Causality: Physics and Philosophy
ERIC Educational Resources Information Center
Chatterjee, Atanu
2013-01-01
Nature is a complex causal network exhibiting diverse forms and species. These forms or rather systems are physically open, structurally complex and naturally adaptive. They interact with the surrounding media by operating a positive-feedback loop through which, they adapt, organize and self-organize themselves in response to the ever-changing…
Breaking news dissemination in the media via propagation behavior based on complex network theory
NASA Astrophysics Data System (ADS)
Liu, Nairong; An, Haizhong; Gao, Xiangyun; Li, Huajiao; Hao, Xiaoqing
2016-07-01
The diffusion of breaking news largely relies on propagation behaviors in the media. The tremendous and intricate propagation relationships in the media form a complex network. An improved understanding of breaking news diffusion characteristics can be obtained through the complex network research. Drawing on the news data of Bohai Gulf oil spill event from June 2011 to May 2014, we constructed a weighted and directed complex network in which media are set as nodes, the propagation relationships as edges and the propagation times as the weight of the edges. The primary results show (1) the propagation network presents small world feature, which means relations among media are close and breaking news originating from any node can spread rapidly; (2) traditional media and official websites are the typical sources for news propagation, while business portals are news collectors and spreaders; (3) the propagation network is assortative and the group of core media facilities the spread of breaking news faster; (4) for online media, news originality factor become less important to propagation behaviors. This study offers a new insight to explore information dissemination from the perspective of statistical physics and is beneficial for utilizing the public opinion in a positive way.
ERIC Educational Resources Information Center
Shriver, Eunice Kennedy
2008-01-01
The Media-Smart Youth: Eat, Think, and Be Active! program is an engaging curriculum that helps young people understand the complex media world around them so they can make thoughtful decisions about issues important to their health, specifically nutrition and physical activity. This training guide was developed in response to the requests of…
Utilizing media arts principles for developing effective interactive neurorehabilitation systems.
Rikakis, Thanassis
2011-01-01
This paper discusses how interactive neurorehabilitation systems can increase their effectiveness through systematic integration of media arts principles and practice. Media arts expertise can foster the development of complex yet intuitive extrinsic feedback displays that match the inherent complexity and intuitive nature of motor learning. Abstract, arts-based feedback displays can be powerful metaphors that provide re-contextualization, engagement and appropriate reward mechanisms for mature adults. Such virtual feedback displays must be seamlessly integrated with physical components to produce mixed reality training environments that promote active, generalizable learning. The proposed approaches are illustrated through examples from mixed reality rehabilitation systems developed by our team.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Condamines, N.; Musikas, C.; Turq, P.
1993-04-01
The non-ideality of multicomponent media are difficult to describe, especially for situations as complex as the extraction of metals into organic media. We present a simplified model which takes into account hard-sphere' effects and physical interactions between some solutes of the studied media in the case of actinide ions liquid-liquid extraction. We focus our interest on N,N-dialkylamides extractants which have a strong non-ideal behaviour. 24 refs., 10 figs., 6 tabs.
NASA Astrophysics Data System (ADS)
Li, Weiyao; Huang, Guanhua; Xiong, Yunwu
2016-04-01
The complexity of the spatial structure of porous media, randomness of groundwater recharge and discharge (rainfall, runoff, etc.) has led to groundwater movement complexity, physical and chemical interaction between groundwater and porous media cause solute transport in the medium more complicated. An appropriate method to describe the complexity of features is essential when study on solute transport and conversion in porous media. Information entropy could measure uncertainty and disorder, therefore we attempted to investigate complexity, explore the contact between the information entropy and complexity of solute transport in heterogeneous porous media using information entropy theory. Based on Markov theory, two-dimensional stochastic field of hydraulic conductivity (K) was generated by transition probability. Flow and solute transport model were established under four conditions (instantaneous point source, continuous point source, instantaneous line source and continuous line source). The spatial and temporal complexity of solute transport process was characterized and evaluated using spatial moment and information entropy. Results indicated that the entropy increased as the increase of complexity of solute transport process. For the point source, the one-dimensional entropy of solute concentration increased at first and then decreased along X and Y directions. As time increased, entropy peak value basically unchanged, peak position migrated along the flow direction (X direction) and approximately coincided with the centroid position. With the increase of time, spatial variability and complexity of solute concentration increase, which result in the increases of the second-order spatial moment and the two-dimensional entropy. Information entropy of line source was higher than point source. Solute entropy obtained from continuous input was higher than instantaneous input. Due to the increase of average length of lithoface, media continuity increased, flow and solute transport complexity weakened, and the corresponding information entropy also decreased. Longitudinal macro dispersivity declined slightly at early time then rose. Solute spatial and temporal distribution had significant impacts on the information entropy. Information entropy could reflect the change of solute distribution. Information entropy appears a tool to characterize the spatial and temporal complexity of solute migration and provides a reference for future research.
An analysis of electrical conductivity model in saturated porous media
NASA Astrophysics Data System (ADS)
Cai, J.; Wei, W.; Qin, X.; Hu, X.
2017-12-01
Electrical conductivity of saturated porous media has numerous applications in many fields. In recent years, the number of theoretical methods to model electrical conductivity of complex porous media has dramatically increased. Nevertheless, the process of modeling the spatial conductivity distributed function continues to present challenges when these models used in reservoirs, particularly in porous media with strongly heterogeneous pore-space distributions. Many experiments show a more complex distribution of electrical conductivity data than the predictions derived from the experiential model. Studies have observed anomalously-high electrical conductivity of some low-porosity (tight) formations compared to more- porous reservoir rocks, which indicates current flow in porous media is complex and difficult to predict. Moreover, the change of electrical conductivity depends not only on the pore volume fraction but also on several geometric properties of the more extensive pore network, including pore interconnection and tortuosity. In our understanding of electrical conductivity models in porous media, we study the applicability of several well-known methods/theories to electrical characteristics of porous rocks as a function of pore volume, tortuosity and interconnection, to estimate electrical conductivity based on the micro-geometrical properties of rocks. We analyze the state of the art of scientific knowledge and practice for modeling porous structural systems, with the purpose of identifying current limitations and defining a blueprint for future modeling advances. We compare conceptual descriptions of electrical current flow processes in pore space considering several distinct modeling approaches. Approaches to obtaining more reasonable electrical conductivity models are discussed. Experiments suggest more complex relationships between electrical conductivity and porosity than experiential models, particularly in low-porosity formations. However, the available theoretical models combined with simulations do provide insight to how microscale physics affects macroscale electrical conductivity in porous media.
NASA Astrophysics Data System (ADS)
Georgakopoulos, A.; Politopoulos, K.; Georgiou, E.
2018-03-01
A new dynamic-system approach to the problem of radiative transfer inside scattering and absorbing media is presented, directly based on first-hand physical principles. This method, the Dynamic Radiative Transfer System (DRTS), employs a dynamical system formality using a global sparse matrix, which characterizes the physical, optical and geometrical properties of the material-volume of interest. The new system state is generated by the above time-independent matrix, using simple matrix-vector multiplication for each subsequent time step. DRTS is capable of calculating accurately the time evolution of photon propagation in media of complex structure and shape. The flexibility of DRTS allows the integration of time-dependent sources, boundary conditions, different media and several optical phenomena like reflection and refraction in a unified and consistent way. Various examples of DRTS simulation results are presented for ultra-fast light pulse 3-D propagation, demonstrating greatly reduced computational cost and resource requirements compared to other methods.
Ye, Yong-Jun; Zhang, Yun-Feng; Dai, Xin-Tao; Ding, De-Xin
2017-10-01
The particle size and heaped methods of exhalation media have important effects on physical parameters, such as the free radon production rate, porosity, permeability, and radon diffusion coefficient. However, existing methods for determining those parameters are too complex, and time-consuming. In this study, a novel, systematic determining method was proposed based on nuclide decay, radon diffusion migration theory, and the mass conservation law, and an associated experimental device was designed and manufactured. The parameters of uranium ore heap and sandy soil of radon diffusion coefficient (D), free radon production rate (α), media permeability (k), and porosity (ε) were obtained. At the same time, the practicality of the novel determining method was improved over other methods, with the results showing that accuracy was within the acceptable range of experimental error. This novel method will be of significance for the study of radon migration and exhalation in granulated porous media. Copyright © 2017 Elsevier Ltd. All rights reserved.
Proceedings for Lunch and Learn: Making science fun and exciting through social media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biron, Lauren; Haffner, Julie; Nellist, Clara
Social media channels are vital for outreach and offer huge opportunities for scientists to directly engage with the public using nontraditional methods – including lots of creativity and humor. The physics community’s presence is growing more significant, and this session (designed for early career researchers) provided a lively discussion with experts in the domain. We covered how to best use social media to raise public awareness of science, share excitement and progress, and cultivate support from followers. We also discussed some of the thornier issues in social media, such as capturing the complexity of both the scientific process and themore » science itself.« less
Body image, eating disorders, and the media.
Hogan, Marjorie J; Strasburger, Victor C
2008-12-01
Adolescence is a time of tremendous change in physical appearance. Many adolescents report dissatisfaction with their body shape and size. Forming one's body image is a complex process, influenced by family, peers, and media messages. Increasing evidence shows that the combination of ubiquitous ads for foods and emphasis on female beauty and thinness in both advertising and programming leads to confusion and dissatisfaction for many young people. Sociocultural factors, specifically media exposure, play an important role in the development of disordered body image. Of significant concern, studies have revealed a link between media exposure and the likelihood of having symptoms of disordered eating or a frank eating disorder. Pediatricians and other adults must work to promote media education and make media healthier for young people. More research is needed to identify the most vulnerable children and adolescents.
NASA Astrophysics Data System (ADS)
Xu, Hua-wei; Feng, Chen
2017-04-01
The rapid development of new media has exacerbated the complexity of urban street space’s information interaction. With the influence of the immersion communication, the streetscape has constructed a special scene like ‘media convergence’, which has brought a huge challenge for maintaining the urban streetscape order. The Spatial Visual Communication Research Method which should break the limitation of the traditional aesthetic space research, can provide a brand new prospect for this phenomenon research. This study aims to analyze and summarize the communication characteristics of new media and its context, which will be helpful for understanding the social meaning within the order change of the street’s spatial and physical environment.
Media use, sports activities, and motor fitness in childhood and adolescence.
Kaiser-Jovy, Sebastian; Scheu, Anja; Greier, Klaus
2017-07-01
Physical activity is one of the key determinants of physical, mental, and social health of children and adolescents. Therefore, the early development of health-relevant behavior patterns is of high relevance. To examine the impact of selected socioeconomic factors as well as media consumption, on sports activities and the motor skills of 10- to 14-year-old secondary school students. Body height and body weight were measured. The motor skills were determined with the Deutschen Motorik Test (DMT 6‑18; German Motor Test). Information about media use, media equipment, recreational sports activities, migration status, and the parents' profession was collected by means of a standardized questionnaire. A total of 391 adolescents have been tested (male 235; female 156). Body mass index (BMI) types are evenly distributed on gender. On a weekday, the pupils spend 10.3 h using media (SD ± 9.1 h). On weekends, media use increases up to 12 h per day on average (SD ± 9.7 h). The number of available media is independent from the age of the respondents and the social status of their families. According to bivariate correlations, heavy media use, a high BMI as well as migration status correlate negatively with both sports activities and motor skills. BMI seems to have the strongest influence on athletic performance (b = 0.41). Media use is an important determinant of juvenile sports activity and motor performance, being part of a complex juvenile leisure behavior.
Xu, Wenxiang; Duan, Qinglin; Ma, Huaifa; Chen, Wen; Chen, Huisu
2015-11-02
Interfaces are known to be crucial in a variety of fields and the interfacial volume fraction dramatically affects physical properties of composite media. However, it is an open problem with great significance how to determine the interfacial property in composite media with inclusions of complex geometry. By the stereological theory and the nearest-surface distribution functions, we first propose a theoretical framework to symmetrically present the interfacial volume fraction. In order to verify the interesting generalization, we simulate three-phase composite media by employing hard-core-soft-shell structures composed of hard mono-/polydisperse non-spherical particles, soft interfaces, and matrix. We numerically derive the interfacial volume fraction by a Monte Carlo integration scheme. With the theoretical and numerical results, we find that the interfacial volume fraction is strongly dependent on the so-called geometric size factor and sphericity characterizing the geometric shape in spite of anisotropic particle types. As a significant interfacial property, the present theoretical contribution can be further drawn into predicting the effective transport properties of composite materials.
Xu, Wenxiang; Duan, Qinglin; Ma, Huaifa; Chen, Wen; Chen, Huisu
2015-01-01
Interfaces are known to be crucial in a variety of fields and the interfacial volume fraction dramatically affects physical properties of composite media. However, it is an open problem with great significance how to determine the interfacial property in composite media with inclusions of complex geometry. By the stereological theory and the nearest-surface distribution functions, we first propose a theoretical framework to symmetrically present the interfacial volume fraction. In order to verify the interesting generalization, we simulate three-phase composite media by employing hard-core-soft-shell structures composed of hard mono-/polydisperse non-spherical particles, soft interfaces, and matrix. We numerically derive the interfacial volume fraction by a Monte Carlo integration scheme. With the theoretical and numerical results, we find that the interfacial volume fraction is strongly dependent on the so-called geometric size factor and sphericity characterizing the geometric shape in spite of anisotropic particle types. As a significant interfacial property, the present theoretical contribution can be further drawn into predicting the effective transport properties of composite materials. PMID:26522701
NASA Astrophysics Data System (ADS)
Doute, S.; Schmitt, B.
2004-05-01
Visible and near infrared imaging spectroscopy is one of the key techniques to detect, map and characterize mineral and volatile species existing at the surface of the planets. Indeed the chemical composition, granularity, texture, physical state, etc, of the materials determine the existence and morphology of the absorption bands. However the development of quantitative methods to analyze reflectance spectra requires mastering of a very challenging physics: the reflection of solar light by densely packed, absorbent and highly scattering materials that usually present a fantastic structural complexity at different spatial scales. Volume scattering of photons depends on many parameters like the intrinsic optical properties, the shapes, sizes and the packing density of the mineral or icy grains forming the natural media. Their discontinuous and stochastic nature plays a great role especially for reflection and shading by the top few grains of the surface. Over several decades, the planetary community has developed increasingly sophisticated tools to handle this problem of radiative transfer in dense complex media in order to fulfill its needs. Analytical functions with a small number of non physical adjusting parameters were first proposed to reproduce the photometry of the planets and satellites. Then reflectance models were built by implementing methods of radiative transfer in continuously absorbent and scattering medium. A number of very restricting hypothesis forms the basis of these methods, e.g. low particles density, scattering treated in the far field approximation. A majority of these assumptions does not stand when treating planetary regoliths or volatile deposits. In addition, the classical methods completely bypass effects due to the constructive interference of scattered waves for backscattering or specular geometries (e.g. the opposition effect). Different, sometimes competing, approaches have been proposed to overcome some of these limitations. In particular Monte Carlo ray tracing simulations have been recently carried out to investigate properties of particulate media that are traditionally ignored or crudely treated: packing density, micro-roughness, etc. The efforts of the community to address the later problems are not only theoretical but also experimental with the development of several dedicated goniometers.
Do Media Use and Physical Activity Compete in Adolescents? Results of the MoMo Study
Spengler, Sarah; Mess, Filip; Woll, Alexander
2015-01-01
Purpose The displacement hypothesis predicts that physical activity and media use compete in adolescents; however, findings are inconsistent. A more differentiated approach at determining the co-occurrence of physical activity and media use behaviors within subjects may be warranted. The aim of this study was to determine the co-occurrence of physical activity and media use by identifying clusters of adolescents with specific behavior patterns including physical activity in various settings (school, sports club, leisure time) and different types of media use (watching TV, playing console games, using PC / Internet). Methods Cross-sectional data of 2,083 adolescents (11–17 years) from all over Germany were collected between 2009 and 2012 in the Motorik-Modul Study. Physical activity and media use were self-reported. Cluster analyses (Ward’s method and K-means analysis) were used to identify behavior patterns of boys and girls separately. Results Eight clusters were identified for boys and seven for girls. The clusters demonstrated that a high proportion of boys (33%) as well as girls (42%) show low engagement in both physical activity and media use, irrespective of setting or type of media. Other adolescents are engaged in both behaviors, but either physical activity (35% of boys, 27% of girls) or media use (31% of boys and girls) predominates. These adolescents belong to different clusters, whereat in most clusters either one specific setting of physical activity or a specific combination of different types of media predominates. Conclusion The results of this study support to some extent the hypothesis that media use and physical activity compete: Very high media use occurred with low physical activity behavior, but very high activity levels co-occurred with considerable amounts of time using any media. There was no evidence that type of used media was related to physical activity levels, neither setting of physical activity was related to amount of media use in any pattern. PMID:26629688
NASA Astrophysics Data System (ADS)
Shokri-Kuehni, Salomé M. S.; Vetter, Thomas; Webb, Colin; Shokri, Nima
2017-06-01
Understanding salt transport and deposition patterns during evaporation from porous media is important in many engineering and hydrological processes such as soil salinization, ecosystem functioning, and land-atmosphere interaction. As evaporation proceeds, salt concentration increases until it exceeds solubility limits, locally, and crystals precipitate. The interplay between transport processes, crystallization, and evaporation influences where crystallization occurs. During early stages, the precipitated salt creates an evolving porous structure affecting the evaporation kinetics. We conducted a comprehensive series of experiments to investigate how the salt concentration and precipitation influence evaporation dynamics. Our results illustrate the contribution of the evolving salt crust to the evaporative mass losses. High-resolution thermal imaging enabled us to investigate the complex temperature dynamics at the surface of precipitated salt, providing further confirmation of salt crust contribution to the evaporation. We identify different phases of saline water evaporation from porous media with the corresponding dominant mechanisms in each phase and extend the physical understanding of such processes.
Ngantcha, Marcus; Janssen, Eric; Godeau, Emmanuelle; Ehlinger, Virginie; Le-Nezet, Olivier; Beck, François; Spilka, Stanislas
2018-06-01
Screen-based media overuse has been related to harmful consequences especially among children and adolescents. Given their complex interrelationships, predictors of screen time (ST) should be analyzed simultaneously rather than individually to avoid incomplete conclusions. Structural equation models were conducted to examine associations between media ST (television, video games, and computers) along with harmful consequences in adolescents' well-being, such as underweight and overweight, depression, and school failure. Predictors included individual (gender, age, and physical activity), family (structure and socioeconomic background), and substance use variables. We used the Health Behaviour in School-aged Children survey organized in 2014, including eighth- and ninth-grade students living in France (N = 3720). Students reported spending 3 hours per day in front of each media. Spending more than 2 hours behind each of those 3 media was associated with lower life satisfaction, less physical activity, active school bullying, and grade repetition. Socioeconomic status was the most important predictor of ST, whereas regular substance uses showed modest associations. The main implication of our findings is to sensitize parents and stakeholders about the limitation of ST, including their own use that adolescents are likely to mimic. Alternative measures such as off-line time should be encouraged.
Canada on the Move: an intensive media analysis from inception to reception.
Faulkner, Guy; Finlay, Sara-Jane
2006-01-01
Research evaluating mediated physical activity campaigns uses an unsophisticated conceptualization of the media and would benefit from the application of a media studies approach. The purpose of this article is to report on the application of this type of analysis to the Canada on the Move media campaign. Through interviews and document analysis, the press release surrounding Canada on the Move was examined at four levels: inception, production, transmission and reception. Analytic strategies of thematic and textual analysis were conducted. The press release was well received by journalists and editors and was successfully transmitted as inferred from national and local television coverage, although there was no national print pickup. Canada on the Move was perceived by sampled audience members as a useful and interesting strategy to encourage walking. A holistic approach to media analysis reveals the complex and frequently messy process of this mediated communication process. Implications for future media disseminations of Canada on the Move are discussed.
NASA Astrophysics Data System (ADS)
Kamai, Tamir; Nassar, Mohamed K.; Nelson, Kirk E.; Ginn, Timothy R.
2017-04-01
Colloid filtration in porous media spans across many disciplines and includes scenarios such as in-situ bioremediation, colloid-facilitated transport, water treatment of suspended particles and pathogenic bacteria, and transport of natural and engineered nanoparticles in the environment. Transport and deposition of colloid particles in porous media are determined by a combination of complex processes and forces. Given the convoluted physical, chemical, and biological processes involved, and the complexity of porous media in natural settings, it should not come as surprise that colloid filtration theory does not always sufficiently predict colloidal transport, and that there is still a pressing need for improved predictive capabilities. Here, instead of developing the macroscopic equation from pore-scale models, we parametrize the different terms in the macroscopic collection equation through fitting it to experimental data, by optimizing the parameters in the different terms of the equation. This way we combine a mechanistically-based filtration-equation with empirical evidence. The impact of different properties of colloids and porous media are studied by comparing experimental properties with different terms of the correlation equation. This comparison enables insight about different processes that occur during colloid transport and retention under in porous media under favorable conditions, and provides directions for future theoretical developments.
