1 km resolution. Seasonal and event-specific results were analyzed. Results indicated that scale effects on melt vary by process and weather conditions. The dependence of melt simulations on the scaling of solar radiation fluxes also had a seasonal component. These process-based scaling characteristics should remain static through time as they are based on physical considerations. As such, these results not only provide guidance for current modeling efforts, but are also well suited to predicting how potential climate changes will affect the heterogeneity of mountain snow distributions.
Bring Snowshoes into Your Physical Education Program
ERIC Educational Resources Information Center
Tarallo, Mary Jo
2004-01-01
The author discusses the integration of snow sports, particularly snowshoeing into the physical education programs by school districts. Here, the author discusses the fitness benefits gained by students in snowshoeing. Among other things, the author mentions that information on how to integrate snow sports into a physical education program is…
Snowmobile impacts on snowpack physical and mechanical properties
NASA Astrophysics Data System (ADS)
Fassnacht, Steven R.; Heath, Jared T.; Venable, Niah B. H.; Elder, Kelly J.
2018-03-01
Snowmobile use is a popular form of winter recreation in Colorado, particularly on public lands. To examine the effects of differing levels of use on snowpack properties, experiments were performed at two different areas, Rabbit Ears Pass near Steamboat Springs and at Fraser Experimental Forest near Fraser, Colorado USA. Differences between no use and varying degrees of snowmobile use (low, medium and high) on shallow (the operational standard of 30 cm) and deeper snowpacks (120 cm) were quantified and statistically assessed using measurements of snow density, temperature, stratigraphy, hardness, and ram resistance from snow pit profiles. A simple model was explored that estimated snow density changes from snowmobile use based on experimental results. Snowpack property changes were more pronounced for thinner snow accumulations. When snowmobile use started in deeper snow conditions, there was less difference in density, hardness, and ram resistance compared to the control case of no snowmobile use. These results have implications for the management of snowmobile use in times and places of shallower snow conditions where underlying natural resources could be affected by denser and harder snowpacks.
Walder, J.S.
2000-01-01
Lahars are often produced as pyroclastic flows move over snow. This phenomenon involves a complicated interplay of mechanical and thermal processes that need to be separated to get at the fundamental physics. The thermal physics of pyroclast/snow interactions form the focus of this paper. A theoretical model is developed of heat- and mass transfer at the interface between a layer of uniformly sized pyroclasts and an underlying bed of snow, for the case in which there is no relative shear motion between pyroclasts and snow. A microscale view of the interface is required to properly specify boundary conditions. The physical model leads to the prediction that the upward flux of water vapor - which depends upon emplacement temperature, pyroclast grain size, pyroclast-layer thickness, and snow permeability - is sometimes sufficient to fluidize the pyroclasts. Uniform fluidization is usually unstable to bubble formation, which leads to vigorous convection of the pyroclasts themselves. Thus, predicted threshold conditions for fluidization are tantamount to predicted thresholds for particle convection. Such predictions are quantitatively in good agreement with results of experiments described in part 2 of this paper. Because particle convection commonly causes scour of the snow bed and transformation of the pyroclast layer to a slurry, there exists a 'thermal scour' process for generating lahars from pyroclastic flows moving over snow regardless of the possible role of mechanical scour.
NASA Astrophysics Data System (ADS)
Hedrick, A.; Marshall, H.-P.; Winstral, A.; Elder, K.; Yueh, S.; Cline, D.
2014-06-01
Repeated Light Detection and Ranging (LiDAR) surveys are quickly becoming the de facto method for measuring spatial variability of montane snowpacks at high resolution. This study examines the potential of a 750 km2 LiDAR-derived dataset of snow depths, collected during the 2007 northern Colorado Cold Lands Processes Experiment (CLPX-2), as a validation source for an operational hydrologic snow model. The SNOw Data Assimilation System (SNODAS) model framework, operated by the US National Weather Service, combines a physically-based energy-and-mass-balance snow model with satellite, airborne and automated ground-based observations to provide daily estimates of snowpack properties at nominally 1 km resolution over the coterminous United States. Independent validation data is scarce due to the assimilating nature of SNODAS, compelling the need for an independent validation dataset with substantial geographic coverage. Within twelve distinctive 500 m × 500 m study areas located throughout the survey swath, ground crews performed approximately 600 manual snow depth measurements during each of the CLPX-2 LiDAR acquisitions. This supplied a dataset for constraining the uncertainty of upscaled LiDAR estimates of snow depth at the 1 km SNODAS resolution, resulting in a root-mean-square difference of 13 cm. Upscaled LiDAR snow depths were then compared to the SNODAS-estimates over the entire study area for the dates of the LiDAR flights. The remotely-sensed snow depths provided a more spatially continuous comparison dataset and agreed more closely to the model estimates than that of the in situ measurements alone. Finally, the results revealed three distinct areas where the differences between LiDAR observations and SNODAS estimates were most drastic, suggesting natural processes specific to these regions as causal influences on model uncertainty.
NASA Astrophysics Data System (ADS)
Hedrick, A.; Marshall, H.-P.; Winstral, A.; Elder, K.; Yueh, S.; Cline, D.
2015-01-01
Repeated light detection and ranging (lidar) surveys are quickly becoming the de facto method for measuring spatial variability of montane snowpacks at high resolution. This study examines the potential of a 750 km2 lidar-derived data set of snow depths, collected during the 2007 northern Colorado Cold Lands Processes Experiment (CLPX-2), as a validation source for an operational hydrologic snow model. The SNOw Data Assimilation System (SNODAS) model framework, operated by the US National Weather Service, combines a physically based energy-and-mass-balance snow model with satellite, airborne and automated ground-based observations to provide daily estimates of snowpack properties at nominally 1 km resolution over the conterminous United States. Independent validation data are scarce due to the assimilating nature of SNODAS, compelling the need for an independent validation data set with substantial geographic coverage. Within 12 distinctive 500 × 500 m study areas located throughout the survey swath, ground crews performed approximately 600 manual snow depth measurements during each of the CLPX-2 lidar acquisitions. This supplied a data set for constraining the uncertainty of upscaled lidar estimates of snow depth at the 1 km SNODAS resolution, resulting in a root-mean-square difference of 13 cm. Upscaled lidar snow depths were then compared to the SNODAS estimates over the entire study area for the dates of the lidar flights. The remotely sensed snow depths provided a more spatially continuous comparison data set and agreed more closely to the model estimates than that of the in situ measurements alone. Finally, the results revealed three distinct areas where the differences between lidar observations and SNODAS estimates were most drastic, providing insight into the causal influences of natural processes on model uncertainty.
Spatiotemporal variability of snow depth across the Eurasian continent from 1966 to 2012
NASA Astrophysics Data System (ADS)
Zhong, Xinyue; Zhang, Tingjun; Kang, Shichang; Wang, Kang; Zheng, Lei; Hu, Yuantao; Wang, Huijuan
2018-01-01
Snow depth is one of the key physical parameters for understanding land surface energy balance, soil thermal regime, water cycle, and assessing water resources from local community to regional industrial water supply. Previous studies by using in situ data are mostly site specific; data from satellite remote sensing may cover a large area or global scale, but uncertainties remain large. The primary objective of this study is to investigate spatial variability and temporal change in snow depth across the Eurasian continent. Data used include long-term (1966-2012) ground-based measurements from 1814 stations. Spatially, long-term (1971-2000) mean annual snow depths of >20 cm were recorded in northeastern European Russia, the Yenisei River basin, Kamchatka Peninsula, and Sakhalin. Annual mean and maximum snow depth increased by 0.2 and 0.6 cm decade-1 from 1966 through 2012. Seasonally, monthly mean snow depth decreased in autumn and increased in winter and spring over the study period. Regionally, snow depth significantly increased in areas north of 50° N. Compared with air temperature, snowfall had greater influence on snow depth during November through March across the former Soviet Union. This study provides a baseline for snow depth climatology and changes across the Eurasian continent, which would significantly help to better understanding climate system and climate changes on regional, hemispheric, or even global scales.
NASA Astrophysics Data System (ADS)
Havens, Scott; Marks, Danny; Kormos, Patrick; Hedrick, Andrew
2017-12-01
In the Western US and many mountainous regions of the world, critical water resources and climate conditions are difficult to monitor because the observation network is generally very sparse. The critical resource from the mountain snowpack is water flowing into streams and reservoirs that will provide for irrigation, flood control, power generation, and ecosystem services. Water supply forecasting in a rapidly changing climate has become increasingly difficult because of non-stationary conditions. In response, operational water supply managers have begun to move from statistical techniques towards the use of physically based models. As we begin to transition physically based models from research to operational use, we must address the most difficult and time-consuming aspect of model initiation: the need for robust methods to develop and distribute the input forcing data. In this paper, we present a new open source framework, the Spatial Modeling for Resources Framework (SMRF), which automates and simplifies the common forcing data distribution methods. It is computationally efficient and can be implemented for both research and operational applications. We present an example of how SMRF is able to generate all of the forcing data required to a run physically based snow model at 50-100 m resolution over regions of 1000-7000 km2. The approach has been successfully applied in real time and historical applications for both the Boise River Basin in Idaho, USA and the Tuolumne River Basin in California, USA. These applications use meteorological station measurements and numerical weather prediction model outputs as input. SMRF has significantly streamlined the modeling workflow, decreased model set up time from weeks to days, and made near real-time application of a physically based snow model possible.
Subgrid parameterization of snow distribution at a Mediterranean site using terrestrial photography
NASA Astrophysics Data System (ADS)
Pimentel, Rafael; Herrero, Javier; José Polo, María
2017-02-01
Subgrid variability introduces non-negligible scale effects on the grid-based representation of snow. This heterogeneity is even more evident in semiarid regions, where the high variability of the climate produces various accumulation melting cycles throughout the year and a large spatial heterogeneity of the snow cover. This variability in a watershed can often be represented by snow accumulation-depletion curves (ADCs). In this study, terrestrial photography (TP) of a cell-sized area (30 × 30 m) was used to define local snow ADCs at a Mediterranean site. Snow-cover fraction (SCF) and snow-depth (h) values obtained with this technique constituted the two datasets used to define ADCs. A flexible sigmoid function was selected to parameterize snow behaviour on this subgrid scale. It was then fitted to meet five different snow patterns in the control area: one for the accumulation phase and four for the melting phase in a cycle within the snow season. Each pattern was successfully associated with the snow conditions and previous evolution. The resulting ADCs were associated to certain physical features of the snow, which were used to incorporate them in the point snow model formulated by Herrero et al. (2009) by means of a decision tree. The final performance of this model was tested against field observations recorded over four hydrological years (2009-2013). The calibration and validation of this ADC snow model was found to have a high level of accuracy, with global RMSE values of 105.8 mm for the average snow depth and 0.21 m2 m-2 for the snow-cover fraction in the control area. The use of ADCs on the cell scale proposed in this research provided a sound basis for the extension of point snow models to larger areas by means of a gridded distributed calculation.
Snow: A New Model Diagnostic and Seasonal Forecast Influences
NASA Astrophysics Data System (ADS)
Slater, A. G.; Lawrence, D. M.; Koven, C.
2015-12-01
Snow is the most variable of terrestrial surface condition on the planet with the seasonal extent of snow cover varying by about 48% of land area in the Northern Hemisphere. Physical properties of snow such as high albedo, high insulation along with its ability to store moisture make it an integral component of mid- and high-latitude climates and it is therefore important that models capture these properties and associated processes. In this work we explore two items associated with snow and their role in the climate system. Firstly, a diagnostic measure of snow insulation that is rooted in the physics of heat transfer is introduced. Insulation of the ground during cold Arctic winters heavily influences the rate and depth of ground freezing (or thawing), which can then influence hydrologic and biogeochemical fluxes. The ability of models to simulate snow insulation varies widely. Secondly, the role of snow upon seasonal forecasts is demonstrated within a currently operational modeling system. Due to model system biases, mass and longevity of snow can vary with forecasts. In turn, a longer lasting and greater moisture store can have impacts upon the surface temperature. These impacts can linger for over two months after all snow has melted. The cause of the biases is identified and a solution posed.
NASA Astrophysics Data System (ADS)
Van Hoy, D.; Mahmood, T. H.; Jeannotte, T.; Todhunter, P. E.
2017-12-01
The recent shift in hydroclimatic conditions in the Northern Great Plains (NGP) has led to an increase in precipitation, rainfall rate, and wetland connectivity over the last few decades. These changes yield an integrated response resulting in high mean annual streamflow and subsequent flooding in many NGP basins such as the terminal Devils Lake Basin (DLB). In this study, we investigate the impacts of recent climatic wetting on distributed hydrologic responses such as snow processes and streamflow using a field-tested and physically-based cold region hydrologic model (CRHM). CHRM is designed for cold prairie regions and has modules to simulate major processes such as blowing snow transport, sublimation, interception, frozen soil infiltration, snowmelt and subsequent streamflow generation. Our modeling focuses on a tributary basin of the DLB known as the Mauvais Coulee Basin (MCB). Since there were no snow observations in the MCB, we conducted a detailed snow survey at distributed locations estimating snow depth, density, and snow water equivalent (SWE) using a prairie snow tube four times during winter of 2016-17. The MCB model was evaluated against distributed snow observations and streamflow measured at the basin outlet (USGS) for the year 2016-2017. Preliminary results indicate that the simulated SWEs at distributed locations and streamflow (NSE ≈ 0.70) are in good agreement with observations. The simulated SWE maps exhibit large spatiotemporal variation during 2016-17 winter due to spatial variability in precipitation, snow redistribution from stubble field to wooded areas, and snow accumulations in small depressions across the subbasins. The main source of snow appears to be the hills and ridges of the eastern and western edges of the basin, while the main sink is the large flat central valleys. The model will be used to examine the effect of recent changes to precipitation and temperature on snow processes and subsequent streamflow for 2004-2017 season. We will also investigate the hydrologic sensitivity to precipitation and temperature changes by altering input temperature and precipitation. Finally, our findings will point toward future process-based studies and simulated hydrologic responses that can be used to prepare flood hazard maps for cities around Devils Lake.
NASA Astrophysics Data System (ADS)
Calonne, N.; Geindreau, C.; Flin, F.
2015-12-01
At the microscopic scale, i.e., pore scale, dry snow metamorphism is mainly driven by the heat and water vapor transfer and the sublimation-deposition process at the ice-air interface. Up to now, the description of these phenomena at the macroscopic scale, i.e., snow layer scale, in the snowpack models has been proposed in a phenomenological way. Here we used an upscaling method, namely, the homogenization of multiple-scale expansions, to derive theoretically the macroscopic equivalent modeling of heat and vapor transfer through a snow layer from the physics at the pore scale. The physical phenomena under consideration are steady state air flow, heat transfer by conduction and convection, water vapor transfer by diffusion and convection, and phase change (sublimation and deposition). We derived three different macroscopic models depending on the intensity of the air flow considered at the pore scale, i.e., on the order of magnitude of the pore Reynolds number and the Péclet numbers: (A) pure diffusion, (B) diffusion and moderate convection (Darcy's law), and (C) strong convection (nonlinear flow). The formulation of the models includes the exact expression of the macroscopic properties (effective thermal conductivity, effective vapor diffusion coefficient, and intrinsic permeability) and of the macroscopic source terms of heat and vapor arising from the phase change at the pore scale. Such definitions can be used to compute macroscopic snow properties from 3-D descriptions of snow microstructures. Finally, we illustrated the precision and the robustness of the proposed macroscopic models through 2-D numerical simulations.
Modelling Ground Based X- and Ku-Band Observations of Tundra Snow
NASA Astrophysics Data System (ADS)
Kasurak, A.; King, J. M.; Kelly, R. E.
2012-12-01
As part of a radar-based remote sensing field experiment in Churchill, Manitoba ground based Ku- and X-band scatterometers were deployed to observe changing tundra snowpack conditions from November 2010 to March 2011. The research is part of the validation effort for the Cold Regions Hydrology High-resolution Observatory (CoReH2O) mission, a candidate in the European Space Agency's Earth Explorer program. This paper focuses on the local validation of the semi-empirical radiative transfer (sRT) model proposed for use in snow property retrievals as part of the CoReH2O mission. In this validation experiment, sRT was executed in the forward mode, simulating backscatter to assess the ability of the model. This is a necessary precursor to any inversion attempt. Two experiments are considered, both conducted in a hummocky tundra environment with shallow snow cover. In both cases, scatterometer observations were acquired over a field of view of approximately 10 by 20 meters. In the first experiment, radar observations were made of a snow field and then repeated after the snow had been removed. A ground-based scanning LiDAR system was used to characterize the spatial variability of snow depth through measurements of the snow and ground surface. Snow properties were determined in the field of view from two snow pits, 12 density core measurements, and Magnaprobe snow depth measurements. In the second experiment, a site was non-destructively observed from November through March, with snow properties measured out-of-scene, to characterize the snow evolution response. The model results from sRT fit the form of the observations from the two scatterometer field experiments but do not capture the backscatter magnitude. A constant offset for the season of 5 dB for X-band co- and cross-polarization response was required to match observations, in addition to a 3 dB X- and Ku-band co-polarization offset after the 6th of December. To explain these offsets, it is recognized that the two main physical processes represented by the model are snow volume scattering and ground surface reflectance. With a larger correction needed for X-band, where the ground portion of backscatter is expected to be larger, the contribution from the underlying soil is explored first. The ground contribution in sRT is computed using the semi-empirical Oh et al. (1992) model using permittivity from a temperate mineral soil based model. The ground response is tested against two observations of snow-removed tundra, and one observation of snow free tundra. A secondary analysis is completed using a modified sRT ground model, incorporating recent work on frozen organic permittivity by Mironov et al. (2010). Multi-scale surface roughness resulting from superimposed microtopography on regularly distributed hummocks is also addressed. These results demonstrate the applicability of microwave scattering models to tundra snowpacks underlain with peat, and demonstrate the applicability of the CoReH2O sRT model.
The assessment of EUMETSAT HSAF Snow Products for mountainuos areas in the eastern part of Turkey
NASA Astrophysics Data System (ADS)
Akyurek, Z.; Surer, S.; Beser, O.; Bolat, K.; Erturk, A. G.
2012-04-01
Monitoring the snow parameters (e.g. snow cover area, snow water equivalent) is a challenging work. Because of its natural physical properties, snow highly affects the evolution of weather from daily basis to climate on a longer time scale. The derivation of snow products over mountainous regions has been considered very challenging. This can be done by periodic and precise mapping of the snow cover. However inaccessibility and scarcity of the ground observations limit the snow cover mapping in the mountainous areas. Today, it is carried out operationally by means of optical satellite imagery and microwave radiometry. In retrieving the snow cover area from satellite images bring the problem of topographical variations within the footprint of satellite sensors and spatial and temporal variation of snow characteristics in the mountainous areas. Most of the global and regional operational snow products use generic algorithms for flat and mountainous areas. However the non-uniformity of the snow characteristics can only be modeled with different algorithms for mountain and flat areas. In this study the early findings of Satellite Application Facilities on Hydrology (H-SAF) project, which is financially supported by EUMETSAT, will be presented. Turkey is a part of the H-SAF project, both in product generation (eg. snow recognition, fractional snow cover and snow water equivalent) for mountainous regions for whole Europe, cal/val of satellite-derived snow products with ground observations and cal/val studies with hydrological modeling in the mountainous terrain of Europe. All the snow products are operational on a daily basis. For the snow recognition product (H10) for mountainous areas, spectral thresholding methods were applied on sub pixel scale of MSG-SEVIRI images. The different spectral characteristics of cloud, snow and land determined the structure of the algorithm and these characteristics were obtained from subjective classification of known snow cover features in the MSG/SEVIRI images. The fractional snow cover area (H12) algorithm is based on a sub-pixel reflectance model applied on METOP-AVHRR data. Knowing the effects of topography on satellite-measured radiances for rough terrain, the sun zenith and azimuth angles, as well as direction of observation relative to these are taken into account in estimating the target reflectances from the satellite images. The values of SWE products (H13) were obtained using an assimilation process based on the Helsinki University of Technology model using Advanced Microwave Scanning Radiometer for EOS (AMSR-E) daily brightness-temperature values. The validation studies for three products have been performed for the water years 2010 and 2011. Average values of 70% of probability of detection for snow recognition product, 60% of overall accuracy for the fractional snow cover product and 45 mm RMSE for the snow water equivalent product have been obtained from the validation studies. Final versions of these three products will be presented and discussed. Key words: snow, satellite images, mountain, HSAF, snow cover, snow water equivalent
Recent research in snow hydrology
NASA Technical Reports Server (NTRS)
Dozier, Jeff
1987-01-01
Recent work on snow-pack energy exchange has involved detailed investigations on snow albedo and attempts to integrate energy-balance calculations over drainage basins. Along with a better understanding of the EM properties of snow, research in remote sensing has become more focused toward estimation of snow-pack properties. In snow metamorphism, analyses of the physical processes must now be coupled to better descriptions of the geometry of the snow microstructure. The dilution method now appears to be the best direct technique for measuring the liquid water content of snow; work on EM methods continues. Increasing attention to the chemistry of the snow pack has come with the general focus on acid precipitation in hydrology.
NASA Astrophysics Data System (ADS)
Wegmann, Martin; Dutra, Emanuel; Jacobi, Hans-Werner; Zolina, Olga
2018-06-01
This study uses daily observations and modern reanalyses in order to evaluate reanalysis products over northern Eurasia regarding the spring snow albedo feedback (SAF) during the period from 2000 to 2013. We used the state-of-the-art reanalyses from ERA-Interim/Land and the Modern-Era Retrospective Analysis for Research and Applications version 2 (MERRA-2) as well as an experimental set-up of ERA-Interim/Land with prescribed short grass as land cover to enhance the comparability with the station data while underlining the caveats of comparing in situ observations with gridded data. Snow depth statistics derived from daily station data are well reproduced in all three reanalyses. However day-to-day albedo variability is notably higher at the stations than for any reanalysis product. The ERA-Interim grass set-up shows improved performance when representing albedo variability and generates comparable estimates for the snow albedo in spring. We find that modern reanalyses show a physically consistent representation of SAF, with realistic spatial patterns and area-averaged sensitivity estimates. However, station-based SAF values are significantly higher than in the reanalyses, which is mostly driven by the stronger contrast between snow and snow-free albedo. Switching to grass-only vegetation in ERA-Interim/Land increases the SAF values up to the level of station-based estimates. We found no significant trend in the examined 14-year time series of SAF, but interannual changes of about 0.5 % K-1 in both station-based and reanalysis estimates were derived. This interannual variability is primarily dominated by the variability in the snowmelt sensitivity, which is correctly captured in reanalysis products. Although modern reanalyses perform well for snow variables, efforts should be made to improve the representation of dynamic albedo changes.
NASA Astrophysics Data System (ADS)
Cook, Joseph M.; Hodson, Andrew J.; Gardner, Alex S.; Flanner, Mark; Tedstone, Andrew J.; Williamson, Christopher; Irvine-Fynn, Tristram D. L.; Nilsson, Johan; Bryant, Robert; Tranter, Martyn
2017-11-01
The darkening effects of biological impurities on ice and snow have been recognised as a control on the surface energy balance of terrestrial snow, sea ice, glaciers and ice sheets. With a heightened interest in understanding the impacts of a changing climate on snow and ice processes, quantifying the impact of biological impurities on ice and snow albedo (bioalbedo
) and its evolution through time is a rapidly growing field of research. However, rigorous quantification of bioalbedo has remained elusive because of difficulties in isolating the biological contribution to ice albedo from that of inorganic impurities and the variable optical properties of the ice itself. For this reason, isolation of the biological signature in reflectance data obtained from aerial/orbital platforms has not been achieved, even when ground-based biological measurements have been available. This paper provides the cell-specific optical properties that are required to model the spectral signatures and broadband darkening of ice. Applying radiative transfer theory, these properties provide the physical basis needed to link biological and glaciological ground measurements with remotely sensed reflectance data. Using these new capabilities we confirm that biological impurities can influence ice albedo, then we identify 10 challenges to the measurement of bioalbedo in the field with the aim of improving future experimental designs to better quantify bioalbedo feedbacks. These challenges are (1) ambiguity in terminology, (2) characterising snow or ice optical properties, (3) characterising solar irradiance, (4) determining optical properties of cells, (5) measuring biomass, (6) characterising vertical distribution of cells, (7) characterising abiotic impurities, (8) surface anisotropy, (9) measuring indirect albedo feedbacks, and (10) measurement and instrument configurations. This paper aims to provide a broad audience of glaciologists and biologists with an overview of radiative transfer and albedo that could support future experimental design.
NASA Astrophysics Data System (ADS)
Gallet, Jean-Charles; Merkouriadi, Ioanna; Liston, Glen E.; Polashenski, Chris; Hudson, Stephen; Rösel, Anja; Gerland, Sebastian
2017-10-01
Snow is crucial over sea ice due to its conflicting role in reflecting the incoming solar energy and reducing the heat transfer so that its temporal and spatial variability are important to estimate. During the Norwegian Young Sea ICE (N-ICE2015) campaign, snow physical properties and variability were examined, and results from April until mid-June 2015 are presented here. Overall, the snow thickness was about 20 cm higher than the climatology for second-year ice, with an average of 55 ± 27 cm and 32 ± 20 cm on first-year ice. The average density was 350-400 kg m-3 in spring, with higher values in June due to melting. Due to flooding in March, larger variability in snow water equivalent was observed. However, the snow structure was quite homogeneous in spring due to warmer weather and lower amount of storms passing over the field camp. The snow was mostly consisted of wind slab, faceted, and depth hoar type crystals with occasional fresh snow. These observations highlight the more dynamic character of evolution of snow properties over sea ice compared to previous observations, due to more variable sea ice and weather conditions in this area. The snowpack was isothermal as early as 10 June with the first onset of melt clearly identified in early June. Based on our observations, we estimate than snow could be accurately represented by a three to four layers modeling approach, in order to better consider the high variability of snow thickness and density together with the rapid metamorphose of the snow in springtime.
A new parameterization of the post-fire snow albedo effect
NASA Astrophysics Data System (ADS)
Gleason, K. E.; Nolin, A. W.
2013-12-01
Mountain snowpack serves as an important natural reservoir of water: recharging aquifers, sustaining streams, and providing important ecosystem services. Reduced snowpacks and earlier snowmelt have been shown to affect fire size, frequency, and severity in the western United States. In turn, wildfire disturbance affects patterns of snow accumulation and ablation by reducing canopy interception, increasing turbulent fluxes, and modifying the surface radiation balance. Recent work shows that after a high severity forest fire, approximately 60% more solar radiation reaches the snow surface due to the reduction in canopy density. Also, significant amounts of pyrogenic carbon particles and larger burned woody debris (BWD) are shed from standing charred trees, which concentrate on the snowpack, darken its surface, and reduce snow albedo by 50% during ablation. Although the post-fire forest environment drives a substantial increase in net shortwave radiation at the snowpack surface, driving earlier and more rapid melt, hydrologic models do not explicitly incorporate forest fire disturbance effects to snowpack dynamics. The objective of this study was to parameterize the post-fire snow albedo effect due to BWD deposition on snow to better represent forest fire disturbance in modeling of snow-dominated hydrologic regimes. Based on empirical results from winter experiments, in-situ snow monitoring, and remote sensing data from a recent forest fire in the Oregon High Cascades, we characterized the post-fire snow albedo effect, and developed a simple parameterization of snowpack albedo decay in the post-fire forest environment. We modified the recession coefficient in the algorithm: α = α0 + K exp (-nr) where α = snowpack albedo, α0 = minimum snowpack albedo (≈0.4), K = constant (≈ 0.44), -n = number of days since last major snowfall, r = recession coefficient [Rohrer and Braun, 1994]. Our parameterization quantified BWD deposition and snow albedo decay rates and related these forest disturbance effects to radiative heating and snow melt rates. We validated our parameterization of the post-fire snow albedo effect at the plot scale using a physically-based, spatially-distributed snow accumulation and melt model, and in-situ eddy covariance and snow monitoring data. This research quantified wildfire impacts to snow dynamics in the Oregon High Cascades, and provided a new parameterization of post-fire drivers to changes in high elevation winter water storage.
Multi-RTM-based Radiance Assimilation to Improve Snow Estimates
NASA Astrophysics Data System (ADS)
Kwon, Y.; Zhao, L.; Hoar, T. J.; Yang, Z. L.; Toure, A. M.
2015-12-01
Data assimilation of microwave brightness temperature (TB) observations (i.e., radiance assimilation (RA)) has been proven to improve snowpack characterization at relatively small scales. However, large-scale applications of RA require a considerable amount of further efforts. Our objective in this study is to explore global-scale snow RA. In a RA scheme, a radiative transfer model (RTM) is an observational operator predicting TB; therefore, the quality of the assimilation results may strongly depend upon the RTM used as well as the land surface model (LSM). Several existing RTMs show different sensitivities to snowpack properties and thus they simulate significantly different TB. At the global scale, snow physical properties vary widely with local climate conditions. No single RTM has been shown to be able to accurately reproduce the observed TB for such a wide range of snow conditions. In this study, therefore, we hypothesize that snow estimates using a microwave RA scheme can be improved through the use of multiple RTMs (i.e., multi-RTM-based approaches). As a first step, here we use two snowpack RTMs, i.e., the Dense Media Radiative Transfer-Multi Layers model (DMRT-ML) and the Microwave Emission Model for Layered Snowpacks (MEMLS). The Community Land Model version 4 (CLM4) is used to simulate snow dynamics. The assimilation process is conducted by the Data Assimilation Research Testbed (DART), which is a community facility developed by the National Center for Atmospheric Research (NCAR) for ensemble-based data assimilation studies. In the RA experiments, the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) TB at 18.7 and 36.5 GHz vertical polarization channels are assimilated into the RA system using the ensemble adjustment Kalman filter. The results are evaluated using the Canadian Meteorological Centre (CMC) daily snow depth, the Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover fraction, and in-situ snowpack and river discharge observations.
NASA Astrophysics Data System (ADS)
Beamer, J. P.; Hill, D. F.; Liston, G. E.; Arendt, A. A.; Hood, E. W.
2013-12-01
In Prince William Sound (PWS), Alaska, there is a pressing need for accurate estimates of the spatial and temporal variations in coastal freshwater discharge (FWD). FWD into PWS originates from streamflow due to rainfall, annual snowmelt, and changes in stored glacier mass and is important because it helps establish spatial and temporal patterns in ocean salinity and temperature, and is a time-varying boundary condition for oceanographic circulation models. Previous efforts to model FWD into PWS have been heavily empirical, with many physical processes absorbed into calibration coefficients that, in many cases, were calibrated to streams and rivers not hydrologically similar to those discharging into PWS. In this work we adapted and validated a suite of high-resolution (in space and time), physically-based, distributed weather, snowmelt, and runoff-routing models designed specifically for snow melt- and glacier melt-dominated watersheds like PWS in order to: 1) provide high-resolution, real-time simulations of snowpack and FWD, and 2) provide a record of historical variations of FWD. SnowModel, driven with gridded topography, land cover, and 32 years (1979-2011) of 3-hourly North American Regional Reanalysis (NARR) atmospheric forcing data, was used to simulate snowpack accumulation and melt across a PWS model domain. SnowModel outputs of daily snow water equivalent (SWE) depth and grid-cell runoff volumes were then coupled with HydroFlow, a runoff-routing model which routed snowmelt, glacier-melt, and rainfall to each watershed outlet (PWS coastline) in the simulation domain. The end product was a continuous 32-year simulation of daily FWD into PWS. In order to validate the models, SWE and snow depths from SnowModel were compared with observed SWE and snow depths from SnoTel and snow survey data, and discharge from HydroFlow was compared with observed streamflow measurements. As a second phase of this research effort, the coupled models will be set-up to run in real-time, where daily measurements from weather stations in the PWS will be used to drive simulations of snow cover and streamflow. In addition, we will deploy a strategic array of instrumentation aimed at validating the simulated weather estimates and the calculations of freshwater discharge. Upon successful implementation and validation of the modeling system, it will join established and ongoing computational and observational efforts that have a common goal of establishing a comprehensive understanding of the physical behavior of PWS.
NASA Astrophysics Data System (ADS)
Rasouli, K.; Pomeroy, J. W.; Fang, X.; Whitfield, P. H.; Marks, D. G.; Janowicz, J. R.
2017-12-01
A transect comprising three intensively researched mountain headwater catchments stretching from the northern US to northern Canada provides the basis to downscale climate models outputs for mountain hydrology and insight for an assessment of water futures under changing climate and vegetation using a physically based hydrological model. Reynolds Mountain East, Idaho; Marmot Creek, Alberta and Wolf Creek, Yukon are high mountain catchments dominated by forests and alpine shrub and grass vegetation with long-term snow, hydrometric and meteorological observations and extensive ecohydrological process studies. The physically based, modular, flexible and object-oriented Cold Regions Hydrological Modelling Platform (CRHM) was used to create custom spatially distributed hydrological models for these three catchments. Model parameterisations were based on knowledge of hydrological processes, basin physiography, soils and vegetation with minimal or no calibration from streamflow measurements. The models were run over multidecadal periods using high-elevation meteorological observations to assess the recent ecohydrological functioning of these catchments. The results showed unique features in each catchment, from snowdrift-fed aspen pocket forests in Reynolds Mountain East, to deep late-lying snowdrifts at treeline larch forests in Marmot Creek, and snow-trapping shrub tundra overlying discontinuous permafrost in Wolf Creek. The meteorological observations were then perturbed using the changes in monthly temperature and precipitation predicted by the NARCCAP modelling outputs for the mid-21st C. In all catchments there is a dramatic decline in snow redistribution and sublimation by wind and of snow interception by and sublimation from evergreen canopies that is associated with warmer winters. Reduced sublimation loss only partially compensated for greater rainfall fractions of precipitation. Under climate change, snowmelt was earlier and slower and at the lowest elevations and latitudes produced less proportion of runoff from snowmelt. Transient vegetation changes counteracted increasing streamflow yields from climate change partly due to increased snow retention by enhanced vegetation heights at high elevations and reduced vegetation canopy coverage at low elevations.
NASA Astrophysics Data System (ADS)
Kinnard, C.; Irarrazaval, I.; Campos, C.; Gascoin, S.; MacDonell, S.; Macdonell, S.; Herrero, J.
2016-12-01
Snow cover in the central-northern Andes of Chile is the main runoff source, providing water for the irrigation of cultures in the fertile valleys downstream. The prospect of adverse climate warming impacts on the hydrological cycle calls for a better understanding of the snow cover dynamics in response to climate, an aspect that has been little studied in the dry Andes. The heterogeneous and often thin snow cover, as well as the paucity of long-term hydrometeorological data makes snow modelling a challenging task in these regions. In this work we applied a physically-based, spatially-distributed snow model (Wimmed) to the La Laguna headwater catchment in the dry Andes (30°S, 70°W) during three hydrological years (2010-2013) when forcing data was available. Model testing at the point scale revealed a large sensitivity of simulated snow depths to the choice of snow roughness parameter (z0), which controls turbulent fluxes, while wind-induced snow erosion at the station in 2010 and 2011 complicated model validation. The inclusion of a mean wind speed map from a previous simulation with the WRF atmospheric model was found to improve the simulation results, while excluding the highest mountain ridge weather station had detrimental effects on the results. A snow roughness (z0) of 1 mm yielded the best comparison between the simulated and observed snow depth at the reference weather station, and between the simulated and MODIS-derived snow cover at the catchment scale. The simulation resulted in large sublimation losses (up to 4 mm day-1), corresponding to more than 80% of snow ablation in the catchment. While such high sublimation rates have been reported before in this region, remaining uncertainties in precipitation data and snow compaction processes call for more detailed studies and increased instrumentation in order to improve future modelling efforts.
NASA Astrophysics Data System (ADS)
Rousseau, A. N.; Álvarez; Yu, X.; Savary, S.; Duffy, C.
2015-12-01
Most physically-based hydrological models simulate to various extents the relevant watershed processes occurring at different spatiotemporal scales. These models use different physical domain representations (e.g., hydrological response units, discretized control volumes) and numerical solution techniques (e.g., finite difference method, finite element method) as well as a variety of approximations for representing the physical processes. Despite the fact that several models have been developed so far, very few inter-comparison studies have been conducted to check beyond streamflows whether different modeling approaches could simulate in a similar fashion the other processes at the watershed scale. In this study, PIHM (Qu and Duffy, 2007), a fully coupled, distributed model, and HYDROTEL (Fortin et al., 2001; Turcotte et al., 2003, 2007), a pseudo-coupled, semi-distributed model, were compared to check whether the models could corroborate observed streamflows while equally representing other processes as well such as evapotranspiration, snow accumulation/melt or infiltration, etc. For this study, the Young Womans Creek watershed, PA, was used to compare: streamflows (channel routing), actual evapotranspiration, snow water equivalent (snow accumulation and melt), infiltration, recharge, shallow water depth above the soil surface (surface flow), lateral flow into the river (surface and subsurface flow) and height of the saturated soil column (subsurface flow). Despite a lack of observed data for contrasting most of the simulated processes, it can be said that the two models can be used as simulation tools for streamflows, actual evapotranspiration, infiltration, lateral flows into the river, and height of the saturated soil column. However, each process presents particular differences as a result of the physical parameters and the modeling approaches used by each model. Potentially, these differences should be object of further analyses to definitively confirm or reject modeling hypotheses.
NASA Astrophysics Data System (ADS)
López-Burgos, V.; Rajagopal, S.; Martinez Baquero, G. F.; Gupta, H. V.
2009-12-01
Rapidly growing population in the southwestern US is leading to increasing demand and decreasing availability of water, requiring a detailed quantification of hydrological processes. The integration of detailed spatial information of water fluxes from remote sensing platforms, and hydrological models coupled with ground based data is an important step towards this goal. This project is exploring the use of Snow Water Equivalent (SWE) estimates to update the snow component of the Variable Infiltration Capacity model (VIC). SWE estimates are obtained by combining SNOTEL data with MODIS Snow Cover Area (SCA) information. Because, cloud cover corrupts the estimates of SCA, a rule-based method is used to clean up the remotely sensed images. The rules include a time interpolation method, and the probability of a pixel for been covered with snow based on the relationships between elevation, temperature, lapse rate, aspect and topographic shading. The approach is used to improve streamflow predictions on two rivers managed by the Salt River Project, a water and energy supplier in central Arizona. This solution will help improve the management of reservoirs in the Salt and Verde River in Phoenix, Arizona (tributaries of the lower Colorado River basin), by incorporating physically based distributed models and remote sensing observations into their Decision Support Tools and planning tools. This research seeks to increase the knowledge base used to manage reservoirs and groundwater resources in a region affected by a long-term drought. It will be applicable and relevant for other water utility companies facing the challenges of climate change and decreasing water resources.
CUES - A Study Site for Measuring Snowpack Energy Balance in the Sierra Nevada
NASA Astrophysics Data System (ADS)
Bair, Edward; Dozier, Jeff; Davis, Robert; Colee, Michael; Claffey, Keran
2015-09-01
Accurate measurement and modeling of the snowpack energy balance are critical to understanding the terrestrial water cycle. Most of the water resources in the western US come from snowmelt, yet statistical runoff models that rely on the historical record are becoming less reliable because of a changing climate. For physically based snow melt models that do not depend on past conditions, ground based measurements of the energy balance components are imperative for verification. For this purpose, the US Army Corps of Engineers Cold Regions Research and Engineering Laboratory (CRREL) and the University of California, Santa Barbara (UCSB) established the “CUES” snow study site (CRREL/UCSB Energy Site, http://www.snow.ucsb.edu/) at 2940 m elevation on Mammoth Mountain, California. We describe CUES, provide an overview of research, share our experience with scientific measurements, and encourage future collaborative research. Snow measurements began near the current CUES site for ski area operations in 1969. In the 1970s, researchers began taking scientific measurements. Today, CUES benefits from year round gondola access and a fiber optic internet connection. Data loggers and computers automatically record and store over 100 measurements from more than 50 instruments each minute. CUES is one of only five high altitude mountain sites in the Western US where a full suite of energy balance components are measured. In addition to measuring snow on the ground at multiple locations, extensive radiometric and meteorological measurements are recorded. Some of the more novel measurements include scans by an automated terrestrial LiDAR, passive and active microwave imaging of snow stratigraphy, microscopic imaging of snow grains, snowflake imaging with a multi-angle camera, fluxes from upward and downward looking radiometers, snow water equivalent from different types of snow pillows, snowmelt from lysimeters, and concentration of impurities in the snowpack. We give an example of terrain-corrected snow albedo measurements compared to several models and of sublimation measured from lysimeter and snow pillow melt. We conclude with some thoughts on the future of CUES.
NASA Technical Reports Server (NTRS)
Picard, G.; Brucker, Ludovic; Roy, A.; Dupont, F.; Fily, M.; Royer, A.; Harlow, C.
2013-01-01
DMRT-ML is a physically based numerical model designed to compute the thermal microwave emission of a given snowpack. Its main application is the simulation of brightness temperatures at frequencies in the range 1-200 GHz similar to those acquired routinely by spacebased microwave radiometers. The model is based on the Dense Media Radiative Transfer (DMRT) theory for the computation of the snow scattering and extinction coefficients and on the Discrete Ordinate Method (DISORT) to numerically solve the radiative transfer equation. The snowpack is modeled as a stack of multiple horizontal snow layers and an optional underlying interface representing the soil or the bottom ice. The model handles both dry and wet snow conditions. Such a general design allows the model to account for a wide range of snow conditions. Hitherto, the model has been used to simulate the thermal emission of the deep firn on ice sheets, shallow snowpacks overlying soil in Arctic and Alpine regions, and overlying ice on the large icesheet margins and glaciers. DMRT-ML has thus been validated in three very different conditions: Antarctica, Barnes Ice Cap (Canada) and Canadian tundra. It has been recently used in conjunction with inverse methods to retrieve snow grain size from remote sensing data. The model is written in Fortran90 and available to the snow remote sensing community as an open-source software. A convenient user interface is provided in Python.
NASA Astrophysics Data System (ADS)
D'Amboise, Christopher J. L.; Müller, Karsten; Oxarango, Laurent; Morin, Samuel; Schuler, Thomas V.
2017-09-01
We present a new water percolation routine added to the one-dimensional snowpack model Crocus as an alternative to the empirical bucket routine. This routine solves the Richards equation, which describes flow of water through unsaturated porous snow governed by capillary suction, gravity and hydraulic conductivity of the snow layers. We tested the Richards routine on two data sets, one recorded from an automatic weather station over the winter of 2013-2014 at Filefjell, Norway, and the other an idealized synthetic data set. Model results using the Richards routine generally lead to higher water contents in the snow layers. Snow layers often reached a point at which the ice crystals' surface area is completely covered by a thin film of water (the transition between pendular and funicular regimes), at which feedback from the snow metamorphism and compaction routines are expected to be nonlinear. With the synthetic simulation 18 % of snow layers obtained a saturation of > 10 % and 0.57 % of layers reached saturation of > 15 %. The Richards routine had a maximum liquid water content of 173.6 kg m-3 whereas the bucket routine had a maximum of 42.1 kg m-3. We found that wet-snow processes, such as wet-snow metamorphism and wet-snow compaction rates, are not accurately represented at higher water contents. These routines feed back on the Richards routines, which rely heavily on grain size and snow density. The parameter sets for the water retention curve and hydraulic conductivity of snow layers, which are used in the Richards routine, do not represent all the snow types that can be found in a natural snowpack. We show that the new routine has been implemented in the Crocus model, but due to feedback amplification and parameter uncertainties, meaningful applicability is limited. Updating or adapting other routines in Crocus, specifically the snow compaction routine and the grain metamorphism routine, is needed before Crocus can accurately simulate the snowpack using the Richards routine.
NASA Astrophysics Data System (ADS)
Bennett, K. E.; Cherry, J. E.; Hiemstra, C. A.; Bolton, W. R.
2013-12-01
Interior sub-Arctic Alaskan snow cover is rapidly changing and requires further study for correct parameterization in physically based models. This project undertook field studies during the 2013 snow melt season to capture snow depth, snow temperature profiles, and snow cover extent to compare with observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor at four different sites underlain by discontinuous permafrost. The 2013 melt season, which turned out to be the latest snow melt period on record, was monitored using manual field measurements (SWE, snow depth data collection), iButtons to record temperature of the snow pack, GoPro cameras to capture time lapse of the snow melt, and low level orthoimagery collected at ~1500 m using a Navion L17a plane mounted with a Nikon D3s camera. Sites were selected across a range of landscape conditions, including a north facing black spruce hill slope, a south facing birch forest, an open tundra site, and a high alpine meadow. Initial results from the adjacent north and south facing sites indicate a highly sensitive system where snow cover melts over just a few days, illustrating the importance of high resolution temporal data capture at these locations. Field observations, iButtons and GoPro cameras show that the MODIS data captures the melt conditions at the south and the north site with accuracy (2.5% and 6.5% snow cover fraction present on date of melt, respectively), but MODIS data for the north site is less variable around the melt period, owing to open conditions and sparse tree cover. However, due to the rapid melt rate trajectory, shifting the melt date estimate by a day results in a doubling of the snow cover fraction estimate observed by MODIS. This information can assist in approximating uncertainty associated with remote sensing data that is being used to populate hydrologic and snow models (the Sacramento Soil Moisture Accounting model, coupled with SNOW-17, and the Variable Infiltration Capacity hydrologic model) and provide greater understanding of error and resultant model sensitivities associated with regional observations of snow cover across the sub-Arctic boreal landscape.
Teaching Avalanche Safety Courses: Instructional Techniques and Field Exercises.
ERIC Educational Resources Information Center
Watters, Ron
This paper discusses course structure, teaching techniques, and field exercises for enhancing winter travelers' avalanche knowledge and skills. In two class sessions, the course typically consists of a historical perspective; a section on snow physics (clouds, types of snow crystals, effects of riming, identification of precipitated snow crystals,…
Walder, J.S.
2000-01-01
Erosion of snow by pyroclastic flows and surges presumably involves mechanical scour, but there may be thermally driven phenomena involved as well. To investigate this possibility, layers of hot (up to 400??C), uniformly sized, fine- to medium-grained sand were emplaced vertically onto finely shaved ice ('snow'); thus there was no relative shear motion between sand and snow and no purely mechanical scour. In some cases large vapor bubbles, commonly more than 10 mm across, rose through the sand layer, burst at the surface, and caused complete convective overturn of the sand, which then scoured and mixed with snow and transformed into a slurry. In other cases no bubbling occurred and the sand passively melted its way downward into the snow as a wetting front moved upward into the sand. A continuum of behaviors between these two cases was observed. Vigorous bubbling and convection were generally favored by high temperature, small grain size, and small layer thickness. A physically based theory of heat- and mass transfer at the pyroclast/snow interface, developed in Part 1 of this paper, does a good job of explaining the observations as a manifestation of unstable vapor-driven fluidization. The theory, when extrapolated to the behavior of actual, poorly sorted pyroclastic flow sediments, leads to the prediction that the observed 'thermal-scour' phenomenon should also occur for many real pyroclastic flows passing over snow. 'Thermal scour' is therefore likely to be involved in the generation of lahars.
Ratkin, N E; Asming, V E; Koshkin, V V
2001-01-01
The goal of this work was to develop computational techniques for sulphates, nickel and copper accumulation in the snow in the local pollution zone. The main task was to reveal the peculiarities of formation and pollution of snow cover on the region with complex cross-relief. A digital cartographic model of aerotechnogenic pollution of snow cover in the landscapes of the local zone has been developed, based on five-year experimental data. Data regarding annual emissions from the industrial complex, information about distribution of wind and the sum of precipitation from meteostation "Nikel" for the winter period, allowed the model to ensure: * material presentation in the form of maps of water capacity and accumulation of sulphates, nickel and copper in the snow over any winter period in retrospective; * calculation of water capacity and accumulation of pollutants for watersheds and other natural-territorial complexes; * solution of the opposite problem about the determination of the emissions of sulphates, nickel and copper from the enterprise by measuring snow pollution in datum points. The model can be used in other northern regions of the Russian Federation with similar physical-geographical and climatic conditions. The relationships between the sum of precipitation and water capacity in the landscapes of the same type and also the relationships between pollution content in snow and relief, pollution content in snow and distance from the source of emissions, were used as the basis for the model.
Pika: A snow science simulation tool built using the open-source framework MOOSE
NASA Astrophysics Data System (ADS)
Slaughter, A.; Johnson, M.
2017-12-01
The Department of Energy (DOE) is currently investing millions of dollars annually into various modeling and simulation tools for all aspects of nuclear energy. An important part of this effort includes developing applications based on the open-source Multiphysics Object Oriented Simulation Environment (MOOSE; mooseframework.org) from Idaho National Laboratory (INL).Thanks to the efforts of the DOE and outside collaborators, MOOSE currently contains a large set of physics modules, including phase-field, level set, heat conduction, tensor mechanics, Navier-Stokes, fracture and crack propagation (via the extended finite-element method), flow in porous media, and others. The heat conduction, tensor mechanics, and phase-field modules, in particular, are well-suited for snow science problems. Pika--an open-source MOOSE-based application--is capable of simulating both 3D, coupled nonlinear continuum heat transfer and large-deformation mechanics applications (such as settlement) and phase-field based micro-structure applications. Additionally, these types of problems may be coupled tightly in a single solve or across length and time scales using a loosely coupled Picard iteration approach. In addition to the wide range of physics capabilities, MOOSE-based applications also inherit an extensible testing framework, graphical user interface, and documentation system; tools that allow MOOSE and other applications to adhere to nuclear software quality standards. The snow science community can learn from the nuclear industry and harness the existing effort to build simulation tools that are open, modular, and share a common framework. In particular, MOOSE-based multiphysics solvers are inherently parallel, dimension agnostic, adaptive in time and space, fully coupled, and capable of interacting with other applications. The snow science community should build on existing tools to enable collaboration between researchers and practitioners throughout the world, and advance the state-of-the-art in line with other scientific research efforts.
Laboratory-based observations of capillary barriers and preferential flow in layered snow
NASA Astrophysics Data System (ADS)
Avanzi, F.; Hirashima, H.; Yamaguchi, S.; Katsushima, T.; De Michele, C.
2015-12-01
Several evidences are nowadays available that show how the effects of capillary gradients and preferential flow on water transmission in snow may play a more important role than expected. To observe these processes and to contribute in their characterization, we performed observations on the development of capillary barriers and preferential flow patterns in layered snow during cold laboratory experiments. We considered three different layering (all characterized by a finer-over-coarser texture in grain size) and three different water input rates. Nine samples of layered snow were sieved in a cold laboratory, and subjected to a constant supply of dyed tracer. By means of visual inspection, horizontal sectioning and liquid water content measurements, the processes of ponding and preferential flow were characterized as a function of texture and water input rate. The dynamics of each sample were replicated using the multi-layer physically-based SNOWPACK model. Results show that capillary barriers and preferential flow are relevant processes ruling the speed of liquid water in stratified snow. Ponding is associated with peaks in LWC at the boundary between the two layers equal to ~ 33-36 vol. % when the upper layer is composed by fine snow (grain size smaller than 0.5 mm). The thickness of the ponding layer at the textural boundary is between 0 and 3 cm, depending on sample stratigraphy. Heterogeneity in water transmission increases with grain size, while we do not observe any clear dependency on water input rate. The extensive comparison between observed and simulated LWC profiles by SNOWPACK (using an approximation of Richards Equation) shows high performances by the model in estimating the LWC peak over the boundary, while water speed in snow is underestimated by the chosen water transport scheme.
NASA Technical Reports Server (NTRS)
Mocko, David M.; Sud, Y. C.; Einaudi, Franco (Technical Monitor)
2000-01-01
Present-day climate models produce large climate drifts that interfere with the climate signals simulated in modelling studies. The simplifying assumptions of the physical parameterization of snow and ice processes lead to large biases in the annual cycles of surface temperature, evapotranspiration, and the water budget, which in turn causes erroneous land-atmosphere interactions. Since land processes are vital for climate prediction, and snow and snowmelt processes have been shown to affect Indian monsoons and North American rainfall and hydrology, special attention is now being given to cold land processes and their influence on the simulated annual cycle in GCMs. The snow model of the SSiB land-surface model being used at Goddard has evolved from a unified single snow-soil layer interacting with a deep soil layer through a force-restore procedure to a two-layer snow model atop a ground layer separated by a snow-ground interface. When the snow cover is deep, force-restore occurs within the snow layers. However, several other simplifying assumptions such as homogeneous snow cover, an empirical depth related surface albedo, snowmelt and melt-freeze in the diurnal cycles, and neglect of latent heat of soil freezing and thawing still remain as nagging problems. Several important influences of these assumptions will be discussed with the goal of improving them to better simulate the snowmelt and meltwater hydrology. Nevertheless, the current snow model (Mocko and Sud, 2000, submitted) better simulates cold land processes as compared to the original SSiB. This was confirmed against observations of soil moisture, runoff, and snow cover in global GSWP (Sud and Mocko, 1999) and point-scale Valdai simulations over seasonal snow regions. New results from the current snow model SSiB from the 10-year PILPS 2e intercomparison in northern Scandinavia will be presented.
Spectral Profiler Probe for In Situ Snow Grain Size and Composition Stratigraphy
NASA Technical Reports Server (NTRS)
Berisford, Daniel F.; Molotch, Noah P.; Painter, Thomas
2012-01-01
An ultimate goal of the climate change, snow science, and hydrology communities is to measure snow water equivalent (SWE) from satellite measurements. Seasonal SWE is highly sensitive to climate change and provides fresh water for much of the world population. Snowmelt from mountainous regions represents the dominant water source for 60 million people in the United States and over one billion people globally. Determination of snow grain sizes comprising mountain snowpack is critical for predicting snow meltwater runoff, understanding physical properties and radiation balance, and providing necessary input for interpreting satellite measurements. Both microwave emission and radar backscatter from the snow are dominated by the snow grain size stratigraphy. As a result, retrieval algorithms for measuring snow water equivalents from orbiting satellites is largely hindered by inadequate knowledge of grain size.
NASA Astrophysics Data System (ADS)
Ray, A. J.; Barsugli, J. J.; Guinotte, J. M.; Livneh, B.; Dewes, C.; Rangwala, I.; Heldmyer, A.; Torbit, S.
2017-12-01
This presentation will describe the efforts of climate scientists to work with the US Fish and Wildlife Service (FWS) to provide analysis of future snow persistence to support a Species Status Assessment (SSA) for the American wolverine (Gulo gulo), under the Endangered Species Act (ESA). The project has been a research to application (R2A) study, aimed directly at the FWS needs, and in regular collaboration with FWS Region 6 personnel to discuss and agree on the choice downscaled projections to represent a range of plausible futures, and other methodological choices including use of high resolution (250m) physical hydrology modeling. FWS sought improved information on which to base a court-ordered re-evaluation of the conclusions of a previous SSA, due in 12 months, necessitating a quick turn-around for the snow research. The goal was to improve upon the the previous evaluation of snow persistence, both in understanding of the range of uncertainty and by using new snow modeling at spatial scales intended to be more relevant to both physical snowpack processes and to making inferences about potential wolverine denning opportunity. This project was embedded both in a specific legal/regulatory process and also in a broader FWS interest in building body of science for snow-dependent species that might support other ESA processes. Results of the co-production included new scientific questions and analytic approaches that arose from the interaction between climate scientists and ecologists. The fine spatial scales of the analysis compared to previous work allowed new hypotheses to be articulated, but also led to significant issues in the interpretation of the snow model output. This presentation will discuss key issues that arose in the collaboration between scientists and the managers developing the SSA, including the managing the independence of the science while remaining in a co-production mode, the challenges of the rapid time frame, and the challenges transitioning findings from a more academic and research framework to the demands of applied resource management.
NASA Astrophysics Data System (ADS)
Alonso-González, Esteban; López-Moreno, J. Ignacio; Gascoin, Simon; García-Valdecasas Ojeda, Matilde; Sanmiguel-Vallelado, Alba; Navarro-Serrano, Francisco; Revuelto, Jesús; Ceballos, Antonio; Jesús Esteban-Parra, María; Essery, Richard
2018-02-01
We present snow observations and a validated daily gridded snowpack dataset that was simulated from downscaled reanalysis of data for the Iberian Peninsula. The Iberian Peninsula has long-lasting seasonal snowpacks in its different mountain ranges, and winter snowfall occurs in most of its area. However, there are only limited direct observations of snow depth (SD) and snow water equivalent (SWE), making it difficult to analyze snow dynamics and the spatiotemporal patterns of snowfall. We used meteorological data from downscaled reanalyses as input of a physically based snow energy balance model to simulate SWE and SD over the Iberian Peninsula from 1980 to 2014. More specifically, the ERA-Interim reanalysis was downscaled to 10 km × 10 km resolution using the Weather Research and Forecasting (WRF) model. The WRF outputs were used directly, or as input to other submodels, to obtain data needed to drive the Factorial Snow Model (FSM). We used lapse rate coefficients and hygrobarometric adjustments to simulate snow series at 100 m elevations bands for each 10 km × 10 km grid cell in the Iberian Peninsula. The snow series were validated using data from MODIS satellite sensor and ground observations. The overall simulated snow series accurately reproduced the interannual variability of snowpack and the spatial variability of snow accumulation and melting, even in very complex topographic terrains. Thus, the presented dataset may be useful for many applications, including land management, hydrometeorological studies, phenology of flora and fauna, winter tourism, and risk management. The data presented here are freely available for download from Zenodo (https://doi.org/10.5281/zenodo.854618). This paper fully describes the work flow, data validation, uncertainty assessment, and possible applications and limitations of the database.
NASA Astrophysics Data System (ADS)
Krogh, Sebastian A.; Pomeroy, John W.; Marsh, Philip
2017-07-01
A better understanding of cold regions hydrological processes and regimes in transitional environments is critical for predicting future Arctic freshwater fluxes under climate and vegetation change. A physically based hydrological model using the Cold Regions Hydrological Model platform was created for a small Arctic basin in the tundra-taiga transition region. The model represents snow redistribution and sublimation by wind and vegetation, snowmelt energy budget, evapotranspiration, subsurface flow through organic terrain, infiltration to frozen soils, freezing and thawing of soils, permafrost and streamflow routing. The model was used to reconstruct the basin water cycle over 28 years to understand and quantify the mass fluxes controlling its hydrological regime. Model structure and parameters were set from the current understanding of Arctic hydrology, remote sensing, field research in the basin and region, and calibration against streamflow observations. Calibration was restricted to subsurface hydraulic and storage parameters. Multi-objective evaluation of the model using observed streamflow, snow accumulation and ground freeze/thaw state showed adequate simulation. Significant spatial variability in the winter mass fluxes was found between tundra, shrubs and forested sites, particularly due to the substantial blowing snow redistribution and sublimation from the wind-swept upper basin, as well as sublimation of canopy intercepted snow from the forest (about 17% of snowfall). At the basin scale, the model showed that evapotranspiration is the largest loss of water (47%), followed by streamflow (39%) and sublimation (14%). The models streamflow performance sensitivity to a set of parameter was analysed, as well as the mean annual mass balance uncertainty associated with these parameters.
NASA Astrophysics Data System (ADS)
Gunn, G. E.; Hall, D. K.; Nghiem, S. V.
2017-12-01
Studies observing lake ice using active microwave acquisitions suggest that the dominant scattering mechanism in ice is caused by double-bounce of the signal off vertical tubular bubble inclusions. Recent polarimetric SAR observations and target decomposition algorithms indicate single-bounce interactions may be the dominant source of returns, and in the absence of field observations, has been hypothesized to be the result of roughness at the ice-water interface on the order of incident wavelengths. This study presents in-situ physical observations of snow-covered lake ice in western Michigan and Wisconsin acquired during the Great Lakes Winter EXperiment in 2017 (GLAWEX'17). In conjunction with NASA's SnowEx airborne snow campaign in Colorado (http://snow.nasa.gov), C- (Sentinel-1, RADARSAT-2) and X-band (TerraSAR-X) synthetic aperture radar (SAR) observations were acquired coincidently to surface physical snow and ice observations. Small/large scale roughness features at the ice-water interface are quantified through auger transects and used as an input variable in lake ice backscatter models to assess the relative contributions from different scattering mechanisms.
BOREAS HYD-3 Snow Measurements
NASA Technical Reports Server (NTRS)
Hardy, Janet P.; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Davis, Robert E.; Smith, David E. (Technical Monitor)
2000-01-01
The Boreal Ecosystem-Atmosphere Study (BOREAS) Hydrology (HYD)-3 team collected several data sets related to the hydrology of forested areas. This data set contains measurements of snow depth, snow density in three cm intervals, an integrated snow pack density and snow water equivalent (SWE), and snow pack physical properties from snow pit evaluation taken in 1994 and 1996. The data were collected from several sites in both the southern study area (SSA) and the northern study area (NSA). A variety of standard tools were used to measure the snow pack properties, including a meter stick (snow depth), a 100 cc snow density cutter, a dial stem thermometer, and the Canadian snow sampler as used by HYD-4 to obtain a snow pack-integrated measure of SWE. This study was undertaken to predict spatial distributions of snow properties important to the hydrology, remote sensing signatures, and the transmissivity of gases through the snow. The data are available in tabular ASCII files. The snow measurement data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).
NASA Technical Reports Server (NTRS)
Yuter, Sandra E.; Kingsmill, David E.; Nance, Louisa B.; Loeffler-Mang, Martin
2006-01-01
Ground-based measurements of particle size and fall speed distributions using a Particle Size and Velocity (PARSIVEL) disdrometer are compa red among samples obtained in mixed precipitation (rain and wet snow) and rain in the Oregon Cascade Mountains and in dry snow in the Rock y Mountains of Colorado. Coexisting rain and snow particles are distinguished using a classification method based on their size and fall sp eed properties. The bimodal distribution of the particles' joint fall speed-size characteristics at air temperatures from 0.5 to 0 C suggests that wet-snow particles quickly make a transition to rain once mel ting has progressed sufficiently. As air temperatures increase to 1.5 C, the reduction in the number of very large aggregates with a diame ter > 10 mm coincides with the appearance of rain particles larger than 6 mm. In this setting. very large raindrops appear to be the result of aggregates melting with minimal breakup rather than formation by c oalescence. In contrast to dry snow and rain, the fall speed for wet snow has a much weaker correlation between increasing size and increasing fall speed. Wet snow has a larger standard deviation of fall spee d (120%-230% relative to dry snow) for a given particle size. The ave rage fall speed for observed wet-snow particles with a diameter great er than or equal to 2.4 mm is 2 m/s with a standard deviation of 0.8 m/s. The large standard deviation is likely related to the coexistence of particles of similar physical size with different percentages of melting. These results suggest that different particle sizes are not required for aggregation since wet-snow particles of the same size can have different fall speeds. Given the large standard deviation of fa ll speeds in wet snow, the collision efficiency for wet snow is likely larger than that of dry snow. For particle sizes between 1 and 10 mm in diameter within mixed precipitation, rain constituted I % of the particles by volume within the isothermal layer at 0 C and 4% of the particles by volume for the region just below the isothermal layer where air temperatures rise from 0" to 0.5"C. As air temperatures increa sed above 0.5 C, the relative proportions of rain versus snow particl es shift dramatically and raindrops become dominant. The value of 0.5 C for the sharp transition in volume fraction from snow to rain is sl ightly lower than the range from 1 .l to 1.7 C often used in hydrolog ical models.
A Physical Model to Estimate Snowfall over Land using AMSU-B Observations
NASA Technical Reports Server (NTRS)
Kim, Min-Jeong; Weinman, J. A.; Olson, W. S.; Chang, D.-E.; Skofronick-Jackson, G.; Wang, J. R.
2008-01-01
In this study, we present an improved physical model to retrieve snowfall rate over land using brightness temperature observations from the National Oceanic and Atmospheric Administration's (NOAA) Advanced Microwave Sounder Unit-B (AMSU-B) at 89 GHz, 150 GHz, 183.3 +/- 1 GHz, 183.3 +/- 3 GHz, and 183.3 +/- 7 GHz. The retrieval model is applied to the New England blizzard of March 5, 2001 which deposited about 75 cm of snow over much of Vermont, New Hampshire, and northern New York. In this improved physical model, prior retrieval assumptions about snowflake shape, particle size distributions, environmental conditions, and optimization methodology have been updated. Here, single scattering parameters for snow particles are calculated with the Discrete-Dipole Approximation (DDA) method instead of assuming spherical shapes. Five different snow particle models (hexagonal columns, hexagonal plates, and three different kinds of aggregates) are considered. Snow particle size distributions are assumed to vary with air temperature and to follow aircraft measurements described by previous studies. Brightness temperatures at AMSU-B frequencies for the New England blizzard are calculated using these DDA calculated single scattering parameters and particle size distributions. The vertical profiles of pressure, temperature, relative humidity and hydrometeors are provided by MM5 model simulations. These profiles are treated as the a priori data base in the Bayesian retrieval algorithm. In algorithm applications to the blizzard data, calculated brightness temperatures associated with selected database profiles agree with AMSU-B observations to within about +/- 5 K at all five frequencies. Retrieved snowfall rates compare favorably with the near-concurrent National Weather Service (NWS) radar reflectivity measurements. The relationships between the NWS radar measured reflectivities Z(sub e) and retrieved snowfall rate R for a given snow particle model are derived by a histogram matching technique. All of these Z(sub e)-R relationships fall in the range of previously established Z(sub e)-R relationships for snowfall. This suggests that the current physical model developed in this study can reliably estimate the snowfall rate over land using the AMSU-B measured brightness temperatures.
Snow farming: conserving snow over the summer season
NASA Astrophysics Data System (ADS)
Grünewald, Thomas; Wolfsperger, Fabian; Lehning, Michael
2018-01-01
Summer storage of snow for tourism has seen an increasing interest in the last years. Covering large snow piles with materials such as sawdust enables more than two-thirds of the initial snow volume to be conserved. We present detailed mass balance measurements of two sawdust-covered snow piles obtained by terrestrial laser scanning during summer 2015. Results indicate that 74 and 63 % of the snow volume remained over the summer for piles in Davos, Switzerland and Martell, Italy. If snow mass is considered instead of volume, the values increase to 83 and 72 %. The difference is attributed to settling and densification of the snow. Additionally, we adapted the one-dimensional, physically based snow cover model SNOWPACK to perform simulations of the sawdust-covered snow piles. Model results and measurements agreed extremely well at the point scale. Moreover, we analysed the contribution of the different terms of the surface energy balance to snow ablation for a pile covered with a 40 cm thick sawdust layer and a pile without insulation. Short-wave radiation was the dominant source of energy for both scenarios, but the moist sawdust caused strong cooling by long-wave emission and negative sensible and latent heat fluxes. This cooling effect reduces the energy available for melt by up to a factor of 12. As a result only 9 % of the net short-wave energy remained available for melt. Finally, sensitivity studies of the parameters thickness of the sawdust layer
, air temperature
, precipitation
and wind speed
were performed. We show that sawdust thickness has a tremendous effect on snow loss. Higher air temperatures and wind speeds increase snow ablation but less significantly. No significant effect of additional precipitation could be found as the sawdust remained wet during the entire summer with the measured quantity of rain. Setting precipitation amounts to zero, however, strongly increased melt. Overall, the 40 cm sawdust provides sufficient protection for mid-elevation (approx. 1500 m a.s.l.) Alpine climates and can be managed with reasonable effort.
NASA Astrophysics Data System (ADS)
Broxton, P. D.; Harpold, A. A.; van Leeuwen, W.; Biederman, J. A.
2016-12-01
Quantifying the amount of snow in forested mountainous environments, as well as how it may change due to warming and forest disturbance, is critical given its importance for water supply and ecosystem health. Forest canopies affect snow accumulation and ablation in ways that are difficult to observe and model. Furthermore, fine-scale forest structure can accentuate or diminish the effects of forest-snow interactions. Despite decades of research demonstrating the importance of fine-scale forest structure (e.g. canopy edges and gaps) on snow, we still lack a comprehensive understanding of where and when forest structure has the largest impact on snowpack mass and energy budgets. Here, we use a hyper-resolution (1 meter spatial resolution) mass and energy balance snow model called the Snow Physics and Laser Mapping (SnowPALM) model along with LIDAR-derived forest structure to determine where spatial variability of fine-scale forest structure has the largest influence on large scale mass and energy budgets. SnowPALM was set up and calibrated at sites representing diverse climates in New Mexico, Arizona, and California. Then, we compared simulations at different model resolutions (i.e. 1, 10, and 100 m) to elucidate the effects of including versus not including information about fine scale canopy structure. These experiments were repeated for different prescribed topographies (i.e. flat, 30% slope north, and south-facing) at each site. Higher resolution simulations had more snow at lower canopy cover, with the opposite being true at high canopy cover. Furthermore, there is considerable scatter, indicating that different canopy arrangements can lead to different amounts of snow, even when the overall canopy coverage is the same. This modeling is contributing to the development of a high resolution machine learning algorithm called the Snow Water Artificial Network (SWANN) model to generate predictions of snow distributions over much larger domains, which has implications for improving land surface models that do not currently resolve or parameterize fine-scale canopy structure. In addition, these findings have implications for understanding the potential of different forest management strategies (i.e. thinning) based on local topography and climate to maximize the amount and retention of snow.
What are the controls on mountain snowmelt and runoff around the globe?
NASA Astrophysics Data System (ADS)
Painter, T. H.
2017-12-01
The Anthropocene has seen a marked expulsion of mass from mountain glaciers to oceans and earlier snowmelt that evacuates the mountains earlier in the year. The loss of ice mass and snow cover is often attributed to increasing temperatures. However, process studies across the last two decades indicate that acceleration of melt by dust/black carbon (BC) may dominate in some regions. Process studies with detailed energy balance measurements around the globe are relatively sparse but strongly suggestive of the impact of dust and BC. Mesoscale and global scale modeling have recently taken on radiative transfer modeling of snow albedo that accounts for changes in grain size and dust/BC concentrations and optical properties. However, our understanding of metamorphism and changes in grain growth still has considerable range of uncertainty that, when passed through radiative transfer modeling, far exceeds in magnitude the at-surface greenhouse gas forcing of 3 W m-2. Likewise, it is a rare study that provides the quantitative knowledge of seasonal variation of dust and BC concentrations, let alone the range of optical properties. Therefore, the energy balance of snow in mountains around the globe is poorly understood and our capacity to model past, present, and future hydrologic responses is relatively weak. Atop the energy balance uncertainties, we also still do not know the spatio-temporal distributions of snow water equivalent in mountain basins around the globe. With the advent of the NASA Airborne Snow Observatory in 2013, we entered a new era of understanding mountain basin SWE. ASO uses scanning lidar, imaging spectrometer, and physical modeling to map distributions across basins in California, Colorado, and the Swiss Alps. The program is expanding in these and other regions for water management. However, in the science realm, in addition to providing the capacity to understand distributed SWE and its change, ASO is also pathfinding through the NASA Snow Experiment (SnowEx) for a spaceborne snow depth and SWE mission that can provide the global perspective we need. The next few decades hold enormous potential to quantify mountain snow pack and to constrain physically-based climate models to allow us to answer the title question here and where the cryosphere-water cycles are heading.
Four-wavelength lidar evaluation of particle characteristics and aerosol densities
NASA Astrophysics Data System (ADS)
Uthe, E. E.; Livingston, J. M.; Delateur, S. A.; Nielsen, N. B.
1985-06-01
The SRI International four-wavelength (0.53, 1.06, 3.8, 10.6 micron) lidar systems was used during the SNOW-ONE-B and Smoke Week XI/SNOW-TWO field experiments to validate its capabilities in assessing obscurant optical and physical properties. The lidar viewed along a horizontal path terminated by a passive reflector. Data examples were analyzed in terms of time-dependent transmission, wavelength dependence of optical depth, and range-resolved extinction coefficients. Three methods were used to derive extinction data from the lidar signatures. These were target method, Klett method and experimental data method. The results of the field and analysis programs are reported in the journal and conference papers that are appended to this report, and include: comparison study of lidar extinction methods, submitted to applied optics, error analysis of lidar solution techniques for range-resolved extinction coefficients based on observational data, smoke/obscurants symposium 9, Four--Wavelength Lidar Measurements from smoke week 6/SNOW-TWO, smoke/obscurants symposium 8, SNOW-ONE-B multiple-wavelength lidar measurements. Snow symposium 3, and lidar applications for obscurant evaluations, smoke/obscurants Symposium 7. The report also provides a summary of background work leading to this project, and of project results.
NASA Astrophysics Data System (ADS)
Chan, Hoi Ga; Frey, Markus M.; King, Martin D.
2018-02-01
Emissions of nitrogen oxide (NOx = NO + NO2) from the photolysis of nitrate (NO3-) in snow affect the oxidising capacity of the lower troposphere especially in remote regions of high latitudes with little pollution. Current air-snow exchange models are limited by poor understanding of processes and often require unphysical tuning parameters. Here, two multiphase models were developed from physically based parameterisations to describe the interaction of nitrate between the surface layer of the snowpack and the overlying atmosphere. The first model is similar to previous approaches and assumes that below a threshold temperature, To, the air-snow grain interface is pure ice and above To a disordered interface (DI) emerges covering the entire grain surface. The second model assumes that air-ice interactions dominate over all temperatures below melting of ice and that any liquid present above the eutectic temperature is concentrated in micropockets. The models are used to predict the nitrate in surface snow constrained by year-round observations of mixing ratios of nitric acid in air at a cold site on the Antarctic Plateau (Dome C; 75°06' S, 123°33' E; 3233 m a.s.l.) and at a relatively warm site on the Antarctic coast (Halley; 75°35' S, 26°39' E; 35 m a.s.l). The first model agrees reasonably well with observations at Dome C (Cv(RMSE) = 1.34) but performs poorly at Halley (Cv(RMSE) = 89.28) while the second model reproduces with good agreement observations at both sites (Cv(RMSE) = 0.84 at both sites). It is therefore suggested that in winter air-snow interactions of nitrate are determined by non-equilibrium surface adsorption and co-condensation on ice coupled with solid-state diffusion inside the grain, similar to Bock et al. (2016). In summer, however, the air-snow exchange of nitrate is mainly driven by solvation into liquid micropockets following Henry's law with contributions to total surface snow NO3- concentrations of 75 and 80 % at Dome C and Halley, respectively. It is also found that the liquid volume of the snow grain and air-micropocket partitioning of HNO3 are sensitive to both the total solute concentration of mineral ions within the snow and pH of the snow. The second model provides an alternative method to predict nitrate concentration in the surface snow layer which is applicable over the entire range of environmental conditions typical for Antarctica and forms a basis for a future full 1-D snowpack model as well as parameterisations in regional or global atmospheric chemistry models.
NASA Astrophysics Data System (ADS)
Cornwell, E.; Molotch, N. P.; McPhee, J.
2016-01-01
Seasonal snow cover is the primary water source for human use and ecosystems along the extratropical Andes Cordillera. Despite its importance, relatively little research has been devoted to understanding the properties, distribution and variability of this natural resource. This research provides high-resolution (500 m), daily distributed estimates of end-of-winter and spring snow water equivalent over a 152 000 km2 domain that includes the mountainous reaches of central Chile and Argentina. Remotely sensed fractional snow-covered area and other relevant forcings are combined with extrapolated data from meteorological stations and a simplified physically based energy balance model in order to obtain melt-season melt fluxes that are then aggregated to estimate the end-of-winter (or peak) snow water equivalent (SWE). Peak SWE estimates show an overall coefficient of determination R2 of 0.68 and RMSE of 274 mm compared to observations at 12 automatic snow water equivalent sensors distributed across the model domain, with R2 values between 0.32 and 0.88. Regional estimates of peak SWE accumulation show differential patterns strongly modulated by elevation, latitude and position relative to the continental divide. The spatial distribution of peak SWE shows that the 4000-5000 m a.s.l. elevation band is significant for snow accumulation, despite having a smaller surface area than the 3000-4000 m a.s.l. band. On average, maximum snow accumulation is observed in early September in the western Andes, and in early October on the eastern side of the continental divide. The results presented here have the potential of informing applications such as seasonal forecast model assessment and improvement, regional climate model validation, as well as evaluation of observational networks and water resource infrastructure development.
NASA Astrophysics Data System (ADS)
Eckerstorfer, M.; Malnes, E.; Christiansen, H. H.
2017-09-01
In periglacial landscapes, snow dynamics and microtopography have profound implications of freeze-thaw conditions and thermal regime of the ground. We mapped periglacial landforms at Kapp Linné, central Svalbard, where we chose six widespread landforms (solifluction sheet, nivation hollow, palsa and peat in beach ridge depressions, raised marine beach ridge, and exposed bedrock ridge) as study sites. At these six landforms, we studied ground thermal conditions, freeze-thaw cycles, and snow dynamics using a combination of in situ monitoring and C-band radar satellite data in the period 2005-2012. Based on these physical parameters, the six studied landforms can be classified into raised, dry landforms with minor ground ice content and a thin, discontinuous snow cover and into wet landforms with high ice content located in the topographical depressions in-between with medium to thick snow cover. This results in a differential snow-melting period inferred from the C-band radar satellite data, causing the interseasonal and interlandform variability in the onset of ground surface thawing once the ground becomes snow free. Therefore, variability also exists in the period of thawed ground surface conditions. However, the length of the season with thawed ground surface conditions does not determine the mean annual ground surface temperature, it only correlates well with the active layer depths. From the C-band radar satellite data series, measured relative backscatter trends hint toward a decrease in snow cover through time and a more frequent presence of ice layers from mid-winter rain on snow events at Kapp Linné, Svalbard.
NASA Astrophysics Data System (ADS)
Sohrabi, M.; Safeeq, M.; Conklin, M. H.
2017-12-01
Snowpack is a critical freshwater reservoir that sustains ecosystem, natural habitat, hydropower, agriculture, and urban water supply in many areas around the world. Accurate estimation of basin scale snow water equivalent (SWE), through both measurement and modeling, has been significantly recognized to improve regional water resource management. Recent advances in remote data acquisition techniques have improved snow measurements but our ability to model snowpack evolution is largely hampered by poor knowledge of inherently variable high-elevation precipitation patterns. For a variety of reasons, majority of the precipitation gages are located in low and mid-elevation range and function as drivers for basin scale hydrologic modeling. Here, we blend observed gage precipitation from low and mid-elevation with point observations of SWE from high-elevation snow pillow into a physically based snow evolution model (SnowModel) to better represent the basin-scale precipitation field and improve snow simulations. To do this, we constructed two scenarios that differed in only precipitation. In WTH scenario, we forced the SnowModel using spatially distributed gage precipitation data. In WTH+SP scenario, the model was forced with spatially distributed precipitation data derived from gage precipitation along with observed precipitation from snow pillows. Since snow pillows do not directly measure precipitation, we uses positive change in SWE as a proxy for precipitation. The SnowModel was implemented at daily time step and 100 m resolution for the Kings River Basin, USA over 2000-2014. Our results show an improvement in snow simulation under WTH+SP as compared to WTH scenario, which can be attributed to better representation in high-elevation precipitation patterns under WTH+SP. The average Nash Sutcliffe efficiency over all snow pillow and course sites was substantially higher for WTH+SP (0.77) than for WTH scenario (0.47). The maximum difference in observed and simulated peak SWE was 810 mm for WTH and 380 mm for WTH+SP, which led to underestimation of snow season length and melt rate by up to 30 days and 12 mm/day, respectively, in WTH scenario. These results indicate that point scale snow observations at higher elevation can be used to improve precipitation input to hydrologic modeling in mountainous basins.
Dynamics of glide avalanches and snow gliding
NASA Astrophysics Data System (ADS)
Ancey, Christophe; Bain, Vincent
2015-09-01
In recent years, due to warmer snow cover, there has been a significant increase in the number of cases of damage caused by gliding snowpacks and glide avalanches. On most occasions, these have been full-depth, wet-snow avalanches, and this led some people to express their surprise: how could low-speed masses of wet snow exert sufficiently high levels of pressure to severely damage engineered structures designed to carry heavy loads? This paper reviews the current state of knowledge about the formation of glide avalanches and the forces exerted on simple structures by a gliding mass of snow. One particular difficulty in reviewing the existing literature on gliding snow and on force calculations is that much of the theoretical and phenomenological analyses were presented in technical reports that date back to the earliest developments of avalanche science in the 1930s. Returning to these primary sources and attempting to put them into a contemporary perspective are vital. A detailed, modern analysis of them shows that the order of magnitude of the forces exerted by gliding snow can indeed be estimated correctly. The precise physical mechanisms remain elusive, however. We comment on the existing approaches in light of the most recent findings about related topics, including the physics of granular and plastic flows, and from field surveys of snow and avalanches (as well as glaciers and debris flows). Methods of calculating the forces exerted by glide avalanches are compared quantitatively on the basis of two case studies. This paper shows that if snow depth and density are known, then certain approaches can indeed predict the forces exerted on simple obstacles in the event of glide avalanches or gliding snow cover.
NASA Astrophysics Data System (ADS)
Pan, J.; Durand, M. T.; Jiang, L.; Liu, D.