Shaping complex microwave fields in reverberating media with binary tunable metasurfaces
Kaina, Nadège; Dupré, Matthieu; Lerosey, Geoffroy; Fink, Mathias
2014-01-01
In this article we propose to use electronically tunable metasurfaces as spatial microwave modulators. We demonstrate that like spatial light modulators, which have been recently proved to be ideal tools for controlling light propagation through multiple scattering media, spatial microwave modulators can efficiently shape in a passive way complex existing microwave fields in reverberating environments with a non-coherent energy feedback. Unlike in free space, we establish that a binary-only phase state tunable metasurface allows a very good control over the waves, owing to the random nature of the electromagnetic fields in these complex media. We prove in an everyday reverberating medium, that is, a typical office room, that a small spatial microwave modulator placed on the walls can passively increase the wireless transmission between two antennas by an order of magnitude, or on the contrary completely cancel it. Interestingly and contrary to free space, we show that this results in an isotropic shaped microwave field around the receiving antenna, which we attribute again to the reverberant nature of the propagation medium. We expect that spatial microwave modulators will be interesting tools for fundamental physics and will have applications in the field of wireless communications. PMID:25331498
Soil vapor extraction with dewatering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomson, N.R.
1996-08-01
The physical treatment technology of soil vapor extraction (SVE) is reliable, safe, robust, and able to remove significant amounts of mass at a relatively low cost. SVE combined with a pump-and-treat system to create a dewatered zone has the opportunity to remove more mass with the added cost of treating the extracted groundwater. Various limiting processes result in a significant reduction in the overall mass removal rates from a SVE system in porous media. Only pilot scale, limited duration SVE tests conducted in low permeability media have been reported in the literature. It is expected that the presence of amore » fracture network in low permeability media will add another complexity to the limiting conditions surrounding the SVE technology. 20 refs., 4 figs.« less
Wylie, Ann; Furmedge, Daniel S; Appleton, Amber; Toop, Helen; Coats, Tom
2009-03-01
The study aimed to firstly provide a small self-selecting group of medical students with the opportunity to explore current approaches and opportunities addressing the prevention of childhood obesity and, secondly, to consider what aspects could be part of the taught curriculum. Medical students in their third and fourth year were invited to self-design special study modules (SSMs) exploring interventions and processes addressing the growing concern about childhood obesity. One student looked at the role of the primary care teams, two looked at community-based opportunities to improve physical activity in urban areas where there is significant deprivation and one student explored the complex role of the media as a social determinant of dietary patterns and sedentary behaviour. Primary care health professionals questioned their role in regard to raising the topic of obesity in the consultation and had limited awareness of current NICE guidelines and local interventions for referral. Local authority physical activity programmes have an important role in preventing and tackling obesity and although the media are regulated, there is limited impact on reducing obesity. Conversely, the influence of the media is complex and enables medical students and teachers to be aware of some of the social determinants influencing health-related behaviour. About a third of UK GP practices have some role in medical undergraduate education. It will therefore be inevitable that students will encounter GPs working with prevention and management of childhood obesity, however limited, and this will increasingly be part of the teaching agenda, whether formal and planned or opportunistic. Curricula could include being familiar with the evidence that informs NICE guidelines, observing these guidelines being implemented and their limitations, awareness of local schemes for referral to prevent or treat obesity and the influence of wider determinants on diet and physical activity behaviour, including the media.
Generalized Optical Theorem Detection in Random and Complex Media
NASA Astrophysics Data System (ADS)
Tu, Jing
The problem of detecting changes of a medium or environment based on active, transmit-plus-receive wave sensor data is at the heart of many important applications including radar, surveillance, remote sensing, nondestructive testing, and cancer detection. This is a challenging problem because both the change or target and the surrounding background medium are in general unknown and can be quite complex. This Ph.D. dissertation presents a new wave physics-based approach for the detection of targets or changes in rather arbitrary backgrounds. The proposed methodology is rooted on a fundamental result of wave theory called the optical theorem, which gives real physical energy meaning to the statistics used for detection. This dissertation is composed of two main parts. The first part significantly expands the theory and understanding of the optical theorem for arbitrary probing fields and arbitrary media including nonreciprocal media, active media, as well as time-varying and nonlinear scatterers. The proposed formalism addresses both scalar and full vector electromagnetic fields. The second contribution of this dissertation is the application of the optical theorem to change detection with particular emphasis on random, complex, and active media, including single frequency probing fields and broadband probing fields. The first part of this work focuses on the generalization of the existing theoretical repertoire and interpretation of the scalar and electromagnetic optical theorem. Several fundamental generalizations of the optical theorem are developed. A new theory is developed for the optical theorem for scalar fields in nonhomogeneous media which can be bounded or unbounded. The bounded media context is essential for applications such as intrusion detection and surveillance in enclosed environments such as indoor facilities, caves, tunnels, as well as for nondestructive testing and communication systems based on wave-guiding structures. The developed scalar optical theorem theory applies to arbitrary lossless backgrounds and quite general probing fields including near fields which play a key role in super-resolution imaging. The derived formulation holds for arbitrary passive scatterers, which can be dissipative, as well as for the more general class of active scatterers which are composed of a (passive) scatterer component and an active, radiating (antenna) component. Furthermore, the generalization of the optical theorem to active scatterers is relevant to many applications such as surveillance of active targets including certain cloaks, invisible scatterers, and wireless communications. The latter developments have important military applications. The derived theoretical framework includes the familiar real power optical theorem describing power extinction due to both dissipation and scattering as well as a reactive optical theorem related to the reactive power changes. Meanwhile, the developed approach naturally leads to three optical theorem indicators or statistics, which can be used to detect changes or targets in unknown complex media. In addition, the optical theorem theory is generalized in the time domain so that it applies to arbitrary full vector fields, and arbitrary media including anisotropic media, nonreciprocal media, active media, as well as time-varying and nonlinear scatterers. The second component of this Ph.D. research program focuses on the application of the optical theorem to change detection. Three different forms of indicators or statistics are developed for change detection in unknown background media: a real power optical theorem detector, a reactive power optical theorem detector, and a total apparent power optical theorem detector. No prior knowledge is required of the background or the change or target. The performance of the three proposed optical theorem detectors is compared with the classical energy detector approach for change detection. The latter uses a mathematical or functional energy while the optical theorem detectors are based on real physical energy. For reference, the optical theorem detectors are also compared with the matched filter approach which (unlike the optical theorem detectors) assumes perfect target and medium information. The practical implementation of the optical theorem detectors is based for certain random and complex media on the exploitation of time reversal focusing ideas developed in the past 20 years in electromagnetics and acoustics. In the final part of the dissertation, we also discuss the implementation of the optical theorem sensors for one-dimensional propagation systems such as transmission lines. We also present a new generalized likelihood ratio test for detection that exploits a prior data constraint based on the optical theorem. Finally, we also address the practical implementation of the optical theorem sensors for optical imaging systems, by means of holography. The later is the first holographic implementation the optical theorem for arbitrary scenes and targets.
Urban Public Space Context and Cognitive Psychology Evolution in Information Environment
NASA Astrophysics Data System (ADS)
Feng, Chen; Xu, Hua-wei
2017-11-01
The rapid development of information technology has had a great impact on the understanding of urban environment, which brings different spatially psychological experience. Information and image transmission has been full with the streets, both the physical space and virtual space have been unprecedentedly blended together through pictures, images, electronic media and other tools, which also stimulates people’s vision and psychology and gives birth to a more complex form of urban space. Under the dual role of spatial mediumlization and media spatialization, the psychological cognitive pattern of urban public space context is changing.
Slater, Amy; Tiggemann, Marika
2006-07-01
This study aimed to investigate the effects of both past and current physical activity and media use on women's body image. A sample of 144 female undergraduate students completed measures of current physical activity, media use and body image, as well as providing retrospective reports of their physical activity participation and media usage during childhood and adolescence. Regression analyses showed that childhood experiences of physical activity and media use predicted adult body-image concerns more strongly than current activities. It was concluded that early experiences of both physical activity and media use during childhood and adolescence play an important role in the development of adult women's body image.
Gao, Kai; Chung, Eric T.; Gibson, Richard L.; ...
2015-06-05
The development of reliable methods for upscaling fine scale models of elastic media has long been an important topic for rock physics and applied seismology. Several effective medium theories have been developed to provide elastic parameters for materials such as finely layered media or randomly oriented or aligned fractures. In such cases, the analytic solutions for upscaled properties can be used for accurate prediction of wave propagation. However, such theories cannot be applied directly to homogenize elastic media with more complex, arbitrary spatial heterogeneity. We therefore propose a numerical homogenization algorithm based on multiscale finite element methods for simulating elasticmore » wave propagation in heterogeneous, anisotropic elastic media. Specifically, our method used multiscale basis functions obtained from a local linear elasticity problem with appropriately defined boundary conditions. Homogenized, effective medium parameters were then computed using these basis functions, and the approach applied a numerical discretization that is similar to the rotated staggered-grid finite difference scheme. Comparisons of the results from our method and from conventional, analytical approaches for finely layered media showed that the homogenization reliably estimated elastic parameters for this simple geometry. Additional tests examined anisotropic models with arbitrary spatial heterogeneity where the average size of the heterogeneities ranged from several centimeters to several meters, and the ratio between the dominant wavelength and the average size of the arbitrary heterogeneities ranged from 10 to 100. Comparisons to finite-difference simulations proved that the numerical homogenization was equally accurate for these complex cases.« less
Spectral statistics and scattering resonances of complex primes arrays
NASA Astrophysics Data System (ADS)
Wang, Ren; Pinheiro, Felipe A.; Dal Negro, Luca
2018-01-01
We introduce a class of aperiodic arrays of electric dipoles generated from the distribution of prime numbers in complex quadratic fields (Eisenstein and Gaussian primes) as well as quaternion primes (Hurwitz and Lifschitz primes), and study the nature of their scattering resonances using the vectorial Green's matrix method. In these systems we demonstrate several distinctive spectral properties, such as the absence of level repulsion in the strongly scattering regime, critical statistics of level spacings, and the existence of critical modes, which are extended fractal modes with long lifetimes not supported by either random or periodic systems. Moreover, we show that one can predict important physical properties, such as the existence spectral gaps, by analyzing the eigenvalue distribution of the Green's matrix of the arrays in the complex plane. Our results unveil the importance of aperiodic correlations in prime number arrays for the engineering of gapped photonic media that support far richer mode localization and spectral properties compared to usual periodic and random media.
ERIC Educational Resources Information Center
Leavy, Justine E.; Bull, Fiona C.; Rosenberg, Michael; Bauman, Adrian
2011-01-01
Internationally, mass media campaigns to promote regular moderate-intensity physical activity have increased recently. Evidence of mass media campaign effectiveness exists in other health areas, however the evidence for physical activity is limited. The purpose was to systematically review the literature on physical activity mass media campaigns,…
The Measles Vaccination Narrative in Twitter: A Quantitative Analysis.
Radzikowski, Jacek; Stefanidis, Anthony; Jacobsen, Kathryn H; Croitoru, Arie; Crooks, Andrew; Delamater, Paul L
2016-01-01
The emergence of social media is providing an alternative avenue for information exchange and opinion formation on health-related issues. Collective discourse in such media leads to the formation of a complex narrative, conveying public views and perceptions. This paper presents a study of Twitter narrative regarding vaccination in the aftermath of the 2015 measles outbreak, both in terms of its cyber and physical characteristics. We aimed to contribute to the analysis of the data, as well as presenting a quantitative interdisciplinary approach to analyze such open-source data in the context of health narratives. We collected 669,136 tweets referring to vaccination from February 1 to March 9, 2015. These tweets were analyzed to identify key terms, connections among such terms, retweet patterns, the structure of the narrative, and connections to the geographical space. The data analysis captures the anatomy of the themes and relations that make up the discussion about vaccination in Twitter. The results highlight the higher impact of stories contributed by news organizations compared to direct tweets by health organizations in communicating health-related information. They also capture the structure of the antivaccination narrative and its terms of reference. Analysis also revealed the relationship between community engagement in Twitter and state policies regarding child vaccination. Residents of Vermont and Oregon, the two states with the highest rates of non-medical exemption from school-entry vaccines nationwide, are leading the social media discussion in terms of participation. The interdisciplinary study of health-related debates in social media across the cyber-physical debate nexus leads to a greater understanding of public concerns, views, and responses to health-related issues. Further coalescing such capabilities shows promise towards advancing health communication, thus supporting the design of more effective strategies that take into account the complex and evolving public views of health issues.
A systematic and efficient method for modeling acoustic response of multilayered media
NASA Astrophysics Data System (ADS)
Feng, Shi-Jin; Chen, Zhang-Long; Chen, Hong-Xin
2017-12-01
A generalized transmission and reflection matrix (GTRM) method for determining the acoustic response of multilayered media is developed in this paper. The principle of the method is to decipher the wave vectors by constructing generalized T/R matrices and recursive formulas. The generalized T/R matrices are introduced to account for the contributions of multiple reflection and transmission in a global manner. Three types of interface T/R matrices are developed to accommodate the coupling between any type of physical medium. This method is not only stable for high-frequency and large thickness cases by excluding the growing terms but also explicitly exhibits the physical mechanism of wave propagation. Acoustic response in both frequency and time domains can be solved by the method. Moreover, the method has a simple framework, and it is easy to be implemented in numerical tools. The method is successfully validated by several typical acoustic problems, including poroelastic medium immersed in fluid, aluminum-glass-aluminum immersed in fluid, and poroelastic sediment sandwiched between water and bedrock. In fact, the present method can be extended to any physical problem of a multilayered structure. When the wave frequency is high or the layered media is greatly thick or the material combination is highly complex, the advantage of the GTRM method is more conspicuous.
Posch, Andreas E; Spadiut, Oliver; Herwig, Christoph
2012-06-22
Filamentous fungi are versatile cell factories and widely used for the production of antibiotics, organic acids, enzymes and other industrially relevant compounds at large scale. As a fact, industrial production processes employing filamentous fungi are commonly based on complex raw materials. However, considerable lot-to-lot variability of complex media ingredients not only demands for exhaustive incoming components inspection and quality control, but unavoidably affects process stability and performance. Thus, switching bioprocesses from complex to defined media is highly desirable. This study presents a strategy for strain characterization of filamentous fungi on partly complex media using redundant mass balancing techniques. Applying the suggested method, interdependencies between specific biomass and side-product formation rates, production of fructooligosaccharides, specific complex media component uptake rates and fungal strains were revealed. A 2-fold increase of the overall penicillin space time yield and a 3-fold increase in the maximum specific penicillin formation rate were reached in defined media compared to complex media. The newly developed methodology enabled fast characterization of two different industrial Penicillium chrysogenum candidate strains on complex media based on specific complex media component uptake kinetics and identification of the most promising strain for switching the process from complex to defined conditions. Characterization at different complex/defined media ratios using only a limited number of analytical methods allowed maximizing the overall industrial objectives of increasing both, method throughput and the generation of scientific process understanding.
2012-01-01
Background Filamentous fungi are versatile cell factories and widely used for the production of antibiotics, organic acids, enzymes and other industrially relevant compounds at large scale. As a fact, industrial production processes employing filamentous fungi are commonly based on complex raw materials. However, considerable lot-to-lot variability of complex media ingredients not only demands for exhaustive incoming components inspection and quality control, but unavoidably affects process stability and performance. Thus, switching bioprocesses from complex to defined media is highly desirable. Results This study presents a strategy for strain characterization of filamentous fungi on partly complex media using redundant mass balancing techniques. Applying the suggested method, interdependencies between specific biomass and side-product formation rates, production of fructooligosaccharides, specific complex media component uptake rates and fungal strains were revealed. A 2-fold increase of the overall penicillin space time yield and a 3-fold increase in the maximum specific penicillin formation rate were reached in defined media compared to complex media. Conclusions The newly developed methodology enabled fast characterization of two different industrial Penicillium chrysogenum candidate strains on complex media based on specific complex media component uptake kinetics and identification of the most promising strain for switching the process from complex to defined conditions. Characterization at different complex/defined media ratios using only a limited number of analytical methods allowed maximizing the overall industrial objectives of increasing both, method throughput and the generation of scientific process understanding. PMID:22727013
Racine, Elizabeth F; DeBate, Rita D; Gabriel, Kelley P; High, Robin R
2011-12-01
Media use is associated with an increased risk of chronic disease and reduced quality of life among children. This study examined the relationship between media use during discretionary hours after school and psychological and physical assets among preadolescent girls. A cross-sectional analysis was conducted using data from a larger quasi-experimental evaluation of a positive youth development program through sport for third- to fifth-grade girls. Indicators of media use were the number of hours per school day spent watching television and videos and using computers. Psychological assets included global self-esteem, body size satisfaction, and commitment to physical activity; physical assets included physical activity. Nested random effects analysis of variance (ANOVA) models were used to examine the relationship between media use and psychological and physical assets controlling for relevant confounding factors. The analytic sample included 1027 participants; most were ≥10 years old, non-White; 27% self-reported ≥4 hours of media use on school days. In adjusted results, media use was inversely associated with self-esteem (p = .008) and commitment to physical activity (p < .001). Time spent using media was not associated with body size satisfaction or physical activity in this age group. Media use was negatively associated with self-esteem and commitment to physical activity. It may be useful for school professionals to encourage after-school programs that offer opportunities for girls to reduce sedentary pursuits and improve important psychological and physical assets. © 2011, American School Health Association.
Making Connections between the Digital and Physical World
ERIC Educational Resources Information Center
McConnell, William J.; Dickerson, Daniel
2013-01-01
One game that seems to intrigue almost any child is Angry Birds, a popular video game available on most media devices in which a player uses a slingshot to hurl small, angry birds through the air in hopes they will knock over pigs resting on complex, destructible structures. Presented in this article is a half-day lesson, in which fourth graders…
Electrical conductivity modeling in fractal non-saturated porous media
NASA Astrophysics Data System (ADS)
Wei, W.; Cai, J.; Hu, X.; Han, Q.
2016-12-01
The variety of electrical conductivity in non-saturated conditions is important to study electric conduction in natural sedimentary rocks. The electrical conductivity in completely saturated porous media is a porosity-function representing the complex connected behavior of single conducting phases (pore fluid). For partially saturated conditions, the electrical conductivity becomes even more complicated since the connectedness of pore. Archie's second law is an empirical electrical conductivity-porosity and -saturation model that has been used to predict the formation factor of non-saturated porous rock. However, the physical interpretation of its parameters, e.g., the cementation exponent m and the saturation exponent n, remains questionable. On basis of our previous work, we combine the pore-solid fractal (PSF) model to build an electrical conductivity model in non-saturated porous media. Our theoretical porosity- and saturation-dependent models contain endmember properties, such as fluid electrical conductivities, pore fractal dimension and tortuosity fractal dimension (representing the complex degree of electrical flowing path). We find the presented model with non-saturation-dependent electrical conductivity datasets indicate excellent match between theory and experiments. This means the value of pore fractal dimension and tortuosity fractal dimension change from medium to medium and depends not only on geometrical properties of pore structure but also characteristics of electrical current flowing in the non-saturated porous media.
Penetration of fast projectiles into resistant media: From macroscopic to subatomic projectiles
NASA Astrophysics Data System (ADS)
Gaite, José
2017-09-01
The penetration of a fast projectile into a resistant medium is a complex process that is suitable for simple modeling, in which basic physical principles can be profitably employed. This study connects two different domains: the fast motion of macroscopic bodies in resistant media and the interaction of charged subatomic particles with matter at high energies, which furnish the two limit cases of the problem of penetrating projectiles of different sizes. These limit cases actually have overlapping applications; for example, in space physics and technology. The intermediate or mesoscopic domain finds application in atom cluster implantation technology. Here it is shown that the penetration of fast nano-projectiles is ruled by a slightly modified Newton's inertial quadratic force, namely, F ∼v 2 - β, where β vanishes as the inverse of projectile diameter. Factors essential to penetration depth are ratio of projectile to medium density and projectile shape.
Larwin, Karen H; Larwin, David A
2008-11-01
The Kaiser Family Foundation released a report entitled Kids and Media Use in the United States that concluded that children's use of media--including television, computers, Internet, video games, and phones--may be one of the primary contributor's to the poor fitness and obesity of many of today's adolescents. The present study examines the potential of increasing physical activity and decreasing media usage in a 14-year-old adolescent female by making time spent on the Internet and/or cell phone contingent on physical activity. Results of this investigation indicate that requiring the participant to earn her media-usage time did correspond with an increase in physical activity and a decrease in media-usage time relative to baseline measures. Five weeks after cessation of the intervention, the participant's new level of physical activity was still being maintained. One year after the study, the participant's level of physical activity continued to increase.