2017-12-01
The newly-processed NASA MEaSures Calibrated Enhanced-Resolution Brightness Temperature (CETB) reconstructed using antenna measurement response function (MRF) is considered to have significantly improved fine-resolution measurements with better georegistration for time-series observations and equivalent field of view (FOV) for frequencies with the same monomial spatial resolution. We are looking forward to its potential for the global snow observing purposes, and therefore aim to test its performance for characterizing snow properties, especially the snow water equivalent (SWE) in large areas. In this research, two candidate SWE algorithms will be tested in China for the years between 2005 to 2010 using the reprocessed TB from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E), with the results to be evaluated using the daily snow depth measurements at over 700 national synoptic stations. One of the algorithms is the SWE retrieval algorithm used for the FengYun (FY) - 3 Microwave Radiation Imager. This algorithm uses the multi-channel TB to calculate SWE for three major snow regions in China, with the coefficients adapted for different land cover types. The second algorithm is the newly-established Bayesian Algorithm for SWE Estimation with Passive Microwave measurements (BASE-PM). This algorithm uses the physically-based snow radiative transfer model to find the histogram of most-likely snow property that matches the multi-frequency TB from 10.65 to 90 GHz. It provides a rough estimation of snow depth and grain size at the same time and showed a 30 mm SWE RMS error using the ground radiometer measurements at Sodankyla. This study will be the first attempt to test it spatially for satellite. The use of this algorithm benefits from the high resolution and the spatial consistency between frequencies embedded in the new dataset. This research will answer three questions. First, to what extent can CETB increase the heterogeneity in the mapped SWE? Second, will the SWE estimation error statistics be improved using this high-resolution dataset? Third, how will the SWE retrieval accuracy be improved using CETB and the new SWE retrieval techniques?
Reed, Bradley C.; Budde, Michael E.; Spencer, Page; Miller, Amy E.
2009-01-01
Impacts of global climate change are expected to result in greater variation in the seasonality of snowpack, lake ice, and vegetation dynamics in southwest Alaska. All have wide-reaching physical and biological ecosystem effects in the region. We used Moderate Resolution Imaging Spectroradiometer (MODIS) calibrated radiance, snow cover extent, and vegetation index products for interpreting interannual variation in the duration and extent of snowpack, lake ice, and vegetation dynamics for southwest Alaska. The approach integrates multiple seasonal metrics across large ecological regions. Throughout the observation period (2001-2007), snow cover duration was stable within ecoregions, with variable start and end dates. The start of the lake ice season lagged the snow season by 2 to 3??months. Within a given lake, freeze-up dates varied in timing and duration, while break-up dates were more consistent. Vegetation phenology varied less than snow and ice metrics, with start-of-season dates comparatively consistent across years. The start of growing season and snow melt were related to one another as they are both temperature dependent. Higher than average temperatures during the El Ni??o winter of 2002-2003 were expressed in anomalous ice and snow season patterns. We are developing a consistent, MODIS-based dataset that will be used to monitor temporal trends of each of these seasonal metrics and to map areas of change for the study area.
NASA Astrophysics Data System (ADS)
Ahmad, J. A.; Forman, B. A.
2017-12-01
High Mountain Asia (HMA) serves as a water supply source for over 1.3 billion people, primarily in south-east Asia. Most of this water originates as snow (or ice) that melts during the summer months and contributes to the run-off downstream. In spite of its critical role, there is still considerable uncertainty regarding the total amount of snow in HMA and its spatial and temporal variation. In this study, the NASA Land Information Systems (LIS) is used to model the hydrologic cycle over the Indus basin. In addition, the ability of support vector machines (SVM), a machine learning technique, to predict passive microwave brightness temperatures at a specific frequency and polarization as a function of LIS-derived land surface model output is explored in a sensitivity analysis. Multi-frequency, multi-polarization passive microwave brightness temperatures as measured by the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) over the Indus basin are used as training targets during the SVM training process. Normalized sensitivity coefficients (NSC) are then computed to assess the sensitivity of a well-trained SVM to each LIS-derived state variable. Preliminary results conform with the known first-order physics. For example, input states directly linked to physical temperature like snow temperature, air temperature, and vegetation temperature have positive NSC's whereas input states that increase volume scattering such as snow water equivalent or snow density yield negative NSC's. Air temperature exhibits the largest sensitivity coefficients due to its inherent, high-frequency variability. Adherence of this machine learning algorithm to the first-order physics bodes well for its potential use in LIS as the observation operator within a radiance data assimilation system aimed at improving regional- and continental-scale snow estimates.
Spatial Patterns of Snow Cover in North Carolina: Surface and Satellite Perspectives
NASA Technical Reports Server (NTRS)
Fuhrmann, Christopher M.; Hall, Dorothy K.; Perry, L. Baker; Riggs, George A.
2010-01-01
Snow mapping is a common practice in regions that receive large amounts of snowfall annually, have seasonally-continuous snow cover, and where snowmelt contributes significantly to the hydrologic cycle. Although higher elevations in the southern Appalachian Mountains average upwards of 100 inches of snow annually, much of the remainder of the Southeast U.S. receives comparatively little snowfall (< 10 inches). Recent snowy winters in the region have provided an opportunity to assess the fine-grained spatial distribution of snow cover and the physical processes that act to limit or improve its detection across the Southeast. In the present work, both in situ and remote sensing data are utilized to assess the spatial distribution of snow cover for a sample of recent snowfall events in North Carolina. Specifically, this work seeks to determine how well ground measurements characterize the fine-grained patterns of snow cover in relation to Moderate- Resolution Imaging Spectroradiometer (MODIS) snow cover products (in this case, the MODIS Fractional Snow Cover product).
White water: Fifty years of snow research in WRR and the outlook for the future
NASA Astrophysics Data System (ADS)
Sturm, Matthew
2015-07-01
Over the past 50 years, 239 papers related to snow have been published in Water Resources Research (WRR). Seminal papers on virtually every facet of snow physics and snow water resources have appeared in the journal. These include papers on drifting snow, the snow surface energy balance, the effect of grain size on albedo, chemical elution, water movement through snow, and canopy interception. In particular, papers in WRR have explored the distribution of snow across different landscapes, providing data, process knowledge, and the basis for virtually all of the distributed snow models in use today. In this paper, I review these key contributions and provide some personal thoughts on what is likely to be the focus and nature of papers published in the next few decades, a period that is likely to see an increasing ability to map snow cover in detail, which should serve as a basis for the further development and improvement of snow models. It will also be an uncertain future, with profound changes in snow climatology predicted. I expect WRR will continue to play a key role in documenting and understanding these important cryospheric changes.
On the formation of glide-snow avalanches
NASA Astrophysics Data System (ADS)
Mitterer, C.; Schweizer, J.
2012-12-01
On steep slopes the full snowpack can glide on the ground; tension cracks may open and eventually the slope may fail as a glide-snow avalanche. Due to their large mass they have considerable destructive potential. Glide-snow avalanches typically occur when the snow-soil interface is moist or wet so that basal friction is reduced. The occurrence, however, of glide cracks and their evolution to glide avalanches are still poorly understood. Consequently, glides are difficult to predict as (i) not all cracks develop into an avalanche, and (ii) for those that do, the time between crack opening and avalanche event might vary from hours to weeks - or on the other hand be so short that there is no warning at all by crack opening. To improve our understanding we monitored several slopes and related glide snow activity to meteorological data. In addition, we explored conditions that favor the formation of a thin wet basal snowpack layer with a physical-based model representing water and heat flux at the snow-soil interface. The statistical analyses revealed that glide-snow avalanche activity might be associated to an early season and a spring condition. While early season conditions tend to have warm and dry autumns followed by heavy snowfalls, spring conditions showed good agreement with increasing air temperature. The model indicates that energy (summer heat) stored in the ground might be sufficient to melt snow at the bottom of the snowpack. Due to capillary forces, water will rise for a few centimeters into the snowpack and thereby reduce friction at the interface. Alternatively, we demonstrate that also in the absence of melt water production at the bottom of the snowpack water may accumulate in the bottom layer due to an upward flux into the snowpack if a dry snowpack overlies a wet soil. The particular conditions that are obviously required at the snow-soil interface explain the strong winter-to-winter variations in snow gliding.
NASA Astrophysics Data System (ADS)
Wei, Yanqiang; Wang, Shijin; Fang, Yiping; Nawaz, Zain
2017-10-01
Animal husbandry is a dominant and traditional source of livelihood and income in the Qinghai-Tibetan Plateau. The Qinghai-Tibetan Plateau is the third largest snow covered area in China and is one of the main snow disaster regions in the world. It is thus imperative to urgently address the issue of vulnerability of the animal husbandry sector to snow disasters for disaster mitigation and adaptation under growing risk of these disasters as a result of future climate change. However, there is very few literature reported on the vulnerability of animal husbandry in the Qinghai-Tibetan Plateau. This assessment aims at identifying vulnerability of animal husbandry at spatial scale and to identify the reasons for vulnerability for adaptive planning and disaster mitigation. First, historical snow disaster characteristics have been analyzed and used for the spatial weight for vulnerability assessment. Second, indicator-based vulnerability assessment model and indicator system have been established. We combined risk of snow hazard, sensitivity of livestock to disaster, physical exposure to disaster, and community capacity to adapt to snow disaster in an integrated vulnerability index. Lastly, vulnerability of animal husbandry to snow disaster on the Qinghai-Tibetan Plateau has been evaluated. Results indicate that high vulnerabilities are mainly concentrated in the eastern and central plateau and that vulnerability decreases gradually from the east to the west. Due to global warming, the vulnerability trend has eased to some extent during the last few decades. High livestock density exposure to blizzard-prone regions and shortages of livestock barn and forage are the main reasons of high vulnerability. The conclusion emphasizes the important role of the local government and community to help local pastoralists for reducing vulnerability to snow disaster and frozen hazard. The approaches presented in this paper can be used for snow disaster mitigation, resilience enhancement and effectively reducing vulnerability to natural hazards in other regions.
NASA Astrophysics Data System (ADS)
Jenicek, Michal; Matejka, Ondrej; Hotovy, Ondrej
2017-04-01
The knowledge of water volume stored in the snowpack and its spatial distribution is important to predict the snowmelt runoff. The objective of this study was to quantify the role of different forest structures on the snowpack distribution at a plot scale during snow accumulation and snow ablation periods. Special interest was put in the role of the forest affected by the bark beetle (Ips typographus). We performed repeated detailed manual field survey at selected mountain plots with different canopy structure located at the same elevation and without influence of topography and wind on the snow distribution. The forest canopy structure was described using parameters calculated from hemispherical photographs, such as canopy closure, leaf area index (LAI) and potential irradiance. Additionally, we used shortwave radiation measured using CNR4 Net radiometers placed in plots with different canopy structure. Two snow accumulation and ablation models were set-up to simulate the snow water equivalent (SWE) in plots with different vegetation cover. First model was physically-based using the energy balance approach, second model was conceptual and it was based on the degree-day approach. Both models accounted for snow interception in different forest types using LAI as a parameter. The measured SWE in the plot with healthy forest was on average by 41% lower than in open area during snow accumulation period. The disturbed forest caused the SWE reduction by 22% compared to open area indicating increasing snow storage after forest defoliation. The snow ablation in healthy forest was by 32% slower compared to open area. On the contrary, the snow ablation in disturbed forest (due to the bark beetle) was on average only by 7% slower than in open area. The relative decrease in incoming solar radiation in the forest compared to open area was much bigger compared to the relative decrease in snowmelt rates. This indicated that the decrease in snowmelt rates cannot be explained only by the decrease in incoming solar radiation. Both models simulated sufficiently compared to observations with slightly accurate simulations in open area compared to healthy forest. This was expected, since both models were forced to fit with observations. However, the energy balance approach simulated snowmelt in the forest environment accurately since it accounts also for longwave radiation which might largely influence snowmelt in the forested plots. Both models showed faster snowmelt after forest defoliation which also resulted in earlier snow melt-out in the disturbed forest compared to the healthy coniferous forest.
A new approach to assess the skier additional stress within a multi-layered snowpack
NASA Astrophysics Data System (ADS)
Monti, Fabiano; Gaume, Johan; van Herwijnen, Alec; Schweizer, Jürg
2014-05-01
The physical and mechanical processes of dry-snow slab avalanche formation can be distinguished into two subsequent phases: failure initiation and crack propagation. Several approaches tried to quantify slab avalanche release probability in terms of failure initiation, based on a simple strength-of-material approach (strength vs. stress). Even if it is known that both weak layer and slab properties play a major role in avalanche release, apart from weak layer characteristics, often only the slab thickness and its average density were considered. For calculating the amount of additional stress (e.g. due to a skier) at the depth of the weak layer, the snow cover was often assumed to be a semi-infinite elastic half space in order to apply Boussinesq's theory. However, finite element (FE) calculations have shown that slab layering strongly influences the stress at depth. To avoid FE calculations, we suggest a new approach based on a simplification of multi-layered elasticity theory. It allows computing the additional stress due to a skier at the depth of the weak layer, taking into account the layering of the snow slab and the substratum. The proposed approach was first tested on simplified snow profiles and compared reasonably well with FE calculations. We then implemented the method to refine the classical skier stability index. Using manually observed snow profiles, classified in different stability classes using stability tests, we obtained a satisfactory discrimination power. Lastly, the refined skier stability index was implemented into the 1-D snow cover model SNOWPACK and presented on two case studies. In the future, it will be interesting to implement the proposed method for describing skier-induced stress within a multi-layered snowpack into more complex models which take into account not only failure initiation but also crack propagation.
Forecasting of wet snow avalanche activity: Proof of concept and operational implementation
NASA Astrophysics Data System (ADS)
Gobiet, Andreas; Jöbstl, Lisa; Rieder, Hannes; Bellaire, Sascha; Mitterer, Christoph
2017-04-01
State-of-the-art tools for the operational assessment of avalanche danger include field observations, recordings from automatic weather stations, meteorological analyses and forecasts, and recently also indices derived from snowpack models. In particular, an index for identifying the onset of wet-snow avalanche cycles (LWCindex), has been demonstrated to be useful. However, its value for operational avalanche forecasting is currently limited, since detailed, physically based snowpack models are usually driven by meteorological data from automatic weather stations only and have therefore no prognostic ability. Since avalanche risk management heavily relies on timely information and early warnings, many avalanche services in Europe nowadays start issuing forecasts for the following days, instead of the traditional assessment of the current avalanche danger. In this context, the prognostic operation of detailed snowpack models has recently been objective of extensive research. In this study a new, observationally constrained setup for forecasting the onset of wet-snow avalanche cycles with the detailed snow cover model SNOWPACK is presented and evaluated. Based on data from weather stations and different numerical weather prediction models, we demonstrate that forecasts of the LWCindex as indicator for wet-snow avalanche cycles can be useful for operational warning services, but is so far not reliable enough to be used as single warning tool without considering other factors. Therefore, further development currently focuses on the improvement of the forecasts by applying ensemble techniques and suitable post processing approaches to the output of numerical weather prediction models. In parallel, the prognostic meteo-snow model chain is operationally used by two regional avalanche warning services in Austria since winter 2016/2017 for the first time. Experiences from the first operational season and first results from current model developments will be reported.
NASA Astrophysics Data System (ADS)
Verfaillie, Deborah; Lafaysse, Matthieu; Déqué, Michel; Eckert, Nicolas; Lejeune, Yves; Morin, Samuel
2018-04-01
This article investigates the climatic response of a series of indicators for characterizing annual snow conditions and corresponding meteorological drivers at 1500 m altitude in the Chartreuse mountain range in the Northern French Alps. Past and future changes were computed based on reanalysis and observations from 1958 to 2016, and using CMIP5-EURO-CORDEX GCM-RCM pairs spanning historical (1950-2005) and RCP2.6 (4), RCP4.5 and RCP8.5 (13 each) future scenarios (2006-2100). The adjusted climate model runs were used to drive the multiphysics ensemble configuration of the detailed snowpack model Crocus. Uncertainty arising from physical modeling of snow accounts for 20 % typically, although the multiphysics is likely to have a much smaller impact on trends. Ensembles of climate projections are rather similar until the middle of the 21st century, and all show a continuation of the ongoing reduction in average snow conditions, and sustained interannual variability. The impact of the RCPs becomes significant for the second half of the 21st century, with overall stable conditions with RCP2.6, and continued degradation of snow conditions for RCP4.5 and 8.5, the latter leading to more frequent ephemeral snow conditions. Changes in local meteorological and snow conditions show significant correlation with global temperature changes. Global temperature levels 1.5 and 2 °C above preindustrial levels correspond to a 25 and 32 % reduction, respectively, of winter mean snow depth with respect to the reference period 1986-2005. Larger reduction rates are expected for global temperature levels exceeding 2 °C. The method can address other geographical areas and sectorial indicators, in the field of water resources, mountain tourism or natural hazards.
Comparison of Commonly-Used Microwave Radiative Transfer Models for Snow Remote Sensing
NASA Technical Reports Server (NTRS)
Royer, Alain; Roy, Alexandre; Montpetit, Benoit; Saint-Jean-Rondeau, Olivier; Picard, Ghislain; Brucker, Ludovic; Langlois, Alexandre
2017-01-01
This paper reviews four commonly-used microwave radiative transfer models that take different electromagnetic approaches to simulate snow brightness temperature (T(sub B)): the Dense Media Radiative Transfer - Multi-Layer model (DMRT-ML), the Dense Media Radiative Transfer - Quasi-Crystalline Approximation Mie scattering of Sticky spheres (DMRT-QMS), the Helsinki University of Technology n-Layers model (HUT-nlayers) and the Microwave Emission Model of Layered Snowpacks (MEMLS). Using the same extensively measured physical snowpack properties, we compared the simulated T(sub B) at 11, 19 and 37 GHz from these four models. The analysis focuses on the impact of using different types of measured snow microstructure metrics in the simulations. In addition to density, snow microstructure is defined for each snow layer by grain optical diameter (Do) and stickiness for DMRT-ML and DMRT-QMS, mean grain geometrical maximum extent (D(sub max)) for HUT n-layers and the exponential correlation length for MEMLS. These metrics were derived from either in-situ measurements of snow specific surface area (SSA) or macrophotos of grain sizes (D(sub max)), assuming non-sticky spheres for the DMRT models. Simulated T(sub B) sensitivity analysis using the same inputs shows relatively consistent T(sub B) behavior as a function of Do and density variations for the vertical polarization (maximum deviation of 18 K and 27 K, respectively), while some divergences appear in simulated variations for the polarization ratio (PR). Comparisons with ground based radiometric measurements show that the simulations based on snow SSA measurements have to be scaled with a model-specific factor of Do in order to minimize the root mean square error (RMSE) between measured and simulated T(sub B). Results using in-situ grain size measurements (SSA or D(sub max), depending on the model) give a mean T(sub B) RMSE (19 and 37 GHz) of the order of 16-26 K, which is similar for all models when the snow microstructure metrics are scaled. However, the MEMLS model converges to better results when driven by the correlation length estimated from in-situ SSA measurements rather than D(sub max) measurements. On a practical level, this paper shows that the SSA parameter, a snow property that is easy to retrieve in-situ, appears to be the most relevant parameter for characterizing snow microstructure, despite the need for a scaling factor.
NASA Astrophysics Data System (ADS)
Krol, Q. E.; Loewe, H.
2016-12-01
Grain shape is known to influence the effective physical properties of snow and therefore included in the international classification of seasonal snow. Accordingly, snowpack models account for phenomenological shape parameters (sphericity, dendricity) to capture shape variations. These parameters are however difficult to validate due to the lack of clear-cut definitions from the 3D microstucture and insufficient links to physical properties. While the definition of traditional shape was tailored to the requirements of observers, a more objective definition should be tailored to the requirements of physical properties, by analyzing geometrical (shape) corrections in existing theoretical formulations directly. To this end we revisited the autocorrelation function (ACF) and the chord length distribution (CLD) of snow. Both functions capture size distributions of the microstructure, can be calculated from X-ray tomography and are related to various physical properties. Both functions involve the optical equivalent diameter as dominant quantity, however the respective higher-order geometrical correction differ. We have analyzed these corrections, namely interfacial curvatures for the ACF and the second moment for the CLD, using an existing data set of 165 tomography samples. To unify the notion of shape, we derived various statistical relations between the length scales. Our analysis bears three key practical implications. First, we derived a significantly improved relation between the exponential correlation length and the optical diameter by taking curvatures into account. This adds to the understanding of linking "microwave grain size" and "optical grain size" of snow for remote sensing. Second, we retrieve the optical shape parameter (commonly referred to as B) from tomography images via the moment of the CLD. Third, shape variations seen by observers do not necessarily correspond to shape variations probed by physical properties.
NASA Astrophysics Data System (ADS)
Painter, T. H.; Bormann, K.; Deems, J. S.; Hedrick, A. R.; Marks, D. G.; Skiles, M.; Stock, G. M.
2017-12-01
Across the last five years, the Sierra Nevada has seen increasing drought and then an abrupt return to a top five snowpack. Fortunately, the NASA Airborne Snow Observatory has been flying the Central Sierra Nevada since the spring of 2013, quantifying critical mountain basins' snow water equivalent and snow albedo. The huge variation of snowpack years captured by the NASA ASO is of enormous benefit to water cycle science, ecosystem science, and water management utilization of ASO data and its modeling. It allows a much broader understanding of mountain basin snow season cases for understanding snowmelt runoff, snow/rain mixes, snowfall distribution, evapotranspiration, soil moisture, and glacier mass balance. For water management, trust in empirical and physically-based modeling from the ASO data for application anywhere in the range of snow years is greatly improved by having consistency in that modeling with the span of years ASO has characterized. The NASA ASO was designed to characterize mountain snowpack and fill this void in water cycle science. Our original conversations with partner California Department of Water Resources in 2011 focused on the utility of ASO for flood risk mitigation, given the large snowfall of that year. However, from 2012 through 2016, California snowpacks expressed horrible drought, reaching the nadir in 2015 with the lowest snowpack on record. The 2016 snowpack was nearly normal according to snow pillows and snow courses (ASO's record is too short to define a `normal' year). However, 2017 had enormous snowfall in January and February, keeping snow pillows on track with the largest year on record, 1982-83. However, March backed off and the record year was lost. Still, accumulation was enormous. In parts of the San Joaquin basin, snow depths were > 30 m. The sum of near April 1 ASO total basin SWE for 2013 through 2016 in the Tuolumne Basin was only 92% of the near April 1, 2017 acquisition. In addition to the large accumulation of snow in 2017, the snowpack was also covered with far greater impurities (dust, black carbon) across the snowmelt period than in the previous years, as expressed in the snow albedo and radiative forcing by dust and BC in snow from the ASO imaging spectrometer. In this presentation, we explore the importance of this opportunity for water cycle science and water management.
Projected climate change impacts on skiing and snowmobiling: A case study of the United States
A physically-based water and energy balance model is used to simulate natural snow accumulation at 247 winter recreation locations across the continental United States. We combine this model with projections of snowmaking conditions to determine downhill skiing, cross-country ski...
GPM Pre-Launch Algorithm Development for Physically-Based Falling Snow Retrievals
NASA Technical Reports Server (NTRS)
Jackson, Gail Skofronick; Tokay, Ali; Kramer, Anne W.; Hudak, David
2008-01-01
In this work we compare and correlate the long time series (Nov.-March) neasurements of precipitation rate from the Parsivels and 2DVD to the passive (89, 150, 183+/-1, +/-3, +/-7 GHz) observations of NOAA's AMSU-B radiometer. There are approximately 5-8 AMSU-B overpass views of the CARE site a day. We separate the comparisons into categories of no precipitation, liquid rain and falling snow precipitation. Scatterplots between the Parsivel snowfall rates and AMSU-B brightness temperatures (TBs) did not show an exploitable relationship for retrievals. We further compared and contrasted brightness temperatures to other surface measurements such as temperature and relative humidity with equally unsatisfying results. We found that there are similar TBs (especially at 89 and 150 GHz) for cases with falling snow and for non-precipitating cases. The comparisons indicate that surface emissivity contributions to the satellite observed TB over land can add uncertainty in detecting and estimating falling snow. The newest results show that the cloud icc scattering signal in the AMSU-B data call be detected by computing clear air TBs based on CARE radiosonde data and a rough estimate of surface emissivity. That is the differences in computed TI3 and AMSU-B TB for precipitating and nonprecipitating cases are unique such that the precipitating versus lon-precipitating cases can be identified. These results require that the radiosonde releases are within an hour of the AMSU-B data and allow for three surface types: no snow on the ground, less than 5 cm snow on the ground, and greater than 5 cm on the ground (as given by ground station data). Forest fraction and measured emissivities were combined to calculate the surface emissivities. The above work and future work to incorporate knowledge about falling snow retrievals into the framework of the expected GPM Bayesian retrievals will be described during this presentation.
Modeling of multi-phase interactions of reactive nitrogen between snow and air in Antarctica
NASA Astrophysics Data System (ADS)
McCrystall, M.; Chan, H. G. V.; Frey, M. M.; King, M. D.
2016-12-01
In polar and snow-covered regions, the snowpack is an important link between atmospheric, terrestrial and oceanic systems. Trace gases, including nitrogen oxides, produced via photochemical reactions in snow are partially released to the lower atmosphere with considerable impact on its composition. However, the post-depositional processes that change the chemical composition and physical properties of the snowpack are still poorly understood. Most current snow chemistry models oversimplify as they assume air-liquid interactions and aqueous phase chemistry taking place at the interface between the snow grain and air. Here, we develop a novel temperature dependent multi-phase (gas-liquid-ice) physical exchange model for reactive nitrogen. The model is validated with existing year-round observations of nitrate in the top 0.5-2 cm of snow and the overlying atmosphere at two very different Antarctic locations: Dome C on the East Antarctic Plateau with very low annual mean temperature (-54ºC) and accumulation rate (<30 kg m-2 yr-1); and Halley, a coastal site with at times at or above freezing temperatures during summer, high accumulation rate and high background level of sea salt aerosol. We find that below the eutectic temperature of the H2O/dominant ion mixture the surface snow nitrate is controlled by kinetic adsorption onto the surface of snow grains followed by grain diffusion. Above the eutectic temperature, in addition to the former two processes, thermodynamic equilibrium of HNO3 between interstitial air and liquid water pockets, possibly present at triple junctions or grooves at grain boundaries, greatly enhances the nitrate uptake by snow in agreement with the concentration peak observed in summer.
NASA Astrophysics Data System (ADS)
Krogh, S. A.; Pomeroy, J. W.
2017-12-01
Increasing temperatures are producing higher rainfall ratios, shorter snow-covered periods, permafrost thaw, more shrub coverage, more northerly treelines and greater interaction between groundwater and surface flow in Arctic basins. How these changes will impact the hydrology of the Arctic treeline environment represents a great challenge. To diagnose the future hydrology along the current Arctic treeline, a physically based cold regions model was used to simulate the hydrology of a small basin near Inuvik, Northwest Territories, Canada. The hydrological model includes hydrological processes such as snow redistribution and sublimation by wind, canopy interception of snow/rain and sublimation/evaporation, snowmelt energy balance, active layer freeze/thaw, infiltration into frozen and unfrozen soils, evapotranspiration, horizontal flow through organic terrain and snowpack, subsurface flow and streamflow routing. The model was driven with weather simulated by a high-resolution (4 km) numerical weather prediction model under two scenarios: (1) control run, using ERA-Interim boundary conditions (2001-2013) and (2) future, using a Pseudo-Global Warming (PGW) approach based on the RCP8.5 projections perturbing the control run. Transient changes in vegetation based on recent observations and ecological expectations were then used to re-parameterise the model. Historical hydrological simulations were validated against daily streamflow, snow water equivalent and active layer thickness records, showing the model's suitability in this environment. Strong annual warming ( 6 °C) and more precipitation ( 20%) were simulated by the PGW scenario, with winter precipitation and fall temperature showing the largest seasonal increase. The joint impact of climate and transient vegetation changes on snow accumulation and redistribution, evapotranspiration, active layer development, runoff generation and hydrograph characteristics are analyzed and discussed.
Physical and Optical Properties of Falling Snow
1989-07-01
ments with those measured with a transmissometer .................................. 19 24. HSS forward-scatter meter used for measuring extinction in...snowfall conditions, the different ge- ometries of the transmission systems and discrep- | 2• a 2 n(a) da ancies in the snow precipitation rate measure ...J0 ments. Bet = Ms. (27) Table 3. Relationships between measured fn(a) mn(a) da extinction coefficient and snow precipita- ion rate . 091 This
Statistical downscaling of regional climate scenarios for the French Alps : Impacts on snow cover
NASA Astrophysics Data System (ADS)
Rousselot, M.; Durand, Y.; Giraud, G.; Mérindol, L.; Déqué, M.; Sanchez, E.; Pagé, C.; Hasan, A.
2010-12-01
Mountain areas are particularly vulnerable to climate change. Owing to the complexity of mountain terrain, climate research at scales relevant for impacts studies and decisive for stakeholders is challenging. A possible way to bridge the gap between these fine scales and those of the general circulation models (GCMs) consists of combining high-resolution simulations of Regional Climate Models (RCMs) to statistical downscaling methods. The present work is based on such an approach. It aims at investigating the impacts of climate change on snow cover in the French Alps for the periods 2021-2050 and 2071-2100 under several IPCC hypotheses. An analogue method based on high resolution atmospheric fields from various RCMs and climate reanalyses is used to simulate local climate scenarios. These scenarios, which provide meteorological parameters relevant for snowpack evolution, subsequently feed the CROCUS snow model. In these simulations, various sources of uncertainties are thus considered (several greenhouse gases emission scenarios and RCMs). Results are obtained for different regions of the French Alps at various altitudes. For all scenarios, temperature increase is relatively uniform over the Alps. This regional warming is larger than that generally modeled at the global scale (IPCC, 2007), and particularly strong in summer. Annual precipitation amounts seem to decrease, mainly as a result of decreasing precipitation trends in summer and fall. As a result of these climatic evolutions, there is a general decrease of the mean winter snow depth and seasonal snow duration for all massifs. Winter snow depths are particularly reduced in the Northern Alps. However, the impact on seasonal snow duration is more significant in the Southern and Extreme Southern Alps, since these regions are already characterized by small winter snow depths at low elevations. Reference : IPCC (2007a). Climate change 2007 : The physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. In : Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H.L. Miller (eds.). Cambridge University Press, Cambridge, UK and New York, NY, USA. This work is performed in the framework of the SCAMPEI ANR (French research project).
NASA Astrophysics Data System (ADS)
Infante Corona, J. A.; Lakhankar, T.; Khanbilvardi, R.; Pradhanang, S. M.
2013-12-01
Stream flow estimation and flood prediction influenced by snow melting processes have been studied for the past couple of decades because of their destruction potential, money losses and demises. It has been observed that snow, that was very stationary during its seasons, now is variable in shorter time-scales (daily and hourly) and rapid snowmelt can contribute or been the cause of floods. Therefore, good estimates of snowpack properties on ground are necessary in order to have an accurate prediction of these destructive events. The snow thermal model (SNTHERM) is a 1-dimensional model that analyzes the snowpack properties given the climatological conditions of a particular area. Gridded data from both, in-situ meteorological observations and remote sensing data will be produced using interpolation methods; thus, snow water equivalent (SWE) and snowmelt estimations can be obtained. The soil and water assessment tool (SWAT) is a hydrological model capable of predicting runoff quantity and quality of a watershed given its main physical and hydrological properties. The results from SNTHERM will be used as an input for SWAT in order to have simulated runoff under snowmelt conditions. This project attempts to improve the river discharge estimation considering both, excess rainfall runoff and the snow melting process. Obtaining a better estimation of the snowpack properties and evolution is expected. A coupled use of SNTHERM and SWAT based on meteorological in situ and remote sensed data will improve the temporal and spatial resolution of the snowpack characterization and river discharge estimations, and thus flood prediction.
NASA Astrophysics Data System (ADS)
Molotch, Noah P.; Barnard, David M.; Burns, Sean P.; Painter, Thomas H.
2016-09-01
The distribution of forest cover exerts strong controls on the spatiotemporal distribution of snow accumulation and snowmelt. The physical processes that govern these controls are poorly understood given a lack of detailed measurements of snow states. In this study, we address one of many measurement gaps by using contact spectroscopy to measure snow optical grain size at high spatial resolution in trenches dug between tree boles in a subalpine forest. Trenches were collocated with continuous measurements of snow depth and vertical profiles of snow temperature and supplemented with manual measurements of snow temperature, geometric grain size, grain type, and density from trench walls. There was a distinct difference in snow optical grain size between winter and spring periods. In winter and early spring, when facetted snow crystal types were dominant, snow optical grain size was 6% larger in canopy gaps versus under canopy positions; a difference that was smaller than the measurement uncertainty. By midspring, the magnitude of snow optical grain size differences increased dramatically and patterns of snow optical grain size became highly directional with 34% larger snow grains in areas south versus north of trees. In winter, snow temperature gradients were up to 5-15°C m-1 greater under the canopy due to shallower snow accumulation. However, in canopy gaps, snow depths were greater in fall and early winter and therefore more significant kinetic growth metamorphism occurred relative to under canopy positions, resulting in larger snow grains in canopy gaps. Our findings illustrate the novelty of our method of measuring snow optical grain size, allowing for future studies to advance the understanding of how forest and meteorological conditions interact to impact snowpack evolution.
NASA Astrophysics Data System (ADS)
Schön, Peter; Prokop, Alexander; Naaim-Bouvet, Florence; Vionnet, Vincent; Guyomarc'h, Gilbert; Heiser, Micha; Nishimura, Kouichi
2015-04-01
Wind and the associated snow drift are dominating factors determining the snow distribution and accumulation in alpine areas, resulting in a high spatial variability of snow depth that is difficult to evaluate and quantify. The terrain-based parameter Sx characterizes the degree of shelter or exposure of a grid point provided by the upwind terrain, without the computational complexity of numerical wind field models. The parameter has shown to qualitatively predict snow redistribution with good reproduction of spatial patterns. It does not, however, provide a quantitative estimate of changes in snow depths. The objective of our research was to introduce a new parameter to quantify changes in snow depths in our research area, the Col du Lac Blanc in the French Alps. The area is at an elevation of 2700 m and particularly suited for our study due to its consistently bi-modal wind directions. Our work focused on two pronounced, approximately 10 m high terrain breaks, and we worked with 1 m resolution digital snow surface models (DSM). The DSM and measured changes in snow depths were obtained with high-accuracy terrestrial laser scan (TLS) measurements. First we calculated the terrain-based parameter Sx on a digital snow surface model and correlated Sx with measured changes in snow-depths (Δ SH). Results showed that Δ SH can be approximated by Δ SHestimated = α * Sx, where α is a newly introduced parameter. The parameter α has shown to be linked to the amount of snow deposited influenced by blowing snow flux. At the Col du Lac Blanc test side, blowing snow flux is recorded with snow particle counters (SPC). Snow flux is the number of drifting snow particles per time and area. Hence, the SPC provide data about the duration and intensity of drifting snow events, two important factors not accounted for by the terrain parameter Sx. We analyse how the SPC snow flux data can be used to estimate the magnitude of the new variable parameter α . To simulate the development of the snow surface in dependency of Sx, SPC flux and time, we apply a simple cellular automata system. The system consists of raster cells that develop through discrete time steps according to a set of rules. The rules are based on the states of neighboring cells. Our model assumes snow transport in dependency of Sx gradients between neighboring cells. The cells evolve based on difference quotients between neighbouring cells. Our analyses and results are steps towards using the terrain-based parameter Sx, coupled with SPC data, to quantitatively estimate changes in snow depths, using high raster resolutions of 1 m.
NASA Astrophysics Data System (ADS)
Schön, Peter; Prokop, Alexander; Naaim-Bouvet, Florence; Nishimura, Kouichi; Vionnet, Vincent; Guyomarc'h, Gilbert
2014-05-01
Wind and the associated snow drift are dominating factors determining the snow distribution and accumulation in alpine areas, resulting in a high spatial variability of snow depth that is difficult to evaluate and quantify. The terrain-based parameter Sx characterizes the degree of shelter or exposure of a grid point provided by the upwind terrain, without the computational complexity of numerical wind field models. The parameter has shown to qualitatively predict snow redistribution with good reproduction of spatial patterns, but has failed to quantitatively describe the snow redistribution, and correlations with measured snow heights were poor. The objective of our research was to a) identify the sources of poor correlations between predicted and measured snow re-distribution and b) improve the parameters ability to qualitatively and quantitatively describe snow redistribution in our research area, the Col du Lac Blanc in the French Alps. The area is at an elevation of 2700 m and particularly suited for our study due to its constant wind direction and the availability of data from a meteorological station. Our work focused on areas with terrain edges of approximately 10 m height, and we worked with 1-2 m resolution digital terrain and snow surface data. We first compared the results of the terrain-based parameter calculations to measured snow-depths, obtained by high-accuracy terrestrial laser scan measurements. The results were similar to previous studies: The parameter was able to reproduce observed patterns in snow distribution, but regression analyses showed poor correlations between terrain-based parameter and measured snow-depths. We demonstrate how the correlations between measured and calculated snow heights improve if the parameter is calculated based on a snow surface model instead of a digital terrain model. We show how changing the parameter's search distance and how raster re-sampling and raster smoothing improve the results. To improve the parameter's quantitative abilities, we modified the parameter, based on the comparisons with TLS data and the terrain and wind conditions specific to the research site. The modification is in a linear form f(x) = a * Sx, where a is a newly introduced parameter; f(x) yields the estimates for the snow height. We found that the parameter depends on the time period between the compared snow surfaces and the intensity of drifting snow events, which are linked to wind velocities. At the Col du Lac Blanc test side, blowing snow flux is recorded with snow particle counters (SPC). Snow flux is the number of drifting snow particles per time and area. Hence, the SPC provide data about the duration and intensity of drifting snow events, two important factors not accounted for by the terrain parameter Sx. We analyse how the SPC snow flux data can be used to estimate the magnitude of the new variable parameter a. We could improve the parameters' correlations with measured snow heights and its ability to quantitatively describe snow distribution in the Col du Lac Blanc area. We believe that our work is also a prerequisite to further improve the parameter's ability to describe snow redistribution.
NASA Astrophysics Data System (ADS)
Kay, J. E.; Hansen, G.; Gillespie, A.; Pettit, E.
2002-12-01
Relating cryosphere change to climate change requires estimation of radiative fluxes on snow-covered surfaces. The distribution of, and relationship between, snow-pack properties that affect radiative balance can be estimated with high-resolution remote-sensing data. MODIS/ASTER airborne simulator (MASTER) data were collected at Mt. Rainier to reveal spatial patterns of, and correlations between, snow contaminant content, grain size, and temperature. The visible and near-infrared (VNIR: 11 bands, 0.4-1.0 μm) and the short-wave infrared (SWIR: 14 bands, 1.6-2.4 μm) data are processed to bi-directional reflectance (BDR) and albedo, by removing atmospheric effects and by normalizing to Solar irradiance and incidence angle. VNIR BDR and albedo are used as a proxy for snow contaminant content. Physical and optical grain size are estimated by comparing SWIR BDR and albedo to modeled and measured spectra, and ground-truth measurements. The thermal infrared data (TIR: 10 bands, 8-13 μm) are processed to temperature by removing emissivity and atmospheric effects. In combination, the VNIR, SWIR, and TIR data reveal a distinct pattern of contaminants, grain size, and temperature related to a recent snowfall and the end-of-the-summer melting season. At lower elevations, the surface accumulation of dirty lag deposits resulted in snow with very low visible albedo (20-30 %), large physical and optical grain radii (500-1500 μm, 200 μm), and temperatures near the melting point. At higher elevations, the recent snowfall left snow with low contaminant content, and a higher visible albedo (60-90 %). However, a region near the summit with smaller physical and optical grain radii (400 μm, 100 μm), and temperatures below the melting point, is distinguished from a middle elevation region with grain sizes and temperatures similar to the lower region. Contaminants reduce VNIR albedo and significantly enhance absorption of incoming solar radiation. The spatial correlation between temperature and grain size supports the idea that rapid, destructive metamorphism occurs when snow temperatures are at the melting point.
NASA Astrophysics Data System (ADS)
Ebtehaj, A.; Foufoula-Georgiou, E.
2016-12-01
Scientific evidence suggests that the duration and frequency of snowfall and the extent of snow cover are rapidly declining under global warming. Both precipitation and snow cover scatter the upwelling surface microwave emission and decrease the observed high-frequency brightness temperatures. The mixture of these two scattering signals is amongst the largest sources of ambiguities and errors in passive microwave retrievals of both precipitation and snow-cover. The dual frequency radar and the high-frequency radiometer on board the GPM satellite provide a unique opportunity to improve passive retrievals of precipitation and snow-cover physical properties and fill the gaps in our understating of their variability in view of climate change. Recently, a new Bayesian rainfall retrieval algorithm (called ShARP) was developed using modern approximation methods and shown to yield improvements against other algorithms in retrieval of rainfall over radiometrically complex land surfaces. However, ShARP uses a large database of input rainfall and output brightness temperatures, which might be undersampled. Furthermore, it is not capable to discriminate between solid and liquid phase of precipitation and specifically discriminate the background snow-cover emission and its contamination effects on the retrievals. We address these problems by extending it to a new Bayesian land-atmosphere retrieval framework (ShARP-L) that allows joint retrievals of atmospheric constituents and land surface physical properties. Using modern sparse approximation techniques, the database is reduced to atomic microwave signatures in a family of compact class consistent dictionaries. These dictionaries can efficiently represent the entire database and allow us to discriminate between different land-atmosphere states. First the algorithm makes use of the dictionaries to detect the phase of the precipitation and type of the land-cover and then it estimates the physical properties of precipitation and snow cover using an extended version of the Dantzig Selector, which is robust to non-Gaussian and correlated geophysical noise. Promising results are presented in retrievals of snowfall and snow-cover over coastal orographic features of North America's Coast Range and South America's Andes.
Experimental investigation of drifting snow in a wind tunnel
NASA Astrophysics Data System (ADS)
Crivelli, Philip; Paterna, Enrico; Horender, Stefan; Lehning, Michael
2015-11-01
Drifting snow has a significant impact on snow distribution in mountains, prairies as well as on glaciers and polar regions. In all these environments, the local mass balance is highly influenced by drifting snow. Despite most of the model approaches still rely on the assumption of steady-state and equilibrium saltation, recent advances have proven the mass-transport of drifting snow events to be highly intermittent. A clear understanding of such high intermittency has not yet been achieved. Therefore in our contribution we investigate mass- and momentum fluxes during drifting snow events, in order to better understand that the link between snow cover erosion and deposition. Experiments were conducted in a cold wind tunnel, employing sensors for the momentum flux measurements, the mass flux measurement and for the snow depth estimation over a certain area upstream of the other devices. Preliminary results show that the mass flux is highly intermittent at scales ranging from eddy turnover time to much larger scales. The former scales are those that contribute the most to the overall intermittency and we observe a link between the turbulent flow structures and the mass flux of drifting snow at those scales. The role of varying snow properties in inducing drifting snow intermittency goes beyond such link and is expected to occur at much larger scales, caused by the physical snow properties such as density and cohesiveness.
NASA Astrophysics Data System (ADS)
Merkouriadi, Ioanna; Gallet, Jean-Charles; Graham, Robert M.; Liston, Glen E.; Polashenski, Chris; Rösel, Anja; Gerland, Sebastian
2017-10-01
Snow is a crucial component of the Arctic sea ice system. Its thickness and thermal properties control heat conduction and radiative fluxes across the ocean, ice, and atmosphere interfaces. Hence, observations of the evolution of snow depth, density, thermal conductivity, and stratigraphy are crucial for the development of detailed snow numerical models predicting energy transfer through the snow pack. Snow depth is also a major uncertainty in predicting ice thickness using remote sensing algorithms. Here we examine the winter spatial and temporal evolution of snow physical properties on first-year (FYI) and second-year ice (SYI) in the Atlantic sector of the Arctic Ocean, during the Norwegian young sea ICE (N-ICE2015) expedition (January to March 2015). During N-ICE2015, the snow pack consisted of faceted grains (47%), depth hoar (28%), and wind slab (13%), indicating very different snow stratigraphy compared to what was observed in the Pacific sector of the Arctic Ocean during the SHEBA campaign (1997-1998). Average snow bulk density was 345 kg m-3 and it varied with ice type. Snow depth was 41 ± 19 cm in January and 56 ± 17 cm in February, which is significantly greater than earlier suggestions for this region. The snow water equivalent was 14.5 ± 5.3 cm over first-year ice and 19 ± 5.4 cm over second-year ice.
Building a Snow Data System on the Apache OODT Open Technology Stack
NASA Astrophysics Data System (ADS)
Goodale, C. E.; Painter, T. H.; Mattmann, C. A.; Hart, A. F.; Ramirez, P.; Zimdars, P.; Bryant, A. C.; Snow Data System Team
2011-12-01
Snow cover and its melt dominate regional climate and hydrology in many of the world's mountainous regions. One-sixth of Earth's population depends on snow- or glacier-melt for water resources. Operationally, seasonal forecasts of snowmelt-generated streamflow are leveraged through empirical relations based on past snowmelt periods. These historical data show that climate is changing, but the changes reduce the reliability of the empirical relations. Therefore optimal future management of snowmelt derived water resources will require explicit physical models driven by remotely sensed snow property data. Toward this goal, the Snow Optics Laboratory at the Jet Propulsion Laboratory has initiated a near real-time processing pipeline to generate and publish post-processed snow data products within a few hours of satellite acquisition. To solve this challenge, a Scientific Data Management and Processing System was required and the JPL Team leveraged an open-source project called Object Oriented Data Technology (OODT). OODT was developed within NASA's Jet Propulsion Laboratory across the last 10 years. OODT has supported various scientific data management and processing projects, providing solutions in the Earth, Planetary, and Medical science fields. It became apparent that the project needed to be opened to a larger audience to foster and promote growth and adoption. OODT was open-sourced at the Apache Software Foundation in November 2010 and has a growing community of users and committers that are constantly improving the software. Leveraging OODT, the JPL Snow Data System (SnowDS) Team was able to install and configure a core Data Management System (DMS) that would download MODIS raw data files and archive the products in a local repository for post processing. The team has since built an online data portal, and an algorithm-processing pipeline using the Apache OODT software as the foundation. We will present the working SnowDS system with its core remote sensing components: the MODIS Snow Covered Area and Grain size model (MODSCAG) and the MODIS Dust Radiative Forcing in Snow (MOD-DRFS). These products will be delivered in near real time to water managers and the broader cryosphere and climate community beginning in Winter 2012. We will then present the challenges and opportunities we see in the future as the SnowDS matures and contributions are made back to the OODT project.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liou, Kuo-Nan
2016-02-09
Under the support of the aforementioned DOE Grant, we have made two fundamental contributions to atmospheric and climate sciences: (1) Develop an efficient 3-D radiative transfer parameterization for application to intense and intricate inhomogeneous mountain/snow regions. (2) Innovate a stochastic parameterization for light absorption by internally mixed black carbon and dust particles in snow grains for understanding and physical insight into snow albedo reduction in climate models. With reference to item (1), we divided solar fluxes reaching mountain surfaces into five components: direct and diffuse fluxes, direct- and diffuse-reflected fluxes, and coupled mountain-mountain flux. “Exact” 3D Monte Carlo photon tracingmore » computations can then be performed for these solar flux components to compare with those calculated from the conventional plane-parallel (PP) radiative transfer program readily available in climate models. Subsequently, Parameterizations of the deviations of 3D from PP results for five flux components are carried out by means of the multiple linear regression analysis associated with topographic information, including elevation, solar incident angle, sky view factor, and terrain configuration factor. We derived five regression equations with high statistical correlations for flux deviations and successfully incorporated this efficient parameterization into WRF model, which was used as the testbed in connection with the Fu-Liou-Gu PP radiation scheme that has been included in the WRF physics package. Incorporating this 3D parameterization program, we conducted simulations of WRF and CCSM4 to understand and evaluate the mountain/snow effect on snow albedo reduction during seasonal transition and the interannual variability for snowmelt, cloud cover, and precipitation over the Western United States presented in the final report. With reference to item (2), we developed in our previous research a geometric-optics surface-wave approach (GOS) for the computation of light absorption and scattering by complex and inhomogeneous particles for application to aggregates and snow grains with external and internal mixing structures. We demonstrated that a small black (BC) particle on the order of 1 μm internally mixed with snow grains could effectively reduce visible snow albedo by as much as 5–10%. Following this work and within the context of DOE support, we have made two key accomplishments presented in the attached final report.« less
NASA Technical Reports Server (NTRS)
Skofronick-Jackson, Gail; Johnson, Benjamin T.
2011-01-01
Physically based passive microwave precipitation retrieval algorithms require a set of relationships between satellite -observed brightness temperatures (TBs) and the physical state of the underlying atmosphere and surface. These relationships are nonlinear, such that inversions are ill ]posed especially over variable land surfaces. In order to elucidate these relationships, this work presents a theoretical analysis using TB weighting functions to quantify the percentage influence of the TB resulting from absorption, emission, and/or reflection from the surface, as well as from frozen hydrometeors in clouds, from atmospheric water vapor, and from other contributors. The percentage analysis was also compared to Jacobians. The results are presented for frequencies from 10 to 874 GHz, for individual snow profiles, and for averages over three cloud-resolving model simulations of falling snow. The bulk structure (e.g., ice water path and cloud depth) of the underlying cloud scene was found to affect the resultant TB and percentages, producing different values for blizzard, lake effect, and synoptic snow events. The slant path at a 53 viewing angle increases the hydrometeor contributions relative to nadir viewing channels. Jacobians provide the magnitude and direction of change in the TB values due to a change in the underlying scene; however, the percentage analysis provides detailed information on how that change affected contributions to the TB from the surface, hydrometeors, and water vapor. The TB percentage information presented in this paper provides information about the relative contributions to the TB and supplies key pieces of information required to develop and improve precipitation retrievals over land surfaces.
NASA Astrophysics Data System (ADS)
Havens, S.; Marks, D. G.; Kormos, P.; Hedrick, A. R.; Johnson, M.; Robertson, M.; Sandusky, M.
2017-12-01
In the Western US, operational water supply managers rely on statistical techniques to forecast the volume of water left to enter the reservoirs. As the climate changes and the demand increases for stored water utilized for irrigation, flood control, power generation, and ecosystem services, water managers have begun to move from statistical techniques towards using physically based models. To assist with the transition, a new open source framework was developed, the Spatial Modeling for Resources Framework (SMRF), to automate and simplify the most common forcing data distribution methods. SMRF is computationally efficient and can be implemented for both research and operational applications. Currently, SMRF is able to generate all of the forcing data required to run physically based snow or hydrologic models at 50-100 m resolution over regions of 500-10,000 km2, and has been successfully applied in real time and historical applications for the Boise River Basin in Idaho, USA, the Tuolumne River Basin and San Joaquin in California, USA, and Reynolds Creek Experimental Watershed in Idaho, USA. These applications use meteorological station measurements and numerical weather prediction model outputs as input data. SMRF has significantly streamlined the modeling workflow, decreased model set up time from weeks to days, and made near real-time application of physics-based snow and hydrologic models possible.
NASA Astrophysics Data System (ADS)
Rangel-Alvarado, Rodrigo Benjamin; Nazarenko, Yevgen; Ariya, Parisa A.
2015-11-01
Physicochemical processes of nucleation constitute a major uncertainty in understanding aerosol-cloud interactions. To improve the knowledge of the ice nucleation process, we characterized physical, chemical, and biological properties of fresh snow using a suite of state-of-the-art techniques based on mass spectrometry, electron microscopy, chromatography, and optical particle sizing. Samples were collected at two North American Arctic sites, as part of international campaigns (2006 and 2009), and in the city of Montreal, Canada, over the last decade. Particle size distribution analyses, in the range of 3 nm to 10 µm, showed that nanosized particles are the most numerous (38-71%) in fresh snow, with a significant portion (11 to 19%) less than 100 nm in size. Particles with diameters less than 200 nm consistently exhibited relatively high ice-nucleating properties (on average ranged from -19.6 ± 2.4 to -8.1 ± 2.6°C). Chemical analysis of the nanosized fraction suggests that they contain bioorganic materials, such as amino acids, as well as inorganic compounds with similar characteristics to mineral dust. The implication of nanoparticle ubiquity and abundance in diverse snow ecosystems are discussed in the context of their importance in understanding atmospheric nucleation processes.
Barman, Rahul; Jain, Atul K.
2016-03-28
Here, we used a land surface model to (1) evaluate the influence of recent improvements in modeling cold-region soil/snow physics on near-surface permafrost physical characteristics (within 0–3 m soil column) in the northern high latitudes (NHL) and (2) compare them with uncertainties from climate and land-cover data sets. Specifically, four soil/snow processes are investigated: deep soil energetics, soil organic carbon (SOC) effects on soil properties, wind compaction of snow, and depth hoar formation. In the model, together they increased the contemporary NHL permafrost area by 9.2 × 10 6 km 2 (from 2.9 to 12.3—without and with these processes, respectively)more » and reduced historical degradation rates. In comparison, permafrost area using different climate data sets (with annual air temperature difference of ~0.5°C) differed by up to 2.3 × 10 6 km 2, with minimal contribution of up to 0.7 × 10 6 km 2 from substantial land-cover differences. Individually, the strongest role in permafrost increase was from deep soil energetics, followed by contributions from SOC and wind compaction, while depth hoar decreased permafrost. The respective contribution on 0–3 m permafrost stability also followed a similar pattern. However, soil temperature and moisture within vegetation root zone (~0–1 m), which strongly influence soil biogeochemistry, were only affected by the latter three processes. The ecosystem energy and water fluxes were impacted the least due to these soil/snow processes. While it is evident that simulated permafrost physical characteristics benefit from detailed treatment of cold-region biogeophysical processes, we argue that these should also lead to integrated improvements in modeling of biogeochemistry.« less
NASA Astrophysics Data System (ADS)
Rondeau-Genesse, G.; Trudel, M.; Leconte, R.
2014-12-01
Coupling C-Band synthetic aperture radar (SAR) data to a multilayer snow model is a step in better understanding the temporal evolution of the radar backscattering coefficient during snowmelt. The watershed used for this study is the Nechako River Basin, located in the Rocky Mountains of British-Columbia (Canada). This basin has a snowpack of several meters in depth and part of its water is diverted to the Kemano hydropower system, managed by Rio-Tinto Alcan. Eighteen RADARSAT-2 ScanSAR Wide archive images were acquired in VV/VH polarization for the winter of 2011-2012, under different snow conditions. They are interpreted along with CROCUS, a multilayer physically-based snow model developed by Météo-France. This model discretizes the snowpack into 50 layers, which makes it possible to monitor various characteristics, such as liquid water content (LWC), throughout the season. CROCUS is used to model three specific locations of the Nechako River Basin. Results vary from one site to another, but in general there is a good agreement between the modeled LWC of the first layer of the snowpack and the backscattering coefficient of the RADARSAT-2 images, with a coefficient of determination (R²) of 0.80 and more. The radar images themselves were processed using an updated version of Nagler's methodology, which consists of subtracting an image in wet snow conditions to one in dry snow conditions, as wet snow can then be identified using a soft threshold centered around -3 dB. A second filter was used in order to differentiate dry snow and bare soil. That filter combines a VH/VV ratio threshold and an altitude criterion. The ensuing maps show a good agreement with the MODIS snow-covered area, which is already obtained daily over the Nechako River Basin, but with additional information on the location of wet snow and without sensibility to cloud cover. As a next step, the outputs of CROCUS will be used in Mätzler's Microwave Emission Model of Layered Snowpacks (MEMLS) to simulate the backscattering coefficient at different locations in the basin.
Albedo Drop on the Greenland Ice Sheet: Relative Impacts of Wet and Dry Snow Processes
NASA Astrophysics Data System (ADS)
Chen, J.; Polashenski, C.
2014-12-01
The energy balance of the Greenland Ice Sheet (GIS) is strongly impacted by changes in snow albedo. MODIS (Moderate Resolution Imaging Spectroradiometer) observations indicate that the GIS albedo has dropped since the early part of this century. We analyze data from the MODIS products MOD10A1 for broadband snow albedo and MOD09A1 for surface spectral reflectance since 2001 to better explain the physical mechanisms driving these changes. The MODIS products are filtered, and the data is masked using microwave-derived surface melt maps to isolate albedo changes due to dry snow processes from those driven by melt impacts. Results show that the majority of recent changes in the GIS albedo - even at high elevations - are driven by snow wetting rather than dry snow processes such as grain metamorphosis and aerosol impurity deposition. The spectral signature of the smaller changes occurring within dry snow areas suggests that grain metamorphosis dominates the albedo decline in these regions.
Ultra-Wideband Radar Measurements of Thickness of Snow Over Sea Ice
NASA Technical Reports Server (NTRS)
Kanagaratnam, P.; Markus, T.; Lytle, V.; Heavey, B.; Jansen, P.; Prescott, G.; Gogineni, S.
2007-01-01
An accurate knowledge of snow thickness and its variability over sea ice is crucial for determining the overall polar heat and freshwater budget, which influences the global climate. Recently, algorithms have been developed to extract snow thicknesses from passive microwave satellite data. However, validation of these data over the large footprint of the passive microwave sensor has been a challenge. The only method used thus far has been with meter sticks during ship cruises. To address this problem, we developed an ultra wideband frequency-modulated continuous-wave (FM-CW) radar to measure snow thickness over sea ice. We made snow-thickness measurements over Antarctic sea ice by operating the radar from a sled during September and October, 2003. We performed radar measurements over 11 stations with varying snow thickness between 4 and 85 cm. We observed excellent agreement between radar estimates of snow thickness with physical measurements, achieving a correlation coefficient of 0.95 and a vertical resolution of about 3 cm.
Estimating Snow Water Storage in North America Using CLM4, DART, and Snow Radiance Data Assimilation
NASA Technical Reports Server (NTRS)
Kwon, Yonghwan; Yang, Zong-Liang; Zhao, Long; Hoar, Timothy J.; Toure, Ally M.; Rodell, Matthew
2016-01-01
This paper addresses continental-scale snow estimates in North America using a recently developed snow radiance assimilation (RA) system. A series of RA experiments with the ensemble adjustment Kalman filter are conducted by assimilating the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) brightness temperature T(sub B) at 18.7- and 36.5-GHz vertical polarization channels. The overall RA performance in estimating snow depth for North America is improved by simultaneously updating the Community Land Model, version 4 (CLM4), snow/soil states and radiative transfer model (RTM) parameters involved in predicting T(sub B) based on their correlations with the prior T(sub B) (i.e., rule-based RA), although degradations are also observed. The RA system exhibits a more mixed performance for snow cover fraction estimates. Compared to the open-loop run (0.171m RMSE), the overall snow depth estimates are improved by 1.6% (0.168m RMSE) in the rule-based RA whereas the default RA (without a rule) results in a degradation of 3.6% (0.177mRMSE). Significant improvement of the snow depth estimates in the rule-based RA as observed for tundra snow class (11.5%, p < 0.05) and bare soil land-cover type (13.5%, p < 0.05). However, the overall improvement is not significant (p = 0.135) because snow estimates are degraded or marginally improved for other snow classes and land covers, especially the taiga snow class and forest land cover (7.1% and 7.3% degradations, respectively). The current RA system needs to be further refined to enhance snow estimates for various snow types and forested regions.
Linking laser scanning to snowpack modeling: Data processing and visualization
NASA Astrophysics Data System (ADS)
Teufelsbauer, H.
2009-07-01
SnowSim is a newly developed physical snowpack model that can use three-dimensional terrestrial laser scanning data to generate model domains. This greatly simplifies the input and numerical simulation of snow covers in complex terrains. The program can model two-dimensional cross sections of general slopes, with complicated snow distributions. The model predicts temperature distributions and snow settlements in this cross section. Thus, the model can be used for a wide range of problems in snow science and engineering, including numerical investigations of avalanche formation. The governing partial differential equations are solved by means of the finite element method, using triangular elements. All essential data for defining the boundary conditions and evaluating the simulation results are gathered by automatic weather and snow measurement sites. This work focuses on the treatment of these measurements and the simulation results, and presents a pre- and post-processing graphical user interface (GUI) programmed in Matlab.
Microwave remote sensing of snowpacks
NASA Technical Reports Server (NTRS)
Stiles, W. H.; Ulaby, F. T.
1980-01-01
The interaction mechanisms responsible for the microwave backscattering and emission behavior of snow were investigated, and models were developed relating the backscattering coefficient (sigma) and apparent temperature (T) to the physical parameters of the snowpack. The microwave responses to snow wetness, snow water equivalent, snow surface roughness, and to diurnal variations were investigated. Snow wetness was shown to have an increasing effect with increasing frequency and angle of incidence for both active and passive cases. Increasing snow wetness was observed to decrease the magnitude sigma and increase T. Snow water equivalent was also observed to exhibit a significant influence sigma and T. Snow surface configuration (roughness) was observed to be significant only for wet snow surface conditions. Diurnal variations were as large as 15 dB for sigma at 35 GHz and 120 K for T at 37 GHz. Simple models for sigma and T of a snowpack scene were developed in terms of the most significant ground-truth parameters. The coefficients for these models were then evaluated; the fits to the sigma and T measurements were generally good. Finally, areas of needed additional observations were outlined and experiments were specified to further the understanding of the microwave-snowpack interaction mechanisms.
NASA Astrophysics Data System (ADS)
Tuzet, Francois; Dumont, Marie; Lafaysse, Matthieu; Picard, Ghislain; Arnaud, Laurent; Voisin, Didier; Lejeune, Yves; Charrois, Luc; Nabat, Pierre; Morin, Samuel
2017-11-01
Light-absorbing impurities (LAIs) decrease snow albedo, increasing the amount of solar energy absorbed by the snowpack. Its most intuitive and direct impact is to accelerate snowmelt. Enhanced energy absorption in snow also modifies snow metamorphism, which can indirectly drive further variations of snow albedo in the near-infrared part of the solar spectrum because of the evolution of the near-surface snow microstructure. New capabilities have been implemented in the detailed snowpack model SURFEX/ISBA-Crocus (referred to as Crocus) to account for impurities' deposition and evolution within the snowpack and their direct and indirect impacts. Once deposited, the model computes impurities' mass evolution until snow melts out, accounting for scavenging by meltwater. Taking advantage of the recent inclusion of the spectral radiative transfer model TARTES (Two-stream Analytical Radiative TransfEr in Snow model) in Crocus, the model explicitly represents the radiative impacts of light-absorbing impurities in snow. The model was evaluated at the Col de Porte experimental site (French Alps) during the 2013-2014 snow season against in situ standard snow measurements and spectral albedo measurements. In situ meteorological measurements were used to drive the snowpack model, except for aerosol deposition fluxes. Black carbon (BC) and dust deposition fluxes used to drive the model were extracted from simulations of the atmospheric model ALADIN-Climate. The model simulates snowpack evolution reasonably, providing similar performances to our reference Crocus version in terms of snow depth, snow water equivalent (SWE), near-surface specific surface area (SSA) and shortwave albedo. Since the reference empirical albedo scheme was calibrated at the Col de Porte, improvements were not expected to be significant in this study. We show that the deposition fluxes from the ALADIN-Climate model provide a reasonable estimate of the amount of light-absorbing impurities deposited on the snowpack except for extreme deposition events which are greatly underestimated. For this particular season, the simulated melt-out date advances by 6 to 9 days due to the presence of light-absorbing impurities. The model makes it possible to apportion the relative importance of direct and indirect impacts of light-absorbing impurities on energy absorption in snow. For the snow season considered, the direct impact in the visible part of the solar spectrum accounts for 85 % of the total impact, while the indirect impact related to accelerated snow metamorphism decreasing near-surface specific surface area and thus decreasing near-infrared albedo accounts for 15 % of the total impact. Our model results demonstrate that these relative proportions vary with time during the season, with potentially significant impacts for snowmelt and avalanche prediction.
Snow Water Equivalent Pressure Sensor Performance in a Deep Snow Cover
NASA Astrophysics Data System (ADS)
Johnson, J. B.; Gelvin, A. B.; Schaefer, G. L.
2006-12-01
Accurate measurements of snow water equivalent are important for a variety of water resource management operations. In the western US, real-time SWE measurements are made using snow pillows that can experience errors from snow-bridging, poor installation configuration, and enhanced solar radiation absorption. Snow pillow installations that place the pillow abnormally above or below the surrounding terrain can affect snow catchment. Snow pillows made from dark materials can preferentially absorb solar radiation penetrating the snow causing accelerated melt. To reduce these problems, the NRCS and CRREL developed an electronic SWE sensor to replace the snow pillow. During the winter of 2005-2006 the NRCS/CRREL electronic sensor was deployed at Hogg Pass, Oregon, with a total SWE accumulation of about 1000 mm. The NRCS/CRREL sensor consists of a center panel surrounded by eight outer panels whose purpose is to buffer snow bridging loads. By separately monitoring load cell outputs from the sensor, snow-bridging events are directly measured. A snow-bridging event associated with a 180 mm SWE accumulation in a 24-hour period exhibited a SWE over-measurement of 60% at the sensor edge while the center panel showed less than a 10% effect. Individual load cell outputs were used to determine the most representative SWE value, which was within 5% of the adjacent snow pillow value. During the spring melt the NRCS/CRREL sensor melt recession lagged that of the snow pillow by about a week. Physical examination of the Hogg Pass site indicated that the CRREL sensor results were consistent with snow-on-the-ground observations. The snow pillow experienced accelerated melt because it was installed on a mound above the surrounding terrain and absorbed solar radiation through the snow. SWE pressure sensor accuracy is significantly improved by using an active center panel surrounded by buffer panels, monitoring several individual load cell to detect and correct snow-bridging errors, and reducing the radiation and topographic profile of the sensor.
Science data, tools and services available from NSIDC
NASA Astrophysics Data System (ADS)
Gergely, K.; Sheffield, E.
2011-12-01
While the name may be narrow in focus, the National Snow and Ice Data Center archives, distributes and supports data from many scientific disciplines. It is true that the majority of our holdings are on snow, sea ice, glaciers, ice sheets, and other cryospheric parameters. These are complimented by holdings on soil moisture, ocean data, global altimeter data, and human observations of environmental change, among other data. We facilitate access and use of our data through various tools, subsetters, and visualizing interfaces, and complete the package with a staff of hands-on user support specialists, available by email or phone to assist users with questions about our data and services. Based on user questions about general cryospheric physical processes over the past 35 years, we created a suite of online educational information on our areas of research, including snow, glaciers, sea ice, frozen ground, and others material of interest to the citizen scientist. Our excellent customer service has been noted on a widely distributed annual user survey.
NASA Astrophysics Data System (ADS)
Wu, Xiaoling; Xiang, Xiaohua; Qiu, Chao; Li, Li
2018-06-01
In cold regions, precipitation, air temperature and snow cover significantly influence soil water, heat transfer, the freezing-thawing processes of the active soil layer, and runoff generation. Hydrological regimes of the world's major rivers in cold regions have changed remarkably since the 1960s, but the mechanisms underlying the changes have not yet been fully understood. Using the basic physical processes for water and heat balances and transfers in snow covered soil, a water-heat coupling model for snow cover and its underlying soil layers was established. We found that freezing-thawing processes can affect the thickness of the active layer, storage capacity for liquid water, and subsequent surface runoffs. Based on calculations of thawing-freezing processes, we investigated hydrological processes at Qumalai. The results show that the water-heat coupling model can be used in this region to provide an understanding of the local movement of hydrological regimes.
NASA Technical Reports Server (NTRS)
Pan, Jinmei; Durand, Michael; Sandells, Melody; Lemmetyinen, Juha; Kim, Edward J.; Pulliainen, Jouni; Kontu, Anna; Derksen, Chris
2015-01-01
Microwave emission models are a critical component of snow water equivalent retrieval algorithms applied to passive microwave measurements. Several such emission models exist, but their differences need to be systematically compared. This paper compares the basic theories of two models: the multiple-layer HUT (Helsinki University of Technology) model and MEMLS (Microwave Emission Model of Layered Snowpacks). By comparing the mathematical formulation side-by-side, three major differences were identified: (1) by assuming the scattered intensity is mostly (96) in the forward direction, the HUT model simplifies the radiative transfer (RT) equation into 1-flux; whereas MEMLS uses a 2-flux theory; (2) the HUT scattering coefficient is much larger than MEMLS; (3 ) MEMLS considers the trapped radiation inside snow due to internal reflection by a 6-flux model, which is not included in HUT. Simulation experiments indicate that, the large scattering coefficient of the HUT model compensates for its large forward scattering ratio to some extent, but the effects of 1-flux simplification and the trapped radiation still result in different T(sub B) simulations between the HUT model and MEMLS. The models were compared with observations of natural snow cover at Sodankyl, Finland; Churchill, Canada; and Colorado, USA. No optimization of the snow grain size was performed. It shows that HUT model tends to under estimate T(sub B) for deep snow. MEMLS with the physically-based improved Born approximation performed best among the models, with a bias of -1.4 K, and an RMSE of 11.0 K.
NASA Astrophysics Data System (ADS)
Xie, Zhipeng; Hu, Zeyong; Xie, Zhenghui; Jia, Binghao; Sun, Genhou; Du, Yizhen; Song, Haiqing
2018-02-01
This paper presents the impact of two snow cover schemes (NY07 and SL12) in the Community Land Model version 4.5 (CLM4.5) on the snow distribution and surface energy budget over the Tibetan Plateau. The simulated snow cover fraction (SCF), snow depth, and snow cover days were evaluated against in situ snow depth observations and a satellite-based snow cover product and snow depth dataset. The results show that the SL12 scheme, which considers snow accumulation and snowmelt processes separately, has a higher overall accuracy (81.8%) than the NY07 (75.8%). The newer scheme performs better in the prediction of overall accuracy compared with the NY07; however, SL12 yields a 15.1% underestimation rate while NY07 overestimated the SCF with a 15.2% overestimation rate. Both two schemes capture the distribution of the maximum snow depth well but show large positive biases in the average value through all periods (3.37, 3.15, and 1.48 cm for NY07; 3.91, 3.52, and 1.17 cm for SL12) and overestimate snow cover days compared with the satellite-based product and in situ observations. Higher altitudes show larger root-mean-square errors (RMSEs) in the simulations of snow depth and snow cover days during the snow-free period. Moreover, the surface energy flux estimations from the SL12 scheme are generally superior to the simulation from NY07 when evaluated against ground-based observations, in particular for net radiation and sensible heat flux. This study has great implications for further improvement of the subgrid-scale snow variations over the Tibetan Plateau.
New estimates of changes in snow cover over Russia in recent decades
NASA Astrophysics Data System (ADS)
Bulygina, O.; Korshunova, N.; Razuvaev, V.; Groisman, P. Y.
2017-12-01
Snow covers plays critical roles in the energy and water balance of the Earth through its unique physical properties (high reflectivity and low thermal conductivity) and water storage. The main objective of this research is to monitoring snow cover change in Russia. The estimates of changes of major snow characteristics (snow cover duration, maximum winter snow depth, snow water equivalent) are described. Apart from the description of long-term averages of snow characteristics, the estimates of their change that are averaged over quasi-homogeneous climatic regions are derived and regional differences in the change of snow characteristics are studied. We used in our study daily snow observations for 820 Russian meteorological station from 1966 to 2017. All of these meteorological stations are of unprotected type. The water equivalent is analyzed from snow course survey data at 958 meteorological stations from 1966 to 2017. The time series are prepared by RIHMI-WDC. Regional analysis of snow cover data was carried out using quasi-homogeneous climatic regions. The area-averaging technique using station values converted to anomalies with respect to a common reference period (in this study, 1981-2010). Anomalies were arithmetically averaged first within 1°N x 2°E grid cells and thereafter by a weighted average value derived over the quasi-homogeneous climatic regions. This approach provides a more uniform spatial field for averaging. By using a denser network of meteorological stations, bringing into consideration snow course data and, we managed to specify changes in all observed major snow characteristics and to obtain estimates generalized for quasi-homogeneous climatic regions. The detected changes in the dates of the establishment and disappearance of the snow cover.
Evaluation of distributed hydrologic impacts of temperature-index and energy-based snow models
USDA-ARS?s Scientific Manuscript database
Proper characterizations of snow melt and accumulation processes in the snow-dominated mountain environment are needed to understand and predict spatiotemporal distribution of water cycle components. Two commonly used strategies in modeling of snow accumulation and melt are the full energy based and...
NASA Astrophysics Data System (ADS)
Martynova, Yuliya
2015-04-01
There are different studies of the influence of autumn snow cover anomalies on atmospheric dynamics in the following winter (e.g. Allen R.J. and Zender C.S., 2011; Martynova Yu.V. and Krupchatnikov V.N., 2010). The mechanism of this effect is complex and largely affects stratospheric processes (Cohen J. et al., 2007). The snow cover rapidly increases exceeding normal values. Emerged diabatic cooling results in pressure increase over and temperature decrease under the normal value. Thus, in troposphere upward energy flux increases, and then it is absorbed in stratosphere. Strong convergence of wave activity flux causes geopotential heights increase, polar vortex slowdown and stratospheric temperature increase. Emerged geopotential and wind anomalies extend from stratosphere to troposphere up to surface. As a result, strong negative AO mode appears near the surface as surface air temperature increase. Siberia plays important role in this mechanism. Firstly, the most extensive snow cover is formed there. Secondly, according to NOAA satellite observations this cover is generally formed in October (Gong G. Et al., 2003). As a result, Siberia is very interesting for investigations of the autumn snow cover anomalies influence on the atmospheric dynamics in the following winter. This study is devoted to detection and estimation of described mechanism in INMCM4.0 and INMCM5.0 data. INMCM5.0 model represents further development of INMCM4.0 model (Volodin E.M. et al., 2010; Volodin E.M., 2014). They are different both from physical (various physical processes) and numerical (spatial resolution) points of view, thus giving different results representing various physical processes. An analysis of some parameters of atmospheric dynamics shows that top of atmosphere and vertical resolution set in INMCM models play important role in reproduction of influence of the Siberian autumn snow cover anomalies on the Northern Hemisphere atmospheric dynamics in the following winter. Acknowledgements Author acknowledges Dr. Volodin E.M. for providing INMCM data and valued advices. This work is partially supported by SB RAS project VIII.80.2.1, RFBR grant 13-05-12034, 13-05-00480, 14-05-00502 and grant of the President of the Russian Federation. References Allen R.J. and Zender C.S. Forcing of the Arctic Oscillation by Eurasian snow cover. // J. Climate. 2011. Volume 24. P. 6528-6539. Cohen J., Barlow M., Kushner P.J., Saito K. Stratosphere-troposphere coupling and links with Eurasian land-surface variability. // J. Climate. 2007. Volume 20. P. 5335-5343. Gong G., Entekhabi D., Cohen J. Modeled Northern Hemisphere winter climate response to realistic Siberian snow anomalies. // J. Climate, 2003. -- V. 16. -- P. 3917-3931. Martynova Yu.V. and Krupchatnikov V.N. A study of the sensitivity of the surface temperature in Eurasia in winter to snow-cover anomalies: The role of the stratosphere // Izvestiya, Atmospheric and Oceanic Physics. 2010. V 46, Issue 6, pp 757-769. Volodin E.M., Dianskii N.A., Gusev A.V. Simulating Present-Day Climate with the INMCM4.0 Coupled Model of the Atmospheric and Oceanic General Circulations // Izvestiya, Atmospheric and Oceanic Physics. 2010. V 46, No. 4, pp 414-431. Volodin E.M. Possible reasons for low climate-model sensitivity to increased carbon dioxide concentrations // Izvestiya, Atmospheric and Oceanic Physics. 2014. V 50, Issue 4 , pp 350-355.
The Art and Science of Snow Microbiology: Data Paintings of the Finnish Arctic
NASA Astrophysics Data System (ADS)
Reasor, K.; Lipson, D.
2017-12-01
A challenge in science-art collaborations is to create artwork that accurately represents scientific results while standing as an independent art object. Art associated with science may merely be illustrative, serving to decorate a scientific study, or conversely, science-art may only superficially derive from data without addressing its broader scientific meaning. A fully integrated work of science-art requires copious communication between the scientist and artist. Here we present the results of a collaboration between a microbial ecologist and a painter, to study and depict the nature of microbial communities in the snowpack of the Finnish Arctic around Lake Kilpisjärvi. Snow profiles were studied along an altitudinal gradient that spanned the lake, a mountain birch forest, the transitional forest near tree line, and the alpine above tree line on the fell, Saana. Snow from the top, middle and bottom of each profile was characterized physically, chemically and microbiologically. The snowpack provided an insulating layer such that temperatures close to 0°C were found at the base of the snowpack. Windblown areas outside the protective influence of the forest (lake, alpine) had thinner, denser snowpacks. Bacterial cell counts (performed by flow cytometry) were highest in the protected area at the base of the snowpack, lowest in the middle and intermediate at the snow surface. Sequencing of the 16S rRNA gene showed a diverse assemblage of bacteria on the surface that resembled typical soil species, while the base harbored a community dominated by Gammaproteobacteria. The artist chose to depict the results using four pairs of paintings, corresponding to the four elevations. The pairs consist of a landscape oil painting of the site and a "data painting," in which a simplified version of the landscape is shown in grayscale and snow characteristics are overlaid in color. Snow density is shown using value (the lightness or darkness of a color) and temperature is coded in hue (warm to cold colors). Bacterial populations are shown as bright points, with density, color/shape and size indicative of population size, diversity and metabolic activity. The result is a set of paintings that capture the sense of the landscape while also revealing the hidden world where bacterial communities thrive under an insulative blanket of snow.
Transformations of snow chemistry in the boreal forest: Accumulation and volatilization
Pomeroy, J.W.; Davies, T.D.; Jones, H.G.; Marsh, P.; Peters, N.E.; Tranter, M.
1999-01-01
This paper examines the processes and dynamics of ecologically-important inorganic chemical (primarily NO3-N) accumulation and loss in boreal forest snow during the cold winter period at a northern and southern location in the boreal forest of western Canada. Field observations from Inuvik, Northwest Territories and Waskesiu, Saskatchewan, Canada were used to link chemical transformations and physical processes in boreal forest snow. Data on the disposition and overwinter transformation of snow water equivalent, NO3-, SO42- and other major ions were examined. No evidence of enhanced dry deposition of chemical species to intercepted snow was found at either site except where high atmospheric aerosol concentrations prevailed. At Inuvik, concentrations of SO42- and Cl- were five to six times higher in intercepted snow than in surface snow away from the trees. SO4-S and Cl loads at Inuvik were correspondingly enhanced three-fold within the nearest 0.5 m to individual tree stems. Measurements of snow affected by canopy interception without rapid sublimation provided no evidence of ion volatilization from intercepted snow. Where intercepted snow sublimation rates were significant, ion loads in sub-canopy snow suggested that NO3- volatized with an efficiency of about 62% per snow mass sublimated. Extrapolating this measurement from Waskesiu to sublimation losses observed in other southern boreal environments suggests that 19-25% of snow inputs of NO3- can be lost during intercepted snow sublimation. The amount of N lost during sublimation may be large in high-snowfall, high N load southern boreal forests (Quebec) where 0.42 kg NO3-N ha-1 is estimated as a possible seasonal NO3- volatilization. The sensitivity of the N fluxes to climate and forest canopy variation and implications of the winter N losses for N budgets in the boreal forest are discussed.This paper examines the processes and dynamics of ecologically-important inorganic chemical (primarily NO3-N) accumulation and loss in boreal forest snow during the cold winter period at a northern and southern location in the boreal forest of western Canada. Field observations from Inuvik. Northwest Territories and Waskesiu, Saskatchewan, Canada were used to link chemical transformations and physical processes in boreal forest snow. Data on the disposition and overwinter transformation of snow water equivalent, NO3-, SO42- and other major ions were examined. No evidence of enhanced dry deposition of chemical species to intercepted snow was found at either site except where high atmospheric aerosol concentrations prevailed. At Inuvik, concentrations of SO42- and Cl- were five to six times higher in intercepted snow than in surface snow away from the trees. SO4-S and Cl loads at Inuvik were correspondingly enhanced three-fold within the nearest 0.5 m to individual tree stems. Measurements of snow affected by canopy interception without rapid sublimation provided no evidence of ion volatilization from intercepted snow. Where intercepted snow sublimation rates were significant, ion loads in sub-canopy snow suggested that NO3- volatized with an efficiency of about 62% per snow mass sublimated. Extrapolating this measurement from Waskesiu to sublimation losses observed in other southern boreal environments suggests that 19-25% of snow inputs of NO3- can be lost during intercepted snow sublimation. The amount of N lost during sublimation may be large in high-snowfall, high N load southern boreal forests (Quebec) where 0.42 kg NO3-N ha-1 is estimated as a possible seasonal NO3- volatilization. The sensitivity of the N fluxes to climate and forest canopy variation and implications of the winter N losses for N budgets in the boreal forest are discussed.
Guo, J.; Tsang, L.; Josberger, E.G.; Wood, A.W.; Hwang, J.-N.; Lettenmaier, D.P.
2003-01-01
This paper presents an algorithm that estimates the spatial distribution and temporal evolution of snow water equivalent and snow depth based on passive remote sensing measurements. It combines the inversion of passive microwave remote sensing measurements via dense media radiative transfer modeling results with snow accumulation and melt model predictions to yield improved estimates of snow depth and snow water equivalent, at a pixel resolution of 5 arc-min. In the inversion, snow grain size evolution is constrained based on pattern matching by using the local snow temperature history. This algorithm is applied to produce spatial snow maps of Upper Rio Grande River basin in Colorado. The simulation results are compared with that of the snow accumulation and melt model and a linear regression method. The quantitative comparison with the ground truth measurements from four Snowpack Telemetry (SNOTEL) sites in the basin shows that this algorithm is able to improve the estimation of snow parameters.
NASA Technical Reports Server (NTRS)
Steffen, K.; Abdalati, W.; Stroeve, J.; Nolin, A.; Box, J.; Key, J.; Zwally, J.; Stober, M.; Kreuter, J.