Forum: The challenge of global change
NASA Astrophysics Data System (ADS)
Roederer, Juan G.
1990-09-01
How can we sustain a public sense of the common danger of global change while remaining honest in view of the realities of scientific uncertainty? How can we nurture this sense of common danger without making statements based on half-baked ideas, statistically unreliable results, or oversimplified models? How can we strike a balance between the need to overstate a case to attract the attention of the media and the obligation to adhere strictly to the ethos of science?The task of achieving a scientific understanding of the inner workings of the terrestrial environment is one of the most difficult and ambitious endeavors of humankind. It is full of traps, temptations and deceptions for the participating scientists. We are dealing with a horrendously complex, strongly interactive, highly non-linear system. Lessons learned from disciplines such as plasma physics and solid state physics which have been dealing with complex non-linear systems for decades, are not very encouraging. The first thing one learns is that there are intrinsic, physical limits to the quantitative predictability of a complex system that have nothing to do with the particular techniques employed to model it.
Media violence exposure and physical aggression in fifth-grade children.
Coker, Tumaini R; Elliott, Marc N; Schwebel, David C; Windle, Michael; Toomey, Sara L; Tortolero, Susan R; Hertz, Marci F; Peskin, Melissa F; Schuster, Mark A
2015-01-01
To examine the association of media violence exposure and physical aggression in fifth graders across 3 media types. We analyzed data from a population-based, cross-sectional survey of 5,147 fifth graders and their parents in 3 US metropolitan areas. We used multivariable linear regression and report partial correlation coefficients to examine associations between children's exposure to violence in television/film, video games, and music (reported time spent consuming media and reported frequency of violent content: physical fighting, hurting, shooting, or killing) and the Problem Behavior Frequency Scale. Child-reported media violence exposure was associated with physical aggression after multivariable adjustment for sociodemographics, family and community violence, and child mental health symptoms (partial correlation coefficients: TV, 0.17; video games, 0.15; music, 0.14). This association was significant and independent for television, video games, and music violence exposure in a model including all 3 media types (partial correlation coefficients: TV, 0.11; video games, 0.09; music, 0.09). There was a significant positive interaction between media time and media violence for video games and music but not for television. Effect sizes for the association of media violence exposure and physical aggression were greater in magnitude than for most of the other examined variables. The association between physical aggression and media violence exposure is robust and persistent; the strength of this association of media violence may be at least as important as that of other factors with physical aggression in children, such as neighborhood violence, home violence, child mental health, and male gender. Copyright © 2015 Academic Pediatric Association. All rights reserved.
Physical activity interventions using mass media, print media, and information technology.
Marcus, B H; Owen, N; Forsyth, L H; Cavill, N A; Fridinger, F
1998-11-01
Media-based physical activity interventions include a variety of print, graphic, audiovisual, and broadcast media programs intended to influence behavior change. New information technology allows print to be delivered in personalized, interactive formats that may enhance efficacy. Media-based interventions have been shaped by conceptual models from health education, Social Cognitive Theory, the Transtheoretical Model, and Social Marketing frameworks. We reviewed 28 studies of media-based interventions of which seven were mass media campaigns at the state or national level and the remaining 21 were delivered through health care, the workplace, or in the community. Recall of mass-media messages generally was high, but mass-media campaigns had very little impact on physical activity behavior. Interventions using print and/or telephone were effective in changing behavior in the short term. Studies in which there were more contacts and interventions tailored to the target audience were most effective. A key issue for research on media-based physical activity interventions is reaching socially disadvantaged groups for whom access, particularly to new forms of communication technology, may be limited. There is a clear need for controlled trials comparing different forms and intensities of media-based physical activity interventions. Controlled studies of personalized print, interactive computer-mediated programs, and web-based formats for program delivery also are needed. The integration of media-based methods into public and private sector service delivery has much potential for innovation.
Locally adaptive methods for KDE-based random walk models of reactive transport in porous media
NASA Astrophysics Data System (ADS)
Sole-Mari, G.; Fernandez-Garcia, D.
2017-12-01
Random Walk Particle Tracking (RWPT) coupled with Kernel Density Estimation (KDE) has been recently proposed to simulate reactive transport in porous media. KDE provides an optimal estimation of the area of influence of particles which is a key element to simulate nonlinear chemical reactions. However, several important drawbacks can be identified: (1) the optimal KDE method is computationally intensive and thereby cannot be used at each time step of the simulation; (2) it does not take advantage of the prior information about the physical system and the previous history of the solute plume; (3) even if the kernel is optimal, the relative error in RWPT simulations typically increases over time as the particle density diminishes by dilution. To overcome these problems, we propose an adaptive branching random walk methodology that incorporates the physics, the particle history and maintains accuracy with time. The method allows particles to efficiently split and merge when necessary as well as to optimally adapt their local kernel shape without having to recalculate the kernel size. We illustrate the advantage of the method by simulating complex reactive transport problems in randomly heterogeneous porous media.
XFEM modeling of hydraulic fracture in porous rocks with natural fractures
NASA Astrophysics Data System (ADS)
Wang, Tao; Liu, ZhanLi; Zeng, QingLei; Gao, Yue; Zhuang, Zhuo
2017-08-01
Hydraulic fracture (HF) in porous rocks is a complex multi-physics coupling process which involves fluid flow, diffusion and solid deformation. In this paper, the extended finite element method (XFEM) coupling with Biot theory is developed to study the HF in permeable rocks with natural fractures (NFs). In the recent XFEM based computational HF models, the fluid flow in fractures and interstitials of the porous media are mostly solved separately, which brings difficulties in dealing with complex fracture morphology. In our new model the fluid flow is solved in a unified framework by considering the fractures as a kind of special porous media and introducing Poiseuille-type flow inside them instead of Darcy-type flow. The most advantage is that it is very convenient to deal with fluid flow inside the complex fracture network, which is important in shale gas extraction. The weak formulation for the new coupled model is derived based on virtual work principle, which includes the XFEM formulation for multiple fractures and fractures intersection in porous media and finite element formulation for the unified fluid flow. Then the plane strain Kristianovic-Geertsma-de Klerk (KGD) model and the fluid flow inside the fracture network are simulated to validate the accuracy and applicability of this method. The numerical results show that large injection rate, low rock permeability and isotropic in-situ stresses tend to lead to a more uniform and productive fracture network.
Multiphase porous media modelling: A novel approach to predicting food processing performance.
Khan, Md Imran H; Joardder, M U H; Kumar, Chandan; Karim, M A
2018-03-04
The development of a physics-based model of food processing is essential to improve the quality of processed food and optimize energy consumption. Food materials, particularly plant-based food materials, are complex in nature as they are porous and have hygroscopic properties. A multiphase porous media model for simultaneous heat and mass transfer can provide a realistic understanding of transport processes and thus can help to optimize energy consumption and improve food quality. Although the development of a multiphase porous media model for food processing is a challenging task because of its complexity, many researchers have attempted it. The primary aim of this paper is to present a comprehensive review of the multiphase models available in the literature for different methods of food processing, such as drying, frying, cooking, baking, heating, and roasting. A critical review of the parameters that should be considered for multiphase modelling is presented which includes input parameters, material properties, simulation techniques and the hypotheses. A discussion on the general trends in outcomes, such as moisture saturation, temperature profile, pressure variation, and evaporation patterns, is also presented. The paper concludes by considering key issues in the existing multiphase models and future directions for development of multiphase models.
Knight, Emily; Werstine, Robert J.; Rasmussen-Pennington, Diane M.; Fitzsimmons, Deborah
2015-01-01
Care for chronic conditions and noncommunicable diseases is dominating health systems around the globe. For physical therapists, this strain presents a substantial opportunity for engaging patients in health promotion and disease management in the years to come. Examples of social media being used to engage consumers in the business landscape are pervasive, and research reports suggest that patients are ready for social media to be incorporated into the way health care systems deliver care. We propose that leveraging the power and utility of existing technologies, such as social media, could innovate the way physical therapists engage patients in rehabilitation and health promotion practices, thus contributing to the evolution of the profession: Physical Therapy 2.0. To continue to be relevant in the community, physical therapist practice must respond to patients' needs and expectations. Incorporating social media into how physical therapists are both designing and delivering care holds potential for enhancing patient engagement in prescribed health behaviors and improving treatment outcomes. This conceptual article presents the perspective that physical therapists can utilize social media to enhance care delivery and treatment outcomes. PMID:24627429
Lima, Manoel C. S.; Barbosa, Maurício F.; Diniz, Tiego A.; Codogno, Jamile S.; Freitas, Ismael F.; Fernandes, Rômulo A.
2014-01-01
Background: It is unclear whether early physical activity has a greater influence on intima-media thickness and metabolic variables than current physical activity. Objective: To analyze the relationship between current and early physical activity, metabolic variables, and intima-media thickness measures in adults. Method: The sample was composed of 55 healthy subjects of both sexes (33 men and 22 women). Total body fat and trunk fat were estimated by dual-energy X-ray absorptiometry. Carotid and femoral intima-media thickness were measured using a Doppler ultrasound device. A 12-hour fasting blood sample collection was taken (fasting glucose and lipid profile). Early physical activity was assessed through face-to-face interview, and the current physical activity was assessed by pedometer (Digi-Walker Yamax, SW200), which was used for a period of seven days. Results: Current physical activity was negatively related to total cholesterol (rho=-0.31), while early physical activity was negatively related to triglycerides (rho=-0.42), total cholesterol (rho=-0.28), very low density lipoprotein (rho=-0.44), and carotid intima-media thickness (rho=-0.50). In the multivariate model, subjects engaged in sports activities during early life had lower values of very low density lipoprotein (b=-8.74 [b=-16.1; -1.47]) and carotid intima-media thickness (b=-0.17 [95%CI: -0.28; -0.05]). Conclusion: Early 95%CI physical activity has a significant influence on carotid intima-media thickness, regardless of the current physical activity. PMID:25372009
Lima, Manoel C S; Barbosa, Maurício F; Diniz, Tiego A; Codogno, Jamile S; Freitas Júnior, Ismael F; Fernandes, Rômulo A
2014-01-01
It is unclear whether early physical activity has a greater influence on intima-media thickness and metabolic variables than current physical activity. To analyze the relationship between current and early physical activity, metabolic variables, and intima-media thickness measures in adults. The sample was composed of 55 healthy subjects of both sexes (33 men and 22 women). Total body fat and trunk fat were estimated by dual-energy X-ray absorptiometry. Carotid and femoral intima-media thickness were measured using a Doppler ultrasound device. A 12-hour fasting blood sample collection was taken (fasting glucose and lipid profile). Early physical activity was assessed through face-to-face interview, and the current physical activity was assessed by pedometer (Digi-Walker Yamax, SW200), which was used for a period of seven days. Current physical activity was negatively related to total cholesterol (rho=-0.31), while early physical activity was negatively related to triglycerides (rho=-0.42), total cholesterol (rho=-0.28), very low density lipoprotein (rho=-0.44), and carotid intima-media thickness (rho=-0.50). In the multivariate model, subjects engaged in sports activities during early life had lower values of very low density lipoprotein (b=-8.74 [b95%CI=-16.1; -1.47]) and carotid intima-media thickness (b=-0.17 [95%CI: -0.28; -0.05]). Early 95%CI physical activity has a significant influence on carotid intima-media thickness, regardless of the current physical activity.
da Silva Vasconcelos, Eliton; de Lima, Vanderlei Aparecido; Goto, Leandro Seiji; Cruz-Hernández, Isara Lourdes; Hokka, Carlos Osamu
2013-01-01
Clavulanic acid (CA) is a powerful inhibitor of the beta-lactamases, enzymes produced by bacteria resistants to penicillin and cefalosporin. This molecule is produced industrially by strains of Streptomyces clavuligerus in complex media which carbon and nitrogen resources are supplied by inexpensive compounds still providing high productivity. The genetic production improvement using physical and chemical mutagenic agents is an important strategy in programs of industrial production development of bioactive metabolites. However, parental strains are susceptible to loss of their original productivity due genetic instability phenomenona. In this work, some S. clavuligerus mutant strains obtained by treatment with UV light and with MMS are compared with the wild type (Streptomyces clavuligerus ATCC 27064). The results indicated that the random mutations originated some strains with different phenotypes, most divergent demonstrated by the mutants strains named AC116, MMS 150 and MMS 54, that exhibited lack of pigmentation in their mature spores. Also, the strain MMS 150 presented a larger production of CA when cultivated in semi-synthetics media. Using other media, the wild type strain obtained a larger CA production. Besides, using the modifed complex media the MMS 150 strain showed changes in its lipolitic activity and a larger production of CA. The studies also allowed finding the best conditions for a lipase activity exhibited by wild type S. clavuligerus and the MMS150 mutant. PMID:24688492
The molten glass sewing machine
Inamura, Chikara; Lizardo, Daniel; Franchin, Giorgia; Stern, Michael; Houk, Peter; Oxman, Neri
2017-01-01
We present a fluid-instability-based approach for digitally fabricating geometrically complex uniformly sized structures in molten glass. Formed by mathematically defined and physically characterized instability patterns, such structures are produced via the additive manufacturing of optically transparent glass, and result from the coiling of an extruded glass thread. We propose a minimal geometrical model—and a methodology—to reliably control the morphology of patterns, so that these building blocks can be assembled into larger structures with tailored functionally and optically tunable properties. This article is part of the themed issue ‘Patterning through instabilities in complex media: theory and applications’. PMID:28373379
Knight, Emily; Werstine, Robert J; Rasmussen-Pennington, Diane M; Fitzsimmons, Deborah; Petrella, Robert J
2015-03-01
Care for chronic conditions and noncommunicable diseases is dominating health systems around the globe. For physical therapists, this strain presents a substantial opportunity for engaging patients in health promotion and disease management in the years to come. Examples of social media being used to engage consumers in the business landscape are pervasive, and research reports suggest that patients are ready for social media to be incorporated into the way health care systems deliver care. We propose that leveraging the power and utility of existing technologies, such as social media, could innovate the way physical therapists engage patients in rehabilitation and health promotion practices, thus contributing to the evolution of the profession: Physical Therapy 2.0. To continue to be relevant in the community, physical therapist practice must respond to patients' needs and expectations. Incorporating social media into how physical therapists are both designing and delivering care holds potential for enhancing patient engagement in prescribed health behaviors and improving treatment outcomes. This conceptual article presents the perspective that physical therapists can utilize social media to enhance care delivery and treatment outcomes. © 2015 American Physical Therapy Association.
NASA Astrophysics Data System (ADS)
Huang, Xingguo; Sun, Jianguo; Greenhalgh, Stewart
2018-04-01
We present methods for obtaining numerical and analytic solutions of the complex eikonal equation in inhomogeneous acoustic VTI media (transversely isotropic media with a vertical symmetry axis). The key and novel point of the method for obtaining numerical solutions is to transform the problem of solving the highly nonlinear acoustic VTI eikonal equation into one of solving the relatively simple eikonal equation for the background (isotropic) medium and a system of linear partial differential equations. Specifically, to obtain the real and imaginary parts of the complex traveltime in inhomogeneous acoustic VTI media, we generalize a perturbation theory, which was developed earlier for solving the conventional real eikonal equation in inhomogeneous anisotropic media, to the complex eikonal equation in such media. After the perturbation analysis, we obtain two types of equations. One is the complex eikonal equation for the background medium and the other is a system of linearized partial differential equations for the coefficients of the corresponding complex traveltime formulas. To solve the complex eikonal equation for the background medium, we employ an optimization scheme that we developed for solving the complex eikonal equation in isotropic media. Then, to solve the system of linearized partial differential equations for the coefficients of the complex traveltime formulas, we use the finite difference method based on the fast marching strategy. Furthermore, by applying the complex source point method and the paraxial approximation, we develop the analytic solutions of the complex eikonal equation in acoustic VTI media, both for the isotropic and elliptical anisotropic background medium. Our numerical results demonstrate the effectiveness of our derivations and illustrate the influence of the beam widths and the anisotropic parameters on the complex traveltimes.
A survey of social media data analysis for physical activity surveillance.
Liu, Sam; Young, Sean D
2018-07-01
Social media data can provide valuable information regarding people's behaviors and health outcomes. Previous studies have shown that social media data can be extracted to monitor and predict infectious disease outbreaks. These same approaches can be applied to other fields including physical activity research and forensic science. Social media data have the potential to provide real-time monitoring and prediction of physical activity level in a given region. This tool can be valuable to public health organizations as it can overcome the time lag in the reporting of physical activity epidemiology data faced by traditional research methods (e.g. surveys, observational studies). As a result, this tool could help public health organizations better mobilize and target physical activity interventions. The first part of this paper aims to describe current approaches (e.g. topic modeling, sentiment analysis and social network analysis) that could be used to analyze social media data to provide real-time monitoring of physical activity level. The second aim of this paper was to discuss ways to apply social media analysis to other fields such as forensic sciences and provide recommendations to further social media research. Copyright © 2016 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
The Measles Vaccination Narrative in Twitter: A Quantitative Analysis
Radzikowski, Jacek; Jacobsen, Kathryn H; Croitoru, Arie; Crooks, Andrew; Delamater, Paul L
2016-01-01
Background The emergence of social media is providing an alternative avenue for information exchange and opinion formation on health-related issues. Collective discourse in such media leads to the formation of a complex narrative, conveying public views and perceptions. Objective This paper presents a study of Twitter narrative regarding vaccination in the aftermath of the 2015 measles outbreak, both in terms of its cyber and physical characteristics. We aimed to contribute to the analysis of the data, as well as presenting a quantitative interdisciplinary approach to analyze such open-source data in the context of health narratives. Methods We collected 669,136 tweets referring to vaccination from February 1 to March 9, 2015. These tweets were analyzed to identify key terms, connections among such terms, retweet patterns, the structure of the narrative, and connections to the geographical space. Results The data analysis captures the anatomy of the themes and relations that make up the discussion about vaccination in Twitter. The results highlight the higher impact of stories contributed by news organizations compared to direct tweets by health organizations in communicating health-related information. They also capture the structure of the antivaccination narrative and its terms of reference. Analysis also revealed the relationship between community engagement in Twitter and state policies regarding child vaccination. Residents of Vermont and Oregon, the two states with the highest rates of non-medical exemption from school-entry vaccines nationwide, are leading the social media discussion in terms of participation. Conclusions The interdisciplinary study of health-related debates in social media across the cyber-physical debate nexus leads to a greater understanding of public concerns, views, and responses to health-related issues. Further coalescing such capabilities shows promise towards advancing health communication, thus supporting the design of more effective strategies that take into account the complex and evolving public views of health issues. PMID:27227144
Branched flow and caustics in random media with magnetic fields
NASA Astrophysics Data System (ADS)
Metzger, Jakob; Fleischmann, Ragnar; Geisel, Theo
2009-03-01
Classical particles as well as quantum mechanical waves exhibit complex behaviour when propagating through random media. One of the dominant features of the dynamics in correlated, weak disorder potentials is the branching of the flow. This can be observed in several physical systems, most notably in the electron flow in two-dimensional electron gases [1], and has also been used to describe the formation of freak waves [2]. We present advances in the theoretical understanding and numerical simulation of classical branched flows in magnetic fields. In particular, we study branching statistics and branch density profiles. Our results have direct consequences for experiments which measure transport properties in electronic systems [3].[1] e.g. M. A. Topinka et al., Nature 410, 183 (2001), M. P. Jura et al., Nature Physics 3, 841 (2007)[2] E. J. Heller, L. Kaplan and A. Dahlen, J. Geophys. Res., 113, C09023 (2008)[3] J. J. Metzger, R. Fleischmann and T. Geisel, in preparation
Reporting Physical Activity: Perceptions and Practices of Australian Media Professionals.
Smith, Ben J; Bonfiglioli, Catriona M F
2015-08-01
Advocacy informed by scientific evidence is necessary to influence policy and planning to address physical inactivity. The mass media is a key arena for this advocacy. This study investigated the perceptions and practices of news media professionals reporting physical activity and sedentariness to inform strategic communication about these issues. We interviewed media professionals working for major television, radio, newspaper and online news outlets in Australia. The interviews explored understandings of physical activity and sedentariness, attributions of causality, assignment of responsibility, and factors affecting news reporting on these topics. Data were thematically analyzed using NVivo. Physical inactivity was recognized as pervasive and important, but tended to be seen as mundane and not newsworthy. Sedentariness was regarded as more novel than physical activity, and more likely to require organizational and environment action. Respondents identified that presenting these issues in visual and engaging ways was an ongoing challenge. Physical activity researchers and advocates need to take account of prevailing news values and media practices to improve engagement with the news media. These include understanding the importance of novelty, narratives, imagery, and practical messages, and how to use these to build support for environmental and policy action.
Visell, Yon
2015-04-01
This paper proposes a fast, physically accurate method for synthesizing multimodal, acoustic and haptic, signatures of distributed fracture in quasi-brittle heterogeneous materials, such as wood, granular media, or other fiber composites. Fracture processes in these materials are challenging to simulate with existing methods, due to the prevalence of large numbers of disordered, quasi-random spatial degrees of freedom, representing the complex physical state of a sample over the geometric volume of interest. Here, I develop an algorithm for simulating such processes, building on a class of statistical lattice models of fracture that have been widely investigated in the physics literature. This algorithm is enabled through a recently published mathematical construction based on the inverse transform method of random number sampling. It yields a purely time domain stochastic jump process representing stress fluctuations in the medium. The latter can be readily extended by a mean field approximation that captures the averaged constitutive (stress-strain) behavior of the material. Numerical simulations and interactive examples demonstrate the ability of these algorithms to generate physically plausible acoustic and haptic signatures of fracture in complex, natural materials interactively at audio sampling rates.
Bacterial Trapping in Porous Media Flows
NASA Astrophysics Data System (ADS)
Dehkharghani, Amin; Waisbord, Nicolas; Dunkel, Jörn; Guasto, Jeffrey
2016-11-01
Swimming bacteria inhabit heterogeneous, microstructured environments that are often characterized by complex, ambient flows. Understanding the physical mechanisms underlying cell transport in these systems is key to controlling important processes such as bioremediation in porous soils and infections in human tissues. We study the transport of swimming bacteria (Bacillus subtilis) in quasi-two-dimensional porous microfluidic channels with a range of periodic microstructures and flow strengths. Measured cell trajectories and the local cell number density reveal the formation of filamentous cell concentration patterns within the porous structures. The local cell densification is maximized at shear rates in the range 1-10 s-1, but widely varies with pore geometry and flow topology. Experimental observations are complemented by Langevin simulations to demonstrate that the filamentous patterns result from a coupling of bacterial motility to the complex flow fields via Jeffery orbits, which effectively 'trap' the bacteria on streamlines. The resulting microscopic heterogeneity observed here suppresses bacterial transport and likely has implications for both mixing and cell nutrient uptake in porous media flows. NSF CBET-1511340.
The glassy random laser: replica symmetry breaking in the intensity fluctuations of emission spectra
Antenucci, Fabrizio; Crisanti, Andrea; Leuzzi, Luca
2015-01-01
The behavior of a newly introduced overlap parameter, measuring the correlation between intensity fluctuations of waves in random media, is analyzed in different physical regimes, with varying amount of disorder and non-linearity. This order parameter allows to identify the laser transition in random media and describes its possible glassy nature in terms of emission spectra data, the only data so far accessible in random laser measurements. The theoretical analysis is performed in terms of the complex spherical spin-glass model, a statistical mechanical model describing the onset and the behavior of random lasers in open cavities. Replica Symmetry Breaking theory allows to discern different kinds of randomness in the high pumping regime, including the most complex and intriguing glassy randomness. The outcome of the theoretical study is, eventually, compared to recent intensity fluctuation overlap measurements demonstrating the validity of the theory and providing a straightforward interpretation of qualitatively different spectral behaviors in different random lasers. PMID:26616194
Jake-Schoffman, Danielle E; Wilcox, Sara; Kaczynski, Andrew T; Turner-McGrievy, Gabrielle; Friedman, Daniela B; West, Delia S
As social media (eg, Twitter) continues to gain widespread popularity, health research and practice organizations may consider combining it with other electronic media (e-media) channels (eg, Web sites, e-newsletters) within their communication plans. However, little is known about added benefits of using social media when trying to reach public health audiences about physical activity. Learn about current use and preference for e-media communication channels among physical activity researchers and practitioners. A Web-based survey was used, open for responses from August 20, 2015, through January 5, 2016. Survey participation was voluntary and anonymous. The survey was advertised through multiple channels targeting physical activity researchers and practitioners, including announcements on professional listservs and in e-newsletters, Twitter, and posts on Facebook pages of public health organizations. A total of 284 survey respondents had complete data. Typical use of e-media to receive, seek out, and share information about physical activity and health and what appeals to researchers and practitioners for professional use. Most respondents preferred non-social media channels to social media and these preferences did not differ widely when examining subgroups such as researchers versus practitioners or social media users versus nonusers. There were few differences by respondent demographics, though younger respondents reported using social media more than older respondents. However, limiting analyses to respondents who identified as social media users, only about 1% of respondents ranked social media sources as their preferred channels for information; thus, most people would continue to be reached if communication remained largely via non-social media e-media channels. The present study supports growing evidence that careful surveying of a target audience should be undertaken when considering new communication channels, as preference and use may not support the effort required to create and maintain resource-intensive strategies like social media.
Neuroreductionism about Sex and Love.
Savulescu, Julian; Earp, Brian D
2014-01-01
"Neuroreductionism" is the tendency to reduce complex mental phenomena to brain states, confusing correlation for physical causation. In this paper, we illustrate the dangers of this popular neuro-fallacy, by looking at an example drawn from the media: a story about "hypoactive sexual desire disorder" in women. We discuss the role of folk dualism in perpetuating such a confusion, and draw some conclusions about the role of "brain scans" in our understanding of romantic love.
Quantification of Soil Pore Structure Based on Minkowski-Functions
NASA Astrophysics Data System (ADS)
Vogel, H.; Weller, U.; Schlüter, S.
2009-05-01
The porous structure in soils and other geologic media is typically a complex 3-dimensional object. Most of the physical material properties including mechanical and hydraulic characteristics are immediately linked to this structure which can be directly observed using non-invasive techniques as e.g. X-ray tomography. It is an old dream and still a formidable challenge to related structural features of porous media to their physical properties. In this contribution we present a scale-invariant concept to quantify pore structure based on a limited set of meaningful morphological functions. They are based on d+1 Minkowski functionals as defined for d-dimensional bodies. These basic quantities are determined as a function of pore size obtained by filter procedures using mathematical morphology. The resulting Minkowski functions provide valuable information on pore size, pore surface area and pore topology having the potential to be linked to physical properties. The theoretical background and the related algorithms are presented and the approach is demonstrated for the structure of an arable topsoil obtained by X-ray micro tomography. We also discuss the fundamental problem of limited resolution which is critical for any attempt to quantify structural features at any scale.
Rabbani, Harris Sajjad; Joekar-Niasar, Vahid; Pak, Tannaz; Shokri, Nima
2017-07-04
Multiphase flow in porous media is important in a number of environmental and industrial applications such as soil remediation, CO 2 sequestration, and enhanced oil recovery. Wetting properties control flow of immiscible fluids in porous media and fluids distribution in the pore space. In contrast to the strong and weak wet conditions, pore-scale physics of immiscible displacement under intermediate-wet conditions is less understood. This study reports the results of a series of two-dimensional high-resolution direct numerical simulations with the aim of understanding the pore-scale dynamics of two-phase immiscible fluid flow under intermediate-wet conditions. Our results show that for intermediate-wet porous media, pore geometry has a strong influence on interface dynamics, leading to co-existence of concave and convex interfaces. Intermediate wettability leads to various interfacial movements which are not identified under imbibition or drainage conditions. These pore-scale events significantly influence macro-scale flow behaviour causing the counter-intuitive decline in recovery of the defending fluid from weak imbibition to intermediate-wet conditions.
Wirtz, John G; Wang, Zongyuan; Kulpavarapos, Supathida
2017-03-01
This article presents the results of a study testing the direct and indirect effects of identity, media use, cognitions and conversations on physical activity (PA). The study was guided by the O-S-O-R model (Markus & Zajonc, 1985), and it used data collected from a sample of Hispanic adults (N = 268) living in the U.S. Southwest. Exercise identity and ethnic identity were defined as pre-orientations (O 1 ); use of PA-related media content was defined as the stimulus (S); reflective integration and conversations about PA-related media were post-orientations (O 2 ); and self-reported physical activity was the behavioral response (R). Structural equation modeling was used to analyze the data, and several compelling results emerged. Exercise identity had a significant positive direct effect on PA and PA-related media use, as well as a significant positive indirect effect on conversations about PA-related media. PA-related media use exerted a strong and significant positive effect on conversations about PA-related media, as well as a significant positive indirect effect on PA. Finally, conversations about PA-related media content had a significant positive direct effect on PA. The results indicate that identity acts as a filter influencing what media content are selected and that cognitions and conversations about media content can serve as a link between media use and health behavior. Key words: O-S-O-R model, physical activity, Hispanic adults, identity, media use, conversation.
Characterization of the cellulose-degrading bacterium NCIMB 10462
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dees, C.; Scott, T.C.; Phelps, T.J.
The gram-negative cellulase-producing bacterium NCIMB 10462 has been previously named Pseudomonas fluorescens subsp. or var. cellulose. Because of renewed interest in cellulose-degrading bacteria for use in the bioconversion of cellulose to chemical feed stocks and fuels, we re-examined the characteristics of this microorganism to determine its true metabolic potential. Metabolic and physical characterization of NCIMB 10462 revealed that this is an alkalophilic, non-fermentative, gram-negative, oxidase-positive, motile, cellulose-degrading bacterium. The aerobic substrate utilization profile of this bacterium has few characteristics consistent with a classification of P. fluorescens and a very low probability match with the genus Sphingomonas. However, total lipid analysismore » did not reveal that any sphingolipid bases are produced by this bacterium. NCIMB 10462 grows best aerobically, but also grows well in complex media under reducing conditions. NCIMB 10462 grows slowly under anaerobic conditions on complex media, but growth on cellulosic media occurred only under aerobic conditions. Total fatty acid analysis (MIDI) of NCIMB 10462 failed to group this bacterium with a known pseudomonas species. However, fatty acid analysis of the bacteria when grown at temperatures below 37{degrees}C suggest that the organism is a pseudomonad. Since a predominant characteristic of this bacterium is its ability to degrade cellulose, we suggest that it be called Pseudomonas cellulosa.« less
Iron coated pottery granules for arsenic removal from drinking water.
Dong, Liangjie; Zinin, Pavel V; Cowen, James P; Ming, Li Chung
2009-09-15
A new media, iron coated pottery granules (ICPG) has been developed for As removal from drinking water. ICPG is a solid phase media that produces a stable Fe-Si surface complex for arsenic adsorption. Scanning electron microscopy (SEM) was used to document the physical attributes (grain size, pore size and distribution, surface roughness) of the ICPG media. Several advantages of the ICPG media such as (a) its granular structure, (b) its ability to absorb As via the F(0) coating on the granules' surface; (c) the inexpensive preparation process for the media from clay material make ICPG media a highly effective media for removing arsenic at normal pH. A column filtration test demonstrated that within the stability region (flow rate lower than 15L/h, EBCT >3 min), the concentration of As in the influent was always lower than 50 microg/L. The 2-week system ability test showed that the media consistently removed arsenic from test water to below the 5 microg/L level. The average removal efficiencies for total arsenic, As(III), and As(V) for a 2-week test period were 98%, 97%, and 99%, respectively, at an average flow rate of 4.1L/h and normal pH. Measurements of the Freundlich and Langmuir isotherms at normal pH show that the Freundlich constants of the ICPG are very close to those of ferric hydroxide, nanoscale zero-valent iron and much higher than those of nanocrystalline titanium dioxide. The parameter 1/n is smaller than 0.55 indicating a favorable adsorption process [K. Hristovski, A. Baumgardner, P. Westerhoff, Selecting metal oxide nanomaterials for arsenic removal in fixed bed columns: from nanopowders to aggregated nanoparticle media, J. Hazard. Mater. 147 (2007) 265-274]. The maximum adsorption capacity (q(e)) of the ICPG from the Langmuir isotherm is very close to that of nanoscale zero-valent indicating that zero-valent iron is involved in the process of the As removal from the water. The results of the toxicity characteristic leaching procedure (TCLP) analysis revealed that the media was non-hazardous, as shown by the ND (non-detectable) result for arsenic. The mechanism of As adsorption by ICPG has not been determined. Formation of Fe-Si complexes on the surface of the ICPG system may be responsible for the tight bonding of the As to the IGPC media.
Neuroreductionism about Sex and Love
SAVULESCU, JULIAN; EARP, BRIAN D.
2014-01-01
“Neuroreductionism” is the tendency to reduce complex mental phenomena to brain states, confusing correlation for physical causation. In this paper, we illustrate the dangers of this popular neuro-fallacy, by looking at an example drawn from the media: a story about “hypoactive sexual desire disorder” in women. We discuss the role of folk dualism in perpetuating such a confusion, and draw some conclusions about the role of “brain scans” in our understanding of romantic love. PMID:25309130
Computer Animation with Adobe Flash Professional Cs6 in Newton’s Law
NASA Astrophysics Data System (ADS)
Aji, S. D.; Hudha, M. N.; Huda, C.; Gufran, G.
2018-01-01
The purpose of this research is to develop computer-based physics learning media with Adobe Flash Professional CS6 on Newton’s Law of physics subject for senior high school (SMA / MA) class X. Type of research applied is Research and Development with ADDIE development model covering 5 stages: Analysis (Analysis), Design (Design), Development (Production), Implementation (Implementation) and Evaluation (Evaluation). The results of this study were tested toward media experts, media specialists, physics teachers, and students test results with media outcomes that are declared very feasible.
Peyman, Nooshin; Rezai-Rad, Majid; Tehrani, Hadi; Gholian-Aval, Mahdi; Vahedian-Shahroodi, Mohammad; Heidarian Miri, Hamid
2018-01-15
Technological advances have caused poor mobility and lower physical activity among humankind. This study was conducted to assess the impact of a digital media-based (multi-media, internet, and mobile phone) health intervention on promotion of women's physical activity. In this quasi-experimental study, 360 women were divided into case and control groups. The digital media-based educational intervention was conducted in two months in the case group electronically, using mail and Internet and telephone platforms. Physical activity was measured using International Physical Activity Questionnaire (IPAQ) that estimated women's physical activity rate in the previous week. Data was analyzed using descriptive and analytical statistics (ANOVA, chi-square, paired and independent t-tests) using SPSS 20. The mean score of knowledge, attitude and level of physical activity in the control group were not significantly different before and after the intervention. While in the case group, this difference before and after the intervention was significant (p < 0.001), and mean scores of the above-mentioned factors increased after the intervention. Using innovative and digital media-based health education can be effective in improving health-based behavior such as physical activity. Therefore, it seems necessary to develop user-based strategies and strengthen the behavioral change theories and hypotheses based on digital media for effective influence on behavior. Iranian Registry of Clinical Trials (IRCT), IRCT20160619028529N5 . Registered December 24, 2017 [retrospectively registered].
Poulain, Tanja; Peschel, Thomas; Vogel, Mandy; Jurkutat, Anne; Kiess, Wieland
2018-04-27
Previous studies have already reported associations of media consumption and/or physical activity with school achievement. However, longitudinal studies investigating independent effects of physical activity and media consumption on school performance are sparse. The present study fills this research gap and, furthermore, assesses relationships of the type of secondary school with media consumption and physical activity. The consumption of screen-based media (TV/video, game console, PC/internet, and mobile phone) and leisure physical activity (organized and non-organized) of 10 - to 17-year old adolescents participating in the LIFE Child study in Germany were related to their school grades in two major school subjects (Mathematics and German) and in Physical Education. In addition to a cross-sectional analysis at baseline (N = 850), a longitudinal analysis (N = 512) investigated the independent effects of these activities on the school grades achieved 12 months later. All associations were adjusted for age, gender, socio-economic status, year of data assessment, body-mass-index, and school grades at baseline. A further analysis investigated differences in the consumption of screen-based media and physical activity as a function of the type of secondary school (highest vs. lower secondary school). Adolescents of lower secondary schools reported a significantly higher consumption of TV/video and game consoles than adolescents attending the highest secondary school. Independently of the type of school, a better school performance in Mathematics was predicted by a lower consumption of computers/internet, and a better performance in Physical Education was predicted by a lower consumption of TV/video and a higher frequency of non-organized physical activity. However, the association between non-organized physical activity and subsequent grades in Physical Education was significant in girls only. The present results suggest that media consumption has a negative effect on school achievement, whereas physical activity has a positive effect, which, however, is restricted to the subject Physical Education. Future studies might explore the relationship between media consumption and school career, for example, the choice or change of the secondary school type, in more detail. LIFE Child study: ClinicalTrials.gov, clinical trial number NCT02550236.
NASA Astrophysics Data System (ADS)
Hagen, Stephen J.; Son, Minjun
2017-02-01
Bacterial pathogens rely on chemical signaling and environmental cues to regulate disease-causing behavior in complex microenvironments. The human pathogen Streptococcus mutans employs a particularly complex signaling and sensing scheme to regulate genetic competence and other virulence behaviors in the oral biofilms it inhabits. Individual S. mutans cells make the decision to enter the competent state by integrating chemical and physical cues received from their microenvironment along with endogenously produced peptide signals. Studies at the single-cell level, using microfluidics to control the extracellular environment, provide physical insight into how the cells process these inputs to generate complex and often heterogeneous outputs. Fine changes in environmental stimuli can dramatically alter the behavior of the competence circuit. Small shifts in pH can switch the quorum sensing response on or off, while peptide-rich media appear to switch the output from a unimodal to a bimodal behavior. Therefore, depending on environmental cues, the quorum sensing circuitry can either synchronize virulence across the population, or initiate and amplify heterogeneity in that behavior. Much of this complex behavior can be understood within the framework of a quorum sensing system that can operate both as an intercellular signaling mechanism and intracellularly as a noisy bimodal switch.
Physical Disability on Children's Television Programming: A Content Analysis
ERIC Educational Resources Information Center
Bond, Bradley J.
2013-01-01
Research Findings: Media representations of physical disability can influence the attitudes of child audiences. In the current study, the depiction of physical disability was analyzed in more than 400 episodes of children's television programming to better understand how media depict physical disability to children and, in turn, how exposure may…
Keegan, Richard; Middleton, Geoff; Henderson, Hannah; Girling, Mica
2016-05-26
There is a lack of understanding of work aged adults' (30-60 years old) perspectives on the motivation of physical activity versus sedentariness. This study aims to: (1) identify which socio-environmental factors motivate physical activity and/or sedentary behavior, in adults aged 30-60 years; and (2) explore how these motivators interact and combine. Fifteen work-aged adults who, were able to engage in physical activity (Mean age = 43.9 years; SD 9.6, range 31-59), participated in semi-structured interviews. Inductive content analysis was used to generate an inventory of socio-environmental factors and their specific influences on motivation towards physical activity or sedentariness. Key socio-environmental agents found to influence motivation included: Spouse/partner, parents, children, siblings, whole family, grandchildren, friends, work-mates, neighbors, strangers, team-mates and class-mates, instructors, health care professionals, employers, gyms and health companies, governments, media and social media, cultural norms, and the physical environment. Mechanisms fell into five broad themes of socio-environmental motivation for both physical activity and sedentariness: (1) competence and progress; (2) informational influences, (3) emotional influences, (4) pragmatics and logistics, and (5) relationships. Similar socio-environmental factors were frequently reported as able to motivate both activity and sedentariness. Likewise, individual categories of influence could also motivate both behaviors, depending on context. The findings of this paper 'unpack' theoretical concepts into specific and targeted behavioral recommendations. The data suggested no simple solutions for promoting physical activity or reducing sedentariness, but rather complex and interacting systems surrounding work-aged adults. Findings also suggest that health professionals should be encouraged to support adults' health by examining the socio-environmental motivational influences, or 'motivational atmosphere'.
NASA Astrophysics Data System (ADS)
Bijeljic, Branko; Icardi, Matteo; Prodanović, Maša
2018-05-01
Substantial progress has been made over last few decades on understanding the physics of multiphase flow and reactive transport phenomena in subsurface porous media. Confluence of advances in experimental techniques (including micromodels, X-ray microtomography, Nuclear Magnetic Resonance (NMR)) as well as computational power have made it possible to observe static and dynamic multi-scale flow, transport and reactive processes, thus stimulating development of new generation of modelling tools from pore to field scale. One of the key challenges is to make experiment and models as complementary as possible, with continuously improving experimental methods in order to increase predictive capabilities of theoretical models across scales. This creates need to establish rigorous benchmark studies of flow, transport and reaction in porous media which can then serve as the basis for introducing more complex phenomena in future developments.
NASA Astrophysics Data System (ADS)
Zhu, Tao; Ren, Ji-Rong; Mo, Shu-Fan
2009-12-01
In this paper, by making use of Duan's topological current theory, the evolution of the vortex filaments in excitable media is discussed in detail. The vortex filaments are found generating or annihilating at the limit points and encountering, splitting, or merging at the bifurcation points of a complex function Z(vec x, t). It is also shown that the Hopf invariant of knotted scroll wave filaments is preserved in the branch processes (splitting, merging, or encountering) during the evolution of these knotted scroll wave filaments. Furthermore, it also revealed that the “exclusion principle" in some chemical media is just the special case of the Hopf invariant constraint, and during the branch processes the “exclusion principle" is also protected by topology.