1996-01-01
The proposed research involves the application of multispectral satellite data in combination with ground truth measurements to monitor surface properties of the Greenland Ice Sheet which are essential for describing the energy and mass of the ice sheet. Several key components of the energy balance are parameterized using satellite data and in situ measurements. The analysis has been done for a 6 to 17 year time period in order to analyze the seasonal and interannual variations of the surface processes and the climatology. Our goal was to investigate to what accuracy and over what geographic areas large scale snow properties and radiative fluxes can be derived based upon a combination of available remote sensing and meteorological data sets. For the understanding of the surface processes a field program was designed to collect information on spectral albedo, specular reflectance, soot content, grain size and the physical properties of different snow types. Further, the radiative and turbulent fluxes at the ice/snow surface were monitored for the parameterization and interpretation of the satellite data. Highlights include AVHRR time series and surface based radiation measurements, passive microwave time series, and geodetic results from the ETH/CU camp.
NASA Astrophysics Data System (ADS)
Ekici, A.; Chadburn, S.; Chaudhary, N.; Hajdu, L. H.; Marmy, A.; Peng, S.; Boike, J.; Burke, E.; Friend, A. D.; Hauck, C.; Krinner, G.; Langer, M.; Miller, P. A.; Beer, C.
2015-07-01
Modeling soil thermal dynamics at high latitudes and altitudes requires representations of physical processes such as snow insulation, soil freezing and thawing and subsurface conditions like soil water/ice content and soil texture. We have compared six different land models: JSBACH, ORCHIDEE, JULES, COUP, HYBRID8 and LPJ-GUESS, at four different sites with distinct cold region landscape types, to identify the importance of physical processes in capturing observed temperature dynamics in soils. The sites include alpine, high Arctic, wet polygonal tundra and non-permafrost Arctic, thus showing how a range of models can represent distinct soil temperature regimes. For all sites, snow insulation is of major importance for estimating topsoil conditions. However, soil physics is essential for the subsoil temperature dynamics and thus the active layer thicknesses. This analysis shows that land models need more realistic surface processes, such as detailed snow dynamics and moss cover with changing thickness and wetness, along with better representations of subsoil thermal dynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curceanu, C.; Bragadireanu, M.; Sirghi, D.
The Pauli Exclusion Principle (PEP) is one of the basic principles of modern physics and, even if there are no compelling reasons to doubt its validity, it is still debated today because an intuitive, elementary explanation is still missing, and because of its unique stand among the basic symmetries of physics. We present an experimental test of the validity of the Pauli Exclusion Principle for electrons based on a straightforward idea put forward a few years ago by Ramberg and Snow (E. Ramberg and G. A. Snow 1990 Phys. Lett. B 238 438). We performed a very accurate search ofmore » X-rays from the Pauli-forbidden atomic transitions of electrons in the already filled 1S shells of copper atoms. Although the experiment has a very simple structure, it poses deep conceptual and interpretational problems. Here we describe the experimental method and recent experimental results interpreted as an upper limit for the probability to violate the Pauli Exclusion Principle. We also present future plans to upgrade the experimental apparatus.« less
NASA Astrophysics Data System (ADS)
Link, T. E.; Kumar, M.; Pomeroy, J. W.; Seyednasrollah, B.; Ellis, C. R.; Lawler, R.; Essery, R.
2012-12-01
In mountainous, forested environments, vegetation exerts a strong control on snowcover dynamics that affect ecohydrological processes, streamflow regimes, and riparian health. Snowcover deposition and ablation patterns in forests are controlled by a complex combination of canopy interception processes coupled with radiative and turbulent heat flux patterns related to topographic and canopy cover variations. In seasonal snow environments, snowcover ablation dynamics in forests are dominated by net radiation. Recent research indicates that in small canopy gaps a net radiation minima relative to both open and forested environments can occur, but depends strongly on solar angle, gap size, slope, canopy height and stem density. The optimal gap size to minimize radiation to snow was estimated to have a diameter between 1 and 2 times the surrounding vegetation height. Physically-based snowmelt simulations indicate that gaps may increase SWE and desynchronize snowmelt by approximately 3 weeks between north and south facing slopes, relative to undisturbed forests. On east and west facing slopes, small gaps cause melt to be slightly delayed relative to intact forests, and have a minimal effect on melt synchronicity between slopes. Recent research focused on canopy thinning also indicates that a net radiation minima occurs in canopies of intermediate densities. Physically-based radiative transfer simulations using a discrete tree-based model indicate that in mid-latitude level forests, the annually-integrated radiative minima occurs at a tree spacing of 2.65 relative to the canopy height. The radiative minima was found to occur in denser forests on south-facing slopes and sparser forests on north-facing slopes. The radiative minimums in thinned forests are controlled by solar angle, crown geometry and density, tree spacing, slope, and aspect. These results indicate that both gap and homogeneous forest thinning may be used to reduce snowmelt rates or alter melt synchronicity, but the exact configuration will be highly spatially variable. Development of management strategies to conserve water on the landscape to enhance forest and riparian health in a changing climate must also rigorously evaluate the effects of canopy thinning and specific hydrometeorological conditions on net radiation, turbulent fluxes, and snow interception processes.
NASA Astrophysics Data System (ADS)
Painter, T.; Mattmann, C. A.; Brodzik, M.; Bryant, A. C.; Goodale, C. E.; Hart, A. F.; Ramirez, P.; Rittger, K. E.; Seidel, F. C.; Zimdars, P. A.
2012-12-01
The response of the cryosphere to climate forcings largely determines Earth's climate sensitivity. However, our understanding of the strength of the simulated snow albedo feedback varies by a factor of three in the GCMs used in the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, mainly caused by uncertainties in snow extent and the albedo of snow-covered areas from imprecise remote sensing retrievals. Additionally, the Western US and other regions of the globe depend predominantly on snowmelt for their water supply to agriculture, industry and cities, hydroelectric power, and recreation, against rising demand from increasing population. In the mountains of the Upper Colorado River Basin, dust radiative forcing in snow shortens snow cover duration by 3-7 weeks. Extended to the entire upper basin, the 5-fold increase in dust load since the late-1800s results in a 3-week earlier peak runoff and a 5% annual loss of total runoff. The remotely sensed dynamics of snow cover duration and melt however have not been factored into hydrological modeling, operational forecasting, and policymaking. To address these deficiencies in our understanding of snow properties, we have developed and validated a suite of MODIS snow products that provide accurate fractional snow covered area and radiative forcing of dust and carbonaceous aerosols in snow. The MODIS Snow Covered Area and Grain size (MODSCAG) and MODIS Dust Radiative Forcing in Snow (MODDRFS) algorithms, developed and transferred from imaging spectroscopy techniques, leverage the complete MODIS surface reflectance spectrum. The two most critical properties for understanding snowmelt runoff and timing are the spatial and temporal distributions of snow water equivalent (SWE) and snow albedo. We have created the Airborne Snow Observatory (ASO), an imaging spectrometer and scanning LiDAR system, to quantify SWE and snow albedo, generate unprecedented knowledge of snow properties, and provide complete, robust inputs to water management models and systems of the future. In the push to better understand the physical and ecological processes of snowmelt and how they influence regional to global hydrologic and climatic cycles, these technologies and retrievals provide markedly improved detail. We have implemented a science computing facility anchored upon the open source Apache OODT data processing framework. Apache OODT provides adaptable, rapid, and effective workflow technologies that we leverage to execute 10s of thousands of MOD-DRFS and MODSCAG jobs in the Western US, Alaska, and High Asia, critical regions where snowmelt and runoff must be more accurately and precisely identified. Apache OODT also provides us data dissemination capabilities built upon the popular, open source WebDAV protocol that allow our system to disseminate over 20 TB of MOD-DRFS and MODSCAG to the decision making community. Our latest endeavor involves building out Apache OODT to support Geospatial exploration of our data, including providing a Leaflet.js based Map, Geoserver backed protocols, and seamless integration with our Apache OODT system. This framework provides the foundation for the ASO data system.
NASA Astrophysics Data System (ADS)
Gu, Lingjia; Ren, Ruizhi; Zhao, Kai; Li, Xiaofeng
2014-01-01
The precision of snow parameter retrieval is unsatisfactory for current practical demands. The primary reason is because of the problem of mixed pixels that are caused by low spatial resolution of satellite passive microwave data. A snow passive microwave unmixing method is proposed in this paper, based on land cover type data and the antenna gain function of passive microwaves. The land cover type of Northeast China is partitioned into grass, farmland, bare soil, forest, and water body types. The component brightness temperatures (CBT), namely unmixed data, with 1 km data resolution are obtained using the proposed unmixing method. The snow depth determined by the CBT and three snow depth retrieval algorithms are validated through field measurements taken in forest and farmland areas of Northeast China in January 2012 and 2013. The results show that the overall of the retrieval precision of the snow depth is improved by 17% in farmland areas and 10% in forest areas when using the CBT in comparison with the mixed pixels. The snow cover results based on the CBT are compared with existing MODIS snow cover products. The results demonstrate that more snow cover information can be obtained with up to 86% accuracy.
Comparison of the effects of using local and central snow deposits: a case study in Luleå.
Reinosdotter, K; Viklander, M; Malmqvist, P A
2003-01-01
The aim of the study was to determine if an increased use of local land-based snow deposits would be more sustainable than the use of a central snow deposit. The study focused on transport related emissions, costs for transporting the snow, technical attendance, local effects, public acceptance, land use, effects on the recipient environmental control and potential for accidents. General information was obtained from an inventory regarding snow handling that was made in 14, geographically spread, Swedish municipalities during 2001. The comparison of costs for transporting snow and transport-related emissions was based on information gathered from the municipality of Luleå. The study showed that using local land-based snow deposits would decrease traffic-related emissions such as CO2, CO and NO(x) by 40% annually and would decrease the annual cost for transporting snow by nearly 80%. On the other hand local snow deposits may lead to an increased risk of accidents and to negative local effects such as delayed growing season, flooding and drainage problems. Available land for local snow deposits in the cities is hard to find, and is usually expensive. Therefore a combination of local and central snow deposits is likely to be the most realistic option.
The Electrical Self-Potential Method as a Non-Intrusive Snow-Hydrological Sensor
NASA Astrophysics Data System (ADS)
Kulessa, B.; Thompson, S. S.; Luethi, M. P.; Essery, R.
2015-12-01
Building on growing momentum in the application of geophysical techniques to snow problems and, specifically, on new theory and an electrical geophysical snow hydrological model published recently; we demonstrate for the first time that the electrical self-potential geophysical technique can sense in-situ bulk meltwater fluxes. This has broad and immediate implications for snow measurement practice, modelling and operational snow forecasting. Our ability to measure, quantify and assimilate hydrological properties and processes of snow in operational models is disproportionally poor compared to the significance of seasonal snowmelt as a global water resource and major risk factor in flood and avalanche forecasting. Encouraged by recent theoretical, modelling and laboratory work, we show here that the diurnal evolution of aerially-distributed self-potential magnitudes closely track those of bulk meltwater fluxes in melting in-situ snowpacks at Rhone and Jungfraujoch glaciers, Switzerland. Numerical modelling infers temporally-evolving liquid water contents in the snowpacks on successive days in close agreement with snow-pit measurements. Muting previous concerns, the governing physical and chemical properties of snow and meltwater became temporally invariant for modelling purposes. Because measurement procedure is straightforward and readily automated for continuous monitoring over significant spatial scales, we conclude that the self-potential geophysical method is a highly-promising non-intrusive snow-hydrological sensor for measurement practice, modelling and operational snow forecasting.
Unusual radar echoes from the Greenland ice sheet
NASA Technical Reports Server (NTRS)
Rignot, E. J.; Vanzyl, J. J.; Ostro, S. J.; Jezek, K. C.
1993-01-01
In June 1991, the NASA/Jet Propulsion Laboratory airborne synthetic-aperture radar (AIRSAR) instrument collected the first calibrated data set of multifrequency, polarimetric, radar observations of the Greenland ice sheet. At the time of the AIRSAR overflight, ground teams recorded the snow and firn (old snow) stratigraphy, grain size, density, and temperature at ice camps in three of the four snow zones identified by glaciologists to characterize four different degrees of summer melting of the Greenland ice sheet. The four snow zones are: (1) the dry-snow zone, at high elevation, where melting rarely occurs; (2) the percolation zone, where summer melting generates water that percolates down through the cold, porous, dry snow and then refreezes in place to form massive layers and pipes of solid ice; (3) the soaked-snow zone where melting saturates the snow with liquid water and forms standing lakes; and (4) the ablation zone, at the lowest elevations, where melting is vigorous enough to remove the seasonal snow cover and ablate the glacier ice. There is interest in mapping the spatial extent and temporal variability of these different snow zones repeatedly by using remote sensing techniques. The objectives of the 1991 experiment were to study changes in radar scattering properties across the different melting zones of the Greenland ice sheet, and relate the radar properties of the ice sheet to the snow and firn physical properties via relevant scattering mechanisms. Here, we present an analysis of the unusual radar echoes measured from the percolation zone.
DIRECT IMAGING OF THE WATER SNOW LINE AT THE TIME OF PLANET FORMATION USING TWO ALMA CONTINUUM BANDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banzatti, A.; Pontoppidan, K. M.; Pinilla, P.
2015-12-10
Molecular snow lines in protoplanetary disks have been studied theoretically for decades because of their importance in shaping planetary architectures and compositions. The water snow line lies in the planet formation region at ≲10 AU, and so far its location has been estimated only indirectly from spatially unresolved spectroscopy. This work presents a proof-of-concept method to directly image the water snow line in protoplanetary disks through its physical and chemical imprint on the local dust properties. We adopt a physical disk model that includes dust coagulation, fragmentation, drift, and a change in fragmentation velocities of a factor of 10 betweenmore » dry silicates and icy grains as found by laboratory work. We find that the presence of a water snow line leads to a sharp discontinuity in the radial profile of the dust emission spectral index α{sub mm} due to replenishment of small grains through fragmentation. We use the ALMA simulator to demonstrate that this effect can be observed in protoplanetary disks using spatially resolved ALMA images in two continuum bands. We explore the model dependence on the disk viscosity and find that the spectral index reveals the water snow line for a wide range of conditions, with opposite trends when the emission is optically thin rather than thick. If the disk viscosity is low (α{sub visc} < 10{sup −3}), the snow line produces a ringlike structure with a minimum at α{sub mm} ∼ 2 in the optically thick regime, possibly similar to what has been measured with ALMA in the innermost region of the HL Tau disk.« less
NASA Astrophysics Data System (ADS)
Li, Q.; Kelly, R. E. J.; Lemmetyinen, J.; Kontu, A.
2017-12-01
Spaceborne passive microwave (PM) systems are an important tool for estimating snow water equivalent (SWE) or snow depth (SD) in winter landscapes. However, because spaceborne radiometer footprints have a coarse spatial resolution, the measured upwelling brightness temperature (Tb) typically is a mixed signal propagated from multiple sources. Tree canopies can effectively attenuate microwave emission from the sub-canopy terrain beneath and can also have a strong emission signal. Therefore, these two combined observed processes decrease the sensitivity of the observed signal to SWE or SD. To evaluate the detailed behavior of the microwave emission from a forest landscape, the experiment focused on snow and vegetation radiative transfer processes was conducted at an established field site operated by the Finnish Meteorological Institute's Arctic Research Station in Sodankylä, Finland. In this experiment, downwelling Tbs from a target tree (Scots pine) was measured by an multi-frequency, dual polarization radiometer from Septermber 2016 to March 2017. A dendrometer and thermistor installed on the tree trunk at the height of 2 meters and 4 meters measured the sap flow and skin temperature of the tree. An adjacent weather station measured the air temperature. Snow cover conditions of the canopy was determined by an assessment web camera image time series. The three main findings are that first, the emissivity was positively correlated with tree skin temperatures below 0°C, but not when temperatures were at or greater than than 0°C. Furthermore, lower frequency channel observations were more sensitive to these physical temperatures than higher frequencies. Second, the Tb difference between horizontal and vertical polarizations were also negatively correlated with physical temperatures less than 0°C, but not when the physical temperatures were greater than 0°C. In addition, the Tb polarization differences of the lower frequency channels are more sensitive to temperature than for the higher frequency channels. Third, although the snow on the canopy can influence the microwave Tb response, this influence was found to be relatively small compared with other factors, suggesting that the difference of the canopy Tbs during the snow-covered and no-snow-covered periods were not statistically significant.
Problem of landfilling environments pollution by heavy metals
NASA Astrophysics Data System (ADS)
Zilenina, V. G.; Ulanova, O. V.; Begunova, L. A.
2017-10-01
The article discusses the problems of snow and soil pollution by heavy metals. The results of physical and chemical special features of the deposit environment are given. Also, the results of snow mantle research in Irkutsk are described. The problem of manganese degradation from electrochemical cells disposed in the SMW areas is being discussed.
The electrical self-potential method is a non-intrusive snow-hydrological sensor
NASA Astrophysics Data System (ADS)
Thompson, S. S.; Kulessa, B.; Essery, R. L. H.; Lüthi, M. P.
2015-08-01
Our ability to measure, quantify and assimilate hydrological properties and processes of snow in operational models is disproportionally poor compared to the significance of seasonal snowmelt as a global water resource and major risk factor in flood and avalanche forecasting. Encouraged by recent theoretical, modelling and laboratory work, we show here that the diurnal evolution of aerially-distributed self-potential magnitudes closely track those of bulk meltwater fluxes in melting in-situ snowpacks at Rhone and Jungfraujoch glaciers, Switzerland. Numerical modelling infers temporally-evolving liquid water contents in the snowpacks on successive days in close agreement with snow-pit measurements. Muting previous concerns, the governing physical and chemical properties of snow and meltwater became temporally invariant for modelling purposes. Because measurement procedure is straightforward and readily automated for continuous monitoring over significant spatial scales, we conclude that the self-potential geophysical method is a highly-promising non-intrusive snow-hydrological sensor for measurement practice, modelling and operational snow forecasting.
NASA Astrophysics Data System (ADS)
Frey, Markus
2015-04-01
The air-snow-sea ice system plays an important role in the global cycling of nitrogen, halogens, trace metals or carbon, including greenhouse gases (e.g. CO2 air-sea flux), and therefore influences also climate. Its impact on atmospheric composition is illustrated for example by dramatic ozone and mercury depletion events which occur within or close to the sea ice zone (SIZ) mostly during polar spring and are catalysed by halogens released from SIZ ice, snow or aerosol. Recent field campaigns in the high Arctic (e.g. BROMEX, OASIS) and Antarctic (Weddell sea cruises) highlight the importance of snow on sea ice as a chemical reservoir and reactor, even during polar night. However, many processes, participating chemical species and their interactions are still poorly understood and/or lack any representation in current models. Furthermore, recent lab studies provide a lot of detail on the chemical environment and processes but need to be integrated much better to improve our understanding of a rapidly changing natural environment. During a 3-day workshop held in Cambridge/UK in October 2013 more than 60 scientists from 15 countries who work on the physics, chemistry or biology of the atmosphere-snow-sea ice system discussed research status and challenges, which need to be addressed in the near future. In this presentation I will give a summary of the main research questions identified during this workshop as well as ways forward to answer them through a community-based interdisciplinary approach.
NASA Astrophysics Data System (ADS)
He, C.; Liou, K. N.; Takano, Y.; Yang, P.; Li, Q.; Chen, F.
2017-12-01
A set of parameterizations is developed for spectral single-scattering properties of clean and black carbon (BC)-contaminated snow based on geometric-optic surface-wave (GOS) computations, which explicitly resolves BC-snow internal mixing and various snow grain shapes. GOS calculations show that, compared with nonspherical grains, volume-equivalent snow spheres show up to 20% larger asymmetry factors and hence stronger forward scattering, particularly at wavelengths <1 mm. In contrast, snow grain sizes have a rather small impact on the asymmetry factor at wavelengths <1 mm, whereas size effects are important at longer wavelengths. The snow asymmetry factor is parameterized as a function of effective size, aspect ratio, and shape factor, and shows excellent agreement with GOS calculations. According to GOS calculations, the single-scattering coalbedo of pure snow is predominantly affected by grain sizes, rather than grain shapes, with higher values for larger grains. The snow single-scattering coalbedo is parameterized in terms of the effective size that combines shape and size effects, with an accuracy of >99%. Based on GOS calculations, BC-snow internal mixing enhances the snow single-scattering coalbedo at wavelengths <1 mm, but it does not alter the snow asymmetry factor. The BC-induced enhancement ratio of snow single-scattering coalbedo, independent of snow grain size and shape, is parameterized as a function of BC concentration with an accuracy of >99%. Overall, in addition to snow grain size, both BC-snow internal mixing and snow grain shape play critical roles in quantifying BC effects on snow optical properties. The present parameterizations can be conveniently applied to snow, land surface, and climate models including snowpack radiative transfer processes.
Snow micro-structure at Kongsvegen glacier, Svalbard
NASA Astrophysics Data System (ADS)
Bilgeri, F.; Karner, F.; Steinkogler, W.; Fromm, R.; Obleitner, F.; Kohler, J.
2012-04-01
Measurements of physical snow properties have been performed at several sites at Kongsvegen glacier, which is a key Arctic glacier in western Spitzbergen (79N, 13E). The data were collected at six locations along the flow line of the glacier at different elevations (161 to 741m asl.) and describe snow that was deposited during winter 2010/11. We basically consider the vertical profiles of snow temperature, density, hardness, grain size and crystal shapes derived from standard stratigraphic methods (snow pits)and measurements using advanced instruments like Snow Micropen® and NIR imagery. Some parameters were measured repeatedly and with different instruments which proves a high quality as well as long-term and spatial representativeness of the data. The general snow conditions at the end of winter are characterized by a linear increase of snow depth and water equivalent with elevation. Snow hardness also increases with elevation while density remains remarkably constant. At most sites the snow temperature, density, hardness and grain size increase from the surface towards the snow-ice interface. The surface and the bottom layers stand out by specific changes in snow signature (crystal types) and delineate the bulk of the snow pack which itself features a rather complex layering. Comparison of the high-resolution profiles measured at different elevations at the glacier suggests some principal correlations of the signatures of hardness, grain size and crystal type. Thus, some major features (e.g. particularly hard layers) can be traced along the glacier, but the high-resolution layering can not straightforwardly be related from one site to the other. This basically reflects a locally different history of the snow pack in terms of precipitation events and post-depositional snow metamorphism. The issue is investigated more quantitatively by enhanced statistical processing of the observed signatures and simulation of the history of individual layers. These studies are supported by meteorological measurements at the snow observation sites.
NASA Astrophysics Data System (ADS)
Sexstone, Graham A.; Clow, David W.; Fassnacht, Steven R.; Liston, Glen E.; Hiemstra, Christopher A.; Knowles, John F.; Penn, Colin A.
2018-02-01
Snow sublimation is an important component of the snow mass balance, but the spatial and temporal variability of this process is not well understood in mountain environments. This study combines a process-based snow model (SnowModel) with eddy covariance (EC) measurements to investigate (1) the spatio-temporal variability of simulated snow sublimation with respect to station observations, (2) the contribution of snow sublimation to the ablation of the snowpack, and (3) the sensitivity and response of snow sublimation to bark beetle-induced forest mortality and climate warming across the north-central Colorado Rocky Mountains. EC-based observations of snow sublimation compared well with simulated snow sublimation at stations dominated by surface and canopy sublimation, but blowing snow sublimation in alpine areas was not well captured by the EC instrumentation. Water balance calculations provided an important validation of simulated sublimation at the watershed scale. Simulated snow sublimation across the study area was equivalent to 28% of winter precipitation on average, and the highest relative snow sublimation fluxes occurred during the lowest snow years. Snow sublimation from forested areas accounted for the majority of sublimation fluxes, highlighting the importance of canopy and sub-canopy surface sublimation in this region. Simulations incorporating the effects of tree mortality due to bark-beetle disturbance resulted in a 4% reduction in snow sublimation from forested areas. Snow sublimation rates corresponding to climate warming simulations remained unchanged or slightly increased, but total sublimation losses decreased by up to 6% because of a reduction in snow covered area and duration.
Sexstone, Graham A.; Clow, David W.; Fassnacht, Steven R.; Liston, Glen E.; Hiemstra, Christopher A.; Knowles, John F.; Penn, Colin A.
2018-01-01
Snow sublimation is an important component of the snow mass balance, but the spatial and temporal variability of this process is not well understood in mountain environments. This study combines a process‐based snow model (SnowModel) with eddy covariance (EC) measurements to investigate (1) the spatio‐temporal variability of simulated snow sublimation with respect to station observations, (2) the contribution of snow sublimation to the ablation of the snowpack, and (3) the sensitivity and response of snow sublimation to bark beetle‐induced forest mortality and climate warming across the north‐central Colorado Rocky Mountains. EC‐based observations of snow sublimation compared well with simulated snow sublimation at stations dominated by surface and canopy sublimation, but blowing snow sublimation in alpine areas was not well captured by the EC instrumentation. Water balance calculations provided an important validation of simulated sublimation at the watershed scale. Simulated snow sublimation across the study area was equivalent to 28% of winter precipitation on average, and the highest relative snow sublimation fluxes occurred during the lowest snow years. Snow sublimation from forested areas accounted for the majority of sublimation fluxes, highlighting the importance of canopy and sub‐canopy surface sublimation in this region. Simulations incorporating the effects of tree mortality due to bark‐beetle disturbance resulted in a 4% reduction in snow sublimation from forested areas. Snow sublimation rates corresponding to climate warming simulations remained unchanged or slightly increased, but total sublimation losses decreased by up to 6% because of a reduction in snow covered area and duration.
Wide-area mapping of snow water equivalent by Sentinel-1&2 data
NASA Astrophysics Data System (ADS)
Conde, Vasco; Nico, Giovanni; Catalao, Joao; Kontu, Anna; Gritsevich, Maria
2017-04-01
The mapping of snow physical properties over large mountain areas of remote areas is an important topic in both climatological studies and hydrological models where the effects of snow melting are modeled and used to forecast extreme flood events. Usually, these models are run using in-situ measurements of snow which are expensive and statistically not representative of the spatial distribution of snow properties due to slope orientation of terrain, local terrain morphology and height as well as vegetation cover. In this work we investigate the use of data acquired by Sentinel-1 and 2 missions using a C-band SAR and multispectral sensor, respectively. The Sentinel-1 SAR data are processed to estimate the Snow Water Equivalent (SWE) using both the radar amplitude and the output of the SAR interferometry processing. Both approaches need in-situ data to process SAR data and calibrate SWE estimates. The use of SAR amplitude to estimate the SWE is well established and the basic idea is that the radar signal backscattered by snow is related to the SWE so, after modeling the relationship between these two quantities at the site of in-situ measurements this relationship can be used to map the SWE at all site where the SAR amplitude information is available. The physical principle used by SAR interferometry is that of phase delay due to propagation in a non-dispersive medium. This implies that the snow is supposed to be dry in order to allow the propagation of the SAR signal. Sentinel-2 images have been used to get land-use maps and identify areas covered by vegetation. Finland has been chosen as a study region with in-situ measurements acquired thanks to the availability of rich database of in-situ measurements of SWE. Sentinel data used in this work have been acquired starting from November 2015. Publication supported by FCT- project UID/GEO/50019/2013 - Instituto Dom Luiz.
Assessing spatial and temporal snowpack evolution and melt with time-lapse photography
NASA Astrophysics Data System (ADS)
Bush, C. E.; Ewers, B. E.; Beverly, D.; Speckman, H. N.; Hyde, K.; Ohara, N.
2015-12-01
Snowpack supplies and stores water for many ecosystems of the greater Rocky Mountain region. In Wyoming the snowpack supplies water to 18 states east and west of the Continental Divide. The spatial variability in physical and biological processes creates a heterogeneous pattern of snow evolution. Understanding these processes within individual plots and throughout the entire watershed increases the predictive power of snow distribution, melt rates and contribution to streamflow. However, on site sampling of snow can be an expensive and arduous process. The objective of this experiment was to quantify spatial and temporal patterns of snowpack evolution and melt rates while minimizing perturbations to snowpack through the use of time-lapse photography via trail cameras. Field cameras were assessed as a method to quantify snow depths throughout the 120 ha No Name watershed at approximately 3000 m elevation in central Wyoming. RGB trail cameras were installed at three systematically chosen sites within the watershed to correlate physical and biological drivers of snow distribution. Five stakes were placed in each site in heterogeneous spots that remained in the frame of the camera. Stakes were divided into five centimeter increments, alternating black and white bars, with red bars denoting each half meter. Images were then taken at two-hour intervals over a period of three-months and analyzed with the ImageJ program. Snowpack distributions, as well as melt rates, were variable at both the plot and watershed scales. Meteorological and physical drivers, primarily topography and radiation, accounted for the greatest variability when comparing among plot across the watershed; however, LAI and soil and air temperature were the most significant drivers within plots. Snow-melt rate increased as soils and course woody debris became exposed increasing ground and soil temperature. These data will improve process model predictions of streamflow from the watershed.
Surface Snow Density of East Antarctica Derived from In-Situ Observations
NASA Astrophysics Data System (ADS)
Tian, Y.; Zhang, S.; Du, W.; Chen, J.; Xie, H.; Tong, X.; Li, R.
2018-04-01
Models based on physical principles or semi-empirical parameterizations have used to compute the firn density, which is essential for the study of surface processes in the Antarctic ice sheet. However, parameterization of surface snow density is often challenged by the description of detailed local characterization. In this study we propose to generate a surface density map for East Antarctica from all the filed observations that are available. Considering that the observations are non-uniformly distributed around East Antarctica, obtained by different methods, and temporally inhomogeneous, the field observations are used to establish an initial density map with a grid size of 30 × 30 km2 in which the observations are averaged at a temporal scale of five years. We then construct an observation matrix with its columns as the map grids and rows as the temporal scale. If a site has an unknown density value for a period, we will set it to 0 in the matrix. In order to construct the main spatial and temple information of surface snow density matrix we adopt Empirical Orthogonal Function (EOF) method to decompose the observation matrix and only take first several lower-order modes, because these modes already contain most information of the observation matrix. However, there are a lot of zeros in the matrix and we solve it by using matrix completion algorithm, and then we derive the time series of surface snow density at each observation site. Finally, we can obtain the surface snow density by multiplying the modes interpolated by kriging with the corresponding amplitude of the modes. Comparative analysis have done between our surface snow density map and model results. The above details will be introduced in the paper.
Spatio-temporal Variability of Stratified Snowpack Cold Content Observed in the Rocky Mountains
NASA Astrophysics Data System (ADS)
Schmidt, J. S.; Sexstone, G. A.; Serreze, M. C.
2017-12-01
Snowpack cold content (CCsnow) is the energy required to bring a snowpack to an isothermal temperature of 0.0°C. The spatio-temporal variability of CCsnow is complex as it is a measure that integrates the response of a snowpack to each component of the snow-cover energy balance. Snow and ice at high elevation is climate sensitive water storage for the Western U.S. Therefore, an improved understanding of the spatio-temporal variability of CCsnow may provide insight into snowpack dynamics and sensitivity to climate change. In this study, stratified snowpit observations of snow water equivalent (SWE) and snow temperature (Tsnow) from the USGS Rocky Mountain Snowpack network (USGS RMS) were used to evaluate vertical CCsnow profiles over a 16-year period in Montana, Idaho, Wyoming, Colorado and New Mexico. Since 1993, USGS RMS has collected snow chemistry, snow temperature, and SWE data throughout the Rocky Mountain region, making it well positioned for Anthropocene cryosphere benchmarking and climate change interpretation. Spatial grouping of locations based on similar CCsnow characteristics was evaluated and trend analyses were performed. Additionally, we evaluated the regional relation of CCsnow to snowmelt timing. CCsnow was more precisely calculated and more representative using vertically stratified field observed values than bulk values, which highlights the utility of the snowpack dataset presented here. Location specific annual and 16 year mean stratified snowpit profiles of SWE, Tsnow, and CCsnow well represent the physical geography and past weather patterns acting on the snowpack. Observed trends and spatial variability of CCsnow profiles explored by this study provides an improved understanding of changing snowpack behavior in the western U.S., and will be useful for assessing the regional sensitivity of snowpacks to future climate change.
[Effect of different snow depth and area on the snow cover retrieval using remote sensing data].
Jiang, Hong-bo; Qin, Qi-ming; Zhang, Ning; Dong, Heng; Chen, Chao
2011-12-01
For the needs of snow cover monitoring using multi-source remote sensing data, in the present article, based on the spectrum analysis of different depth and area of snow, the effect of snow depth on the results of snow cover retrieval using normalized difference snow index (NDSI) is discussed. Meanwhile, taking the HJ-1B and MODIS remote sensing data as an example, the snow area effect on the snow cover monitoring is also studied. The results show that: the difference of snow depth does not contribute to the retrieval results, while the snow area affects the results of retrieval to some extents because of the constraints of spatial resolution.
NASA Astrophysics Data System (ADS)
Webster, C.; Bühler, Y.; Schirmer, M.; Stoffel, A.; Giulia, M.; Jonas, T.
2017-12-01
Snow depth distribution in forests exhibits strong spatial heterogeneity compared to adjacent open sites. Measurement of snow depths in forests is currently limited to a) manual point measurements, which are sparse and time-intensive, b) ground-penetrating radar surveys, which have limited spatial coverage, or c) airborne LiDAR acquisition, which are expensive and may deteriorate in denser forests. We present the application of unmanned aerial vehicles in combination with structure-from-motion (SfM) methods to photogrammetrically map snow depth distribution in forested terrain. Two separate flights were carried out 10 days apart across a heterogeneous forested area of 900 x 500 m. Corresponding snow depth maps were derived using both, LiDAR-based and SfM-based DTM data, obtained during snow-off conditions. Manual measurements collected following each flight were used to validate the snow depth maps. Snow depths were resolved at 5cm resolution and forest snow depth distribution structures such as tree wells and other areas of preferential melt were represented well. Differential snow depth maps showed maximum ablation in the exposed south sides of trees and smaller differences in the centre of gaps and on the north side of trees. This new application of SfM to map snow depth distribution in forests demonstrates a straightforward method for obtaining information that was previously only available through manual spatially limited ground-based measurements. These methods could therefore be extended to more frequent observation of snow depths in forests as well as estimating snow accumulation and depletion rates.
Blowing snow detection from ground-based ceilometers: application to East Antarctica
NASA Astrophysics Data System (ADS)
Gossart, Alexandra; Souverijns, Niels; Gorodetskaya, Irina V.; Lhermitte, Stef; Lenaerts, Jan T. M.; Schween, Jan H.; Mangold, Alexander; Laffineur, Quentin; van Lipzig, Nicole P. M.
2017-12-01
Blowing snow impacts Antarctic ice sheet surface mass balance by snow redistribution and sublimation. However, numerical models poorly represent blowing snow processes, while direct observations are limited in space and time. Satellite retrieval of blowing snow is hindered by clouds and only the strongest events are considered. Here, we develop a blowing snow detection (BSD) algorithm for ground-based remote-sensing ceilometers in polar regions and apply it to ceilometers at Neumayer III and Princess Elisabeth (PE) stations, East Antarctica. The algorithm is able to detect (heavy) blowing snow layers reaching 30 m height. Results show that 78 % of the detected events are in agreement with visual observations at Neumayer III station. The BSD algorithm detects heavy blowing snow 36 % of the time at Neumayer (2011-2015) and 13 % at PE station (2010-2016). Blowing snow occurrence peaks during the austral winter and shows around 5 % interannual variability. The BSD algorithm is capable of detecting blowing snow both lifted from the ground and occurring during precipitation, which is an added value since results indicate that 92 % of the blowing snow is during synoptic events, often combined with precipitation. Analysis of atmospheric meteorological variables shows that blowing snow occurrence strongly depends on fresh snow availability in addition to wind speed. This finding challenges the commonly used parametrizations, where the threshold for snow particles to be lifted is a function of wind speed only. Blowing snow occurs predominantly during storms and overcast conditions, shortly after precipitation events, and can reach up to 1300 m a. g. l. in the case of heavy mixed events (precipitation and blowing snow together). These results suggest that synoptic conditions play an important role in generating blowing snow events and that fresh snow availability should be considered in determining the blowing snow onset.
NASA Astrophysics Data System (ADS)
Roy, A.; Royer, A.; Montpetit, B.; Bartlett, P. A.; Langlois, A.
2012-12-01
Snow grain size is a key parameter for modeling microwave snow emission properties and the surface energy balance because of its influence on the snow albedo, thermal conductivity and diffusivity. A model of the specific surface area (SSA) of snow was implemented in the one-layer snow model in the Canadian LAnd Surface Scheme (CLASS) version 3.4. This offline multilayer model (CLASS-SSA) simulates the decrease of SSA based on snow age, snow temperature and the temperature gradient under dry snow conditions, whereas it considers the liquid water content for wet snow metamorphism. We compare the model with ground-based measurements from several sites (alpine, Arctic and sub-Arctic) with different types of snow. The model provides simulated SSA in good agreement with measurements with an overall point-to-point comparison RMSE of 8.1 m2 kg-1, and a RMSE of 4.9 m2 kg-1 for the snowpack average SSA. The model, however, is limited under wet conditions due to the single-layer nature of the CLASS model, leading to a single liquid water content value for the whole snowpack. The SSA simulations are of great interest for satellite passive microwave brightness temperature assimilations, snow mass balance retrievals and surface energy balance calculations with associated climate feedbacks.
Changes in the relation between snow station observations and basin scale snow water resources
NASA Astrophysics Data System (ADS)
Sexstone, G. A.; Penn, C. A.; Clow, D. W.; Moeser, D.; Liston, G. E.
2017-12-01
Snow monitoring stations that measure snow water equivalent or snow depth provide fundamental observations used for predicting water availability and flood risk in mountainous regions. In the western United States, snow station observations provided by the Natural Resources Conservation Service Snow Telemetry (SNOTEL) network are relied upon for forecasting spring and summer streamflow volume. Streamflow forecast accuracy has declined for many regions over the last several decades. Changes in snow accumulation and melt related to climate, land use, and forest cover are not accounted for in current forecasts, and are likely sources of error. Therefore, understanding and updating relations between snow station observations and basin scale snow water resources is crucial to improve accuracy of streamflow prediction. In this study, we investigated the representativeness of snow station observations when compared to simulated basin-wide snow water resources within the Rio Grande headwaters of Colorado. We used the combination of a process-based snow model (SnowModel), field-based measurements, and remote sensing observations to compare the spatiotemporal variability of simulated basin-wide snow accumulation and melt with that of SNOTEL station observations. Results indicated that observations are comparable to simulated basin-average winter precipitation but overestimate both the simulated basin-average snow water equivalent and snowmelt rate. Changes in the representation of snow station observations over time in the Rio Grande headwaters were also investigated and compared to observed streamflow and streamflow forecasting errors. Results from this study provide important insight in the context of non-stationarity for future water availability assessments and streamflow predictions.
Ground Validation Assessments of GPM Core Observatory Science Requirements
NASA Astrophysics Data System (ADS)
Petersen, Walt; Huffman, George; Kidd, Chris; Skofronick-Jackson, Gail
2017-04-01
NASA Global Precipitation Measurement (GPM) Mission science requirements define specific measurement error standards for retrieved precipitation parameters such as rain rate, raindrop size distribution, and falling snow detection on instantaneous temporal scales and spatial resolutions ranging from effective instrument fields of view [FOV], to grid scales of 50 km x 50 km. Quantitative evaluation of these requirements intrinsically relies on GPM precipitation retrieval algorithm performance in myriad precipitation regimes (and hence, assumptions related to physics) and on the quality of ground-validation (GV) data being used to assess the satellite products. We will review GPM GV products, their quality, and their application to assessing GPM science requirements, interleaving measurement and precipitation physical considerations applicable to the approaches used. Core GV data products used to assess GPM satellite products include 1) two minute and 30-minute rain gauge bias-adjusted radar rain rate products and precipitation types (rain/snow) adapted/modified from the NOAA/OU multi-radar multi-sensor (MRMS) product over the continental U.S.; 2) Polarimetric radar estimates of rain rate over the ocean collected using the K-Pol radar at Kwajalein Atoll in the Marshall Islands and the Middleton Island WSR-88D radar located in the Gulf of Alaska; and 3) Multi-regime, field campaign and site-specific disdrometer-measured rain/snow size distribution (DSD), phase and fallspeed information used to derive polarimetric radar-based DSD retrievals and snow water equivalent rates (SWER) for comparison to coincident GPM-estimated DSD and precipitation rates/types, respectively. Within the limits of GV-product uncertainty we demonstrate that the GPM Core satellite meets its basic mission science requirements for a variety of precipitation regimes. For the liquid phase, we find that GPM radar-based products are particularly successful in meeting bias and random error requirements associated with retrievals of rain rate and required +/- 0.5 millimeter error bounds for mass-weighted mean drop diameter. Version-04 (V4) GMI GPROF radiometer-based rain rate products exhibit reasonable agreement with GV, but do not completely meet mission science requirements over the continental U.S. for lighter rain rates (e.g., 1 mm/hr) due to excessive random error ( 75%). Importantly, substantial corrections were made to the V4 GPROF algorithm and preliminary analysis of Version 5 (V5) rain products indicates more robust performance relative to GV. For the frozen phase and a modest GPM requirement to "demonstrate detection of snowfall", DPR products do successfully identify snowfall within the sensitivity and beam sampling limits of the DPR instrument ( 12 dBZ lower limit; lowest clutter-free bins). Similarly, the GPROF algorithm successfully "detects" falling snow and delineates it from liquid precipitation. However, the GV approach to computing falling-snow "detection" statistics is intrinsically tied to GPROF Bayesian algorithm-based thresholds of precipitation "detection" and model analysis temperature, and is not sufficiently tied to SWER. Hence we will also discuss ongoing work to establish the lower threshold SWER for "detection" using combined GV radar, gauge and disdrometer-based case studies.
Snow depth on Arctic and Antarctic sea ice derived from autonomous (Snow Buoy) measurements
NASA Astrophysics Data System (ADS)
Nicolaus, Marcel; Arndt, Stefanie; Hendricks, Stefan; Heygster, Georg; Huntemann, Marcus; Katlein, Christian; Langevin, Danielle; Rossmann, Leonard; Schwegmann, Sandra
2016-04-01
The snow cover on sea ice received more and more attention in recent sea ice studies and model simulations, because its physical properties dominate many sea ice and upper ocean processes. In particular; the temporal and spatial distribution of snow depth is of crucial importance for the energy and mass budgets of sea ice, as well as for the interaction with the atmosphere and the oceanic freshwater budget. Snow depth is also a crucial parameter for sea ice thickness retrieval algorithms from satellite altimetry data. Recent time series of Arctic sea ice volume only use monthly snow depth climatology, which cannot take into account annual changes of the snow depth and its properties. For Antarctic sea ice, no such climatology is available. With a few exceptions, snow depth on sea ice is determined from manual in-situ measurements with very limited coverage of space and time. Hence the need for more consistent observational data sets of snow depth on sea ice is frequently highlighted. Here, we present time series measurements of snow depths on Antarctic and Arctic sea ice, recorded by an innovative and affordable platform. This Snow Buoy is optimized to autonomously monitor the evolution of snow depth on sea ice and will allow new insights into its seasonality. In addition, the instruments report air temperature and atmospheric pressure directly into different international networks, e.g. the Global Telecommunication System (GTS) and the International Arctic Buoy Programme (IABP). We introduce the Snow Buoy concept together with technical specifications and results on data quality, reliability, and performance of the units. We highlight the findings from four buoys, which simultaneously drifted through the Weddell Sea for more than 1.5 years, revealing unique information on characteristic regional and seasonal differences. Finally, results from seven snow buoys co-deployed on Arctic sea ice throughout the winter season 2015/16 suggest the great importance of local effects, weather events, and potential influences of dynamic sea ice processes on snow accumulation.
[Monitoring of the chemical composition of snow cover pollution in the Moscow region].
Ermakov, A A; Karpova, E A; Malysheva, A G; Mikhaylova, R I; Ryzhova, I N
2014-01-01
Monitoring of snow cover pollution as an indicator of ambient air pollution in 20 districts in the Moscow region during 2009-2013 was performed. The identification with a quantitative assessment of a wide array of organic compounds and the control of the main physical and chemical and inorganic indices of snow water pollution were carried out. More than 60 organic substances for most of which there are no the hygienic standards were established. The assessment of pollution levels of basic inorganic indices was given by means of the comparing them with the average values in the snow cover in the European territory of Russia and natural content in areas not been exposed to human impact.
NASA Astrophysics Data System (ADS)
Crawford, A. D.; Stroeve, J.; Serreze, M. C.; Rajagopalan, B.; Horvath, S.
2017-12-01
As much of the Arctic Ocean transitions to ice-free conditions in summer, efforts have increased to improve seasonal forecasts of not only sea ice extent, but also the timing of melt onset and retreat. This research investigates the potential of regional terrestrial snow retreat in spring as a predictor for subsequent sea ice melt onset and retreat in Arctic seas. One pathway involves earlier snow retreat enhancing atmospheric moisture content, which increases downwelling longwave radiation over sea ice cover downstream. Another pathway involves manipulation of jet stream behavior, which may affect the sea ice pack via both dynamic and thermodynamic processes. Although several possible connections between snow and sea ice regions are identified using a mutual information criterion, the physical mechanisms linking snow retreat and sea ice phenology are most clearly exemplified by variability of snow retreat in the West Siberian Plain impacting melt onset and sea ice retreat in the Laptev Sea. The detrended time series of snow retreat in the West Siberian Plain explains 26% of the detrended variance in Laptev Sea melt onset (29% for sea ice retreat). With modest predictive skill and an average time lag of 53 (88) days between snow retreat and sea ice melt onset (retreat), West Siberian Plains snow retreat is useful for refining seasonal sea ice predictions in the Laptev Sea.
Retrieval of Snow Properties for Ku- and Ka-band Dual-Frequency Radar
NASA Technical Reports Server (NTRS)
Liao, Liang; Meneghini, Robert; Tokay, Ali; Bliven, Larry F.
2016-01-01
The focus of this study is on the estimation of snow microphysical properties and the associated bulk parameters such as snow water content and water equivalent snowfall rate for Ku- and Ka-band dual-frequency radar. This is done by exploring a suitable scattering model and the proper particle size distribution (PSD) assumption that accurately represent, in the electromagnetic domain, the micro/macro-physical properties of snow. The scattering databases computed from simulated aggregates for small-to-moderate particle sizes are combined with a simple scattering model for large particle sizes to characterize snow scattering properties over the full range of particle sizes. With use of the single-scattering results, the snow retrieval lookup tables can be formed in a way that directly links the Ku- and Ka-band radar reflectivities to snow water content and equivalent snowfall rate without use of the derived PSD parameters. A sensitivity study of the retrieval results to the PSD and scattering models is performed to better understand the dual-wavelength retrieval uncertainties. To aid in the development of the Ku- and Ka-band dual-wavelength radar technique and to further evaluate its performance, self-consistency tests are conducted using measurements of the snow PSD and fall velocity acquired from the Snow Video Imager Particle Image Probe (SVIPIP) duringthe winter of 2014 at the NASA Wallops Flight Facility site in Wallops Island, Virginia.
1998-08-01
5 Estimating Snowmelt Infiltration into Frozen Soils L . Zhao and D .M . G ray...andY Matsuura ......................................................... 17 Effect of Subalpine Canopy Removal on Snowpack, Soil Solution, and Nutrient...Tonnessen, and K. Heuer ..................................................................... 26 Snow Depth. Soil Frost, and Nutrient Loss in a Northern
NASA Astrophysics Data System (ADS)
Riboust, Philippe; Thirel, Guillaume; Le Moine, Nicolas; Ribstein, Pierre
2016-04-01
A better knowledge of the accumulated snow on the watersheds will help flood forecasting centres and hydro-power companies to predict the amount of water released during spring snowmelt. Since precipitations gauges are sparse at high elevations and integrative measurements of the snow accumulated on watershed surface are hard to obtain, using snow models is an adequate way to estimate snow water equivalent (SWE) on watersheds. In addition to short term prediction, simulating accurately SWE with snow models should have many advantages. Validating the snow module on both SWE and snowmelt should give a more reliable model for climate change studies or regionalization for ungauged watersheds. The aim of this study is to create a new snow module, which has a structure that allows the use of measured snow data for calibration or assimilation. Energy balance modelling seems to be the logical choice for designing a model in which internal variables, such as SWE, could be compared to observations. Physical models are complex, needing high computational resources and many different types of inputs that are not widely measured at meteorological stations. At the opposite, simple conceptual degree-day models offer to simulate snowmelt using only temperature and precipitation as inputs with fast computing. Its major drawback is to be empirical, i.e. not taking into account all of the processes of the energy balance, which makes this kind of model more difficult to use when willing to compare SWE to observed measurements. In order to reach our objectives, we created a snow model structured by a simplified energy balance where each of the processes is empirically parameterized in order to be calculated using only temperature, precipitation and cloud cover variables. This model's structure is similar to the one created by M.T. Walter (2005), where parameterizations from the literature were used to compute all of the processes of the energy balance. The conductive fluxes into the snowpack were modelled by using analytical solutions to the heat equation taking phase change into account. This approach has the advantage to use few forcing variables and to take into account all the processes of the energy balance. Indeed, the simulations should be quick enough to allow, for example, ensemble prediction or simulation of numerous basins, more easily than physical snow models. The snow module formulation has been completed and is in its validation phase using data from the experimental station of Col de Porte, Alpes, France. Data from the US SNOTEL product will be used in order to test the model structure on a larger scale and to test diverse calibration procedures, since the aim is to use it on a basin scale for discharge modelling purposes.
NASA Astrophysics Data System (ADS)
Avanzi, Francesco; Yamaguchi, Satoru; Hirashima, Hiroyuki; De Michele, Carlo
2016-04-01
Liquid water in snow rules runoff dynamics and wet snow avalanches release. Moreover, it affects snow viscosity and snow albedo. As a result, measuring and modeling liquid water dynamics in snow have important implications for many scientific applications. However, measurements are usually challenging, while modeling is difficult due to an overlap of mechanical, thermal and hydraulic processes. Here, we evaluate the use of a simple one-layer one-dimensional model to predict hourly time-series of bulk volumetric liquid water content in seasonal snow. The model considers both a simple temperature-index approach (melt only) and a coupled melt-freeze temperature-index approach that is able to reconstruct melt-freeze dynamics. Performance of this approach is evaluated at three sites in Japan. These sites (Nagaoka, Shinjo and Sapporo) present multi-year time-series of snow and meteorological data, vertical profiles of snow physical properties and snow melt lysimeters data. These data-sets are an interesting opportunity to test this application in different climatic conditions, as sites span a wide latitudinal range and are subjected to different snow conditions during the season. When melt-freeze dynamics are included in the model, results show that median absolute differences between observations and predictions of bulk volumetric liquid water content are consistently lower than 1 vol%. Moreover, the model is able to predict an observed dry condition of the snowpack in 80% of observed cases at a non-calibration site, where parameters from calibration sites are transferred. Overall, the analysis show that a coupled melt-freeze temperature-index approach may be a valid solution to predict average wetness conditions of a snow cover at local scale.
NASA Astrophysics Data System (ADS)
Xiong, Chuan; Shi, Jiancheng
2014-01-01
To date, the light scattering models of snow consider very little about the real snow microstructures. The ideal spherical or other single shaped particle assumptions in previous snow light scattering models can cause error in light scattering modeling of snow and further cause errors in remote sensing inversion algorithms. This paper tries to build up a snow polarized reflectance model based on bicontinuous medium, with which the real snow microstructure is considered. The accurate specific surface area of bicontinuous medium can be analytically derived. The polarized Monte Carlo ray tracing technique is applied to the computer generated bicontinuous medium. With proper algorithms, the snow surface albedo, bidirectional reflectance distribution function (BRDF) and polarized BRDF can be simulated. The validation of model predicted spectral albedo and bidirectional reflectance factor (BRF) using experiment data shows good results. The relationship between snow surface albedo and snow specific surface area (SSA) were predicted, and this relationship can be used for future improvement of snow specific surface area (SSA) inversion algorithms. The model predicted polarized reflectance is validated and proved accurate, which can be further applied in polarized remote sensing.
NASA Astrophysics Data System (ADS)
Shea, J. M.; Harder, P.; Pomeroy, J. W.; Kraaijenbrink, P. D. A.
2017-12-01
Mountain snowpacks represent a critical seasonal reservoir of water for downstream needs, and snowmelt is a significant component of mountain hydrological budgets. Ground-based point measurements are unable to describe the full spatial variability of snow accumulation and melt rates, and repeat Unmanned Air Vehicle (UAV) surveys provide an unparalleled opportunity to measure snow accumulation, redistribution and melt in alpine environments. This study presents results from a UAV-based observation campaign conducted at the Fortress Mountain Snow Laboratory in the Canadian Rockies in 2017. Seven survey flights were conducted between April (maximum snow accumulation) and mid-July (bare ground) to collect imagery with both an RGB camera and thermal infrared imager with the sensefly eBee RTK platform. UAV imagery are processed with structure from motion techniques, and orthoimages, digital elevation models, and surface temperature maps are validated against concurrent ground observations of snow depth, snow water equivalent, and snow surface temperature. We examine the seasonal evolution of snow depth and snow surface temperature, and explore the spatial covariances of these variables with respect to topographic factors and snow ablation rates. Our results have direct implications for scaling snow ablation calculations and model resolution and discretization.
Unusually Low Snow Cover in the U.S.
NASA Technical Reports Server (NTRS)
2002-01-01
New maps of snow cover produced by NASA's Terra satellite show that this year's snow line stayed farther north than normal. When combined with land surface temperature measurements, the observations confirm earlier National Oceanic and Atmospheric Administration reports that the United States was unusually warm and dry this past winter. The above map shows snow cover over the continental United States from February 2002 and is based on data acquired by the Moderate-Resolution Imaging Spectroradiometer (MODIS). The amount of land covered by snow during this period was much lower than usual. With the exception of the western mountain ranges and the Great Lakes region, the country was mostly snow free. The solid red line marks the average location of the monthly snow extent; white areas are snow-covered ground. Snow was mapped at approximately 5 kilometer pixel resolution on a daily basis and then combined, or composited, every eight days. If a pixel was at least 50 percent snow covered during all of the eight-day periods that month, it was mapped as snow covered for the whole month. For more information, images, and animations, read: Terra Satellite Data Confirm Unusually Warm, Dry U.S. Winter Image by Robert Simmon, based on data from the MODIS Snow/Ice Global Mapping Project
NASA Technical Reports Server (NTRS)
Dozier, Jeff; Davis, Robert E.
1987-01-01
Remote sensing has been applied in recent years to monitoring snow cover properties for applications in hydrologic and energy balance modeling. In addition, snow cover has been recently shown to exert a considerable local influence on weather variables. Of particular importance is the potential of sensors to provide data on the physical properties of snow with high spatial and temporal resolution. Visible and near-infrared measurements of upwelling radiance can be used to infer near-surface properties through the calculation of albedo. Microwave signals usually come from deeper within the snow pack and thus provide depth-integrated information, which can be measured through clouds and does not relay on solar illumination.Fundamental studies examining the influence of snow properties on signals from various parts of the electromagnetic spectrum continue in part because of the promise of new remote sensors with higher spectral and spatial accuracy. Information in the visible and near-infrared parts of the spectrum comprise nearly all available data with high spatial resolution. Current passive microwave sensors have poor spatial resolution and the data are problematic where the scenes consist of mixed landscape features, but they offer timely observations that are independent of cloud cover and solar illumination.
NASA Astrophysics Data System (ADS)
Dozier, J.; Bair, N.; Calfa, A. A.; Skalka, C.; Tolle, K.; Bongard, J.
2015-12-01
The task is to estimate spatiotemporally distributed estimates of snow water equivalent (SWE) in snow-dominated mountain environments, including those that lack on-the-ground measurements such as the Hindu Kush range in Afghanistan. During the snow season, we can use two measurements: (1) passive microwave estimates of SWE, which generally underestimate in the mountains; (2) fractional snow-covered area from MODIS. Once the snow has melted, we can reconstruct the accumulated SWE back to the last significant snowfall by calculating the energy used in melt. The reconstructed SWE values provide a training set for predictions from the passive microwave SWE and snow-covered area. We examine several machine learning methods—regression-boosted decision trees, bagged trees, neural networks, and genetic programming—to estimate SWE. All methods work reasonably well, with R2 values greater than 0.8. Predictors built with multiple years of data reduce the bias that usually appears if we predict one year from just one other year's training set. Genetic programming tends to produce results that additionally provide physical insight. Adding precipitation estimates from the Global Precipitation Measurements mission is in progress.
Radar measurements of melt zones on the Greenland Ice Sheet
NASA Technical Reports Server (NTRS)
Jezek, Kenneth C.; Gogineni, Prasad; Shanableh, M.
1994-01-01
Surface-based microwave radar measurements were performed at a location on the western flank of the Greenland Ice Sheet. Here, firn metamorphasis is dominated by seasonal melt, which leads to marked contrasts in the vertical structure of winter and summer firn. This snow regime is also one of the brightest radar targets on Earth with an average backscatter coefficient of 0 dB at 5.3 GHz and an incidence angle of 25 deg. By combining detailed observations of firn physical properties with ranging radar measurements we find that the glaciological mechanism associated with this strong electromagnetic response is summer ice lens formation within the previous winter's snow pack. This observation has important implications for monitoring and understanding changes in ice sheet volume using spaceborne microwave sensors.
A biomechanical model for actively controlled snow ski bindings.
Hull, M L; Ramming, J E
1980-11-01
Active control of snow ski bindings is a new design concept which potentially offers improved protection from lower extremity injury. Implementation of this concept entails measuring physical variables and calculating loading and/or deformation in injury prone musculoskeletal components. The subject of this paper is definition of a biomechanical model for calculating tibia torsion based on measurements of torsion loading between the boot and ski. Previous control schemes have used leg displacement only to indicate tibia torsion. The contributions of both inertial and velocity-dependent torques to tibia loading are explored and it is shown that both these moments must be included in addition to displacement-dependent moments. A new analog controller design which includes inertia, damping, and stiffness terms in the tibia load calculation is also presented.
NASA Astrophysics Data System (ADS)
Tuzet, F.; Dumont, M.; Lafaysse, M.; Hagenmuller, P.; Arnaud, L.; Picard, G.; Morin, S.
2017-12-01
Light-absorbing impurities decrease snow albedo, increasing the amount of solar energy absorbed by the snowpack. Its most intuitive impact is to accelerate snow melt. However the presence of a layer highly concentrated in light-absorbing impurities in the snowpack also modify its temperature profile affecting snow metamorphism. New capabilities have been implemented in the detailed snowpack model SURFEX/ISBA-Crocus (referred to as Crocus) to account for impurities deposition and evolution within the snowpack (Tuzet et al., 2017, TCD). Once deposited, the model computes impurities mass evolution until snow melts out. Taking benefits of the recent inclusion of the spectral radiative transfer model TARTES in Crocus, the model explicitly represents the radiative impacts of light-absorbing impurities in snow. In the Pyrenees mountain range, strong sporadic Saharan dust deposition (referred to as dust outbreaks) can occur during the snow season leading some snow layers in the snowpack to contain high concentrations of mineral dust. One of the major events of the past years occurred on February 2014, affecting the whole southern Europe. During the weeks following this dust outbreak a strong avalanche activity was reported in the Aran valley (Pyrenees, Spain). For now, the link between the dust outbreak and the avalanche activity is not demonstrated.We investigate the impact of this dust outbreak on the snowpack stability in the Aran valley using the Crocus model, trying to determine whether the snowpack instability observed after the dust outbreak can be related to the presence of dust. SAFRAN-reanalysis meteorological data are used to drive the model on several altitudes, slopes and aspects. For each slope configuration two different simulations are run; one without dust and one simulating the dust outbreak of February 2014.The two corresponding simulations are then compared to assess the role of impurities on snow metamorphism and stability.On this example, we numerically prove that under specific meteorological conditions the presence of a dusty layer in the snowpack causes an enhanced temperature gradient at the interface, favoring the formation of faceted crystals.These preliminary results need to be evaluated against field measurements and with respect to uncertainties in Crocus model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maclaurin, Galen; Sengupta, Manajit; Xie, Yu
A significant source of bias in the transposition of global horizontal irradiance to plane-of-array (POA) irradiance arises from inaccurate estimations of surface albedo. The current physics-based model used to produce the National Solar Radiation Database (NSRDB) relies on model estimations of surface albedo from a reanalysis climatalogy produced at relatively coarse spatial resolution compared to that of the NSRDB. As an input to spectral decomposition and transposition models, more accurate surface albedo data from remotely sensed imagery at finer spatial resolutions would improve accuracy in the final product. The National Renewable Energy Laboratory (NREL) developed an improved white-sky (bi-hemispherical reflectance)more » broadband (0.3-5.0 ..mu..m) surface albedo data set for processing the NSRDB from two existing data sets: a gap-filled albedo product and a daily snow cover product. The Moderate Resolution Imaging Spectroradiometer (MODIS) sensors onboard the Terra and Aqua satellites have provided high-quality measurements of surface albedo at 30 arc-second spatial resolution and 8-day temporal resolution since 2001. The high spatial and temporal resolutions and the temporal coverage of the MODIS sensor will allow for improved modeling of POA irradiance in the NSRDB. However, cloud and snow cover interfere with MODIS observations of ground surface albedo, and thus they require post-processing. The MODIS production team applied a gap-filling methodology to interpolate observations obscured by clouds or ephemeral snow. This approach filled pixels with ephemeral snow cover because the 8-day temporal resolution is too coarse to accurately capture the variability of snow cover and its impact on albedo estimates. However, for this project, accurate representation of daily snow cover change is important in producing the NSRDB. Therefore, NREL also used the Integrated Multisensor Snow and Ice Mapping System data set, which provides daily snow cover observations of the Northern Hemisphere for the temporal extent of the NSRDB (1998-2015). We provide a review of validation studies conducted on these two products and describe the methodology developed by NREL to remap the data products to the NSRDB grid and integrate them into a seamless daily data set.« less
Iron snow in the Martian Core?
NASA Astrophysics Data System (ADS)
Davies, C. J.; Pommier, A.
2017-12-01
The decline of Mars' global magnetic field some 3.8-4.1 billion years ago is thought to reflect the demise of the dynamo that operated in its liquid core. The termination of the dynamo is intimately tied to the thermochemical evolution of the core-mantle system and therefore to the present-day physical state of the Martian core. The standard model predicts that the Martian dynamo failed because thermal convection stopped and the core remained entirely liquid until the present. Here we consider an alternative hypothesis that the Martian core crystallized from the top down in the so-called iron snow regime. We derive energy-entropy equations describing the long-timescale thermal and magnetic evolution of the core that incorporate the self-consistent formation of a snow layer that freezes out pure iron and is assumed to be on the liquidus; the iron sinks and remelts in the deeper core, acting as a possible source for magnetic field generation. Compositions are in the FeS system, with a sulfur content up to 16 wt%. The values of the different parameters (core radius, density and CMB pressure) are varied within bounds set by recent internal structure models that satisfy existing geodetic constraints (planetary mass, moment of inertia and tidal Love number). The melting curve and adiabat, CMB heat flow and thermal conductivity were also varied, based on previous experimental and numerical works. We observe that the formation of snow zones occurs for a wide range of interior and thermal structure properties and depends critically on the initial sulfur concentration. Gravitational energy release and latent heat effects arising during growth of the snow zone do not generate sufficient entropy to restart the dynamo unless the snow zone occupies a significant fraction of the core. Our results suggest that snow zones can be 1.5-2 Gyrs old, though thermal stratification of the uppermost core, not included in our model, likely delays onset. Models that match the available magnetic and geodetic constraints have an initial S concentration of about 10wt.% and snow zones that occupy approximately the top 100 km of the present-day Martian core.
From vegetation zones to climatypes: Effects of climate warming on Siberian ecosystems
N. M. Tchebakova; G. E. Rehfeldt; E. I. Parfenova
2010-01-01
Evidence for global warming over the past 200 years is overwhelming, based on both direct weather observation and indirect physical and biological indicators such as retreating glaciers and snow/ice cover, increasing sea level, and longer growing seasons (IPCC 2001, 2007). On the background of global warming at a rate of 0.6°C during the twentieth century (IPCC 2001),...
How autumn Eurasian snow anomalies affect east asian winter monsoon: a numerical study
NASA Astrophysics Data System (ADS)
Luo, Xiao; Wang, Bin
2018-03-01
Previous studies have found that snow Eurasian anomalies in autumn can affect East Asian winter monsoon (EAWM), but the mechanisms remain controversial and not well understood. The possible mechanisms by which Eurasian autumn snow anomalies affect EAWM are investigated by numerical experiments with a coupled general circulation model and its atmospheric general circulation model component. The leading empirical orthogonal function mode of the October-November mean Eurasian snow cover is characterized by a uniform anomaly over a broad region of central Eurasia (40°N-65°N, 60°E-140°E). However, the results from a 150-ensemble mean simulation with snow depth anomaly specified in October and November reveal that the Mongolian Plateau and Vicinity (MPV, 40°-55°N, 80°-120°E) is the key region for autumn snow anomalies to affect EAWM. The excessive snow forcing can significantly enhance EAWM and the snowfall over the northwestern China and along the EAWM front zone stretching from the southeast China to Japan. The physical process involves a snow-monsoon feedback mechanism. The excessive autumn snow anomalies over the MPV region can persist into the following winter, and significantly enhance winter snow anomalies, which increase surface albedo, reduce incoming solar radiation and cool the boundary layer air, leading to an enhanced Mongolian High and a deepened East Asian trough. The latter, in turn, strengthen surface northwesterly winds, cooling East Asia and increasing snow accumulation over the MPV region and the southeastern China. The increased snow covers feedback to EAWM system through changing albedo, extending its influence southeastward. It is also found that the atmosphere-ocean coupling process can amplify the delayed influence of Eurasian snow mass anomaly on EAWM. The autumn surface albedo anomalies, however, do not have a lasting "memory" effect. Only if the albedo anomalies are artificially extended into December and January, will the EAWM be affected in a similar way as the impacts of autumn snow mass anomalies.
NASA Astrophysics Data System (ADS)
Willmes, S.; Haas, C.; Nicolaus, M.; Bareiss, J.
2009-04-01
Snowmelt processes on Antarctic sea ice are examined. We present a simple snowmelt indicator based on diurnal brightness temperature variations from microwave satellite data. The method is validated through extensive field data from the western Weddell Sea and lends itself to the investigation of interannual and spatial variations of the typical snowmelt on Antarctic sea ice. We use in situ measurements of physical snow properties to show that despite the absence of strong melting, the summer period is distinct from all other seasons with enhanced diurnal variations of snow wetness. A microwave emission model reveals that repeated thawing and refreezing causes the typical microwave emissivity signatures that are found on perennial Antarctic sea ice during summer. The proposed melt indicator accounts for the characteristic phenomenological stages of snowmelt in the Southern Ocean and detects the onset of diurnal snow wetting. An algorithm is presented to map large-scale snowmelt onset, based on satellite data from the period between 1988 and 2006. The results indicate strong meridional gradients of snowmelt onset with the Weddell, Amundsen and Ross Seas showing earliest (beginning of October) and most frequent snowmelt. Moreover, a distinct interannual variability of melt onset dates and large areas of first-year ice where no diurnal freeze-thawing occurs at the surface are determined.
NASA Astrophysics Data System (ADS)
Willmes, Sascha; Haas, Christian; Nicolaus, Marcel; Bareiss, JöRg
2009-03-01
Snowmelt processes on Antarctic sea ice are examined. We present a simple snowmelt indicator based on diurnal brightness temperature variations from microwave satellite data. The method is validated through extensive field data from the western Weddell Sea and lends itself to the investigation of interannual and spatial variations of the typical snowmelt on Antarctic sea ice. We use in-situ measurements of physical snow properties to show that despite the absence of strong melting, the summer period is distinct from all other seasons with enhanced diurnal variations of snow wetness. A microwave emission model reveals that repeated thawing and refreezing cause the typical microwave emissivity signatures that are found on perennial Antarctic sea ice during summer. The proposed melt indicator accounts for the characteristic phenomenological stages of snowmelt in the Southern Ocean and detects the onset of diurnal snow wetting. An algorithm is presented to map large-scale snowmelt onset based on satellite data from the period between 1988 and 2006. The results indicate strong meridional gradients of snowmelt onset with the Weddell, Amundsen, and Ross Seas showing earliest (beginning of October) and most frequent snowmelt. Moreover, a distinct interannual variability of melt onset dates and large areas of first-year ice where no diurnal freeze thawing occurs at the surface are determined.
NASA Astrophysics Data System (ADS)
Lafontaine, J.; Hay, L.; Markstrom, S. L.
2016-12-01
The United States Geological Survey (USGS) has developed a National Hydrologic Model (NHM) to support coordinated, comprehensive and consistent hydrologic model development, and facilitate the application of hydrologic simulations within the conterminous United States (CONUS). As many stream reaches in the CONUS are either not gaged, or are substantially impacted by water use or flow regulation, ancillary information must be used to determine reasonable parameter estimations for streamflow simulations. Hydrologic models for 1,576 gaged watersheds across the CONUS were developed to test the feasibility of improving streamflow simulations linking physically-based hydrologic models with remotely-sensed data products (i.e. snow water equivalent). Initially, the physically-based models were calibrated to measured streamflow data to provide a baseline for comparison across multiple calibration strategy tests. In addition, not all ancillary datasets are appropriate for application to all parts of the CONUS (e.g. snow water equivalent in the southeastern U.S., where snow is a rarity). As it is not expected that any one data product or model simulation will be sufficient for representing hydrologic behavior across the entire CONUS, a systematic evaluation of which data products improve hydrologic simulations for various regions across the CONUS was performed. The resulting portfolio of calibration strategies can be used to guide selection of an appropriate combination of modeled and measured information for hydrologic model development and calibration. In addition, these calibration strategies have been developed to be flexible so that new data products can be assimilated. This analysis provides a foundation to understand how well models work when sufficient streamflow data are not available and could be used to further inform hydrologic model parameter development for ungaged areas.
Monitoring All Weather Precipitation Using PIP and MRR
NASA Astrophysics Data System (ADS)
Bliven, Francis; Petersen, Walter; Kulie, Mark; Pettersen, Claire; Wolff, David; Dutter, Michael
2015-04-01
The objective of this study is to demonstrate the science benefit of monitoring all weather precipitation for the Global Precipitation Measurement (GPM) Mission Ground Validation Program using a combination of two instruments: the Precipitation Imaging Package (PIP) and a Microwave Rain Radar-II (MRR). The PIP is a new ground based precipitation imaging instrument that uses a high speed camera and advanced processing software to image individual hydrometeors, measure hydrometeor size distributions, track individual hydrometeors and compute fall velocities. PIP hydrometeor data are also processed using algorithms to compute precipitation rates in one-minute time increments, and to discriminate liquid, mixed and frozen (e.g., snow) precipitation. The MRR, a vertically-pointing 24 GHz radar, is well documented in the literature and monitors hydrometeor vertical profile characteristics such as Doppler fall-speed spectra, radar reflectivity, size distribution and precipitation rate. Of interest to GPM direct and physical ground validation are collections of robust, satellite overpass-coincident, long-duration datasets consisting of observations of the aforementioned hydrometeor characteristics for falling snow and mixes of falling-snow and rain, as there are relatively few instruments that provide continuous observations of coincident hydrometeor image, size, and fall velocity in cold regions due to harsh environmental conditions. During extended periods of 2013 and 2014, concurrent PIP and MRR data sets were obtained at the National Weather Service station in Marquette, Michigan (2014), and at the NASA Wallops Flight Facility in Wallops Island, Virginia (2013,14). Herein we present examples of those data sets for a variety of weather conditions (rain, snow, frontal passages, lake effect snow events etc.). The results demonstrate 1) that the PIP and MRR are well-suited to long term operation in cold regions; 2) PIP and MRR data products are useful for characterizing a wide variety of precipitation types and conditions; 3) systematic variability in bulk snow characteristics such as fall speed and size distributions can be observed between event types, but also within individual event types (e.g., within a given synoptic or lake effect storm). The observed behavior suggests that added information on environmental or cloud parameters may be necessary to further define snowfall types/regimes or to estimate snow water equivalent rates using satellite or ground-based active or passive remote sensing tools.
NASA Astrophysics Data System (ADS)
Swenson, S. C.; Lawrence, D. M.
2011-11-01
One function of the Community Land Model (CLM4) is the determination of surface albedo in the Community Earth System Model (CESM1). Because the typical spatial scales of CESM1 simulations are large compared to the scales of variability of surface properties such as snow cover and vegetation, unresolved surface heterogeneity is parameterized. Fractional snow-covered area, or snow-covered fraction (SCF), within a CLM4 grid cell is parameterized as a function of grid cell mean snow depth and snow density. This parameterization is based on an analysis of monthly averaged SCF and snow depth that showed a seasonal shift in the snow depth-SCF relationship. In this paper, we show that this shift is an artifact of the monthly sampling and that the current parameterization does not reflect the relationship observed between snow depth and SCF at the daily time scale. We demonstrate that the snow depth analysis used in the original study exhibits a bias toward early melt when compared to satellite-observed SCF. This bias results in a tendency to overestimate SCF as a function of snow depth. Using a more consistent, higher spatial and temporal resolution snow depth analysis reveals a clear hysteresis between snow accumulation and melt seasons. Here, a new SCF parameterization based on snow water equivalent is developed to capture the observed seasonal snow depth-SCF evolution. The effects of the new SCF parameterization on the surface energy budget are described. In CLM4, surface energy fluxes are calculated assuming a uniform snow cover. To more realistically simulate environments having patchy snow cover, we modify the model by computing the surface fluxes separately for snow-free and snow-covered fractions of a grid cell. In this configuration, the form of the parameterized snow depth-SCF relationship is shown to greatly affect the surface energy budget. The direct exposure of the snow-free surfaces to the atmosphere leads to greater heat loss from the ground during autumn and greater heat gain during spring. The net effect is to reduce annual mean soil temperatures by up to 3°C in snow-affected regions.
NASA Astrophysics Data System (ADS)
Swenson, S. C.; Lawrence, D. M.
2012-11-01
One function of the Community Land Model (CLM4) is the determination of surface albedo in the Community Earth System Model (CESM1). Because the typical spatial scales of CESM1 simulations are large compared to the scales of variability of surface properties such as snow cover and vegetation, unresolved surface heterogeneity is parameterized. Fractional snow-covered area, or snow-covered fraction (SCF), within a CLM4 grid cell is parameterized as a function of grid cell mean snow depth and snow density. This parameterization is based on an analysis of monthly averaged SCF and snow depth that showed a seasonal shift in the snow depth-SCF relationship. In this paper, we show that this shift is an artifact of the monthly sampling and that the current parameterization does not reflect the relationship observed between snow depth and SCF at the daily time scale. We demonstrate that the snow depth analysis used in the original study exhibits a bias toward early melt when compared to satellite-observed SCF. This bias results in a tendency to overestimate SCF as a function of snow depth. Using a more consistent, higher spatial and temporal resolution snow depth analysis reveals a clear hysteresis between snow accumulation and melt seasons. Here, a new SCF parameterization based on snow water equivalent is developed to capture the observed seasonal snow depth-SCF evolution. The effects of the new SCF parameterization on the surface energy budget are described. In CLM4, surface energy fluxes are calculated assuming a uniform snow cover. To more realistically simulate environments having patchy snow cover, we modify the model by computing the surface fluxes separately for snow-free and snow-covered fractions of a grid cell. In this configuration, the form of the parameterized snow depth-SCF relationship is shown to greatly affect the surface energy budget. The direct exposure of the snow-free surfaces to the atmosphere leads to greater heat loss from the ground during autumn and greater heat gain during spring. The net effect is to reduce annual mean soil temperatures by up to 3°C in snow-affected regions.
NASA Astrophysics Data System (ADS)
Adolph, A. C.; Albert, M. R.; Dibb, J. E.; Lazarcik, J.; Amante, J.
2016-12-01
As a highly reflective material, snow serves as an important control on surface energy balance. Given the current changes in climate and the sensitivity of snow cover to rising temperatures, it is critical that we understand the role of snow and its associated feedbacks in the climate system. Much of snow albedo research has focused on polar or high altitude snow packs, but rapid changes are also occurring in temperate regions; in the northeastern United States of America, changing climate has resulted in shallower snow packs and fewer days of snow cover. As these changes occur and we seek to understand the associated implications for snow albedo within climate dynamics, it is imperative that we are able to accurately represent snow in models. The SNow, ICe, and Aerosol Radiation model (SNICAR), developed by Flanner and Zender (2005) and used in the IPCC assessments, provides upward and downward radiative fluxes of one or many snow layers based on the following inputs: snow depth, density, grain size, and impurity content; solar zenith angle; lighting conditions; and albedo of the surface beneath the snowpack. To our knowledge, the SNICAR model has not been validated with data from a mid-latitude temperate region. Through a measurement campaign that occurred from winter 2013-2016, we have collected over 400 independent observations of a suite of snow characterization measurements and spectral snow albedo from three different sites in New Hampshire, USA. Comparison of our spectral albedo measurements to the SNICAR albedo derived from measured snow properties and illumination conditions will allow for validation of the model or recommendations for improvement based on the sensitivities found in the data.
NASA Astrophysics Data System (ADS)
Molotch, N. P.; Painter, T. H.; Bales, R. C.; Dozier, J.
2003-04-01
In this study, an accumulated net radiation / accumulated degree-day index snowmelt model was coupled with remotely sensed snow covered area (SCA) data to simulate snow cover depletion and reconstruct maximum snow water equivalent (SWE) in the 19.1-km2 Tokopah Basin of the Sierra Nevada, California. Simple net radiation snowmelt models are attractive for operational snowmelt runoff forecasts as they are computationally inexpensive and have low input requirements relative to physically based energy balance models. The objective of this research was to assess the accuracy of a simple net radiation snowmelt model in a topographically heterogeneous alpine environment. Previous applications of net radiation / temperature index snowmelt models have not been evaluated in alpine terrain with intensive field observations of SWE. Solar radiation data from two meteorological stations were distributed using the topographic radiation model TOPORAD. Relative humidity and temperature data were distributed based on the lapse rate calculated between three meteorological stations within the basin. Fractional SCA data from the Landsat Enhanced Thematic Mapper (5 acquisitions) and the Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) (2 acquisitions) were used to derive daily SCA using a linear regression between acquisition dates. Grain size data from AVIRIS (4 acquisitions) were used to infer snow surface albedo and interpolated linearly with time to derive daily albedo values. Modeled daily snowmelt rates for each 30-m pixel were scaled by the SCA and integrated over the snowmelt season to obtain estimates of maximum SWE accumulation. Snow surveys consisting of an average of 335 depth measurements and 53 density measurements during April, May and June, 1997 were interpolated using a regression tree / co-krig model, with independent variables of average incoming solar radiation, elevation, slope and maximum upwind slope. The basin was clustered into 7 elevation / average-solar-radiation zones for SWE accuracy assessment. Model simulations did a poor job at estimating the spatial distribution of SWE. Basin clusters where the solar radiative flux dominated the melt flux were simulated more accurately than those dominated by the turbulent fluxes or the longwave radiative flux.
Distributed snow modeling suitable for use with operational data for the American River watershed.
NASA Astrophysics Data System (ADS)
Shamir, E.; Georgakakos, K. P.
2004-12-01
The mountainous terrain of the American River watershed (~4300 km2) at the Western slope of the Northern Sierra Nevada is subject to significant variability in the atmospheric forcing that controls the snow accumulation and ablations processes (i.e., precipitation, surface temperature, and radiation). For a hydrologic model that attempts to predict both short- and long-term streamflow discharges, a plausible description of the seasonal and intermittent winter snow pack accumulation and ablation is crucial. At present the NWS-CNRFC operational snow model is implemented in a semi distributed manner (modeling unit of about 100-1000 km2) and therefore lump distinct spatial variability of snow processes. In this study we attempt to account for the precipitation, temperature, and radiation spatial variability by constructing a distributed snow accumulation and melting model suitable for use with commonly available sparse data. An adaptation of the NWS-Snow17 energy and mass balance that is used operationally at the NWS River Forecast Centers is implemented at 1 km2 grid cells with distributed input and model parameters. The input to the model (i.e., precipitation and surface temperature) is interpolated from observed point data. The surface temperature was interpolated over the basin based on adiabatic lapse rates using topographic information whereas the precipitation was interpolated based on maps of climatic mean annual rainfall distribution acquired from PRISM. The model parameters that control the melting rate due to radiation were interpolated based on aspect. The study was conducted for the entire American basin for the snow seasons of 1999-2000. Validation of the Snow Water Equivalent (SWE) prediction is done by comparing to observation from 12 snow Sensors. The Snow Cover Area (SCA) prediction was evaluated by comparing to remotely sensed 500m daily snow cover derived from MODIS. The results that the distribution of snow over the area is well captured and the quantity compared to the snow gauges are well estimated in the high elevation.
NASA Astrophysics Data System (ADS)
Niwano, Masashi; Aoki, Teruo; Hashimoto, Akihiro; Matoba, Sumito; Yamaguchi, Satoru; Tanikawa, Tomonori; Fujita, Koji; Tsushima, Akane; Iizuka, Yoshinori; Shimada, Rigen; Hori, Masahiro
2018-02-01
To improve surface mass balance (SMB) estimates for the Greenland Ice Sheet (GrIS), we developed a 5 km resolution regional climate model combining the Japan Meteorological Agency Non-Hydrostatic atmospheric Model and the Snow Metamorphism and Albedo Process model (NHM-SMAP) with an output interval of 1 h, forced by the Japanese 55-year reanalysis (JRA-55). We used in situ data to evaluate NHM-SMAP in the GrIS during the 2011-2014 mass balance years. We investigated two options for the lower boundary conditions of the atmosphere: an offline configuration using snow, firn, and ice albedo, surface temperature data from JRA-55, and an online configuration using values from SMAP. The online configuration improved model performance in simulating 2 m air temperature, suggesting that the surface analysis provided by JRA-55 is inadequate for the GrIS and that SMAP results can better simulate physical conditions of snow/firn/ice. It also reproduced the measured features of the GrIS climate, diurnal variations, and even a strong mesoscale wind event. In particular, it successfully reproduced the temporal evolution of the GrIS surface melt area extent as well as the record melt event around 12 July 2012, at which time the simulated melt area extent reached 92.4 %. Sensitivity tests showed that the choice of calculation schemes for vertical water movement in snow and firn has an effect as great as 200 Gt year-1 in the GrIS-wide accumulated SMB estimates; a scheme based on the Richards equation provided the best performance.
NASA Astrophysics Data System (ADS)
Zhou, L.; Xu, S.; Liu, J.
2017-12-01
The retrieval of sea ice thickness mainly relies on satellite altimetry, and the freeboard measurements are converted to sea ice thickness (hi) under certain assumptions over snow loading. The uncertain in snow depth (hs) is a major source of uncertainty in the retrieved sea ice thickness and total volume for both radar and laser altimetry. In this study, novel algorithms for the simultaneous retrieval of hi and hs are proposed for the data synergy of L-band (1.4 GHz) passive remote sensing and both types of active altimetry: (1) L-band (1.4GHz) brightness temperature (TB) from Soil Moisture Ocean Salinity (SMOS) satellite and sea ice freeboard (FBice) from radar altimetry, (2) L-band TB data and snow freeboard (FBsnow) from laser altimetry. Two physical models serve as the forward models for the retrieval: L-band radiation model, and the hydrostatic equilibrium model. Verification with SMOS and Operational IceBridge (OIB) data is carried out, showing overall good retrieval accuracy for both sea ice parameters. Specifically, we show that the covariability between hs and FBsnow is crucial for the synergy between TB and FBsnow. Comparison with existing algorithms shows lower uncertainty in both sea ice parameters, and that the uncertainty in the retrieved sea ice thickness as caused by that of snow depth is spatially uncorrelated, with the potential reduction of the volume uncertainty through spatial sampling. The proposed algorithms can be applied to the retrieval of sea ice parameters at basin-scale, using concurrent active and passive remote sensing data based on satellites.
NASA Astrophysics Data System (ADS)
Domine, Florent; Barrere, Mathieu; Sarrazin, Denis
2016-11-01
The values of the snow and soil thermal conductivity, ksnow and ksoil, strongly impact the thermal regime of the ground in the Arctic, but very few data are available to test model predictions for these variables. We have monitored ksnow and ksoil using heated needle probes at Bylot Island in the Canadian High Arctic (73° N, 80° W) between July 2013 and July 2015. Few ksnow data were obtained during the 2013-2014 winter, because little snow was present. During the 2014-2015 winter ksnow monitoring at 2, 12 and 22 cm heights and field observations show that a depth hoar layer with ksnow around 0.02 W m-1 K-1 rapidly formed. At 12 and 22 cm, wind slabs with ksnow around 0.2 to 0.3 W m-1 K-1 formed. The monitoring of ksoil at 10 cm depth shows that in thawed soil ksoil was around 0.7 W m-1 K-1, while in frozen soil it was around 1.9 W m-1 K-1. The transition between both values took place within a few days, with faster thawing than freezing and a hysteresis effect evidenced in the thermal conductivity-liquid water content relationship. The fast transitions suggest that the use of a bimodal distribution of ksoil for modelling may be an interesting option that deserves further testing. Simulations of ksnow using the snow physics model Crocus were performed. Contrary to observations, Crocus predicts high ksnow values at the base of the snowpack (0.12-0.27 W m-1 K-1) and low ones in its upper parts (0.02-0.12 W m-1 K-1). We diagnose that this is because Crocus does not describe the large upward water vapour fluxes caused by the temperature gradient in the snow and soil. These fluxes produce mass transfer between the soil and lower snow layers to the upper snow layers and the atmosphere. Finally, we discuss the importance of the structure and properties of the Arctic snowpack on subnivean life, as species such as lemmings live under the snow most of the year and must travel in the lower snow layer in search of food.
Refreezing on the Greenland ice sheet: a model comparison
NASA Astrophysics Data System (ADS)
Steger, Christian; Reijmer, Carleen; van den Broeke, Michiel; Ligtenberg, Stefan; Kuipers Munneke, Peter; Noël, Brice
2016-04-01
Mass loss of the Greenland ice sheet (GrIS) is an important contributor to global sea level rise. Besides calving, surface melt is the dominant source of mass loss. However, only part of the surface melt leaves the ice sheet as runoff whereas the other part percolates into the snow cover and refreezes. Due to this process, part of the meltwater is (intermediately) stored. Refreezing thus impacts the surface mass balance of the ice sheet but it also affects the vertical structure of the snow cover due to transport of mass and energy. Due to the sparse availability of in situ data and the demand of future projections, it is inevitable to use numerical models to simulate refreezing and related processes. Currently, the magnitude of refrozen mass is neither well constrained nor well validated. In this study, we model the snow and firn layer, and compare refreezing on the GrIS as modelled with two different numerical models. Both models are forced with meteorological data from the regional climate model RACMO 2 that has been shown to simulate realistic conditions for Greenland. One model is the UU/IMAU firn densification model (FDM) that can be used both in an on- and offline mode with RACMO 2. The other model is SNOWPACK; a model originally designed to simulate seasonal snow cover in alpine conditions. In contrast to FDM, SNOWPACK accounts for snow metamorphism and microstructure and contains a more physically based snow densification scheme. A first comparison of the models indicates that both seem to be able to capture the general spatial and temporal pattern of refreezing. Spatially, refreezing occurs mostly in the ablation zone and decreases in the accumulation zone towards the interior of the ice sheet. Below the equilibrium line altitude (ELA) where refreezing occurs in seasonal snow cover on bare ice, the storage effect is only intermediate. Temporal patterns on a seasonal range indicate two peaks in refreezing; one at the beginning of the melt season where water infiltrates the cold snow pack and one in early winter where the penetration of the cold surface temperature refreezes the retained liquid water. However, the model comparison reveals differences especially close to the equilibrium line where refreezing and runoff seem to be highly sensitive to the exact model formulation and fresh snow density initialization. Furthermore, SNOWPACK's densification scheme generally underestimates densification rates in case of high overburden pressure.
Bromine release from blowing snow and its impact on tropospheric chemistry
NASA Astrophysics Data System (ADS)
Griffiths, Paul; Yang, Xin; Abraham, N. Luke; Archibald, Alexander; Pyle, John
2016-04-01
In the last two decades, significant depletion of boundary layer ozone (ozone depletion events, ODEs) has been observed in both Arctic and Antarctic spring. ODEs are attributed to catalytic destruction by bromine radicals (Br plus BrO), especially during bromine explosion events (BEs), when high concentrations of BrO periodically occur. The source of bromine and the mechanism that sustains the high BrO levels are still the subject of study. Recent work by Pratt et al. (2013) posits Br2 production within saline snow and sea ice which leads to sudden ODEs. Previously, Yang et al. (2008) suggested snow could provide a source of (depleted) sea-salt aerosol if wicked from the surface of ice. They suggest that rapid depletion of bromide from the aerosol will constitute a source of photochemical Bry. Given the large sea ice extent in polar regions, this may constitute a significant source of sea salt and bromine in the polar lower atmosphere. While bromine release from blowing snow is perhaps less likely to trigger sudden ODEs, it may make a contribution to regional scale processes affecting ozone levels. Currently, the model parameterisations of Yang et al. assumes that rapid release of bromine occurs from fresh snow on sea ice during periods of strong wind. The parameterisation depends on an assumed sea-salt aerosol distribution generated via sublimation of the snow above the boundary layer, as well as taking into account the salinity of the snow. In this work, we draw on recent measurements by scientists from the British Antarctic Survey during a cruise aboard the Polarstern in the southern oceans. This has provided an extensive set of measurements of the chemical and physical characteristics of blowing snow over sea ice, and of the aerosol associated with it. Based on the observations, we have developed an improved parameterisation of the release of bromine from blowing snow. The paper presents results from the simulation performed using the United Kingdom Chemistry and Aerosols (UKCA) model, run as a component of the UK Met Office Unified Model, employing the updated parameterisation of Yang et al. We assess the performance of the parameterisation in simulating tropospheric BrO, a review of relevant parameters, as well as a quantitative assessment of the release of sea salt aerosol and its contribution to halogen chemistry in the polar and global atmosphere.
NASA Astrophysics Data System (ADS)
Lendzioch, Theodora; Langhammer, Jakub; Jenicek, Michal
2017-04-01
A rapid and robust approach using Unmanned Aerial Vehicle (UAV) digital photogrammetry was performed for evaluating snow accumulation over different small localities (e.g. disturbed forest and open area) and for indirect field measurements of Leaf Area Index (LAI) of coniferous forest within the Šumava National Park, Czech Republic. The approach was used to reveal impacts related to changes in forest and snowpack and to determine winter effective LAI for monitoring the impact of forest canopy metrics on snow accumulation. Due to the advancement of the technique, snow depth and volumetric changes of snow depth over these selected study areas were estimated at high spatial resolution (1 cm) by subtracting a snow-free digital elevation model (DEM) from a snow-covered DEM. Both, downward-looking UAV images and upward-looking digital hemispherical photography (DHP), and additional widely used LAI-2200 canopy analyser measurements were applied to determine the winter LAI, controlling interception and transmitting radiation. For the performance of downward-looking UAV images the snow background instead of the sky fraction was used. The reliability of UAV-based LAI retrieval was tested by taking an independent data set during the snow cover mapping campaigns. The results showed the potential of digital photogrammetry for snow depth mapping and LAI determination by UAV techniques. The average difference obtained between ground-based and UAV-based measurements of snow depth was 7.1 cm with higher values obtained by UAV. The SD of 22 cm for the open area seemed competitive with the typical precision of point measurements. In contrast, the average difference in disturbed forest area was 25 cm with lower values obtained by UAV and a SD of 36 cm, which is in agreement with other studies. The UAV-based LAI measurements revealed the lowest effective LAI values and the plant canopy analyser LAI-2200 the highest effective LAI values. The biggest bias of effective LAI was observed between LAI-2200 and UAV-based analyses. Since the LAI parameter is important for snowpack modelling, this method presents the potential of simplifying LAI retrieval and mapping of snow dynamics while reducing running costs and time.
Li, Yijia; Ye, Tao; Liu, Weihang; Gao, Yu
2018-06-01
Livestock snow disaster occurs widely in Central-to-Eastern Asian temperate and alpine grasslands. The effects of snow disaster on livestock involve a complex interaction between precipitation, vegetation, livestock, and herder communities. Quantifying the relationship among livestock mortality, snow hazard intensity, and seasonal environmental stressors is of great importance for snow disaster early warning, risk assessments, and adaptation strategies. Using a wide-spatial extent, long-time series, and event-based livestock snow disaster dataset, this study quantified those relationships and established a quantitative model of livestock mortality for prediction purpose for the Qinghai-Tibet Plateau region. Estimations using generalized additive models (GAMs) were shown to accurately predict livestock mortality and mortality rate due to snow disaster, with adjusted-R 2 up to 0.794 and 0.666, respectively. These results showed that a longer snow disaster duration, lower temperatures during the disaster, and a drier summer with less vegetation all contribute significantly and non-linearly to higher mortality (rate), after controlling for elevation and socioeconomic conditions. These results can be readily applied to risk assessment and risk-based adaptation actions. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lee, Kyeong-sang; Choi, Sungwon; Seo, Minji; Lee, Chang suk; Seong, Noh-hun; Han, Kyung-Soo
2016-10-01
Snow cover is biggest single component of cryosphere. The Snow is covering the ground in the Northern Hemisphere approximately 50% in winter season and is one of climate factors that affects Earth's energy budget because it has higher reflectance than other land types. Also, snow cover has an important role about hydrological modeling and water resource management. For this reason, accurate detection of snow cover acts as an essential element for regional water resource management. Snow cover detection using satellite-based data have some advantages such as obtaining wide spatial range data and time-series observations periodically. In the case of snow cover detection using satellite data, the discrimination of snow and cloud is very important. Typically, Misclassified cloud and snow pixel can lead directly to error factor for retrieval of satellite-based surface products. However, classification of snow and cloud is difficult because cloud and snow have similar optical characteristics and are composed of water or ice. But cloud and snow has different reflectance in 1.5 1.7 μm wavelength because cloud has lower grain size and moisture content than snow. So, cloud and snow shows difference reflectance patterns change according to wavelength. Therefore, in this study, we perform algorithm for classifying snow cover and cloud with satellite-based data using Dynamic Time Warping (DTW) method which is one of commonly used pattern analysis such as speech and fingerprint recognitions and reflectance spectral library of snow and cloud. Reflectance spectral library is constructed in advance using MOD21km (MODIS Level1 swath 1km) data that their reflectance is six channels including 3 (0.466μm), 4 (0.554μm), 1 (0.647μm), 2 (0.857μm), 26 (1.382μm) and 6 (1.629μm). We validate our result using MODIS RGB image and MOD10 L2 swath (MODIS swath snow cover product). And we use PA (Producer's Accuracy), UA (User's Accuracy) and CI (Comparison Index) as validation criteria. The result of our study detect as snow cover in the several regions which are did not detected as snow in MOD10 L2 and detected as snow cover in MODIS RGB image. The result of our study can improve accuracy of other surface product such as land surface reflectance and land surface emissivity. Also it can use input data of hydrological modeling.
Forward-looking Assimilation of MODIS-derived Snow Covered Area into a Land Surface Model
NASA Technical Reports Server (NTRS)
Zaitchik, Benjamin F.; Rodell, Matthew
2008-01-01
Snow cover over land has a significant impact on the surface radiation budget, turbulent energy fluxes to the atmosphere, and local hydrological fluxes. For this reason, inaccuracies in the representation of snow covered area (SCA) within a land surface model (LSM) can lead to substantial errors in both offline and coupled simulations. Data assimilation algorithms have the potential to address this problem. However, the assimilation of SCA observations is complicated by an information deficit in the observation SCA indicates only the presence or absence of snow, and not snow volume and by the fact that assimilated SCA observations can introduce inconsistencies with atmospheric forcing data, leading to non-physical artifacts in the local water balance. In this paper we present a novel assimilation algorithm that introduces MODIS SCA observations to the Noah LSM in global, uncoupled simulations. The algorithm utilizes observations from up to 72 hours ahead of the model simulation in order to correct against emerging errors in the simulation of snow cover while preserving the local hydrologic balance. This is accomplished by using future snow observations to adjust air temperature and, when necessary, precipitation within the LSM. In global, offline integrations, this new assimilation algorithm provided improved simulation of SCA and snow water equivalent relative to open loop integrations and integrations that used an earlier SCA assimilation algorithm. These improvements, in turn, influenced the simulation of surface water and energy fluxes both during the snow season and, in some regions, on into the following spring.
Towards a well-founded and reproducible snow load map for Austria
NASA Astrophysics Data System (ADS)
Winkler, Michael; Schellander, Harald
2017-04-01
"EN 1991-1-3 Eurocode 1: Part 1-3: Snow Loads" provides standard for the determination of the snow load to be used for the structural design of buildings etc. Since 2006 national specifications for Austria define a snow load map with four "load zones", allowing the calculation of the characteristic ground snow load sk for locations below 1500 m asl. A quadratic regression between altitude and sk is used, as suggested by EN 1991-1-3. The actual snow load map is based on best meteorological practice, but still it is somewhat subjective and non-reproducible. Underlying snow data series often end in the 1980s; in the best case data until about 2005 is used. Moreover, extreme value statistics only rely on the Gumbel distribution and the way in which snow depths are converted to snow loads is generally unknown. This might be enough reasons to rethink the snow load standard for Austria, all the more since today's situation is different to what it was some 15 years ago: Firstly, Austria is rich of multi-decadal, high quality snow depth measurements. These data are not well represented in the actual standard. Secondly, semi-empirical snow models allow sufficiently precise calculations of snow water equivalents and snow loads from snow depth measurements without the need of other parameters like temperature etc. which often are not available at the snow measurement sites. With the help of these tools, modelling of daily snow load series from daily snow depth measurements is possible. Finally, extreme value statistics nowadays offers convincing methods to calculate snow depths and loads with a return period of 50 years, which is the base of sk, and allows reproducible spatial extrapolation. The project introduced here will investigate these issues in order to update the Austrian snow load standard by providing a well-founded and reproducible snow load map for Austria. Not least, we seek for contact with standards bodies of neighboring countries to find intersections as well as to avoid inconsistencies and duplications of effort.
Dominance of grain size impacts on seasonal snow albedo at open sites in New Hampshire
NASA Astrophysics Data System (ADS)
Adolph, Alden C.; Albert, Mary R.; Lazarcik, James; Dibb, Jack E.; Amante, Jacqueline M.; Price, Andrea
2017-01-01
Snow cover serves as a major control on the surface energy budget in temperate regions due to its high reflectivity compared to underlying surfaces. Winter in the northeastern United States has changed over the last several decades, resulting in shallower snowpacks, fewer days of snow cover, and increasing precipitation falling as rain in the winter. As these climatic changes occur, it is imperative that we understand current controls on the evolution of seasonal snow albedo in the region. Over three winter seasons between 2013 and 2015, snow characterization measurements were made at three open sites across New Hampshire. These near-daily measurements include spectral albedo, snow optical grain size determined through contact spectroscopy, snow depth, snow density, black carbon content, local meteorological parameters, and analysis of storm trajectories using the Hybrid Single-Particle Lagrangian Integrated Trajectory model. Using analysis of variance, we determine that land-based winter storms result in marginally higher albedo than coastal storms or storms from the Atlantic Ocean. Through multiple regression analysis, we determine that snow grain size is significantly more important in albedo reduction than black carbon content or snow density. And finally, we present a parameterization of albedo based on days since snowfall and temperature that accounts for 52% of variance in albedo over all three sites and years. Our improved understanding of current controls on snow albedo in the region will allow for better assessment of potential response of seasonal snow albedo and snow cover to changing climate.
NASA Astrophysics Data System (ADS)
Niwano, M.; Aoki, T.; Matoba, S.; Yamaguchi, S.; Tanikawa, T.; Kuchiki, K.; Motoyama, H.
2015-12-01
The snow and ice on the Greenland ice sheet (GrIS) experienced the extreme surface melt around 12 July, 2012. In order to understand the snow-atmosphere interaction during the period, we applied a physical snowpack model SMAP to the GrIS snowpack. In the SMAP model, the snow albedo is calculated by the PBSAM component explicitly considering effects of snow grain size and light-absorbing snow impurities such as black carbon and dust. Temporal evolution of snow grain size is calculated internally in the SMAP model, whereas mass concentrations of snow impurities are externally given from observations. In the PBSAM, the (shortwave) snow albedo is calculated from a weighted summation of visible albedo (primarily affected by snow impurities) and near-infrared albedo (mainly controlled by snow grain size). The weights for these albedos are the visible and near-infrared fractions of the downward shortwave radiant flux. The SMAP model forced by meteorological data obtained from an automated weather station at SIGMA-A site, northwest GrIS during 30 June to 14 July, 2012 (IOP) was evaluated in terms of surface (optically equivalent) snow grain size and snow albedo. Snow grain size simulated by the model was compared against that retrieved from in-situ spectral albedo measurements. Although the RMSE and ME were reasonable (0.21 mm and 0.17 mm, respectively), the small snow grain size associated with the surface hoar could not be simulated by the SMAP model. As for snow albedo, simulation results agreed well with observations throughout the IOP (RMSE was 0.022 and ME was 0.008). Under cloudy-sky conditions, the SMAP model reproduced observed rapid increase in the snow albedo. When cloud cover is present the near-infrared fraction of the downward shortwave radiant flux is decreased, while it is increased under clear-sky conditions. Therefore, the above mentioned performance of the SMAP model can be attributed to the PBSAM component driven by the observed near-infrared and visible fractions of the downward shortwave radiant flux. This result suggests that it is necessary for snowpack models to consider changes in the visible and near-infrared fractions of the downward shortwave radiant flux caused by the presence of cloud cover to reproduce realistic temporal changes in the snow albedo and consequently the surface energy balance.
NASA Astrophysics Data System (ADS)
Montilla, Soledad; Pimentel, Rafael; José Pérez-Palazón, María; Aguillar, Cristina; José Polo, María
2017-04-01
Snow plays a key role at the hydrological cycle in semiarid mountainous areas, modifying the energy and water balances that govern the regime of stored water in the snowpack, a key resource for the spring and summer river flow. The Natural and National Park of Sierra Nevada (SNNP), a coastal mountain range up to 3450 m a.s.l. in southern Spain, is a representative example of snow areas in Mediterranean-climate regions; its high altitudinal gradient results in a wide variety of eco-climatic environments, and it is part of the global monitoring network to study climate change. Both monitoring and modelling efforts have been performed to assess this variability and its significant scales; whereas increasing temperature trends have been found, no significant trends are observed so far regarding the precipitation regime both on a seasonal and annual basis, with a highly variable impact on the snow regime in this area, especially in the mid-altitude range. In this context, the study of the snow cover in the neighbouring Natural Park of Cazorla, Segura and Las Villas (CSLVNP), with similar climatic conditions but lower altitudes (up to 2107 m a.s.l.) is proposed as a parallel monitoring site for early warning of impacts of climate change on the snow regime. The CSLVNP is the most extensive protected area in Spain and it is located to the north of SNPN, with less influence of the Mediterranean Sea. This study carried out a first quantification of the snow importance in this area, which exhibits a large transitional zone with a dominant alpine environment, and its relationship with the observed local precipitation-temperature trends. For this, the snow cover fraction on a 30x30 m gridded resolution has been studied during a 5-yr period combining on-site meteorological observations and remote-sensing data analysis, and snow modelling by the distributed and physically based approach for Mediterranean regions proposed by Herrero et al. (2009; 2010). The analysis of the available series of satellite images Landsat 8 OLI/TIRS, Landsat 7 ETM+ and Landsat 4-5 TM were used to obtain snow cover fraction maps with 30x30 m resolution. The study period 2010-2015 was simulated with the distributed snow model and the results were compared against these snow map series. Additionally, the annual and seasonal trends of precipitation, mean daily temperature and global radiation were obtained from the available local data sets. Globally, the simulated results overestimate the snow presence in the study area, very likely due to the estimation of snowfall. However, on a local scale, the model performance improves in the region between 1750 and 2250 m altitude. On the other hand, those zones at lower altitudes, which are a transition of the clearly alpine environment above, present a high variability of results related to the spatial patterns of precipitation, temperature and radiation. Regarding the precipitation-temperature regime, an increasing 0.05 °/yr over the last 30 years (1970-2010) was found, but no significant conclusion can be achieved on precipitation trends. This is also observed in the SNNP, which confirms the potential representativeness of PNCSV as an early warning site. Further work is being carried out to improve the snow modelling at this site and generate longer snow cover fraction maps series and other characteristic variables of the snow in this area.
Early results from NASA's SnowEx campaign
NASA Astrophysics Data System (ADS)
Kim, Edward; Gatebe, Charles; Hall, Dorothy; Misakonis, Amy; Elder, Kelly; Marshall, Hans Peter; Hiemstra, Chris; Brucker, Ludovic; Crawford, Chris; Kang, Do Hyuk; De Marco, Eugenia; Beckley, Matt; Entin, Jared
2017-04-01
SnowEx is a multi-year airborne snow campaign with the primary goal of addressing the question: How much water is stored in Earth's terrestrial snow-covered regions? Year 1 (2016-17) focuses on the distribution of snow-water equivalent (SWE) and the snow energy balance in a forested environment. The year 1 primary site is Grand Mesa and the secondary site is the Senator Beck Basin, both in western, Colorado, USA. Ten core sensors on four core aircraft will make observations using a broad suite of airborne sensors including active and passive microwave, and active and passive optical/infrared sensing techniques to determine the sensitivity and accuracy of these potential satellite remote sensing techniques, along with models, to measure snow under a range of forest conditions. SnowEx also includes an extensive range of ground truth measurements—in-situ samples, snow pits, ground based remote sensing measurements, and sophisticated new techniques. A detailed description of the data collected will be given and some early results will be presented. Seasonal snow cover is the largest single component of the cryosphere in areal extent (covering an average of 46M km2 of Earth's surface (31 % of land areas) each year). This seasonal snow has major societal impacts in the areas of water resources, natural hazards (floods and droughts), water security, and weather and climate. The only practical way to estimate the quantity of snow on a consistent global basis is through satellites. Yet, current space-based techniques underestimate storage of snow water equivalent (SWE) by as much as 50%, and model-based estimates can differ greatly vs. estimates based on remotely-sensed observations. At peak coverage, as much as half of snow-covered terrestrial areas involve forested areas, so quantifying the challenge represented by forests is important to plan any future snow mission. Single-sensor approaches may work for certain snow types and certain conditions, but not for others. Snow simply varies too much. Thus, the snow community consensus is that a multi-sensor approach is needed to adequately address global snow, combined with modeling and data assimilation. What remains at issue, then, is how best to combine and use the various sensors in an optimal way. That requires field measurements. NASA's SnowEx airborne campaign is designed to do exactly that. A list of core sensors is as follows. All are from NASA unless otherwise noted. • Radar (volume scattering): European Space Agency's SnowSAR, operated by MetaSensing • Lidar & hyperspectral imager: Airborne Snow Observatory (ASO) • Passive microwave: Airborne Earth Science Microwave Imaging Radiometer (AESMIR) • Bi-directional Reflectance Function (BRDF): the Cloud Absorption Radiometer (CAR) • Thermal Infrared imager • Thermal infrared non-imager from U. Washington • Video camera The ASO suite flew on a King Air, and the other sensors flew on a Navy P-3. In addition, two NASA radars flew on G-III aircraft to test more experimental retrieval techniques: • InSAR altimetry: Glacier and Ice Surface Topography Interferometer (GLISTIN-A) • Radar phase delay: Uninhabited Aerial Vehicle Synthetic Aperture Radar, (UAVSAR)
A Meteorological Supersite for Aviation and Cold Weather Applications
NASA Astrophysics Data System (ADS)
Gultepe, Ismail; Agelin-Chaab, M.; Komar, J.; Elfstrom, G.; Boudala, F.; Zhou, B.
2018-05-01
The goal of this study is to better understand atmospheric boundary layer processes and parameters, and to evaluate physical processes for aviation applications using data from a supersite observing site. Various meteorological sensors, including a weather and environmental unmanned aerial vehicle (WE-UAV), and a fog and snow tower (FSOS) observations are part of the project. The PanAm University of Ontario Institute of Technology (UOIT) Meteorological Supersite (PUMS) observations are being collected from April 2015 to date. The FSOS tower gathers observations related to rain, snow, fog, and visibility, aerosols, solar radiation, and wind and turbulence, as well as surface and sky temperature. The FSOSs are located at three locations at about 450-800 m away from the PUMS supersite. The WE-UAV measurements representing aerosol, wind speed and direction, as well as temperature (T) and relative humidity (RH) are provided during clear weather conditions. Other measurements at the PUMS site include cloud backscattering profiles from CL51 ceilometer, MWR observations of liquid water content (LWC), T, and RH, and Microwave Rain Radar (MRR) reflectivity profile, as well as the present weather type, snow water depth, icing rate, 3D-ultrasonic wind and turbulence, and conventional meteorological observations from compact weather stations, e.g., WXTs. The results based on important weather event studies, representing fog, snow, rain, blowing snow, wind gust, planetary boundary layer (PBL) wind research for UAV, and icing conditions are given. The microphysical parameterizations and analysis processes for each event are provided, but the results should not be generalized for all weather events and be used cautiously. Results suggested that integrated observing systems based on data from a supersite as well as satellite sites can provide better information applicable to aviation meteorology, including PBL weather research, validation of numerical weather model predictions, and remote-sensing retrievals. Overall, the results from the five cases are provided and challenges related to observations applicable to aviation meteorology are discussed.
NASA Astrophysics Data System (ADS)
Oroza, C.; Zheng, Z.; Glaser, S. D.; Bales, R. C.; Conklin, M. H.
2016-12-01
We present a structured, analytical approach to optimize ground-sensor placements based on time-series remotely sensed (LiDAR) data and machine-learning algorithms. We focused on catchments within the Merced and Tuolumne river basins, covered by the JPL Airborne Snow Observatory LiDAR program. First, we used a Gaussian mixture model to identify representative sensor locations in the space of independent variables for each catchment. Multiple independent variables that govern the distribution of snow depth were used, including elevation, slope, and aspect. Second, we used a Gaussian process to estimate the areal distribution of snow depth from the initial set of measurements. This is a covariance-based model that also estimates the areal distribution of model uncertainty based on the independent variable weights and autocorrelation. The uncertainty raster was used to strategically add sensors to minimize model uncertainty. We assessed the temporal accuracy of the method using LiDAR-derived snow-depth rasters collected in water-year 2014. In each area, optimal sensor placements were determined using the first available snow raster for the year. The accuracy in the remaining LiDAR surveys was compared to 100 configurations of sensors selected at random. We found the accuracy of the model from the proposed placements to be higher and more consistent in each remaining survey than the average random configuration. We found that a relatively small number of sensors can be used to accurately reproduce the spatial patterns of snow depth across the basins, when placed using spatial snow data. Our approach also simplifies sensor placement. At present, field surveys are required to identify representative locations for such networks, a process that is labor intensive and provides limited guarantees on the networks' representation of catchment independent variables.
NASA Astrophysics Data System (ADS)
He, M.; Hogue, T. S.; Franz, K.; Margulis, S. A.; Vrugt, J. A.
2009-12-01
The National Weather Service (NWS), the agency responsible for short- and long-term streamflow predictions across the nation, primarily applies the SNOW17 model for operational forecasting of snow accumulation and melt. The SNOW17-forecasted snowmelt serves as an input to a rainfall-runoff model for streamflow forecasts in snow-dominated areas. The accuracy of streamflow predictions in these areas largely relies on the accuracy of snowmelt. However, no direct snowmelt measurements are available to validate the SNOW17 predictions. Instead, indirect measurements such as snow water equivalent (SWE) measurements or discharge are typically used to calibrate SNOW17 parameters. In addition, the forecast practice is inherently deterministic, lacking tools to systematically address forecasting uncertainties (e.g., uncertainties in parameters, forcing, SWE and discharge observations, etc.). The current research presents an Integrated Uncertainty analysis and Ensemble-based data Assimilation (IUEA) framework to improve predictions of snowmelt and discharge while simultaneously providing meaningful estimates of the associated uncertainty. The IUEA approach uses the recently developed DiffeRential Evolution Adaptive Metropolis (DREAM) to simultaneously estimate uncertainties in model parameters, forcing, and observations. The robustness and usefulness of the IUEA-SNOW17 framework is evaluated for snow-dominated watersheds in the northern Sierra Mountains, using the coupled IUEA-SNOW17 and an operational soil moisture accounting model (SAC-SMA). Preliminary results are promising and indicate successful performance of the coupled IUEA-SNOW17 framework. Implementation of the SNOW17 with the IUEA is straightforward and requires no major modification to the SNOW17 model structure. The IUEA-SNOW17 framework is intended to be modular and transferable and should assist the NWS in advancing the current forecasting system and reinforcing current operational forecasting skill.
High Resolution Insights into Snow Distribution Provided by Drone Photogrammetry
NASA Astrophysics Data System (ADS)
Redpath, T.; Sirguey, P. J.; Cullen, N. J.; Fitzsimons, S.
2017-12-01
Dynamic in time and space, New Zealand's seasonal snow is largely confined to remote alpine areas, complicating ongoing in situ measurement and characterisation. Improved understanding and modeling of the seasonal snowpack requires fine scale resolution of snow distribution and spatial variability. The potential of remotely piloted aircraft system (RPAS) photogrammetry to resolve spatial and temporal variability of snow depth and water equivalent in a New Zealand alpine catchment is assessed in the Pisa Range, Central Otago. This approach yielded orthophotomosaics and digital surface models (DSM) at 0.05 and 0.15 m spatial resolution, respectively. An autumn reference DSM allowed mapping of winter (02/08/2016) and spring (10/09/2016) snow depth at 0.15 m spatial resolution, via DSM differencing. The consistency and accuracy of the RPAS-derived surface was assessed by comparison of snow-free regions of the spring and autumn DSMs, while accuracy of RPAS retrieved snow depth was assessed with 86 in situ snow probe measurements. Results show a mean vertical residual of 0.024 m between DSMs acquired in autumn and spring. This residual approximated a Laplace distribution, reflecting the influence of large outliers on the small overall bias. Propagation of errors associated with successive DSMs saw snow depth mapped with an accuracy of ± 0.09 m (95% c.l.). Comparing RPAS and in situ snow depth measurements revealed the influence of geo-location uncertainty and interactions between vegetation and the snowpack on snow depth uncertainty and bias. Semi-variogram analysis revealed that the RPAS outperformed systematic in situ measurements in resolving fine scale spatial variability. Despite limitations accompanying RPAS photogrammetry, this study demonstrates a repeatable means of accurately mapping snow depth for an entire, yet relatively small, hydrological basin ( 0.5 km2), at high resolution. Resolving snowpack features associated with re-distribution and preferential accumulation and ablation, snow depth maps provide geostatistically robust insights into seasonal snow processes, with unprecedented detail. Such data may enhance understanding of physical processes controlling spatial and temporal distribution of seasonal snow, and their relative importance at varying spatial and temporal scales.
Severe snow loads on mountain afforestation in Japan
Ryuzo Nitta; Yoshio Ozeki; Shoichi Niwano
1991-01-01
A simple device for estimating snow settling force on tree branches was used to determine the distribution of snow settling force at various heights in a snowy mountainous region in Japan. A trapezoidal distribution of snow settling force was found to exist at all sites tested. It is thought that a zoning scheme based on the damaging potential of snow on young man-made...
Ground based remote sensing retrievals and observations of snowfall in the Telemark region of Norway
NASA Astrophysics Data System (ADS)
Pettersen, C.; L'Ecuyer, T. S.; Wood, N.; Cooper, S.; Wolff, M. A.; Petersen, W. A.; Bliven, L. F.; Tushaus, S. A.
2017-12-01
Snowfall can be broadly categorized into deep and shallow events, based on the vertical extent of the frozen precipitation in the column. The two categories are driven by different thermodynamic and physical mechanisms in the atmosphere and surface. Though satellites can observe and recognize these patterns in snowfall, these measurements are limited - particularly in cases of shallow and light precipitation and over complex terrain. By enhancing satellite measurements with ground-based instrumentation, whether with limited-term field campaigns or long-term strategic sites, we can further our understanding and assumptions about different snowfall modes. We present data collected in a recently deployed ground suite of instruments based in Norway. The Meteorological Institute of Norway has a snow measurement suite in Haukeliseter located in the orographically complex Telemark region. This suite consists of several snow accumulation instruments as well as meteorological data (temperature, dew point, wind speeds and directions). A joint project between University of Wisconsin and University of Utah augmented this suite with a 24 GHz radar MicroRain Radar (MRR), a NASA Particle Imaging Package (PIP), and a Multi-Angle Snowflake Camera (MASC). Preliminary data from this campaign are presented along with coincident overpasses from the GPM satellite. We compare the ground-based and spaceborne remotely sensed estimates of snowfall with snow gauge observations from the Haukeliseter site. Finally, we discuss how particle size distribution and fall velocity observations from the PIP and MASC can be used to improve remotely-sensed snowfall retrievals as a function of environmental conditions at Haukeliseter.
NASA Astrophysics Data System (ADS)
Domine, Florent; Barrere, Mathieu; Morin, Samuel
2016-12-01
With climate warming, shrubs have been observed to grow on Arctic tundra. Their presence is known to increase snow height and is expected to increase the thermal insulating effect of the snowpack. An important consequence would be the warming of the ground, which will accelerate permafrost thaw, providing an important positive feedback to warming. At Bylot Island (73° N, 80° W) in the Canadian high Arctic where bushes of willows (Salix richardsonii Hook) are growing, we have observed the snow stratigraphy and measured the vertical profiles of snow density, thermal conductivity and specific surface area (SSA) in over 20 sites of high Arctic tundra and in willow bushes 20 to 40 cm high. We find that shrubs increase snow height, but only up to their own height. In shrubs, snow density, thermal conductivity and SSA are all significantly lower than on herb tundra. In shrubs, depth hoar which has a low thermal conductivity was observed to grow up to shrub height, while on herb tundra, depth hoar only developed to 5 to 10 cm high. The thermal resistance of the snowpack was in general higher in shrubs than on herb tundra. More signs of melting were observed in shrubs, presumably because stems absorb radiation and provide hotspots that initiate melting. When melting was extensive, thermal conductivity was increased and thermal resistance was reduced, counteracting the observed effect of shrubs in the absence of melting. Simulations of the effect of shrubs on snow properties and on the ground thermal regime were made with the Crocus snow physics model and the ISBA (Interactions between Soil-Biosphere-Atmosphere) land surface scheme, driven by in situ and reanalysis meteorological data. These simulations did not take into account the summer impact of shrubs. They predict that the ground at 5 cm depth at Bylot Island during the 2014-2015 winter would be up to 13 °C warmer in the presence of shrubs. Such warming may however be mitigated by summer effects.
N.M. Tchebakova; G.E. Rehfeldt; E.I. Parfenova
2003-01-01
Evidence for global warming over the past 200 years is overwhelming (Hulme et al. 1999), based on both direct weather observation and indirect physical and biological indicators such as retreating glaciers and snow/ice cover, increasing sea level, and longer growing seasons (IPCC 2001). Recent GCM projections of the Hadley Centre (Gordon et al. 2000) for Siberia show...
Zhang, J.-H.; Zhou, Z.-M.; Wang, P.-J.; Yao, F.-M.; Yang, L.
2011-01-01
The field spectroradiometer was used to measure spectra of different snow and snow-covered land surface objects in Beijing area. The result showed that for a pure snow spectrum, the snow reflectance peaks appeared from visible to 800 nm band locations; there was an obvious absorption valley of snow spectrum near 1030 nm wavelength. Compared with fresh snow, the reflection peaks of the old snow and melting snow showed different degrees of decline in the ranges of 300~1300, 1700~1800 and 2200~2300 nm, the lowest was from the compacted snow and frozen ice. For the vegetation and snow mixed spectral characteristics, it was indicated that the spectral reflectance increased for the snow-covered land types(including pine leaf with snow and pine leaf on snow background), due to the influence of snow background in the range of 350~1300 nm. However, the spectrum reflectance of mixed pixel remained a vegetation spectral characteristic. In the end, based on the spectrum analysis of snow, vegetation, and mixed snow/vegetation pixels, the mixed spectral fitting equations were established, and the results showed that there was good correlation between spectral curves by simulation fitting and observed ones(correlation coefficient R2=0.9509).
A Comparison of Satellite-Derived Snow Maps with a Focus on Ephemeral Snow in North Carolina
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Fuhrmann, Christopher M.; Perry, L. Baker; Riggs, George A.; Robinson, David A.; Foster, James L.
2010-01-01
In this paper, we focus on the attributes and limitations of four commonly-used daily snowcover products with respect to their ability to map ephemeral snow in central and eastern North Carolina. We show that the Moderate-Resolution Imaging Spectroradiometer (MODIS) fractional snow-cover maps can delineate the snow-covered area very well through the use of a fully-automated algorithm, but suffer from the limitation that cloud cover precludes mapping some ephemeral snow. The semi-automated Interactive Multi-sensor Snow and ice mapping system (IMS) and Rutgers Global Snow Lab (GSL) snow maps are often able to capture ephemeral snow cover because ground-station data are employed to develop the snow maps, The Rutgers GSL maps are based on the IMS maps. Finally, the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) provides some good detail of snow-water equivalent especially in deeper snow, but may miss ephemeral snow cover because it is often very thin or wet; the AMSR-E maps also suffer from coarse spatial resolution. We conclude that the southeastern United States represents a good test region for validating the ability of satellite snow-cover maps to capture ephemeral snow cover,
Macroscopic modeling for heat and water vapor transfer in dry snow by homogenization.
Calonne, Neige; Geindreau, Christian; Flin, Frédéric
2014-11-26
Dry snow metamorphism, involved in several topics related to cryospheric sciences, is mainly linked to heat and water vapor transfers through snow including sublimation and deposition at the ice-pore interface. In this paper, the macroscopic equivalent modeling of heat and water vapor transfers through a snow layer was derived from the physics at the pore scale using the homogenization of multiple scale expansions. The microscopic phenomena under consideration are heat conduction, vapor diffusion, sublimation, and deposition. The obtained macroscopic equivalent model is described by two coupled transient diffusion equations including a source term arising from phase change at the pore scale. By dimensional analysis, it was shown that the influence of such source terms on the overall transfers can generally not be neglected, except typically under small temperature gradients. The precision and the robustness of the proposed macroscopic modeling were illustrated through 2D numerical simulations. Finally, the effective vapor diffusion tensor arising in the macroscopic modeling was computed on 3D images of snow. The self-consistent formula offers a good estimate of the effective diffusion coefficient with respect to the snow density, within an average relative error of 10%. Our results confirm recent work that the effective vapor diffusion is not enhanced in snow.
Coupling of a Simple 3-Layer Snow Model to GISS GCM
NASA Astrophysics Data System (ADS)
Aleinov, I.
2001-12-01
Appropriate simulation of the snow cover dynamics is an important issue for the General Circulation Models (GCMs). The presence of snow has a significant impact on ground albedo and on heat and moisture balance. A 3-layer snow model similar to the one proposed by Lynch-Stieglitz was developed with the purpose of using it inside the GCM developed in the NASA Goddard Institute for Space Studies (GISS). The water transport between the layers is modeled explicitly while the heat balance is computed implicitly between the snow layers and semi-implicitly on the surface. The processes of melting and refreezing and compactification of layers under the gravitational force are modeled appropriately. It was noticed that implicit computation of the heat transport can cause a significant under- or over-estimation of the incoming heat flux when the temperature of the upper snow layer is equal to 0 C. This may lead in particular to delayed snow melting in spring. To remedy this problem a special flux-control algorithm was added to the model, which checks computed flux for possible errors and if such are detected the heat transport is recomputed again with the appropriate corrections. The model was tested off-line with Sleepers River forcing data and exhibited a good agreement between simulated and observed quantities for snow depth, snow density and snow temperature. The model was then incorporated into the GISS GCM. Inside the GCM the model is driven completely by the data simulated by other parts of the GCM. The screening effect of the vegetation is introduced by means of masking depth. For a thin snowpack a fractional cover is implemented so that the total thickness of the the snow is never less then 10 cm (rather, the areal fraction of the snow cover decreases when it melts). The model was tested with 6 year long GCM speed-up runs. It proved to be stable and produced reasonable results for the global snow cover. In comparison to the old GISS GCM snow model (which was incorporating the snow into the first soil layer) the new snow model has better insulating properties, thus preventing the ground from overcooling in winter. It also provides better simulation for water retention and release by the snow which results in more physical ground water runoff.
NASA Astrophysics Data System (ADS)
Sproles, E. A.; Crumley, R. L.; Nolin, A. W.; Mar, E.; Lopez-Moreno, J. J.
2017-12-01
Streamflow in snowy mountain regions is extraordinarily challenging to forecast, and prediction efforts are hampered by the lack of timely snow data—particularly in data sparse regions. SnowCloud is a prototype web-based framework that integrates remote sensing, cloud computing, interactive mapping tools, and a hydrologic model to offer a new paradigm for delivering key data to water resource managers. We tested the skill of SnowCloud to forecast monthly streamflow with one month lead time in three snow-dominated headwaters. These watersheds represent a range of precipitation/runoff schemes: the Río Elqui in northern Chile (200 mm/yr, entirely snowmelt); the John Day River, Oregon, USA (635 mm/yr, primarily snowmelt); and the Río Aragon in the northern Spain (850 mm/yr, snowmelt dominated). Model skill corresponded to snowpack contribution with Nash-Sutcliffe Efficiencies of 0.86, 0.52, and 0.21 respectively. SnowCloud does not require the user to possess advanced programming skills or proprietary software. We access NASA's MOD10A1 snow cover product to calculate the snow metrics globally using Google Earth Engine's geospatial analysis and cloud computing service. The analytics and forecast tools are provided through a web-based portal that requires only internet access and minimal training. To test the efficacy of SnowCloud we provided the tools and a series of tutorials in English and Spanish to water resource managers in Chile, Spain, and the United States. Participants assessed their user experience and provided feedback, and the results of our multi-cultural assessment are also presented. While our results focus on SnowCloud, they outline methods to develop cloud-based tools that function effectively across cultures and languages. Our approach also addresses the primary challenges of science-based computing; human resource limitations, infrastructure costs, and expensive proprietary software. These challenges are particularly problematic in developing countries.
NASA Astrophysics Data System (ADS)
Pan, J.; Durand, M. T.; Vanderjagt, B. J.
2015-12-01
Markov Chain Monte Carlo (MCMC) method is a retrieval algorithm based on Bayes' rule, which starts from an initial state of snow/soil parameters, and updates it to a series of new states by comparing the posterior probability of simulated snow microwave signals before and after each time of random walk. It is a realization of the Bayes' rule, which gives an approximation to the probability of the snow/soil parameters in condition of the measured microwave TB signals at different bands. Although this method could solve all snow parameters including depth, density, snow grain size and temperature at the same time, it still needs prior information of these parameters for posterior probability calculation. How the priors will influence the SWE retrieval is a big concern. Therefore, in this paper at first, a sensitivity test will be carried out to study how accurate the snow emission models and how explicit the snow priors need to be to maintain the SWE error within certain amount. The synthetic TB simulated from the measured snow properties plus a 2-K observation error will be used for this purpose. It aims to provide a guidance on the MCMC application under different circumstances. Later, the method will be used for the snowpits at different sites, including Sodankyla, Finland, Churchill, Canada and Colorado, USA, using the measured TB from ground-based radiometers at different bands. Based on the previous work, the error in these practical cases will be studied, and the error sources will be separated and quantified.
NASA Astrophysics Data System (ADS)
McPhee, James; Videla, Yohann
2014-05-01
The 5000-km2 upper Maipo River Basin, in central Chile's Andes, has an adequate streamgage network but almost no meteorological or snow accumulation data. Therefore, hydrologic model parameterization is strongly subject to model errors stemming from input and model-state uncertainty. In this research, we apply the Cold Regions Hydrologic Model (CRHM) to the basin, force it with reanalysis data downscaled to an appropriate resolution, and inform a parsimonious basin discretization, based on the hydrologic response unit concept, with distributed data on snowpack properties obtained through snow surveys for two seasons. With minimal calibration the model is able to reproduce the seasonal accumulation and melt cycle as recorded in the one snow pillow available for the basin, and although a bias in maximum accumulation persists, snowpack persistence in time is appropriately simulated based on snow water equivalent and snow covered area observations. Blowing snow events were simulated by the model whenever daily wind speed surpassed 8 m/s, although the use of daily instead of hourly data to force the model suggests that this phenomenon could be underestimated. We investigate the representation of snow redistribution by the model, and compare it with small-scale observations of wintertime snow accumulation on glaciers, in a first step towards characterizing ice distribution within a HRU spatial discretization. Although built at a different spatial scale, we present a comparison of simulated results with distributed snow depth data obtained within a 40 km2 sub-basin of the main Maipo watershed in two snow surveys carried out at the end of winter seasons 2011 and 2012, and compare basin-wide SWE estimates with a regression tree extrapolation of the observed data.
Yu, Ling-Xue; Zhang, Shu-Wen; Guan, Cong; Yan, Feng-Qin; Yang, Chao-Bin; Bu, Kun; Yang, Jiu-Chun; Chang, Li-Ping
2014-09-01
This paper extracted and verified the snow cover extent in Heilongjiang Basin from 2003 to 2012 based on MODIS Aqua and Terra data, and the seasonal and interannual variations of snow cover extent were analyzed. The result showed that the double-star composite data reduced the effects of clouds and the overall accuracy was more than 91%, which could meet the research requirements. There existed significant seasonal variation of snow cover extent. The snow cover area was almost zero in July and August while in January it expanded to the maximum, which accounted for more than 80% of the basin. According to the analysis on the interannual variability of snow cover, the maximum winter snow cover areas in 2003-2004 and 2009-2010 (>180 x 10(4) km2) were higher than that of 2011 (150 x 10(4) km2). Meanwhile, there were certain correlations between the interannual fluctuations of snow cover and the changes of average annual temperature and precipitation. The year with the low snow cover was corresponding to less annual rainfall and higher average temperature, and vice versa. The spring snow cover showed a decreasing trend from 2003 to 2012, which was closely linked with decreasing precipitation and increasing temperature.
NASA Astrophysics Data System (ADS)
Dizerens, Céline; Hüsler, Fabia; Wunderle, Stefan
2016-04-01
The spatial and temporal variability of snow cover has a significant impact on climate and environment and is of great socio-economic importance for the European Alps. Satellite remote sensing data is widely used to study snow cover variability and can provide spatially comprehensive information on snow cover extent. However, cloud cover strongly impedes the surface view and hence limits the number of useful snow observations. Outdoor webcam images not only offer unique potential for complementing satellite-derived snow retrieval under cloudy conditions but could also serve as a reference for improved validation of satellite-based approaches. Thousands of webcams are currently connected to the Internet and deliver freely available images with high temporal and spatial resolutions. To exploit the untapped potential of these webcams, a semi-automatic procedure was developed to generate snow cover maps based on webcam images. We used daily webcam images of the Swiss alpine region to apply, improve, and extend existing approaches dealing with the positioning of photographs within a terrain model, appropriate georectification, and the automatic snow classification of such photographs. In this presentation, we provide an overview of the implemented procedure and demonstrate how our registration approach automatically resolves the orientation of a webcam by using a high-resolution digital elevation model and the webcam's position. This allows snow-classified pixels of webcam images to be related to their real-world coordinates. We present several examples of resulting snow cover maps, which have the same resolution as the digital elevation model and indicate whether each grid cell is snow-covered, snow-free, or not visible from webcams' positions. The procedure is expected to work under almost any weather condition and demonstrates the feasibility of using webcams for the retrieval of high-resolution snow cover information.
NASA Astrophysics Data System (ADS)
Pardo-Iguzquiza, Eulogio; Juan Collados Lara, Antonio; Pulido-Velazquez, David
2016-04-01
The snow availability in Alpine catchments is essential for the economy of these areas. It plays an important role in tourist development but also in the management of the Water Resources Snow is an important water resource in many river basins with mountains in the catchment area. The determination of the snow water equivalent requires the estimation of the evolution of the snow pack (cover area, thickness and snow density) along the time. Although there are complex physical models of the dynamics of the snow pack, sometimes the data available are scarce and a stochastic model like the cellular automata (CA) can be of great practical interest. CA can be used to model the dynamics of growth and wane of the snow pack. The CA is calibrated with historical data. This requires the determination of transition rules that are capable of modeling the evolution of the spatial pattern of snow cover area. Furthermore, CA requires the definition of states and neighborhoods. We have included topographical variables and climatological variables in order to define the state of each pixel. The evolution of snow cover in a pixel depends on its state, the state of the neighboring pixels and the transition rules. The calibration of the CA is done using daily MODIS data, available for the period 24/02/2002 to present with a spatial resolution of 500 m, and the LANDSAT information available with a sixteen-day periodicity from 1984 to the present and with spatial resolution of 30 m. The methodology has been applied to estimation of the snow cover area of Sierra Nevada mountain range in the Southern of Spain to obtain snow cover area daily information with 500 m spatial resolution for the period 1980-2014. Acknowledgments: This research has been partially supported by the GESINHIMPADAPT project (CGL2013-48424-C2-2-R) with Spanish MINECO funds. We would also like to thank NASA DAAC and LANDSAT project for the data provided for this study.
Evolution of the Specific Surface Area of Snow in a High Temperature Gradient Metamorphism
NASA Astrophysics Data System (ADS)
Wang, X.; Baker, I.
2014-12-01
The structural evolution of low-density snow under a high temperature gradient over a short period usually takes place in the surface layers during diurnal recrystallization or on a clear, cold night. To relate snow microstructures with their thermal properties, we combined X-ray computed microtomography (micro-CT) observations with numerical simulations. Different types of snow were tested over a large range of TGs (100 K m-1- 500 K m-1). The Specific Surface Area (SSA) was used to characterize the temperature gradient metamorphism (TGM). The magnitude of the temperature gradient and the initial snow type both influence the evolution of SSA. The SSA evolution under TGM was dominated by grain growth and the formation of complex surfaces. Fresh snow experienced a logarithmic decrease of SSA with time, a feature been observed previously by others [Calonne et al., 2014; Schneebeli and Sokratov, 2004; Taillandier et al., 2007]. However, for initial rounded and connected snow structures, the SSA will increase during TGM. Understanding the SSA increase is important in order to predict the enhanced uptake of chemical species by snow or increase in snow albedo. Calonne, N., F. Flin, C. Geindreau, B. Lesaffre, and S. Rolland du Roscoat (2014), Study of a temperature gradient metamorphism of snow from 3-D images: time evolution of microstructures, physical properties and their associated anisotropy, The Cryosphere Discussions, 8, 1407-1451, doi:10.5194/tcd-8-1407-2014. Schneebeli, M., and S. A. Sokratov (2004), Tomography of temperature gradient metamorphism of snow and associated changes in heat conductivity, Hydrological Processes, 18(18), 3655-3665, doi:10.1002/hyp.5800. Taillandier, A. S., F. Domine, W. R. Simpson, M. Sturm, and T. A. Douglas (2007), Rate of decrease of the specific surface area of dry snow: Isothermal and temperature gradient conditions, Journal of Geophysical Research: Earth Surface (2003-2012), 112(F3), doi: 10.1029/2006JF000514.
The risks and benefits of snow sports for people with disabilities: a review of the literature.
Nasuti, Gabriella; Temple, Viviene A
2010-09-01
Snow sports are popular pastimes with therapeutic potential. The aim of this review is to evaluate the risk of injury and evidence of benefits of alpine skiing (including sit-skiing), Nordic skiing, and snowboarding for people with disabilities. Ten studies met the inclusion criteria from 357 citations. Research in this area is still in its infancy, but the risks of engaging in snow sports appear no greater than those of the general population, and there is some evidence that skiing can positively influence self-esteem, physical self-worth, standing balance, and gross motor function among individuals with a disability.
CREST-SAFE: Snow LST validation, wetness profiler creation, and depth/SWE product development
NASA Astrophysics Data System (ADS)
Perez Diaz, C. L.; Lakhankar, T.; Romanov, P.; Khanbilvardi, R.; Munoz Barreto, J.; Yu, Y.
2017-12-01
CREST-SAFE: Snow LST validation, wetness profiler creation, and depth/SWE product development The Field Snow Research Station (also referred to as Snow Analysis and Field Experiment, SAFE) is operated by the NOAA Center for Earth System Sciences and Remote Sensing Technologies (CREST) in the City University of New York (CUNY). The field station is located within the premises of the Caribou Municipal Airport (46°52'59'' N, 68°01'07'' W) and in close proximity to the National Weather Service (NWS) Regional Forecast Office. The station was established in 2010 to support studies in snow physics and snow remote sensing. The Visible Infrared Imager Radiometer Suite (VIIRS) Land Surface Temperature (LST) Environmental Data Record (EDR) and Moderate Resolution Imaging Spectroradiometer (MODIS) LST product (provided by the Terra and Aqua Earth Observing System satellites) were validated using in situ LST (T-skin) and near-surface air temperature (T-air) observations recorded at CREST-SAFE for the winters of 2013 and 2014. Results indicate that T-air correlates better than T-skin with VIIRS LST data and that the accuracy of nighttime LST retrievals is considerably better than that of daytime. Several trends in the MODIS LST data were observed, including the underestimation of daytime values and night-time values. Results indicate that, although all the data sets showed high correlation with ground measurements, day values yielded slightly higher accuracy ( 1°C). Additionally, we created a liquid water content (LWC)-profiling instrument using time-domain reflectometry (TDR) at CREST-SAFE and tested it during the snow melt period (February-April) immediately after installation in 2014. Results displayed high agreement when compared to LWC estimates obtained using empirical formulas developed in previous studies, and minor improvement over wet snow LWC estimates. Lastly, to improve on global snow cover mapping, a snow product capable of estimating snow depth and snow water equivalent (SWE) using microwave remote sensing and the CREST Snow Depth Regression Tree Model (SDRTM) was developed. Data from AMSR2 onboard the JAXA GCOM-W1 satellite is used to produce daily global snow depth and SWE maps in automated fashion at a 10-km resolution.
NASA Astrophysics Data System (ADS)
Obbard, R. W.
2015-07-01
This comment addresses a statement made in "A review of air-ice chemical and physical interactions (AICI): liquids, quasi-liquids, and solids in snow" by Bartels-Rausch et al. (Atmos. Chem. Phys., 14, 1587-1633, doi:10.5194/acp-14-1587-2014, 2014). Here we rebut the assertion that X-ray computed microtomography of sea ice fails to reveal liquid brine inclusions by discussing the phases present at the analysis temperature.
Small-area snow surveys on the northern plains of North Dakota
Emerson, Douglas G.; Carroll, T.R.; Steppuhn, Harold
1985-01-01
Snow-cover data are needed for many facets of hydrology. The variation in snow cover over small areas is the focus of this study. The feasibility of using aerial surveys to obtain information on the snow water equivalent of the snow cover in order to minimize the necessity of labor intensive ground snow surveys was- evaluated. A low-flying aircraft was used to measure attenuations of natural terrestrial gamma radiation by snow cover. Aerial and ground snow surveys of eight 1-mile snow courses and one 4-mile snow course were used in the evaluation, with ground snow surveys used as the base to evaluate aerial data. Each of the 1-mile snow courses consisted of a single land use and all had the same terrain type (plane). The 4-mile snow course consists of a variety of land uses and the same terrain type (plane). Using the aerial snow-survey technique, the snow water equivalent of the 1-mile snow courses was. measured with three passes of the aircraft. Use of more than one pass did not improve the results. The mean absolute difference between the aerial- and ground-measured snow water equivalents for the 1-mile snow courses was 26 percent (0.77 inches). The aerial snow water equivalents determined for the 1-mile snow courses were used to estimate the variations in the snow water equivalents over the 4-mile snow course. The weighted mean absolute difference for the 4-mile snow course was 27 percent (0.8 inches). Variations in snow water equivalents could not be verified adequately by segmenting the aerial snow-survey data because of the uniformity found in the snow cover. On the 4-mile snow coirse, about two-thirds of the aerial snow-survey data agreed with the ground snow-survey data within the accuracy of the aerial technique ( + 0.5 inch of the mean snow water equivalent).
Using Terrain Analysis and Remote Sensing to Improve Snow Mass Balance and Runoff Prediction
NASA Astrophysics Data System (ADS)
Venteris, E. R.; Coleman, A. M.; Wigmosta, M. S.
2010-12-01
Approximately 70-80% of the water in the international Columbia River basin is sourced from snowmelt. The demand for this water has competing needs, as it is used for agricultural irrigation, municipal, hydro and nuclear power generation, and environmental in-stream flow requirements. Accurate forecasting of water supply is essential for planning current needs and prediction of future demands due to growth and climate change. A significant limitation on current forecasting is spatial and temporal uncertainty in snowpack characteristics, particularly snow water equivalent. Currently, point measurements of snow mass balance are provided by the NRCS SNOTEL network. Each site consists of a snow mass sensor and meteorology station that monitors snow water equivalent, snow depth, precipitation, and temperature. There are currently 152 sites in the mountains of Oregon and Washington. An important step in improving forecasts is determining how representative each SNOTEL site is of the total mass balance of the watershed through a full accounting of the spatiotemporal variability in snowpack processes. This variation is driven by the interaction between meteorological processes, land cover, and landform. Statistical and geostatistical spatial models relate the state of the snowpack (characterized through SNOTEL, snow course measurements, and multispectral remote sensing) to terrain attributes derived from digital elevation models (elevation, aspect, slope, compound topographic index, topographic shading, etc.) and land cover. Time steps representing the progression of the snow season for several meteorologically distinct water years are investigated to identify and quantify dominant physical processes. The spatially distributed snow balance data can be used directly as model inputs to improve short- and long-range hydrologic forecasts.
Liang, D.; Xu, X.; Tsang, L.; Andreadis, K.M.; Josberger, E.G.
2008-01-01
The Dense Media Radiative Transfer theory (DMRT) of Quasicrystalline Approximation of Mie scattering by sticky particles is used to study the multiple scattering effects in layered snow in microwave remote sensing. Results are illustrated for various snow profile characteristics. Polarization differences and frequency dependences of multilayer snow model are significantly different from that of the single-layer snow model. Comparisons are also made with CLPX data using snow parameters as given by the VIC model. ?? 2007 IEEE.
NASA Astrophysics Data System (ADS)
Mattmann, C. A.
2014-12-01
The JPL Airborne Snow Observatory (ASO) is an integrated LIDAR and Spectrometer measuring snow depth and rate of snow melt in the Sierra Nevadas, specifically, the Tuolumne River Basin, Sierra Nevada, California above the O'Shaughnessy Dam of the Hetch Hetchy reservoir, and the Uncompahgre Basin, Colorado, amongst other sites. The ASO data was delivered to water resource managers from the California Department of Water Resources in under 24 hours from the time that the Twin Otter aircraft landed in Mammoth Lakes, CA to the time disks were plugged in to the ASO Mobile Compute System (MCS) deployed at the Sierra Nevada Aquatic Research Laboratory (SNARL) near the airport. ASO performed weekly flights and each flight took between 500GB to 1 Terabyte of raw data, which was then processed from level 0 data products all the way to full level 4 maps of Snow Water Equivalent, albedo mosaics, and snow depth from LIDAR. These data were produced by Interactive Data analysis Language (IDL) algorithms which were then unobtrusively and automatically integrated into an Apache OODT and Apache Tika based Big Data processing system. Data movement was both electronic and physical including novel uses of LaCie 1 and 2 TeraByte (TB) data bricks and deployment in rugged terrain. The MCS was controlled remotely from the Jet Propulsion Laboratory, California Institute of Technology (JPL) in Pasadena, California on behalf of the National Aeronautics and Space Administration (NASA). Communication was aided through the use of novel Internet Relay Chat (IRC) command and control mechanisms and through the use of the Notifico open source communication tools. This talk will describe the high powered, and light-weight Big Data processing system that we developed for ASO and its implications more broadly for airborne missions at NASA and throughout the government. The lessons learned from ASO show the potential to have a large impact in the development of Big Data processing systems in the years to come.
NASA Technical Reports Server (NTRS)
Steffen, K.; Abdalati, W.; Stroeve, J.; Key, J.
1994-01-01
The proposed research involves the application of multispectral satellite data in combination with ground truth measurements to monitor surface properties of the Greenland Ice Sheet which are essential for describing the energy and mass of the ice sheet. Several key components of the energy balance are parameterized using satellite data and in situ measurements. The analysis will be done for a ten year time period in order to get statistics on the seasonal and interannual variations of the surface processes and the climatology. Our goal is to investigate to what accuracy and over what geographic areas large scale snow properties and radiative fluxes can be derived based upon a combination of available remote sensing and meteorological data sets. Operational satellite sensors are calibrated based on ground measurements and atmospheric modeling prior to large scale analysis to ensure the quality of the satellite data. Further, several satellite sensors of different spatial and spectral resolution are intercompared to access the parameter accuracy. Proposed parameterization schemes to derive key component of the energy balance from satellite data are validated. For the understanding of the surface processes a field program was designed to collect information on spectral albedo, specular reflectance, soot content, grain size and the physical properties of different snow types. Further, the radiative and turbulent fluxes at the ice/snow surface are monitored for the parameterization and interpretation of the satellite data. The expected results include several baseline data sets of albedo, surface temperature, radiative fluxes, and different snow types of the entire Greenland Ice Sheet. These climatological data sets will be of potential use for climate sensitivity studies in the context of future climate change.
NASA Astrophysics Data System (ADS)
Painter, T. H.; Deems, J. S.; Marks, D. G.; Hedrick, A. R.; Bormann, K.; Skiles, S. M.; Boardman, J. W.; Graham, C. B.; McGurk, B. J.; Gehrke, F.; Berisford, D. F.; Ferraz, A.; Saatchi, S.; Schimel, D.
2016-12-01
The NASA Airborne Snow Observatory (ASO), an imaging spectrometer and imaging LiDAR system, to quantify snow water equivalent and snow albedo, provide unprecedented knowledge of snow properties, and provide complete, robust inputs to snowmelt runoff models, water management models, and systems of the future. This talk presents results from the fourth year of the ASO program, 2016, and the now four years of data record in the Western United States. Following on the heels of the most intense, sustained drought in California history, 2016 held promise of a large snowfall year due to an intense El Nino anomaly. Ultimately, the year had approximately 85% of average peak SWE. In the Sierra Nevada, ASO measured 10x greater SWE than near peak in the dramatic 2015 drought year, and twice that of the more moderate drought year of 2013. Water managers in the Sierra were using these data regularly and extending the dynamic range of newly established relationships between accumulated runoff (circa April through July runoff) and ASO total basin SWE acquisitions. ASO also participated in the NASA OLYMPEX project by flying the entire snow-covered reghions of the Olympic Peninsula for distributed SWE. These data are now being used to validate snowfall estimates from modeling and accumulation patterns as inferred from the NASA Global Precipitation Measurement mission (GPM). The ASO snow program expanded to acquire data in the McKenzie and Deschutes Rivers of Oregon in participation with university and state/federal agencies; Sagehen and Lee Vining basins in the Sierra Nevada, California; the Reynolds Creek Experimental Watershed in Idaho; and the East River, in the Colorado River Basin. These regions extend the existing program flying the Tuolumne, Merced, Lakes, Rush Creek, and Middle+South Forks of Kings River Basins in the California Sierra Nevada and the Upper Rio Grande, Conejos, and Uncompahgre Basins in the Colorado Rocky Mountains.The ASO SWE and albedo data are now being used to constrain various hydrologic models for water cycle science of varying complexity and expanding empirical and physically-based water management models.
NASA Astrophysics Data System (ADS)
Pomeroy, J. W.; Fang, X.
2014-12-01
The vast effort in hydrology devoted to parameter calibration as a means to improve model performance assumes that the models concerned are not fundamentally wrong. By focussing on finding optimal parameter sets and ascribing poor model performance to parameter or data uncertainty, these efforts may fail to consider the need to improve models with more intelligent descriptions of hydrological processes. To test this hypothesis, a flexible physically based hydrological model including a full suite of snow hydrology processes as well as warm season, hillslope and groundwater hydrology was applied to Marmot Creek Research Basin, Canadian Rocky Mountains where excellent driving meteorology and basin biophysical descriptions exist. Model parameters were set from values found in the basin or from similar environments; no parameters were calibrated. The model was tested against snow surveys and streamflow observations. The model used algorithms that describe snow redistribution, sublimation and forest canopy effects on snowmelt and evaporative processes that are rarely implemented in hydrological models. To investigate the contribution of these processes to model predictive capability, the model was "falsified" by deleting parameterisations for forest canopy snow mass and energy, blowing snow, intercepted rain evaporation, and sublimation. Model falsification by ignoring forest canopy processes contributed to a large increase in SWE errors for forested portions of the research basin with RMSE increasing from 19 to 55 mm and mean bias (MB) increasing from 0.004 to 0.62. In the alpine tundra portion, removing blowing processes resulted in an increase in model SWE MB from 0.04 to 2.55 on north-facing slopes and -0.006 to -0.48 on south-facing slopes. Eliminating these algorithms degraded streamflow prediction with the Nash Sutcliffe efficiency dropping from 0.58 to 0.22 and MB increasing from 0.01 to 0.09. These results show dramatic model improvements by including snow redistribution and melt processes associated with wind transport and forest canopies. As most hydrological models do not currently include these processes, it is suggested that modellers first improve the realism of model structures before trying to optimise what are inherently inadequate simulations of hydrology.
Indices for estimating fractional snow cover in the western Tibetan Plateau
NASA Astrophysics Data System (ADS)
Shreve, Cheney M.; Okin, Gregory S.; Painter, Thomas H.
Snow cover in the Tibetan Plateau is highly variable in space and time and plays a key role in ecological processes of this cold-desert ecosystem. Resolution of passive microwave data is too low for regional-scale estimates of snow cover on the Tibetan Plateau, requiring an alternate data source. Optically derived snow indices allow for more accurate quantification of snow cover using higher-resolution datasets subject to the constraint of cloud cover. This paper introduces a new optical snow index and assesses four optically derived MODIS snow indices using Landsat-based validation scenes: MODIS Snow-Covered Area and Grain Size (MODSCAG), Relative Multiple Endmember Spectral Mixture Analysis (RMESMA), Relative Spectral Mixture Analysis (RSMA) and the normalized-difference snow index (NDSI). Pearson correlation coefficients were positively correlated with the validation datasets for all four optical snow indices, suggesting each provides a good measure of total snow extent. At the 95% confidence level, linear least-squares regression showed that MODSCAG and RMESMA had accuracy comparable to validation scenes. Fusion of optical snow indices with passive microwave products, which provide snow depth and snow water equivalent, has the potential to contribute to hydrologic and energy-balance modeling in the Tibetan Plateau.
Sillanpää, Nora; Koivusalo, Harri
2013-01-01
Despite the crucial role of snow in the hydrological cycle in cold climate conditions, monitoring studies of urban snow quality often lack discussions about the relevance of snow in the catchment-scale runoff management. In this study, measurements of snow quality were conducted at two residential catchments in Espoo, Finland, simultaneously with continuous runoff measurements. The results of the snow quality were used to produce catchment-scale estimates of areal snow mass loads (SML). Based on the results, urbanization reduced areal snow water equivalent but increased pollutant accumulation in snow: SMLs in a medium-density residential catchment were two- to four-fold higher in comparison with a low-density residential catchment. The main sources of pollutants were related to vehicular traffic and road maintenance, but also pet excrement increased concentrations to a high level. Ploughed snow can contain 50% of the areal pollutant mass stored in snow despite its small surface area within a catchment.
Comparison with CLPX II airborne data using DMRT model
Xu, X.; Liang, D.; Andreadis, K.M.; Tsang, L.; Josberger, E.G.
2009-01-01
In this paper, we considered a physical-based model which use numerical solution of Maxwell Equations in three-dimensional simulations and apply into Dense Media Radiative Theory (DMRT). The model is validated in two specific dataset from the second Cold Land Processes Experiment (CLPX II) at Alaska and Colorado. The data were all obtain by the Ku-band (13.95GHz) observations using airborne imaging polarimetric scatterometer (POLSCAT). Snow is a densely packed media. To take into account the collective scattering and incoherent scattering, analytical Quasi-Crystalline Approximation (QCA) and Numerical Maxwell Equation Method of 3-D simulation (NMM3D) are used to calculate the extinction coefficient and phase matrix. DMRT equations were solved by iterative solution up to 2nd order for the case of small optical thickness and full multiple scattering solution by decomposing the diffuse intensities into Fourier series was used when optical thickness exceed unity. It was shown that the model predictions agree with the field experiment not only co-polarization but also cross-polarization. For Alaska region, the input snow structure data was obtain by the in situ ground observations, while for Colorado region, we combined the VIC model to get the snow profile. ??2009 IEEE.
NASA Astrophysics Data System (ADS)
Li, Xinghua; Fu, Wenxuan; Shen, Huanfeng; Huang, Chunlin; Zhang, Liangpei
2017-08-01
Monitoring the variability of snow cover is necessary and meaningful because snow cover is closely connected with climate and ecological change. In this work, 500 m resolution MODIS daily snow cover products from 2000 to 2014 were adopted to analyze the status in Hengduan Mountains. In order to solve the spatial discontinuity caused by clouds in the products, we propose an adaptive spatio-temporal weighted method (ASTWM), which is based on the initial result of a Terra and Aqua combination. This novel method simultaneously considers the temporal and spatial correlations of the snow cover. The simulated experiments indicate that ASTWM removes clouds completely, with a robust overall accuracy (OA) of above 93% under different cloud fractions. The spatio-temporal variability of snow cover in the Hengduan Mountains was investigated with two indices: snow cover days (SCD) and snow fraction. The results reveal that the annual SCD gradually increases and the coefficient of variation (CV) decreases with elevation. The pixel-wise trends of SCD first rise and then drop in most areas. Moreover, intense intra-annual variability of the snow fraction occurs from October to March, during which time there is abundant snow cover. The inter-annual variability, which mainly occurs in high elevation areas, shows an increasing trend before 2004/2005 and a decreasing trend after 2004/2005. In addition, the snow fraction responds to the two climate factors of air temperature and precipitation. For the intra-annual variability, when the air temperature and precipitation decrease, the snow cover increases. Besides, precipitation plays a more important role in the inter-annual variability of snow cover than temperature.
Lyngdoh, Salvador; Shrotriya, Shivam; Goyal, Surendra P; Clements, Hayley; Hayward, Matthew W; Habib, Bilal
2014-01-01
The endangered snow leopard is a large felid that is distributed over 1.83 million km(2) globally. Throughout its range it relies on a limited number of prey species in some of the most inhospitable landscapes on the planet where high rates of human persecution exist for both predator and prey. We reviewed 14 published and 11 unpublished studies pertaining to snow leopard diet throughout its range. We calculated prey consumption in terms of frequency of occurrence and biomass consumed based on 1696 analysed scats from throughout the snow leopard's range. Prey biomass consumed was calculated based on the Ackerman's linear correction factor. We identified four distinct physiographic and snow leopard prey type zones, using cluster analysis that had unique prey assemblages and had key prey characteristics which supported snow leopard occurrence there. Levin's index showed the snow leopard had a specialized dietary niche breadth. The main prey of the snow leopard were Siberian ibex (Capra sibrica), blue sheep (Pseudois nayaur), Himalayan tahr (Hemitragus jemlahicus), argali (Ovis ammon) and marmots (Marmota spp). The significantly preferred prey species of snow leopard weighed 55±5 kg, while the preferred prey weight range of snow leopard was 36-76 kg with a significant preference for Siberian ibex and blue sheep. Our meta-analysis identified critical dietary resources for snow leopards throughout their distribution and illustrates the importance of understanding regional variation in species ecology; particularly prey species that have global implications for conservation.
Lyngdoh, Salvador; Shrotriya, Shivam; Goyal, Surendra P.; Clements, Hayley; Hayward, Matthew W.; Habib, Bilal
2014-01-01
The endangered snow leopard is a large felid that is distributed over 1.83 million km2 globally. Throughout its range it relies on a limited number of prey species in some of the most inhospitable landscapes on the planet where high rates of human persecution exist for both predator and prey. We reviewed 14 published and 11 unpublished studies pertaining to snow leopard diet throughout its range. We calculated prey consumption in terms of frequency of occurrence and biomass consumed based on 1696 analysed scats from throughout the snow leopard's range. Prey biomass consumed was calculated based on the Ackerman's linear correction factor. We identified four distinct physiographic and snow leopard prey type zones, using cluster analysis that had unique prey assemblages and had key prey characteristics which supported snow leopard occurrence there. Levin's index showed the snow leopard had a specialized dietary niche breadth. The main prey of the snow leopard were Siberian ibex (Capra sibrica), blue sheep (Pseudois nayaur), Himalayan tahr (Hemitragus jemlahicus), argali (Ovis ammon) and marmots (Marmota spp). The significantly preferred prey species of snow leopard weighed 55±5 kg, while the preferred prey weight range of snow leopard was 36–76 kg with a significant preference for Siberian ibex and blue sheep. Our meta-analysis identified critical dietary resources for snow leopards throughout their distribution and illustrates the importance of understanding regional variation in species ecology; particularly prey species that have global implications for conservation. PMID:24533080
Analysis of Snow Bidirectional Reflectance from ARCTAS Spring-2008 Campaign
NASA Technical Reports Server (NTRS)
Lyapustin, A.; Gatebe, C. K.; Redemann, J.; Kahn, R.; Brandt, R.; Russell, P.; King, M. D.; Pedersen, C. A.; Gerland, S.; Poudyal, R.;
2010-01-01
The spring 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) experiment was one of major intensive field campaigns of the International Polar Year aimed at detailed characterization of atmospheric physical and chemical processes in the Arctic region. A part of this campaign was a unique snow bidirectional reflectance experiment on the NASA P-3B aircraft conducted on 7 and 15 April by the Cloud Absorption Radiometer (CAR) jointly with airborne Ames Airborne Tracking Sunphotometer (AATS) and ground-based Aerosol Robotic Network (AERONET) sunphotometers. The CAR data were atmospherically corrected to derive snow bidirectional reflectance at high 1 degree angular resolution in view zenith and azimuthal angles along with surface albedo. The derived albedo was generally in good agreement with ground albedo measurements collected on 15 April. The CAR snow bidirectional reflectance factor (BRF) was used to study the accuracy of analytical Ross-Thick Li-Sparse (RTLS), Modified Rahman-Pinty-Verstraete (MRPV) and Asymptotic Analytical Radiative Transfer (AART) BRF models. Except for the glint region (azimuthal angles phi less than 40 degrees), the best fit MRPV and RTLS models fit snow BRF to within 0.05. The plane-parallel radiative transfer (PPRT) solution was also analyzed with the models of spheres, spheroids, randomly oriented fractal crystals, and with a synthetic phase function. The latter merged the model of spheroids for the forward scattering angles with the fractal model in the backscattering direction. The PPRT solution with synthetic phase function provided the best fit to measured BRF in the full range of angles. Regardless of the snow grain shape, the PPRT model significantly over-/underestimated snow BRF in the glint/backscattering regions, respectively, which agrees with other studies. To improve agreement with experiment, we introduced a model of macroscopic snow surface roughness by averaging the PPRT solution over the slope distribution function and by adding a simple model of shadows. With macroscopic roughness described by two parameters, the AART model achieved an accuracy of about plus or minus 0.05 with a possible bias of plus or minus 0.03 in the spectral range 0.4-2.2 micrometers. This high accuracy holds at view zenith angles below 55-60 degrees covering the practically important range for remote sensing applications, and includes both glint and backscattering directions.
Snow wetness measurements for melt forecasting
NASA Technical Reports Server (NTRS)
Linlor, W. I.; Clapp, F. D.; Meier, M. F.; Smith, J. L.
1975-01-01
A microwave technique for directly measuring snow pack wetness in remote installations is described. The technique, which uses satellite telemetry for data gathering, is based on the attenuation of a microwave beam in transmission through snow.
NASA Astrophysics Data System (ADS)
Pan, J.; Durand, M. T.; Vanderjagt, B. J.
2014-12-01
The Markov chain Monte Carlo (MCMC) method had been proved to be successful in snow water equivalent retrieval based on synthetic point-scale passive microwave brightness temperature (TB) observations. This method needs only general prior information about distribution of snow parameters, and could estimate layered snow properties, including the thickness, temperature, density and snow grain size (or exponential correlation length) of each layer. In this study, the multi-layer HUT (Helsinki University of Technology) model and the MEMLS (Microwave Emission Model of Layered Snowpacks) will be used as observation models to assimilate the observed TB into snow parameter prediction. Previous studies had shown that the multi-layer HUT model tends to underestimate TB at 37 GHz for deep snow, while the MEMLS does not show sensitivity of model bias to snow depth. Therefore, results using HUT model and MEMLS will be compared to see how the observation model will influence the retrieval of snow parameters. The radiometric measurements at 10.65, 18.7, 36.5 and 90 GHz at Sodankyla, Finland will be used as MCMC input, and the statistics of all snow property measurement will be used to calculate the prior information. 43 dry snowpits with complete measurements of all snow parameters will be used for validation. The entire dataset are from NorSREx (Nordic Snow Radar Experiment) experiments carried out by Juha Lemmetyinen, Anna Kontu and Jouni Pulliainen in FMI in 2009-2011 winters, and continued two more winters from 2011 to Spring of 2013. Besides the snow thickness and snow density that are directly related to snow water equivalent, other parameters will be compared with observations, too. For thin snow, the previous studies showed that influence of underlying soil is considerable, especially when the soil is half frozen with part of unfrozen liquid water and part of ice. Therefore, this study will also try to employ a simple frozen soil permittivity model to improve the performance of retrieval. The behavior of the Markov chain in soil parameters will be studied.
NASA Astrophysics Data System (ADS)
Hausrath, E.; Bartlett, C. L.; Garcia, A. H.; Tschauner, O. D.; Murray, A. E.; Raymond, J. A.
2015-12-01
Increasing evidence suggests that icy environments on bodies such as Mars, Europa, and Enceladus may be important potential habitats in our solar system. Life in icy environments faces many challenges, including water limitation, temperature extremes, and nutrient limitation. Understanding how life has adapted to withstand these challenges on Earth may help understand potential life on other icy worlds, and understanding the interactions of such life with minerals may help shed light on the detection of possible mineral biosignatures. Snow environments, being particularly nutrient limited, may require specific adaptations by the microbiota living there. Previous observations have suggested that associated minerals and microorganisms play an important role in snow algae micronutrient acquisition. Here, in order to interpret micronutrient uptake by snow algae, and potential formation of mineral biosignatures, we present observations of interactions between snow algae and associated microorganisms and minerals in both natural, Mars-analog environments, and laboratory experiments. Samples of snow, dust, snow algae, and microorganisms were collected from Mount Anderson Ridge, CA. Some samples were DAPI-stained and analyzed by epifluorescent microscopy, and others were freeze-dried and examined by scanning electron microscopy, synchrotron X-ray diffraction (XRD) and synchrotron X-ray fluorescence (XRF). Xenic cultures of the snow alga Chloromonas brevispina were also grown under Fe-limiting conditions with and without the Fe-containing mineral nontronite to determine impacts of the mineral on algal growth. Observations from epifluorescent microscopy show bacteria closely associated with the snow algae, consistent with a potential role in micronutrient acquisition. Particles are also present on the algal cell walls, and synchrotron-XRD and XRF observations indicate that they are Fe-rich, and may therefore be a micronutrient source. Laboratory experiments indicated enhanced algal growth in the presence of nontronite, as well as a close physical association between the snow alga and mineral surfaces. We are presently examining the role of minerals and microorganisms in nutrient acquisition, and attempting to identify mineral biosignatures.