Prestack reverse time migration for tilted transversely isotropic media
NASA Astrophysics Data System (ADS)
Jang, Seonghyung; Hien, Doan Huy
2013-04-01
According to having interest in unconventional resource plays, anisotropy problem is naturally considered as an important step for improving the seismic image quality. Although it is well known prestack depth migration for the seismic reflection data is currently one of the powerful tools for imaging complex geological structures, it may lead to migration error without considering anisotropy. Asymptotic analysis of wave propagation in transversely isotropic (TI) media yields a dispersion relation of couple P- and SV wave modes that can be converted to a fourth order scalar partial differential equation (PDE). By setting the shear wave velocity equal zero, the fourth order PDE, called an acoustic wave equation for TI media, can be reduced to couple of second order PDE systems and we try to solve the second order PDE by the finite difference method (FDM). The result of this P wavefield simulation is kinematically similar to elastic and anisotropic wavefield simulation. We develop prestack depth migration algorithm for tilted transversely isotropic media using reverse time migration method (RTM). RTM is a method for imaging the subsurface using inner product of source wavefield extrapolation in forward and receiver wavefield extrapolation in backward. We show the subsurface image in TTI media using the inner product of partial derivative wavefield with respect to physical parameters and observation data. Since the partial derivative wavefields with respect to the physical parameters require extremely huge computing time, so we implemented the imaging condition by zero lag crosscorrelation of virtual source and back propagating wavefield instead of partial derivative wavefields. The virtual source is calculated directly by solving anisotropic acoustic wave equation, the back propagating wavefield on the other hand is calculated by the shot gather used as the source function in the anisotropic acoustic wave equation. According to the numerical model test for a simple geological model including syncline and anticline, the prestack depth migration using TTI-RTM in weak anisotropic media shows the subsurface image is similar to the true geological model used to generate the shot gathers.
Photons, phonons, and plasmons with orbital angular momentum in plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Qiang; Qin, Hong; Liu, Jian
Exact eigen modes with orbital angular momentum (OAM) in the complex media of unmagnetized homogeneous plasmas are studied. Three exact eigen modes with OAM are derived, i.e., photons, phonons, and plasmons. The OAM of different plasma components are closely related to the charge polarities. For photons, the OAM of electrons and ions are of the same magnitude but opposite direction, and the total OAM is carried by the field. For the phonons and plasmons, their OAM are carried by the electrons and ions. Lastly, the OAM modes in plasmas and their characteristics can be explored for potential applications in plasmamore » physics and accelerator physics.« less
Photons, phonons, and plasmons with orbital angular momentum in plasmas
Chen, Qiang; Qin, Hong; Liu, Jian
2017-02-06
Exact eigen modes with orbital angular momentum (OAM) in the complex media of unmagnetized homogeneous plasmas are studied. Three exact eigen modes with OAM are derived, i.e., photons, phonons, and plasmons. The OAM of different plasma components are closely related to the charge polarities. For photons, the OAM of electrons and ions are of the same magnitude but opposite direction, and the total OAM is carried by the field. For the phonons and plasmons, their OAM are carried by the electrons and ions. Lastly, the OAM modes in plasmas and their characteristics can be explored for potential applications in plasmamore » physics and accelerator physics.« less
2005-11-04
KENNEDY SPACE CENTER, FLA. - In the clean room at KSC’s Payload Hazardous Servicing Facility, the media (also dressed in clean room suits) learn about NASA’s New Horizons spacecraft (at left) from New Horizons Mission Systems Engineer David Kusnierkiewicz, in the center. Behind Kusnierkiewicz is one half of the fairing that will enclose the spacecraft for launch, scheduled for January 2006. The media event brought photographers and reporters to the site to talk with project management and test team members from NASA and the Johns Hopkins University Applied Physics Laboratory. Carrying seven scientific instruments, the compact 1,060-pound New Horizons probe will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will fly by Pluto and Charon as early as summer 2015.
NASA Astrophysics Data System (ADS)
Jannati, E. D.; Setiawan, A.; Siahaan, P.; Rochman, C.
2018-05-01
This study aims to determine the description of virtual laboratory learning media development to improve science literacy skills of Mechanical Engineering students on the concept of basic Physics. Quasi experimental method was employed in this research. The participants of this research were first semester students of mechanical engineering in Majalengka University. The research instrument was readability test of instructional media. The results of virtual laboratory learning media readability test show that the average score is 78.5%. It indicates that virtual laboratory learning media development are feasible to be used in improving science literacy skill of Mechanical Engineering students in Majalengka University, specifically on basic Physics concepts of material measurement.
Popular Media Representations of Physical Activity among Mothers
ERIC Educational Resources Information Center
Sanders, Margaret P.; Dlugonski, Deirdre
2016-01-01
Purpose: Many mothers fail to meet the recommended guidelines for physical activity. Popular media magazines targeting mothers provide information about physical activity and health, but little is known about the framing and content of physical activity messages within these sources. The aim of this content analysis was to analyze the framing and…
NASA Astrophysics Data System (ADS)
Usowicz, Boguslaw; Marczewski, Wojciech; Usowicz, Jerzy B.; Łukowski, Mateusz; Lipiec, Jerzy; Stankiewicz, Krystyna
2013-04-01
Radiometric observations with SMOS rely on the Radiation Transfer Equations (RTE) determining the Brightness Temperature (BT) in two linear polarization components (H, V) satisfying Fresnel principle of propagation in horizontally layered target media on the ground. RTE involve variables which bound the equations expressed in Electro-Magnetic (EM) terms of the intensity BT to the physical reality expressed by non-EM variables (Soil Moisture (SM), vegetation indexes, fractional coverage with many different properties, and the boundary conditions like optical thickness, layer definitions, roughness, etc.) bridging the EM domain to other physical aspects by means of the so called tau-omega methods. This method enables joining variety of different valuable models, including specific empirical estimation of physical properties in relation to the volumetric water content. The equations of RTE are in fact expressed by propagation, reflection and losses or attenuation existing on a considered propagation path. The electromagnetic propagation is expressed in the propagation constant. For target media on the ground the dielectric constant is a decisive part for effects of propagation. Therefore, despite of many various physical parameters involved, one must effectively and dominantly rely on the dielectric constant meant as a complex variable. The real part of the dielectric constant represents effect of apparent shortening the propagation path and the refraction, while the imaginary part is responsible for the attenuation or losses. This work engages statistical-physical modeling of soil properties considering the media as a mixture of solid grains, and gas or liquid filling of pores and contact bridges between compounds treated statistically. The method of this modeling provides an opportunity of characterizing the porosity by general statistical means, and is applicable to various physical properties (thermal, electrical conductivity and dielectric properties) which depend on composition of compounds. The method was developed beyond the SMOS method, but they meet just in RTE, at the dielectric constant. The dielectric constant is observed or measured (retrieved) by SMOS, regardless other properties like the soil porosity and without a direct relation to thermal properties of soils. Relations between thermal properties of soil to the water content are very consistent. Therefore, we took a concept of introducing effects of the soil porosity, and thermal properties of soils into the representation of the dielectric constant in complex measures, and thus gaining new abilities for capturing effects of the porosity by the method of SMOS observations. Currently we are able presenting few effects of relations between thermal properties and the soil moisture content, on examples from wetlands Biebrza and Polesie in Poland, and only search for correlations between SM from SMOS to the moisture content known from the ground. The correlations are poor for SMOS L2 data processed with the version of retrievals using the model of Dobson (501), but we expect more correlation for the version using the model of Mironov (551). If the supposition is confirmed, then we may gain encouragement to employing the statistical-physical modeling of the dielectric constant and thermal properties for the purposes of using this model in RTE and tau-omega method. Treating the soil porosity for a target of research directly is not enough strongly motivated like the use of effects on SM observable in SMOS.
NASA Astrophysics Data System (ADS)
Zeidman, Benjamin D.; Lu, Ning; Wu, David T.
2016-05-01
The effects of path-dependent wetting and drying manifest themselves in many types of physical systems, including nanomaterials, biological systems, and porous media such as soil. It is desirable to better understand how these hysteretic macroscopic properties result from a complex interplay between gasses, liquids, and solids at the pore scale. Coarse-Grained Monte Carlo (CGMC) is an appealing approach to model these phenomena in complex pore spaces, including ones determined experimentally. We present two-dimensional CGMC simulations of wetting and drying in two systems with pore spaces determined by sections from micro X-ray computed tomography: a system of randomly distributed spheres and a system of Ottawa sand. Results for the phase distribution, water uptake, and matric suction when corrected for extending to three dimensions show excellent agreement with experimental measurements on the same systems. This supports the hypothesis that CGMC can generate metastable configurations representative of experimental hysteresis and can also be used to predict hysteretic constitutive properties of particular experimental systems, given pore space images.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeidman, Benjamin D.; Lu, Ning; Wu, David T., E-mail: dwu@mines.edu
2016-05-07
The effects of path-dependent wetting and drying manifest themselves in many types of physical systems, including nanomaterials, biological systems, and porous media such as soil. It is desirable to better understand how these hysteretic macroscopic properties result from a complex interplay between gasses, liquids, and solids at the pore scale. Coarse-Grained Monte Carlo (CGMC) is an appealing approach to model these phenomena in complex pore spaces, including ones determined experimentally. We present two-dimensional CGMC simulations of wetting and drying in two systems with pore spaces determined by sections from micro X-ray computed tomography: a system of randomly distributed spheres andmore » a system of Ottawa sand. Results for the phase distribution, water uptake, and matric suction when corrected for extending to three dimensions show excellent agreement with experimental measurements on the same systems. This supports the hypothesis that CGMC can generate metastable configurations representative of experimental hysteresis and can also be used to predict hysteretic constitutive properties of particular experimental systems, given pore space images.« less
The influence of wanting to look like media figures on adolescent physical activity.
Taveras, Elsie M; Rifas-Shiman, Sheryl L; Field, Alison E; Frazier, A Lindsay; Colditz, Graham A; Gillman, Matthew W
2004-07-01
To examine the association of adolescents' wanting to look like figures in the media with physical activity levels. Cross-sectional mailed survey of 11,606 boys and girls, between the ages of 9 and 16 years, participating in the Growing Up Today Study in 1997. Participants reported detailed information on physical activities over the previous year, and the degree to which they were trying to look like same-sex images in television, movies, and magazines. We performed linear regression modeling to assess the independent effects of wanting to look like figures in the media on physical activity levels. Mean total weekly physical activity levels were 12.4 hours in girls and 15.2 hours in boys. 3019 (46%) girls and 1360 (27%) boys reported making at least some effort to look like figures in the media. Adjusted for age, body mass index, sexual maturity rating, and race/ethnicity, total physical activity levels were higher by 0.7 (95% CI 0.5-0.9) and 1.2 (95% CI 0.9-1.6) hours per week in girls and boys, respectively, for every 1 (out of 5) category increase in wanting to look like figures in the media. Adjustment for intrapersonal and social confounders modestly attenuated the associations. Wanting to look like figures in the media was associated with higher physical activity levels among older children and adolescents, independent of other personal and social influences. These data suggest that television, movie, and magazine industries should be encouraged to cultivate and reinforce realistic and healthy norms of physical activity and body image.
Gagnon, Kendra; Sabus, Carla
2015-03-01
Since the beginning of the millennium, there has been a remarkable change in how people access and share information. Much of this information is user-generated content found on social media sites. As digital technologies and social media continue to expand, health care providers must adapt their professional communication to meet the expectations and needs of consumers. This adaptation may include communication on social media sites. However, many health care providers express concerns that professional social media use, particularly interactions with patients, is ethically problematic. Social media engagement does not create ethical dissonance if best practices are observed and online communication adheres to terms of service, professional standards, and organizational policy. A well-executed social media presence provides health care providers, including physical therapists, the opportunity-and perhaps a professional obligation-to use social media sites to share or create credible health care information, filling a consumer void for high-quality online information on fitness, wellness, and rehabilitation. This perspective article provides a broad review of the emergence of social media in society and health care, explores policy implications of organizational adoption of health care social media, and proposes individual opportunities and guidelines for social media use by the physical therapy professional. © 2015 American Physical Therapy Association.
Implications of the stability behavior of zinc oxide nanoparticles for toxicological studies
NASA Astrophysics Data System (ADS)
Meißner, Tobias; Oelschlägel, Kathrin; Potthoff, Annegret
2014-08-01
The increasing use of zinc oxide (ZnO) nanoparticles in sunscreens and other cosmetic products demands a risk assessment that has to be done in toxicological studies. Such investigations require profound knowledge of the behavior of ZnO in cell culture media. The current study was performed to get well-dispersed suspensions of a hydrophilic (ZnO-hydro) and a lipophilic coated (ZnO-lipo) ZnO nanomaterial for use in in vitro tests. Therefore, systematic tests were carried out with common dispersants (phosphate, lecithin, proteins) to elucidate chemical and physical changes of ZnO nanoparticles in water and physiological solutions (PBS, DMEM). Non-physiological stock suspensions were prepared using ultrasonication. Time-dependent changes of pH, conductivity, zeta potential, particle size and dissolution were recorded. Secondly, the stock suspensions were added to physiological media with or without albumin (BSA) or serum (FBS), to examine characteristics such as agglomeration and dissolution. Stable stock suspensions were obtained using phosphate as natural and physiological electrostatic stabilizing agent. Lecithin proved to be an effective wetting agent for ZnO-lipo. Although the particle size remained constant, the suspension changed over time. The pH increased as a result of ZnO dissolution and formation of zinc phosphate complexes. The behavior of ZnO in physiological media was found to depend strongly on the additives used. Applying only phosphate as additive, ZnO-hydro agglomerated within minutes. In the presence of lecithin or BSA/serum, agglomeration was inhibited. ZnO dissolution was higher under physiological conditions than in the stock suspension. Serum especially promoted this process. Using body-related dispersants (phosphate, lecithin) non-agglomerating stock suspensions of hydrophilic and lipophilic ZnO were prepared as a prerequisite to perform meaningful toxicological investigation. Both nanomaterials showed a non-negligible dissolution behavior that strongly depended on the surrounding conditions. Agglomeration of ZnO particles in physiological media is a complex function of particle coating, used dispersants and serum proteins if supplemented. The present study gives a clear guideline how to prepare and handle suspensions with ZnO for in vitro testing and allows the correlation between the chemical-physical particles behavior with findings from toxicological tests.
NASA Astrophysics Data System (ADS)
Bordogna, Clelia María; Albano, Ezequiel V.
2007-02-01
The aim of this paper is twofold. On the one hand we present a brief overview on the application of statistical physics methods to the modelling of social phenomena focusing our attention on models for opinion formation. On the other hand, we discuss and present original results of a model for opinion formation based on the social impact theory developed by Latané. The presented model accounts for the interaction among the members of a social group under the competitive influence of a strong leader and the mass media, both supporting two different states of opinion. Extensive simulations of the model are presented, showing that they led to the observation of a rich scenery of complex behaviour including, among others, critical behaviour and phase transitions between a state of opinion dominated by the leader and another dominated by the mass media. The occurrence of interesting finite-size effects reveals that, in small communities, the opinion of the leader may prevail over that of the mass media. This observation is relevant for the understanding of social phenomena involving a finite number of individuals, in contrast to actual physical phase transitions that take place in the thermodynamic limit. Finally, we give a brief outlook of open questions and lines for future work.
Physical activity in the mass media: an audience perspective.
Smith, Ben J; Bonfiglioli, Catriona M F
2015-04-01
Physical activity's role in promoting health is highlighted in public health campaigns, news and current affairs, reality television and other programs. An investigation of audience exposure, beliefs and reactions to media portrayals of physical activity offers insights into the salience and influence of this communication. An audience reception study was conducted involving in-depth interviews with 46 adults in New South Wales, Australia. The sample was stratified by gender, age group, area of residence and body mass index. Most respondents could only recall media coverage of physical activity with prompting. Television was the primary channel of exposure, with reality television the dominant source, followed by news programs and sports coverage. The messages most readily recalled were the health risks of inactivity, especially obesity, and the necessity of keeping active. Physical activity was regarded as a matter of personal volition, or for children, parental responsibility. Respondents believed that the media had given physical activity inadequate attention, focused too heavily on risks and not provided practical advice. In Australia, there is a need to counter the framing of physical activity by reality television, and engage the media to generate understanding of the socioecological determinants of inactivity. Physical activity campaigns should deliver positive and practical messages. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Taxonomic characterization of the cellulose-degrading bacterium NCIB 10462
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dees, C.; Ringleberg, D.; Scott, T.C.
The gram negative cellulase-producing bacterium NCIB 10462 has been previously named Pseudomonas fluorescens subsp. or var. cellulosa. Since there is renewed interest in cellulose-degrading bacteria for use in bioconversion of cellulose to chemical feed stocks and fuels, we re-examined the characteristics of this microorganism to determine its proper taxonomic characterization and to further define it`s true metabolic potential. Metabolic and physical characterization of NCIB 10462 revealed that this was an alkalophilic, non-fermentative, gram negative, oxidase positive, motile, cellulose-degrading bacterium. The aerobic substrate utilization profile of this bacterium was found to have few characteristics consistent with a classification of P. fluorescensmore » with a very low probability match with the genus Sphingomonas. Total lipid analysis did not reveal that any sphingolipid bases are produced by this bacterium. NCIB 10462 was found to grow best aerobically but also grows well in complex media under reducing conditions. NCIB 10462 grew slowly under full anaerobic conditions on complex media but growth on cellulosic media was found only under aerobic conditions. Total fatty acid analysis (MIDI) of NCIB 10462 failed to group this bacterium with a known pseudomonas species. However, fatty acid analysis of the bacteria when grown at temperatures below 37{degrees}C suggest that the organism is a pseudomonad. Since a predominant characteristic of this bacterium is it`s ability to degrade cellulose, we suggest it be called Pseudomonas cellulosa.« less
Werner, Marco; Auth, Thorsten; Beales, Paul A; Fleury, Jean Baptiste; Höök, Fredrik; Kress, Holger; Van Lehn, Reid C; Müller, Marcus; Petrov, Eugene P; Sarkisov, Lev; Sommer, Jens-Uwe; Baulin, Vladimir A
2018-04-03
Synthetic polymers, nanoparticles, and carbon-based materials have great potential in applications including drug delivery, gene transfection, in vitro and in vivo imaging, and the alteration of biological function. Nature and humans use different design strategies to create nanomaterials: biological objects have emerged from billions of years of evolution and from adaptation to their environment resulting in high levels of structural complexity; in contrast, synthetic nanomaterials result from minimalistic but controlled design options limited by the authors' current understanding of the biological world. This conceptual mismatch makes it challenging to create synthetic nanomaterials that possess desired functions in biological media. In many biologically relevant applications, nanomaterials must enter the cell interior to perform their functions. An essential transport barrier is the cell-protecting plasma membrane and hence the understanding of its interaction with nanomaterials is a fundamental task in biotechnology. The authors present open questions in the field of nanomaterial interactions with biological membranes, including: how physical mechanisms and molecular forces acting at the nanoscale restrict or inspire design options; which levels of complexity to include next in computational and experimental models to describe how nanomaterials cross barriers via passive or active processes; and how the biological media and protein corona interfere with nanomaterial functionality. In this Perspective, the authors address these questions with the aim of offering guidelines for the development of next-generation nanomaterials that function in biological media.
Social media for breast cancer survivors: a literature review.
Falisi, Angela L; Wiseman, Kara P; Gaysynsky, Anna; Scheideler, Jennifer K; Ramin, Daniel A; Chou, Wen-Ying Sylvia
2017-12-01
Social media may offer support to individuals who are navigating the complex and challenging experience of cancer. A growing body of literature has been published over the last decade exploring the ways cancer survivors utilize social media. This study aims to provide a systematic synthesis of the current literature in order to inform cancer health communication practice and cancer survivorship research. Using PRISMA guidelines, four electronic databases were searched to retrieve publications on breast cancer and social media published between 2005 and 2015. The final sample included 98 publications (13 commentaries and reviews, 47 descriptive studies, and 38 intervention studies). Intervention studies were assessed for key features and outcome measures. Studies utilizing content analysis were further evaluated qualitatively. Online support groups were the most commonly studied platform, followed by interactive message boards and web forums. Limited research focuses on non-Caucasian populations. Psychosocial well-being was the most commonly measured outcome of interest. While social media engagement was assessed, few standardized measures were identified. Content analyses of social media interactions were prevalent, though few articles linked content to health outcomes. The current literature highlights the impact and potential utility of social media for breast cancer survivors. Future studies should consider connecting social media engagement and content to psychosocial, behavioral, and physical health outcomes. Online groups and communities may improve the well-being of breast cancer survivors by providing opportunities to engage with wider social networks, connect with others navigating similar cancer experiences, and obtain cancer-related information. Researchers should consider the potential role of social media in addressing the unmet needs of breast cancer survivors, and particularly the implications for clinical and public health practice.