NASA Technical Reports Server (NTRS)
Korram, S.
1977-01-01
The design of general remote sensing-aided methodologies was studied to provide the estimates of several important inputs to water yield forecast models. These input parameters are snow area extent, snow water content, and evapotranspiration. The study area is Feather River Watershed (780,000 hectares), Northern California. The general approach involved a stepwise sequence of identification of the required information, sample design, measurement/estimation, and evaluation of results. All the relevent and available information types needed in the estimation process are being defined. These include Landsat, meteorological satellite, and aircraft imagery, topographic and geologic data, ground truth data, and climatic data from ground stations. A cost-effective multistage sampling approach was employed in quantification of all the required parameters. The physical and statistical models for both snow quantification and evapotranspiration estimation was developed. These models use the information obtained by aerial and ground data through appropriate statistical sampling design.
Estimation of Subpixel Snow-Covered Area by Nonparametric Regression Splines
NASA Astrophysics Data System (ADS)
Kuter, S.; Akyürek, Z.; Weber, G.-W.
2016-10-01
Measurement of the areal extent of snow cover with high accuracy plays an important role in hydrological and climate modeling. Remotely-sensed data acquired by earth-observing satellites offer great advantages for timely monitoring of snow cover. However, the main obstacle is the tradeoff between temporal and spatial resolution of satellite imageries. Soft or subpixel classification of low or moderate resolution satellite images is a preferred technique to overcome this problem. The most frequently employed snow cover fraction methods applied on Moderate Resolution Imaging Spectroradiometer (MODIS) data have evolved from spectral unmixing and empirical Normalized Difference Snow Index (NDSI) methods to latest machine learning-based artificial neural networks (ANNs). This study demonstrates the implementation of subpixel snow-covered area estimation based on the state-of-the-art nonparametric spline regression method, namely, Multivariate Adaptive Regression Splines (MARS). MARS models were trained by using MODIS top of atmospheric reflectance values of bands 1-7 as predictor variables. Reference percentage snow cover maps were generated from higher spatial resolution Landsat ETM+ binary snow cover maps. A multilayer feed-forward ANN with one hidden layer trained with backpropagation was also employed to estimate the percentage snow-covered area on the same data set. The results indicated that the developed MARS model performed better than th
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mernild, Sebastian Haugard; Liston, Glen
2009-01-01
In many applications, a realistic description of air temperature inversions is essential for accurate snow and glacier ice melt, and glacier mass-balance simulations. A physically based snow-evolution modeling system (SnowModel) was used to simulate eight years (1998/99 to 2005/06) of snow accumulation and snow and glacier ice ablation from numerous small coastal marginal glaciers on the SW-part of Ammassalik Island in SE Greenland. These glaciers are regularly influenced by inversions and sea breezes associated with the adjacent relatively low temperature and frequently ice-choked fjords and ocean. To account for the influence of these inversions on the spatiotemporal variation of airmore » temperature and snow and glacier melt rates, temperature inversion routines were added to MircoMet, the meteorological distribution sub-model used in SnowModel. The inversions were observed and modeled to occur during 84% of the simulation period. Modeled inversions were defined not to occur during days with strong winds and high precipitation rates due to the potential of inversion break-up. Field observations showed inversions to extend from sea level to approximately 300 m a.s.l., and this inversion level was prescribed in the model simulations. Simulations with and without the inversion routines were compared. The inversion model produced air temperature distributions with warmer lower elevation areas and cooler higher elevation areas than without inversion routines due to the use of cold sea-breeze base temperature data from underneath the inversion. This yielded an up to 2 weeks earlier snowmelt in the lower areas and up to 1 to 3 weeks later snowmelt in the higher elevation areas of the simulation domain. Averaged mean annual modeled surface mass-balance for all glaciers (mainly located above the inversion layer) was -720 {+-} 620 mm w.eq. y{sup -1} for inversion simulations, and -880 {+-} 620 mm w.eq. y{sup -1} without the inversion routines, a difference of 160 mm w.eq. y{sup -1}. The annual glacier loss for the two simulations was 50.7 x 10{sup 6} m{sup 3} y{sup -1} and 64.4 x 10{sup 6} m{sup 3} y{sup -1} for all glaciers - a difference of {approx}21%. The average equilibrium line altitude (ELA) for all glaciers in the simulation domain was located at 875 m a.s.l. and at 900 m a.s.l. for simulations with or without inversion routines, respectively.« less
Estimation of Snow Particle Model Suitable for a Complex and Forested Terrain: Lessons from SnowEx
NASA Astrophysics Data System (ADS)
Gatebe, C. K.; Li, W.; Stamnes, K. H.; Poudyal, R.; Fan, Y.; Chen, N.
2017-12-01
SnowEx 2017 obtained consistent and coordinated ground and airborne remote sensing measurements over Grand Mesa in Colorado, which feature sufficient forested stands to have a range of density and height (and other forest conditions); a range of snow depth/snow water equivalent (SWE) conditions; sufficiently flat snow-covered terrain of a size comparable to airborne instrument swath widths. The Cloud Absorption Radiometer (CAR) data from SnowEx are unique and can be used to assess the accuracy of Bidirectional Reflectance-Distribution Functions (BRDFs) calculated by different snow models. These measurements provide multiple angle and multiple wavelength data needed for accurate surface BRDF characterization. Such data cannot easily be obtained by current satellite remote sensors. Compared to ground-based snow field measurements, CAR measurements minimize the effect of self-shading, and are adaptable to a wide variety of field conditions. We plan to use the CAR measurements as the validation data source for our snow modeling effort. By comparing calculated BRDF results from different snow models to CAR measurements, we can determine which model best explains the snow BRDFs, and is therefore most suitable for application to satellite remote sensing of snow parameters and surface energy budget calculations.
A New, Two-layer Canopy Module For The Detailed Snow Model SNOWPACK
NASA Astrophysics Data System (ADS)
Gouttevin, I.; Lehning, M.; Jonas, T.; Gustafsson, D.; Mölder, M.
2014-12-01
A new, two-layer canopy module with thermal inertia for the detailed snow model SNOWPACK is presented. Compared to the old, one-layered canopy formulation with no heat mass, this module now offers a level of physical detail consistent with the detailed snow and soil representation in SNOWPACK. The new canopy model is designed to reproduce the difference in thermal regimes between leafy and woody canopy elements and their impact on the underlying snowpack energy balance. The new model is validated against data from an Alpine and a boreal site. Comparisons of modelled sub-canopy thermal radiations to stand-scale observations at Alptal, Switzerland, demonstrate the improvements induced by our new parameterizations. The main effect is a more realistic simulation of the canopy night-time drop in temperatures. The lower drop is induced by both thermal inertia and the two-layer representation. A specific result is that such a performance cannot be achieved by a single-layered canopy model. The impact of the new parameterizations on the modelled dynamics of the sub-canopy snowpack is analysed and yields consistent results, but the frequent occurrence of mixed-precipitation events at Alptal prevents a conclusive assessment of model performances against snow data.Without specific tuning, the model is also able to reproduce the measured summertime tree trunk temperatures and biomass heat storage at the boreal site of Norunda, Sweden, with an increased accuracy in amplitude and phase. Overall, the SNOWPACK model with its enhanced canopy module constitutes a unique (in its physical process representation) atmosphere-to-soil-through-canopy-and-snow modelling chain.
The Effects of Snow Depth Forcing on Southern Ocean Sea Ice Simulations
NASA Technical Reports Server (NTRS)
Powel, Dylan C.; Markus, Thorsten; Stoessel, Achim
2003-01-01
The spatial and temporal distribution of snow on sea ice is an important factor for sea ice and climate models. First, it acts as an efficient insulator between the ocean and the atmosphere, and second, snow is a source of fresh water for altering the already weak Southern Ocean stratification. For the Antarctic, where the ice thickness is relatively thin, snow can impact the ice thickness in two ways: a) As mentioned above snow on sea ice reduces the ocean-atmosphere heat flux and thus reduces freezing at the base of the ice flows; b) a heavy snow load can suppress the ice below sea level which causes flooding and, with subsequent freezing, a thickening of the sea ice (snow-to-ice conversion). In this paper, we compare different snow fall paramterizations (incl. the incorporation of satellite-derived snow depth) and study the effect on the sea ice using a sea ice model.
NASA Astrophysics Data System (ADS)
Burakowski, E. A.; Ollinger, S. V.; Martin, M.; Lepine, L. C.; Hollinger, D. Y.; Dibb, J. E.
2013-12-01
This study evaluates the accuracy of hyperspectral imagery (HSI) and MODIS daily 500-m snow albedo over forested, deforested, and mixed land use types under snow-covered conditions in New Hampshire, USA. HSI spectral reflectance generally agrees well with tower-based measurements above a mixed forest canopy. Over cleared pasture, HSI spectral reflectance is lower than ground-based measurements collected using a spectrometer, and greatly underestimates reflectance at wavelengths less than 430 nm. Based on tower-based albedo measurements, HSI shortwave broadband albedo meets the absolute accuracy requirement of ×0.05 recommended for climate modeling. When HSI 5-m fine-resolution imagery is aggregated to MODIS 500-m resolution and integrated to shortwave broadband albedo, MOD10A1 daily snow-covered surface albedo exhibits a negative bias of -0.0033 and root mean square error (RMSE) of 0.067 compared to HSI shortwave broadband albedo, just outside the range of the absolute accuracy requirement of ×0.05 recommended for climate modeling. Spectral albedo collected over a deciduous broadleaf canopy under snow-covered and snow-free conditions will expand the existing spectral library and contribute to future validation efforts of multi-spectral remote sensing products (e.g., HyspIRI).
COSMO-SkyMed Image Investigation of Snow Features in Alpine Environment
Paloscia, Simonetta; Pettinato, Simone; Santi, Emanuele; Valt, Mauro
2017-01-01
In this work, X band images acquired by COSMO-SkyMed (CSK) on alpine environment have been analyzed for investigating snow characteristics and their effect on backscattering variations. Preliminary results confirmed the capability of simultaneous optical and Synthetic Aperture Radar (SAR) images (Landsat-8 and CSK) in separating snow/no-snow areas and in detecting wet snow. The sensitivity of backscattering to snow depth has not always been confirmed, depending on snow characteristics related to the season. A model based on Dense Media Radiative Transfer theory (DMRT-QMS) was applied for simulating the backscattering response on the X band from snow cover in different conditions of grain size, snow density and depth. By using DMRT-QMS and snow in-situ data collected on Cordevole basin in Italian Alps, the effect of grain size and snow density, beside snow depth and snow water equivalent, was pointed out, showing that the snow features affect the backscatter in different and sometimes opposite ways. Experimental values of backscattering were correctly simulated by using this model and selected intervals of ground parameters. The relationship between simulated and measured backscattering for the entire dataset shows slope >0.9, determination coefficient, R2 = 0.77, and root mean square error, RMSE = 1.1 dB, with p-value <0.05. PMID:28054962
NASA Astrophysics Data System (ADS)
Beverly, D.; Ewers, B. E.; Hyde, K.; Ohara, N.; Speckman, H. N.
2015-12-01
High elevation watersheds of the Rocky Mountains region contribute over 70% of the streamflow needed for infrastructure, agriculture, and ecological processes. Snow-water yields are heterogeneous in space and time and are driven by a multitude of snow distribution processes, including snowpack evolution driven by physical and biological factors. Quantifying heterogeneity of snowpack is further complicated by vegetation perturbations; much of the Rocky Mountains have experienced significant tree mortality due to bark beetle outbreaks. Reduction of living crown area decreases canopy interception while increasing radiation to snow surfaces, which alters snowpack distribution throughout the catchment. We hypothesize that, in a complex watershed, topographic variation (i.e., slope and aspect) will have a greater effect on snowpack evolution and distribution than densities of canopy mortality due to beetle infestation. The 120 ha No Name watershed, located in southern Wyoming at 3000 m elevation was divided into twenty-one 175 m2 parcels, in which plots were randomly assigned within each parcel. Peak snow was measured in April; in the 50 m2 plots, depths were measured every 2 m along north-south and east-west transects. Twenty-one snow pits were excavated to quantify snow densities in 10 cm increments throughout the pit profile. Forest inventories occurred the following summer. Peak snowpack levels occurred in April with mean depth of 92.3 ± 2.4 cm and peak SWE of 34.0 ± 0.84 cm. Binary decision trees accounted for 63% of the variability after including topographic indices, beetle condition of the trees, LAI, and basal area. Snow depth showed a slight positive relationship with increased in beetle mortality on slopes less than 11 degrees. Overall, topographic indices are greater drivers for snow distributions compared to effects of tree mortality.
NASA Astrophysics Data System (ADS)
Schneider, A. M.; Flanner, M.; Yang, P.; Yi, B.; Huang, X.; Feldman, D.
2016-12-01
The Snow Grain Size and Pollution (SGSP) algorithm is a method applied to Moderate Resolution Imaging Spectroradiometer data to estimate snow grain size from space-borne measurements. Previous studies validate and quantify potential sources of error in this method, but because it assumes flat snow surfaces, however, large scale variations in surface normals can cause biases in its estimates due to its dependence on solar and observation zenith angles. To address these variations, we apply the Monte Carlo method for photon transport using data containing the single scattering properties of different ice crystals to calculate polarization states of reflected monochromatic light at 1500nm from modeled snow surfaces. We evaluate the dependence of these polarization states on solar and observation geometry at 1500nm because multiple scattering is generally a mechanism for depolarization and the ice crystals are relatively absorptive at this wavelength. Using 1500nm thus results in a higher number of reflected photons undergoing fewer scattering events, increasing the likelihood of reflected light having higher degrees of polarization. In evaluating the validity of the model, we find agreement with previous studies pertaining to near-infrared spectral directional hemispherical reflectance (i.e. black-sky albedo) and similarities in measured bidirectional reflectance factors, but few studies exist modeling polarization states of reflected light from snow surfaces. Here, we present novel results pertaining to calculated polarization states and compare dependences on solar and observation geometry for different idealized snow surfaces. If these dependencies are consistent across different ice particle shapes and sizes, then these findings could inform the SGSP algorithm by providing useful relationships between measurable physical quantities and solar and observation geometry to better understand variations in snow surface normals from remote sensing observations.
NASA Astrophysics Data System (ADS)
Zhou, J.
2017-12-01
Snow and frozen soil are important components in the Tibetan Plateau, and influence the water cycle and energy balances through snowpack accumulation and melt and soil freeze-thaw. In this study, a new cryosphere land surface model (LSM) with coupled snow and frozen soil parameterization was developed based on a hydrologically improved LSM (HydroSiB2). First, an energy-balance-based three-layer snow model was incorporated into HydroSiB2 (hereafter HydroSiB2-S) to provide an improved description of the internal processes of the snow pack. Second, a universal and simplified soil model was coupled with HydroSiB2-S to depict soil water freezing and thawing (hereafter HydroSiB2-SF). In order to avoid the instability caused by the uncertainty in estimating water phase changes, enthalpy was adopted as a prognostic variable instead of snow/soil temperature in the energy balance equation of the snow/frozen soil module. The newly developed models were then carefully evaluated at two typical sites of the Tibetan Plateau (TP) (one snow covered and the other snow free, both with underlying frozen soil). At the snow-covered site in northeastern TP (DY), HydroSiB2-SF demonstrated significant improvements over HydroSiB2-F (same as HydroSiB2-SF but using the original single-layer snow module of HydroSiB2), showing the importance of snow internal processes in three-layer snow parameterization. At the snow-free site in southwestern TP (Ngari), HydroSiB2-SF reasonably simulated soil water phase changes while HydroSiB2-S did not, indicating the crucial role of frozen soil parameterization in depicting the soil thermal and water dynamics. Finally, HydroSiB2-SF proved to be capable of simulating upward moisture fluxes toward the freezing front from the underlying soil layers in winter.
Towards Improved Snow Water Equivalent Estimation via GRACE Assimilation
NASA Technical Reports Server (NTRS)
Forman, Bart; Reichle, Rofl; Rodell, Matt
2011-01-01
Passive microwave (e.g. AMSR-E) and visible spectrum (e.g. MODIS) measurements of snow states have been used in conjunction with land surface models to better characterize snow pack states, most notably snow water equivalent (SWE). However, both types of measurements have limitations. AMSR-E, for example, suffers a loss of information in deep/wet snow packs. Similarly, MODIS suffers a loss of temporal correlation information beyond the initial accumulation and final ablation phases of the snow season. Gravimetric measurements, on the other hand, do not suffer from these limitations. In this study, gravimetric measurements from the Gravity Recovery and Climate Experiment (GRACE) mission are used in a land surface model data assimilation (DA) framework to better characterize SWE in the Mackenzie River basin located in northern Canada. Comparisons are made against independent, ground-based SWE observations, state-of-the-art modeled SWE estimates, and independent, ground-based river discharge observations. Preliminary results suggest improved SWE estimates, including improved timing of the subsequent ablation and runoff of the snow pack. Additionally, use of the DA procedure can add vertical and horizontal resolution to the coarse-scale GRACE measurements as well as effectively downscale the measurements in time. Such findings offer the potential for better understanding of the hydrologic cycle in snow-dominated basins located in remote regions of the globe where ground-based observation collection if difficult, if not impossible. This information could ultimately lead to improved freshwater resource management in communities dependent on snow melt as well as a reduction in the uncertainty of river discharge into the Arctic Ocean.
A Full Snow Season in Yellowstone: A Database of Restored Aqua Band 6
NASA Technical Reports Server (NTRS)
Gladkova, Irina; Grossberg, Michael; Bonev, George; Romanov, Peter; Riggs, George; Hall, Dorothy
2013-01-01
The algorithms for estimating snow extent for the Moderate Resolution Imaging Spectroradiometer (MODIS) optimally use the 1.6- m channel which is unavailable for MODIS on Aqua due to detector damage. As a test bed to demonstrate that Aqua band 6 can be restored, we chose the area surrounding Yellowstone and Grand Teton national parks. In such rugged and difficult-to-access terrain, satellite images are particularly important for providing an estimation of snow-cover extent. For the full 2010-2011 snow season covering the Yellowstone region, we have used quantitative image restoration to create a database of restored Aqua band 6. The database includes restored radiances, normalized vegetation index, normalized snow index, thermal data, and band-6-based snow-map products. The restored Aqua-band-6 data have also been regridded and combined with Terra data to produce a snow-cover map that utilizes both Terra and Aqua snow maps. Using this database, we show that the restored Aqua-band-6-based snow-cover extent has a comparable performance with respect to ground stations to the one based on Terra. The result of a restored band 6 from Aqua is that we have an additional band-6 image of the Yellowstone region each day. This image can be used to mitigate cloud occlusion, using the same algorithms used for band 6 on Terra. We show an application of this database of restored band-6 images to illustrate the value of creating a cloud gap filling using the National Aeronautics and Space Administration s operational cloud masks and data from both Aqua and Terra.
NASA Astrophysics Data System (ADS)
Rinehart, A. J.; Vivoni, E. R.
2005-12-01
Snow processes play a significant role in the hydrologic cycle of mountainous and high-latitude catchments in the western United States. Snowmelt runoff contributes to a large percentage of stream runoff while snow covered regions remain highly localized to small portions of the catchment area. The appropriate representation of snow dynamics at a given range of spatial and temporal scales is critical for adequately predicting runoff responses in snowmelt-dominated watersheds. In particular, the accurate depiction of snow cover patterns is important as a range of topographic, land-use and geographic parameters create zones of preferential snow accumulation or ablation that significantly affect the timing of a region's snow melt and the persistence of a snow pack. In this study, we present the development and testing of a distributed snow model designed for simulations over complex terrain. The snow model is developed within the context of the TIN-based Real-time Integrated Basin Simulator (tRIBS), a fully-distributed watershed model capable of continuous simulations of coupled hydrological processes, including unsaturated-saturated zone dynamics, land-atmosphere interactions and runoff generation via multiple mechanisms. The use of triangulated irregular networks as a domain discretization allows tRIBS to accurately represent topography with a reduced number of computational nodes, as compared to traditional grid-based models. This representation is developed using a Delauney optimization criterion that causes areas of topographic homogeneity to be represented at larger spatial scales than the original grid, while more heterogeneous areas are represented at higher resolutions. We utilize the TIN-based terrain representation to simulate microscale (10-m to 100-m) snow pack dynamics over a catchment. The model includes processes such as the snow pack energy balance, wind and bulk redistribution, and snow interception by vegetation. For this study, we present tests from a distributed one-layer energy balance model as applied to a northern New Mexico hillslope in a ponderosa pine forest using both synthetic and real meteorological forcing. We also provide tests of the model's capability to represent spatial patterns within a small watershed in the Jemez Mountain region. Finally, we discuss the interaction of the tested snow process module with existing components in the watershed model and additional applications and capabilities under development.
Automated Snow Extent Mapping Based on Orthophoto Images from Unmanned Aerial Vehicles
NASA Astrophysics Data System (ADS)
Niedzielski, Tomasz; Spallek, Waldemar; Witek-Kasprzak, Matylda
2018-04-01
The paper presents the application of the k-means clustering in the process of automated snow extent mapping using orthophoto images generated using the Structure-from-Motion (SfM) algorithm from oblique aerial photographs taken by unmanned aerial vehicle (UAV). A simple classification approach has been implemented to discriminate between snow-free and snow-covered terrain. The procedure uses the k-means clustering and classifies orthophoto images based on the three-dimensional space of red-green-blue (RGB) or near-infrared-red-green (NIRRG) or near-infrared-green-blue (NIRGB) bands. To test the method, several field experiments have been carried out, both in situations when snow cover was continuous and when it was patchy. The experiments have been conducted using three fixed-wing UAVs (swinglet CAM by senseFly, eBee by senseFly, and Birdie by FlyTech UAV) on 10/04/2015, 23/03/2016, and 16/03/2017 within three test sites in the Izerskie Mountains in southwestern Poland. The resulting snow extent maps, produced automatically using the classification method, have been validated against real snow extents delineated through a visual analysis and interpretation offered by human analysts. For the simplest classification setup, which assumes two classes in the k-means clustering, the extent of snow patches was estimated accurately, with areal underestimation of 4.6% (RGB) and overestimation of 5.5% (NIRGB). For continuous snow cover with sparse discontinuities at places where trees or bushes protruded from snow, the agreement between automatically produced snow extent maps and observations was better, i.e. 1.5% (underestimation with RGB) and 0.7-0.9% (overestimation, either with RGB or with NIRRG). Shadows on snow were found to be mainly responsible for the misclassification.
Validating SWE reconstruction using Airborne Snow Observatory measurements in the Sierra Nevada
NASA Astrophysics Data System (ADS)
Bair, N.; Rittger, K.; Davis, R. E.; Dozier, J.
2015-12-01
The Airborne Snow Observatory (ASO) program offers high resolution estimates of snow water equivalent (SWE) in several small basins across California during the melt season. Primarily, water managers use this information to model snowmelt runoff into reservoirs. Another, and potentially more impactful, use of ASO SWE measurements is in validating and improving satellite-based SWE estimates which can be used in austere regions with no ground-based snow or water measurements, such as Afghanistan's Hindu Kush. Using the entire ASO dataset to date (2013-2015) which is mostly from the Upper Tuolumne basin, but also includes measurements from 2015 in the Kings, Rush Creek, Merced, and Mammoth Lakes basins, we compare ASO measurements to those from a SWE reconstruction method. Briefly, SWE reconstruction involves downscaling energy balance forcings to compute potential melt energy, then using satellite-derived estimates of fractional snow covered area (fSCA) to estimate snow melt from potential melt. The snowpack can then be built in reverse, given a remotely-sensed date of snow disappearance (fSCA=0). Our model has improvements over previous iterations in that it: uses the full energy balance (compared to a modified degree-day) approach, models bulk and surface snow temperatures, accounts for ephemeral snow, and uses a remotely-sensed snow albedo adjusted for impurities. To check that ASO provides accurate snow measurements, we compare fSCA derived from ASO snow depth at 3 m resolution with fSCA from a spectral unmixing algorithm for LandSAT at 30 m, and from binary SCA estimates from Geoeye at 0.5 m from supervised classification. To conclude, we document how our reconstruction model has evolved over the years and provide specific examples where improvements have been made using ASO and other verification sources.
Acoustic Wave Propagation in Snow Based on a Biot-Type Porous Model
NASA Astrophysics Data System (ADS)
Sidler, R.
2014-12-01
Despite the fact that acoustic methods are inexpensive, robust and simple, the application of seismic waves to snow has been sparse. This might be due to the strong attenuation inherent to snow that prevents large scale seismic applications or due to the somewhat counterintuitive acoustic behavior of snow as a porous material. Such materials support a second kind of compressional wave that can be measured in fresh snow and which has a decreasing wave velocity with increasing density of snow. To investigate wave propagation in snow we construct a Biot-type porous model of snow as a function of porosity based on the assumptions that the solid frame is build of ice, the pore space is filled with a mix of air, or air and water, and empirical relationships for the tortuosity, the permeability, the bulk, and the shear modulus.We use this reduced model to investigate compressional and shear wave velocities of snow as a function of porosity and to asses the consequences of liquid water in the snowpack on acoustic wave propagation by solving Biot's differential equations with plain wave solutions. We find that the fast compressional wave velocity increases significantly with increasing density, but also that the fast compressional wave velocity might be even lower than the slow compressional wave velocity for very light snow. By using compressional and shear strength criteria and solving Biot's differential equations with a pseudo-spectral approach we evaluate snow failure due to acoustic waves in a heterogeneous snowpack, which we think is an important mechanism in triggering avalanches by explosives as well as by skiers. Finally, we developed a low cost seismic acquisition device to assess the theoretically obtained wave velocities in the field and to explore the possibility of an inexpensive tool to remotely gather snow water equivalent.
Potential and limitations of webcam images for snow cover monitoring in the Swiss Alps
NASA Astrophysics Data System (ADS)
Dizerens, Céline; Hüsler, Fabia; Wunderle, Stefan
2017-04-01
In Switzerland, several thousands of outdoor webcams are currently connected to the Internet. They deliver freely available images that can be used to analyze snow cover variability on a high spatio-temporal resolution. To make use of this big data source, we have implemented a webcam-based snow cover mapping procedure, which allows to almost automatically derive snow cover maps from such webcam images. As there is mostly no information about the webcams and its parameters available, our registration approach automatically resolves these parameters (camera orientation, principal point, field of view) by using an estimate of the webcams position, the mountain silhouette, and a high-resolution digital elevation model (DEM). Combined with an automatic snow classification and an image alignment using SIFT features, our procedure can be applied to arbitrary images to generate snow cover maps with a minimum of effort. Resulting snow cover maps have the same resolution as the digital elevation model and indicate whether each grid cell is snow-covered, snow-free, or hidden from webcams' positions. Up to now, we processed images of about 290 webcams from our archive, and evaluated images of 20 webcams using manually selected ground control points (GCPs) to evaluate the mapping accuracy of our procedure. We present methodological limitations and ongoing improvements, show some applications of our snow cover maps, and demonstrate that webcams not only offer a great opportunity to complement satellite-derived snow retrieval under cloudy conditions, but also serve as a reference for improved validation of satellite-based approaches.
Calculation of new snow densities from sub-daily automated snow measurements
NASA Astrophysics Data System (ADS)
Helfricht, Kay; Hartl, Lea; Koch, Roland; Marty, Christoph; Lehning, Michael; Olefs, Marc
2017-04-01
In mountain regions there is an increasing demand for high-quality analysis, nowcasting and short-range forecasts of the spatial distribution of snowfall. Operational services, such as for avalanche warning, road maintenance and hydrology, as well as hydropower companies and ski resorts need reliable information on the depth of new snow (HN) and the corresponding water equivalent (HNW). However, the ratio of HNW to HN can vary from 1:3 to 1:30 because of the high variability of new snow density with respect to meteorological conditions. In the past, attempts were made to calculate new snow densities from meteorological parameters mainly using daily values of temperature and wind. Further complex statistical relationships have been used to calculate new snow densities on hourly to sub-hourly time intervals to drive multi-layer snow cover models. However, only a few long-term in-situ measurements of new snow density exist for sub-daily time intervals. Settling processes within the new snow due to loading and metamorphism need to be considered when computing new snow density. As the effect of these processes is more pronounced for long time intervals, a high temporal resolution of measurements is desirable. Within the pluSnow project data of several automatic weather stations with simultaneous measurements of precipitation (pluviometers), snow water equivalent (SWE) using snow pillows and snow depth (HS) measurements using ultrasonic rangers were analysed. New snow densities were calculated for a set of data filtered on the basis of meteorological thresholds. The calculated new snow densities were compared to results from existing new snow density parameterizations. To account for effects of settling of the snow cover, a case study based on a multi-year data set using the snow cover model SNOWPACK at Weissfluhjoch was performed. Measured median values of hourly new snow densities at the different stations range from 54 to 83 kgm-3. This is considerably lower than a 1:10 approximation (i.e. 100 kgm-3), which is mainly based on daily values in the Alps. Variations in new snow density could not be explained in a satisfactory manner using meteorological data measured at the same location. Likewise, some of the tested parametrizations of new snow density, which primarily use air temperature as a proxy, result in median new snow densities close to the ones from automated measurements, but show only a low correlation between calculated and measured new snow densities. The case study on the influence of snow settling on HN resulted on average in an underestimation of HN by 17%, which corresponds to 2-3% of the cumulated HN from the previous 24 hours. Therefore, the mean hourly new snow densities may be overestimated by 14%. The analysis in this study is especially limited with respect to the meteorological influence on the HS measurement using ultra-sonic rangers. Nevertheless, the reasonable mean values encourage calculating new snow densities from standard hydro-meteorological measurements using more precise observation devices such as optical snow depth sensors and more sensitive scales for SWE measurements also on sub-daily time-scales.
NASA Astrophysics Data System (ADS)
Chan, Hoi Ga; Frey, Markus M.; King, Martin D.
2017-04-01
Nitrogen oxides (NOx = NO + NO2) emissions from nitrate (NO3-) photolysis in snow affect the oxidising capacity of the lower troposphere especially in remote regions of the high latitudes with low pollution levels. The porous structure of snowpack allows the exchange of gases with the atmosphere driven by physicochemical processes, and hence, snow can act as both source and sink of atmospheric chemical trace gases. Current models are limited by poor process understanding and often require tuning parameters. Here, two multi-phase physical models were developed from first principles constrained by observed atmospheric nitrate, HNO3, to describe the air-snow interaction of nitrate. Similar to most of the previous approaches, the first model assumes that below a threshold temperature, To, the air-snow grain interface is pure ice and above To, a disordered interface (DI) emerges assumed to be covering the entire grain surface. The second model assumes that Air-Ice interactions dominate over the entire temperature range below melting and that only above the eutectic temperature, liquid is present in the form of micropockets in grooves. The models are validated with available year-round observations of nitrate in snow and air at a cold site on the Antarctica Plateau (Dome C, 75°06'S, 123°33'E, 3233 m a.s.l.) and at a relatively warm site on the Antarctica coast (Halley, 75°35'S, 26°39'E, 35 m a.s.l). The first model agrees reasonably well with observations at Dome C (Cv(RMSE) = 1.34), but performs poorly at Halley (Cv(RMSE) = 89.28) while the second model reproduces with good agreement observations at both sites without any tuning (Cv(RMSE) = 0.84 at both sites). It is therefore suggested that air-snow interactions of nitrate in the winter are determined by non-equilibrium surface adsorption and co-condensation on ice coupled with solid-state diffusion inside the grain. In summer, however, the air-snow exchange of nitrate is mainly driven by solvation into liquid micropockets following Henry's law with contributions to total NO3- concentrations of 75% and 80% at Dome C and Halley respectively. It is also found that liquid volume of the snow grain and air-micropocket partitioning of HNO3 are sensitive to total solute concentration and pH. In conclusion, the second model can be used to predict nitrate concentration in surface snow over the entire range of environ- mental conditions typical for Antarctica and forms a basis for parameterisations in regional or global atmospheric chemistry models.
Putting humans in the loop: Using crowdsourced snow information to inform water management
NASA Astrophysics Data System (ADS)
Fedorov, Roman; Giuliani, Matteo; Castelletti, Andrea; Fraternali, Piero
2016-04-01
The unprecedented availability of user generated data on the Web due to the advent of online services, social networks, and crowdsourcing, is opening new opportunities for enhancing real-time monitoring and modeling of environmental systems based on data that are public, low-cost, and spatio-temporally dense, possibly contributing to our ability of making better decisions. In this work, we contribute a novel crowdsourcing procedure for computing virtual snow indexes from public web images, either produced by users or generated by touristic webcams, which is based on a complex architecture designed for automatically crawling content from multiple web data sources. The procedure retains only geo-tagged images containing a mountain skyline, identifies the visible peaks in each image using a public online digital terrain model, and classifies the mountain image pixels as snow or no-snow. This operation yields a snow mask per image, from which it is possible to extract time series of virtual snow indexes representing a proxy of the snow covered area. The value of the obtained virtual snow indexes is estimated in a real world water management problem. We consider the snow-dominated catchment of Lake Como, a regulated lake in Northern Italy, where snowmelt represents the most important contribution to seasonal lake storage, and we used the virtual snow indexes for informing the daily operation of the lake's dam. Numerical results show that such information is effective in extending the anticipation capacity of the lake operations, ultimately improving the system performance.
Multitemporal Snow Cover Mapping in Mountainous Terrain for Landsat Climate Data Record Development
NASA Technical Reports Server (NTRS)
Crawford, Christopher J.; Manson, Steven M.; Bauer, Marvin E.; Hall, Dorothy K.
2013-01-01
A multitemporal method to map snow cover in mountainous terrain is proposed to guide Landsat climate data record (CDR) development. The Landsat image archive including MSS, TM, and ETM+ imagery was used to construct a prototype Landsat snow cover CDR for the interior northwestern United States. Landsat snow cover CDRs are designed to capture snow-covered area (SCA) variability at discrete bi-monthly intervals that correspond to ground-based snow telemetry (SNOTEL) snow-water-equivalent (SWE) measurements. The June 1 bi-monthly interval was selected for initial CDR development, and was based on peak snowmelt timing for this mountainous region. Fifty-four Landsat images from 1975 to 2011 were preprocessed that included image registration, top-of-the-atmosphere (TOA) reflectance conversion, cloud and shadow masking, and topographic normalization. Snow covered pixels were retrieved using the normalized difference snow index (NDSI) and unsupervised classification, and pixels having greater (less) than 50% snow cover were classified presence (absence). A normalized SCA equation was derived to independently estimate SCA given missing image coverage and cloud-shadow contamination. Relative frequency maps of missing pixels were assembled to assess whether systematic biases were embedded within this Landsat CDR. Our results suggest that it is possible to confidently estimate historical bi-monthly SCA from partially cloudy Landsat images. This multitemporal method is intended to guide Landsat CDR development for freshwaterscarce regions of the western US to monitor climate-driven changes in mountain snowpack extent.
An Overview of Snow Photochemistry: Evidence, Mechanisms and Impacts
NASA Technical Reports Server (NTRS)
Grannas, A. M.; Jones, A. E.; Dibb, J.; Ammann, M.; Anastasio, C.; Beine, H. J.; Bergin, M.; Bottenheim, J.; Boxe, C. S.; Carver, G.;
2007-01-01
It has been shown that sunlit snow and ice plays an important role in processing atmospheric species. Photochemical production of a variety of chemicals has recently been reported to occur in snow/ice and the release of these photochemically generated species may significantly impact the chemistry of the overlying atmosphere. Nitrogen oxide and oxidant precursor fluxes have been measured in a number of snow covered environments, where in some cases the emissions significantly impact the overlying boundary layer. For example, photochemical ozone production (such as that occurring in polluted mid-latitudes) of 3-4 ppbv/day has been observed at South Pole, due to high OH and NO levels present in a relatively small boundary layer. Field and laboratory experiments have determined that the origin of the observed NOx flux is the photochemistry of nitrate within the snowpack, however some details of the mechanism have not yet been elucidated. A variety of low molecular weight organic compounds have been shown to be emitted from sunlit snowpacks, the source of which has been proposed to be either direct or indirect photo-oxidation of natural organic materials present in the snow. Although myriad studies have observed active processing of species within irradiated snowpacks, the fundamental chemistry occurring remains poorly understood. Here we consider the nature of snow at a fundamental, physical level; photochemical processes within snow and the caveats needed for comparison to atmospheric photochemistry; our current understanding of nitrogen, oxidant, halogen and organic photochemistry within snow; the current limitations faced by the field and implications for the future.
Talovskaya, A V; Yazikov, E G; Filimonenko, E A; Lata, J-C; Kim, J; Shakhova, T S
2017-07-20
Recognition and detailed characterization of solid particles emitted from thermal power plants into the environment is highly important due to their potential detrimental effects on human health. Snow cover is used for the identification of anthropogenic emissions in the environment. However, little is known about types, physical and chemical properties of solid airborne particles (SAP) deposited in snow around thermal power plants. The purpose of this study is to quantify and characterize in detail the traceable SAP deposited in snow near fossil fuel thermal power plant in order to identify its emissions into the environment. Applying the scanning electron microscopy-energy dispersive spectroscopy, and X-ray diffraction, mineral and anthropogenic phase groups in SAP deposited in snow near the plant and in fly ash were observed. We identified quartz, albite and mullite as most abundant mineral phases and carbonaceous matter, slag and spherical particles as dominate anthropogenic phases. This is the first study reporting that zircon and anthropogenic sulphide-bearing, metal oxide-bearing, intermetallic compound-bearing and rare-earth element-bearing particles were detected in snow deposits near thermal power plant. The identified mineral and anthropogenic phases can be used as tracers for fossil fuel combustion emissions, especially with regard to their possible effect on human health.
Process-level model evaluation: a snow and heat transfer metric
NASA Astrophysics Data System (ADS)
Slater, Andrew G.; Lawrence, David M.; Koven, Charles D.
2017-04-01
Land models require evaluation in order to understand results and guide future development. Examining functional relationships between model variables can provide insight into the ability of models to capture fundamental processes and aid in minimizing uncertainties or deficiencies in model forcing. This study quantifies the proficiency of land models to appropriately transfer heat from the soil through a snowpack to the atmosphere during the cooling season (Northern Hemisphere: October-March). Using the basic physics of heat diffusion, we investigate the relationship between seasonal amplitudes of soil versus air temperatures due to insulation from seasonal snow. Observations demonstrate the anticipated exponential relationship of attenuated soil temperature amplitude with increasing snow depth and indicate that the marginal influence of snow insulation diminishes beyond an effective snow depth
of about 50 cm. A snow and heat transfer metric (SHTM) is developed to quantify model skill compared to observations. Land models within the CMIP5 experiment vary widely in SHTM scores, and deficiencies can often be traced to model structural weaknesses. The SHTM value for individual models is stable over 150 years of climate, 1850-2005, indicating that the metric is insensitive to climate forcing and can be used to evaluate each model's representation of the insulation process.
Assessing the ability of operational snow models to predict snowmelt runoff extremes (Invited)
NASA Astrophysics Data System (ADS)
Wood, A. W.; Restrepo, P. J.; Clark, M. P.
2013-12-01
In the western US, the snow accumulation and melt cycle of winter and spring plays a critical role in the region's water management strategies. Consequently, the ability to predict snowmelt runoff at time scales from days to seasons is a key input for decisions in reservoir management, whether for avoiding flood hazards or supporting environmental flows through the scheduling of releases in spring, or for allocating releases for multi-state water distribution in dry seasons of year (using reservoir systems to provide an invaluable buffer for many sectors against drought). Runoff forecasts thus have important benefits at both wet and dry extremes of the climatological spectrum. The importance of the prediction of the snow cycle motivates an assessment of the strengths and weaknesses of the US's central operational snow model, SNOW17, in contrast to process-modeling alternatives, as they relate to simulating observed snowmelt variability and extremes. To this end, we use a flexible modeling approach that enables an investigation of different choices in model structure, including model physics, parameterization and degree of spatiotemporal discretization. We draw from examples of recent extreme events in western US watersheds and an overall assessment of retrospective model performance to identify fruitful avenues for advancing the modeling basis for the operational prediction of snow-related runoff extremes.
A Microwave Radiance Assimilation Study for a Tundra Snowpack
NASA Technical Reports Server (NTRS)
Kim, Edward; Durand, Michael; Margulis, Steve; England, Anthony
2010-01-01
Recent studies have begun exploring the assimilation of microwave radiances for the modeling and retrieval of snow properties. At a point scale, and for short durations (i week), radiance assimilation (RA) results are encouraging. However, in order to determine how practical RA might be for snow retrievals when applied over longer durations, larger spatial scales, and/or different snow types, we must expand the scope of the tests. In this paper we use coincident microwave radiance measurements and station data from a tundra site on the North Slope of Alaska. The field data are from the 3rd Radio-brightness Energy Balance Experiment (REBEX-3) carried out in 1994-95 by the University of Michigan. This dataset will provide a test of RA over months instead of one week, and for a very different type of snow than previous snow RA studies. We will address the following questions: flow well can a snowpack physical model (SM), forced with local weather, match measured conditions for a tundra snowpack?; How well can a microwave emission model, driven by the snowpack model, match measured microwave brightnesses for a tundra snowpack?; How well does RA increase or decrease the fidelity of estimates of snow depth and temperatures for a tundra snowpack?
Process-level model evaluation: a snow and heat transfer metric
Slater, Andrew G.; Lawrence, David M.; Koven, Charles D.
2017-04-20
Land models require evaluation in order to understand results and guide future development. Examining functional relationships between model variables can provide insight into the ability of models to capture fundamental processes and aid in minimizing uncertainties or deficiencies in model forcing. This study quantifies the proficiency of land models to appropriately transfer heat from the soil through a snowpack to the atmosphere during the cooling season (Northern Hemisphere: October–March). Using the basic physics of heat diffusion, we investigate the relationship between seasonal amplitudes of soil versus air temperatures due to insulation from seasonal snow. Observations demonstrate the anticipated exponential relationshipmore » of attenuated soil temperature amplitude with increasing snow depth and indicate that the marginal influence of snow insulation diminishes beyond an effective snow depth of about 50 cm. A snow and heat transfer metric (SHTM) is developed to quantify model skill compared to observations. Land models within the CMIP5 experiment vary widely in SHTM scores, and deficiencies can often be traced to model structural weaknesses. The SHTM value for individual models is stable over 150 years of climate, 1850–2005, indicating that the metric is insensitive to climate forcing and can be used to evaluate each model's representation of the insulation process.« less
Process-level model evaluation: a snow and heat transfer metric
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slater, Andrew G.; Lawrence, David M.; Koven, Charles D.
Land models require evaluation in order to understand results and guide future development. Examining functional relationships between model variables can provide insight into the ability of models to capture fundamental processes and aid in minimizing uncertainties or deficiencies in model forcing. This study quantifies the proficiency of land models to appropriately transfer heat from the soil through a snowpack to the atmosphere during the cooling season (Northern Hemisphere: October–March). Using the basic physics of heat diffusion, we investigate the relationship between seasonal amplitudes of soil versus air temperatures due to insulation from seasonal snow. Observations demonstrate the anticipated exponential relationshipmore » of attenuated soil temperature amplitude with increasing snow depth and indicate that the marginal influence of snow insulation diminishes beyond an effective snow depth of about 50 cm. A snow and heat transfer metric (SHTM) is developed to quantify model skill compared to observations. Land models within the CMIP5 experiment vary widely in SHTM scores, and deficiencies can often be traced to model structural weaknesses. The SHTM value for individual models is stable over 150 years of climate, 1850–2005, indicating that the metric is insensitive to climate forcing and can be used to evaluate each model's representation of the insulation process.« less
Artificial-intelligence-based optimization of the management of snow removal assets and resources.
DOT National Transportation Integrated Search
2002-10-01
Geographic information systems (GIS) and artificial intelligence (AI) techniques were used to develop an intelligent : snow removal asset management system (SRAMS). The system has been evaluated through a case study examining : snow removal from the ...
The Need for Modernized Operational Snow Models: A Tale of Two Years
NASA Astrophysics Data System (ADS)
Winstral, A. H.; Marks, D. G.
2014-12-01
The Boise River Basin in southwest Idaho, USA contains three major reservoirs totaling nearly 1,000,000 acre-feet of storage capacity. The primary goals for water managers are water supply and flood protection. In terms of observed SWE at monitoring sites throughout the basin, water years 2012 and 2014 were similar and near normal. In WY 2014 inflows into the BRB reservoir system followed historic patterns and reservoir releases were ideally controlled for management goals. WY2012 however was warmer than average and the winter snowpack had uncharacteristically high melt susceptibility. Subsequent energy fluxes produced late winter inflows much higher than normally encountered. The uncharacteristic flow patterns and inability of traditional operational modeling tools to handle this situation challenged water managers. Through late March and early April 2012 near flood stage flows were pushed through the city of Boise in order to increase storage and prevent more catastrophic flooding. While in this case a greater catastrophe was narrowly averted, the shortcomings of the traditional modeling approaches taken by operational agencies were exposed. "Uncharacteristic" events such as these are becoming more and more frequent as the effects of climate change are realized. The need for modernized methods - ones based on the physical controlling processes rather than historic patterns - is imperative. This presentation outlines the latest developments in the application of a physically-based, high-resolution spatial snow model to aid operational water management decisions.
NASA Technical Reports Server (NTRS)
Barnes, J. C. (Principal Investigator); Bowley, C. J.; Simmes, D. A.
1974-01-01
The author has identified the following significant results. In much of the western United States a large part of the utilized water comes from accumulated mountain snowpacks; thus, accurate measurements of snow distributions are required for input to streamflow prediction models. The application of ERTS-1 imagery for mapping snow has been evaluated for two geographic areas, the Salt-Verde watershed in central Arizona and the southern Sierra Nevada in California. Techniques have been developed to identify snow and to differentiate between snow and cloud. The snow extent for these two drainage areas has been mapped from the MSS-5 (0.6 - 0.7 microns) imagery and compared with aerial survey snow charts, aircraft photography, and ground-based snow measurements. The results indicate that ERTS imagery has substantial practical applications for snow mapping. Snow extent can be mapped from ERTS-1 imagery in more detail than is depicted on aerial survey snow charts. Moreover, in Arizona and southern California cloud obscuration does not appear to be a serious deterrent to the use of satellite data for snow survey. The costs involved in deriving snow maps from ERTS-1 imagery appear to be very reasonable in comparison with existing data collection methods.
A full year of snow on sea ice observations and simulations - Plans for MOSAiC 2019/20
NASA Astrophysics Data System (ADS)
Nicolaus, M.; Geland, S.; Perovich, D. K.
2017-12-01
The snow cover on sea on sea ice dominates many exchange processes and properties of the ice covered polar oceans. It is a major interface between the atmosphere and the sea ice with the ocean underneath. Snow on sea ice is known for its extraordinarily large spatial and temporal variability from micro scales and minutes to basin wide scales and decades. At the same time, snow cover properties and even snow depth distributions are among the least known and most difficult to observe climate variables. Starting in October 2019 and ending in October 2020, the international MOSAiC drift experiment will allow to observe the evolution of a snow pack on Arctic sea ice over a full annual cycle. During the drift with one ice floe along the transpolar drift, we will study snow processes and interactions as one of the main topics of the MOSAiC research program. Thus we will, for the first time, be able to perform such studies on seasonal sea ice and relate it to previous expeditions and parallel observations at different locations. Here we will present the current status of our planning of the MOSAiC snow program. We will summarize the latest implementation ideas to combine the field observations with numerical simulations. The field program will include regular manual observations and sampling on the main floe of the central observatory, autonomous recordings in the distributed network, airborne observations in the surrounding of the central observatory, and retrievals of satellite remote sensing products. Along with the field program, numerical simulations of the MOSAiC snow cover will be performed on different scales, including large-scale interaction with the atmosphere and the sea ice. The snow studies will also bridge between the different disciplines, including physical, chemical, biological, and geochemical measurements, samples, and fluxes. The main challenge of all measurements will be to accomplish the description of the full annual cycle.
NASA Astrophysics Data System (ADS)
Grecu, M.; Tian, L.; Heymsfield, G. M.
2017-12-01
A major challenge in deriving accurate estimates of physical properties of falling snow particles from single frequency space- or airborne radar observations is that snow particles exhibit a large variety of shapes and their electromagnetic scattering characteristics are highly dependent on these shapes. Triple frequency (Ku-Ka-W) radar observations are expected to facilitate the derivation of more accurate snow estimates because specific snow particle shapes tend to have specific signatures in the associated two-dimensional dual-reflectivity-ratio (DFR) space. However, the derivation of accurate snow estimates from triple frequency radar observations is by no means a trivial task. This is because the radar observations can be subject to non-negligible attenuation (especially at W-band when super-cooled water is present), which may significantly impact the interpretation of the information in the DFR space. Moreover, the electromagnetic scattering properties of snow particles are computationally expensive to derive, which makes the derivation of reliable parameterizations usable in estimation methodologies challenging. In this study, we formulate an two-step Expectation Maximization (EM) methodology to derive accurate snow estimates in Extratropical Cyclones (ECTs) from triple frequency airborne radar observations. The Expectation (E) step consists of a least-squares triple frequency estimation procedure applied with given assumptions regarding the relationships between the density of snow particles and their sizes, while the Maximization (M) step consists of the optimization of the assumptions used in step E. The electromagnetic scattering properties of snow particles are derived using the Rayleigh-Gans approximation. The methodology is applied to triple frequency radar observations collected during the Olympic Mountains Experiment (OLYMPEX). Results show that snowfall estimates above the freezing level in ETCs consistent with the triple frequency radar observations as well as with independent rainfall estimates below the freezing level may be derived using the EM methodology formulated in the study.
Spatiotemporal Variability and in Snow Phenology over Eurasian Continent druing 1966-2012
NASA Astrophysics Data System (ADS)
Zhong, X.; Zhang, T.; Wang, K.; Zheng, L.; Wang, H.
2016-12-01
Snow cover is a key part of the cryosphere, which is a critical component of the global climate system. Snow cover phenology critically effects on the surface energy budget, the surface albedo and hydrological processes. In this study, the climatology and spatiotemporal variability of snow cover phenology were investigated using the long-term (1966-2012) ground-based measurements of daily snow depth from 1103 stations across the Eurasian Continent. The results showed that the distributions of the first date, last date, snow cover duration and number of snow cover days generally represented the latitudinal zonality over the Eurasian Continent, and there were significant elevation gradient patterns in the Tibetan Plateau. The first date of snow cover delayed by about 1.2 day decade-1, the last date of snow cover advanced with the rate of -1.2 day decade-1, snow cover duration and number of snow cover days shortened by about 2.7and 0.6 day decade-1, respectively, from 1966 through 2012. Compared with precipitation, the correlation between snow cover phenology and air temperature was more significant. The changes in snow cover duration were mainly controlled by the changes of air temperature in autumn and spring. The shortened number of snow cover days was affected by rising temperature during the cold season except for the air temperature in autumn and spring.
NASA Astrophysics Data System (ADS)
Yan, H.; Sun, N.; Wigmosta, M. S.; Hou, Z.
2017-12-01
There is a renewed focus on the design of infrastructure resilient to extreme hydrometeorological events. While precipitation-based intensity-duration-frequency (IDF) curves are commonly used as part of infrastructure design, a large percentage of peak runoff events in the snow-dominated regions are caused by snowmelt, particularly during rain-on-snow (ROS) events. In this study, we examined next-generation IDF (NG-IDF) curves with inclusion of snowmelt and ROS events to improve infrastructure design in snow-dominated regions. We compared NG-IDF curves to standard precipitation-based IDF curves for estimates of extreme events at 377 Snowpack Telemetry (SNOTEL) stations across the western United States with at least 30 years of high quality record. We found 38% of the stations were subject to under-design, many with significant underestimation of 100-year extreme events, where the precipitation-based IDF curves can underestimate water potentially available for runoff by as much as 121% due to snowmelt and ROS events. The regions with the greatest potential for under-design were in the Pacific Northwest, the Sierra Nevada, and the Middle and Southern Rockies. We also found the potential for over-design at 27% of the stations, primarily in the Middle Rockies and Arizona mountains. These results demonstrate the need to consider snow processes in development of IDF curves for engineering design procedures in snow-dominated regions.
NASA Astrophysics Data System (ADS)
Hanzer, Florian; Förster, Kristian; Nemec, Johanna; Strasser, Ulrich
2018-03-01
A physically based hydroclimatological model (AMUNDSEN) is used to assess future climate change impacts on the cryosphere and hydrology of the Ötztal Alps (Austria) until 2100. The model is run in 100 m spatial and 3 h temporal resolution using in total 31 downscaled, bias-corrected, and temporally disaggregated EURO-CORDEX climate projections for the representative concentration pathways (RCPs) 2.6, 4.5, and 8.5 scenarios as forcing data, making this - to date - the most detailed study for this region in terms of process representation and range of considered climate projections. Changes in snow coverage, glacierization, and hydrological regimes are discussed both for a larger area encompassing the Ötztal Alps (1850 km2, 862-3770 m a.s.l.) as well as for seven catchments in the area with varying size (11-165 km2) and glacierization (24-77 %). Results show generally declining snow amounts with moderate decreases (0-20 % depending on the emission scenario) of mean annual snow water equivalent in high elevations (> 2500 m a.s.l.) until the end of the century. The largest decreases, amounting to up to 25-80 %, are projected to occur in elevations below 1500 m a.s.l. Glaciers in the region will continue to retreat strongly, leaving only 4-20 % of the initial (as of 2006) ice volume left by 2100. Total and summer (JJA) runoff will change little during the early 21st century (2011-2040) with simulated decreases (compared to 1997-2006) of up to 11 % (total) and 13 % (summer) depending on catchment and scenario, whereas runoff volumes decrease by up to 39 % (total) and 47 % (summer) towards the end of the century (2071-2100), accompanied by a shift in peak flows from July towards June.
NASA Astrophysics Data System (ADS)
Lafontaine, J.; Hay, L.
2015-12-01
The United States Geological Survey (USGS) has developed a National Hydrologic Model (NHM) to support coordinated, comprehensive and consistent hydrologic model development, and facilitate the application of hydrologic simulations within the conterminous United States (CONUS). More than 1,700 gaged watersheds across the CONUS were modeled to test the feasibility of improving streamflow simulations in gaged and ungaged watersheds by linking statistically- and physically-based hydrologic models with remotely-sensed data products (i.e. - snow water equivalent) and estimates of uncertainty. Initially, the physically-based models were calibrated to measured streamflow data to provide a baseline for comparison. As many stream reaches in the CONUS are either not gaged, or are substantially impacted by water use or flow regulation, ancillary information must be used to determine reasonable parameter estimations for streamflow simulations. In addition, not all ancillary datasets are appropriate for application to all parts of the CONUS (e.g. - snow water equivalent in the southeastern U.S., where snow is a rarity). As it is not expected that any one data product or model simulation will be sufficient for representing hydrologic behavior across the entire CONUS, a systematic evaluation of which data products improve simulations of streamflow for various regions across the CONUS was performed. The resulting portfolio of calibration strategies can be used to guide selection of an appropriate combination of simulated and measured information for model development and calibration at a given location of interest. In addition, these calibration strategies have been developed to be flexible so that new data products or simulated information can be assimilated. This analysis provides a foundation to understand how well models work when streamflow data is either not available or is limited and could be used to further inform hydrologic model parameter development for ungaged areas.
Snow: a reliable indicator for global warming in the future?
NASA Astrophysics Data System (ADS)
Jacobi, H.-W.
2012-03-01
The cryosphere consists of water in the solid form at the Earth's surface and includes, among others, snow, sea ice, glaciers and ice sheets. Since the 1990s the cryosphere and its components have often been considered as indicators of global warming because rising temperatures can enhance the melting of solid water (e.g. Barry et al 1993, Goodison and Walker 1993, Armstrong and Brun 2008). Changes in the cryosphere are often easier to recognize than a global temperature rise of a couple of degrees: many locals and tourists have hands-on experience in changes in the extent of glaciers or the duration of winter snow cover on the Eurasian and North American continents. On a more scientific basis, the last IPCC report left no doubt: the amount of snow and ice on Earth is decreasing (Lemke et al 2007). Available data showed clearly decreasing trends in the sea ice and frozen ground extent of the Northern Hemisphere (NH) and the global glacier mass balance. However, the trend in the snow cover extent (SCE) of the NH was much more ambiguous; a result that has since been confirmed by the online available up-to-date analysis of the SCE performed by the Rutgers University Global Snow Lab (climate.rutgers.edu/snowcover/). The behavior of snow is not the result of a simple cause-and-effect relationship between air temperature and snow. It is instead related to a rather complex interplay between external meteorological parameters and internal processes in the snowpack. While air temperature is of course a crucial parameter for snow and its melting, precipitation and radiation are also important. Further physical properties like snow grain size and the amount of absorbing impurities in the snow determine the fraction of absorbed radiation. While all these parameters affect the energy budget of the snowpack, each of these variables can dominate depending on the season or, more generally, on environmental conditions. As a result, the reduction in SCE in spring and summer in the NH was attributed to faster melting because of higher air temperatures, while the winter months (December to February) saw an increase in the SCE due to increased precipitation (Lemke et al >2007). Cohen et al (2012) confirmed these opposing effects in the SCE and showed that on the Eurasian continent the average SCE in October has increased by approximately 3 × 106 km2 in the last two decades; a growth of almost 40%, corresponding to roughly 1.5 times the area of Greenland. For the same period, Cohen et al (2012) found a negligible trend in the average temperatures above the continents of the NH for the winter months despite a significant increase in the annual mean temperature for the same regions. Cohen et al (2012) propose the following link between temperatures and snow: the reduced sea ice cover of the Arctic Ocean and the enhanced air temperatures in fall cause higher evaporation from the Arctic Ocean, leading to increased tropospheric moisture in the Arctic. More moisture results in more snowfall over the Eurasian continent, increasing the SCE. The increased snow cover strengthens the Siberian High, a strong anticyclonic system generally persistent between October and April. This system is strong enough to affect weather patterns in large parts of the NH, resulting in changes in the large-scale circulation of the NH (Panagiotopoulos et al 2005). As a result, outbreaks of cold Arctic air masses into the mid-latitudes are more frequent, leading to low temperatures over the eastern part of North America and Northern Eurasia. According to Cohen et al (2012), these are exactly the same regions that have experienced a cooling trend in the winter temperature over the past twenty years. While this chain of events is plausible (and some are confirmed by observations), existing climate models are not yet capable of reproducing these processes. On the contrary, Cohen et al (2012) showed that they predict a slightly decreasing SCE in October for Eurasia and an increase in winter temperatures over the continents in the NH. This is not surprising because the simulation of snow and its interactions with the atmosphere in global models is imperfect (Armstrong and Brun 2008). Most models have difficulty in simulating successfully the complex behavior of snow cover. A better representation of snow in the models is vital in order to understand the possible far-reaching consequences of changes in the SCE and its effects on the local climate and on large-scale circulations in the atmosphere to utilize snow as a reliable indicator for a changing climate. However, the SCE is only one of many possible snow parameters that can be used (Goodison and Walker 1993). Although omni-present in many regions and during many seasons, there is still much to be learned about snow and how it is linked to the global climate system. References Armstrong R L and Brun E 2008 Snow and Climate: Physical Processes, Surface Energy Exchange and Modeling (Cambridge: Cambridge University Press) Barry R G, Goodison B E and LeDrew E F (ed) 1993 Snow watch '92—detection strategies for snow and ice Glaciological Data Report GD-25 (Boulder, CO: World Data Center A: Glaciology (Snow and Ice)) p 273 Cohen J L, Furtado J C, Barlow M A, Alexeev V A and Cherry J E 2012 Arctic warming, increasing snow cover and widespread boreal winter cooling Environ. Res. Lett. 7 014007 Goodison B E and Walker A E 1993 Use of snow cover derived from satellite passive microwave data as indicator for climate change Ann. Glaciol. 17 137-42 Lemke P et al 2007 Observations: changes in snow, ice and frozen ground Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge: Cambridge University Press) Panagiotopoulos F, Shahgedanova M, Hannachi A and Stephenson D B 2005 Observed trends and teleconnections of the Siberian high: a recently declining center of action J. Clim. 18 1411-22
NASA Astrophysics Data System (ADS)
Roberge, S.; Chokmani, K.; De Sève, D.
2012-04-01
The snow cover plays an important role in the hydrological cycle of Quebec (Eastern Canada). Consequently, evaluating its spatial extent interests the authorities responsible for the management of water resources, especially hydropower companies. The main objective of this study is the development of a snow-cover mapping strategy using remote sensing data and ensemble based systems techniques. Planned to be tested in a near real-time operational mode, this snow-cover mapping strategy has the advantage to provide the probability of a pixel to be snow covered and its uncertainty. Ensemble systems are made of two key components. First, a method is needed to build an ensemble of classifiers that is diverse as much as possible. Second, an approach is required to combine the outputs of individual classifiers that make up the ensemble in such a way that correct decisions are amplified, and incorrect ones are cancelled out. In this study, we demonstrate the potential of ensemble systems to snow-cover mapping using remote sensing data. The chosen classifier is a sequential thresholds algorithm using NOAA-AVHRR data adapted to conditions over Eastern Canada. Its special feature is the use of a combination of six sequential thresholds varying according to the day in the winter season. Two versions of the snow-cover mapping algorithm have been developed: one is specific for autumn (from October 1st to December 31st) and the other for spring (from March 16th to May 31st). In order to build the ensemble based system, different versions of the algorithm are created by varying randomly its parameters. One hundred of the versions are included in the ensemble. The probability of a pixel to be snow, no-snow or cloud covered corresponds to the amount of votes the pixel has been classified as such by all classifiers. The overall performance of ensemble based mapping is compared to the overall performance of the chosen classifier, and also with ground observations at meteorological stations.
NASA Technical Reports Server (NTRS)
Markus, Thorsten; Maksym, Ted
2007-01-01
Passive microwave snow depth, ice concentration, and ice motion estimates are combined with snowfall from the European Centre for Medium Range Weather Forecasting (ECMWF) reanalysis (ERA-40) from 1979-200 1 to estimate the prevalence of snow-to-ice conversion (snow-ice formation) on level sea ice in the Antarctic for April-October. Snow ice is ubiquitous in all regions throughout the growth season. Calculated snow- ice thicknesses fall within the range of estimates from ice core analysis for most regions. However, uncertainties in both this analysis and in situ data limit the usefulness of snow depth and snow-ice production to evaluate the accuracy of ERA-40 snowfall. The East Antarctic is an exception, where calculated snow-ice production exceeds observed ice thickness over wide areas, suggesting that ERA-40 precipitation is too high there. Snow-ice thickness variability is strongly controlled not just by snow accumulation rates, but also by ice divergence. Surprisingly, snow-ice production is largely independent of snow depth, indicating that the latter may be a poor indicator of total snow accumulation. Using the presence of snow-ice formation as a proxy indicator for near-zero freeboard, we examine the possibility of estimating level ice thickness from satellite snow depths. A best estimate for the mean level ice thickness in September is 53 cm, comparing well with 51 cm from ship-based observations. The error is estimated to be 10-20 cm, which is similar to the observed interannual and regional variability. Nevertheless, this is comparable to expected errors for ice thickness determined by satellite altimeters. Improvement in satellite snow depth retrievals would benefit both of these methods.
Snow cover data records from satellite and conventional measurements
NASA Astrophysics Data System (ADS)
Derksen, C.; Brown, R.; Wang, L.
2008-12-01
A major goal of snow-related research in the Climate Research Division of Environment Canada is the development of consistent snow cover information from satellite and in situ data sources for climate monitoring and model evaluation. This work involves new satellite algorithm development for reliable mapping of snow water equivalent (SWE), snow cover extent (SCE) and snow cover onset and melt dates, evaluation of existing snow cover products such as the NOAA weekly data set with in situ and satellite data, and the reconstruction and reanalysis of snow cover information from the application of physical snow models, geostatistics and data assimilation methods. In the context of the International Polar Year, a major effort is being made to develop and evaluate snow cover information over the Arctic region with a particular focus on the dynamic spring melt period where positive feedbacks to the climate system are more pronounced. Assessment of the NOAA daily and weekly SCE products with MODIS and QuikSCAT derived datasets identified a systematic late bias of 2-3 weeks in snow-off dates over northern Canada. This bias was not observed over northern Eurasia which suggests that regional differences in variables such as lake fraction and cloud cover are systematically influencing the accuracy of the NOAA product over northern Canada. Considerable progress has been made in deriving passive microwave derived SWE information over sub- Arctic regions of North America where pre-existing algorithms were unable to account for the influence of forest cover and lake ice. Previous uncertainties in retrieving SWE across the boreal forest have been resolved with the combination of 18.7 and 10.7 GHz measurements from the Advanced Microwave Scanning Radiometer (AMSR-E; 2002-present). Full time series development (1978-onwards) remains problematic, however, because 10.7 GHz measurements are not available from the Special Sensor Microwave/Imager (1987-present). Satellite measurements coupled with lake ice model simulations have illustrated frequency dependent, seasonally evolving relationships between brightness temperature and lake fraction across tundra regions. A potential solution based on the temporal evolution of 37 GHz AMSR-E measurements shows some promise as this was found to be significantly correlated with field measurements of tundra SWE, and to be relatively insensitive to lake fraction. New pan-Arctic (N 60°N) snowmelt onset and end date records (2000-2006) were produced from enhanced resolution (4.45 km) QuikSCAT (QSCAT) Ku-band backscatter measurements. The goal is to merge this with melt onset information from other components of the cryosphere (e.g. glaciers, ice caps, ice sheets, lake ice, sea ice) to provide an integrated circumpolar melt onset and duration dataset for climate monitoring and research on cryosphere-climate links and feedbacks. A major challenge is expanding the relatively short time period of Ku-band satellite measurements with historical C-band data (i.e. from ERS-1). Geostatistical methods and snow cover modeling were used to develop a 10-km gridded SWE dataset over Quebec from 1970-2005 for climate studies and evaluation of the performance of the Canadian Regional Climate Model.
Overview of SnowEx Year 1 Activities
NASA Technical Reports Server (NTRS)
Kim, Edward; Gatebe, Charles; Hall, Dorothy; Newlin, Jerry; Misakonis, Amy; Elder, Kelly; Marshall, Hans Peter; Heimstra, Chris; Brucker, Ludovic; De Marco, Eugenia;
2017-01-01
SnowEx is a multi-year airborne snow campaign with the primary goal of addressing the question: How much water is stored in Earths terrestrial snow-covered regions? Year 1 (2016-17) focused on the distribution of snow-water equivalent (SWE) and the snow energy balance in a forested environment. The year 1 primary site was Grand Mesa and the secondary site was the Senator Beck Basin, both in western, Colorado, USA. Nine sensors on five aircraft made observations using a broad range of sensing techniques, active and passive microwave, and active and passive optical infrared to determine the sensitivity and accuracy of these potential satellite remote sensing techniques, along with models, to measure snow under a range of forest conditions. SnowEx also included an extensive range of ground truth measurements in-situ manual samples, snow pits, ground based remote sensing measurements, and sophisticated new techniques. A detailed description of the data collected will be given and some preliminary results will be presented.
Applying A Multi-Objective Based Procedure to SWAT Modelling in Alpine Catchments
NASA Astrophysics Data System (ADS)
Tuo, Y.; Disse, M.; Chiogna, G.
2017-12-01
In alpine catchments, water management practices can lead to conflicts between upstream and downstream stakeholders, like in the Adige river basin (Italy). A correct prediction of available water resources plays an important part, for example, in defining how much water can be stored for hydropower production in upstream reservoirs without affecting agricultural activities downstream. Snow is a crucial hydrological component that highly affects seasonal behavior of streamflow. Therefore, a realistic representation of snow dynamics is fundamental for water management operations in alpine catchments. The Soil and Water Assessment Tool (SWAT) model has been applied in alpine catchments worldwide. However, during model calibration of catchment scale applications, snow parameters were generally estimated based on streamflow records rather than on snow measurements. This may lead to streamflow predictions with wrong snow melt contribution. This work highlights the importance of considering snow measurements in the calibration of the SWAT model for alpine hydrology and compares various calibration methodologies. In addition to discharge records, snow water equivalent time series of both subbasin scale and monitoring station were also utilized to evaluate the model performance by comparing with the SWAT subbasin and elevation band snow outputs. Comparing model results obtained calibrating the model using discharge data only and discharge data along with snow water equivalent data, we show that the latter approach allows us to improve the reliability of snow simulations while maintaining good estimations of streamflow. With a more reliable representation of snow dynamics, the hydrological model can provide more accurate references for proposing adequate water management solutions. This study offers to the wide SWAT user community an effective approach to improve streamflow predictions in alpine catchments and hence support decision makers in water allocation.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-10
... ice area are linked in the IPCC climate models to GHG emissions by the physics of radiation processes... scenario), a model that is known for incorporating advanced sea ice physics, and for which snow data were...
NASA Technical Reports Server (NTRS)
Riggs, George A.; Hall, Dorothy K.; Foster, James L.
2009-01-01
Monitoring of snow cover extent and snow water equivalent (SWE) in boreal forests is important for determining the amount of potential runoff and beginning date of snowmelt. The great expanse of the boreal forest necessitates the use of satellite measurements to monitor snow cover. Snow cover in the boreal forest can be mapped with either the Moderate Resolution Imaging Spectroradiometer (MODIS) or the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) microwave instrument. The extent of snow cover is estimated from the MODIS data and SWE is estimated from the AMSR-E. Environmental limitations affect both sensors in different ways to limit their ability to detect snow in some situations. Forest density, snow wetness, and snow depth are factors that limit the effectiveness of both sensors for snow detection. Cloud cover is a significant hindrance to monitoring snow cover extent Using MODIS but is not a hindrance to the use of the AMSR-E. These limitations could be mitigated by combining MODIS and AMSR-E data to allow for improved interpretation of snow cover extent and SWE on a daily basis and provide temporal continuity of snow mapping across the boreal forest regions in Canada. The purpose of this study is to investigate if temporal monitoring of snow cover using a combination of MODIS and AMSR-E data could yield a better interpretation of changing snow cover conditions. The MODIS snow mapping algorithm is based on snow detection using the Normalized Difference Snow Index (NDSI) and the Normalized Difference Vegetation Index (NDVI) to enhance snow detection in dense vegetation. (Other spectral threshold tests are also used to map snow using MODIS.) Snow cover under a forest canopy may have an effect on the NDVI thus we use the NDVI in snow detection. A MODIS snow fraction product is also generated but not used in this study. In this study the NDSI and NDVI components of the snow mapping algorithm were calculated and analyzed to determine how they changed through the seasons. A blended snow product, the Air Force Weather Agency and NASA (ANSA) snow algorithm and product has recently been developed. The ANSA algorithm blends the MODIS snow cover and AMSR-E SWE products into a single snow product that has been shown to improve the performance of snow cover mapping. In this study components of the ANSA snow algorithm are used along with additional MODIS data to monitor daily changes in snow cover over the period of 1 February to 30 June 2008.
Evaluation of the effectiveness of salt neutralizers for washing snow and ice equipment.
DOT National Transportation Integrated Search
2014-01-01
In winter maintenance, the chloride-based deicers used to keep roadways clear of : snow and ice are highly corrosive to vehicles and equipment. Corrosion of snow and ice equipment : is a major issue causing increased maintenance and repair costs, red...
First Gridded Spatial Field Reconstructions of Snow from Tree Rings
NASA Astrophysics Data System (ADS)
Coulthard, B. L.; Anchukaitis, K. J.; Pederson, G. T.; Alder, J. R.; Hostetler, S. W.; Gray, S. T.
2017-12-01
Western North America's mountain snowpacks provide critical water resources for human populations and ecosystems. Warmer temperatures and changing precipitation patterns will increasingly alter the quantity, extent, and persistence of snow in coming decades. A comprehensive understanding of the causes and range of long-term variability in this system is required for forecasting future anomalies, but snowpack observations are limited and sparse. While individual tree ring-based annual snowpack reconstructions have been developed for specific regions and mountain ranges, we present here the first collection of spatially-explicit gridded field reconstructions of seasonal snowpack within the American Rocky Mountains. Capitalizing on a new western North American snow-sensitive network of over 700 tree-ring chronologies, as well as recent advances in PRISM-based snow modeling, our gridded reconstructions offer a full space-time characterization of snow and associated water resource fluctuations over several centuries. The quality of reconstructions is evaluated against existing observations, proxy-records, and an independently-developed first-order monthly snow model.
Radiance Assimilation Shows Promise for Snowpack Characterization: A 1-D Case Study
NASA Technical Reports Server (NTRS)
Durand, Michael; Kim, Edward; Margulis, Steve
2008-01-01
We demonstrate an ensemble-based radiometric data assimilation (DA) methodology for estimating snow depth and snow grain size using ground-based passive microwave (PM) observations at 18.7 and 36.5 GHz collected during the NASA CLPX-1, March 2003, Colorado, USA. A land surface model was used to develop a prior estimate of the snowpack states, and a radiative transfer model was used to relate the modeled states to the observations. Snow depth bias was -53.3 cm prior to the assimilation, and -7.3 cm after the assimilation. Snow depth estimated by a non-DA-based retrieval algorithm using the same PM data had a bias of -18.3 cm. The sensitivity of the assimilation scheme to the grain size uncertainty was evaluated; over the range of grain size uncertainty tested, the posterior snow depth estimate bias ranges from -2.99 cm to -9.85 cm, which is uniformly better than both the prior and retrieval estimates. This study demonstrates the potential applicability of radiometric DA at larger scales.
Estimation of global snow cover using passive microwave data
NASA Astrophysics Data System (ADS)
Chang, Alfred T. C.; Kelly, Richard E.; Foster, James L.; Hall, Dorothy K.
2003-04-01
This paper describes an approach to estimate global snow cover using satellite passive microwave data. Snow cover is detected using the high frequency scattering signal from natural microwave radiation, which is observed by passive microwave instruments. Developed for the retrieval of global snow depth and snow water equivalent using Advanced Microwave Scanning Radiometer EOS (AMSR-E), the algorithm uses passive microwave radiation along with a microwave emission model and a snow grain growth model to estimate snow depth. The microwave emission model is based on the Dense Media Radiative Transfer (DMRT) model that uses the quasi-crystalline approach and sticky particle theory to predict the brightness temperature from a single layered snowpack. The grain growth model is a generic single layer model based on an empirical approach to predict snow grain size evolution with time. Gridding to the 25 km EASE-grid projection, a daily record of Special Sensor Microwave Imager (SSM/I) snow depth estimates was generated for December 2000 to March 2001. The estimates are tested using ground measurements from two continental-scale river catchments (Nelson River and the Ob River in Russia). This regional-scale testing of the algorithm shows that for passive microwave estimates, the average daily snow depth retrieval standard error between estimated and measured snow depths ranges from 0 cm to 40 cm of point observations. Bias characteristics are different for each basin. A fraction of the error is related to uncertainties about the grain growth initialization states and uncertainties about grain size changes through the winter season that directly affect the parameterization of the snow depth estimation in the DMRT model. Also, the algorithm does not include a correction for forest cover and this effect is clearly observed in the retrieval. Finally, error is also related to scale differences between in situ ground measurements and area-integrated satellite estimates. With AMSR-E data, improvements to snow depth and water equivalent estimates are expected since AMSR-E will have twice the spatial resolution of the SSM/I and will be able to characterize better the subnivean snow environment from an expanded range of microwave frequencies.
Utilizing Multiple Datasets for Snow Cover Mapping
NASA Technical Reports Server (NTRS)
Tait, Andrew B.; Hall, Dorothy K.; Foster, James L.; Armstrong, Richard L.
1999-01-01
Snow-cover maps generated from surface data are based on direct measurements, however they are prone to interpolation errors where climate stations are sparsely distributed. Snow cover is clearly discernable using satellite-attained optical data because of the high albedo of snow, yet the surface is often obscured by cloud cover. Passive microwave (PM) data is unaffected by clouds, however, the snow-cover signature is significantly affected by melting snow and the microwaves may be transparent to thin snow (less than 3cm). Both optical and microwave sensors have problems discerning snow beneath forest canopies. This paper describes a method that combines ground and satellite data to produce a Multiple-Dataset Snow-Cover Product (MDSCP). Comparisons with current snow-cover products show that the MDSCP draws together the advantages of each of its component products while minimizing their potential errors. Improved estimates of the snow-covered area are derived through the addition of two snow-cover classes ("thin or patchy" and "high elevation" snow cover) and from the analysis of the climate station data within each class. The compatibility of this method for use with Moderate Resolution Imaging Spectroradiometer (MODIS) data, which will be available in 2000, is also discussed. With the assimilation of these data, the resolution of the MDSCP would be improved both spatially and temporally and the analysis would become completely automated.
Basic Snow Pressure Calculation
NASA Astrophysics Data System (ADS)
Hao, Shouzhi; Su, Jian
2018-03-01
As extreme weather rising in recent years, the damage of large steel structures caused by weather is frequent in China. How to consider the effect of wind and snow loads on the structure in structural design has become the focus of attention in engineering field. In this paper, based on the serious snow disasters in recent years and comparative analysis of some scholars, influence factors and the value of the snow load, the probability model are described.
NASA Astrophysics Data System (ADS)
Pimentel, Rafael; José Pérez-Palazón, María; Herrero, Javier; José Polo, María
2016-04-01
Snow plays a crucial role in mountainous areas, not only as water resources for human supply, irrigation and energy production, but also for the ecosystem, flora and fauna, over these areas. Sierra Nevada Mountains, southern Spain, constitutes a rich reservoir of endemic wildlife species, and it is considered the most important center of biodiversity in the wester Mediterranean region. The highest regions of the range were declared UNESCO Biosphere Reserve, Natural and National Parks. Climate trends over the last decades put a lot of pressure on both snowfall occurrence and snow persistence; this poses a risk for biodiversity and has led to its inclusion in the Global Change Observatory Network. This work quantifies the evolution of the persistence of snow over the Sierra Nevada area during the last fifty-five years (1960-2015) as a basis to assess the vulnerability of its ecosystem services. For this, the spatial distribution of the annual number of days with snow, SDS, was analyzed over a study area of 4583 km2 (140-3479 m.a.s.l.), which comprises the head of the five basins in these mountains. The following indicator variables were studied over the whole area and each one of the five head regions identified: 1) the trend of SDS; 2) the annual area where SDS exceeded selected percentiles in its distribution; and 3) the annual minimum altitude where SDS exceeded those percentiles. SDS was obtained during the study period by means of the snow module in WiMMed (Watershed Integrated Model in Mediterranean Environment), a physically-based hydrological model developed, calibrated and validated in the area; the model is based on an energy-mass balance over the snowpack that is spatially distributed through the use of depletion curves, and is operational at hourly and daily scales. A general decreasing trend of SDS (0.25 days year-1) was found over the whole study area for the study period. This value is higher in the more humid basins (0.45 and 0.41 days year-1) than in the drier ones (0.15 and 0.18 days year-1) where the snow is significant only in very wet years. The minimum altitude at which SDS is higher than the 25th percentile of SDS distribution is increasing at a mean rate of 0.0016 m year-1 during the 55-yr period; however, marked differences were found among these years, with and absolute range from 557 to 1594 m.a.s.l., showing the highly variable character of the climate in this region. The observed trend of temperature rather than precipitation seems to be more determining for the snow persistence, with an average correlation coefficient for the whole study period of -0.9 and 0.7 between SDS and the annual mean daily temperature and annual precipitation, respectively. The results led to the further identification of zones facing a significant reduction of the snow presence in the medium and long term, and they constitute a relevant basis to assess the decision-making process for both planning and adaptation actions in the Natural and National Park area.
NASA Technical Reports Server (NTRS)
Yatheendradas, Soni; Peters-Lidard, Christa D.; Koren, Victor; Cosgrove, Brian A.; DeGoncalves, Luis G. D.; Smith, Michael; Geiger, James; Cui, Zhengtao; Borak, Jordan; Kumar, Sujay V.;
2012-01-01
Snow cover area affects snowmelt, soil moisture, evapotranspiration, and ultimately streamflow. For the Distributed Model Intercomparison Project - Phase 2 Western basins, we assimilate satellite-based fractional snow cover area (fSCA) from the Moderate Resolution Imaging Spectroradiometer, or MODIS, into the National Weather Service (NWS) SNOW-17 model. This model is coupled with the NWS Sacramento Heat Transfer (SAC-HT) model inside the National Aeronautics and Space Administration's (NASA) Land Information System. SNOW-17 computes fSCA from snow water equivalent (SWE) values using an areal depletion curve. Using a direct insertion, we assimilate fSCAs in two fully distributed ways: 1) we update the curve by attempting SWE preservation, and 2) we reconstruct SWEs using the curve. The preceding are refinements of an existing simple, conceptually-guided NWS algorithm. Satellite fSCA over dense forests inadequately accounts for below-canopy snow, degrading simulated streamflow upon assimilation during snowmelt. Accordingly, we implement a below-canopy allowance during assimilation. This simplistic allowance and direct insertion are found to be inadequate for improving calibrated results, still degrading them as mentioned above. However, for streamflow volume for the uncalibrated runs, we obtain: (1) substantial to major improvements (64-81 %) as a percentage of the control run residuals (or distance from observations), and (2) minor improvements (16-22 %) as a percentage of observed values. We highlight the need for detailed representations of canopy-snow optical radiative transfer processes in mountainous, dense forest regions if assimilation-based improvements are to be seen in calibrated runs over these areas.