Physical Properties of Fractured Porous Media
NASA Astrophysics Data System (ADS)
Mohammed, T. E.; Schmitt, D. R.
2015-12-01
The effect of fractures on the physical properties of porous media is of considerable interest to oil and gas exploration as well as enhanced geothermal systems and carbon capture and storage. This work represents an attempt to study the effect fractures have on multiple physical properties of rocks. An experimental technique to make simultaneous electric and ultrasonic measurements on cylindrical core plugs is developed. Aluminum end caps are mounted with ultrasonic transducers to transmit pules along the axis of the cylinder while non-polarizing electrodes are mounted on the sides of the core to make complex conductivity measurements perpendicular to the cylinder axis. Electrical measurements are made by applying a sinusoidal voltage across the measurement circuit that consist of a resister and the sample in series. The magnitude and phase of the signal across the sample is recorded relative to the input signal across a range of frequencies. Synthetic rock analogs are constructed using sintered glass beads with fractures imbedded in them. The fracture location, size and orientation are controlled and each fractured specimen has an unfractured counterpart. Porosity, Permeability, electrical conductivity and ultrasonic velocity measurements are conducted on each sample with the complex electrical conductivities recorded at frequencies from 10hz to 1 Mhz. These measurements allow us to examine the changes induced by these mesoscale fractures on the embedding porous medium. Of particular interest is the effect of fracture orientation on electrical conductivity of the rock. Seismic anisotropy caused by fractures is a well understood phenomenon with many rock physics models dedicated to its understanding. The effect of fractures on electrical conductivity is less well understood with electrical anisotropy scarcely investigated in the literature. None the less, using electrical conductivity to characterize fractures can add an extra constraint to characterization based on seismic response. As well, the formal similarity between electrical conductivity and permeability can be utilized to help optimize injection and production strategies.
Critical Literacy and the Ethical Responsibilities of Student Media Production
ERIC Educational Resources Information Center
Parker, Jessica K.
2013-01-01
Today's complex literate environments require contemporary authors to focus on the ethical responsibilities of media creation. This study highlights 12th graders in California who produced a documentary on Latino immigration and chronicles the complex interactions between student-generated media, critical literacy, and ethics. Findings highlight…
Developing physics learning media using 3D cartoon
NASA Astrophysics Data System (ADS)
Wati, M.; Hartini, S.; Hikmah, N.; Mahtari, S.
2018-03-01
This study focuses on developing physics learning media using 3D cartoon on the static fluid topic. The purpose of this study is to describe: (1) the validity of the learning media, (2) the practicality of the learning media, and (3) the effectiveness of the learning media. This study is a research and development using ADDIE model. The subject of the implementation of media used class XI Science of SMAN 1 Pulau Laut Timur. The data were obtained from the validation sheet of the learning media, questionnaire, and the test of learning outcomes. The results showed that: (1) the validity of the media category is valid, (2) the practicality of the media category is practice, and (3) the effectiveness of the media category is effective. It is concluded that the learning using 3D cartoon on the static fluid topic is eligible to use in learning.
Resurgence flows in porous media
NASA Astrophysics Data System (ADS)
Adler, P. M.; Mityushev, V.
2009-12-01
Porous media are generally described by the Darcy equation when the length scales are sufficiently large with respect to the pore scale. This approach is also applicable when the media are heterogeneous, i.e., when permeability varies with space which is the most common case. In addition, real media are very often fractured; for a long time, this complex physical problem has been schematized by the double porosity model devised by Barenblatt. More recently, these fractured media have been addressed with a detailed description of the fractures and of their hydrodynamic interaction with the surrounding porous medium. There is another situation which occurs frequently in underground studies. One well is connected to a distant well while it is not connected to closer wells. Such a situation can only be understood if there is a direct link between the two connected wells and if this link has little if any hydrodynamic interaction with the porous medium that it crosses. This link can be a fracture or more likely a set of fractures. This phenomenon is called resurgence because of the obvious analogy with rivers which suddenly disappear underground and go out at the ground surface again. Similar ideas have already been developed in other fields. In Physics, random networks limited to nearest neighbors have been recently extended to small world models where distant vertices can be related directly by a link. The electrical testing of porous media by electrical probes located at the walls (electrical tomography) has been used frequently in Geophysics since it is a non-invasive technique; this classical technique corresponds exactly to the situation addressed here from a different perspective. Media with resurgences consist of a double structure. The first one which is continuous is described by Darcy law as usual. The second one models the resurgences by capillaries with impermeable walls which relate distant points of the continuous medium. These two structures have already been studied separately in previous works (see (1) and the literature therein). Networks were addressed by graph theory and an extensive literature has been devoted to studies of porous media on the Darcy scale. For sake of simplicity, a simple physical presentation and elementary solutions are first given for one dimensional structures which display unexpected features such as an apparent back flow which goes against the main pressure gradient. Then, a general formulation is proposed which involves some non local aspects. When the sizes of the connection zones between the network and the continuous medium are assumed to be small with respect to any linear size in the continuous medium, analytical solutions are obtained in two or three dimensions for spatially periodic structures which are adequate to model spatially homogenous media. The equivalent permeability of the medium is determined. Some elementary examples are worked out in two and three dimensions. Paradoxical flow patterns are obtained with back flow even with local resurgences. Unsteady problems are presently studied. (1) Adler, P.M. Porous media. Geometry and transport. Butterworth-Heinemann, Stoneham, Ma, 1992.
Key Gaps for Enabling Plant Growth in Future Missions
NASA Technical Reports Server (NTRS)
Anderson, Molly; Motil, Brian; Barta, Dan; Fritsche, Ralph; Massa, Gioia; Quincy, Charlie; Romeyn, Matthew; Wheeler, Ray; Hanford, Anthony
2017-01-01
Growing plants to provide food or psychological benefits to crewmembers is a common vision for the future of human spaceflight, often represented in media and in serious concept studies. The complexity of controlled environment agriculture, and plant growth in microgravity have and continue to be the subject of dedicated scientific research. However, actually implementing these systems in a way that will be cost effective, efficient, and sustainable for future space missions is a complex, multi-disciplinary problem. Key questions exist in many areas: human medical research in nutrition and psychology, horticulture, plant physiology and microbiology, multi-phase microgravity fluid physics, hardware design and technology development, and system design, operations and mission planning. This paper describes key knowledge gaps identified by a multi-disciplinary working group within the National Aeronautics and Space Administration (NASA). It also begins to identify solutions to the simpler questions identified by the group based on work initiated in 2017. Growing plants to provide food or psychological benefits to crewmembers is a common vision for the future of human spaceflight, often represented in media and in serious concept studies. The complexity of controlled environment agriculture, and plant growth in microgravity have and continue to be the subject of dedicated scientific research. However, actually implementing these systems in a way that will be cost effective, efficient, and sustainable for future space missions is a complex, multi-disciplinary problem. Key questions exist in many areas: human medical research in nutrition and psychology, horticulture, plant physiology and microbiology, multi-phase microgravity fluid physics, hardware design and technology development, and system design, operations and mission planning. This paper describes key knowledge gaps identified by a multi-disciplinary working group within the National Aeronautics and Space Administration (NASA). It also begins to identify solutions to the simpler questions identified by the group based on work initiated in 2017.
ERIC Educational Resources Information Center
Saputri, Affa Ardhi; Wilujeng, Insih
2017-01-01
This research aims at revealing (1) the suitability of physics e-scaffolding teaching media with mathematical and image/diagrammatic representation, as well as (2) the effectiveness of the e-scaffolding teaching media with mathematical and image/diagrammatic representation to improve students' problem solving ability and scientific attitude. It is…
ERIC Educational Resources Information Center
Racine, Elizabeth F.; DeBate, Rita D.; Gabriel, Kelley P.; High, Robin R.
2011-01-01
Background: Media use is associated with an increased risk of chronic disease and reduced quality of life among children. This study examined the relationship between media use during discretionary hours after school and psychological and physical assets among preadolescent girls. Methods: A cross-sectional analysis was conducted using data from a…
Quantification of soil structure based on Minkowski functions
NASA Astrophysics Data System (ADS)
Vogel, H.-J.; Weller, U.; Schlüter, S.
2010-10-01
The structure of soils and other geologic media is a complex three-dimensional object. Most of the physical material properties including mechanical and hydraulic characteristics are immediately linked to the structure given by the pore space and its spatial distribution. It is an old dream and still a formidable challenge to relate structural features of porous media to their functional properties. Using tomographic techniques, soil structure can be directly observed at a range of spatial scales. In this paper we present a scale-invariant concept to quantify complex structures based on a limited set of meaningful morphological functions. They are based on d+1 Minkowski functionals as defined for d-dimensional bodies. These basic quantities are determined as a function of pore size or aggregate size obtained by filter procedures using mathematical morphology. The resulting Minkowski functions provide valuable information on the size of pores and aggregates, the pore surface area and the pore topology having the potential to be linked to physical properties. The theoretical background and the related algorithms are presented and the approach is demonstrated for the pore structure of an arable soil and the pore structure of a sand both obtained by X-ray micro-tomography. We also analyze the fundamental problem of limited resolution which is critical for any attempt to quantify structural features at any scale using samples of different size recorded at different resolutions. The results demonstrate that objects smaller than 5 voxels are critical for quantitative analysis.
Physical Activity in the Mass Media: An Audience Perspective
ERIC Educational Resources Information Center
Smith, Ben J.; Bonfiglioli, Catriona M. F.
2015-01-01
Physical activity's role in promoting health is highlighted in public health campaigns, news and current affairs, reality television and other programs. An investigation of audience exposure, beliefs and reactions to media portrayals of physical activity offers insights into the salience and influence of this communication. An audience reception…
Laflamme, Simon; Roggero, Pascal; Southcott, Chris
2010-08-01
This article examines the link between the domain and level of occupation, on the one hand, and use of media, including internet, on the other. It adds to this investigation an analysis of identity in its relation to media use and accessibility. It challenges the hypothesis of a strong correlation between level of occupation and use and accessibility to media. It reveals complex phenomena of social homogenization and differentiation. Data is extracted from a sample of workers who completed a questionnaire which focused on use of media.
... information Stay Connected Blog Contact us Media inquiries Social media About Us Who we are What we do ... information Stay Connected Blog Contact us Media inquiries Social media Subscribe to receive OWH updates Submit HHS Non- ...
Do mass media campaigns improve physical activity? a systematic review and meta-analysis.
Abioye, Ajibola I; Hajifathalian, Kaveh; Danaei, Goodarz
2013-08-02
Mass media campaigns are frequently used to influence the health behaviors of various populations. There are currently no quantitative meta-analyses of the effect of mass media campaigns on physical activity in adults. We searched six electronic databases from their inception to August 2012 and selected prospective studies that evaluated the effect of mass media campaigns on physical activity in adults. We excluded studies that did not have a proper control group or did not report the uncertainties of the effect estimates. Two reviewers independently screened the title/abstracts and full articles. We used random-effects models to pool effect estimates across studies for 3 selected outcomes. Nine prospective cohorts and before-after studies that followed-up 27,601 people over 8 weeks to 3 years met the inclusion criteria. Based on the pooled results from these studies, mass media campaigns had a significant effect on promoting moderate intensity walking (pooled relative risk (RR) from 3 studies=1.53, 95% Confidence Interval: 1.25 to 1.87), but did not help participants achieve sufficient levels of physical activity [4 studies pooled RR=1.02, 95% CI: 0.91 to 1.14)]. The apparent effect of media campaigns on reducing sedentary behavior (pooled RR=1.15, 95% CI: 1.03 to 1.30) was lost when a relatively low-quality study with large effects was excluded in a sensitivity analysis. In subgroup analyses, campaigns that promoted physical activity as a 'social norm' seemed to be more effective in reducing sedentary behavior. Mass media campaigns may promote walking but may not reduce sedentary behavior or lead to achieving recommended levels of overall physical activity. Further research is warranted on different campaign types and in low- and middle- income countries.
The complexities of governing in a social media world.
Philpott, Thomas G; Swettenham, Julie
2012-01-01
The complexity of governing has increased with the Internet's introduction of social media. Boards need to be aware of social media impact upon external stakeholder relations, as well as legal responsibilities within the organization. This paper outlines the various implications of social media that a board needs to consider. A governance framework is used to help put the issues in perspective. The conclusion is that boards need to take social media seriously and ensure that their organization has a social media risk mitigation strategy for external communications, as well as eDiscovery. Various other strategies and tactics are suggested to help boards address the challenge.
NASA Astrophysics Data System (ADS)
Baldwin, Steven L.
The goal of elucidating the physical mechanisms underlying the propagation of ultrasonic waves in anisotropic soft tissue such as myocardium has posed an interesting and largely unsolved problem in the field of physics for the past 30 years. In part because of the vast complexity of the system being studied, progress towards understanding and modeling the mechanisms that underlie observed acoustic parameters may first require the guidance of careful experiment. Knowledge of the causes of observed ultrasonic properties in soft tissue including attenuation, speed of sound, and backscatter, and how those properties are altered with specific pathophysiologies, may lead to new noninvasive approaches to the diagnosis of disease. The primary aim of this Dissertation is to contribute to an understanding of the physics that underlies the mechanisms responsible for the observed interaction of ultrasound with myocardium. To this end, through-transmission and backscatter measurements were performed by varying acoustic properties as a function of angle of insonification relative to the predominant myofiber direction and by altering the material properties of myocardium by increased protein cross-linking induced by chemical fixation as an extreme form of changes that may occur in certain pathologies such as diabetes. Techniques to estimate acoustic parameters from backscatter were broadened and challenges to implementing these techniques in vivo were addressed. Provided that specific challenges identified in this Dissertation can be overcome, techniques to estimate attenuation from ultrasonic backscatter show promise as a means to investigate the physical interaction of ultrasound with anisotropic biological media in vivo. This Dissertation represents a step towards understanding the physics of the interaction of ultrasonic waves with anisotropic biological media.
Misrepresentation of health risks by mass media.
Bomlitz, Larisa J; Brezis, Mayer
2008-06-01
Mass media are a leading source of health information for general public. We wished to examine the relationship between the intensity of media coverage for selected health topics and their actual risk to public health. Mass media reports in the United States on emerging and chronic health hazards (severe acute respiratory syndrome (SARS), bioterrorism, West Nile Fever, AIDS, smoking and physical inactivity) were counted for the year 2003, using LexisNexis database. The number of media reports for each health risk was correlated with the corresponding death rate as reported by the Centers for Disease Control and Prevention. The number of media reports inversely correlated with the actual number of deaths for the health risks evaluated. SARS and bioterrorism killed less than a dozen people in 2003, but together generated over 100 000 media reports, far more than those covering smoking and physical inactivity, which killed nearly a million Americans. Emerging health hazards are over-reported in mass media by comparison to common threats to public health. Since premature mortality in industrialized societies is most often due to well-known risks such as smoking and physical inactivity, their under-representation on public agendas may cause suboptimal prioritization of public health resources.
Selden, Steven
2005-06-01
In the early 1920s, determinist conceptions of biology helped to transform Better Babies contest into Fitter Families competitions with a strong commitment to controlled human breeding. While the earlier competitions were concerned for physical and mental standards, the latter contests collected data on a broad range of presumed hereditary characters. The complex behaviors thought to be determined by one's heredity included being generous, jealous, and cruel. In today's context, the popular media often interpret advances in molecular genetics in a similarly reductive and determinist fashion. This paper argues that such a narrow interpretation of contemporary biology unnecessarily constrains the public in developing social policies concerning complex social behavior ranging from crime to intelligence.
Lattice Boltzmann multi-phase simulations in porous media using Multiple GPUs
NASA Astrophysics Data System (ADS)
Toelke, J.; De Prisco, G.; Mu, Y.
2011-12-01
Ingrain's digital rock physics lab computes the physical properties and fluid flow characteristics of oil and gas reservoir rocks including shales, carbonates and sandstones. Ingrain uses advanced lattice Boltzmann methods (LBM) to simulate multiphase flow in the rocks (porous media). We present a very efficient implementation of these methods based on CUDA. Because LBM operates on a finite difference grid, is explicit in nature, and requires only next-neighbor interactions, it is suitable for implementation on GPUs. Since GPU hardware allows for very fine grain parallelism, every lattice site can be handled by a different core. Data has to be loaded from and stored to the device memory in such a way that dense access to the memory is ensured. This can be achieved by accessing the lattice nodes with respect to their contiguous memory locations [1,2]. The simulation engine uses a sparse data structure to represent the grid and advanced algorithms to handle the moving fluid-fluid interface. The simulations are accelerated on one GPU by one order of magnitude compared to a state of the art multicore desktop computer. The engine is parallelized using MPI and runs on multiple GPUs in the same node or across the Infiniband network. Simulations with up to 50 GPUs in parallel are presented. With this simulator using it is possible to perform pore scale multi-phase (oil-water-matrix) simulations in natural porous media in a commercial manner and to predict important rock properties like absolute permeability, relative permeabilites and capillary pressure [3,4]. Results and videos of these simulations in complex real world porous media and rocks are presented and discussed.
Computational approach to integrate 3D X-ray microtomography and NMR data
NASA Astrophysics Data System (ADS)
Lucas-Oliveira, Everton; Araujo-Ferreira, Arthur G.; Trevizan, Willian A.; Fortulan, Carlos A.; Bonagamba, Tito J.
2018-07-01
Nowadays, most of the efforts in NMR applied to porous media are dedicated to studying the molecular fluid dynamics within and among the pores. These analyses have a higher complexity due to morphology and chemical composition of rocks, besides dynamic effects as restricted diffusion, diffusional coupling, and exchange processes. Since the translational nuclear spin diffusion in a confined geometry (e.g. pores and fractures) requires specific boundary conditions, the theoretical solutions are restricted to some special problems and, in many cases, computational methods are required. The Random Walk Method is a classic way to simulate self-diffusion along a Digital Porous Medium. Bergman model considers the magnetic relaxation process of the fluid molecules by including a probability rate of magnetization survival under surface interactions. Here we propose a statistical approach to correlate surface magnetic relaxivity with the computational method applied to the NMR relaxation in order to elucidate the relationship between simulated relaxation time and pore size of the Digital Porous Medium. The proposed computational method simulates one- and two-dimensional NMR techniques reproducing, for example, longitudinal and transverse relaxation times (T1 and T2, respectively), diffusion coefficients (D), as well as their correlations. For a good approximation between the numerical and experimental results, it is necessary to preserve the complexity of translational diffusion through the microstructures in the digital rocks. Therefore, we use Digital Porous Media obtained by 3D X-ray microtomography. To validate the method, relaxation times of ideal spherical pores were obtained and compared with the previous determinations by the Brownstein-Tarr model, as well as the computational approach proposed by Bergman. Furthermore, simulated and experimental results of synthetic porous media are compared. These results make evident the potential of computational physics in the analysis of the NMR data for complex porous materials.
Multiphase flow and transport in porous media
NASA Astrophysics Data System (ADS)
Parker, J. C.
1989-08-01
Multiphase flow and transport of compositionally complex fluids in geologic media is of importance in a number of applied problems which have major social and economic effects. In petroleum reservoir engineering, efficient recovery of energy reserves is the principal goal. Unfortunately, some of these hydrocarbons and other organic chemicals often find their way unwanted into the soils and groundwater supplies. Removal in the latter case is predicated on ensuring the public health and safety. In this paper, principles of modeling fluid flow in systems containing up to three fluid phases (namely, water, air, and organic liquid) are described. Solution of the governing equations for multiphase flow requires knowledge of functional relationships between fluid pressures, saturations, and permeabilities which may be formulated on the basis of conceptual models of fluid-porous media interactions. Mechanisms of transport in multicomponent multiphase systems in which species may partition between phases are also described, and the governing equations are presented for the case in which local phase equilibrium may be assumed. A number of hypothetical numerical problems are presented to illustrate the physical behavior of systems in which multiphase flow and transport arise.
NASA Astrophysics Data System (ADS)
Chen, Daniel T. N.; Wen, Qi; Janmey, Paul A.; Crocker, John C.; Yodh, Arjun G.
2010-04-01
Research on soft materials, including colloidal suspensions, glasses, pastes, emulsions, foams, polymer networks, liquid crystals, granular materials, and cells, has captured the interest of scientists and engineers in fields ranging from physics and chemical engineering to materials science and cell biology. Recent advances in rheological methods to probe mechanical responses of these complex media have been instrumental for producing new understanding of soft matter and for generating novel technological applications. This review surveys these technical developments and current work in the field, with partial aim to illustrate open questions for future research.
SpaceX CRS-14 What's On Board Science Briefing
2018-04-01
Craig Kundrot, director, NASA's Space Life and Physical Science Research and Applications, speaks to members of the media in the Kennedy Space Center Press Site auditorium. The briefing focused on research planned for launch to the International Space Station. The scientific materials and supplies will be aboard a Dragon spacecraft scheduled for liftoff from Cape Canaveral Air Force Station's Space Launch Complex 40 at 4:30 p.m. EST, on April 2, 2018. The SpaceX Falcon 9 rocket will launch the company's 14th Commercial Resupply Services mission to the space station.
NASA Astrophysics Data System (ADS)
Sturmberg, Björn C. P.; Dossou, Kokou B.; Lawrence, Felix J.; Poulton, Christopher G.; McPhedran, Ross C.; Martijn de Sterke, C.; Botten, Lindsay C.
2016-05-01
We describe EMUstack, an open-source implementation of the Scattering Matrix Method (SMM) for solving field problems in layered media. The fields inside nanostructured layers are described in terms of Bloch modes that are found using the Finite Element Method (FEM). Direct access to these modes allows the physical intuition of thin film optics to be extended to complex structures. The combination of the SMM and the FEM makes EMUstack ideally suited for studying lossy, high-index contrast structures, which challenge conventional SMMs.
Pore-scale dynamics of salt transport and distribution in drying porous media
NASA Astrophysics Data System (ADS)
Shokri, Nima
2014-01-01
Understanding the physics of water evaporation from saline porous media is important in many natural and engineering applications such as durability of building materials and preservation of monuments, water quality, and mineral-fluid interactions. We applied synchrotron x-ray micro-tomography to investigate the pore-scale dynamics of dissolved salt distribution in a three dimensional drying saline porous media using a cylindrical plastic column (15 mm in height and 8 mm in diameter) packed with sand particles saturated with CaI2 solution (5% concentration by mass) with a spatial and temporal resolution of 12 μm and 30 min, respectively. Every time the drying sand column was set to be imaged, two different images were recorded using distinct synchrotron x-rays energies immediately above and below the K-edge value of Iodine. Taking the difference between pixel gray values enabled us to delineate the spatial and temporal distribution of CaI2 concentration at pore scale. Results indicate that during early stages of evaporation, air preferentially invades large pores at the surface while finer pores remain saturated and connected to the wet zone at bottom via capillary-induced liquid flow acting as evaporating spots. Consequently, the salt concentration increases preferentially in finer pores where evaporation occurs. Higher salt concentration was observed close to the evaporating surface indicating a convection-driven process. The obtained salt profiles were used to evaluate the numerical solution of the convection-diffusion equation (CDE). Results show that the macro-scale CDE could capture the overall trend of the measured salt profiles but fail to produce the exact slope of the profiles. Our results shed new insight on the physics of salt transport and its complex dynamics in drying porous media and establish synchrotron x-ray tomography as an effective tool to investigate the dynamics of salt transport in porous media at high spatial and temporal resolution.
Pore-scale dynamics of salt transport and distribution in drying porous media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shokri, Nima, E-mail: nima.shokri@manchester.ac.uk
2014-01-15
Understanding the physics of water evaporation from saline porous media is important in many natural and engineering applications such as durability of building materials and preservation of monuments, water quality, and mineral-fluid interactions. We applied synchrotron x-ray micro-tomography to investigate the pore-scale dynamics of dissolved salt distribution in a three dimensional drying saline porous media using a cylindrical plastic column (15 mm in height and 8 mm in diameter) packed with sand particles saturated with CaI{sub 2} solution (5% concentration by mass) with a spatial and temporal resolution of 12 μm and 30 min, respectively. Every time the drying sandmore » column was set to be imaged, two different images were recorded using distinct synchrotron x-rays energies immediately above and below the K-edge value of Iodine. Taking the difference between pixel gray values enabled us to delineate the spatial and temporal distribution of CaI{sub 2} concentration at pore scale. Results indicate that during early stages of evaporation, air preferentially invades large pores at the surface while finer pores remain saturated and connected to the wet zone at bottom via capillary-induced liquid flow acting as evaporating spots. Consequently, the salt concentration increases preferentially in finer pores where evaporation occurs. Higher salt concentration was observed close to the evaporating surface indicating a convection-driven process. The obtained salt profiles were used to evaluate the numerical solution of the convection-diffusion equation (CDE). Results show that the macro-scale CDE could capture the overall trend of the measured salt profiles but fail to produce the exact slope of the profiles. Our results shed new insight on the physics of salt transport and its complex dynamics in drying porous media and establish synchrotron x-ray tomography as an effective tool to investigate the dynamics of salt transport in porous media at high spatial and temporal resolution.« less
Development of website for studying modern physics
NASA Astrophysics Data System (ADS)
Saehana, S.; Wahyono, U.; Darmadi, I. W.; Kendek, Y.; Widyawati, W.
2018-03-01
The purpose of this study is to produce a website in modern physics courses in order to increase student interest in physics learning. To determine the feasibility level of learning media then feasibility test to the product. The feasibility test carried out on the product is divided into three parts: material feasibility test, media feasibility test, and student response test. Based on the results of the test conducted the material obtained an average score of 3.72 and categorized very well. The result of media test that was obtained got the average score of 3.25 and categorized well. The result of the analysis of student's response to the twenty students of class A (fifth semester) of physics education program FKIP UniversitasTadulako obtained an average score of 3.16 with the good category. The results showed that the website developed can be used as one of the learning media that can support the learning process of students.
NASA Astrophysics Data System (ADS)
Zhou, Bing; Greenhalgh, S. A.
2011-01-01
We present an extension of the 3-D spectral element method (SEM), called the Gaussian quadrature grid (GQG) approach, to simulate in the frequency-domain seismic waves in 3-D heterogeneous anisotropic media involving a complex free-surface topography and/or sub-surface geometry. It differs from the conventional SEM in two ways. The first is the replacement of the hexahedral element mesh with 3-D Gaussian quadrature abscissae to directly sample the physical properties or model parameters. This gives a point-gridded model which more exactly and easily matches the free-surface topography and/or any sub-surface interfaces. It does not require that the topography be highly smooth, a condition required in the curved finite difference method and the spectral method. The second is the derivation of a complex-valued elastic tensor expression for the perfectly matched layer (PML) model parameters for a general anisotropic medium, whose imaginary parts are determined by the PML formulation rather than having to choose a specific class of viscoelastic material. Furthermore, the new formulation is much simpler than the time-domain-oriented PML implementation. The specified imaginary parts of the density and elastic moduli are valid for arbitrary anisotropic media. We give two numerical solutions in full-space homogeneous, isotropic and anisotropic media, respectively, and compare them with the analytical solutions, as well as show the excellent effectiveness of the PML model parameters. In addition, we perform numerical simulations for 3-D seismic waves in a heterogeneous, anisotropic model incorporating a free-surface ridge topography and validate the results against the 2.5-D modelling solution, and demonstrate the capability of the approach to handle realistic situations.
Media Tort Liability for Physical Harm: Problems in Legal Duty and Cause.
ERIC Educational Resources Information Center
Drechsel, Robert
Although the media has long been familiar with the tort law of libel and invasion of privacy, they may not be aware that the law of torts reaches more broadly. This paper examines legal developments in cases where actions of the media are alleged either to have caused the plaintiff to do something resulting in physical harm or financial loss, or…
Collective workload organization in confined excavation of granular media
NASA Astrophysics Data System (ADS)
Monaenkova, Daria; Linevich, Vadim; Goodisman, Michael A.; Goldman, Daniel I.
2015-03-01
Many social insects collectively construct large nests in complex substrates; such structures are often composed of narrow tunnels. The benefits of collective construction, including reduced construction costs per worker come with challenges of navigation in crowded, confined spaces. Here we study the workforce organization of groups of S. invicta fire ants creating tunnels in wet granular media. We monitor the activity levels of marked (painted) workers-defined as a number of tunnel visits over 12 hours- during initiation of tunnels. The activity levels are described by a Lorenz curve with a Gini coefficient of ~ 0 . 7 indicating that a majority of the excavation is performed by a minority of workers. We hypothesize that this workload distribution is beneficial for excavation in crowded conditions, and use a 2D cellular automata (CA) model to reproduce behaviors of the excavating ants. CA simulations reveal that tunnel construction rates decrease in groups of equally active animals compared to groups with the natural workload distribution. We use predictions of the CA model to organize collective excavation of granular material by teams of digging robots, and use the robots to test hypotheses of crowded excavation in the physical world. We acknowledge support of National Science Foundation, Physics of Living Systems division.
NASA Astrophysics Data System (ADS)
Sole-Mari, G.; Fernandez-Garcia, D.
2016-12-01
Random Walk Particle Tracking (RWPT) coupled with Kernel Density Estimation (KDE) has been recently proposed to simulate reactive transport in porous media. KDE provides an optimal estimation of the area of influence of particles which is a key element to simulate nonlinear chemical reactions. However, several important drawbacks can be identified: (1) the optimal KDE method is computationally intensive and thereby cannot be used at each time step of the simulation; (2) it does not take advantage of the prior information about the physical system and the previous history of the solute plume; (3) even if the kernel is optimal, the relative error in RWPT simulations typically increases over time as the particle density diminishes by dilution. To overcome these problems, we propose an adaptive branching random walk methodology that incorporates the physics, the particle history and maintains accuracy with time. The method allows particles to efficiently split and merge when necessary as well as to optimally adapt their local kernel shape without having to recalculate the kernel size. We illustrate the advantage of the method by simulating complex reactive transport problems in randomly heterogeneous porous media.
ERIC Educational Resources Information Center
Turvey, Keith
2012-01-01
This article argues that to understand how new technologies and media can become co-agents in the process of pedagogical change, we first need to understand teachers' complex relationship with new technologies and media in both their personal and their professional lives. A conceptual framework is delineated for constructing a complex narrative…
Strategic Communication Joint Integrating Concept. Version 1.0
2009-10-07
information and knowledge on complex social communication systems, to include the characteristics of various media channels and the intentions... social or media networks. Including strategic communication instructions as an integral part of the main body of an operation order or plan...information and knowledge on complex social communication systems, to include the characteristics of various media SC-004.2T Access
"It's Just Not Very Realistic": Perceptions of Media Among Pregnant and Postpartum Women.
Liechty, Toni; Coyne, Sarah M; Collier, Kevin M; Sharp, Aubrey D
2018-07-01
Although research has documented a connection between media and body image for women, little research has explored this connection among pregnant or postpartum women. The purpose of this study was to explore women's perceptions of media and body image during the perinatal period. Fredrickson's objectification theory provided a theoretical framework for the study. Data collection involved semi-structured in-depth interviews with 50 pregnant or postpartum women in which they were asked to describe their perceptions of media depictions of pregnant or postpartum women and its impact on their body image. Interviews were audio-recorded, transcribed verbatim, and analyzed thematically. Four major themes emerged: (1) participants questioned the realism of media depictions of pregnant and postpartum women, (2) participants described complex reactions to media messages including negative impacts on body image and strategies for mitigating negative impacts, (3) participants desired changes in media messages to be more realistic and to depict a more complex portrayal of the life stage, and (4) participants discussed the unique and complex role of social media including both negative and positive impacts. Implications of the findings for pregnant and postpartum women, communication scholars, and healthcare professionals are discussed.
Local numerical modelling of ultrasonic guided waves in linear and nonlinear media
NASA Astrophysics Data System (ADS)
Packo, Pawel; Radecki, Rafal; Kijanka, Piotr; Staszewski, Wieslaw J.; Uhl, Tadeusz; Leamy, Michael J.
2017-04-01
Nonlinear ultrasonic techniques provide improved damage sensitivity compared to linear approaches. The combination of attractive properties of guided waves, such as Lamb waves, with unique features of higher harmonic generation provides great potential for characterization of incipient damage, particularly in plate-like structures. Nonlinear ultrasonic structural health monitoring techniques use interrogation signals at frequencies other than the excitation frequency to detect changes in structural integrity. Signal processing techniques used in non-destructive evaluation are frequently supported by modeling and numerical simulations in order to facilitate problem solution. This paper discusses known and newly-developed local computational strategies for simulating elastic waves, and attempts characterization of their numerical properties in the context of linear and nonlinear media. A hybrid numerical approach combining advantages of the Local Interaction Simulation Approach (LISA) and Cellular Automata for Elastodynamics (CAFE) is proposed for unique treatment of arbitrary strain-stress relations. The iteration equations of the method are derived directly from physical principles employing stress and displacement continuity, leading to an accurate description of the propagation in arbitrarily complex media. Numerical analysis of guided wave propagation, based on the newly developed hybrid approach, is presented and discussed in the paper for linear and nonlinear media. Comparisons to Finite Elements (FE) are also discussed.
NASA Astrophysics Data System (ADS)
Sanchez-Vila, X.; Rubol, S.; Fernandez-Garcia, D.
2011-12-01
Despite the fact that the prognoses on the availability of resources related to different climate scenarios have been already formulated, the complex hydrological and biogeochemical reactions taking place in different compartments in natural environmental media are poorly understood, especially regarding the interactions between water bodies, and the reactions taking place at soil-water interfaces. Amongst them, the inter-relationship between hydrology, chemistry and biology has important implications in natural (rivers, lakes) and man-made water facilities (lagoons, artificial recharge pounds, reservoirs, slow infiltration systems, etc). The consequences involve environment, economic, social and health-risk aspects. At the current stage, only limited explanations are available to understand the implications of these relationships on ecosystem services, water quality and water quantity. Therefore, there is an urgent need to seek a full understanding of these physical-biogeochemical processes in water-bodies, sediments and biota and its implications in ecological and health risk. We present a soil column experiment and a mathematical model which aim to study the mutual interplay between water and bacteria activity in porous media, the corresponding dynamics and the feedback on nutrient cycling by using a multidisciplinary approach.
NASA Astrophysics Data System (ADS)
Fu, An; Palakurthi, Nikhil; Konangi, Santosh; Comer, Ken; Jog, Milind
2017-11-01
The physics of capillary flow is used widely in multiple fields. Lucas-Washburn equation is developed by using a single pore-sized capillary tube with continuous pore connection. Although this equation has been extended to describe the penetration kinetics into porous medium, multiple studies have indicated L-W does not accurately predict flow patterns in real porous media. In this study, the penetration kinetics including the effect of pore size and pore connectivity will be closely examined since they are expected to be the key factors effecting the penetration process. The Liquid wicking process is studied from a converging and diverging capillary tube to the complex virtual 3-D porous structures with Direct Numerical Simulation (DNS) using the Volume-Of-Fluid (VOF) method within the OpenFOAM CFD Solver. Additionally Porous Medium properties such as Permeability (k) , Tortuosity (τ) will be also analyzed.
Orthophosphate modulates the phytotoxicity of nano-ZnO to Lemna minor (L.).
Chen, Xiaolin; O'Halloran, John; Jansen, Marcel A K
2018-03-02
Because of their applications in large numbers of products, Zinc Oxide nanoparticles (nano-ZnO) will inevitably enter into the environment. Nano-ZnO released into the environment will be present in a complex matrix which can cause various chemical and physical transformations and modulate the biological reactivity of these particles. Due to their rapid growth and small size, Lemna minor is recommended by OECD for toxicological testing. Here, we tested how nano-ZnO reactivity is modulated by the suite of macro- and micronutrients that are present in Lemna minor growth media. Specifically, we measured ex situ Reactive Oxygen Species (ROS) formation by nano-ZnO, and subsequent in planta toxicity. The data show how orthophosphate can modulate both ex situ ROS formation, and in planta toxicity. This has ramifications for phytotoxicity testing, which is commonly performed under controlled conditions and on media containing orthophosphate.
Geophysical aspects of underground fluid dynamics and mineral transformation process
NASA Astrophysics Data System (ADS)
Khramchenkov, Maxim; Khramchenkov, Eduard
2014-05-01
The description of processes of mass exchange between fluid and poly-minerals material in porous media from various kinds of rocks (primarily, sedimentary rocks) have been examined. It was shown that in some important cases there is a storage equation of non-linear diffusion equation type. In addition, process of filtration in un-swelling soils, swelling porous rocks and coupled process of consolidation and chemical interaction between fluid and particles material were considered. In the latter case equations of physical-chemical mechanics of conservation of mass for fluid and particles material were used. As it is well known, the mechanics of porous media is theoretical basis of such branches of science as rock mechanics, soil physics and so on. But at the same moment some complex processes in the geosystems lacks full theoretical description. The example of such processes is metamorphosis of rocks and correspondent variations of stress-strain state. In such processes chemical transformation of solid and fluid components, heat release and absorption, phase transitions, rock destruction occurs. Extensive usage of computational resources in limits of traditional models of the mechanics of porous media cannot guarantee full correctness of obtained models and results. The process of rocks consolidation which happens due to filtration of underground fluids is described from the position of rock mechanics. As an additional impact, let us consider the porous media consolidating under the weight of overlying rock with coupled complex geological processes, as a continuous porous medium of variable mass. Problems of obtaining of correct storage equations for coupled processes of consolidation and mass exchange between underground fluid and skeleton material are often met in catagenesi processes description. The example of such processes is metamorphosis of rocks and correspondent variations of stress-strain state. In such processes chemical transformation of solid and fluid components, heat release and absorption, phase transitions, rock destruction occurs. Extensive usage of computational resources in limits of traditional models of the mechanics of porous media cannot guarantee full correctness of obtained models and results. The present work is dedicated to the retrieval of new ways to formulate and construct such models. It was shown that in some important cases there is a governing equation of non-linear diffusion equation type (well-known Fisher equation). In addition, some geophysical aspects of filtration process in usual non-swelling soils, swelling porous rocks and coupled process of consolidation and chemical interaction between fluid and skeleton material, including earth quakes, are considered.
Effect of Social Media in a mHealth Application.
Tufte, Trond; Babic, Ankica
2017-01-01
In this project the potential of social media has been reviewed in terms how it can promote a healthy lifestyle utilized in an app. A mHealth app for smartphones has been developed using Design Science methodology, where various features from social media have been implemented with the goal of increasing physical activity. The application has been evaluated extensively in order to meet usability requirements. In addition, a focus group has contributed towards the application's potential to increase physical. The data collected is suggesting that social features have a positive impact on promoting physical activity.
Geophysical monitoring of organic contaminants in sediments
NASA Astrophysics Data System (ADS)
Zhang, C.; Jennings, J.
2016-12-01
Soil and groundwater contamination pose threats to the health of human and the environment. Successful contaminant remediation requires effective in situ monitoring of physical, chemical, and biological processes in the subsurface. Minimally invasive geophysical methods have shown promise in characterizing organic contaminants in soil and groundwater and have been applied to monitor remediation processes. This study examines the sensitivity of low field proton nuclear magnetic resonance (NMR) and complex conductivity to the presence of organic contaminants in sediments. We aim to improve understanding of relationships between NMR and complex conductivity observables and hydrological properties of the sediments, as well as the amount and state of contaminants in porous media. We used toluene as a representative organic contaminant, and pure silica sands and montmorillonite clay as synthetic sediments. Sand-clay mixtures with various sand/clay ratios were prepared and saturated with different concentration of toluene. Relationships between the compositions of porous media, hydrocarbon concentration, and hydrological properties of sediments and geophysical response were investigated. The results from NMR relaxation time (T2) measurements reveal the dominant control of clay content on T2 relaxation, establish minimum toluene detectability, and demonstrate the effect of contaminant concentration on NMR signals. The diffusion-relaxation (D-T2) correlation measurement show toluene can be resolved from toluene-water mixture in sand-clay mixture. The results from ongoing complex conductivity measurements will also be presented and discussed.
Leavy, Justine E; Bull, Fiona C; Rosenberg, Michael; Bauman, Adrian
2011-12-01
Internationally, mass media campaigns to promote regular moderate-intensity physical activity have increased recently. Evidence of mass media campaign effectiveness exists in other health areas, however the evidence for physical activity is limited. The purpose was to systematically review the literature on physical activity mass media campaigns, 2003-2010. A focus was on reviewing evaluation designs, theory used, formative evaluation, campaign effects and outcomes. Literature was searched resulting in 18 individual adult mass media campaigns, mostly in high-income regions and two in middle-income regions. Designs included: quasi experimental (n = 5); non experimental (n = 12); a mixed methods design (n = 1). One half used formative research. Awareness levels ranged from 17 to 95%. Seven campaigns reported significant increases in physical activity levels. The review found that beyond awareness raising, changes in other outcomes were measured, assessed but reported in varying ways. It highlighted improvements in evaluation, although limited evidence of campaign effects remain. It provides an update on the evaluation methodologies used in the adult literature. We recommend optimal evaluation design should include: (1) formative research to inform theories/frameworks, campaign content and evaluation design; (2) cohort study design with multiple data collection points; (3) sufficient duration; (4) use of validated measures; (5) sufficient evaluation resources.
Numerical Simulation of Electrical Properties of Carbonate Reservoir Rocks Using µCT Images
NASA Astrophysics Data System (ADS)
Colgin, J.; Niu, Q.; Zhang, C.; Zhang, F.