Cloud-based Computing and Applications of New Snow Metrics for Societal Benefit
NASA Astrophysics Data System (ADS)
Nolin, A. W.; Sproles, E. A.; Crumley, R. L.; Wilson, A.; Mar, E.; van de Kerk, M.; Prugh, L.
2017-12-01
Seasonal and interannual variability in snow cover affects socio-environmental systems including water resources, forest ecology, freshwater and terrestrial habitat, and winter recreation. We have developed two new seasonal snow metrics: snow cover frequency (SCF) and snow disappearance date (SDD). These metrics are calculated at 500-m resolution using NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover data (MOD10A1). SCF is the number of times snow is observed in a pixel over the user-defined observation period. SDD is the last date of observed snow in a water year. These pixel-level metrics are calculated rapidly and globally in the Google Earth Engine cloud-based environment. SCF and SDD can be interactively visualized in a map-based interface, allowing users to explore spatial and temporal snowcover patterns from 2000-present. These metrics are especially valuable in regions where snow data are sparse or non-existent. We have used these metrics in several ongoing projects. When SCF was linked with a simple hydrologic model in the La Laguna watershed in northern Chile, it successfully predicted summer low flows with a Nash-Sutcliffe value of 0.86. SCF has also been used to help explain changes in Dall sheep populations in Alaska where sheep populations are negatively impacted by late snow cover and low snowline elevation during the spring lambing season. In forest management, SCF and SDD appear to be valuable predictors of post-wildfire vegetation growth. We see a positive relationship between winter SCF and subsequent summer greening for several years post-fire. For western US winter recreation, we are exploring trends in SDD and SCF for regions where snow sports are economically important. In a world with declining snowpacks and increasing uncertainty, these metrics extend across elevations and fill data gaps to provide valuable information for decision-making. SCF and SDD are being produced so that anyone with Internet access and a Google account can access, visualize, and download the data with a minimum of technical expertise and no need for proprietary software.
NASA Astrophysics Data System (ADS)
Glaser, D. R., II; Wagner, A. M.; Gelvin, A.; Saari, S.; Staples, A.; Larsen, G.
2017-12-01
A US Army legacy munitions waste site was identified adjacent to a river near a small arms range in Alaska. As part of remediation efforts, geophysical studies were conducted to characterize the extent of buried metal debris at the site. Time-domain electromagnetic surveys were completed over the site to meet the regulatory guidance for site cleanup. Time-domain and frequency-domain electromagnetic induction, magnetic gradiometry, and ground penetrating radar subsurface geophysical studies were deployed over soil, water, and snow surface conditions throughout the impacted area. The time-domain electromagnetic induction results acquired during summer months, presented clear indications of trenches located directly perpendicular to and adjacent to the river. However, in the follow up investigation where the snow-pack was greater than one meter, the response amplitude of the metallic debris was dampened and possible targets were missed. This was confirmed by the subsequent magnetic gradiometry survey which identified a suspected extension of one of the trenches through the river on to the seasonal sand bar island. The region is subject to extremely cold temperatures as well as significant snow pack and permafrost soil conditions. The snow presented a negative impact to the accurate assessment of the site by changing the effective investigation depth. To address this we developed an approach using ground penetrating radar data calibrated with physical snow depth measurements to generate continuous estimates of snow depth and spatially correct the electromagnetic induction data to the corresponding regulatory amplitude limit as if the snow were not present. Limitations of the approach as related to the signal floor of the electromagnetic induction response were also assessed.
Snow depth manipulation experiments in a dry and a moist tundra
NASA Astrophysics Data System (ADS)
Kwon, M. J.; Czimczik, C. I.; Jung, J. Y.; Kim, M.; Lee, Y. K.; Nam, S.; Wagner, I.
2017-12-01
As a result of global warming, precipitation in the Arctic is expected to increase by 25-50% by the end of this century, mostly in the form of snow. However, precipitation patterns vary considerable in space and time, and future precipitation patterns are highly uncertain at local and regional scales. The amount of snowfall (or snow depth) influences a number of ecosystem properties in Arctic ecosystems, such as soil temperature over winter and soil moisture in the following growing season. These modifications then affect rates of carbon-related soil processes and photosynthesis, thus CO2 exchange rates between terrestrial ecosystems and the atmosphere. In this study, we investigate the effects of snow depth on the magnitude, sources and temporal dynamics of CO2 fluxes. We installed snow fences in a dry dwarf-shrub (Cambridge Bay, Canada; 69° N, 105° W) and a moist low-shrub (Council, Alaska, USA; 64° N, 165° W) tundra in summer 2017, and established control, and increased and reduced snow depth plots at each snow fence. Summertime CO2 flux rates (net ecosystem exchange, ecosystem respiration, gross primary production) and the fractions of autotrophic and heterotrophic respiration to ecosystem respiration were measured using manual chambers and radiocarbon signatures. Wintertime CO2 flux rates will be measured using soda lime adsorption technique and forced diffusion chambers. Soil temperature and moisture at multiple depths, as well as changes in soil properties and microbial communities will be also observed, to research whether these changes affect CO2 flux rates or patterns. Our study will elucidate how future snow depth and its impact on soil physical and biogeochemical properties influence the magnitude and sources of tundra-atmosphere CO2 exchange in the rapidly warming Arctic.
Effect of Different Tree canopies on the Brightness Temperature of Snowpack
NASA Astrophysics Data System (ADS)
Mousavi, S.; De Roo, R. D.; Brucker, L.
2017-12-01
Snow stores the water we drink and is essential to grow food that we eat. But changes in snow quantities such as snow water equivalent (SWE) are underway and have serious consequences. So, effective management of the freshwater reservoir requires to monitor frequently (weekly or better) the spatial distribution of SWE and snowpack wetness. Both microwave radar and radiometer systems have long been considered as relevant remote sensing tools in retrieving globally snow physical parameters of interest thanks to their all-weather operation capability. However, their observations are sensitive to the presence of tree canopies, which in turns impacts SWE estimation. To address this long-lasting challenge, we parked a truck-mounted microwave radiometer system for an entire winter in a rare area where it exists different tree types in the different cardinal directions. We used dual-polarization microwave radiometers at three different frequencies (1.4, 19, and 37 GHz), mounted on a boom truck to observe continuously the snowpack surrounding the truck. Observations were recorded at different incidence angles. These measurements have been collected in Grand Mesa National Forest, Colorado as part of the NASA SnowEx 2016-17. In this presentation, the effect of Engelmann Spruce and Aspen trees on the measured brightness temperature of snow is discussed. It is shown that Engelmann Spruce trees increases the brightness temperature of the snowpack more than Aspen trees do. Moreover, the elevation angular dependence of the measured brightness temperatures of snowpack with and without tree canopies is investigated in the context of SWE retrievals. A time-lapse camera was monitoring a snow post installed in the sensors' field of view to characterize the brightness temperature change as snow depth evolved. Also, our study takes advantage of the snowpit measurements that were collected near the radiometers' field of view.
Application of SNODAS and hydrologic models to enhance entropy-based snow monitoring network design
NASA Astrophysics Data System (ADS)
Keum, Jongho; Coulibaly, Paulin; Razavi, Tara; Tapsoba, Dominique; Gobena, Adam; Weber, Frank; Pietroniro, Alain
2018-06-01
Snow has a unique characteristic in the water cycle, that is, snow falls during the entire winter season, but the discharge from snowmelt is typically delayed until the melting period and occurs in a relatively short period. Therefore, reliable observations from an optimal snow monitoring network are necessary for an efficient management of snowmelt water for flood prevention and hydropower generation. The Dual Entropy and Multiobjective Optimization is applied to design snow monitoring networks in La Grande River Basin in Québec and Columbia River Basin in British Columbia. While the networks are optimized to have the maximum amount of information with minimum redundancy based on entropy concepts, this study extends the traditional entropy applications to the hydrometric network design by introducing several improvements. First, several data quantization cases and their effects on the snow network design problems were explored. Second, the applicability the Snow Data Assimilation System (SNODAS) products as synthetic datasets of potential stations was demonstrated in the design of the snow monitoring network of the Columbia River Basin. Third, beyond finding the Pareto-optimal networks from the entropy with multi-objective optimization, the networks obtained for La Grande River Basin were further evaluated by applying three hydrologic models. The calibrated hydrologic models simulated discharges using the updated snow water equivalent data from the Pareto-optimal networks. Then, the model performances for high flows were compared to determine the best optimal network for enhanced spring runoff forecasting.
Bibliography on Cold Regions Science and Technology, Volume 45, Part 2
1991-12-01
waters Aceysa-Saborlo, S.M. peat soils (1 99 0, p.88-97, eng1 45-3051 E1 988 , p.35-41, engj 45-3339 Evaporator analysis for aplication to.- water...uniaxial compression E1 99 0 , p.83-90, Effects of free water content of snow on mobility of rubber 45-2036 nix1 45-2894 tired vehicles: a preliminary...CREEL Environmental and Societal Consequences of a Possible Physical-chemical approach to the classification of frozen shallow snow mobility model t1
Managing Technology Transfer in the Korean Military Establishment
1979-12-01
34 * Regardless of ideology, it ic true that a nation mobilizes scientific and technological knowledge as much as possible in order to survive. Needless...resources, attitudes, bureaucratic tendencies, rules, and norms . 75 0 4J -,I ~ ~ 0 0l 0 r0 HzP ’.44 00 U) 0 4.> H u U U). 0) 4.) *>4 0n 0 U) 0 :3~ 54 0...the ocean bottom. Seismology: Detection, measurement, and recording of seismic phenomena. Snow, Ice , and Permafrost: Physical characteristics of snow
NASA Astrophysics Data System (ADS)
Denaro, S.; Del Gobbo, U.; Castelletti, A.; Tebaldini, S.; Monti Guarnieri, A.
2015-12-01
In this work, we explore the use of exogenous snow-related information for enhancing the operation of water facilities in snow dominated watersheds. Traditionally, such information is assimilated into short-to-medium term streamflow forecasts, which are then used to inform water systems operation. Here, we adopt an alternative model-free approach, where the policy is directly conditioned upon a small set of selected observational data able to surrogate the snow-pack dynamics. In snow-fed water systems, the Snow Water Equivalent (SWE) stored in the basin often represents the largest contribution to the future season streamflow. The SWE estimation process is challenged by the high temporal and spatial variability of snow-pack and snow properties. Traditional retrieval methods, based on few ground sensors and optical satellites, often fail at representing the spatial diversity of snow conditions over large basins and at producing continuous (gap-free) data at the high sample frequency (e.g. daily) required to optimally control water systems. Against this background, SWE estimates from remote sensed radar products stand out, being able to acquire spatial information with no dependence on cloud coverage. In this work, we propose a technique for retrieving SWE estimates from Synthetic Aperture Radar (SAR) Cosmo SkyMed X-band images: a regression model, calibrated on ground SWE measurements, is implemented on dry snow maps obtained through a multi-temporal approach. The unprecedented spatial scale of this application is novel w.r.t. state of the art radar analysis conducted on limited spatial domains. The operational value of the SAR retrieved SWE estimates is evaluated based on ISA, a recently developed information selection and assessment framework. The method is demonstrated on a snow-rain fed river basin in the Italian Alps. Preliminary results show SAR images have a good potential for monitoring snow conditions and for improving water management operations.
NASA Astrophysics Data System (ADS)
Trujillo, E.; Giometto, M. G.; Leonard, K. C.; Maksym, T. L.; Meneveau, C. V.; Parlange, M. B.; Lehning, M.
2014-12-01
Sea ice-atmosphere interactions are major drivers of patterns of sea ice drift and deformations in the Polar regions, and affect snow erosion and deposition at the surface. Here, we combine analyses of sea ice surface topography at very high-resolutions (1-10 cm), and Large Eddy Simulations (LES) to study surface drag and snow erosion and deposition patterns from process scales to floe scales (1 cm - 100 m). The snow/ice elevations were obtained using a Terrestrial Laser Scanner during the SIPEX II (Sea Ice Physics and Ecosystem eXperiment II) research voyage to East Antarctica (September-November 2012). LES are performed on a regular domain adopting a mixed pseudo-spectral/finite difference spatial discretization. A scale-dependent dynamic subgrid-scale model based on Lagrangian time averaging is adopted to determine the eddy-viscosity in the bulk of the flow. Effects of larger-scale features of the surface on wind flows (those features that can be resolved in the LES) are accounted for through an immersed boundary method. Conversely, drag forces caused by subgrid-scale features of the surface should be accounted for through a parameterization. However, the effective aerodynamic roughness parameter z0 for snow/ice is not known. Hence, a novel dynamic approach is utilized, in which z0 is determined using the constraint that the total momentum flux (drag) must be independent on grid-filter scale. We focus on three ice floe surfaces. The first of these surfaces (October 6, 2012) is used to test the performance of the model, validate the algorithm, and study the spatial distributed fields of resolved and modeled stress components. The following two surfaces, scanned at the same location before and after a snow storm event (October 20/23, 2012), are used to propose an application to study how spatially resolved mean flow and turbulence relates to observed patterns of snow erosion and deposition. We show how erosion and deposition patterns are correlated with the computed stresses, with modeled stresses having higher explanatory power. Deposition is mainly occurring in wake regions of specific ridges that strongly affect wind flow patterns. These larger ridges also lock in place elongated streaks of relatively high speeds with axes along the stream-wise direction, and which are largely responsible for the observed erosion.
Predictability and prediction of the total number of winter extremely cold days over China
NASA Astrophysics Data System (ADS)
Luo, Xiao; Wang, Bin
2018-03-01
The current dynamical climate models have limited skills in predicting winter temperature in China. The present study uses physics-based empirical models (PEMs) to explore the sources and limits of the seasonal predictability in the total number of extremely cold days (NECD) over China. A combined cluster-rotated EOF analysis reveals two sub-regions of homogeneous variability among hundreds of stations, namely the Northeast China (NE) and Main China (MC). This reduces the large-number of predictands to only two indices, the NCED-NE and NCED-MC, which facilitates detection of the common sources of predictability for all stations. The circulation anomalies associated with the NECD-NE exhibit a zonally symmetric Arctic Oscillation-like pattern, whereas those associated with the NECD-MC feature a North-South dipolar pattern over Asia. The predictability of the NECD originates from SST and snow cover anomalies in the preceding September and October. However, the two regions have different SST predictors: The NE predictor is in the western Eurasian Arctic while the MC predictor is over the tropical-North Pacific. The October snow cover predictors also differ: The NE predictor primarily resides in the central Eurasia while the MC predictor is over the western and eastern Eurasia. The PEM prediction results suggest that about 60% (55%) of the total variance of winter NECD over the NE (Main) China are likely predictable 1 month in advance. The NECD at each station can also be predicted by using the four predictors that were detected for the two indices. The cross-validated temporal correlation skills exceed 0.70 at most stations. The physical mechanisms by which the autumn Arctic sea ice, snow cover, and tropical-North Pacific SST anomalies affect winter NECD over the NE and Main China are discussed.
NASA Astrophysics Data System (ADS)
Norton, P. A., II; Haj, A. E., Jr.
2014-12-01
The United States Geological Survey is currently developing a National Hydrologic Model (NHM) to support and facilitate coordinated and consistent hydrologic modeling efforts at the scale of the continental United States. As part of this effort, the Geospatial Fabric (GF) for the NHM was created. The GF is a database that contains parameters derived from datasets that characterize the physical features of watersheds. The GF was used to aggregate catchments and flowlines defined in the National Hydrography Dataset Plus dataset for more than 100,000 hydrologic response units (HRUs), and to establish initial parameter values for input to the Precipitation-Runoff Modeling System (PRMS). Many parameter values are adjusted in PRMS using an automated calibration process. Using these adjusted parameter values, the PRMS model estimated variables such as evapotranspiration (ET), potential evapotranspiration (PET), snow-covered area (SCA), and snow water equivalent (SWE). In order to evaluate the effectiveness of parameter calibration, and model performance in general, several satellite-based Moderate Resolution Imaging Spectroradiometer (MODIS) and Snow Data Assimilation System (SNODAS) gridded datasets including ET, PET, SCA, and SWE were compared to PRMS-simulated values. The MODIS and SNODAS data were spatially averaged for each HRU, and compared to PRMS-simulated ET, PET, SCA, and SWE values for each HRU in the Upper Missouri River watershed. Default initial GF parameter values and PRMS calibration ranges were evaluated. Evaluation results, and the use of MODIS and SNODAS datasets to update GF parameter values and PRMS calibration ranges, are presented and discussed.
Advances in Airborne Altimetric Techniques for the Measurement of Snow on Arctic Sea Ice
NASA Astrophysics Data System (ADS)
Newman, T.; Farrell, S. L.; Richter-Menge, J.; Elder, B. C.; Ruth, J.; Connor, L. N.
2014-12-01
Current sea ice observations and models indicate a transition towards a more seasonal Arctic ice pack with a smaller, and geographically more variable, multiyear ice component. To gain a comprehensive understanding of the processes governing this transition it is important to include the impact of the snow cover, determining the mechanisms by which snow is both responding to and forcing changes to the sea ice pack. Data from NASA's Operation IceBridge (OIB) snow radar system, which has been making yearly surveys of the western Arctic since 2009, offers a key resource for investigating the snow cover. In this work, we characterize the OIB snow radar instrument response to ascertain the location of 'side-lobes', aiding the interpretation of snow radar data. We apply novel wavelet-based techniques to identify the primary reflecting interfaces within the snow pack from which snow depth estimates are derived. We apply these techniques to the range of available snow radar data collected over the last 6 years during the NASA OIB mission. Our results are validated through comparison with a range of in-situ data. We discuss the impact of sea ice surface morphology on snow radar returns (with respect to ice type) and the topographic conditions over which accurate snow-radar-derived snow depths may be obtained. Finally we present improvements to in situ survey design that will allow for both an improved sampling of the snow radar footprint and more accurate assessment of the uncertainties in radar-derived snow depths in the future.
Continuity of MODIS and VIIRS Snow-Cover Maps during Snowmelt in the Catskill Mountains in New York
NASA Astrophysics Data System (ADS)
Hall, D. K.; Riggs, G. A., Jr.; Roman, M. O.; DiGirolamo, N. E.
2015-12-01
We investigate the local and regional differences and possible biases between the Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible-Infrared Imager Radiometer Suite (VIIRS) snow-cover maps in the winter of 2012 during snowmelt conditions in the Catskill Mountains in New York using a time series of cloud-gap filled daily snow-cover maps. The MODIS Terra instrument has been providing daily global snow-cover maps since February 2000 (Riggs and Hall, 2015). Using the VIIRS instrument, launched in 2011, NASA snow products are being developed based on the heritage MODIS snow-mapping algorithms, and will soon be available to the science community. Continuity of the standard NASA MODIS and VIIRS snow-cover maps is essential to enable environmental-data records (EDR) to be developed for analysis of snow-cover trends using a consistent data record. For this work, we compare daily MODIS and VIIRS snow-cover maps of the Catskill Mountains from 29 February through 14 March 2012. The entire region was snow covered on 29 February and by 14 March the snow had melted; we therefore have a daily time series available to compare normalized difference snow index (NDSI), as an indicator of snow-cover fraction. The MODIS and VIIRS snow-cover maps have different spatial resolutions (500 m for MODIS and 375 m for VIIRS) and different nominal overpass times (10:30 AM for MODIS Terra and 2:30 PM for VIIRS) as well as different cloud masks. The results of this work will provide a quantitative assessment of the continuity of the snow-cover data records for use in development of an EDR of snow cover.http://modis-snow-ice.gsfc.nasa.gov/Riggs, G.A. and D.K. Hall, 2015: MODIS Snow Products User Guide to Collection 6, http://modis-snow-ice.gsfc.nasa.gov/?c=userguides
Taillandier, A S; Domine, F; Simpson, W R; Sturm, M; Douglas, T A; Severin, K
2006-12-15
The detailed physical characteristics of the subarctic snowpack must be known to quantify the exchange of adsorbed pollutants between the atmosphere and the snow cover. For the first time, the combined evolutions of specific surface area (SSA), snow stratigraphy, temperature, and density were monitored throughout winter in central Alaska. We define the snow area index (SAI) as the vertically integrated surface area of snow crystals, and this variable is used to quantify pollutants' adsorption. Intense metamorphism generated by strong temperature gradients formed a thick depth hoar layer with low SSA (90 cm(2) g-1) and density (200 kg m(-3)), resulting in a low SAI. After snowpack buildup in autumn, the winter SAI remained around 1000 m(2)/m(2) of ground, much lower than the SAI of the Arctic snowpack, 2500 m(2) m-(2). With the example of PCBs 28 and 180, we calculate that the subarctic snowpack is a smaller reservoir of adsorbed pollutants than the Arctic snowpack and less efficiently transfers adsorbed pollutants from the atmosphere to ecosystems. The difference is greater for the more volatile PCB 28. With climate change, snowpack structure will be modified, and the snowpack's ability to transfer adsorbed pollutants from the atmosphere to ecosystems may be reduced, especially for the more volatile pollutants.
A lee-side eddy and its influence on snow accumulation
NASA Astrophysics Data System (ADS)
Gerber, Franziska; Mott, Rebecca; Hoch, Sebastian W.; Lehning, Michael
2016-04-01
Knowledge of changes in seasonal mountain snow water resources is essential for e.g. hydropower companies. To successfully predict these changes a fundamental understanding of precipitation patterns and their changes in mountainous terrain is needed. Both, snow accumulation and ablation need to be investigated to make precise predictions of the amount of water stored in seasonal snow cover. Only if the processes governing snow accumulation and ablation are understood with sufficient quantitative accuracy, the evolution of snow water resources under a changing climate can be addressed. Additionally, knowledge of detailed snow accumulation patterns is essential to assess avalanche danger. In alpine terrain, snow accumulation is strongly dependent on the local wind field. Based on the concept of preferential deposition, reduced snow accumulation is expected on the upper windward slope of a mountain due to updrafts, while enhanced snow accumulation should occur through blocking at the windward foot or due to flow separation on the leeward side. However, the understanding of these processes is mainly based on numerical simulations, as they are hard to measure. A LiDAR (Light Detection And Ranging) campaign was conducted in October 2015 in the Dischma valley (Davos, CH) to investigate the local flow field in the lee of the Sattelhorn during a one-day snowfall event. The flow field was monitored using a plane position indicator (PPI) scan at 25/28° and a range height indicator (RHI) scan across the Sattelhorn. Additionally, snow height change measurements on the leeward side of the Sattelhorn were performed by terrestrial laser scanning (TLS). Analyses of the flow field in the framework of preferential deposition are in agreement with the concept of flow separation and preferred snow deposition on leeward slopes. A very persistent eddy that formed over the leeward slope of the Sattelhorn detached from the main flow became evident from the retrievals of the RHI scans. An additional flow component around the eastern edge of Sattelhorn introduces a cross-loading component along the Sattelhorn ridge. Snow depth data is, however, only available for the slope and thus covers only the upper part of the eddy. Thus, this winter we will collect more complete snow depth data to reveal the overall influence of the eddy on snow accumulation.
NASA Astrophysics Data System (ADS)
Khan, Asif; Naz, Bibi S.; Bowling, Laura C.
2015-02-01
The Hindukush Karakoram Himalayan mountains contain some of the largest glaciers of the world, and supply melt water from perennial snow and glaciers to the Upper Indus Basin (UIB) upstream of Tarbela dam, which constitutes greater than 80% of the annual flows, and caters to the needs of millions of people in the Indus Basin. It is therefore important to study the response of perennial snow and glaciers in the UIB under changing climatic conditions, using improved hydrological modeling, glacier mass balance, and observations of glacier responses. However, the available glacier inventories and datasets only provide total perennial-snow and glacier cover areas, despite the fact that snow, clean ice and debris covered ice have different melt rates and densities. This distinction is vital for improved hydrological modeling and mass balance studies. This study, therefore, presents a separated perennial snow and glacier inventory (perennial snow-cover on steep slopes, perennial snow-covered ice, clean and debris covered ice) based on a semi-automated method that combines Landsat images and surface slope information in a supervised maximum likelihood classification to map distinct glacier zones, followed by manual post processing. The accuracy of the presented inventory falls well within the accuracy limits of available snow and glacier inventory products. For the entire UIB, estimates of perennial and/or seasonal snow on steep slopes, snow-covered ice, clean and debris covered ice zones are 7238 ± 724, 5226 ± 522, 4695 ± 469 and 2126 ± 212 km2 respectively. Thus total snow and glacier cover is 19,285 ± 1928 km2, out of which 12,075 ± 1207 km2 is glacier cover (excluding steep slope snow-cover). Equilibrium Line Altitude (ELA) estimates based on the Snow Line Elevation (SLE) in various watersheds range between 4800 and 5500 m, while the Accumulation Area Ratio (AAR) ranges between 7% and 80%. 0 °C isotherms during peak ablation months (July and August) range between ∼ 5500 and 6200 m in various watersheds. These outputs can be used as input to hydrological models, to estimate spatially-variable degree day factors for hydrological modeling, to separate glacier and snow-melt contributions in river flows, and to study glacier mass balance, and glacier responses to changing climate.
Role of nitrite in the photochemical formation of radicals in the snow.
Jacobi, Hans-Werner; Kleffmann, Jörg; Villena, Guillermo; Wiesen, Peter; King, Martin; France, James; Anastasio, Cort; Staebler, Ralf
2014-01-01
Photochemical reactions in snow can have an important impact on the composition of the atmosphere over snow-covered areas as well as on the composition of the snow itself. One of the major photochemical processes is the photolysis of nitrate leading to the formation of volatile nitrogen compounds. We report nitrite concentrations determined together with nitrate and hydrogen peroxide in surface snow collected at the coastal site of Barrow, Alaska. The results demonstrate that nitrite likely plays a significant role as a precursor for reactive hydroxyl radicals as well as volatile nitrogen oxides in the snow. Pollution events leading to high concentrations of nitrous acid in the atmosphere contributed to an observed increase in nitrite in the surface snow layer during nighttime. Observed daytime nitrite concentrations are much higher than values predicted from steady-state concentrations based on photolysis of nitrate and nitrite indicating that we do not fully understand the production of nitrite and nitrous acid in snow. The discrepancy between observed and expected nitrite concentrations is probably due to a combination of factors, including an incomplete understanding of the reactive environment and chemical processes in snow, and a lack of consideration of the vertical structure of snow.
Global Snow from Space: Development of a Satellite-based, Terrestrial Snow Mission Planning Tool
NASA Astrophysics Data System (ADS)
Forman, B. A.; Kumar, S.; LeMoigne, J.; Nag, S.
2017-12-01
A global, satellite-based, terrestrial snow mission planning tool is proposed to help inform experimental mission design with relevance to snow depth and snow water equivalent (SWE). The idea leverages the capabilities of NASA's Land Information System (LIS) and the Tradespace Analysis Tool for Constellations (TAT-C) to harness the information content of Earth science mission data across a suite of hypothetical sensor designs, orbital configurations, data assimilation algorithms, and optimization and uncertainty techniques, including cost estimates and risk assessments of each hypothetical permutation. One objective of the proposed observing system simulation experiment (OSSE) is to assess the complementary - or perhaps contradictory - information content derived from the simultaneous collection of passive microwave (radiometer), active microwave (radar), and LIDAR observations from space-based platforms. The integrated system will enable a true end-to-end OSSE that can help quantify the value of observations based on their utility towards both scientific research and applications as well as to better guide future mission design. Science and mission planning questions addressed as part of this concept include: What observational records are needed (in space and time) to maximize terrestrial snow experimental utility? How might observations be coordinated (in space and time) to maximize this utility? What is the additional utility associated with an additional observation? How can future mission costs be minimized while ensuring Science requirements are fulfilled?
TEMPORAL VARIABILITY IN PHYSICAL SPECIATION OF METALS DURING A WINTER RAIN-ON-SNOW EVENT
Particulate matter in urban rivers transports a significant fraction of pollutants, changes rapidly during storm events and is difficult to characterize. In this study, the physical speciation of trace metals and organic carbon in an urban river and upstream headwaters site in To...
NASA Astrophysics Data System (ADS)
Dai, Liyun; Che, Tao; Ding, Yongjian; Hao, Xiaohua
2017-08-01
Snow cover on the Qinghai-Tibetan Plateau (QTP) plays a significant role in the global climate system and is an important water resource for rivers in the high-elevation region of Asia. At present, passive microwave (PMW) remote sensing data are the only efficient way to monitor temporal and spatial variations in snow depth at large scale. However, existing snow depth products show the largest uncertainties across the QTP. In this study, MODIS fractional snow cover product, point, line and intense sampling data are synthesized to evaluate the accuracy of snow cover and snow depth derived from PMW remote sensing data and to analyze the possible causes of uncertainties. The results show that the accuracy of snow cover extents varies spatially and depends on the fraction of snow cover. Based on the assumption that grids with MODIS snow cover fraction > 10 % are regarded as snow cover, the overall accuracy in snow cover is 66.7 %, overestimation error is 56.1 %, underestimation error is 21.1 %, commission error is 27.6 % and omission error is 47.4 %. The commission and overestimation errors of snow cover primarily occur in the northwest and southeast areas with low ground temperature. Omission error primarily occurs in cold desert areas with shallow snow, and underestimation error mainly occurs in glacier and lake areas. With the increase of snow cover fraction, the overestimation error decreases and the omission error increases. A comparison between snow depths measured in field experiments, measured at meteorological stations and estimated across the QTP shows that agreement between observation and retrieval improves with an increasing number of observation points in a PMW grid. The misclassification and errors between observed and retrieved snow depth are associated with the relatively coarse resolution of PMW remote sensing, ground temperature, snow characteristics and topography. To accurately understand the variation in snow depth across the QTP, new algorithms should be developed to retrieve snow depth with higher spatial resolution and should consider the variation in brightness temperatures at different frequencies emitted from ground with changing ground features.
Impacts of 1, 1.5, and 2 Degree Warming on Arctic Terrestrial Snow and Sea Ice
NASA Astrophysics Data System (ADS)
Derksen, C.; Mudryk, L.; Howell, S.; Flato, G. M.; Fyfe, J. C.; Gillett, N. P.; Sigmond, M.; Kushner, P. J.; Dawson, J.; Zwiers, F. W.; Lemmen, D.; Duguay, C. R.; Zhang, X.; Fletcher, C. G.; Dery, S. J.
2017-12-01
The 2015 Paris Agreement of the United Nations Framework Convention on Climate Change (UNFCCC) established the global temperature goal of "holding the increase in the global average temperature to below 2°C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5°C above pre-industrial levels." In this study, we utilize multiple gridded snow and sea ice products (satellite retrievals; assimilation systems; physical models driven by reanalyses) and ensembles of climate model simulations to determine the impacts of observed warming, and project the relative impacts of the UNFCC future warming targets on Arctic seasonal terrestrial snow and sea ice cover. Observed changes during the satellite era represent the response to approximately 1°C of global warming. Consistent with other studies, analysis of the observational record (1970's to present) identifies changes including a shorter snow cover duration (due to later snow onset and earlier snow melt), significant reductions in spring snow cover and summer sea ice extent, and the loss of a large proportion of multi-year sea ice. The spatial patterns of observed snow and sea ice loss are coherent across adjacent terrestrial/marine regions. There are strong pattern correlations between snow and temperature trends, with weaker association between sea ice and temperature due to the additional influence of dynamical effects such wind-driven redistribution of sea ice. Climate model simulations from the Coupled Model Inter-comparison Project Phase 5(CMIP-5) multi-model ensemble, large initial condition ensembles of the Community Earth System Model (CESM) and Canadian Earth System Model (CanESM2) , and warming stabilization simulations from CESM were used to identify changes in snow and ice under further increases to 1.5°C and 2°C warming. The model projections indicate these levels of warming will be reached over the coming 2-4 decades. Warming to 1.5°C results in an increase in the number of melting days over snow and sea ice (and resultant increases in snow-free and ice-free duration), which are similar in magnitude to the change from pre-industrial conditions to present day. Continued warming to 2°C further intensifies the cryospheric response consistent with amplified Arctic warming relative to the global average trend.
NASA Astrophysics Data System (ADS)
Ebner, P. P.; Grimm, S.; Steen-Larsen, H. C.; Schneebeli, M.; Steinfeld, A.
2014-12-01
The metamorphism of snow under advective air flow, with and without temperature gradient, was never experimentally investigated. We developed a new sample holder where metamorphism under advective conditions can be observed and measured using time-lapse micro-tomography [1]. Long-term experiments were performed and direct pore-level simulation (DPLS) [2,3] was directly applied on the extracted 3D digital geometry of the snow to calculate the effective transport properties by solving the governing fluid flow equations. The results showed no effect of isothermal advection, compared to rates typical for isothermal metamorphism. Appling a temperature gradient, the results showed increased snow metamorphism compared to rates typical for temperature gradient metamorphism. However, for both cases a change in the isotopic composition in the air as well as in the snow sample could be observed. These measurements could be influential to better understand snow-air exchange processes relevant for atmospheric chemistry and isotopic composition. REFERENCES[1] Ebner P. P., Grimm S., Schneebeli M., and Steinfeld A.: An instrumented sample holder for time-lapse micro-tomography measurements of snow under advective airflow. Geoscientific Instrumentation, Methods and Data Systems 4(2014), 353-373. [2] Zermatten E., Haussener S., Schneebeli M., and Steinfeld A.: Tomography-based determination of permeability and Dupuit-Forchheimer coefficient of characteristic snow samples. Journal of Glaciology 57(2011), 811-816. [3] Zermatten E., Schneebeli M., Arakawa H., and Steinfeld A.: Tomography-based determination of porosity, specific area and permeability of snow and comparison with measurements. Cold Regions Science and Technology 97 (2014), 33-40. Fig. 1: 3-D surface rendering of a refrozen wet snow sample with fluid flow streamline.
NASA Technical Reports Server (NTRS)
Huang, Gwo-Jong; Bringi, V. N.; Moisseev, Dmitri; Petersen, Walter A.; Bliven, Francis L.; Hudak, David
2014-01-01
The application of the 2D-video disdrometer to measure fall speed and snow size distribution and to derive liquid equivalent snow rate, mean density-size and reflectivity-snow rate power law is described. Inversion of the methodology proposed by Böhm provides the pathway to use measured fall speed, area ratio and '3D' size measurement to estimate the mass of each particle. Four snow cases from the Light Precipitation Validation Experiment are analyzed with supporting data from other instruments such as Precipitation Occurrence Sensor System (POSS), Snow Video Imager (SVI), a network of seven snow gauges and three scanning C9 band radars. The radar-based snow accumulations using the 2DVD-derived Ze-SR relation are in good agreement with a network of seven snow gauges and outperform the accumulations derived from a climatological Ze-SR relation used by the Finnish Meteorological Institute (FMI). The normalized bias between radar-derived and gauge accumulation is reduced from 96% when using the fixed FMI relation to 28% when using the Ze-SR relations based on 2DVD data. The normalized standard error is also reduced significantly from 66% to 31%. For two of the days with widely different coefficients of the Ze-SR power law, the reflectivity structure showed significant differences in spatial variability. Liquid water path estimates from radiometric data also showed significant differences between the two cases. Examination of SVI particle images at the measurement site corroborated these differences in terms of unrimed versus rimed snow particles. The findings reported herein support the application of Böhm's methodology for deriving the mean density-size and Ze-SR power laws using data from 2D-video disdrometer.
Crevasse detection with GPR across the Ross Ice Shelf, Antarctica
NASA Astrophysics Data System (ADS)
Delaney, A.; Arcone, S.
2005-12-01
We have used 400-MHz ground penetrating radar (GPR) to detect crevasses within a shear zone on the Ross Ice Shelf, Antarctica, to support traverse operations. The transducer was attached to a 6.5-m boom and pushed ahead of an enclosed tracked vehicle. Profile speeds of 4.8-11.3 km / hr allowed real-time crevasse image display and a quick, safe stop when required. Thirty-two crevasses were located with radar along the 4.8 km crossing. Generally, crevasse radar images were characterized by dipping reflections above the voids, high-amplitude reflections originating from ice layers at the base of the snow-bridges, and slanting, diffracting reflections from near-vertical crevasse walls. New cracks and narrow crevasses (<50 cm width) show no distinct snow bridge structure, few diffractions, and a distinct band where pulse reflections are absent. Wide (0.5-5.0 m), vertical wall crevasses show distinct dipping snow bridge layering and intense diffractions from ice layers near the base of the snow bridge. Pulse reflections are absent from voids beneath the snow bridges. Old, wide (3.0-8.0 m) and complexly shaped crevasses show well-developed, broad, dipping snow-bridge layers and a high-amplitude, complex, diffraction pattern. The crevasse mitigation process, which included hot-water drilling, destroying the bridges with dynamite, and back-filling with bulldozed snow, afforded an opportunity to ground-truth GPR interpretations by comparing void size and snow-bridge geometry with the radar images. While second and third season radar profiles collected along the identical flagged route confirmed stability of the filled crevasses, those profiles also identified several new cracks opened by ice extension. Our experiments demonstrate capability of high-frequency GPR in a cold-snow environment for both defining snow layers and locating voids.
NASA Technical Reports Server (NTRS)
Haefner, H. (Principal Investigator)
1975-01-01
The author has identified the following significant results. Two different methods, an analog and a digital one, have been developed for rapid and accurate mapping of the areal extent and changes in snow cover in high mountains. The quick-look method is based on individual visual control of each image using a photo quantizer which provides exact references for density slicing with high resolution lith-film. The digital snow classification system is based on discriminant analysis with the data of the four multispectral bands as variables and contains all preprocessing, feature extraction, and mapping steps for an operational application. Two different sets of sampling groups were established which apply to different conditions of snow cover. The first one serves for the normal situation with a uniform dry and new cover. The second one serves for situations with partly thawing and/or frozen snow.
NASA Astrophysics Data System (ADS)
Bigot, S.; Dedieu, Jp.; Rome, S.
2009-04-01
Sylvain.bigot@ujf-grenoble.fr Jean-pierre.dedieu@hmg.inpg.fr Sandra.rome@ujf-grenoble.fr Estimation of the Snow Covered Area (SCA) is an important issue for meteorological application and hydrological modeling of runoff. With spectral bands in the visible, near and middle infrared, the SPOT-4 and -5 VEGETATION sensors are used to detect snow cover because of large differences between reflectance from snow covered and snow free surfaces. At the same time, it allows separation between snow and clouds. Moreover, the sensor provides a daily coverage of large areas. However, as the pixel size is 1km x 1km, a VGT pixel may be partially covered by snow, particularly in Alpine areas, where snow may not be present in valleys lying at lower altitudes. Also, variation of reflectance due to differential sunlit effects as a function of slope and aspect, as well as bidirectional effects may be present in images. Nevertheless, it is possible to estimate snow cover at the sub-pixel level with a relatively good accuracy and with very good results if the sub-pixel estimations are integrated for a few pixels relative to an entire watershed. Application of this approach in the French Alps is presented over the Vercors Natural Park area (N 44°.50' / E 05°.30'), based on 10-day Synthetic products for the 1998-2008 time period, and using the NDSII (Normalized Difference Snow/Ice Index) as numerical threshold. This work performs an analysis of climate impact on snow cover spatial and temporal variability, at mid-elevation mountain range (1500 m asl) under temperate climate conditions. The results indicates (i) a increasing temporal and spatial variability of snow coverage, and (ii) a high sensitivity to low variation of air temperature, often close to 1° C. This is the case in particular for the beginning and the end of the winter season. The regional snow cover depletion is both influenced by thermal positives anomalies (e.g. 2000 and 2006), and the general trend of rising atmospheric temperatures since the late 1980s.
NASA Astrophysics Data System (ADS)
Vihma, T.; Pirazzini, R.; Fer, I.; Renfrew, I. A.; Sedlar, J.; Tjernström, M.; Lüpkes, C.; Nygård, T.; Notz, D.; Weiss, J.; Marsan, D.; Cheng, B.; Birnbaum, G.; Gerland, S.; Chechin, D.; Gascard, J. C.
2014-09-01
The Arctic climate system includes numerous highly interactive small-scale physical processes in the atmosphere, sea ice, and ocean. During and since the International Polar Year 2007-2009, significant advances have been made in understanding these processes. Here, these recent advances are reviewed, synthesized, and discussed. In atmospheric physics, the primary advances have been in cloud physics, radiative transfer, mesoscale cyclones, coastal, and fjordic processes as well as in boundary layer processes and surface fluxes. In sea ice and its snow cover, advances have been made in understanding of the surface albedo and its relationships with snow properties, the internal structure of sea ice, the heat and salt transfer in ice, the formation of superimposed ice and snow ice, and the small-scale dynamics of sea ice. For the ocean, significant advances have been related to exchange processes at the ice-ocean interface, diapycnal mixing, double-diffusive convection, tidal currents and diurnal resonance. Despite this recent progress, some of these small-scale physical processes are still not sufficiently understood: these include wave-turbulence interactions in the atmosphere and ocean, the exchange of heat and salt at the ice-ocean interface, and the mechanical weakening of sea ice. Many other processes are reasonably well understood as stand-alone processes but the challenge is to understand their interactions with and impacts and feedbacks on other processes. Uncertainty in the parameterization of small-scale processes continues to be among the greatest challenges facing climate modelling, particularly in high latitudes. Further improvements in parameterization require new year-round field campaigns on the Arctic sea ice, closely combined with satellite remote sensing studies and numerical model experiments.
NASA Astrophysics Data System (ADS)
Vihma, T.; Pirazzini, R.; Renfrew, I. A.; Sedlar, J.; Tjernström, M.; Nygård, T.; Fer, I.; Lüpkes, C.; Notz, D.; Weiss, J.; Marsan, D.; Cheng, B.; Birnbaum, G.; Gerland, S.; Chechin, D.; Gascard, J. C.
2013-12-01
The Arctic climate system includes numerous highly interactive small-scale physical processes in the atmosphere, sea ice, and ocean. During and since the International Polar Year 2007-2008, significant advances have been made in understanding these processes. Here these advances are reviewed, synthesized and discussed. In atmospheric physics, the primary advances have been in cloud physics, radiative transfer, mesoscale cyclones, coastal and fjordic processes, as well as in boundary-layer processes and surface fluxes. In sea ice and its snow cover, advances have been made in understanding of the surface albedo and its relationships with snow properties, the internal structure of sea ice, the heat and salt transfer in ice, the formation of super-imposed ice and snow ice, and the small-scale dynamics of sea ice. In the ocean, significant advances have been related to exchange processes at the ice-ocean interface, diapycnal mixing, tidal currents and diurnal resonance. Despite this recent progress, some of these small-scale physical processes are still not sufficiently understood: these include wave-turbulence interactions in the atmosphere and ocean, the exchange of heat and salt at the ice-ocean interface, and the mechanical weakening of sea ice. Many other processes are reasonably well understood as stand-alone processes but challenge is to understand their interactions with, and impacts and feedbacks on, other processes. Uncertainty in the parameterization of small-scale processes continues to be among the largest challenges facing climate modeling, and nowhere is this more true than in the Arctic. Further improvements in parameterization require new year-round field campaigns on the Arctic sea ice, closely combined with satellite remote sensing studies and numerical model experiments.
Snow Depth Mapping at a Basin-Wide Scale in the Western Arctic Using UAS Technology
NASA Astrophysics Data System (ADS)
de Jong, T.; Marsh, P.; Mann, P.; Walker, B.
2015-12-01
Assessing snow depths across the Arctic has proven to be extremely difficult due to the variability of snow depths at scales from metres to 100's of metres. New Unmanned Aerial Systems (UAS) technology provides the possibility to obtain centimeter level resolution imagery (~3cm), and to create Digital Surface Models (DSM) based on the Structure from Motion method. However, there is an ongoing need to quantify the accuracy of this method over different terrain and vegetation types across the Arctic. In this study, we used a small UAS equipped with a high resolution RGB camera to create DSMs over a 1 km2 watershed in the western Canadian Arctic during snow (end of winter) and snow-free periods. To improve the image georeferencing, 15 Ground Control Points were marked across the watershed and incorporated into the DSM processing. The summer DSM was subtracted from the snowcovered DSM to deliver snow depth measurements across the entire watershed. These snow depth measurements were validated by over 2000 snow depth measurements. This technique has the potential to improve larger scale snow depth mapping across watersheds by providing snow depth measurements at a ~3 cm . The ability of mapping both shallow snow (less than 75cm) covering much of the basin and snow patches (up to 5 m in depth) that cover less than 10% of the basin, but contain a significant portion of total basin snowcover, is important for both water resource applications, as well as for testing snow models.
Mobility of lightweight robots over snow
NASA Astrophysics Data System (ADS)
Lever, James H.; Shoop, Sally A.
2006-05-01
Snowfields are challenging terrain for lightweight (<50 kg) unmanned ground vehicles. Deep sinkage, high snowcompaction resistance, traction loss while turning and ingestion of snow into the drive train can cause immobility within a few meters of travel. However, for suitably designed vehicles, deep snow offers a smooth, uniform surface that can obliterate obstacles. Key requirements for good over-snow mobility are low ground pressure, large clearance relative to vehicle size and a drive system that tolerates cohesive snow. A small robot will invariably encounter deep snow relative to its ground clearance. Because a single snowstorm can easily deposit 30 cm of fresh snow, robots with ground clearance less than about 10 cm must travel over the snow rather than gain support from the underlying ground. This can be accomplished using low-pressure tracks (< 1.5 kPa). Even still, snow-compaction resistance can exceed 20% of vehicle weight. Also, despite relatively high traction coefficients for low track pressures, differential or skid steering is difficult because the outboard track can easily break traction as the vehicle attempts to turn against the snow. Short track lengths (relative to track separation) or coupled articulated robots offer steering solutions for deep snow. This paper presents preliminary guidance to design lightweight robots for good mobility over snow based on mobility theory and tests of PackBot, Talon and SnoBot, a custom-designed research robot. Because many other considerations constrain robot designs, this guidance can help with development of winterization kits to improve the over-snow performance of existing robots.
NASA Astrophysics Data System (ADS)
Calonne, N.; Flin, F.; Lesaffre, B.; Dufour, A.; Roulle, J.; Puglièse, P.; Philip, A.; Lahoucine, F.; Rolland du Roscoat, S.; Geindreau, C.
2013-12-01
Three-dimensional (3D) images of snow offer the possibility of studying snow metamorphism at the grain scale by analysing the time evolution of its complex microstructure. Such images are also particularly useful for providing physical effective properties of snow arising in macroscopic models. In the last 15 years, several experiments have been developed in order to get 3D images of snow by X-ray microtomography. Up to now, two different approaches have been used: a static and an in vivo approach. The static method consists in imaging a snow sample whose structural evolution has been stopped by impregnation and/or very cold temperature conditions. The sample is placed in a cryogenic cell that can operate at the ambient temperature of the tomograph room (e.g. Brzoska et al., 1999, Coléou et al., 2001). The in vivo technique uses a non impregnated sample which continues to undergo structural evolutions and is put in a cell that controls the temperature conditions at the boundaries of the sample. This kind of cell requires a cold environnement and the whole tomographic acquisition process takes place in a cold room (e.g. Schneebeli and Sokratov, 2004, Pinzer and Schneebeli, 2009). The 2nd approach has the major advantage to provide the time evolution of the microstructure of a same snow sample but requires a dedicated cold-room tomographic scanner, whereas the static method can be used with any tomographic scanner operating at ambient conditions. We developed a new in vivo cryogenic cell which benefits from the advantages of each of the above methods: it (1) allows to follow the evolution of the same sample with time and (2) is usable with a wide panel of tomographic scanners provided with large cabin sizes, which has many advantages in terms of speed, resolution, and availability of new technologies. The thermal insulation between the snow sample and the outside is ensured by a double wall vacuum system of thermal conductivity of about 0.0015 Wm-1K-1. An air pumping system is thus permanently active during the experiment. Two Peltier cells are used to regulate the temperature at the top and bottom of the snow sample, allowing to impose the conditions of metamorphism (isothermal, temperature gradient). The snow sample consists of a cylinder of 1 cm radius and 1 cm height. During its positioning into the cryogenic cell, it is protected from the room conditions by a sealed and cold copper sample holder. The whole apparatus (cell, pumping system) is able to rotate of 360° synchronously during the tomographic acquisition. After X-ray tomography and image processing, this cell provides a set of 3D images showing the time evolution of the microstructure of a snow sample during its metamorphism under well-defined imposed conditions. Preliminary results give promising outlooks for the study of snow and firn physical processes. Brzoska, J.-B. and 7 others. 1999. ESRF Newsletter, 32, 22-23. Coléou, C., B. Lesaffre, J.-B. Brzoska, W. Ludwig and E. Boller. 2001. Ann. Glaciol., 32, 75-81. Pinzer, B. and M. Schneebeli. 2009. Meas. Sci. Technol., 20, 095705. Schneebeli, M. and S. A. Sokratov. 2004. Hydrol. Process., 18, 3655 - 3665.
Analysis of MODIS snow cover time series over the alpine regions as input for hydrological modeling
NASA Astrophysics Data System (ADS)
Notarnicola, Claudia; Rastner, Philipp; Irsara, Luca; Moelg, Nico; Bertoldi, Giacomo; Dalla Chiesa, Stefano; Endrizzi, Stefano; Zebisch, Marc
2010-05-01
Snow extent and relative physical properties are key parameters in hydrology, weather forecast and hazard warning as well as in climatological models. Satellite sensors offer a unique advantage in monitoring snow cover due to their temporal and spatial synoptic view. The Moderate Resolution Imaging Spectrometer (MODIS) from NASA is especially useful for this purpose due to its high frequency. However, in order to evaluate the role of snow on the water cycle of a catchment such as runoff generation due to snowmelt, remote sensing data need to be assimilated in hydrological models. This study presents a comparison on a multi-temporal basis between snow cover data derived from (1) MODIS images, (2) LANDSAT images, and (3) predictions by the hydrological model GEOtop [1,3]. The test area is located in the catchment of the Matscher Valley (South Tyrol, Northern Italy). The snow cover maps derived from MODIS-images are obtained using a newly developed algorithm taking into account the specific requirements of mountain regions with a focus on the Alps [2]. This algorithm requires the standard MODIS-products MOD09 and MOD02 as input data and generates snow cover maps at a spatial resolution of 250 m. The final output is a combination of MODIS AQUA and MODIS TERRA snow cover maps, thus reducing the presence of cloudy pixels and no-data-values due to topography. By using these maps, daily time series starting from the winter season (November - May) 2002 till 2008/2009 have been created. Along with snow maps from MODIS images, also some snow cover maps derived from LANDSAT images have been used. Due to their high resolution (< 30 m) they have been considered as an evaluation tool. The snow cover maps are then compared with the hydrological GEOtop model outputs. The main objectives of this work are: 1. Evaluation of the MODIS snow cover algorithm using LANDSAT data 2. Investigation of snow cover, and snow cover duration for the area of interest for South Tyrol 3. Derivation and interpretation of the snow line for the seven winter seasons 4. An evaluation of the model outputs in order to determine the situations in which the remotely sensed data can be used to improve the model prediction of snow coverage and related variables References [1] Rigon R., Bertoldi G. and Over T.M. 2006. GEOtop: A Distributed Hydrological Model with Coupled Water and Energy Budgets, Journal of Hydrometeorology, 7: 371-388. [2] Rastner P., Irsara L., Schellenberger T., Della Chiesa S., Bertoldi G., Endrizzi S., Notarnicola C., Steurer C., Zebisch M. 2009. Monitoraggio del manto nevoso in aree alpine con dati MODIS multi-temporali e modelli idrologici, 13th ASITA National Conference, 1-4.12.2009, Bari, Italy. [3] Zanotti F., Endrizzi S., Bertoldi G. and Rigon R. 2004. The GEOtop snow module. Hydrological Processes, 18: 3667-3679. DOI:10.1002/hyp.5794.
How snowmelt changed due to climate change in an ungauged catchment on the Tibetan Plateau?
NASA Astrophysics Data System (ADS)
Wang, Rui; Yao, Zhijun
2017-04-01
Snow variability is an integrated indicator of climate change, and it has important impacts on runoff regimes and water availability in high altitude catchments. Remote sensing techniques can make it possible to quantitatively detect the snow cover changes and associated hydrological effects in those poorly gauged regions. In this study, the spatial-temporal variations of snow cover and snow melting time in the Tuotuo River basin, which is the headwater of the Yangtze River, were evaluated based on satellite information from MODIS snow cover product, and the snow melting equivalent and its contribution to the total runoff and baseflow were estimated by using degree-day model. The results showed that the snow cover percentage and the tendency of snow cover variability increased with rising altitude. From 2000 to 2012, warmer and wetter climate change resulted in an increase of the snow cover area. Since the 1960s, the start time for snow melt has become earlier by 0.9 3 d/10a and the end time of snow melt has become later by 0.6 2.3 d/10a. Under the control of snow cover and snow melting time, the equivalent of snow melting runoff in the Tuotuo River basin has been fluctuating. The average contributions of snowmelt to baseflow and total runoff were 19.6 % and 6.8 %, respectively. Findings from this study will serve as a reference for future research in areas where observational data are deficient and for planning of future water management strategies for the source region of the Yangtze River.
The efficacy of obtaining genetic-based identifications from putative wolverine snow tracks
Todd J. Ulizio; John R. Squires; Daniel H. Pletscher; Michael K. Schwartz; James J. Claar; Leonard F. Ruggiero
2006-01-01
Snow-track surveys to detect rare carnivores require unequivocal species identification because of management and political ramifications associated with the presence of such species. Collecting noninvasive genetic samples from putative wolverine (Gulo gulo) snow tracks is an effective method for providing definitive species identification for use in presence-...
A Case Study of Using a Multilayered Thermodynamical Snow Model for Radiance Assimilation
NASA Technical Reports Server (NTRS)
Toure, Ally M.; Goita, Kalifa; Royer, Alain; Kim, Edward J.; Durand, Michael; Margulis, Steven A.; Lu, Huizhong
2011-01-01
A microwave radiance assimilation (RA) scheme for the retrieval of snow physical state variables requires a snowpack physical model (SM) coupled to a radiative transfer model. In order to assimilate microwave brightness temperatures (Tbs) at horizontal polarization (h-pol), an SM capable of resolving melt-refreeze crusts is required. To date, it has not been shown whether an RA scheme is tractable with the large number of state variables present in such an SM or whether melt-refreeze crust densities can be estimated. In this paper, an RA scheme is presented using the CROCUS SM which is capable of resolving melt-refreeze crusts. We assimilated both vertical (v) and horizontal (h) Tbs at 18.7 and 36.5 GHz. We found that assimilating Tb at both h-pol and vertical polarization (v-pol) into CROCUS dramatically improved snow depth estimates, with a bias of 1.4 cm compared to-7.3 cm reported by previous studies. Assimilation of both h-pol and v-pol led to more accurate results than assimilation of v-pol alone. The snow water equivalent (SWE) bias of the RA scheme was 0.4 cm, while the bias of the SWE estimated by an empirical retrieval algorithm was -2.9 cm. Characterization of melt-refreeze crusts via an RA scheme is demonstrated here for the first time; the RA scheme correctly identified the location of melt-refreeze crusts observed in situ.
Role of Tibetan Buddhist monasteries in snow leopard conservation.
Li, Juan; Wang, Dajun; Yin, Hang; Zhaxi, Duojie; Jiagong, Zhala; Schaller, George B; Mishra, Charudutt; McCarthy, Thomas M; Wang, Hao; Wu, Lan; Xiao, Lingyun; Basang, Lamao; Zhang, Yuguang; Zhou, Yunyun; Lu, Zhi
2014-02-01
The snow leopard (Panthera uncia) inhabits the rugged mountains in 12 countries of Central Asia, including the Tibetan Plateau. Due to poaching, decreased abundance of prey, and habitat degradation, it was listed as endangered by the International Union for Conservation of Nature in 1972. Current conservation strategies, including nature reserves and incentive programs, have limited capacities to protect snow leopards. We investigated the role of Tibetan Buddhist monasteries in snow leopard conservation in the Sanjiangyuan region in China's Qinghai Province on the Tibetan Plateau. From 2009 to 2011, we systematically surveyed snow leopards in the Sanjiangyuan region. We used the MaxEnt model to determine the relation of their presence to environmental variables (e.g., elevation, ruggedness) and to predict snow leopard distribution. Model results showed 89,602 km(2) of snow leopard habitat in the Sanjiangyuan region, of which 7674 km(2) lay within Sanjiangyuan Nature Reserve's core zones. We analyzed the spatial relation between snow leopard habitat and Buddhist monasteries and found that 46% of monasteries were located in snow leopard habitat and 90% were within 5 km of snow leopard habitat. The 336 monasteries in the Sanjiangyuan region could protect more snow leopard habitat (8342 km(2) ) through social norms and active patrols than the nature reserve's core zones. We conducted 144 household interviews to identify local herders' attitudes and behavior toward snow leopards and other wildlife. Most local herders claimed that they did not kill wildlife, and 42% said they did not kill wildlife because it was a sin in Buddhism. Our results indicate monasteries play an important role in snow leopard conservation. Monastery-based snow leopard conservation could be extended to other Tibetan Buddhist regions that in total would encompass about 80% of the global range of snow leopards. © 2013 Society for Conservation Biology.
NASA Astrophysics Data System (ADS)
Navari, M.; Margulis, S. A.; Bateni, S. M.; Alexander, P. M.; Tedesco, M.
2016-12-01
Estimating the Greenland Ice Sheet (GrIS) surface mass balance (SMB) is an important component of current and future projections of sea level rise. In situ measurement provides direct estimates of the SMB, but are inherently limited by their spatial extent and representativeness. Given this limitation, physically based regional climate models (RCMs) are critical for understanding GrIS physical processes and estimating of the GrIS SMB. However, the uncertainty in estimates of SMB from RCMs is still high. Surface remote sensing (RS) has been used as a complimentary tool to characterize various aspects related to the SMB. The difficulty of using these data streams is that the links between them and the SMB terms are most often indirect and implicit. Given the lack of in situ information, imperfect models, and under-utilized RS data it is critical to merge the available data in a systematic way to better characterize the spatial and temporal variation of the GrIS SMB. This work proposes a data assimilation (DA) framework that yields temporally-continuous and physically consistent SMB estimates that benefit from state-of-the-art models and relevant remote sensing data streams. Ice surface temperature (IST) is the most important factor that regulates partitioning of the net radiation into the subsurface snow/ice, sensible and latent heat fluxes and plays a key role in runoff generation. Therefore it can be expected that a better estimate of surface temperature from a data assimilation system would contribute to a better estimate of surface mass fluxes. Albedo plays an important role in the surface energy balance of the GrIS. However, even advanced albedo modules are not adequate to simulate albedo over the GrIS. Therefore, merging remotely sensed albedo product into a physically based model has a potential to improve the estimates of the GrIS SMB. In this work a MODIS-derived IST and a 16-day albedo product are independently assimilated into the snow and ice model CROCUS. Comparison of our results against the in situ SMB measurements over the K-transect stations shows that assimilation of IST does not considerably improve the GrIS SMB terms. The main reason is hypothesized to be due to a cold bias in the IST product. On the other hand, assimilation of 16-day albedo product reduces the RMSE of the posterior estimates of the SMB by 63%.
SWANN: The Snow Water Artificial Neural Network Modelling System
NASA Astrophysics Data System (ADS)
Broxton, P. D.; van Leeuwen, W.; Biederman, J. A.
2017-12-01
Snowmelt from mountain forests is important for water supply and ecosystem health. Along Arizona's Mogollon Rim, snowmelt contributes to rivers and streams that provide a significant water supply for hydro-electric power generation, agriculture, and human consumption in central Arizona. In this project, we are building a snow monitoring system for the Salt River Project (SRP), which supplies water and power to millions of customers in the Phoenix metropolitan area. We are using process-based hydrological models and artificial neural networks (ANNs) to generate information about both snow water equivalent (SWE) and snow cover. The snow-cover data is generated with ANNs that are applied to Landsat and MODIS satellite reflectance data. The SWE data is generated using a combination of gridded SWE estimates generated by process-based snow models and ANNs that account for variations in topography, forest cover, and solar radiation. The models are trained and evaluated with snow data from SNOTEL stations as well as from aerial LiDAR and field data that we collected this past winter in northern Arizona, as well as with similar data from other sites in the Southwest US. These snow data are produced in near-real time, and we have built a prototype decision support tool to deliver them to SRP. This tool is designed to provide daily-to annual operational monitoring of spatial and temporal changes in SWE and snow cover conditions over the entire Salt River Watershed (covering 17,000 km2), and features advanced web mapping capabilities and watershed analytics displayed as graphical data.
Improving Snow Modeling by Assimilating Observational Data Collected by Citizen Scientists
NASA Astrophysics Data System (ADS)
Crumley, R. L.; Hill, D. F.; Arendt, A. A.; Wikstrom Jones, K.; Wolken, G. J.; Setiawan, L.
2017-12-01
Modeling seasonal snow pack in alpine environments includes a multiplicity of challenges caused by a lack of spatially extensive and temporally continuous observational datasets. This is partially due to the difficulty of collecting measurements in harsh, remote environments where extreme gradients in topography exist, accompanied by large model domains and inclement weather. Engaging snow enthusiasts, snow professionals, and community members to participate in the process of data collection may address some of these challenges. In this study, we use SnowModel to estimate seasonal snow water equivalence (SWE) in the Thompson Pass region of Alaska while incorporating snow depth measurements collected by citizen scientists. We develop a modeling approach to assimilate hundreds of snow depth measurements from participants in the Community Snow Observations (CSO) project (www.communitysnowobs.org). The CSO project includes a mobile application where participants record and submit geo-located snow depth measurements while working and recreating in the study area. These snow depth measurements are randomly located within the model grid at irregular time intervals over the span of four months in the 2017 water year. This snow depth observation dataset is converted into a SWE dataset by employing an empirically-based, bulk density and SWE estimation method. We then assimilate this data using SnowAssim, a sub-model within SnowModel, to constrain the SWE output by the observed data. Multiple model runs are designed to represent an array of output scenarios during the assimilation process. An effort to present model output uncertainties is included, as well as quantification of the pre- and post-assimilation divergence in modeled SWE. Early results reveal pre-assimilation SWE estimations are consistently greater than the post-assimilation estimations, and the magnitude of divergence increases throughout the snow pack evolution period. This research has implications beyond the Alaskan context because it increases our ability to constrain snow modeling outputs by making use of snow measurements collected by non-expert, citizen scientists.
NASA Astrophysics Data System (ADS)
Dumont, M.; Flin, F.; Malinka, A.; Brissaud, O.; Hagenmuller, P.; Dufour, A.; Lapalus, P.; Lesaffre, B.; Calonne, N.; Rolland du Roscoat, S.; Ando, E.
2017-12-01
Snow optical properties are unique among Earth surface and crucial for a wide range of applications. The bi-directional reflectance, hereafter BRDF, of snow is sensible to snow microstructure. However the complex interplays between different parameters of snow microstructure namely size parameters and shape parameters on reflectance are challenging to disentangle both theoretically and experimentally. An accurate understanding and modelling of snow BRDF is required to correctly process satellite data. BRDF measurements might also provide means of characterizing snow morphology. This study presents one of the very few dataset that combined bi-directional reflectance measurements over 500-2500 nm and X-ray tomography of the snow microstructure for three different snow samples and two snow types. The dataset is used to evaluate the approach from Malinka, 2014 that relates snow optical properties to the chord length distribution in the snow microstructure. For low and medium absorption, the model accurately reproduces the measurements but tends to slightly overestimate the anisotropy of the reflectance. The model indicates that the deviation of the ice chord length distribution from an exponential distribution, that can be understood as a characterization of snow types, does not impact the reflectance for such absorptions. The simulations are also impacted by the uncertainties in the ice refractive index values. At high absorption and high viewing/incident zenith angle, the simulations and the measurements disagree indicating that some of the assumptions made in the model are not met anymore. The study also indicates that crystal habits might play a significant role for the reflectance under such geometries and wavelengths. However quantitative relationship between crystal habits and reflectance alongside with potential optical methodologies to classify snow morphology would require an extended dataset over more snow types. This extended dataset can likely be obtained thanks to the use of ray tracing models on tomography images of the snow microstructure.
Evaluation of an assimilation scheme to estimate snow water equivalent in the High Atlas of Morocco.
NASA Astrophysics Data System (ADS)
Baba, W. M.; Baldo, E.; Gascoin, S.; Margulis, S. A.; Cortés, G.; Hanich, L.
2017-12-01
The snow melt from the Atlas mountains represents a crucial water resource for crop irrigation in Morocco. Due to the paucity of in situ measurements, and the high spatial variability of the snow cover in this semi-arid region, assimilation of snow cover area (SCA) from high resolution optical remote sensing into a snowpack energy-balance model is considered as a promising method to estimate the snow water equivalent (SWE) and snow melt at catchment scales. Here we present a preliminary evaluation of an uncalibrated particle batch smoother data assimilation scheme (Margulis et al., 2015, J. Hydrometeor., 16, 1752-1772) in the High-Atlas Rheraya pilot catchment (225 km2) over a snow season. This approach does not require in situ data since it is based on MERRA-2 reanalyses data and satellite fractional snow cover area data. We compared the output of this prior/posterior ensemble data assimilation system to output from the distributed snowpack evolution model SnowModel (Liston and Elder, 2006, J. Hydrometeor. 7, 1259-1276). SnowModel was forced with in situ meteorological data from five automatic weather stations (AWS) and some key parameters (precipitation correction factor and rain-snow phase transition parameters) were calibrated using a time series of 8-m resolution SCA maps from Formosat-2. The SnowModel simulation was validated using a continuous snow height record at one high elevation AWS. The results indicate that the open loop simulation was reasonably accurate (compared to SnowModel results) in spite of the coarse resolution of the MERRA-2 forcing. The assimilation of Formosat-2 SCA further improved the simulation in terms of the peak SWE and SWE evolution over the melt season. During the accumulation season, the differences between the modeled and estimated (posterior) SWE were more substantial. The differences appear to be due to some observed precipitation events not being captured in MERRA-2. Further investigation will determine whether additional improvement in the posterior estimates result from a calibration of uncertainty input parameters based on the in situ meteorological data. The positive preliminary results pave the way for a SWE reanalysis at the scale of the Atlas mountains using data from wide swath sensors such as Landsat and Sentinel-2.
A Method for Snow Reanalysis: The Sierra Nevada (USA) Example
NASA Technical Reports Server (NTRS)
Girotto, Manuela; Margulis, Steven; Cortes, Gonzalo; Durand, Michael
2017-01-01
This work presents a state-of-the art methodology for constructing snow water equivalent (SWE) reanalysis. The method is comprised of two main components: (1) a coupled land surface model and snow depletion curve model, which is used to generate an ensemble of predictions of SWE and snow cover area for a given set of (uncertain) inputs, and (2) a reanalysis step, which updates estimation variables to be consistent with the satellite observed depletion of the fractional snow cover time series. This method was applied over the Sierra Nevada (USA) based on the assimilation of remotely sensed fractional snow covered area data from the Landsat 5-8 record (1985-2016). The verified dataset (based on a comparison with over 9000 station years of in situ data) exhibited mean and root-mean-square errors less than 3 and 13 cm, respectively, and correlation greater than 0.95 compared with in situ SWE observations. The method (fully Bayesian), resolution (daily, 90-meter), temporal extent (31 years), and accuracy provide a unique dataset for investigating snow processes. This presentation illustrates how the reanalysis dataset was used to provide a basic accounting of the stored snowpack water in the Sierra Nevada over the last 31 years and ultimately improve real-time streamflow predictions.
Soil Moisture and Snow Cover: Active or Passive Elements of Climate?
NASA Technical Reports Server (NTRS)
Oglesby, Robert J.; Marshall, Susan; Erickson, David J., III; Robertson, Franklin R.; Roads, John O.; Arnold, James E. (Technical Monitor)
2002-01-01
A key question in the study of the hydrologic cycle is the extent to which surface effects such as soil moisture and snow cover are simply passive elements or whether they can affect the evolution of climate on seasonal and longer time scales. We have constructed ensembles of predictability studies using the NCAR CCM3 in which we compared the relative roles of initial surface and atmospheric conditions over the central and western U.S. in determining the subsequent evolution of soil moisture and of snow cover. We have also made sensitivity studies with exaggerated soil moisture and snow cover anomalies in order to determine the physical processes that may be important. Results from simulations with realistic soil moisture anomalies indicate that internal climate variability may be the strongest factor, with some indication that the initial atmospheric state is also important. The initial state of soil moisture does not appear important, a result that held whether simulations were started in late winter or late spring. Model runs with exaggerated soil moisture reductions (near-desert conditions) showed a much larger effect, with warmer surface temperatures, reduced precipitation, and lower surface pressures; the latter indicating a response of the atmospheric circulation. These results suggest the possibility of a threshold effect in soil moisture, whereby an anomaly must be of a sufficient size before it can have a significant impact on the atmospheric circulation and hence climate. Results from simulations with realistic snow cover anomalies indicate that the time of year can be crucial. When introduced in late winter, these anomalies strongly affected the subsequent evolution of snow cover. When introduced in early winter, however, little or no effect is seen on the subsequent snow cover. Runs with greatly exaggerated initial snow cover indicate that the high reflectively of snow is the most important process by which snow cover cart impact climate, through lower surface temperatures and increased surface pressures. In early winter, the amount of solar radiation is very small and so this albedo effect is inconsequential while in late winter, with the sun higher in the sky and period of daylight longer, the effect is much stronger.
Airborne radar surveys of snow depth over Antarctic sea ice during Operation IceBridge
NASA Astrophysics Data System (ADS)
Panzer, B.; Gomez-Garcia, D.; Leuschen, C.; Paden, J. D.; Gogineni, P. S.
2012-12-01
Over the last decade, multiple satellite-based laser and radar altimeters, optimized for polar observations, have been launched with one of the major objectives being the determination of global sea ice thickness and distribution [5, 6]. Estimation of sea-ice thickness from these altimeters relies on freeboard measurements and the presence of snow cover on sea ice affects this estimate. Current means of estimating the snow depth rely on daily precipitation products and/or data from passive microwave sensors [2, 7]. Even a small uncertainty in the snow depth leads to a large uncertainty in the sea-ice thickness estimate. To improve the accuracy of the sea-ice thickness estimates and provide validation for measurements from satellite-based sensors, the Center for Remote Sensing of Ice Sheets deploys the Snow Radar as a part of NASA Operation IceBridge. The Snow Radar is an ultra-wideband, frequency-modulated, continuous-wave radar capable of resolving snow depth on sea ice from 5 cm to more than 2 meters from long-range, airborne platforms [4]. This paper will discuss the algorithm used to directly extract snow depth estimates exclusively using the Snow Radar data set by tracking both the air-snow and snow-ice interfaces. Prior work in this regard used data from a laser altimeter for tracking the air-snow interface or worked under the assumption that the return from the snow-ice interface was greater than that from the air-snow interface due to a larger dielectric contrast, which is not true for thick or higher loss snow cover [1, 3]. This paper will also present snow depth estimates from Snow Radar data during the NASA Operation IceBridge 2010-2011 Antarctic campaigns. In 2010, three sea ice flights were flown, two in the Weddell Sea and one in the Amundsen and Bellingshausen Seas. All three flight lines were repeated in 2011, allowing an annual comparison of snow depth. In 2011, a repeat pass of an earlier flight in the Weddell Sea was flown, allowing for a comparison of snow depths with two weeks elapsed between passes. [1] Farrell, S.L., et al., "A First Assessment of IceBridge Snow and Ice Thickness Data Over Arctic Sea Ice," IEEE Tran. Geoscience and Remote Sensing, Vol. 50, No. 6, pp. 2098-2111, June 2012. [2] Kwok, R., and G. F. Cunningham, "ICESat over Arctic sea ice: Estimation of snow depth and ice thickness," J. Geophys. Res., 113, C08010, 2008. [3] Kwok, R., et al., "Airborne surveys of snow depth over Arctic sea ice," J. Geophys. Res., 116, C11018, 2011. [4] Panzer, B., et al., "An ultra-wideband, microwave radar for measuring snow thickness on sea ice and mapping near-surface internal layers in polar firn," Submitted to J. Glaciology, July 23, 2012. [5] Wingham, D.J., et al., "CryoSat: A Mission to Determine the Fluctuations in Earth's Land and Marine Ice Fields," Advances in Space Research, Vol. 37, No. 4, pp. 841-871, 2006. [6] Zwally, H. J., et al., "ICESat's laser measurements of polar ice, atmosphere, ocean, and land," J. Geodynamics, Vol. 34, No. 3-4, pp. 405-445, Oct-Nov 2002. [7] Zwally, H. J., et al., "ICESat measurements of sea ice freeboard and estimates of sea ice thickness in the Weddell Sea," J. Geophys. Res., 113, C02S15, 2008.
NASA Astrophysics Data System (ADS)
Nieuwendam, Alexandre; Ramos, Miguel; Vieira, Gonçalo
2015-04-01
In permafrost areas the seasonal snow cover is an important factor on the ground thermal regime. Snow depth and timing are important in ground insulation from the atmosphere, creating different snow patterns and resulting in spatially variable ground temperatures. The aim of this work is to characterize the interactions between ground thermal regimes and snow cover and the influence on permafrost spatial distribution. The study area is the ice-free terrains of northwestern Hurd Peninsula in the vicinity of the Spanish Antarctic Station "Juan Carlos I" and Bulgarian Antarctic Station "St. Kliment Ohridski". Air and ground temperatures and snow thickness data where analysed from 4 sites along an altitudinal transect in Hurd Peninsula from 2007 to 2012: Nuevo Incinerador (25 m asl), Collado Ramos (110 m), Ohridski (140 m) and Reina Sofia Peak (275 m). The data covers 6 cold seasons showing different conditions: i) very cold with thin snow cover; ii) cold with a gradual increase of snow cover; iii) warm with thick snow cover. The data shows three types of periods regarding the ground surface thermal regime and the thickness of snow cover: a) thin snow cover and short-term fluctuation of ground temperatures; b) thick snow cover and stable ground temperatures; c) very thick snow cover and ground temperatures nearly constant at 0°C. a) Thin snow cover periods: Collado Ramos and Ohridski sites show frequent temperature variations, alternating between short-term fluctuations and stable ground temperatures. Nuevo Incinerador displays during most of the winter stable ground temperatures; b) Cold winters with a gradual increase of the snow cover: Nuevo Incinerador, Collado Ramos and Ohridski sites show similar behavior, with a long period of stable ground temperatures; c) Thick snow cover periods: Collado Ramos and Ohridski show long periods of stable ground, while Nuevo Incinerador shows temperatures close to 0°C since the beginning of the winter, due to early snow cover, which prevents cooling. Reina Sofia shows a very different behavior from the other sites, with a frequent stabilization of ground temperatures during all the winters, and last until late-fall. This situation could be related to the structure, and physical and thermal properties of snow cover. The analysis of the Freezing Degree Days (FDDs) and freezing n-factor reveals significant interannual variations. Ohridski shows the highest FDDs values followed by Reina Sofia. Nuevo Incinerador showed the lowest FDDs values. The freezing n-factor shows highest values at Ohridski, followed by Collado Ramos and Reina Sofia with very similar values. Nuevo Incinerador shows the lowest n-factor values. Snow cover doesn't insulate the ground from freezing, but depending on its thickness, density and the amount of heat in the ground, it decreases ground temperatures amplitudes and increases delays relative to air temperature changes. Even where snow cover remains several centimeters thick for several months, slow decrease of bottom temperature is possible, reaching a minimum value at the end of the winter. The results demonstrate that Reina Sofia and Ohridski sites, because of the seasonal behavior, FDDs and freezing n-factor, demonstrate higher winter ground cooling. This research was funded by PERMANTAR-3 (PTDC/AAG-GLO/3908/2012) project (Fundação para a Ciência e a Tecnologia of Portugal)
Design, Development and Testing of Web Services for Multi-Sensor Snow Cover Mapping
NASA Astrophysics Data System (ADS)
Kadlec, Jiri
This dissertation presents the design, development and validation of new data integration methods for mapping the extent of snow cover based on open access ground station measurements, remote sensing images, volunteer observer snow reports, and cross country ski track recordings from location-enabled mobile devices. The first step of the data integration procedure includes data discovery, data retrieval, and data quality control of snow observations at ground stations. The WaterML R package developed in this work enables hydrologists to retrieve and analyze data from multiple organizations that are listed in the Consortium of Universities for the Advancement of Hydrologic Sciences Inc (CUAHSI) Water Data Center catalog directly within the R statistical software environment. Using the WaterML R package is demonstrated by running an energy balance snowpack model in R with data inputs from CUAHSI, and by automating uploads of real time sensor observations to CUAHSI HydroServer. The second step of the procedure requires efficient access to multi-temporal remote sensing snow images. The Snow Inspector web application developed in this research enables the users to retrieve a time series of fractional snow cover from the Moderate Resolution Imaging Spectroradiometer (MODIS) for any point on Earth. The time series retrieval method is based on automated data extraction from tile images provided by a Web Map Tile Service (WMTS). The average required time for retrieving 100 days of data using this technique is 5.4 seconds, which is significantly faster than other methods that require the download of large satellite image files. The presented data extraction technique and space-time visualization user interface can be used as a model for working with other multi-temporal hydrologic or climate data WMTS services. The third, final step of the data integration procedure is generating continuous daily snow cover maps. A custom inverse distance weighting method has been developed to combine volunteer snow reports, cross-country ski track reports and station measurements to fill cloud gaps in the MODIS snow cover product. The method is demonstrated by producing a continuous daily time step snow presence probability map dataset for the Czech Republic region. The ability of the presented methodology to reconstruct MODIS snow cover under cloud is validated by simulating cloud cover datasets and comparing estimated snow cover to actual MODIS snow cover. The percent correctly classified indicator showed accuracy between 80 and 90% using this method. Using crowdsourcing data (volunteer snow reports and ski tracks) improves the map accuracy by 0.7--1.2%. The output snow probability map data sets are published online using web applications and web services. Keywords: crowdsourcing, image analysis, interpolation, MODIS, R statistical software, snow cover, snowpack probability, Tethys platform, time series, WaterML, web services, winter sports.
Snow drift: acoustic sensors for avalanche warning and research
NASA Astrophysics Data System (ADS)
Lehning, M.; Naaim, F.; Naaim, M.; Brabec, B.; Doorschot, J.; Durand, Y.; Guyomarc'h, G.; Michaux, J.-L.; Zimmerli, M.
Based on wind tunnel measurements at the CSTB (Jules Verne) facility in Nantes and based on field observations at the SLF experimental site Versuchsfeld Weissfluhjoch, two acoustic wind drift sensors are evaluated against different mechanical snow traps and one optical snow particle counter. The focus of the work is the suitability of the acoustic sensors for applications such as avalanche warning and research. Although the acoustic sensors have not yet reached the accuracy required for typical research applications, they can, however, be useful for snow drift monitoring to help avalanche forecasters. The main problem of the acoustic sensors is a difficult calibration that has to take into account the variable snow properties. Further difficulties arise from snow fall and high wind speeds. However, the sensor is robust and can be operated remotely under harsh conditions. It is emphasized that due to the lack of an accurate reference method for snow drift measurements, all sensors play a role in improving and evaluating snow drift models. Finally, current operational snow drift models and snow drift sensors are compared with respect to their usefulness as an aid for avalanche warning. While drift sensors always make a point measurement, the models are able to give a more representative drift index that is valid for a larger area. Therefore, models have the potential to replace difficult observations such as snow drift in operational applications. Current models on snow drift are either only applicable in flat terrain, are still too complex for an operational application (Lehning et al., 2000b), or offer only limited information on snow drift, such as the SNOWPACK drift index (Lehning et al., 2000a). On the other hand, snow drift is also difficult to measure. While mechanical traps (Mellor 1960; Budd et al., 1966) are probably still the best reference, they require more or less continuous manual operation and are thus not suitable for remote locations or long-term monitoring. Optical sensors (Schmidt, 1977; Brown and Pomeroy, 1989; Sato and Kimura, 1993) have been very successful for research applications, but suffer from the fact that they give a single flux value at one specific height. In addition, they have not been used, to our knowledge, for long-term monitoring applications or at remote sites. New developments of acoustic sensors have taken place recently (Chritin et al., 1999; Font et al., 1998). Jaedicke (2001) gives examples of possible applications of acoustic snow drift sensors. He emphasizes the advantages of acoustic sensors for snow drift monitoring at remote locations, but could not present any evaluation of the accuracy of the measurements. We present a complete evaluation of the new acoustic sensors for snow drift and discuss their applications for research or avalanche warning. We compare the suitability of sensors for operational applications.
NASA Astrophysics Data System (ADS)
Calonne, Neige; Schneebeli, Martin; Montagnat, Maurine; Matzl, Margret
2016-04-01
Temperature gradient metamorphism affects the Antarctic snowpack up to 5 meters depth, which lead to a recrystallization of the ice grains by sublimation of ice and deposition of water vapor. By this way, it is well known that the snow microstructure evolves (geometrical changes). Also, a recent study shows an evolution of the snow fabric, based on a cold laboratory experiment. Both fabric and microstructure are required to better understand mechanical behavior and densification of snow, firn and ice, given polar climatology. The fabric of firn and ice has been extensively investigated, but the publications by Stephenson (1967, 1968) are to our knowledge the only ones describing the snow fabric in Antarctica. In this context, our work focuses on snow microstructure and fabric in the first meters depth of the Antarctic ice sheet, where temperature gradients driven recrystallization occurs. Accurate details of the snow microstructure are observed using micro-computed tomography. Snow fabrics were measured at various depths from thin sections of impregnated snow with an Automatic Ice Texture Analyzer (AITA). A definite relationship between microstructure and fabric is found and highlights the influence of metamorphism on both properties. Our results also show that the metamorphism enhances the differences between the snow layers properties. Our work stresses the significant and complex evolution of snow properties in the upper meters of the ice sheet and opens the question of how these layer properties will evolve at depth and may influence the densification.
GPS interferometric reflectometry for ground-based remote sensing of snow depth and density
NASA Astrophysics Data System (ADS)
Nievinski, F. G.; Larson, K. M.; Gutmann, E. D.; Zavorotny, V.; Williams, M. W.
2011-12-01
GPS interferometric reflectometry (GPS-IR) is a method that exploits multipath for ground-based remote sensing in the surroundings of a GPS antenna. It operates on L-band, leveraging hundreds of conventional GPS sites existing in the U.S., with a typical footprint of 30-meter radius. Multipath is the coherent interference of line-of-sight and reflected signals; as the two go in and out of phase, the power recorded by a GPS interferometer goes through peaks and troughs that can be related to land surface characteristics, such as soil moisture and snow depth. GPS-IR has been demonstrated to be capable of retrieving snow depth during extended periods at various locations, as validated by comparisons with a continuously-operating terrestrial scanning laser, an airborne LIDAR campaign, manual stake surveys, and ultrasonic depth sensors. Here we explore the possibility of retrieving snow density, too. This will determine the feasibility and limitations of GPS-IR for monitoring of snow water equivalent (SWE). Data were collected at Niwot Ridge LTER in Colorado, at a 3,500-m altitude alpine tundra site. Niwot receives around 1,000 mm of precipitation per year and has a mean annual air temperature of -3.8°C. Snow density and temperature is measured in 10-cm vertical increments at snowpits dug approximately every week. A continuously-operating GPS system established in 2009 allows for measurement of the snowpack several times a day at multiple azimuths as satellites rise and set. The typical peak snow depth at the GPS site is 1.5 m, with a peak depth during the study period of 1.7 m in 2009/2010 and 2.5 m in 2010/2011; density ranged 200-600 kg/m3. We employ a forward/inverse model originally developed for snow depth and recently extended to account for layering to study both synthetic and real observations. We present comparisons of density estimates obtained using GPS-IR observations to snowpit field data, focusing initially on dry snow. In addition, we explore the sensitivity of the model to roughness, density, snow depth, and random noise. Synthetic observations derived from the forward model based on realistic snow profiles are utilized in the inverse model to quantify both the formal uncertainty and the expected error in parameter retrievals.
Donald R. Satterlund; Harold F. Haupt
1967-01-01
Study of interception storage of snow by two species of sapling conifers in northern Idaho revealed that cumulative snow catch follows the classical law of autocatakinetic growth, or [equation - see PDF] where I, is interception storage, e is the interception storage capacity of the tree, e is the base of the natural logarithm, k is a constant expressing the rate of...
Estimating the snow water equivalent on a glacierized high elevation site (Forni Glacier, Italy)
NASA Astrophysics Data System (ADS)
Senese, Antonella; Maugeri, Maurizio; Meraldi, Eraldo; Verza, Gian Pietro; Azzoni, Roberto Sergio; Compostella, Chiara; Diolaiuti, Guglielmina
2018-04-01
We present and compare 11 years of snow data (snow depth and snow water equivalent, SWE) measured by an automatic weather station (AWS) and corroborated by data from field campaigns on the Forni Glacier in Italy. The aim of the analysis is to estimate the SWE of new snowfall and the annual SWE peak based on the average density of the new snow at the site (corresponding to the snowfall during the standard observation period of 24 h) and automated snow depth measurements. The results indicate that the daily SR50 sonic ranger measurements and the available snow pit data can be used to estimate the mean new snow density value at the site, with an error of ±6 kg m-3. Once the new snow density is known, the sonic ranger makes it possible to derive SWE values with an RMSE of 45 mm water equivalent (if compared with snow pillow measurements), which turns out to be about 8 % of the total SWE yearly average. Therefore, the methodology we present is interesting for remote locations such as glaciers or high alpine regions, as it makes it possible to estimate the total SWE using a relatively inexpensive, low-power, low-maintenance, and reliable instrument such as the sonic ranger.
Mapping snow depth within a tundra ecosystem using multiscale observations and Bayesian methods
Wainwright, Haruko M.; Liljedahl, Anna K.; Dafflon, Baptiste; ...
2017-04-03
This paper compares and integrates different strategies to characterize the variability of end-of-winter snow depth and its relationship to topography in ice-wedge polygon tundra of Arctic Alaska. Snow depth was measured using in situ snow depth probes and estimated using ground-penetrating radar (GPR) surveys and the photogrammetric detection and ranging (phodar) technique with an unmanned aerial system (UAS). We found that GPR data provided high-precision estimates of snow depth (RMSE=2.9cm), with a spatial sampling of 10cm along transects. Phodar-based approaches provided snow depth estimates in a less laborious manner compared to GPR and probing, while yielding a high precision (RMSE=6.0cm) andmore » a fine spatial sampling (4cm×4cm). We then investigated the spatial variability of snow depth and its correlation to micro- and macrotopography using the snow-free lidar digital elevation map (DEM) and the wavelet approach. We found that the end-of-winter snow depth was highly variable over short (several meter) distances, and the variability was correlated with microtopography. Microtopographic lows (i.e., troughs and centers of low-centered polygons) were filled in with snow, which resulted in a smooth and even snow surface following macrotopography. We developed and implemented a Bayesian approach to integrate the snow-free lidar DEM and multiscale measurements (probe and GPR) as well as the topographic correlation for estimating snow depth over the landscape. Our approach led to high-precision estimates of snow depth (RMSE=6.0cm), at 0.5m resolution and over the lidar domain (750m×700m).« less
NASA Astrophysics Data System (ADS)
Liou, K. N.; Takano, Y.; He, C.; Yang, P.; Leung, L. R.; Gu, Y.; Lee, W. L.
2014-06-01
A stochastic approach has been developed to model the positions of BC (black carbon)/dust internally mixed with two snow grain types: hexagonal plate/column (convex) and Koch snowflake (concave). Subsequently, light absorption and scattering analysis can be followed by means of an improved geometric-optics approach coupled with Monte Carlo photon tracing to determine BC/dust single-scattering properties. For a given shape (plate, Koch snowflake, spheroid, or sphere), the action of internal mixing absorbs substantially more light than external mixing. The snow grain shape effect on absorption is relatively small, but its effect on asymmetry factor is substantial. Due to a greater probability of intercepting photons, multiple inclusions of BC/dust exhibit a larger absorption than an equal-volume single inclusion. The spectral absorption (0.2-5 µm) for snow grains internally mixed with BC/dust is confined to wavelengths shorter than about 1.4 µm, beyond which ice absorption predominates. Based on the single-scattering properties determined from stochastic and light absorption parameterizations and using the adding/doubling method for spectral radiative transfer, we find that internal mixing reduces snow albedo substantially more than external mixing and that the snow grain shape plays a critical role in snow albedo calculations through its forward scattering strength. Also, multiple inclusion of BC/dust significantly reduces snow albedo as compared to an equal-volume single sphere. For application to land/snow models, we propose a two-layer spectral snow parameterization involving contaminated fresh snow on top of old snow for investigating and understanding the climatic impact of multiple BC/dust internal mixing associated with snow grain metamorphism, particularly over mountain/snow topography.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liou, K. N.; Takano, Y.; He, Cenlin
2014-06-27
A stochastic approach to model the positions of BC/dust internally mixed with two snow-grain types has been developed, including hexagonal plate/column (convex) and Koch snowflake (concave). Subsequently, light absorption and scattering analysis can be followed by means of an improved geometric-optics approach coupled with Monte Carlo photon tracing to determine their single-scattering properties. For a given shape (plate, Koch snowflake, spheroid, or sphere), internal mixing absorbs more light than external mixing. The snow-grain shape effect on absorption is relatively small, but its effect on the asymmetry factor is substantial. Due to a greater probability of intercepting photons, multiple inclusions ofmore » BC/dust exhibit a larger absorption than an equal-volume single inclusion. The spectral absorption (0.2 – 5 um) for snow grains internally mixed with BC/dust is confined to wavelengths shorter than about 1.4 um, beyond which ice absorption predominates. Based on the single-scattering properties determined from stochastic and light absorption parameterizations and using the adding/doubling method for spectral radiative transfer, we find that internal mixing reduces snow albedo more than external mixing and that the snow-grain shape plays a critical role in snow albedo calculations through the asymmetry factor. Also, snow albedo reduces more in the case of multiple inclusion of BC/dust compared to that of an equal-volume single sphere. For application to land/snow models, we propose a two-layer spectral snow parameterization containing contaminated fresh snow on top of old snow for investigating and understanding the climatic impact of multiple BC/dust internal mixing associated with snow grain metamorphism, particularly over mountains/snow topography.« less
Wind tunnel experiments: influence of erosion and deposition on wind-packing of new snow
NASA Astrophysics Data System (ADS)
Sommer, Christian G.; Lehning, Michael; Fierz, Charles
2018-01-01
Wind sometimes creates a hard, wind-packed layer at the surface of a snowpack. The formation of such wind crusts was observed during wind tunnel experiments with combined SnowMicroPen and Microsoft Kinect sensors. The former provides the hardness of new and wind-packed snow and the latter spatial snow depth data in the test section. Previous experiments showed that saltation is necessary but not sufficient for wind-packing. The combination of hardness and snow depth data now allows to study the case with saltation in more detail. The Kinect data requires complex processing but with the appropriate corrections, snow depth changes can be measured with an accuracy of about 1 mm. The Kinect is therefore well suited to quantify erosion and deposition. We found that no hardening occurred during erosion and that a wind crust may or may not form when snow is deposited. Deposition is more efficient at hardening snow in wind-exposed than in wind-sheltered areas. The snow hardness increased more on the windward side of artificial obstacles placed in the wind tunnel. Similarly, the snow was harder in positions with a low Sx parameter. Sx describes how wind-sheltered (high Sx) or wind-exposed (low Sx) a position is and was calculated based on the Kinect data. The correlation between Sx and snow hardness was -0.63. We also found a negative correlation of -0.4 between the snow hardness and the deposition rate. Slowly deposited snow is harder than a rapidly growing accumulation. Sx and the deposition rate together explain about half of the observed variability of snow hardness.
Mapping snow depth within a tundra ecosystem using multiscale observations and Bayesian methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wainwright, Haruko M.; Liljedahl, Anna K.; Dafflon, Baptiste
This paper compares and integrates different strategies to characterize the variability of end-of-winter snow depth and its relationship to topography in ice-wedge polygon tundra of Arctic Alaska. Snow depth was measured using in situ snow depth probes and estimated using ground-penetrating radar (GPR) surveys and the photogrammetric detection and ranging (phodar) technique with an unmanned aerial system (UAS). We found that GPR data provided high-precision estimates of snow depth (RMSE=2.9cm), with a spatial sampling of 10cm along transects. Phodar-based approaches provided snow depth estimates in a less laborious manner compared to GPR and probing, while yielding a high precision (RMSE=6.0cm) andmore » a fine spatial sampling (4cm×4cm). We then investigated the spatial variability of snow depth and its correlation to micro- and macrotopography using the snow-free lidar digital elevation map (DEM) and the wavelet approach. We found that the end-of-winter snow depth was highly variable over short (several meter) distances, and the variability was correlated with microtopography. Microtopographic lows (i.e., troughs and centers of low-centered polygons) were filled in with snow, which resulted in a smooth and even snow surface following macrotopography. We developed and implemented a Bayesian approach to integrate the snow-free lidar DEM and multiscale measurements (probe and GPR) as well as the topographic correlation for estimating snow depth over the landscape. Our approach led to high-precision estimates of snow depth (RMSE=6.0cm), at 0.5m resolution and over the lidar domain (750m×700m).« less
Quantifying Particle Numbers and Mass Flux in Drifting Snow
NASA Astrophysics Data System (ADS)
Crivelli, Philip; Paterna, Enrico; Horender, Stefan; Lehning, Michael
2016-12-01
We compare two of the most common methods of quantifying mass flux, particle numbers and particle-size distribution for drifting snow events, the snow-particle counter (SPC), a laser-diode-based particle detector, and particle tracking velocimetry based on digital shadowgraphic imaging. The two methods were correlated for mass flux and particle number flux. For the SPC measurements, the device was calibrated by the manufacturer beforehand. The shadowgrapic imaging method measures particle size and velocity directly from consecutive images, and before each new test the image pixel length is newly calibrated. A calibration study with artificially scattered sand particles and glass beads provides suitable settings for the shadowgraphical imaging as well as obtaining a first correlation of the two methods in a controlled environment. In addition, using snow collected in trays during snowfall, several experiments were performed to observe drifting snow events in a cold wind tunnel. The results demonstrate a high correlation between the mass flux obtained for the calibration studies (r ≥slant 0.93) and good correlation for the drifting snow experiments (r ≥slant 0.81). The impact of measurement settings is discussed in order to reliably quantify particle numbers and mass flux in drifting snow. The study was designed and performed to optimize the settings of the digital shadowgraphic imaging system for both the acquisition and the processing of particles in a drifting snow event. Our results suggest that these optimal settings can be transferred to different imaging set-ups to investigate sediment transport processes.
Mapping snow depth from stereo satellite imagery
NASA Astrophysics Data System (ADS)
Gascoin, S.; Marti, R.; Berthier, E.; Houet, T.; de Pinel, M.; Laffly, D.
2016-12-01
To date, there is no definitive approach to map snow depth in mountainous areas from spaceborne sensors. Here, we examine the potential of very-high-resolution (VHR) optical stereo satellites to this purpose. Two triplets of 0.70 m resolution images were acquired by the Pléiades satellite over an open alpine catchment (14.5 km²) under snow-free and snow-covered conditions. The open-source software Ame's Stereo Pipeline (ASP) was used to match the stereo pairs without ground control points to generate raw photogrammetric clouds and to convert them into high-resolution digital elevation models (DEMs) at 1, 2, and 4 m resolutions. The DEM differences (dDEMs) were computed after 3-D coregistration, including a correction of a -0.48 m vertical bias. The bias-corrected dDEM maps were compared to 451 snow-probe measurements. The results show a decimetric accuracy and precision in the Pléiades-derived snow depths. The median of the residuals is -0.16 m, with a standard deviation (SD) of 0.58 m at a pixel size of 2 m. We compared the 2 m Pléiades dDEM to a 2 m dDEM that was based on a winged unmanned aircraft vehicle (UAV) photogrammetric survey that was performed on the same winter date over a portion of the catchment (3.1 km²). The UAV-derived snow depth map exhibits the same patterns as the Pléiades-derived snow map, with a median of -0.11 m and a SD of 0.62 m when compared to the snow-probe measurements. The Pléiades images benefit from a very broad radiometric range (12 bits), allowing a high correlation success rate over the snow-covered areas. This study demonstrates the value of VHR stereo satellite imagery to map snow depth in remote mountainous areas even when no field data are available. Based on this method we have initiated a multi-year survey of the peak snow depth in the Bassiès catchment.
NASA Astrophysics Data System (ADS)
Jiang, L.; Wang, G.
2017-12-01
Snow cover is one of key elements in the investigations of weather, climatic change, water resource, and snow hazard. Satellites observations from on-board optical sensors provides the ability to snow cover mapping through the discrimination of snow from other surface features and cloud. MODIS provides maximum of snow cover data using 8-day composition data in order to reduce the cloud obscuration impacts. However, snow cover mapping is often required to obtain at the temporal scale of less than one day, especially in the case of disasters. Geostationary satellites provide much higher temporal resolution measurements (typically at 15 min or half or one hour), which has a great potential to reduce cloud cover problem and observe ground surface for identifying snow. The proposed method in this work is that how to take the advantages of polar-orbiting and geostationary optical sensors to accurately map snow cover without data gaps due to cloud. FY-2 geostationary satellites have high temporal resolution observations, however, they are lacking enough spectral bands essential for snow cover monitoring, such as the 1.6 μm band. Based on our recent work (Wang et al., 2017), we improved FY-2/VISSR fractional snow cover estimation with a linear spectral unmixing analysis method. The linear approach is applied then using the reflectance observed at the certain hourly image of FY-2 to calculate pixel-wise snow cover fraction. The composition of daily factional snow cover employs the sun zenith angle, where the snow fraction under lowest sun zenith angle is considered as the most confident result. FY-2/VISSR fractional snow cover map has less cloud due to the composition of multi-temporal snow maps in a single day. In order to get an accurate and cloud-reduced fractional snow cover map, both of MODIS and FY-2/VISSR daily snow fraction maps are blended together. With the combination of FY-2E/VISSR and MODIS, there are still some cloud existing in the daily snow fraction map. Then the combination snow fraction map is temporally reconstructed using MATLAB Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) function to derive a completely daily cloud-free snow cover map under all the sky conditions.
NASA Astrophysics Data System (ADS)
Mathevet, T.; Joel, G.; Gottardi, F.; Nemoz, B.
2017-12-01
The aim of this communication is to present analyses of climate variability and change on snow water equivalent (SWE) observations, reconstructions (1900-2016) and scenarii (2020-2100) of a hundred of snow courses dissiminated within the french Alps. This issue became particularly important since a decade, in regions where snow variability had a large impact on water resources availability, poor snow conditions in ski resorts and artificial snow production. As a water resources manager in french mountainuous regions, EDF (french hydropower company) has developed and managed a hydrometeorological network since 1950. A recent data rescue research allowed to digitize long term SWE manual measurments of a hundred of snow courses within the french Alps. EDF have been operating an automatic SWE sensors network, complementary to the snow course network. Based on numerous SWE observations time-series and snow accumulation and melt model (Garavaglia et al., 2017), continuous daily historical SWE time-series have been reconstructed within the 1950-2016 period. These reconstructions have been extented to 1900 using 20 CR reanalyses (ANATEM method, Kuentz et al., 2015) and up to 2100 using GIEC Climate Change scenarii. Considering various mountainous areas within the french Alps, this communication focuses on : (1) long term (1900-2016) analyses of variability and trend of total precipitation, air temperature, snow water equivalent, snow line altitude, snow season length , (2) long term variability of hydrological regime of snow dominated watersheds and (3) future trends (2020 -2100) using GIEC Climate Change scenarii. Comparing historical period (1950-1984) to recent period (1984-2016), quantitative results within a region in the north Alps (Maurienne) shows an increase of air temperature by 1.2 °C, an increase of snow line height by 200m, a reduction of SWE by 200 mm/year and a reduction of snow season length by 15 days. These analyses will be extended from north to south of the Alps, on a region spanning 200 km. Caracterisation of the increase of snow line height and SWE reduction are particularly important at a local and watershed scale. This long term change of snow dynamics within moutainuous regions both impacts snow resorts and artificial snow production developments and multi-purposes dam reservoirs managments.
Impact of weather events on Arctic sea ice albedo evolution
NASA Astrophysics Data System (ADS)
Arntsen, A. E.; Perovich, D. K.; Polashenski, C.; Stwertka, C.
2015-12-01
Arctic sea ice undergoes a seasonal evolution from cold snow-covered ice to melting snow to bare ice with melt ponds. Associated with this physical evolution is a decrease in the albedo of the ice cover. While the change in albedo is often considered as a steady seasonal decrease, weather events during melt, such as rain or snow, can impact the albedo evolution. Measurements on first year ice in the Chukchi Sea showed a decrease in visible albedo to 0.77 during the onset of melt. New snow from 4 - 6 June halted melting and increased the visible albedo to 0.87. It took 12 days for the albedo to decrease to levels prior to the snowfall. Incident solar radiation is large in June and thus a change in albedo has a large impact on the surface heat budget. The snowfall increased the albedo by 0.1 and reduced the absorbed sunlight from 5 June to 17 June by approximately 32 MJ m-2. The total impact of the snowfall will be even greater, since the delay in albedo reduction will be propagated throughout the entire summer. A rain event would have the opposite impact, increasing solar heat input and accelerating melting. Snow or rain in May or June can impact the summer melt cycle of Arctic sea ice.
Forward Modeling of Oxygen Isotope Variability in Tropical Andean Ice Cores
NASA Astrophysics Data System (ADS)
Vuille, M. F.; Hurley, J. V.; Hardy, D. R.
2016-12-01
Ice core records from the tropical Andes serve as important archives of past tropical Pacific SST variability and changes in monsoon intensity upstream over the Amazon basin. Yet the interpretation of the oxygen isotopic signal in these ice cores remains controversial. Based on 10 years of continuous on-site glaciologic, meteorologic and isotopic measurements at the summit of the world's largest tropical ice cap, Quelccaya, in southern Peru, we developed a process-based physical forward model (proxy system model), capable of simulating intraseasonal, seasonal and interannual variability in delta-18O as observed in snow pits and short cores. Our results highlight the importance of taking into account post-depositional effects (sublimation and isotopic enrichment) to properly simulate the seasonal cycle. Intraseasonal variability is underestimated in our model unless the effects of cold air incursions, triggering significant monsoonal snowfall and more negative delta-18O values, are included. A number of sensitivity test highlight the influence of changing boundary conditions on the final snow isotopic profile. Such tests also show that our model provides much more realistic data than applying direct model output of precipitation delta-18O from isotope-enabled climate models (SWING ensemble). The forward model was calibrated with and run under present-day conditions, but it can also be driven with past climate forcings to reconstruct paleo-monsoon variability and investigate the influence of changes in radiative forcings (solar, volcanic) on delta-18O variability in Andean snow. The model is transferable and may be used to render a paleoclimatic context at other ice core locations.
NASA Astrophysics Data System (ADS)
Marsh, C.; Pomeroy, J. W.; Wheater, H. S.
2017-12-01
Accurate management of water resources is necessary for social, economic, and environmental sustainability worldwide. In locations with seasonal snowcovers, the accurate prediction of these water resources is further complicated due to frozen soils, solid-phase precipitation, blowing snow transport, and snowcover-vegetation-atmosphere interactions. Complex process interactions and feedbacks are a key feature of hydrological systems and may result in emergent phenomena, i.e., the arising of novel and unexpected properties within a complex system. One example is the feedback associated with blowing snow redistribution, which can lead to drifts that cause locally-increased soil moisture, thus increasing plant growth that in turn subsequently impacts snow redistribution, creating larger drifts. Attempting to simulate these emergent behaviours is a significant challenge, however, and there is concern that process conceptualizations within current models are too incomplete to represent the needed interactions. An improved understanding of the role of emergence in hydrological systems often requires high resolution distributed numerical hydrological models that incorporate the relevant process dynamics. The Canadian Hydrological Model (CHM) provides a novel tool for examining cold region hydrological systems. Key features include efficient terrain representation, allowing simulations at various spatial scales, reduced computational overhead, and a modular process representation allowing for an alternative-hypothesis framework. Using both physics-based and conceptual process representations sourced from long term process studies and the current cold regions literature allows for comparison of process representations and importantly, their ability to produce emergent behaviours. Examining the system in a holistic, process-based manner can hopefully derive important insights and aid in development of improved process representations.
Snowmelt and Infiltration Deficiencies of SSiB and Their Resolution with a New Snow-Physics Scheme
NASA Technical Reports Server (NTRS)
Sud, Y. C.; Mocko, David M.
1999-01-01
A two-year 1987-1988 integration of SSiB forced with ISLSCP Initiative I surface data (as part of the Global Soil Wetness Project, GSWP, evaluation and intercomparison) produced generally realistic land surface fluxes and hydrology. Nevertheless, the evaluation also helped to identify some of the deficiencies of the current version of the Simplified Simple Biosphere (SSiB) model. The simulated snowmelt was delayed in most regions, along with excessive runoff and lack of an spring soil moisture recharge. The SSIB model had previously been noted to have a problem producing accurate soil moisture as compared to observations in the Russian snowmelt region. Similarly, various GSWP implementations of SSIB found deficiencies in this region of the simulated soil moisture and runoff as compared to other non-SSiB land-surface models (LSMs). The origin of these deficiencies was: 1) excessive cooling of the snow and ground, and 2) deep frozen soil disallowing snowmelt infiltration. The problem was most severe in regions that experience very cold winters. In SSiB, snow was treated as a unified layer with the first soil layer, causing soil and snow to cool together in the winter months, as opposed to snow cover acting as an insulator. In the spring season, a large amount of heat was required to thaw a hard frozen snow plus deep soil layers, delaying snowmelt and causing meltwater to become runoff over the frozen soil rather than infiltrate into it.
NASA Astrophysics Data System (ADS)
Proctor, K. W.; Montgomery, Q. W.; Prairie, J. C.
2016-02-01
Marine snow aggregates play a fundamental role in the marine carbon cycle. Since marine snow aggregates are larger and thus sink faster than individual phytoplankton, aggregates often dominate carbon flux. Previous studies have shown that marine snow aggregates will significantly decrease their settling velocity when passing through sharp density transitions within the ocean, a phenomenon defined as delayed settling. Given the importance of aggregate settling to carbon export, these small-scale changes in aggregate settling dynamics may have significant impacts on the efficiency of the biological pump. However, there is still a lack of knowledge about how different physical properties of aggregates can affect this delayed settling. In this study, we investigated the effect of phytoplankton growth phase on delayed settling behavior. Using phytoplankton cultures stopped at four different growth phases, we formed marine snow aggregates in the laboratory in rotating cylindrical tanks. We then observed individual aggregates as they settled through a stratified tank. We will present data which illustrates that aggregates experience greatly reduced settling rates when passing through sharp density gradients and that the growth phase of the phytoplankton used to form these aggregates has a significant effect on this delayed settling behavior. A thorough understanding of the impact of phytoplankton growth phase on the delayed settling behavior of marine snow will offer insight into the way phytoplankton growth phase may influence the efficiency of the biological pump, carbon flux, and the carbon cycle as a whole.
Climate-change signals in national atmospheric deposition program precipitation data
Wetherbee, Gregory A.; Mast, M. Alisa
2016-01-01
National Atmospheric Deposition Program (NADP)/National Trends Network precipitation type, snow-season duration, and annual timing of selected chemical wet-deposition maxima vary with latitude and longitude within a 35-year (1979–2013) data record for the contiguous United States and Alaska. From the NADP data collected within the region bounded by 35.6645°–48.782° north latitude and 124°–68° west longitude, similarities in latitudinal and longitudinal patterns of changing snow-season duration, fraction of annual precipitation recorded as snow, and the timing of chemical wet-deposition maxima, suggest that the chemical climate of the atmosphere is linked to physical changes in climate. Total annual precipitation depth has increased 4–6 % while snow season duration has decreased from approximately 7 to 21 days across most of the USA, except in higher elevation regions where it has increased by as much as 21 days. Snow-season precipitation is increasingly comprised of snow, but annually total precipitation is increasingly comprised of liquid precipitation. Meanwhile, maximum ammonium deposition occurs as much as 27 days earlier, and the maximum nitrate: sulfate concentration ratio in wet-deposition occurs approximately 10–21 days earlier in the year. The maximum crustal (calcium + magnesium + potassium) cation deposition occurs 2–35 days earlier in the year. The data suggest that these shifts in the timing of atmospheric wet deposition are linked to a warming climate, but the ecological consequences are uncertain.
Response of Alpine Grassland Vegetation Phenology to Snow Accumulation and Melt in Namco Basin
NASA Astrophysics Data System (ADS)
Chen, S.; Cui, X.; Liang, T.
2018-04-01
Snow/ice accumulation and melt, as a vital part of hydrological processes, is close related with vegetation activities. Taking Namco basin for example, based on multisource remote sensing data and the ground observation data of temperature and precipitation, phenological information was extracted by S-G filtering and dynamic threshold method. Daily snow cover fraction was calculated with daily cloud-free snow cover maps. Evolution characteristics of grassland vegetation greening, growth length and daily snow cover fraction and their relationship were analyzed from 2001 to 2013. The results showed that most of grassland vegetation had advanced greening and prolong growth length trend in Namco basin. There were negative correlations between snow cover fraction and vegetation greening or growth length. The response of vegetation phenology to snow cover fraction is more sensitive than that to temperature in spring. Meanwhile, vegetation growth condition turned worse with advanced greening and prolong growth length. To a certain extent, our research reveals the relationship between grassland vegetation growth cycle and snow in alpine ecosystem. It has provided reference to research the response mechanism of alpine grassland ecosystem to climate changes.
Land Surface Model Biases and their Impacts on the Assimilation of Snow-related Observations
NASA Astrophysics Data System (ADS)
Arsenault, K. R.; Kumar, S.; Hunter, S. M.; Aman, R.; Houser, P. R.; Toll, D.; Engman, T.; Nigro, J.
2007-12-01
Some recent snow modeling studies have employed a wide range of assimilation methods to incorporate snow cover or other snow-related observations into different hydrological or land surface models. These methods often include taking both model and observation biases into account throughout the model integration. This study focuses more on diagnosing the model biases and presenting their subsequent impacts on assimilating snow observations and modeled snowmelt processes. In this study, the land surface model, the Community Land Model (CLM), is used within the Land Information System (LIS) modeling framework to show how such biases impact the assimilation of MODIS snow cover observations. Alternative in-situ and satellite-based observations are used to help guide the CLM LSM in better predicting snowpack conditions and more realistic timing of snowmelt for a western US mountainous region. Also, MODIS snow cover observation biases will be discussed, and validation results will be provided. The issues faced with inserting or assimilating MODIS snow cover at moderate spatial resolutions (like 1km or less) will be addressed, and the impacts on CLM will be presented.
NASA Astrophysics Data System (ADS)
Tomaszewska, M. A.; Henebry, G. M.
2017-12-01
The vertical transhumance practiced by herders in the highlands of Kyrgyzstan is vulnerable to environmental change. Herd movements and pasture conditions are both affected by spatial and temporal variations in snow cover and the timing of snowmelt. Early growing season soil moisture conditions affect the phenology and growth of vegetation, especially in the high elevation pastures used for summer forage. To evaluate snow seasonality, we examined three snow cover variables—the first day of snow (FDoS), the last day of snow (LDoS), and the duration of snow cover (DoSC) over 17 years based on 8-day snow product from MODIS Terra and Aqua (MOD/MYD10A2) across the Kyrgyz Republic (KYR). To track the "snow season" efficiently in the presence of snow-capped peaks, we start each snow season at day of year (DOY) 169, approximately the summer solstice, and extend to DOY 168 of the following year. To track the interannual variation of these variables, we applied two nonparametric statistics: the Mann-Kendall trend test and the Theil-Sen linear trend estimator. Our preliminary results focusing on four rayons in two oblasts indicate both large swaths of positive and negative significant trends over the different regions of the country. Positive trends in FDoS, meaning later snow arrival, were detected in parts of central KYR. Negative trends in FDoS meaning earlier arrival were detected at lower elevations in southwestern KYR. Earlier snowmelt (negative trend in LDoS) in eastern KYR resulted in a shorter snow season (negative trend in DoSC); in contrast, later snowmelt in southwestern KYR (positive trend in LDoS) resulted in a longer period of snow cover (positive trend of DoSC). We extend the analysis to the entire country and explore the influence of terrain attribites (elevation, slope, and aspect) and MODIS IGBP land cover type (MCD12Q1) on trends in snow cover seasonality. Additionally, we ran the trend tests for the Terra and Aqua snow products separately to evaluate the effect of overpass time on snow cover retrieval.
Parameterization of single-scattering properties of snow
NASA Astrophysics Data System (ADS)
Räisänen, P.; Kokhanovsky, A.; Guyot, G.; Jourdan, O.; Nousiainen, T.
2015-02-01
Snow consists of non-spherical grains of various shapes and sizes. Still, in many radiative transfer applications, single-scattering properties of snow have been based on the assumption of spherical grains. More recently, second-generation Koch fractals have been employed. While they produce a relatively flat phase function typical of deformed non-spherical particles, this is still a rather ad-hoc choice. Here, angular scattering measurements for blowing snow conducted during the CLimate IMpacts of Short-Lived pollutants In the Polar region (CLIMSLIP) campaign at Ny Ålesund, Svalbard, are used to construct a reference phase function for snow. Based on this phase function, an optimized habit combination (OHC) consisting of severely rough (SR) droxtals, aggregates of SR plates and strongly distorted Koch fractals is selected. The single-scattering properties of snow are then computed for the OHC as a function of wavelength λ and snow grain volume-to-projected area equivalent radius rvp. Parameterization equations are developed for λ = 0.199-2.7 μm and rvp = 10-2000 μm, which express the single-scattering co-albedo β, the asymmetry parameter g and the phase function P11 as functions of the size parameter and the real and imaginary parts of the refractive index. The parameterizations are analytic and simple to use in radiative transfer models. Compared to the reference values computed for the OHC, the accuracy of the parameterization is very high for β and g. This is also true for the phase function parameterization, except for strongly absorbing cases (β > 0.3). Finally, we consider snow albedo and reflected radiances for the suggested snow optics parameterization, making comparisons to spheres and distorted Koch fractals.
Parameterization of single-scattering properties of snow
NASA Astrophysics Data System (ADS)
Räisänen, P.; Kokhanovsky, A.; Guyot, G.; Jourdan, O.; Nousiainen, T.
2015-06-01
Snow consists of non-spherical grains of various shapes and sizes. Still, in many radiative transfer applications, single-scattering properties of snow have been based on the assumption of spherical grains. More recently, second-generation Koch fractals have been employed. While they produce a relatively flat phase function typical of deformed non-spherical particles, this is still a rather ad hoc choice. Here, angular scattering measurements for blowing snow conducted during the CLimate IMpacts of Short-Lived pollutants In the Polar region (CLIMSLIP) campaign at Ny Ålesund, Svalbard, are used to construct a reference phase function for snow. Based on this phase function, an optimized habit combination (OHC) consisting of severely rough (SR) droxtals, aggregates of SR plates and strongly distorted Koch fractals is selected. The single-scattering properties of snow are then computed for the OHC as a function of wavelength λ and snow grain volume-to-projected area equivalent radius rvp. Parameterization equations are developed for λ = 0.199-2.7 μm and rvp = 10-2000 μm, which express the single-scattering co-albedo β, the asymmetry parameter g and the phase function P11 as functions of the size parameter and the real and imaginary parts of the refractive index. The parameterizations are analytic and simple to use in radiative transfer models. Compared to the reference values computed for the OHC, the accuracy of the parameterization is very high for β and g. This is also true for the phase function parameterization, except for strongly absorbing cases (β > 0.3). Finally, we consider snow albedo and reflected radiances for the suggested snow optics parameterization, making comparisons to spheres and distorted Koch fractals.
Gram, Lone; Grossart, Hans-Peter; Schlingloff, Andrea; Kiørboe, Thomas
2002-01-01
We report here, for the first time, that bacteria associated with marine snow produce communication signals involved in quorum sensing in gram-negative bacteria. Four of 43 marine microorganisms isolated from marine snow were found to produce acylated homoserine lactones (AHLs) in well diffusion and thin-layer chromatographic assays based on the Agrobacterium tumefaciens reporter system. Three of the AHL-producing strains were identified by 16S ribosomal DNA gene sequence analysis as Roseobacter spp., and this is the first report of AHL production by these α-Proteobacteria. It is likely that AHLs in Roseobacter species and other marine snow bacteria govern phenotypic traits (biofilm formation, exoenzyme production, and antibiotic production) which are required mainly when the population reaches high densities, e.g., in the marine snow community. PMID:12147515
Object-Based Arctic Sea Ice Feature Extraction through High Spatial Resolution Aerial photos
NASA Astrophysics Data System (ADS)
Miao, X.; Xie, H.
2015-12-01
High resolution aerial photographs used to detect and classify sea ice features can provide accurate physical parameters to refine, validate, and improve climate models. However, manually delineating sea ice features, such as melt ponds, submerged ice, water, ice/snow, and pressure ridges, is time-consuming and labor-intensive. An object-based classification algorithm is developed to automatically extract sea ice features efficiently from aerial photographs taken during the Chinese National Arctic Research Expedition in summer 2010 (CHINARE 2010) in the MIZ near the Alaska coast. The algorithm includes four steps: (1) the image segmentation groups the neighboring pixels into objects based on the similarity of spectral and textural information; (2) the random forest classifier distinguishes four general classes: water, general submerged ice (GSI, including melt ponds and submerged ice), shadow, and ice/snow; (3) the polygon neighbor analysis separates melt ponds and submerged ice based on spatial relationship; and (4) pressure ridge features are extracted from shadow based on local illumination geometry. The producer's accuracy of 90.8% and user's accuracy of 91.8% are achieved for melt pond detection, and shadow shows a user's accuracy of 88.9% and producer's accuracies of 91.4%. Finally, pond density, pond fraction, ice floes, mean ice concentration, average ridge height, ridge profile, and ridge frequency are extracted from batch processing of aerial photos, and their uncertainties are estimated.
NASA Astrophysics Data System (ADS)
Isaac, G. A.; Joe, P. I.; Mailhot, J.; Bailey, M.; Bélair, S.; Boudala, F. S.; Brugman, M.; Campos, E.; Carpenter, R. L.; Crawford, R. W.; Cober, S. G.; Denis, B.; Doyle, C.; Reeves, H. D.; Gultepe, I.; Haiden, T.; Heckman, I.; Huang, L. X.; Milbrandt, J. A.; Mo, R.; Rasmussen, R. M.; Smith, T.; Stewart, R. E.; Wang, D.; Wilson, L. J.
2014-01-01
A World Weather Research Programme (WWRP) project entitled the Science of Nowcasting Olympic Weather for Vancouver 2010 (SNOW-V10) was developed to be associated with the Vancouver 2010 Olympic and Paralympic Winter Games conducted between 12 February and 21 March 2010. The SNOW-V10 international team augmented the instrumentation associated with the Winter Games and several new numerical weather forecasting and nowcasting models were added. Both the additional observational and model data were available to the forecasters in real time. This was an excellent opportunity to demonstrate existing capability in nowcasting and to develop better techniques for short term (0-6 h) nowcasts of winter weather in complex terrain. Better techniques to forecast visibility, low cloud, wind gusts, precipitation rate and type were evaluated. The weather during the games was exceptionally variable with many periods of low visibility, low ceilings and precipitation in the form of both snow and rain. The data collected should improve our understanding of many physical phenomena such as the diabatic effects due to melting snow, wind flow around and over terrain, diurnal flow reversal in valleys associated with daytime heating, and precipitation reductions and increases due to local terrain. Many studies related to these phenomena are described in the Special Issue on SNOW-V10 for which this paper was written. Numerical weather prediction and nowcast models have been evaluated against the unique observational data set now available. It is anticipated that the data set and the knowledge learned as a result of SNOW-V10 will become a resource for other World Meteorological Organization member states who are interested in improving forecasts of winter weather.
High frequency acoustic reflections from an air-snow interface
NASA Astrophysics Data System (ADS)
Courville, Z.; Albert, D. G.; Lieb-Lappen, R.; Fegyveresi, J. M.
2016-12-01
High frequency wave propagation methods can be used to determine in situ near surface micro-pore geometry parameters in real Earth materials including snow. To this end, we have been developing a portable ultrasonic transducer rig to make measurements of acoustic reflections from a variety of natural porous media. Fresh natural snow, in particular, is a difficult material to characterize, as any mechanical interaction is likely to damage the fragile pores and grain bonds. Because acoustic waves are sensitive to the porous material properties, they potentially can be used to measure snow properties in a non-destructive manner. Such methods have already been demonstrated on cohesive porous materials including manufactured foams, porous metals, and sintered glass beads. We conducted high frequency, oblique-angle and near vertical reflection measurements on snow samples in a cold room. We then compare the acoustically derived snow physical parameters, including porosity, with values determined from micro-computed tomography (μCT) and with standard (but destructive) laboratory measurements. Preliminary results using a manufactured open cell foam following previous work by Fellah et al., (2003) shows very good agreement between values of porosity determined from the acoustic measurements and the values determined from μCT image analysis and gravimetric determination. Similarly, preliminary results comparing acoustic measurements of natural, dry snow samples prepared in the laboratory show good agreement between acoustically-derived porosity values and porosity values derived through independent means. Fellah, Z.E.A., S. Berger, W. Lauriks, C. Depollier, C. Aristegui, and J.Y. Chapelon, (2003b), Measuring the porosity and tortuosity of porous materials via reflected waves at oblique incidence, J. Acous. Soc. Am., 113, 2424-2433.
NASA Astrophysics Data System (ADS)
Tedesche, M. E.; Freeburg, A. K.; Rasic, J. T.; Ciancibelli, C.; Fassnacht, S. R.
2015-12-01
Perennial snow and ice fields could be an important archaeological and paleoecological resource for Gates of the Arctic National Park and Preserve in the central Brooks Range mountains of Arctic Alaska. These features may have cultural significance, as prehistoric artifacts may be frozen within the snow and ice. Globally significant discoveries have been made recently as ancient artifacts and animal dung have been found in melting alpine snow and ice patches in the Southern Yukon and Northwest Territories in Canada, the Wrangell mountains in Alaska, as well as in other areas. These sites are melting rapidly, which results in quick decay of biological materials. The summer of 2015 saw historic lows in year round snow cover extent for most of Alaska. Twenty mid to high elevation sites, including eighteen perennial snow and ice fields, and two glaciers, were surveyed in July 2015 to quantify their areal extent. This survey was accomplished by using both low flying aircraft (helicopter), as well as with on the ground in-situ (by foot) measurements. By helicopter, visual surveys were conducted within tens of meters of the surface. Sites visited by foot were surveyed for extent of snow and ice coverage, melt water hydrologic parameters and chemistry, and initial estimates of depths and delineations between snow, firn, and ice. Imagery from both historic aerial photography and from 5m resolution IKONOS satellite information were correlated with the field data. Initial results indicate good agreement in permanent snow and ice cover between field surveyed data and the 1985 to 2011 Landsat imagery-based Northwest Alaska snow persistence map created by Macander et al. (2015). The most deviation between the Macander et al. model and the field surveyed results typically occurred as an overestimate of perennial extent on the steepest aspects. These differences are either a function of image classification or due to accelerated ablation rates in perennial snow and ice coverage between 2011 and 2015. Further work is ongoing to develop a model to guide archaeological and paleoecological snow and ice field surveys. This will entail a fine scale, empirically based model of accumulation and ablation to estimate changes in three dimensional geometries of historically perennial arctic alpine snow and ice fields in the study area.
Rocky Mountain snowpack physical and chemical data for selected sites, 2010
Ingersoll, George P.; Mast, M. Alisa; Swank, James M.; Campbell, Chelsea D.
2010-01-01
The Rocky Mountain Snowpack program established a network of snowpack-sampling sites in the Rocky Mountain region, from New Mexico to Montana, to monitor the chemical content of snow and to understand the effects of regional atmospheric deposition on freshwater systems. Scientists with the U.S. Geological Survey, in cooperation with the National Park Service; the U.S. Department of Agriculture Forest Service; the Colorado Department of Public Health and Environment; Teton County, Wyoming; and others, annually collected and analyzed snow-pack samples at 48 or more sites in the Rocky Mountain region during 1993-2010. Sixty-three snowpack-sampling sites were each sampled once in 2010, and those data are presented in this report. Data include acid-neutralization capacity, specific conductance, pH, hydrogen ion concentrations, dissolved concentrations of major constituents (calcium, magnesium, sodium, potassium, ammonium, chloride, sulfate, and nitrate), dissolved organic carbon concentrations, snow-water equivalent, snow depth, total mercury concentrations, and ionic charge balance. Quality-assurance data for field and laboratory blanks and field replicates for 2010 also are included.
Rocky Mountain Snowpack Physical and Chemical Data for Selected Sites, 1993-2008
Ingersoll, George P.; Mast, M. Alisa; Campbell, Donald H.; Clow, David W.; Nanus, Leora; Turk, John T.
2009-01-01
The Rocky Mountain Snowpack program established a network of snowpack-sampling sites in the Rocky Mountain region from New Mexico to Montana to monitor the chemical content of snow to help in the understanding of the effects of atmospheric deposition to this region. The U.S. Geological Survey, in cooperation with the National Park Service, the USDA Forest Service, Teton County in Wyoming, Rio Blanco County in Colorado, Pitkin County in Colorado, and others, collected and analyzed snowpack samples annually for 48 or more sites in the Rocky Mountain region during 1993-2008. Forty-eight of the 162 snow-sampling sites have been sampled annually since 1993. Data include acid-neutralization capacity, specific conductance, pH, hydrogen ion concentrations, dissolved concentrations of major constituents (calcium, magnesium, sodium, potassium, ammonium, chloride, sulfate, and nitrate), dissolved organic carbon concentrations, snow/ water equivalent, snow depth, stable sulfur isotope ratios, total mercury concentrations (beginning in 2001), and ionic charge balance. Quality-assurance data for field and laboratory blanks and field replicates for individual years (1993-2008) also are included.
Multi-Sensor Approach to Mapping Snow Cover Using Data From NASA's EOS Aqua and Terra Spacecraft
NASA Astrophysics Data System (ADS)
Armstrong, R. L.; Brodzik, M. J.
2003-12-01
Snow cover is an important variable for climate and hydrologic models due to its effects on energy and moisture budgets. Over the past several decades both optical and passive microwave satellite data have been utilized for snow mapping at the regional to global scale. For the period 1978 to 2002, we have shown earlier that both passive microwave and visible data sets indicate a similar pattern of inter-annual variability, although the maximum snow extents derived from the microwave data are, depending on season, less than those provided by the visible satellite data and the visible data typically show higher monthly variability. Snow mapping using optical data is based on the magnitude of the surface reflectance while microwave data can be used to identify snow cover because the microwave energy emitted by the underlying soil is scattered by the snow grains resulting in a sharp decrease in brightness temperature and a characteristic negative spectral gradient. Our previous work has defined the respective advantages and disadvantages of these two types of satellite data for snow cover mapping and it is clear that a blended product is optimal. We present a multi-sensor approach to snow mapping based both on historical data as well as data from current NASA EOS sensors. For the period 1978 to 2002 we combine data from the NOAA weekly snow charts with passive microwave data from the SMMR and SSM/I brightness temperature record. For the current and future time period we blend MODIS and AMSR-E data sets. An example of validation at the brightness temperature level is provided through the comparison of AMSR-E with data from the well-calibrated heritage SSM/I sensor over a large homogeneous snow-covered surface (Dome C, Antarctica). Prototype snow cover maps from AMSR-E compare well with maps derived from SSM/I. Our current blended product is being developed in the 25 km EASE-Grid while the MODIS data being used are in the Climate Modelers Grid (CMG) at approximately 5 km (0.05 deg.) allowing the blended product to indicate percent snow cover over the larger grid cell. Relationships between the percent area covered by snow as indicated by the MODIS data and the threshold for the appearance of snow as indicated by the passive microwave data are presented. Both MODIS and AMSR-E data have enhanced spatial resolution compared to the earlier data sources and examples of how this increased spatial resolution results in more accurate snow cover maps are presented. A wide range of validation data sets are being employed in this study including the NASA Cold Lands Processes Field Experiment undertaken in Colorado during 2002 and 2003.
Preliminary measurements of CO2 in melting snow
R. A. Sommerfeld; R. C. Musselman; J. O. Reuss
1991-01-01
Measurements of CO2 near the snow-soil interface showed elevated concentrations up to 2120 ppmv. Concentrations greater than 1700 ppmv were observed 0.45 m above the snowsoil interface. The increase in CO2 concentrations in the snow coincided with the beginning of melt. Measurements of the pH and alkalinity of the meltwater from the base of the snowpack were consistent...
[Effects of seasonal snow cover on soil nitrogen transformation in alpine ecosystem: a review].
Liu, Lin; Wu, Yan; He, Yi-xin; Wu, Ning; Sun, Geng; Zhang, Lin; Xu, Jun-jun
2011-08-01
Seasonal snow cover has pronounced effects on the soil nitrogen concentration and transformation in alpine ecosystem. Snowfall is an important form of nitrogen deposition, which directly affects the content of soil available nitrogen. Different depths and different duration of snow cover caused by snowfall may lead the heterogeneity of abiotic factors (soil temperature and moisture) and biotic factors (soil microbes, alpine plants, and alpine animals), and further, produce complicated effects on the mineralization and immobilization of soil nitrogen. This paper introduced in emphasis the inherent mechanisms of soil nitrogen mineralization and leaching under the effects of frequent freeze-thaw events during the durative melting of snow cover, and summarized the main research results of field in situ experiments about the effects of seasonal snow cover on soil nitrogen in alpine ecosystem based on the possible changes in snow cover in the future. Some suggestions with regard to the effects of seasonal snow cover on soil nitrogen were put forward.
Yang, Guang Li; Hou, Shu Gui; Le Baoge, Ri; Li, Zhi Guo; Xu, Hao; Liu, Ya Ping; Du, Wen Tao; Liu, Yong Qin
2016-11-04
A detailed understanding of microbial ecology in different supraglacial habitats is important due to the unprecedented speed of glacier retreat. Differences in bacterial diversity and community structure between glacial snow and glacial soil on the Chongce Ice Cap were assessed using 454 pyrosequencing. Based on rarefaction curves, Chao1, ACE, and Shannon indices, we found that bacterial diversity in glacial snow was lower than that in glacial soil. Principal coordinate analysis (PCoA) and heatmap analysis indicated that there were major differences in bacterial communities between glacial snow and glacial soil. Most bacteria were different between the two habitats; however, there were some common bacteria shared between glacial snow and glacial soil. Some rare or functional bacterial resources were also present in the Chongce Ice Cap. These findings provide a preliminary understanding of the shifts in bacterial diversity and communities from glacial snow to glacial soil after the melting and inflow of glacial snow into glacial soil.
Facilitating the exploitation of ERTS-1 imagery utilizing snow enhancement techniques
NASA Technical Reports Server (NTRS)
Wobber, F. J. (Principal Investigator); Martin, K. R.; Amato, R. V.
1973-01-01
The author has identified the following significant results. Snow cover in combination with low angle solar illumination has been found to provide increased tonal contrast of surface feature and is useful in the detection of bedrock fractures. Identical fracture systems were not as readily detectable in the fall due to the lack of a contrasting surface medium (snow) and a relatively high sun angle. Low angle solar illumination emphasizes topographic expressions not as apparent on imagery acquired with a higher sun angle. A strong correlation exists between the major fracture-lineament directions interpreted from multi-sensor imagery (including snow-free and snow cover ERTS) and the strike of bedrock joints recorded in the field indicating the structural origin of interpreted fracture-lineaments. A fracture-annotated ERTS-1 photo base map (1:250,000 scale) is being prepared for western Massachusetts. The map will document the utilization of ERTS-1 imagery for geological analysis in comparative snow-free and snow-covered terrain.
Cloud removing method for daily snow mapping over Central Asia and Xinjiang, China
NASA Astrophysics Data System (ADS)
Yu, Xiaoqi; Qiu, Yubao; Guo, Huadong; Chen, Lijuan
2017-02-01
Central Asia and Xinjiang, China are conjunct areas, located in the hinterland of the Eurasian continent, where the snowfall is an important water resource supplement form. The induced seasonal snow cover is vita factors to the regional energy and water balance, remote sensing plays a key role in the snow mapping filed, while the daily remote sensing products are normally contaminated by the occurrence of cloud, that obviously obstacles the utility of snow cover parameters. In this paper, based on the daily snow product from Moderate Resolution Imaging Spectroradiometer (MODIS A1), a cloud removing method was developed by considering the regional snow distribution characteristics with latitude and altitude dependence respectively. In the end, the daily cloud free products was compared with the same period of eight days MODIS standard product, revealing that the cloud free snow products are reasonable, while could provide higher temporal resolution, and more details over Center Asia and Xinjiang Province.
Relative Humidity Has Uneven Effects on Shifts From Snow to Rain Over the Western U.S.
NASA Astrophysics Data System (ADS)
Harpold, A. A.; Rajagopal, S.; Crews, J. B.; Winchell, T.; Schumer, R.
2017-10-01
Predicting the phase of precipitation is fundamental to water supply and hazard forecasting. Phase prediction methods (PPMs) are used to predict snow fraction, or the ratio of snowfall to total precipitation. Common temperature-based regression (Dai method) and threshold at freezing (0°C) PPMs had comparable accuracy to a humidity-based PPM (TRH method) using 6 and 24 h observations. Using a daily climate data set from 1980 to 2015, the TRH method estimates 14% and 6% greater precipitation-weighted snow fraction than the 0°C and Dai methods, respectively. The TRH method predicts four times less area with declining snow fraction than the Dai method (2.1% and 8.1% of the study domain, respectively) from 1980 to 2015, with the largest differences in the Cascade and Sierra Nevada mountains and southwestern U.S. Future Representative Concentration Pathway (RCP) 8.5 projections suggest warming temperatures of 4.2°C and declining relative humidity of 1% over the 21st century. The TRH method predicts a smaller reduction in snow fraction than temperature-only PPMs by 2100, consistent with lower humidity buffering declines in snow fraction caused by regional warming.
Assessment of snow-dominated water resources: (Ir-)relevant scales for observation and modelling
NASA Astrophysics Data System (ADS)
Schaefli, Bettina; Ceperley, Natalie; Michelon, Anthony; Larsen, Joshua; Beria, Harsh
2017-04-01
High Alpine catchments play an essential role for many world regions since they 1) provide water resources to low lying and often relatively dry regions, 2) are important for hydropower production as a result of their high hydraulic heads, 3) offer relatively undisturbed habitat for fauna and flora and 4) provide a source of cold water often late into the summer season (due to snowmelt), which is essential for many downstream river ecosystems. However, the water balance of such high Alpine hydrological systems is often difficult to accurately estimate, in part because of seasonal to interannual accumulation of precipitation in the form of snow and ice and by relatively low but highly seasonal evapotranspiration rates. These processes are strongly driven by the topography and related vegetation patterns, by air temperature gradients, solar radiation and wind patterns. Based on selected examples, we will discuss how the spatial scale of these patterns dictates at which scales we can make reliable water balance assessments. Overall, this contribution will provide an overview of some of the key open questions in terms of observing and modelling the dominant hydrological processes in Alpine areas at the right scale. A particular focus will be on the observation and modelling of snow accumulation and melt processes, discussing in particular the usefulness of simple models versus fully physical models at different spatial scales and the role of observed data.
NASA Astrophysics Data System (ADS)
Chaikovsky, Anatoli; Korol, Michail; Malinka, A.; Zege, E.; Katsev, I.; Prikhach, A.; Denisov, S.; Dick, V.; Goloub, P.; Blarel, L.; Chaikovskaya, L.; Lapyonok, A.; Podvin, T.; Denishchik-Nelubina, N.; Fedarenka, A.; Svidinsky, V.
2016-01-01
The paper presents lecture materials given at the Nineteenth International Conference and School on Quantum Electronics "Laser Physics and Applications" (19th ICSQE) in 2016, Sozopol, Bulgaria and contains the results of the 10-year research of Belarusian Antarctic expeditions to study the atmospheric aerosol and Earth surface in Antarctica. The works focus on the studying variability and trends of aerosol, cloud and snow characteristics in the Antarctic and the links of these processes with the long range transport of atmospheric pollutants and climate changes.
NASA Astrophysics Data System (ADS)
Tang, Zhiguang; Wang, Jian; Li, Hongyi; Yan, Lili
2013-01-01
Snow cover changes over the Tibetan plateau (TP) are examined using moderate resolution imaging spectroradiometer (MODIS) daily fractional snow cover (FSC) data from 2001 to 2011 as well as in situ temperature data. First, the accuracy of the MODIS FSC data under clear sky conditions is evaluated by comparing with Landsat 30-m observations. Then we describe a cloud-gap-filled (CGF) method using cubic spline interpolation algorithm to fill in data gaps caused by clouds. Finally, the spatial and temporal changes of snow cover are analyzed on the basis of the MODIS-derived snow-covered area and snow-covered days (SCD) data. Results show that the mean absolute error of MODIS FSC data under clear sky condition is about 0.098 over the TP. The CGF method is efficient in cloud reduction (overall mean absolute error of the retrieved FSC data is 0.092). There is a very high inter-annual and intra-seasonal variability of snow cover in the 11 years. The higher snow cover corresponds well with the huge mountains. The accumulation and melt periods of snow cover vary in different elevation zones. About 34.14% (5.56% with a significant decline) and 24.75% (3.9% with a significant increase) of the study area presents declining and increasing trend in SCD, respectively. The inter-annual fluctuation of snow cover can be explained by the high negative correlations observed between the snow cover and the in situ temperature, especially in some elevations of February, April, May, August, and September.
MODSNOW-Tool: an operational tool for daily snow cover monitoring using MODIS data
NASA Astrophysics Data System (ADS)
Gafurov, Abror; Lüdtke, Stefan; Unger-Shayesteh, Katy; Vorogushyn, Sergiy; Schöne, Tilo; Schmidt, Sebastian; Kalashnikova, Olga; Merz, Bruno
2017-04-01
Spatially distributed snow cover information in mountain areas is extremely important for water storage estimations, seasonal water availability forecasting, or the assessment of snow-related hazards (e.g. enhanced snow-melt following intensive rains, or avalanche events). Moreover, spatially distributed snow cover information can be used to calibrate and/or validate hydrological models. We present the MODSNOW-Tool - an operational monitoring tool offers a user-friendly application which can be used for catchment-based operational snow cover monitoring. The application automatically downloads and processes freely available daily Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover data. The MODSNOW-Tool uses a step-wise approach for cloud removal and delivers cloud-free snow cover maps for the selected river basins including basin specific snow cover extent statistics. The accuracy of cloud-eliminated MODSNOW snow cover maps was validated for 84 almost cloud-free days in the Karadarya river basin in Central Asia, and an average accuracy of 94 % was achieved. The MODSNOW-Tool can be used in operational and non-operational mode. In the operational mode, the tool is set up as a scheduled task on a local computer allowing automatic execution without user interaction and delivers snow cover maps on a daily basis. In the non-operational mode, the tool can be used to process historical time series of snow cover maps. The MODSNOW-Tool is currently implemented and in use at the national hydrometeorological services of four Central Asian states - Kazakhstan, Kyrgyzstan, Uzbekistan and Turkmenistan and used for seasonal water availability forecast.
NASA Astrophysics Data System (ADS)
Chevooruvalappil Chandran, B.; Pittana, M.; Haas, C.
2015-12-01
Snow on sea ice is a critical and complex factor influencing sea ice processes. Deep snow with a high albedo and low thermal conductivity inhibits ice growth in winter and minimizes ice loss in summer. Very shallow or absent snow promotes ice growth in winter and ice loss in summer. The timing of snow ablation critically impacts summer sea ice mass balance. Here we assess the accuracy of various snow on sea ice data products from reanalysis and modeling comparing them with in situ measurements. The latter are based on the Warren et al. (1999) monthly climatology derived from snow ruler measurements between 1954-1991, and on daily snow depth retrievals from few drifting ice mass balance buoys (IMB) with sufficiently long observations spanning the summer season. These were compared with snow depth data from the National Center for Environmental Prediction Department of Energy Reanalysis 2 (NCEP), the Community Climate System Model 4 (CCSM4), and the Canadian Earth System Model 2 (CanESM2). Results are quite variable in different years and regions. However, there is often good agreement between CanESM2 and IMB snow depth during the winter accumulation and spring melt periods. Regional analyses show that over the western Arctic covered primarily with multiyear ice NCEP snow depths are in good agreement with the Warren climatology while CCSM4 overestimates snow depth. However, in the Eastern Arctic which is dominated by first-year ice the opposite behavior is observed. Compared to the Warren climatology CanESM2 underestimates snow depth in all regions. Differences between different snow depth products are as large as 10 to 20 cm, with large consequences for the sea ice mass balance. However, it is also very difficult to evaluate the accuracy of reanalysis and model snow depths due to a lack of extensive, continuous in situ measurements.
NASA Astrophysics Data System (ADS)
Sengupta, D.; Gao, L.; Wilcox, E. M.; Beres, N. D.; Moosmüller, H.; Khlystov, A.
2017-12-01
Radiative forcing and climate change greatly depends on earth's surface albedo and its temporal and spatial variation. The surface albedo varies greatly depending on the surface characteristics ranging from 5-10% for calm ocean waters to 80% for some snow-covered areas. Clean and fresh snow surfaces have the highest albedo and are most sensitive to contamination with light absorbing impurities that can greatly reduce surface albedo and change overall radiative forcing estimates. Accurate estimation of snow albedo as well as understanding of feedbacks on climate from changes in snow-covered areas is important for radiative forcing, snow energy balance, predicting seasonal snowmelt, and run off rates. Such information is essential to inform timely decision making of stakeholders and policy makers. Light absorbing particles deposited onto the snow surface can greatly alter snow albedo and have been identified as a major contributor to regional climate forcing if seasonal snow cover is involved. However, uncertainty associated with quantification of albedo reduction by these light absorbing particles is high. Here, we use Mie theory (under the assumption of spherical snow grains) to reconstruct the single scattering parameters of snow (i.e., single scattering albedo ῶ and asymmetry parameter g) from observation-based size distribution information and retrieved refractive index values. The single scattering parameters of impurities are extracted with the same approach from datasets obtained during laboratory combustion of biomass samples. Instead of using plane-parallel approximation methods to account for multiple scattering, we have used the simple "Monte Carlo ray/photon tracing approach" to calculate the snow albedo. This simple approach considers multiple scattering to be the "collection" of single scattering events. Using this approach, we vary the effective snow grain size and impurity concentrations to explore the evolution of snow albedo over a wide wavelength range (300 nm - 2000 nm). Results will be compared with the SNICAR model to better understand the differences in snow albedo computation between plane-parallel methods and the statistical Monte Carlo methods.
Influence of snow cover changes on surface radiation and heat balance based on the WRF model
NASA Astrophysics Data System (ADS)
Yu, Lingxue; Liu, Tingxiang; Bu, Kun; Yang, Jiuchun; Chang, Liping; Zhang, Shuwen
2017-10-01
The snow cover extent in mid-high latitude areas of the Northern Hemisphere has significantly declined corresponding to the global warming, especially since the 1970s. Snow-climate feedbacks play a critical role in regulating the global radiation balance and influencing surface heat flux exchange. However, the degree to which snow cover changes affect the radiation budget and energy balance on a regional scale and the difference between snow-climate and land use/cover change (LUCC)-climate feedbacks have been rarely studied. In this paper, we selected Heilongjiang Basin, where the snow cover has changed obviously, as our study area and used the WRF model to simulate the influences of snow cover changes on the surface radiation budget and heat balance. In the scenario simulation, the localized surface parameter data improved the accuracy by 10 % compared with the control group. The spatial and temporal analysis of the surface variables showed that the net surface radiation, sensible heat flux, Bowen ratio, temperature and percentage of snow cover were negatively correlated and that the ground heat flux and latent heat flux were positively correlated with the percentage of snow cover. The spatial analysis also showed that a significant relationship existed between the surface variables and land cover types, which was not obviously as that for snow cover changes. Finally, six typical study areas were selected to quantitatively analyse the influence of land cover types beneath the snow cover on heat absorption and transfer, which showed that when the land was snow covered, the conversion of forest to farmland can dramatically influence the net radiation and other surface variables, whereas the snow-free land showed significantly reduced influence. Furthermore, compared with typical land cover changes, e.g., the conversion of forest into farmland, the influence of snow cover changes on net radiation and sensible heat flux were 60 % higher than that of land cover changes, indicating the importance of snow cover changes in the surface-atmospheric feedback system.
NASA Astrophysics Data System (ADS)
Webb, Ryan W.; Fassnacht, Steven R.; Gooseff, Michael N.
2018-01-01
In many mountainous regions around the world, snow and soil moisture are key components of the hydrologic cycle. Preferential flow paths of snowmelt water through snow have been known to occur for years with few studies observing the effect on soil moisture. In this study, statistical analysis of the topographical and hydrological controls on the spatiotemporal variability of snow water equivalent (SWE) and soil moisture during snowmelt was undertaken at a subalpine forested setting with north, south, and flat aspects as a seasonally persistent snowpack melts. We investigated if evidence of preferential flow paths in snow can be observed and the effect on soil moisture through measurements of snow water equivalent and near-surface soil moisture, observing how SWE and near-surface soil moisture vary on hillslopes relative to the toes of hillslopes and flat areas. We then compared snowmelt infiltration beyond the near-surface soil between flat and sloping terrain during the entire snowmelt season using soil moisture sensor profiles. This study was conducted during varying snowmelt seasons representing above-normal, relatively normal, and below-normal snow seasons in northern Colorado. Evidence is presented of preferential meltwater flow paths at the snow-soil interface on the north-facing slope causing increases in SWE downslope and less infiltration into the soil at 20 cm depth; less association is observed in the near-surface soil moisture (top 7 cm). We present a conceptualization of the meltwater flow paths that develop based on slope aspect and soil properties. The resulting flow paths are shown to divert at least 4 % of snowmelt laterally, accumulating along the length of the slope, to increase the snow water equivalent by as much as 170 % at the base of a north-facing hillslope. Results from this study show that snow acts as an extension of the vadose zone during spring snowmelt and future hydrologic investigations will benefit from studying the snow and soil together.
Measuring Snow Liquid Water Content with Low-Cost GPS Receivers
Koch, Franziska; Prasch, Monika; Schmid, Lino; Schweizer, Jürg; Mauser, Wolfram
2014-01-01
The amount of liquid water in snow characterizes the wetness of a snowpack. Its temporal evolution plays an important role for wet-snow avalanche prediction, as well as the onset of meltwater release and water availability estimations within a river basin. However, it is still a challenge and a not yet satisfyingly solved issue to measure the liquid water content (LWC) in snow with conventional in situ and remote sensing techniques. We propose a new approach based on the attenuation of microwave radiation in the L-band emitted by the satellites of the Global Positioning System (GPS). For this purpose, we performed a continuous low-cost GPS measurement experiment at the Weissfluhjoch test site in Switzerland, during the snow melt period in 2013. As a measure of signal strength, we analyzed the carrier-to-noise power density ratio (C/N0) and developed a procedure to normalize these data. The bulk volumetric LWC was determined based on assumptions for attenuation, reflection and refraction of radiation in wet snow. The onset of melt, as well as daily melt-freeze cycles were clearly detected. The temporal evolution of the LWC was closely related to the meteorological and snow-hydrological data. Due to its non-destructive setup, its cost-efficiency and global availability, this approach has the potential to be implemented in distributed sensor networks for avalanche prediction or basin-wide melt onset measurements. PMID:25384007
Measuring snow liquid water content with low-cost GPS receivers.
Koch, Franziska; Prasch, Monika; Schmid, Lino; Schweizer, Jürg; Mauser, Wolfram
2014-11-06
The amount of liquid water in snow characterizes the wetness of a snowpack. Its temporal evolution plays an important role for wet-snow avalanche prediction, as well as the onset of meltwater release and water availability estimations within a river basin. However, it is still a challenge and a not yet satisfyingly solved issue to measure the liquid water content (LWC) in snow with conventional in situ and remote sensing techniques. We propose a new approach based on the attenuation of microwave radiation in the L-band emitted by the satellites of the Global Positioning System (GPS). For this purpose, we performed a continuous low-cost GPS measurement experiment at the Weissfluhjoch test site in Switzerland, during the snow melt period in 2013. As a measure of signal strength, we analyzed the carrier-to-noise power density ratio (C/N0) and developed a procedure to normalize these data. The bulk volumetric LWC was determined based on assumptions for attenuation, reflection and refraction of radiation in wet snow. The onset of melt, as well as daily melt-freeze cycles were clearly detected. The temporal evolution of the LWC was closely related to the meteorological and snow-hydrological data. Due to its non-destructive setup, its cost-efficiency and global availability, this approach has the potential to be implemented in distributed sensor networks for avalanche prediction or basin-wide melt onset measurements.
Iron snow in the Martian core?
NASA Astrophysics Data System (ADS)
Davies, Christopher J.; Pommier, Anne
2018-01-01
The decline of Mars' global magnetic field some 3.8-4.1 billion years ago is thought to reflect the demise of the dynamo that operated in its liquid core. The dynamo was probably powered by planetary cooling and so its termination is intimately tied to the thermochemical evolution and present-day physical state of the Martian core. Bottom-up growth of a solid inner core, the crystallization regime for Earth's core, has been found to produce a long-lived dynamo leading to the suggestion that the Martian core remains entirely liquid to this day. Motivated by the experimentally-determined increase in the Fe-S liquidus temperature with decreasing pressure at Martian core conditions, we investigate whether Mars' core could crystallize from the top down. We focus on the "iron snow" regime, where newly-formed solid consists of pure Fe and is therefore heavier than the liquid. We derive global energy and entropy equations that describe the long-timescale thermal and magnetic history of the core from a general theory for two-phase, two-component liquid mixtures, assuming that the snow zone is in phase equilibrium and that all solid falls out of the layer and remelts at each timestep. Formation of snow zones occurs for a wide range of interior and thermal properties and depends critically on the initial sulfur concentration, ξ0. Release of gravitational energy and latent heat during growth of the snow zone do not generate sufficient entropy to restart the dynamo unless the snow zone occupies at least 400 km of the core. Snow zones can be 1.5-2 Gyrs old, though thermal stratification of the uppermost core, not included in our model, likely delays onset. Models that match the available magnetic and geodetic constraints have ξ0 ≈ 10% and snow zones that occupy approximately the top 100 km of the present-day Martian core.
DOT National Transportation Integrated Search
2011-10-01
The objective of this project was to develop fleet location, route decision, material selection, and treatment procedures for winter snow removal operations to improve MoDOTs services and lower costs. This work uses a systematic, heuristic-based o...
What color should glacier algae be? An ecological role for red carbon in the cryosphere.
Dial, Roman J; Ganey, Gerard Q; Skiles, S McKenzie
2018-03-01
Red-colored secondary pigments in glacier algae play an adaptive role in melting snow and ice. We advance this hypothesis using a model of color-based absorption of irradiance, an experiment with colored particles in snow, and the natural history of glacier algae. Carotenoids and phenols-astaxanthin in snow-algae and purpurogallin in ice-algae-shield photosynthetic apparatus by absorbing overabundant visible wavelengths, then dissipating the excess radiant energy as heat. This heat melts proximal ice crystals, providing liquid-water in a 0°C environment and freeing up nutrients bound in frozen water. We show that purple-colored particles transfer 87%-89% of solar energy absorbed by black particles. However, red-colored particles transfer nearly as much (85%-87%) by absorbing peak solar wavelengths and reflecting the visible wavelengths most absorbed by nearby ice and snow crystals; this latter process may reduce potential cellular overheating when snow insulates cells. Blue and green particles transfer only 80%-82% of black particle absorption. In the experiment, red-colored particles melted 87% as much snow as black particles, while blue particles melted 77%. Green-colored snow-algae naturally occupy saturated snow where water is non-limiting; red-colored snow-algae occupy drier, water-limited snow. In addition to increasing melt, we suggest that esterified astaxanthin in snow-alga cells increases hydrophobicity to remain surficial. © FEMS 2018. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Snow Cover Distribution and Variation using MODIS in the Himalayas of India
NASA Astrophysics Data System (ADS)
Mondal, A.; Lakshmi, V.; Jain, S. K.; Kansara, P. H.
2017-12-01
Snow cover variation plays a big role in river discharge, permafrost distribution and mass balance of glaciers in mountainous watersheds. Spatial distribution and temporal variation of snow cover varies with elevation and climate. We study the spatial distribution and temporal change of snow cover that has been observed using Terra Moderate Resolution Imaging Spectrometer (MODIS) product (MOD10A2 version 5) from 2001 to 2016. This MODIS product is based on normalized-difference snow index (NDSI) using band 4 (0.545-0.565 μm) and band 6 (1.628-1.652 μm). The spatial resolution of MOD10A2 is 500 m and composited over 8 days. The study area is the Indian Himalayas, major snow covered part of which is located in the states of Jammu and Kashmir, Himachal Pradesh, Uttarakhand, West Bengal, Sikkim, Assam and Arunachal Pradesh. Distribution and variation in snow cover is examined on monthly and annual time scales in this study. The temporal changes in snow cover has been compared with terrain attributes (elevation, slope and aspect). The snow cover depletion and accumulation have been observed during April-August and September-March. The snow cover is highest in the March and lowest in the August in the Himachal region. This study will be helpful to identify the amount of water stored in the glaciers of the Indian Himalaya and also important for water resources management of river basins, which are located in this area. Key words: Snow cover, MODIS, NDSI, terrain attribute
NASA Technical Reports Server (NTRS)
Tedesco, Marco; Kim, Edward J.
2005-01-01
In this paper, GA-based techniques are used to invert the equations of an electromagnetic model based on Dense Medium Radiative Transfer Theory (DMRT) under the Quasi Crystalline Approximation with Coherent Potential to retrieve snow depth, mean grain size and fractional volume from microwave brightness temperatures. The technique is initially tested on both noisy and not-noisy simulated data. During this phase, different configurations of genetic algorithm parameters are considered to quantify how their change can affect the algorithm performance. A configuration of GA parameters is then selected and the algorithm is applied to experimental data acquired during the NASA Cold Land Process Experiment. Snow parameters retrieved with the GA-DMRT technique are then compared with snow parameters measured on field.
NASA Technical Reports Server (NTRS)
Chung, Y. C.; England, A. W.; DeRoo, R. D.; Weininger, Etai
2006-01-01
The radiobrightness of a snowpack is strongly linked to the snow moisture content profile, to the point that the only operational inversion algorithms require dry snow. Forward dynamic models do not include the effects of freezing and thawing of the soil beneath the snowpack and the effect of vegetation within the snow or above the snow. To get a more realistic description of the evolution of the snowpack, we reported an addition to the Snow-Soil-Vegetation-Atmosphere- Transfer (SSVAT) model, wherein we coupled soil processes of the Land Surface Process (LSP) model with the snow model SNTHERM. In the near future we will be adding a radiobrightness prediction based on the modeled moisture, temperature and snow grain size profiles. The initial investigations with this SSVAT for a late winter and early spring snow pack indicate that soil processes warm the snowpack and the soil. Vapor diffusion needs to be considered whenever the ground is thawed. In the early spring, heat flow from the ground into a snow and a strong temperature gradient across the snow lead to thermal convection. The buried vegetation can be ignored for a late winter snow pack. The warmer surface snow temperature will affect radiobrightness since it is most sensitive to snow surface characteristics. Comparison to data shows that SSVAT provides a more realistic representation of the temperature and moisture profiles in the snowpack and its underlying soil than SNTHERM. The radiobrightness module will be optimized for the prediction of brightness when the snow is moist. The liquid water content of snow causes considerable absorption compared to dry snow, and so longer wavelengths are likely to be most revealing as to the state of a moist snowpack. For volumetric moisture contents below about 7% (the pendular regime), the water forms rings around the contact points between snow grains. Electrostatic modeling of these pendular rings shows that the absorption of these rings is significantly higher than a sphere of the same volume. The first implementation of the radiobrightness module will therefore be a simple radiative transfer model without scattering.
Liu, Yan; Li, Yang; Yang, Yun; Jian, Ji
2014-05-01
Vegetation and bare soil were collected in the areas of Miyaluo district in northwest of Sichuan province, the Qilian Mountains in Qinghai province and northern areas of Xinjiang during the years of 2007 and 2013. Then these data were converted to spectral reflectance by applying sensor response function of MODIS and HJ-1B respectively within the range of visible light, near-infrared and shortwave infrared. Comprehensive analysis was made on spectral characteristics and reflectivity similarities and differences of different sensors between old and new snowmelt, under the condition of different snow depth and different snow cover. The conclusions can be drawn That is, there exists high consistency of spectral response between new snow and dirty snow for each sensor in the visible wavelength range, also it is true for bare soil and low vegetation. However, low consistency happens to other types of snow; especially snowmelt and frozen snow. The range of NDSI is relatively stable under the condition of different snow depth for full snow cover and the trend of NDSI shows great consistency for different sensors; NDSI threshold method for monitoring snow by using MODIS and HJ-1B data showed very obvious difference in spatial scales, which is a reasonable explanation of the existence of mixed pixels.
Indigenous cultural contexts for STEM experiences: snow snakes' impact on students and the community
NASA Astrophysics Data System (ADS)
Miller, Brant G.; Roehrig, Gillian
2018-03-01
Opportunities for American Indian youth to meaningfully engage in school-based science, technology, engineering, and mathematics (STEM) experiences have historically been inadequate. As a consequence, American Indian students perform lower on standardized assessments of science education than their peers. In this article we describe the emergence of meaning for students—as well as their community—resulting from Indigenous culturally-based STEM curriculum that used an American Indian tradition as a focal context. Specifically, the game of snow snakes ( Gooneginebig in Ojibwe) afforded an opportunity for STEM and culturally-based resources to work in unison. A case study research design was used with the bounded case represented by the community associated with the snow snake project. The research question guiding this study was: What forms of culturally relevant meaning do students and the community form as a result of the snow snake game? Results indicate evidence of increased student and community engagement through culturally-based STEM experiences in the form of active participation and the rejuvenation of a traditional game. Implications are discussed for using culturally-based contexts for STEM learning.
Biogeochemical Impact of Snow Cover and Cyclonic Intrusions on the Winter Weddell Sea Ice Pack
NASA Astrophysics Data System (ADS)
Tison, J.-L.; Schwegmann, S.; Dieckmann, G.; Rintala, J.-M.; Meyer, H.; Moreau, S.; Vancoppenolle, M.; Nomura, D.; Engberg, S.; Blomster, L. J.; Hendrickx, S.; Uhlig, C.; Luhtanen, A.-M.; de Jong, J.; Janssens, J.; Carnat, G.; Zhou, J.; Delille, B.
2017-12-01
Sea ice is a dynamic biogeochemical reactor and a double interface actively interacting with both the atmosphere and the ocean. However, proper understanding of its annual impact on exchanges, and therefore potentially on the climate, notably suffer from the paucity of autumnal and winter data sets. Here we present the results of physical and biogeochemical investigations on winter Antarctic pack ice in the Weddell Sea (R. V. Polarstern AWECS cruise, June-August 2013) which are compared with those from two similar studies conducted in the area in 1986 and 1992. The winter 2013 was characterized by a warm sea ice cover due to the combined effects of deep snow and frequent warm cyclones events penetrating southward from the open Southern Ocean. These conditions were favorable to high ice permeability and cyclic events of brine movements within the sea ice cover (brine tubes), favoring relatively high chlorophyll-a (Chl-a) concentrations. We discuss the timing of this algal activity showing that arguments can be presented in favor of continued activity during the winter due to the specific physical conditions. Large-scale sea ice model simulations also suggest a context of increasingly deep snow, warm ice, and large brine fractions across the three observational years, despite the fact that the model is forced with a snowfall climatology. This lends support to the claim that more severe Antarctic sea ice conditions, characterized by a longer ice season, thicker, and more concentrated ice are sufficient to increase the snow depth and, somehow counterintuitively, to warm the ice.
NASA Astrophysics Data System (ADS)
Räisänen, Petri; Makkonen, Risto; Kirkevåg, Alf; Debernard, Jens B.
2017-12-01
Snow consists of non-spherical grains of various shapes and sizes. Still, in radiative transfer calculations, snow grains are often treated as spherical. This also applies to the computation of snow albedo in the Snow, Ice, and Aerosol Radiation (SNICAR) model and in the Los Alamos sea ice model, version 4 (CICE4), both of which are employed in the Community Earth System Model and in the Norwegian Earth System Model (NorESM). In this study, we evaluate the effect of snow grain shape on climate simulated by NorESM in a slab ocean configuration of the model. An experiment with spherical snow grains (SPH) is compared with another (NONSPH) in which the snow shortwave single-scattering properties are based on a combination of three non-spherical snow grain shapes optimized using measurements of angular scattering by blowing snow. The key difference between these treatments is that the asymmetry parameter is smaller in the non-spherical case (0.77-0.78 in the visible region) than in the spherical case ( ≈ 0.89). Therefore, for the same effective snow grain size (or equivalently, the same specific projected area), the snow broadband albedo is higher when assuming non-spherical rather than spherical snow grains, typically by 0.02-0.03. Considering the spherical case as the baseline, this results in an instantaneous negative change in net shortwave radiation with a global-mean top-of-the-model value of ca. -0.22 W m-2. Although this global-mean radiative effect is rather modest, the impacts on the climate simulated by NorESM are substantial. The global annual-mean 2 m air temperature in NONSPH is 1.17 K lower than in SPH, with substantially larger differences at high latitudes. The climatic response is amplified by strong snow and sea ice feedbacks. It is further demonstrated that the effect of snow grain shape could be largely offset by adjusting the snow grain size. When assuming non-spherical snow grains with the parameterized grain size increased by ca. 70 %, the climatic differences to the SPH experiment become very small. Finally, the impact of assumed snow grain shape on the radiative effects of absorbing aerosols in snow is discussed.
Meltwater flux and runoff modeling in the abalation area of jakobshavn Isbrae, West Greenland
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mernild, Sebastian Haugard; Chylek, Petr; Liston, Glen
2009-01-01
The temporal variability in surface snow and glacier melt flux and runoff were investigated for the ablation area of lakobshavn Isbrae, West Greenland. High-resolution meteorological observations both on and outside the Greenland Ice Sheet (GrIS) were used as model input. Realistic descriptions of snow accumulation, snow and glacier-ice melt, and runoff are essential to understand trends in ice sheet surface properties and processes. SnowModel, a physically based, spatially distributed meteorological and snow-evolution modeling system was used to simulate the temporal variability of lakobshavn Isbrre accumulation and ablation processes for 2000/01-2006/07. Winter snow-depth observations and MODIS satellite-derived summer melt observations weremore » used for model validation of accumulation and ablation. Simulations agreed well with observed values. Simulated annual surface melt varied from as low as 3.83 x 10{sup 9} m{sup 3} (2001/02) to as high as 8.64 x 10{sup 9} m{sup 3} (2004/05). Modeled surface melt occurred at elevations reaching 1,870 m a.s.l. for 2004/05, while the equilibrium line altitude (ELA) fluctuated from 990 to 1,210 m a.s.l. during the simulation period. The SnowModel meltwater retention and refreezing routines considerably reduce the amount of meltwater available as ice sheet runoff; without these routines the lakobshavn surface runoff would be overestimated by an average of 80%. From September/October through May/June no runoff events were simulated. The modeled interannual runoff variability varied from 1.81 x 10{sup 9} m{sup 3} (2001/02) to 5.21 x 10{sup 9} m{sup 3} (2004/05), yielding a cumulative runoff at the Jakobshavn glacier terminus of {approx}2.25 m w.eq. to {approx}4.5 m w.eq., respectively. The average modeled lakobshavn runoff of {approx}3.4 km{sup 3} y{sup -1} was merged with previous estimates of Jakobshavn ice discharge to quantify the freshwater flux to Illulissat Icefiord. For both runoff and ice discharge the average trends are similar, indicating increasing (insignificant) influx of freshwater to the Illulissat Icefiord for the period 2000/01-2006/07. This study suggests that surface runoff forms a minor part of the overall Jakobshavn freshwater flux to the fiord: around 7% ({approx}3.4 km{sup 3} y{sup -1}) of the average annual freshwater flux of {approx}51.0 km{sup 3} y{sup -1} originates from the surface runoff.« less
NASA Astrophysics Data System (ADS)
Sandells, M.; Rutter, N.; Derksen, C.; Langlois, A.; Lemmetyinen, J.; Montpetit, B.; Pulliainen, J. T.; Royer, A.; Toose, P.
2012-12-01
Remote sensing of snow mass remains a challenging area of research. Scattering of electromagnetic radiation is sensitive to snow mass, but is also affected by contrasts in the dielectric properties of the snow. Although the argument that errors from simple algorithms average out at large scales has been used to justify current retrieval methods, it is not obvious why this should be the case. This hypothesis needs to be tested more rigorously. A ground-based field experiment was carried out to assess the impact of sub-footprint snow heterogeneity on microwave brightness temperature, in Churchill, Canada in winter in early 2010. Passive microwave measurements of snow were made using sled-mounted radiometers at 75cm intervals over a 5m transect. Measurements were made at horizontal and vertical polarizations at frequencies of 19 and 37 GHz. Snow beneath the radiometer footprints was subsequently excavated, creating a snow trench wall along the centrepoints of adjacent footprints. The trench wall was carefully smoothed and photographed with a near-infrared camera in order to determine the positions of stratigraphic snow layer boundaries. Three one-dimensional vertical profiles of snowpack properties (density and snow specific surface area) were taken at 75cm, 185cm and 355cm from the left hand side of the trench. These profile measurements were used to derive snow density and grain size for each of the layers identified from the NIR image. Microwave brightness temperatures for the 2-dimensional map of snow properties was simulated with the Helsinki University of Technology (HUT) model at 1cm intervals horizontally across the trench. Where each of five ice lenses was identified in the snow stratigraphy, a decrease in brightness temperature was simulated. However, the median brightness temperature simulated across the trench was substantially higher than the observations, of the order of tens of Kelvin, dependent on frequency and polarization. In order to understand and quantify possible sources of error in the simulations, a number of experiments were carried out to investigate the sensitivity of the brightness temperature to: 1) uncertainties in field observations, 2) representation of ice lenses, 3) model layering structure, and 4) near-infrared derived grain size representing snow grain size at microwave wavelengths. Field measurement error made little difference to the simulated brightness temperature, nor did the representation of ice lenses as crusts of high density snow. As the number of layers in the snow was reduced to 3, 2, or 1, the simulated brightness temperature increased slightly. However, scaling of snow grain size had a dramatic effect on the simulated brightness temperatures, reducing the median bias of the simulations to within measurement error for the statistically different brightness temperature distributions. This indicated that further investigation is required to define what is meant by the microwave grain size, and how this relates to the grain size that is used in the microwave emission model.
Alaska Testbed for the Fusion of Citizen Science and Remote Sensing of Sea Ice and Snow
NASA Astrophysics Data System (ADS)
Walsh, J. E.; Sparrow, E.; Lee, O. A.; Brook, M.; Brubaker, M.; Casas, J.
2017-12-01
Citizen science, remote sensing and related environmental information sources for the Alaskan Arctic are synthesized with the objectives of (a) placing local observations into a broader geospatial framework and (b) enabling the use of local observations to evaluate sea ice, snow and land surface products obtained from remote sensing. In its initial phase, the project instituted a coordinated set of community-based observations of sea ice and snow in three coastal communities in western and northern Alaska: Nome, Point Hope and Barrow. Satellite maps of sea ice concentration have been consolidated with the in situ reports, leading to a three-part depiction of surface conditions at each site: narrative reports, surface-based photos, and satellite products. The project has developed a prototype visualization package, enabling users to select a location and date for which the three information sources can be viewed. Visual comparisons of the satellite products and the local reports show generally consistent depictions of the sea ice concentrations in the vicinity of the coastlines, although the satellite products are generally biased low, especially in coastal regions where shorefast ice persists after the appearance of open water farther offshore. A preliminary comparison of the local snow reports and the MODIS daily North American snow cover images indicates that areas of snow persisted in the satellite images beyond the date of snow disappearance reported by the observers. The "in-town" location of most of the snow reports is a factor that must be addressed in further reporting and remote sensing comparisons.
Developing a robust wireless sensor network structure for environmental sensing
NASA Astrophysics Data System (ADS)
Zhang, Z.; Oroza, C.; Glaser, S. D.; Bales, R. C.; Conklin, M. H.
2013-12-01
The American River Hydrologic Observatory is being strategically deployed as a real-time ground-based measurement network that delivers accurate and timely information on snow conditions and other hydrologic attributes with a previously unheard of granularity of time and space. The basin-scale network involves 18 sub-networks set out at physiographically representative locations spanning the seasonally snow-covered half of the 5000 km2 American river basin. Each sub-network, covering about a 1-km2 area, consists of 10 wirelessly networked sensing nodes that continuously measure and telemeter temperature, and snow depth; plus selected locations are equipped with sensors for relative humidity, solar radiation, and soil moisture at several depths. The sensor locations were chosen to maximize the variance sampled for snow depth within the basin. Network design and deployment involves an iterative but efficient process. After sensor-station locations are determined, a robust network of interlinking sensor stations and signal repeaters must be constructed to route sensor data to a central base station with a two-way communicable data uplink. Data can then be uploaded from site to remote servers in real time through satellite and cell modems. Signal repeaters are placed for robustness of a self-healing network with redundant signal paths to the base station. Manual, trial-and-error heuristic approaches for node placement are inefficient and labor intensive. In that approach field personnel must restructure the network in real time and wait for new network statistics to be calculated at the base station before finalizing a placement, acting without knowledge of the global topography or overall network structure. We show how digital elevation plus high-definition aerial photographs to give foliage coverage can optimize planning of signal repeater placements and guarantee a robust network structure prior to the physical deployment. We can also 'stress test' the final network by simulating the failure of an individual node and investigating the effect and the self-healing ability of the stressed network. The resulting sensor network can survive temporary service interruption from a small subset of signal repeaters and sensor stations. The robustness and the resilient of the network performance ensure the integrity of the dataset and the real-time transmissibility during harsh conditions.
Average snowcover density values in Eastern Alps mountain
NASA Astrophysics Data System (ADS)
Valt, M.; Moro, D.
2009-04-01
The Italian Avalanche Warning Services monitor the snow cover characteristics through networks evenly distributed all over the alpine chain. Measurements of snow stratigraphy and density are very frequently performed with sampling rates of 1 -2 times per week. Snow cover density values are used to compute the dimensions of the building roofs as well as to design avalanche barriers. Based on the measured snow densities the Electricity Board can predict the amount of water resources deriving from snow melt in high relieves drainage basins. In this work it was possible to compute characteristic density values of the snow cover in the Eastern Alps using the information contained in the database from the ARPA (Agenzia Regionale Protezione Ambiente)-Centro Valanghe di Arabba, and Ufficio Valanghe- Udine. Among the other things, this database includes 15 years of stratigraphic measurements. More than 6,000 snow stratigraphic logs were analysed, in order to derive typical values as for geographical area, altitude, exposure, snow cover thickness and season. Computed values were compared to those established by the current Italian laws. Eventually, experts identified and evaluated the correlations between the seasonal variations of the average snow density and the variations related to the snowfall rate in the period 1994-2008 in the Eastern Alps mountain range
Euskirchen, E.S.; McGuire, A.D.; Chapin, F.S.
2007-01-01
The warming associated with changes in snow cover in northern high-latitude terrestrial regions represents an important energy feedback to the climate system. Here, we simulate snow cover-climate feedbacks (i.e. changes in snow cover on atmospheric heating) across the Pan-arctic over two distinct warming periods during the 20th century, 1910-1940 and 1970-2000. We offer evidence that increases in snow cover-climate feedbacks during 1970-2000 were nearly three times larger than during 1910-1940 because the recent snow-cover change occurred in spring, when radiation load is highest, rather than in autumn. Based on linear regression analysis, we also detected a greater sensitivity of snow cover-climate feedbacks to temperature trends during the more recent time period. Pan-arctic vegetation types differed substantially in snow cover-climate feedbacks. Those with a high seasonal contrast in albedo, such as tundra, showed much larger changes in atmospheric heating than did those with a low seasonal contrast in albedo, such as forests, even if the changes in snow-cover duration were similar across the vegetation types. These changes in energy exchange warrant careful consideration in studies of climate change, particularly with respect to associated shifts in vegetation between forests, grasslands, and tundra. ?? 2007 Blackwell Publishing Ltd.
Snow Dunes: A Controlling Factor of Melt Pond Distribution on Arctic Sea Ice
NASA Technical Reports Server (NTRS)
Petrich, Chris; Eicken, Hajo; Polashenski, Christopher M.; Sturm, Matthew; Harbeck, Jeremy P.; Perovich, Donald K.; Finnegan, David C.
2012-01-01
The location of snow dunes over the course of the ice-growth season 2007/08 was mapped on level landfast first-year sea ice near Barrow, Alaska. Landfast ice formed in mid-December and exhibited essentially homogeneous snow depths of 4-6 cm in mid-January; by early February distinct snow dunes were observed. Despite additional snowfall and wind redistribution throughout the season, the location of the dunes was fixed by March, and these locations were highly correlated with the distribution of meltwater ponds at the beginning of June. Our observations, including ground-based light detection and ranging system (lidar) measurements, show that melt ponds initially form in the interstices between snow dunes, and that the outline of the melt ponds is controlled by snow depth contours. The resulting preferential surface ablation of ponded ice creates the surface topography that later determines the melt pond evolution.
Validation of A One-Dimensional Snow-Land Surface Model at the Sleepers River Watershed
NASA Astrophysics Data System (ADS)
Sun, Wen-Yih; Chern, Jiun-Dar
A one-dimensional land surface model, based on conservations of heat and water substance inside the soil and snow, is presented. To validate the model, a stand-alone experiment is carried out with five years of meteorological and hydrological observations collected from the NOAA-ARS Cooperative Snow Research Project (1966-1974) at the Sleepers River watershed in Danville, Vermont, U.S.A. The numerical results show that the model is capable of reproducing the observed soil temperature at different depths during the winter as well as a rapid increase of soil temperature after snow melts in the spring. The model also simulates the density, temperature, thickness, and equivalent water depth of snow reasonably well. The numerical results are sensitive to the fresh snow density and the soil properties used in the model, which affect the heat exchange between the snowpack and the soil.
Plausibility check of a redesigned rain-on-snow simulator (RASA)
NASA Astrophysics Data System (ADS)
Rössler, Ole; Probst, Sabine; Weingartner, Rolf
2016-04-01
Rain-on-snow events are fascinating but still not completely understood processes. Although, several studies and equations have been published since decades that describe past events and theoretical descriptions, empirical data of what is happening in the snow cover is far less available. A way to fill this gap of empirical data, rain-on-snow-simulators might be of help. In 2013, Juras et al. published their inspiring idea of a portable rain-on-snow simulator. The huge advantage of this devise - in contrast to other purely field-based experiments - are their fixed, and mostly standardized conditions and the possibility to measure all required data to monitor the water fluxes and melting processes at a time. Mounted in a convenient location, a large number of experiments are relatively easy conductible. We applied and further developed the original device and plausified the results of this redesigned version, called RASA. The principal design was borrowed from the original version being a frame with a sprinkler on top and a snow sample in a box at the bottom, from which the outflow is measured with a tipping gauge. We added a moving sprinkling plate to ensure a uniform distribution of raindrops on the snow, and - most importantly - we suspended the watered snow sampled on weighting cells. The latter enables to continuous measurement of the snow sample throughout the experiment and thus the indirect quantification of liquid water saturation, water holding capacity, and snowmelt amount via balance equations. As it is remains unclear if this device is capable to reproduce known processes, a hypothesis based plausibility check was accomplished. Thus, eight hypothesizes were derived from literature and tested in 28 experiments with the RASA mounted at 2000 m elevation. In general, we were able to reproduce most of the hypotheses. The RASA proved to be a very valuable device that can generate suitable results and has the potential to extend the empirical-experimental data set on rain-on-snow events. Juras R., et al. (2013): A portable simulator for investigating rain-on-snow events, Zeitschrift für Geomorphologie, 57, Suppl.1, 73-89.
OASIS: Ocean-Atmosphere-Sea-Ice-Snowpack Interactions in Polar Regions
NASA Astrophysics Data System (ADS)
Bottenheim, J. W.; Abbatt, J.; Beine, H.; Berg, T.; Bigg, K.; Domine, F.; Leck, C.; Lindberg, S.; Matrai, P.; MacDonald, R.; McConnell, J.; Platt, U.; Raspopov, O.; Shepson, P.; Shumilov, O.; Stutz, J.; Wolff, E.
2004-05-01
While Polar regions encompass a large part of the globe, little attention has been paid to the interactions between the atmosphere and its extensive snow-covered surfaces. Recent discoveries in the Arctic and Antarctic show that the top ten centimeters of snow is not simply a white blanket but in fact is a surprisingly reactive medium for chemical reactions in the troposphere. It has been concluded that interlinked physical, chemical, and biological mechanisms, fueled by the sun and occurring in the snow, are responsible for depletion of tropospheric ozone and gaseous mercury. At the same time production of highly reactive compounds (e.g. formaldehyde, nitrogen dioxide) has been observed at the snow surface. Air-snow interactions also have an impact on the chemical composition of the snow and hence the nature and amounts of material released in terrestrial/marine ecosystems during the melting of seasonal snow-packs. Many details of these possibly naturally occurring processes are yet to be discovered. For decades humans have added waste products including acidic particles (sulphates) and toxic contaminants such as gaseous mercury and POPs (persistent organic pollutants) to the otherwise pristine snow surface. Virtually nothing is known about transformations of these contaminants in the snowpack, making it impossible to assess the risk to the polar environment, including humans. This is especially disconcerting when considering that climate change will undoubtedly alter the nature of these transformations involving snow, ice, atmosphere, ocean, and, ultimately, biota. To address these topics an interdisciplinary group of scientists from North America, Europe and Japan is developing a set of coordinated research activities under the banner of the IGBP programs IGAC and SOLAS. The program of Ocean-Atmosphere-Sea Ice-Snowpack (OASIS) interactions has been established with a mission statement aimed at determining the impact of OASIS chemical exchange on tropospheric chemistry and climate, as well as on the surface/biosphere and their feedbacks in the Polar regions of the globe. It is proposed that this program will culminate in a concerted field project during the IPY. In this contribution we will present the details of the emerging OASIS science plan and progress towards its implementation.
NASA Astrophysics Data System (ADS)
Oaida, C. M.; Andreadis, K.; Reager, J. T., II; Famiglietti, J. S.; Levoe, S.
2017-12-01
Accurately estimating how much snow water equivalent (SWE) is stored in mountainous regions characterized by complex terrain and snowmelt-driven hydrologic cycles is not only greatly desirable, but also a big challenge. Mountain snowpack exhibits high spatial variability across a broad range of spatial and temporal scales due to a multitude of physical and climatic factors, making it difficult to observe or estimate in its entirety. Combing remotely sensed data and high resolution hydrologic modeling through data assimilation (DA) has the potential to provide a spatially and temporally continuous SWE dataset at horizontal scales that capture sub-grid snow spatial variability and are also relevant to stakeholders such as water resource managers. Here, we present the evaluation of a new snow DA approach that uses a Local Ensemble Transform Kalman Filter (LETKF) in tandem with the Variable Infiltration Capacity macro-scale hydrologic model across the Western United States, at a daily temporal resolution, and a horizontal resolution of 1.75 km x 1.75 km. The LETKF is chosen for its relative simplicity, ease of implementation, and computational efficiency and scalability. The modeling/DA system assimilates daily MODIS Snow Covered Area and Grain Size (MODSCAG) fractional snow cover over, and has been developed to efficiently calculate SWE estimates over extended periods of time and covering large regional-scale areas at relatively high spatial resolution, ultimately producing a snow reanalysis-type dataset. Here we focus on the assessment of SWE produced by the DA scheme over several basins in California's Sierra Nevada Mountain range where Airborne Snow Observatory data is available, during the last five water years (2013-2017), which include both one of the driest and one of the wettest years. Comparison against such a spatially distributed SWE observational product provides a greater understanding of the model's ability to estimate SWE and SWE spatial variability, and highlights under which conditions snow cover DA can add value in estimating SWE.
NASA Astrophysics Data System (ADS)
Walder, J. S.
2010-12-01
A pyroclastic density current moving over snow is likely to transform to a lahar if the pyroclasts incorporate enough (melting) snow and meltwater to bring the bulk water content of the mixture to about 35% by volume. However, the processes by which such a mixture forms are still not well understood. Walder (Bull. Volcanol., v. 62, 2000) showed experimentally the existence of an erosion mechanism that functions even in the absence of relative shear motion between pyroclasts and snow substrate: a portion of the snow melted by a blanket of pyroclasts is vaporized; the flux of water vapor upward through the pyroclasts may be enough to fluidize the pyroclasts, which then convect, rapidly scour the snow substrate and transform into a slurry. But these experiments do not tell us how moving pyroclasts would erode snow, and simply releasing a hot grain flow over a snow surface in the lab gives misleading results owing to improper scaling of τ/σ , the ratio of the shear stress τ exerted by the pyroclastic flow to the shear strength σ of snow. There seems to be no way around this problem for experiments with actual snow. However, it may be possible to circumvent the scaling problem by replacing the snow substrate by a gas-fluidized particle bed: by varying the gas flux, the apparent shear strength of the particle bed can be varied. Such an investigation of erosional processes could be done at room temperature. Snow-avalanche studies (for example, Gauer and Issler, Ann. Glaciol. v. 38, 2003) may provide some insight into snow erosion by a pyroclastic density current. Snow is eroded at the base of a dense snow avalanche by abrasion, particle impacts, and—at the avalanche head—by plowing and a “blasting” mechanism associated with compression of the snowpack and expulsion of pore fluid (air). Erosion at the avalanche head seems to be particularly important. Similar processes are likely to occur when the over-riding flow comprises hot grains. The laboratory release of a hot grain flow over snow, although improperly scaled for investigating erosive processes, does demonstrate that snow hydrology and snowpack stability may be critical in the transformation of pyroclastic density currents to lahars. When such an experiment is run in a sloping flume, with meltwater able to drain freely at the base of the snow layer, the hot grain flow spreads over the snow surface and then comes to rest--no slurry is produced. In contrast, if meltwater drainage is blocked, the wet snow layer fails at its bed, mobilizes as a slush flow, and mixes with the hot grains to form a slurry. Ice layers within a natural snowpack would likewise block meltwater drainage and be conducive to the formation of slush flows. Abrasion and particle impacts—processes that have been studied intensively by engineers concerned with the wear of surfaces in machinery—probably play an important role in the erosion of glacier ice by pyroclastic density currents. A prime example may be the summit ice cap of Nevado del Ruiz, Colombia, which was left grooved by the eruption of 1985 (Thouret, J. Volcanol. Geotherm. Res., v. 41, 1990). Erosion of glacier ice is also strongly controlled by the orientation of crevasses, which can “capture” pyroclastic currents. This phenomenon was well displayed at Mount Redoubt, Alaska during the eruptions of 1989-90 and 2009.
Satellite Based Probabilistic Snow Cover Extent Mapping (SCE) at Hydro-Québec
NASA Astrophysics Data System (ADS)
Teasdale, Mylène; De Sève, Danielle; Angers, Jean-François; Perreault, Luc
2016-04-01
Over 40% of Canada's water resources are in Quebec and Hydro-Quebec has developed potential to become one of the largest producers of hydroelectricity in the world, with a total installed capacity of 36,643 MW. The Hydro-Québec fleet park includes 27 large reservoirs with a combined storage capacity of 176 TWh, and 668 dams and 98 controls. Thus, over 98% of all electricity used to supply the domestic market comes from water resources and the excess output is sold on the wholesale markets. In this perspective the efficient management of water resources is needed and it is based primarily on a good river flow estimation including appropriate hydrological data. Snow on ground is one of the significant variables representing 30% to 40% of its annual energy reserve. More specifically, information on snow cover extent (SCE) and snow water equivalent (SWE) is crucial for hydrological forecasting, particularly in northern regions since the snowmelt provides the water that fills the reservoirs and is subsequently used for hydropower generation. For several years Hydro Quebec's research institute ( IREQ) developed several algorithms to map SCE and SWE. So far all the methods were deterministic. However, given the need to maximize the efficient use of all resources while ensuring reliability, the electrical systems must now be managed taking into account all risks. Since snow cover estimation is based on limited spatial information, it is important to quantify and handle its uncertainty in the hydrological forecasting system. This paper presents the first results of a probabilistic algorithm for mapping SCE by combining Bayesian mixture of probability distributions and multiple logistic regression models applied to passive microwave data. This approach allows assigning for each grid point, probabilities to the set of the mutually exclusive discrete outcomes: "snow" and "no snow". Its performance was evaluated using the Brier score since it is particularly appropriate to measure the accuracy of probabilistic discrete predictions. The scores were measured by comparing the snow probabilities produced by our models with the Hydro-Québec's snow ground data.
Mapping Snow Grain Size over Greenland from MODIS
NASA Technical Reports Server (NTRS)
Lyapustin, Alexei; Tedesco, Marco; Wang, Yujie; Kokhanovsky, Alexander
2008-01-01
This paper presents a new automatic algorithm to derive optical snow grain size (SGS) at 1 km resolution using Moderate Resolution Imaging Spectroradiometer (MODIS) measurements. Differently from previous approaches, snow grains are not assumed to be spherical but a fractal approach is used to account for their irregular shape. The retrieval is conceptually based on an analytical asymptotic radiative transfer model which predicts spectral bidirectional snow reflectance as a function of the grain size and ice absorption. The analytical form of solution leads to an explicit and fast retrieval algorithm. The time series analysis of derived SGS shows a good sensitivity to snow metamorphism, including melting and snow precipitation events. Preprocessing is performed by a Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm, which includes gridding MODIS data to 1 km resolution, water vapor retrieval, cloud masking and an atmospheric correction. MAIAC cloud mask (CM) is a new algorithm based on a time series of gridded MODIS measurements and an image-based rather than pixel-based processing. Extensive processing of MODIS TERRA data over Greenland shows a robust performance of CM algorithm in discrimination of clouds over bright snow and ice. As part of the validation analysis, SGS derived from MODIS over selected sites in 2004 was compared to the microwave brightness temperature measurements of SSM\\I radiometer, which is sensitive to the amount of liquid water in the snowpack. The comparison showed a good qualitative agreement, with both datasets detecting two main periods of snowmelt. Additionally, MODIS SGS was compared with predictions of the snow model CROCUS driven by measurements of the automatic whether stations of the Greenland Climate Network. We found that CROCUS grain size is on average a factor of two larger than MODIS-derived SGS. Overall, the agreement between CROCUS and MODIS results was satisfactory, in particular before and during the first melting period in mid-June. Following detailed time series analysis of SGS for four permanent sites, the paper presents SGS maps over the Greenland ice sheet for the March-September period of 2004.
NASA Astrophysics Data System (ADS)
Zhou, Lu; Xu, Shiming; Liu, Jiping; Wang, Bin
2018-03-01
The accurate knowledge of sea ice parameters, including sea ice thickness and snow depth over the sea ice cover, is key to both climate studies and data assimilation in operational forecasts. Large-scale active and passive remote sensing is the basis for the estimation of these parameters. In traditional altimetry or the retrieval of snow depth with passive microwave remote sensing, although the sea ice thickness and the snow depth are closely related, the retrieval of one parameter is usually carried out under assumptions over the other. For example, climatological snow depth data or as derived from reanalyses contain large or unconstrained uncertainty, which result in large uncertainty in the derived sea ice thickness and volume. In this study, we explore the potential of combined retrieval of both sea ice thickness and snow depth using the concurrent active altimetry and passive microwave remote sensing of the sea ice cover. Specifically, laser altimetry and L-band passive remote sensing data are combined using two forward models: the L-band radiation model and the isostatic relationship based on buoyancy model. Since the laser altimetry usually features much higher spatial resolution than L-band data from the Soil Moisture Ocean Salinity (SMOS) satellite, there is potentially covariability between the observed snow freeboard by altimetry and the retrieval target of snow depth on the spatial scale of altimetry samples. Statistically significant correlation is discovered based on high-resolution observations from Operation IceBridge (OIB), and with a nonlinear fitting the covariability is incorporated in the retrieval algorithm. By using fitting parameters derived from large-scale surveys, the retrievability is greatly improved compared with the retrieval that assumes flat snow cover (i.e., no covariability). Verifications with OIB data show good match between the observed and the retrieved parameters, including both sea ice thickness and snow depth. With detailed analysis, we show that the error of the retrieval mainly arises from the difference between the modeled and the observed (SMOS) L-band brightness temperature (TB). The narrow swath and the limited coverage of the sea ice cover by altimetry is the potential source of error associated with the modeling of L-band TB and retrieval. The proposed retrieval methodology can be applied to the basin-scale retrieval of sea ice thickness and snow depth, using concurrent passive remote sensing and active laser altimetry based on satellites such as ICESat-2 and WCOM.
NASA Astrophysics Data System (ADS)
Arsenault, Richard; Poissant, Dominique; Brissette, François
2015-11-01
This paper evaluated the effects of parametric reduction of a hydrological model on five regionalization methods and 267 catchments in the province of Quebec, Canada. The Sobol' variance-based sensitivity analysis was used to rank the model parameters by their influence on the model results and sequential parameter fixing was performed. The reduction in parameter correlations improved parameter identifiability, however this improvement was found to be minimal and was not transposed in the regionalization mode. It was shown that 11 of the HSAMI models' 23 parameters could be fixed with little or no loss in regionalization skill. The main conclusions were that (1) the conceptual lumped models used in this study did not represent physical processes sufficiently well to warrant parameter reduction for physics-based regionalization methods for the Canadian basins examined and (2) catchment descriptors did not adequately represent the relevant hydrological processes, namely snow accumulation and melt.
Siberia snow depth climatology derived from SSM/I data using a combined dynamic and static algorithm
Grippa, M.; Mognard, N.; Le, Toan T.; Josberger, E.G.
2004-01-01
One of the major challenges in determining snow depth (SD) from passive microwave measurements is to take into account the spatiotemporal variations of the snow grain size. Static algorithms based on a constant snow grain size cannot provide accurate estimates of snow pack thickness, particularly over large regions where the snow pack is subjected to big spatial temperature variations. A recent dynamic algorithm that accounts for the dependence of the microwave scattering on the snow grain size has been developed to estimate snow depth from the Special Sensor Microwave/Imager (SSM/I) over the Northern Great Plains (NGP) in the US. In this paper, we develop a combined dynamic and static algorithm to estimate snow depth from 13 years of SSM/I observations over Central Siberia. This region is characterised by extremely cold surface air temperatures and by the presence of permafrost that significantly affects the ground temperature. The dynamic algorithm is implemented to take into account these effects and it yields accurate snow depths early in the winter, when thin snowpacks combine with cold air temperatures to generate rapid crystal growth. However, it is not applicable later in the winter when the grain size growth slows. Combining the dynamic algorithm to a static algorithm, with a temporally constant but spatially varying coefficient, we obtain reasonable snow depth estimates throughout the entire snow season. Validation is carried out by comparing the satellite snow depth monthly averages to monthly climatological data. We show that the location of the snow depth maxima and minima is improved when applying the combined algorithm, since its dynamic portion explicitly incorporate the thermal gradient through the snowpack. The results obtained are presented and evaluated for five different vegetation zones of Central Siberia. Comparison with in situ measurements is also shown and discussed. ?? 2004 Elsevier Inc. All rights reserved.
Summer snowmelt patterns in the South Shetlands using TerraSAR-X imagery
NASA Astrophysics Data System (ADS)
Mora, C.; Jimenez, J. J.; Catalao Fernades, J.; Ferreira, A.; David, A.; Ramos, M.; Vieira, G.
2014-12-01
Snow plays an important role in controlling ground thermal regime and thus influencing permafrost distribution in the lower areas of the South Shetlands archipelago, where late lying snowpatches protect the soil from summer warming. However, summer snow distribution is complex in the mountainous environments of the Maritime Antarctica and it is very difficult to obtain accurate mapping products of snow cover extent and also to monitor snowmelt. Field observations of snow cover in the region are currently based on: i) thickness data from a very scarce network of meteorological stations, ii) temperature poles allowing to estimate snow thickness, iii) and time-lapse cameras allowing for assessing snow distribution over relatively small areas. The high cloudiness of the Maritime Antarctic environment limits good mapping results from the analysis of optical remote sensing imagery such as Landsat, QuickBird or GeoEye. Therefore, microwave sensors provide the best imagery, since they are not influenced by cloudiness and are sensitive to wet-snow, typical of the melting season. We have acquired TerraSAR-X scenes for Deception and Livingston Islands for January-March 2014 in spotlight (HH, VV and HH/VV) and stripmap modes (HH) and analyse the radar backscattering for determining the differences between wet-snow, dry-snow and bare soil aiming at developing snow melt pattern maps. For ground truthing, snowpits were dug in order to characterize snow stratigraphy, grain size, grain type and snow density and to evaluate its effects on radar backscattering. Time-lapse cameras allow to identify snow patch boundaries in the field and ground surface temperatures obtained with minloggers, together with air temperatures, allow to identify the presence of snow cover in the ground. The current research is conducted in the framework of the project PERMANTAR-3 (Permafrost monitoring and modelling in Antarctic Peninsula - PTDC/AAG-GLO/3908/2012 of the FCT and PROPOLAR).
NASA Astrophysics Data System (ADS)
Kostadinov, T. S.; Harpold, A.; Hill, R.; McGwire, K.
2017-12-01
Seasonal snow cover is a key component of the hydrologic regime in many regions of the world, especially those in temperate latitudes with mountainous terrain and dry summers. Such regions support large human populations which depend on the mountain snowpack for their water supplies. It is thus important to quantify snow cover accurately and continuously in these regions. Optical remote-sensing methods are able to detect snow and leverage space-borne spectroradiometers with global coverage such as MODIS to produce global snow cover maps. However, snow is harder to detect accurately in mountainous forested terrain, where topography influences retrieval algorithms, and importantly - forest canopies complicate radiative transfer and obfuscate the snow. Current satellite snow cover algorithms assume that fractional snow-covered area (fSCA) under the canopy is the same as the fSCA in the visible portion of the pixel. In-situ observations and first principles considerations indicate otherwise, therefore there is a need for improvement of the under-canopy correction of snow cover. Here, we leverage multiple LIDAR overflights and in-situ observations with a distributed fiber-optic temperature sensor (DTS) to quantify snow cover under canopy as opposed to gap areas at the Sagehen Experimental Forest in the Northern Sierra Nevada, California, USA. Snow-off LIDAR overflights from 2014 are used to create a baseline high-resolution digital elevation model and classify pixels at 1 m resolution as canopy-covered or gap. Low canopy pixels are excluded from the analysis. Snow-on LIDAR overflights conducted by the Airborne Snow Observatory in 2016 are then used to classify all pixels as snow-covered or not and quantify fSCA under canopies vs. in gap areas over the Sagehen watershed. DTS observations are classified as snow-covered or not based on diel temperature fluctuations and used as validation for the LIDAR observations. LIDAR- and DTS-derived fSCA is also compared with retrievals from hyperspectral imaging spectroradiometer (AVIRIS) data. Initial evidence suggest fSCA was generally lower under canopy and that overall snow cover estimates were overestimated as a result. Implications for a canopy correction applicable to coarser-resolution sensors like MODIS are discussed, as are topography and view angle effects.
How much runoff originates as snow in the western United States and what its future changes tell us?
NASA Astrophysics Data System (ADS)
Li, D.; Wrzesien, M.; Durand, M. T.; Adam, J. C.; Lettenmaier, D. P.
2017-12-01
Snow is a vital hydrologic cycle component in the western United States. The seasonal phase of snowmelt bridges between winter-dominant precipitation and summer-dominant human and ecosystem water demand. Current estimates of the fraction of total annual runoff generated by snowmelt (f_Q,snow) are not based on defensible, systematic analyses. Here, based on hydrological model simulations, we describe a new algorithm that explicitly quantifies the contribution of snow to runoff in the Western U.S. Specifically, the algorithm tracks the fate of the snowmelt runoff in the modeled hydrological fluxes in the soil, surface water, and the atmosphere, and accounts for the exchanges among the three. The hydrological fluxes are simulated by the Variable Infiltration Capacity (VIC) model using an ensemble of ten general circulation model (GCM) outputs trained by ground observations. We conducted the tracking to the VIC modeling ensemble and reported the mean of the ten tracking results. We computed the historical f_Q,snow with the modeling estimates from 1960 to 2005, and predicted the future f_Q,snow using the modeling estimates from 2006 to 2100 in the RCP4.5 and RCP8.5 scenarios. Our tracking results show that from 1960 to 2005, slightly over one-half of the total runoff in the western United States originated as snowmelt, despite only 37% of the region's total precipitation falling as snow; snowfall is more efficient than rainfall in runoff generation. Snow's importance varies physiographically: snowmelt from the mountains is responsible for over 70% of the total runoff in the West. Snowmelt-derived runoff currently makes up about 2/3 of the inflow to the region's major reservoirs; for Lake Mead and Lake Powell, which are the two largest reservoirs of the nation, snow contributes over 70% of their storage. The contribution of snowmelt to the total runoff will decrease in a warmer climate, by about 1/3 over the West by 2100. Snow will melt earlier and the snowmelt-induced peak flow will shift earlier by 1.5 to up to 4 weeks. Thus, in the context of predicted reductions and earlier shifts of the snow-induced runoff, and the fact that the region's major reservoirs were designed for the historical snow climatology, we argue that substantial impacts on water supply may occur especially in the summer season when water demand peaks.
NASA Astrophysics Data System (ADS)
Mizinski, Bartlomiej; Niedzielski, Tomasz
2017-04-01
Recent developments in snow depth reconstruction based on remote sensing techniques include the use of photographs of snow-covered terrain taken by unmanned aerial vehicles (UAVs). There are several approaches that utilize visible-light photos (RGB) or near infrared images (NIR). The majority of the methods in question are based on reconstructing the digital surface model (DSM) of the snow-covered area with the use of the Structure-from-Motion (SfM) algorithm and the stereo-vision software. Having reconstructed the above-mentioned DSM it is straightforward to calculate the snow depth map which may be produced as a difference between the DSM of snow-covered terrain and the snow-free DSM, known as the reference surface. In order to use the aforementioned procedure, the high spatial accuracy of the two DSMs must be ensured. Traditionally, this is done using the ground control points (GCPs), either artificial or natural terrain features that are visible on aerial images, the coordinates of which are measured in the field using the Global Navigation Satellite System (GNSS) receiver by qualified personnel. The field measurements may be time-taking (GCPs must be well distributed in the study area, therefore the field experts should travel over long distances) and dangerous (the field experts may be exposed to avalanche risk or cold). Thus, there is a need to elaborate methods that enable the above-mentioned automatic snow depth map production without the use of GCPs. One of such attempts is shown in this paper which aims to present the novel method which is based on real-time processing of snow-covered and snow-free dense point clouds produced by SfM. The two stage georeferencing is proposed. The initial (low accuracy) one assigns true geographic, and subsequently projected, coordinates to the two dense point clouds, while the said initially-registered dense point clouds are matched using the iterative closest point (ICP) algorithm in the final (high accuracy) stage. The stable reference is offered by specially-selected trees which are located in the vicinity of the terrain of interest. The method has already been implemented and along with the presentation of its concept, a few case studies from the Izerskie Mountains (southwestern Poland) are discussed. Although the method reveals several constraints, it may serve the purpose of generating the snow depth maps with reasonable accuracy, in particular in the absence of GCPs. The snow depth estimation algorithm has been elaborated in frame of the research grant no. LIDER/012/223/L-5/13/NCBR/2014 financed by the National Centre for Research and Development of Poland.
NASA Astrophysics Data System (ADS)
Lincoln, S. A.; Freeman, K. H.
2015-12-01
A significant portion of the oil released from the Macondo well after the 2010 Deepwater Horizon (DwH) explosion reached the seafloor (1,2). The transfer of buoyant hydrocarbons from the sea surface and subsurface plumes to depths >1500 m, however, is not well understood. A prominent role for sinking marine snow--small, composite particles composed largely of extracellular polymeric substances exuded by algae and bacteria--has been proposed. Snow particles, rich in carbohydrates, may have sorbed and physically entrained oil from the water column as they sank. Several lines of evidence support this scenario: abundant snow was observed 3-4 weeks after the oil spill (3); oil and dispersants can induce marine snow formation (4); and flocculent material covering deep-sea corals near the DwH site contained biomarkers consistent with Macondo oil (5). To investigate whether the chemically complex marine oil snow leaves a direct sedimentary record, we analyzed carbohydrates at high resolution (2 mm intervals) in sediment cores collected at 4 sites in the northern Gulf of Mexico in 2013 using a modified phenol-sulfuric acid spectrophotometric method. We detected a sharp subsurface peak in carbohydrate concentrations near the Macondo well; we interpret this peak as post-DwH marine snow. Coeval carbohydrate, polycyclic aromatic hydrocarbon, and hopane profiles suggest a clear link between marine snow and Macondo oil components, as documented in a 3-year time-series at one site, and enable preliminary conclusions about the delivery and fate of marine snow components in sediments. We also characterized carbohydrates near the wellhead using fluorescent lectin-binding analyses developed for applications in cell biology. Particle morphologies include collapse structures suggestive of a water column origin. Finally, we explore the extent to which polysaccharide residues detected with selective lectins can be used to determine the provenance of marine snow (e.g., bacterial v. algal). (1) Valentine et al., 2014. PNAS 111, 15906-15911. (2) Romero et al., 2015. PLOS One 10(5): e0128371 (3) Passow et al., ERL 7, 035301. (4) Passow, 2014. Deep-Sea Res. II, http://dx.doi. org/10.1016/j.dsr2.2014.10.001i (5) White et al., 2012. PNAS 109(50), 20303-20308.
NASA Astrophysics Data System (ADS)
Armstrong, Richard L.; Brodzik, Mary Jo
2003-04-01
Snow cover is an important variable for climate and hydrologic models due to its effects on energy and moisture budgets. Seasonal snow can cover more than 50% of the Northern Hemisphere land surface during the winter resulting in snow cover being the land surface characteristic responsible for the largest annual and interannual differences in albedo. Passive microwave satellite remote sensing can augment measurements based on visible satellite data alone because of the ability to acquire data through most clouds or during darkness as well as to provide a measure of snow depth or water equivalent. It is now possible to monitor the global fluctuation of snow cover over a 24 year period using passive microwave data (Scanning Multichannel Microwave Radiometer (SMMR) 1978-1987 and Special Sensor Microwave/Imager (SSM/I), 1987-present). Evaluation of snow extent derived from passive microwave algorithms is presented through comparison with the NOAA Northern Hemisphere snow extent data. For the period 1978 to 2002, both passive microwave and visible data sets show a smiliar pattern of inter-annual variability, although the maximum snow extents derived from the microwave data are consistently less than those provided by the visible statellite data and the visible data typically show higher monthly variability. During shallow snow conditions of the early winter season microwave data consistently indicate less snow-covered area than the visible data. This underestimate of snow extent results from the fact that shallow snow cover (less than about 5.0 cm) does not provide a scattering signal of sufficient strength to be detected by the algorithms. As the snow cover continues to build during the months of January through March, as well as on into the melt season, agreement between the two data types continually improves. This occurs because as the snow becomes deeper and the layered structure more complex, the negative spectral gradient driving the passive microwave algorithm is enhanced. Trends in annual averages are similar, decreasing at rates of approximately 2% per decade. The only region where the passive microwave data consistently indicate snow and the visible data do not is over the Tibetan Plateau and surrounding mountain areas. In the effort to determine the accuracy of the microwave algorithm over this region we are acquiring surface snow observations through a collaborative study with CAREERI/Lanzhou. In order to provide an optimal snow cover product in the future, we are developing a procedure that blends snow extent maps derived from MODIS data with snow water equivalent maps derived from both SSM/I and AMSR.
Towards Snowpack Characterization using C-band Synthetic Aperture Radar (SAR)
NASA Astrophysics Data System (ADS)
Park, J.; Forman, B. A.
2017-12-01
Sentinel 1A and 1B, operated by the European Space Agency (ESA), carries a C-band synthetic aperture radar (SAR) sensor that can be used to monitor terrestrial snow properties. This study explores the relationship between terrestrial snow-covered area, snow depth, and snow water equivalent with Sentinel 1 backscatter observations in order to better characterize snow mass. Ground-based observations collected by the National Oceanic and Atmospheric Administration - Cooperative Remote Sensing Science and Technology Center (NOAA-CREST) in Caribou, Maine in the United States are also used in the comparative analysis. Sentinel 1 Ground Range Detected (GRD) imagery with Interferometric Wide swath (IW) were preprocessed through a series of steps accounting for thermal noise, sensor orbit, radiometric calibration, speckle filtering, and terrain correction using ESA's Sentinel Application Platform (SNAP) software package, which is an open-source module written in Python. Comparisons of dual-polarized backscatter coefficients (i.e., σVV and σVH) with in-situ measurements of snow depth and SWE suggest that cross-polarized backscatter observations exhibit a modest correlation between both snow depth and SWE. In the case of the snow-covered area, a multi-temporal change detection method was used. Results using Sentinel 1 yield similar spatial patterns as when using hyperspectral observations collected by the MODerate Resolution Imaging Spectroradiometer (MODIS). These preliminary results suggest the potential application of Sentinel 1A/1B backscatter coefficients towards improved discrimination of snow cover, snow depth, and SWE. One goal of this research is to eventually merge C-band SAR backscatter observations with other snow information (e.g., passive microwave brightness temperatures) as part of a multi-sensor snow assimilation framework.
Global land-atmosphere coupling associated with cold climate processes
NASA Astrophysics Data System (ADS)
Dutra, Emanuel
This dissertation constitutes an assessment of the role of cold processes, associated with snow cover, in controlling the land-atmosphere coupling. The work was based on model simulations, including offline simulations with the land surface model HTESSEL, and coupled atmosphere simulations with the EC-EARTH climate model. A revised snow scheme was developed and tested in HTESSEL and EC-EARTH. The snow scheme is currently operational at the European Centre for Medium-Range Weather Forecasts integrated forecast system, and in the default configuration of EC-EARTH. The improved representation of the snowpack dynamics in HTESSEL resulted in improvements in the near surface temperature simulations of EC-EARTH. The new snow scheme development was complemented with the option of multi-layer version that showed its potential in modeling thick snowpacks. A key process was the snow thermal insulation that led to significant improvements of the surface water and energy balance components. Similar findings were observed when coupling the snow scheme to lake ice, where lake ice duration was significantly improved. An assessment on the snow cover sensitivity to horizontal resolution, parameterizations and atmospheric forcing within HTESSEL highlighted the role of the atmospheric forcing accuracy and snowpack parameterizations in detriment of horizontal resolution over flat regions. A set of experiments with and without free snow evolution was carried out with EC-EARTH to assess the impact of the interannual variability of snow cover on near surface and soil temperatures. It was found that snow cover interannual variability explained up to 60% of the total interannual variability of near surface temperature over snow covered regions. Although these findings are model dependent, the results showed consistency with previously published work. Furthermore, the detailed validation of the snow dynamics simulations in HTESSEL and EC-EARTH guarantees consistency of the results.
Quantifying the accuracy of snow water equivalent estimates using broadband radar signal phase
NASA Astrophysics Data System (ADS)
Deeb, E. J.; Marshall, H. P.; Lamie, N. J.; Arcone, S. A.
2014-12-01
Radar wave velocity in dry snow depends solely on density. Consequently, ground-based pulsed systems can be used to accurately measure snow depth and snow water equivalent (SWE) using signal travel-time, along with manual depth-probing for signal velocity calibration. Travel-time measurements require a large bandwidth pulse not possible in airborne/space-borne platforms. In addition, radar backscatter from snow cover is sensitive to grain size and to a lesser extent roughness of layers at current/proposed satellite-based frequencies (~ 8 - 18 GHz), complicating inversion for SWE. Therefore, accurate retrievals of SWE still require local calibration due to this sensitivity to microstructure and layering. Conversely, satellite radar interferometry, which senses the difference in signal phase between acquisitions, has shown a potential relationship with SWE at lower frequencies (~ 1 - 5 GHz) because the phase of the snow-refracted signal is sensitive to depth and dielectric properties of the snowpack, as opposed to its microstructure and stratigraphy. We have constructed a lab-based, experimental test bed to quantify the change in radar phase over a wide range of frequencies for varying depths of dry quartz sand, a material dielectrically similar to dry snow. We use a laboratory grade Vector Network Analyzer (0.01 - 25.6 GHz) and a pair of antennae mounted on a trolley over the test bed to measure amplitude and phase repeatedly/accurately at many frequencies. Using ground-based LiDAR instrumentation, we collect a coordinated high-resolution digital surface model (DSM) of the test bed and subsequent depth surfaces with which to compare the radar record of changes in phase. Our plans to transition this methodology to a field deployment during winter 2014-2015 using precision pan/tilt instrumentation will also be presented, as well as applications to airborne and space-borne platforms toward the estimation of SWE at high spatial resolution (on the order of meters) over large regions (> 100 square kilometers).
Waitt, R.B.
1989-01-01
The initial explosions at Mount St. Helens, Washington, on the moring of 18 May 1980 developed into a huge pyroclastic surge that generated catastrophic floods off the east and west flanks of the volcano. Near-source surge deposits on the east and west were lithic, sorted, lacking in accretionary lapilli and vesiculated ash, not plastered against upright obstacles, and hot enough to char wood - all attributes of dry pyroclastic surge. Material deposited at the surge base on steep slopes near the volcano transformed into high-concentration lithic pyroclastic flows whose deposits contain charred wood and other features indicating that these flows were hot and dry. Stratigraphy shows that even the tail of the surge had passed the east and west volcano flanks before the geomorphically distinct floods (lahars) arrived. This field evidence undermines hypotheses that the turbulent surge was itself wet and that its heavy components segregated out to transform directly into lahars. Nor is there evidence that meters-thick snow-slab avalanches intimately mixed with the surge to form the floods. The floods must have instead originated by swift snowmelt at the base of a hot and relatively dry turbulent surge. Impacting hot pyroclasts probably transferred downslope momentum to the snow surface and churned snow grains into the surge base. Melting snow and accumulating hot surge debris may have moved initially as thousands of small thin slushflows. As these flows removed the surface snow and pyroclasts, newly uncovered snow was partly melted by the turbulent surge base; this and accumulating hot surge debris in turn began flowing, a self-sustaining process feeding the initial flows. The flows thus grew swiftly over tens of seconds and united downslope into great slushy ejecta-laden sheetfloods. Gravity accelerated the floods to more than 100 km/h as they swept down and off the volcano flanks while the snow component melted to form great debris-rich floods (lahars) channeled into valleys. ?? 1989 Springer-Verlag.
Seismic signals of snow-slurry lahars in motion: 25 September 2007, Mt Ruapehu, New Zealand
NASA Astrophysics Data System (ADS)
Cole, S. E.; Cronin, S. J.; Sherburn, S.; Manville, V.
2009-05-01
Detection of ground shaking forms the basis of many lahar-warning systems. Seismic records of two lahar types at Ruapehu, New Zealand, in 2007 are used to examine their nature and internal dynamics. Upstream detection of a flow depends upon flow type and coupling with the ground. 3-D characteristics of seismic signals can be used to distinguish the dominant rheology and gross physical composition. Water-rich hyperconcentrated flows are turbulent; common inter-particle and particle-substrate collisions engender higher energy in cross-channel vibrations relative to channel-parallel. Plug-like snow-slurry lahars show greater energy in channel-parallel signals, due to lateral deposition insulating channel margins, and low turbulence. Direct comparison of flow size must account for flow rheology; a water-rich lahar will generate signals of greater amplitude than a similar-sized snow-slurry flow.
Microbial diversity on Icelandic glaciers and ice caps.
Lutz, Stefanie; Anesio, Alexandre M; Edwards, Arwyn; Benning, Liane G
2015-01-01
Algae are important primary colonizers of snow and glacial ice, but hitherto little is known about their ecology on Iceland's glaciers and ice caps. Due do the close proximity of active volcanoes delivering large amounts of ash and dust, they are special ecosystems. This study provides the first investigation of the presence and diversity of microbial communities on all major Icelandic glaciers and ice caps over a 3 year period. Using high-throughput sequencing of the small subunit ribosomal RNA genes (16S and 18S), we assessed the snow community structure and complemented these analyses with a comprehensive suite of physical-, geo-, and biochemical characterizations of the aqueous and solid components contained in snow and ice samples. Our data reveal that a limited number of snow algal taxa (Chloromonas polyptera, Raphidonema sempervirens and two uncultured Chlamydomonadaceae) support a rich community comprising of other micro-eukaryotes, bacteria and archaea. Proteobacteria and Bacteroidetes were the dominant bacterial phyla. Archaea were also detected in sites where snow algae dominated and they mainly belong to the Nitrososphaerales, which are known as important ammonia oxidizers. Multivariate analyses indicated no relationships between nutrient data and microbial community structure. However, the aqueous geochemical simulations suggest that the microbial communities were not nutrient limited because of the equilibrium of snow with the nutrient-rich and fast dissolving volcanic ash. Increasing algal secondary carotenoid contents in the last stages of the melt seasons have previously been associated with a decrease in surface albedo, which in turn could potentially have an impact on the melt rates of Icelandic glaciers.
Microbial diversity on Icelandic glaciers and ice caps
Lutz, Stefanie; Anesio, Alexandre M.; Edwards, Arwyn; Benning, Liane G.
2015-01-01
Algae are important primary colonizers of snow and glacial ice, but hitherto little is known about their ecology on Iceland's glaciers and ice caps. Due do the close proximity of active volcanoes delivering large amounts of ash and dust, they are special ecosystems. This study provides the first investigation of the presence and diversity of microbial communities on all major Icelandic glaciers and ice caps over a 3 year period. Using high-throughput sequencing of the small subunit ribosomal RNA genes (16S and 18S), we assessed the snow community structure and complemented these analyses with a comprehensive suite of physical-, geo-, and biochemical characterizations of the aqueous and solid components contained in snow and ice samples. Our data reveal that a limited number of snow algal taxa (Chloromonas polyptera, Raphidonema sempervirens and two uncultured Chlamydomonadaceae) support a rich community comprising of other micro-eukaryotes, bacteria and archaea. Proteobacteria and Bacteroidetes were the dominant bacterial phyla. Archaea were also detected in sites where snow algae dominated and they mainly belong to the Nitrososphaerales, which are known as important ammonia oxidizers. Multivariate analyses indicated no relationships between nutrient data and microbial community structure. However, the aqueous geochemical simulations suggest that the microbial communities were not nutrient limited because of the equilibrium of snow with the nutrient-rich and fast dissolving volcanic ash. Increasing algal secondary carotenoid contents in the last stages of the melt seasons have previously been associated with a decrease in surface albedo, which in turn could potentially have an impact on the melt rates of Icelandic glaciers. PMID:25941518
NASA Astrophysics Data System (ADS)
Webb, R. W.; Williams, M. W.; Erickson, T. A.
2018-02-01
Snowmelt is an important part of the hydrologic cycle and ecosystem dynamics for headwater systems. However, the physical process of water flow through snow is a poorly understood aspect of snow hydrology as meltwater flow paths tend to be highly complex. Meltwater flow paths diverge and converge as percolating meltwater reaches stratigraphic layer interfaces creating high spatial variability. Additionally, a snowpack is temporally heterogeneous due to rapid localized metamorphism that occurs during melt. This study uses a snowmelt lysimeter array at tree line in the Niwot Ridge study area of northern Colorado. The array is designed to address the issue of spatial and temporal variability of basal discharge at 105 locations over an area of 1,300 m2. Observed coefficients of variation ranged from 0 to almost 10 indicating more variability than previously observed, though this variability decreased throughout each melt season. Snowmelt basal discharge also significantly increases as snow depth decreases displaying a cluster pattern that peaks during weeks 3-5 of the snowmelt season. These results are explained by the flow of meltwater along snow layer interfaces. As the snowpack becomes less stratified through the melt season, the pattern transforms from preferential flow paths to uniform matrix flow. Correlation ranges of the observed basal discharge correspond to a mean representative elementary area of 100 m2, or a characteristic length of 10 m. Snowmelt models representing processes at scales less than this will need to explicitly incorporate the spatial variability of snowmelt discharge and meltwater flow paths through snow between model pixels.
NASA Astrophysics Data System (ADS)
Villamil-Otero, G.; Zhang, J.; Yao, Y.
2017-12-01
The Antarctic Peninsula (AP) has long been the focus of climate change studies due to its rapid environmental changes such as significantly increased glacier melt and retreat, and ice-shelf break-up. Progress has been continuously made in the use of regional modeling to simulate surface mass changes over ice sheets. Most efforts, however, focus on the ice sheets of Greenland with considerable fewer studies in Antarctica. In this study the Weather Research and Forecasting (WRF) model, which has been applied to the Antarctic region for weather modeling, is adopted to capture the past and future surface mass balance changes over AP. In order to enhance the capabilities of WRF model simulating surface mass balance over the ice surface, we implement various ice and snow processes within the WRF and develop a new WRF suite (WRF-Ice). The WRF-Ice includes a thermodynamic ice sheet model that improves the representation of internal melting and refreezing processes and the thermodynamic effects over ice sheet. WRF-Ice also couples a thermodynamic sea ice model to improve the simulation of surface temperature and fluxes over sea ice. Lastly, complex snow processes are also taken into consideration including the implementation of a snowdrift model that takes into account the redistribution of blowing snow as well as the thermodynamic impact of drifting snow sublimation on the lower atmospheric boundary layer. Intensive testing of these ice and snow processes are performed to assess the capability of WRF-Ice in simulating the surface mass balance changes over AP.
Rainy Days in the New Arctic: A Comprehensive Look at Precipitation from 8 Reanalysis
NASA Astrophysics Data System (ADS)
Boisvert, L.; Webster, M.; Petty, A.; Markus, T.
2017-12-01
Precipitation in the Arctic plays an important role in the fresh water budget, and is the primary control of snow accumulation on sea ice. However, Arctic precipitation from reanalysis is highly uncertain due to differences in the atmospheric physics and use/approaches of data assimilation and sea ice concentrations across the different products. More specifically, yearly cumulative precipitation in some regions can vary by 100-150 mm across reanalyses. This creates problems for those modeling snow depth on sea ice, specifically for use in deriving sea ice thickness from satellite altimetry. In recent years, this new Arctic has become warmer and wetter, and evaporation from the ice-free ocean has been increasing, which leads to the question: is more precipitation falling and is more of this precipitation rain? This could pose a big problem for model and remote sensing applications and studies those modeling snow accumulation because rain events will can melt the existing snow pack, reduce surface albedo, and modify the ocean-to-atmosphere heat flux via snow densification. In this work we compare precipitation (both snow and rain) from 8 different reanalysis: MERRA, MERRA2, NCEP-R1, NCEP-R2, ERA-Interim, ERA-5, ASR and JRA-55. We examine the annual, seasonal, and regional differences and compare with buoy data to assess discrepancies between products during observed snowfall and rainfall events. Magnitudes and frequencies of these precipitation events are evaluated, as well as the "residual drizzle" between reanalyzes. Lastly, we will look at whether the frequency and magnitude of "rainy days" in the Arctic have been changing over recent decades.
Coupling of snow and permafrost processes using the Basic Modeling Interface (BMI)
NASA Astrophysics Data System (ADS)
Wang, K.; Overeem, I.; Jafarov, E. E.; Piper, M.; Stewart, S.; Clow, G. D.; Schaefer, K. M.
2017-12-01
We developed a permafrost modeling tool based by implementing the Kudryavtsev empirical permafrost active layer depth model (the so-called "Ku" component). The model is specifically set up to have a basic model interface (BMI), which enhances the potential coupling to other earth surface processes model components. This model is accessible through the Web Modeling Tool in Community Surface Dynamics Modeling System (CSDMS). The Kudryavtsev model has been applied for entire Alaska to model permafrost distribution at high spatial resolution and model predictions have been verified by Circumpolar Active Layer Monitoring (CALM) in-situ observations. The Ku component uses monthly meteorological forcing, including air temperature, snow depth, and snow density, and predicts active layer thickness (ALT) and temperature on the top of permafrost (TTOP), which are important factors in snow-hydrological processes. BMI provides an easy approach to couple the models with each other. Here, we provide a case of coupling the Ku component to snow process components, including the Snow-Degree-Day (SDD) method and Snow-Energy-Balance (SEB) method, which are existing components in the hydrological model TOPOFLOW. The work flow is (1) get variables from meteorology component, set the values to snow process component, and advance the snow process component, (2) get variables from meteorology and snow component, provide these to the Ku component and advance, (3) get variables from snow process component, set the values to meteorology component, and advance the meteorology component. The next phase is to couple the permafrost component with fully BMI-compliant TOPOFLOW hydrological model, which could provide a useful tool to investigate the permafrost hydrological effect.
Development and Evaluation of a Cloud-Gap-Filled MODIS Daily Snow-Cover Product
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Riggs, George A.; Foster, James L.; Kumar, Sujay V.
2010-01-01
The utility of the Moderate Resolution Imaging Spectroradiometer (MODIS) snow-cover products is limited by cloud cover which causes gaps in the daily snow-cover map products. We describe a cloud-gap-filled (CGF) daily snowcover map using a simple algorithm to track cloud persistence, to account for the uncertainty created by the age of the snow observation. Developed from the 0.050 resolution climate-modeling grid daily snow-cover product, MOD10C1, each grid cell of the CGF map provides a cloud-persistence count (CPC) that tells whether the current or a prior day was used to make the snow decision. Percentage of grid cells "observable" is shown to increase dramatically when prior days are considered. The effectiveness of the CGF product is evaluated by conducting a suite of data assimilation experiments using the community Noah land surface model in the NASA Land Information System (LIS) framework. The Noah model forecasts of snow conditions, such as snow-water equivalent (SWE), are updated based on the observations of snow cover which are obtained either from the MOD1 OC1 standard product or the new CGF product. The assimilation integrations using the CGF maps provide domain averaged bias improvement of -11 %, whereas such improvement using the standard MOD1 OC1 maps is -3%. These improvements suggest that the Noah model underestimates SWE and snow depth fields, and that the assimilation integrations contribute to correcting this systematic error. We conclude that the gap-filling strategy is an effective approach for increasing cloud-free observations of snow cover.
Towards the Development of a Global, Satellite-based, Terrestrial Snow Mission Planning Tool
NASA Technical Reports Server (NTRS)
Forman, Bart; Kumar, Sujay; Le Moigne, Jacqueline; Nag, Sreeja
2017-01-01
A global, satellite-based, terrestrial snow mission planning tool is proposed to help inform experimental mission design with relevance to snow depth and snow water equivalent (SWE). The idea leverages the capabilities of NASAs Land Information System (LIS) and the Tradespace Analysis Tool for Constellations (TAT C) to harness the information content of Earth science mission data across a suite of hypothetical sensor designs, orbital configurations, data assimilation algorithms, and optimization and uncertainty techniques, including cost estimates and risk assessments of each hypothetical orbital configuration.One objective the proposed observing system simulation experiment (OSSE) is to assess the complementary or perhaps contradictory information content derived from the simultaneous collection of passive microwave (radiometer), active microwave (radar), and LIDAR observations from space-based platforms. The integrated system will enable a true end-to-end OSSE that can help quantify the value of observations based on their utility towards both scientific research and applications as well as to better guide future mission design. Science and mission planning questions addressed as part of this concept include:1. What observational records are needed (in space and time) to maximize terrestrial snow experimental utility?2. How might observations be coordinated (in space and time) to maximize utility? 3. What is the additional utility associated with an additional observation?4. How can future mission costs being minimized while ensuring Science requirements are fulfilled?
Towards the Development of a Global, Satellite-Based, Terrestrial Snow Mission Planning Tool
NASA Technical Reports Server (NTRS)
Forman, Bart; Kumar, Sujay; Le Moigne, Jacqueline; Nag, Sreeja
2017-01-01
A global, satellite-based, terrestrial snow mission planning tool is proposed to help inform experimental mission design with relevance to snow depth and snow water equivalent (SWE). The idea leverages the capabilities of NASA's Land Information System (LIS) and the Tradespace Analysis Tool for Constellations (TAT-C) to harness the information content of Earth science mission data across a suite of hypothetical sensor designs, orbital configurations, data assimilation algorithms, and optimization and uncertainty techniques, including cost estimates and risk assessments of each hypothetical permutation. One objective of the proposed observing system simulation experiment (OSSE) is to assess the complementary or perhaps contradictory information content derived from the simultaneous collection of passive microwave (radiometer), active microwave (radar), and LIDAR observations from space-based platforms. The integrated system will enable a true end-to-end OSSE that can help quantify the value of observations based on their utility towards both scientific research and applications as well as to better guide future mission design. Science and mission planning questions addressed as part of this concept include: What observational records are needed (in space and time) to maximize terrestrial snow experimental utility? How might observations be coordinated (in space and time) to maximize this utility? What is the additional utility associated with an additional observation? How can future mission costs be minimized while ensuring Science requirements are fulfilled?
[Research on hyperspectral remote sensing in monitoring snow contamination concentration].
Tang, Xu-guang; Liu, Dian-wei; Zhang, Bai; Du, Jia; Lei, Xiao-chun; Zeng, Li-hong; Wang, Yuan-dong; Song, Kai-shan
2011-05-01
Contaminants in the snow can be used to reflect regional and global environmental pollution caused by human activities. However, so far, the research on space-time monitoring of snow contamination concentration for a wide range or areas difficult for human to reach is very scarce. In the present paper, based on the simulated atmospheric deposition experiments, the spectroscopy technique method was applied to analyze the effect of different contamination concentration on the snow reflectance spectra. Then an evaluation of snow contamination concentration (SCC) retrieval methods was conducted using characteristic index method (SDI), principal component analysis (PCA), BP neural network and RBF neural network method, and the estimate effects of four methods were compared. The results showed that the neural network model combined with hyperspectral remote sensing data could estimate the SCC well.
Extracting fields snow coverage information with HJ-1A/B satellites data
NASA Astrophysics Data System (ADS)
Dong, Wenquan; Meng, Jihua
2015-10-01
The distribution and change of snow coverage are sensitive factors of climate change. In northeast part of China, farmlands are still covered with snow in spring. Since sowing activity can only be done when the snow melted, fields snow coverage monitoring provides reference for the determination of sowing date. Because of the restriction of the sensors and application requirements, current researches on remote sensing of snow focus more on the study of musicale and large scale, rather than the study of small scale, and especially research on snow melting period is rarely reported.HJ-1A/B satellites are parts of little satellite constellation, focusing on environment and disaster monitoring and meteorological forecast. Compared to other data sources, HJ-1A/B satellites both have comparatively higher temporal and spatial resolution and are more conducive to monitor the variations of melting snow coverage at small watershed. This paper was based on HJ-1A/1B data, taking Hongxing farm of Bei'an, Heilongjiang Province, China as the study area. In this paper, we exploited the methods for extraction of snow cover information on farmland in two cases, both HJ-1A/1B CCD with HJ-1B IRS data and just HJ-1A/1B CCD data. The reason we chose the two cases is that, the two optical satellites HJ-1A/B are capable of providing a whole territory coverage period in visible light spectrum in two days, infrared spectrum in four days. So sometimes we can only obtain CCD image. In this case, the method of normalized snow index cannot be used to extract snow coverage information. Using HJ-1A/1B CCD with HJ-1B IRS data, combined with the theory of snow remote sensing monitoring, this paper analyzed spectral response characteristics of HJ-1A/1B satellites data, then the widely used Normalized Difference Snow Index(NDSI) and S3 Index were quoted to the HJ-1A/1B satellites data. The NDSI uses reflectance values of Red and SWIR spectral bands of HJ-1B, and S3 index uses reflectance values of NIR, Red and SWIR spectral bands. With multi-temporal HJ satellite data, the optimal threshold of normalized snow index was determined to divide the farmland into snow covering area, melting snow area and non-snow area. The results are quite similar to each other and of high accuracy, and the melting snow coverage can be well extracted by two types of normalized snow index. When we can only obtain CCD image, we use supervised classification method to extract melting snow coverage. With this method, the accuracy of fields snow coverage extraction is slightly lower than that using normalized snow index methods mentioned above. And in mountain area, the snow coverage area is slightly larger than that is extracted by normalized snow index methods, because the shadows make the color of snow in the valley darker, the supervised classification method divides it into non-snow coverage area, while the normalized snow index method well weakened the effect of shadow. This study shows that extraction accuracy in both cases is assessed, and both of them can meet the needs of practical applications. HJ-1A/1B satellites are conducive to monitor the variations of melting snow coverage over farmland, and they can provide reference for the determination of sowing date.
On the Impact of Snow Salinity on CryoSat-2 First-Year Sea Ice Thickness Retrievals
NASA Astrophysics Data System (ADS)
Nandan, V.; Yackel, J.; Geldsetzer, T.; Mahmud, M.
2017-12-01
European Space Agency's Ku-band altimeter CryoSat-2 (CS-2) has demonstrated its potential to provide extensive basin-scale spatial and temporal measurements of Arctic sea ice freeboard. It is assumed that CS-2 altimetric returns originate from the snow/sea ice interface (assumed to be the main scattering horizon). However, in newly formed thin ice ( 0.6 m) through to thick first-year sea ice (FYI) ( 2 m), upward wicking of brine into the snow cover from the underlying sea ice surface produces saline snow layers, especially in the bottom 6-8 cm of a snow cover. This in turn modifies the brine volume at/or near the snow/sea ice interface, altering the dielectric and scattering properties of the snow cover, leading to strong Ku-band microwave attenuation within the upper snow volume. Such significant reductions in Ku-band penetration may substantially affect CS-2 FYI freeboard retrievals. Therefore, the goal of this study is to evaluate a theoretical approach to estimate snow salinity induced uncertainty on CS-2 Arctic FYI freeboard measurements. Using the freeboard-to-thickness hydrostatic equilibrium equation, we quantify the error differences between the CS-2 FYI thickness, (assuming complete penetration of CS-2 radar signals to the snow/FYI interface), and the FYI thickness based on the modeled Ku-band main scattering horizon for different snow cover cases. We utilized naturally occurring saline and non-saline snow cover cases ranging between 6 cm to 32 cm from the Canadian Arctic, observed during late-winter from 1993 to 2017, on newly-formed ice ( 0.6 m), medium ( 1.5 m) and thick FYI ( 2 m). Our results suggest that irrespective of the thickness of the snow cover overlaying FYI, the thickness of brine-wetted snow layers and actual FYI freeboard strongly influence the amount with which CS-2 FYI freeboard estimates and thus thickness calculations are overestimated. This effect is accentuated for increasingly thicker saline snow covers overlaying newly-formed ice, which accounted to an overestimated FYI thickness by 250%, when compared to 80% overestimations on thinner saline snow covers, and the error reduces with increase in FYI thickness. Our study recommends the CS-2 sea ice community to add snow salinity as a potential error source, affecting CS-2 Arctic FYI freeboard and thickness retrievals.
Photopolarimetric Retrievals of Snow Properties
NASA Technical Reports Server (NTRS)
Ottaviani, M.; van Diedenhoven, B.; Cairns, B.
2015-01-01
Polarimetric observations of snow surfaces, obtained in the 410-2264 nm range with the Research Scanning Polarimeter onboard the NASA ER-2 high-altitude aircraft, are analyzed and presented. These novel measurements are of interest to the remote sensing community because the overwhelming brightness of snow plagues aerosol and cloud retrievals based on airborne and spaceborne total reflection measurements. The spectral signatures of the polarized reflectance of snow are therefore worthwhile investigating in order to provide guidance for the adaptation of algorithms currently employed for the retrieval of aerosol properties over soil and vegetated surfaces. At the same time, the increased information content of polarimetric measurements allows for a meaningful characterization of the snow medium. In our case, the grains are modeled as hexagonal prisms of variable aspect ratios and microscale roughness, yielding retrievals of the grains' scattering asymmetry parameter, shape and size. The results agree with our previous findings based on a more limited data set, with the majority of retrievals leading to moderately rough crystals of extreme aspect ratios, for each scene corresponding to a single value of the asymmetry parameter.
Assessing the benefit of snow data assimilation for runoff modeling in Alpine catchments
NASA Astrophysics Data System (ADS)
Griessinger, Nena; Seibert, Jan; Magnusson, Jan; Jonas, Tobias
2016-09-01
In Alpine catchments, snowmelt is often a major contribution to runoff. Therefore, modeling snow processes is important when concerned with flood or drought forecasting, reservoir operation and inland waterway management. In this study, we address the question of how sensitive hydrological models are to the representation of snow cover dynamics and whether the performance of a hydrological model can be enhanced by integrating data from a dedicated external snow monitoring system. As a framework for our tests we have used the hydrological model HBV (Hydrologiska Byråns Vattenbalansavdelning) in the version HBV-light, which has been applied in many hydrological studies and is also in use for operational purposes. While HBV originally follows a temperature-index approach with time-invariant calibrated degree-day factors to represent snowmelt, in this study the HBV model was modified to use snowmelt time series from an external and spatially distributed snow model as model input. The external snow model integrates three-dimensional sequential assimilation of snow monitoring data with a snowmelt model, which is also based on the temperature-index approach but uses a time-variant degree-day factor. The following three variations of this external snow model were applied: (a) the full model with assimilation of observational snow data from a dense monitoring network, (b) the same snow model but with data assimilation switched off and (c) a downgraded version of the same snow model representing snowmelt with a time-invariant degree-day factor. Model runs were conducted for 20 catchments at different elevations within Switzerland for 15 years. Our results show that at low and mid-elevations the performance of the runoff simulations did not vary considerably with the snow model version chosen. At higher elevations, however, best performance in terms of simulated runoff was obtained when using the snowmelt time series from the snow model, which utilized data assimilation. This was especially true for snow-rich years. These findings suggest that with increasing elevation and the correspondingly increased contribution of snowmelt to runoff, the accurate estimation of snow water equivalent (SWE) and snowmelt rates has gained importance.
Soil erosion by snow gliding - a first quantification attempt in a subalpine area in Switzerland
NASA Astrophysics Data System (ADS)
Meusburger, K.; Leitinger, G.; Mabit, L.; Mueller, M. H.; Walter, A.; Alewell, C.
2014-09-01
Snow processes might be one important driver of soil erosion in Alpine grasslands and thus the unknown variable when erosion modelling is attempted. The aim of this study is to assess the importance of snow gliding as a soil erosion agent for four different land use/land cover types in a subalpine area in Switzerland. We used three different approaches to estimate soil erosion rates: sediment yield measurements in snow glide depositions, the fallout radionuclide 137Cs and modelling with the Revised Universal Soil Loss Equation (RUSLE). RUSLE permits the evaluation of soil loss by water erosion, the 137Cs method integrates soil loss due to all erosion agents involved, and the measurement of snow glide deposition sediment yield can be directly related to snow-glide-induced erosion. Further, cumulative snow glide distance was measured for the sites in the winter of 2009/2010 and modelled for the surrounding area and long-term average winter precipitation (1959-2010) with the spatial snow glide model (SSGM). Measured snow glide distance confirmed the presence of snow gliding and ranged from 2 to 189 cm, with lower values on the north-facing slopes. We observed a reduction of snow glide distance with increasing surface roughness of the vegetation, which is an important information with respect to conservation planning and expected and ongoing land use changes in the Alps. Snow glide erosion estimated from the snow glide depositions was highly variable with values ranging from 0.03 to 22.9 t ha-1 yr-1 in the winter of 2012/2013. For sites affected by snow glide deposition, a mean erosion rate of 8.4 t ha-1 yr-1 was found. The difference in long-term erosion rates determined with RUSLE and 137Cs confirms the constant influence of snow-glide-induced erosion, since a large difference (lower proportion of water erosion compared to total net erosion) was observed for sites with high snow glide rates and vice versa. Moreover, the difference between RUSLE and 137Cs erosion rates was related to the measured snow glide distance (R2 = 0.64; p < 0.005) and to the snow deposition sediment yields (R2 = 0.39; p = 0.13). The SSGM reproduced the relative difference of the measured snow glide values under different land uses and land cover types. The resulting map highlighted the relevance of snow gliding for large parts of the investigated area. Based on these results, we conclude that snow gliding appears to be a crucial and non-negligible process impacting soil erosion patterns and magnitude in subalpine areas with similar topographic and climatic conditions.
T.E. Osterkamp; M.T. Jorgenson; E.A.G. Schuur; Y.L. Shur; M.Z. Kanevskiy; J.G. Vogel; V.E. Tumskoy
2009-01-01
Observations and measurements were made of physical and ecological changes that have occurred since 1985 at a tundra site near Healy, Alaska. Air temperatures decreased (1985 through 1999) while permafrost warmed and thawed creating thermokarst terrain, probably as a result of increased snow depths. Permafrost, active layer and ground-ice conditions at the Healy site...
Percentage Contributions from Atmospheric and Surface Features to Computed Brightness Temperatures
NASA Technical Reports Server (NTRS)
Jackson, Gail Skofronick
2006-01-01
Over the past few years, there has become an increasing interest in the use of millimeter-wave (mm-wave) and sub-millimeter-wave (submm-wave) radiometer observations to investigate the properties of ice particles in clouds. Passive radiometric channels respond to both the integrated particle mass throughout the volume and field of view, and to the amount, location, and size distribution of the frozen (and liquid) particles with the sensitivity varying for different frequencies and hydrometeor types. One methodology used since the 1960's to discern the relationship between the physical state observed and the brightness temperature (TB) is through the temperature weighting function profile. In this research, the temperature weighting function concept is exploited to analyze the sensitivity of various characteristics of the cloud profile, such as relative humidity, ice water path, liquid water path, and surface emissivity. In our numerical analysis, we compute the contribution (in Kelvin) from each of these cloud and surface characteristics, so that the sum of these various parts equals the computed TB. Furthermore, the percentage contribution from each of these characteristics is assessed. There is some intermingling/contamination of the contributions from various components due to the integrated nature of passive observations and the absorption and scattering between the vertical layers, but all in all the knowledge gained is useful. This investigation probes the sensitivity over several cloud classifications, such as cirrus, blizzards, light snow, anvil clouds, and heavy rain. The focus is on mm-wave and submm-wave frequencies, however discussions of the effects of cloud variations to frequencies as low as 10 GHz and up to 874 GHz will also be presented. The results show that nearly 60% of the TB value at 89 GHz comes from the earth's surface for even the heaviest blizzard snow rates. On the other hand, a significant percentage of the TB value comes from the snow in the cloud for 166, and 183 plus or minus 7 GHz for the heavy and medium snow rates. For submm-wave channels, there is no contribution from the surface because these channels cannot probe through clouds, nor normal water vapor amounts in clear air regions. This work is extremely valuable in physically-based retrieval algorithm development research.
Airborne Spectral Measurements of Surface-Atmosphere Anisotropy for Arctic Sea Ice and Tundra
NASA Technical Reports Server (NTRS)
Arnold, G. Thomas; Tsay, Si-Chee; King, Michael D.; Li, Jason Y.; Soulen, Peter F.
1999-01-01
Angular distributions of spectral reflectance for four common arctic surfaces: snow-covered sea ice, melt-season sea ice, snow-covered tundra, and tundra shortly after snowmelt were measured using an aircraft based, high angular resolution (1-degree) multispectral radiometer. Results indicate bidirectional reflectance is higher for snow-covered sea ice than melt-season sea ice at all wavelengths between 0.47 and 2.3 pm, with the difference increasing with wavelength. Bidirectional reflectance of snow-covered tundra is higher than for snow-free tundra for measurements less than 1.64 pm, with the difference decreasing with wavelength. Bidirectional reflectance patterns of all measured surfaces show maximum reflectance in the forward scattering direction of the principal plane, with identifiable specular reflection for the melt-season sea ice and snow-free tundra cases. The snow-free tundra had the most significant backscatter, and the melt-season sea ice the least. For sea ice, bidirectional reflectance changes due to snowmelt were more significant than differences among the different types of melt-season sea ice. Also the spectral-hemispherical (plane) albedo of each measured arctic surface was computed. Comparing measured nadir reflectance to albedo for sea ice and snow-covered tundra shows albedo underestimated 5-40%, with the largest bias at wavelengths beyond 1 pm. For snow-free tundra, nadir reflectance underestimates plane albedo by about 30-50%.
Spatiotemporal dynamics of snow cover based on multi-source remote sensing data in China
NASA Astrophysics Data System (ADS)
Huang, Xiaodong; Deng, Jie; Ma, Xiaofang; Wang, Yunlong; Feng, Qisheng; Hao, Xiaohua; Liang, Tiangang
2016-10-01
By combining optical remote sensing snow cover products with passive microwave remote sensing snow depth (SD) data, we produced a MODIS (Moderate Resolution Imaging Spectroradiometer) cloudless binary snow cover product and a 500 m snow depth product. The temporal and spatial variations of snow cover from December 2000 to November 2014 in China were analyzed. The results indicate that, over the past 14 years, (1) the mean snow-covered area (SCA) in China was 11.3 % annually and 27 % in the winter season, with the mean SCA decreasing in summer and winter seasons, increasing in spring and fall seasons, and not much change annually; (2) the snow-covered days (SCDs) showed an increase in winter, spring, and fall, and annually, whereas they showed a decrease in summer; (3) the average SD decreased in winter, summer, and fall, while it increased in spring and annually; (4) the spatial distributions of SD and SCD were highly correlated seasonally and annually; and (5) the regional differences in the variation of snow cover in China were significant. Overall, the SCD and SD increased significantly in south and northeast China, and decreased significantly in the north of Xinjiang province. The SCD and SD increased on the southwest edge and in the southeast part of the Tibetan Plateau, whereas it decreased in the north and northwest regions.
Effects of snow grain non-sphericity on climate simulations: Sensitivity tests with the NorESM model
NASA Astrophysics Data System (ADS)
Räisänen, Petri; Makkonen, Risto; Kirkevåg, Alf
2017-04-01
Snow grains are non-spherical and generally irregular in shape. Still, in radiative transfer calculations, they are often treated as spheres. This also applies to the computation of snow albedo in the Snow, Ice, and Aerosol Radiation (SNICAR) model and in the Los Alamos sea ice model, version 4 (CICE4), both of which are employed in the Community Earth System Model and in the Norwegian Earth System Model (NorESM). In this work, we evaluate the effect of snow grain shape on climate simulated by NorESM in a slab ocean configuration of the model. An experiment with spherical snow grains (SPH) is compared with another (NONSPH) in which the snow shortwave single-scattering properties are based on a combination of non-spherical snow grain shapes optimized using measurements of angular scattering by blowing snow. The key difference between these treatments is that the asymmetry parameter is smaller in the non-spherical case (≈ 0.78 in the visible region) than in the spherical case (≈ 0.89). Therefore, for a given snow grain size, the use of non-spherical snow grains yields a higher snow broadband albedo, typically by ≈0.03. Consequently, considering the spherical case as the baseline, the use of non-spherical snow grains results in a negative radiative forcing (RF), with a global-mean top-of-the-model value of ≈ -0.22 W m-2. Although this global-mean RF is modest, it has a rather substantial impact on the climate simulated by NoRESM. In particular, the global annual-mean 2-m air temperature in NONSPH is 1.17 K lower than in SPH, with substantially larger differences at high latitudes. The climatic response is amplified by strong snow and sea ice feedbacks. It is further found that the difference between NONSPH and SPH could be largely "tuned away" by adjusting the snow grain size in the NONSPH experiment by ≈ 70%. The impact of snow grain shape on the radiative effect (RE) of absorbing aerosols in snow (black carbon and mineral dust) is also discussed. For an optically thick snowpack with a given snow grain effective size, the absorbing aerosol RE is smaller for non-spherical than for spherical snow grains. The reason for this is that due to the lower asymmetry parameter of the non-spherical snow grains, solar radiation does not penetrate as deep in snow as in the case of spherical snow grains. However, in a climate model simulation, the RE is sensitive to patterns of aerosol deposition and simulated snow cover. In fact, the global land-area mean absorbing aerosol RE is larger in the NONSPH than SPH experiment (0.193 vs. 0.168 W m-2), owing to later snowmelt in spring.