2017-12-01
Digital rock physics involves the modern microscopic imaging of geomaterials, digitalization of the microstructure, and numerical simulation of physical properties of rocks. This physics-based approach can give important insight into understanding properties of reservoir rocks, and help reveal the link between intrinsic rock properties and macroscopic geophysical responses. The focus of this study is the simulation of the complex conductivity of carbonate reservoir rocks using reconstructed 3D rock structures from high-resolution X-ray micro computed tomography (µCT). Carbonate core samples with varying lithofacies and pore structures from the Cambro-Ordovician Arbuckle Group and the Upper Pennsylvanian Lansing-Kansas City Group in Kansas are used in this study. The wide variations in pore geometry and connectivity of these samples were imaged using µCT. A two-phase segmentation method was used to reconstruct a digital rock of solid particles and pores. We then calculate the effective electrical conductivity of the digital rock volume using a pore-scale numerical approach. The complex conductivity of geomaterials is influenced by the electrical properties and geometry of each phase, i.e., the solid and fluid phases. In addition, the electrical double layer that forms between the solid and fluid phases can also affect the effective conductivity of the material. In the numerical modeling, the influence of the electrical double layer is quantified by a complex surface conductance and converted to an apparent volumetric complex conductivity of either solid particles or pore fluid. The effective complex conductivity resulting from numerical simulations based on µCT images will be compared to results from laboratory experiments on equivalent rock samples. The imaging and digital segmentation method, assumptions in the numerical simulation, and trends as compared to laboratory results will be discussed. This study will help us understand how microscale physics affects macroscale electrical conductivity in porous media.
PhysicsCentral's future in Snapchat, and new social media strategy
NASA Astrophysics Data System (ADS)
Roche, James
In 2017, social media is no longer just an amplifier for marketing strategy, but for many large organizations is firmly at the core of it. Facebook is the reigning social media king, boasting 1.2 billion daily active users around the world. Snapchat, one of the latest platforms to be declared the future of social media, hits 150 million daily active users globally. The platforms differ by nature, with Snapchat valuing ephemerality over Facebook's stalk-able photo albums. However, the average age of a Facebook user is 40, while the average age range of Snapchat users is between 12-25, and on any given day, Snapchat reaches 41% of all 18-34 year olds in the United States. Students under 25 now turn nearly equally to TV and social media as their primary source of news content. The opportunity for physics outreach in an important young demographic is clear. American Physical Societys outreach website, physicscentral.com has found success on multiple online and social media platforms, and now thanks to the SPS summer intern program, has entered the Snapchat world.
ERIC Educational Resources Information Center
Nebraska Univ., Lincoln. Dept. of Educational Administration.
Papers consider the problems of combining library science and audiovisual education into educational media complexes, or instructional materials centers (IMC's), in schools for the deaf. Areas covered include the concept of such centers, their relationship with the school library, and the personnel, equipment, materials, and production facilities…
VIRUS TRANSPORT IN PHYSICALLY AND GEOCHEMICALLY HETEROGENEOUS SUBSURFACE POROUS MEDIA. (R826179)
A two-dimensional model for virus transport in physically and geochemically heterogeneous subsurface porous media is presented. The model involves solution of the advection–dispersion equation, which additionally considers virus inactivation in the solution, as well as ...
Hydro-physical Characteristics of Selected Media Used for Containerized Agriculture Systems
USDA-ARS?s Scientific Manuscript database
Containerized plant production represents an extremely intensive agricultural practice with large amounts of water and fertilizer application. Hydro-physical characteristics such as water infiltration, texture and structure, particle size distribution affect the quality of the media used in containe...
Kanti Sen, Tushar; Khilar, Kartic C
2006-02-28
In this review article, the authors present up-to-date developments on experimental, modeling and field studies on the role of subsurface colloidal fines on contaminant transport in saturated porous media. It is a complex phenomenon in porous media involving several basic processes such as colloidal fines release, dispersion stabilization, migration and fines entrapment/plugging at the pore constrictions and adsorption at solid/liquid interface. The effects of these basic processes on the contaminant transport have been compiled. Here the authors first present the compilation on in situ colloidal fines sources, release, stabilization of colloidal dispersion and migration which are a function of physical and chemical conditions of subsurface environment and finally their role in inorganic and organic contaminants transport in porous media. The important aspects of this article are as follows: (i) it gives not only complete compilation on colloidal fines-facilitated contaminant transport but also reviews the new role of colloidal fines in contaminant retardation due to plugging of pore constrictions. This plugging phenomenon also depends on various factors such as concentration of colloidal fines, superficial velocity and bead-to-particle size ratio. This plugging-based contaminant transport can be used to develop containment technique in soil and groundwater remediation. (ii) It also presents the importance of critical salt concentration (CSC), critical ionic strength for mixed salt, critical shear stressor critical particle concentration (CPC) on in situ colloidal fines release and migration and consequently their role on contaminant transport in porous media. (iii) It also reviews another class of colloidal fines called biocolloids and their transport in porous media. Finally, the authors highlight the future research based on their critical review on colloid-associated contaminant transport in saturated porous media.
Maxwell's color statistics: from reduction of visible errors to reduction to invisible molecules.
Cat, Jordi
2014-12-01
This paper presents a cross-disciplinary and multi-disciplinary account of Maxwell's introduction of statistical models of molecules for the composition of gases. The account focuses on Maxwell's deployment of statistical models of data in his contemporaneous color researches as established in Cambridge mathematical physics, especially by Maxwell's seniors and mentors. The paper also argues that the cross-disciplinary, or cross-domain, transfer of resources from the natural and social sciences took place in both directions and relied on the complex intra-disciplinary, or intra-domain, dynamics of Maxwell's researches in natural sciences, in color theory, physical astronomy, electromagnetism and dynamical theory of gases, as well as involving a variety of types of communicating and mediating media, from material objects to concepts, techniques and institutions.
Andersson, Camilla Maria; Bjärås, Gunilla; Tillgren, Per; Ostenson, Claes-Göran
2007-01-01
We present a rationale and approach for longitudinal analyses of media coverage and content, and illustrate how media monitoring can be used in process evaluations. Within a community-based diabetes prevention project, the Stockholm Diabetes Prevention Program, we analyzed the frequency, prominence, and framing of physical activity in local newspapers of three intervention and two control municipalities. In total, 2,128 stories and advertisements related to physical activity were identified between the years 1997 and 2002. Although stories about physical activity were relatively few (n = 224), they were prominently located in all five local newspapers. Physical activity was framed rather similarly in the municipalities. Health aspects, however, were expressed to a greater extent in stories in two of the intervention municipalities. A limited portion (14%) of the articles could be linked directly to the program. It is not possible to assess to what extent the program has had a disseminating effect on the newspapers' health-related content in general, due to weaknesses of the process tracking system and limitations of the study design. Implications for the design is that an evaluative framework should be preplanned and include data collection about media relationships, media's interest in public health, media coverage prior to the program and coverage in other media for comparisons of general trends in the reporting. The material and the current database, however, provide a good basis for quantitative content analysis and qualitative discourse analysis to yield information on the type, frequency, and content of health reporting in local newspapers.
National Test Bed Security and Communications Architecture Working Group Report
1992-04-01
computer systems via a physical medium. Most of those physical media are tappable or interceptable. This means that all the data that flows across the...provides the capability for NTBN nodes to support users operating in differing COIs to share the computing resources and communication media and for...representation. Again generally speaking, the NTBN must act as the high-speed, wide-bandwidth communications media that would provide the "near real-time
ERIC Educational Resources Information Center
Berkowitz, Drew Emanuel
2012-01-01
This article discusses how online fanfiction communities, their members, and their literacy practices are portrayed within popular and news media discourses. Many media literacy scholars believe these youth media subcultures practice complex and sophisticated forms of "new media" literacy. However, when educators attempt to incorporate…
Resurgence flows in porous media
NASA Astrophysics Data System (ADS)
Adler, Pierre; Mityushev, Vladimir
2010-05-01
Porous media are generally described by the Darcy equation when the length scales are sufficiently large with respect to the pore scale. This approach is also applicable when the media are heterogeneous, i.e., when permeability varies with space which is the most common case. In addition, real media are very often fractured; for a long time, this complex physical problem has been schematized by the double porosity model devised by Barenblatt. More recently, these fractured media have been addressed with a detailed description of the fractures and of their hydrodynamic interaction with the surrounding porous medium. This approach will be briefly summarized and the main recent progress surveyed (2). There is another situation which occurs frequently in underground studies. One well is connected to a distant well while it is not connected to closer wells. Such a situation can only be understood if there is a direct link between the two connected wells and if this link has little if any hydrodynamic interaction with the porous medium that it crosses. This link can be a fracture or more likely a set of fractures. This phenomenon is called resurgence because of the obvious analogy with rivers which suddenly disappear underground and go out at the ground surface again. Similar ideas have already been developed in other fields. In Physics, random networks limited to nearest neighbors have been recently extended to small world models where distant vertices can be related directly by a link. The electrical testing of porous media by electrical probes located at the walls (electrical tomography) has been used frequently in Geophysics since it is a non-invasive technique; this classical technique corresponds exactly to the situation addressed here from a different perspective. Media with resurgences consist of a double structure (3). The first one which is continuous is described by Darcy law as usual. The second one models the resurgences by capillaries with impermeable walls which relate distant points of the continuous medium. These two structures have already been studied separately in previous works (see (1) and the literature therein). Networks were addressed by graph theory and an extensive literature has been devoted to studies of porous media on the Darcy scale. For sake of simplicity, a simple physical presentation and elementary solutions are first given for one dimensional structures which display unexpected features such as an apparent back flow which goes against the main pressure gradient. Then, a general formulation is proposed which involves some non local aspects. When the sizes of the connection zones between the network and the continuous medium are assumed to be small with respect to any linear size in the continuous medium, analytical solutions are obtained in two or three dimensions for spatially periodic structures which are adequate to model spatially homogenous media. The equivalent permeability of the medium is determined. Some elementary examples are worked out in two and three dimensions. Paradoxical flow patterns are obtained with back flow even with local resurgences (3). Unsteady problems are presently studied. (1) P.M. Adler, Fractures and fracture networks, Kluwer, 1999. (2) P.M. Adler, Porous media. Geometry and transport. Butterworth-Heinemann, Stoneham, Ma, 1992. (3) P. M. Adler, V. Mityushev, Resurgence flows in porous media, Phys. Rev. E 79, 026310, 2009.
Using social media in a high school physics classroom
NASA Astrophysics Data System (ADS)
2015-03-01
In today's classrooms students have ever increasing access to technology and social media. Rather than try and suppress the use of it in my classroom, I have embraced it and use it as a tool to foster collaboration and science writing with my physics students. There are many platforms to engage your students online, from simple and free to dynamic and costly, but the benefits of using social media for your students is worth giving it try.
Fluid dynamic instabilities: theory and application to pattern forming in complex media
Brun, P.-T.
2017-01-01
In this review article, we exemplify the use of stability analysis tools to rationalize pattern formation in complex media. Specifically, we focus on fluid flows, and show how the destabilization of their interface sets the blueprint of the patterns they eventually form. We review the potential use and limitations of the theoretical methods at the end, in terms of their applications to practical settings, e.g. as guidelines to design and fabricate structures while harnessing instabilities. This article is part of the themed issue ‘Patterning through instabilities in complex media: theory and applications’. PMID:28373378
Zeeni, Nadine; Doumit, Rita; Abi Kharma, Joelle; Sanchez-Ruiz, Maria-Jose
2018-05-15
Previous research has shown that the use of technology and media, in their different available forms, may have detrimental effects on the physical and mental well-being of adolescents and young adults. The present study aimed to investigate the use of different types of technology and media, attitudes toward them, and how they relate to physical and mental well-being in Lebanese university students. A descriptive, correlational, cross-sectional design was used. A sample of 244 undergraduates completed a self-report measuring media and technology use and attitudes, eating-related variables (e.g., healthy eating, body image dissatisfaction [BID], and eating disorders [EDs] risk), trait emotional intelligence (TEI), and psychopathology indicators (stress, anxiety, and depression). The use of mobile phone multimedia (music, pictures, and videos) correlated with unhealthy eating and stress. Social media use was associated with BID, EDs risk, and the self-control construct of TEI. Anxiety of separation from technological devices and dependence on them was associated with increased BID, EDs risk, depression, and anxiety. Practical implications are discussed in terms of setting limits and boundaries on technology use during childhood and adolescence, and encouraging healthy eating and physical activity at home and on college campuses. Moreover, social media could be used as a platform for intervention and prevention programs to decrease BID, EDs, depression, and anxiety. © 2018 Sigma Theta Tau International.
A Content Analysis of Educational Media about Menstruation.
ERIC Educational Resources Information Center
Havens, Beverly; Swenson, Ingrid
1989-01-01
Reviewed 31 audiovisual media for content related to physical and psychological aspects of menstruation; portrayal of adolescent girls, parents, and peers; and relationship of menstruation to developmental process. In general, variations in physical and emotional responses were described as normal. In all cases, fear and embarrassment were…
Drought, Agriculture, and Labor: Understanding Drought Impacts and Vulnerability in California
NASA Astrophysics Data System (ADS)
Greene, C.
2015-12-01
Hazardous drought impacts are a product of not only the physical intensity of drought, but also the economic, social, and environmental characteristics of the region exposed to drought. Drought risk management requires understanding the complex links between the physical and human dimensions of drought. Yet, there is a research gap in identifying and explaining the socio-economic complexities of drought in the context of the first world, especially for economic and socially marginal groups who rely on seasonal and temporary jobs. This research uses the current drought in California as a case study to identify the socioeconomic impacts of drought on farmworker communities in California's San Joaquin Valley, with a specific focus on the relationship between drought and agricultural labor. Through both a narrative analysis of drought coverage in newspaper media, drought policy documents, and interviews with farmworkers, farmers, community based organizations, and government officials in the San Joaquin Valley, this research aims to highlight the different understandings and experiences of the human impacts of drought and drought vulnerability in order to better inform drought risk planning and policy.
Media Anthropologist Newsletter. Volume 1, Number 2.
ERIC Educational Resources Information Center
James, C. A., Ed.
The aim of media anthropologists is to provide the general public with entertaining, relevant anthropological background information through the public media. This quarterly newsletter disseminates information, promotes awareness of present physical and social issues, and offers a means of intercommunication on the topic of Media Anthropology.…
NASA Astrophysics Data System (ADS)
Wibowo, F. C.; Suhandi, A.; Rusdiana, D.; Darman, D. R.; Ruhiat, Y.; Denny, Y. R.; Suherman; Fatah, A.
2016-08-01
A Study area in physics learning is purposeful on the effects of various types of learning interventions to help students construct the basic of scientific conception about physics. Microscopic Virtual Media (MVM) are applications for physics learning to support powerful modelling microscopic involving physics concepts and processes. In this study groups (experimental) of 18±20 years old, students were studied to determine the role of MVM in the development of functional understanding of the concepts of thermal expansion in heat transfer. The experimental group used MVM in learning process. The results show that students who learned with virtual media exhibited significantly higher scores in the research tasks. Our findings proved that the MVM may be used as an alternative instructional tool, in order to help students to confront and constructed their basic of scientific conception and developed their understanding.
ERIC Educational Resources Information Center
Fleischmann, Katja; Daniel, Ryan
2013-01-01
Increasing complexity is one of the most pertinent issues when discussing the role and future of design, designers and their education. The evolving nature of digital media technology has resulted in a profession in a state of flux with increasingly complex communication and design problems. The ability to collaborate and interact with other…
ERIC Educational Resources Information Center
Unal, Hakan
2014-01-01
This study is aimed to determine the literacy levels of media and television and the level of addiction of sport consumers filtered out of the students of the School of Physical Education and Sports and to investigate the relationship between these two levels. Sport consumers studying in Mugla University, School of Physical Education and Sports…
ERIC Educational Resources Information Center
Kuhn, Jochen; Vogt, Patrik
2013-01-01
New media technology becomes more and more important for our daily life as well as for teaching physics. Within the scope of our N.E.T. research project we develop experiments using New Media Experimental Tools (N.E.T.) in physics education and study their influence on students learning abilities. We want to present the possibilities e.g. of…
ERIC Educational Resources Information Center
Kim, Ann
2005-01-01
Necessity is still the mother of invention, and physical processing is a reality for most libraries. Ergo, the inevitable development of Indigo Media and its innovative MediaPrint software, which allows distributors to overlay customized labels, logos, barcodes, and artwork onto retail labels of audiobooks, CDs, VHS tapes, DVDs, and CD-ROMs, on a…
The role of visual representation in physics learning: dynamic versus static visualization
NASA Astrophysics Data System (ADS)
Suyatna, Agus; Anggraini, Dian; Agustina, Dina; Widyastuti, Dini
2017-11-01
This study aims to examine the role of visual representation in physics learning and to compare the learning outcomes of using dynamic and static visualization media. The study was conducted using quasi-experiment with Pretest-Posttest Control Group Design. The samples of this research are students of six classes at State Senior High School in Lampung Province. The experimental class received a learning using dynamic visualization and control class using static visualization media. Both classes are given pre-test and post-test with the same instruments. Data were tested with N-gain analysis, normality test, homogeneity test and mean difference test. The results showed that there was a significant increase of mean (N-Gain) learning outcomes (p <0.05) in both experimental and control classes. The averages of students’ learning outcomes who are using dynamic visualization media are significantly higher than the class that obtains learning by using static visualization media. It can be seen from the characteristics of visual representation; each visualization provides different understanding support for the students. Dynamic visual media is more suitable for explaining material related to movement or describing a process, whereas static visual media is appropriately used for non-moving physical phenomena and requires long-term observation.
Wong, Bonny Yee-Man; Cerin, Ester; Ho, Sai-Yin; Mak, Kwok-Kei; Lo, Wing-Sze; Lam, Tai-Hing
2010-04-01
To examine the independent, competing, and interactive effects of perceived availability of specific types of media in the home and neighborhood sport facilities on adolescents' leisure-time physical activity (PA). Survey data from 34 369 students in 42 Hong Kong secondary schools were collected (2006-07). Respondents reported moderate-to-vigorous leisure-time PA, presence of sport facilities in the neighborhood and of media equipment in the home. Being sufficiently physically active was defined as engaging in at least 30 minutes of non-school leisure-time PA on a daily basis. Logistic regression and post-estimation linear combinations of regression coefficients were used to examine the independent and competing effects of sport facilities and media equipment on leisure-time PA. Perceived availability of sport facilities was positively (OR(boys) = 1.17; OR(girls) = 1.26), and that of computer/Internet negatively (OR(boys) = 0.48; OR(girls) = 0.41), associated with being sufficiently active. A significant positive association between video game console and being sufficiently active was found in girls (OR(girls) = 1.19) but not in boys. Compared with adolescents without sport facilities and media equipment, those who reported sport facilities only were more likely to be physically active (OR(boys) = 1.26; OR(girls) = 1.34), while those who additionally reported computer/Internet were less likely to be physically active (OR(boys) = 0.60; OR(girls) = 0.54). Perceived availability of sport facilities in the neighborhood may positively impact on adolescents' level of physical activity. However, having computer/Internet may cancel out the effects of active opportunities in the neighborhood. This suggests that physical activity programs for adolescents need to consider limiting the access to computer-mediated communication as an important intervention component.
Graphics processing unit (GPU)-based computation of heat conduction in thermally anisotropic solids
NASA Astrophysics Data System (ADS)
Nahas, C. A.; Balasubramaniam, Krishnan; Rajagopal, Prabhu
2013-01-01
Numerical modeling of anisotropic media is a computationally intensive task since it brings additional complexity to the field problem in such a way that the physical properties are different in different directions. Largely used in the aerospace industry because of their lightweight nature, composite materials are a very good example of thermally anisotropic media. With advancements in video gaming technology, parallel processors are much cheaper today and accessibility to higher-end graphical processing devices has increased dramatically over the past couple of years. Since these massively parallel GPUs are very good in handling floating point arithmetic, they provide a new platform for engineers and scientists to accelerate their numerical models using commodity hardware. In this paper we implement a parallel finite difference model of thermal diffusion through anisotropic media using the NVIDIA CUDA (Compute Unified device Architecture). We use the NVIDIA GeForce GTX 560 Ti as our primary computing device which consists of 384 CUDA cores clocked at 1645 MHz with a standard desktop pc as the host platform. We compare the results from standard CPU implementation for its accuracy and speed and draw implications for simulation using the GPU paradigm.
Liu, Xu; Ma, Xiangyu; Kun, Eucharist; Guo, Xiaodi; Yu, Zhongxue; Zhang, Feng
2018-06-05
This study examines the preparation of sustained-release lidocaine polyelectrolyte complex using reactive melt extrusion. Eudragit L100-55 was selected as the ionic polymer. The influence of drug forms (freebase vs. hydrochloride salt) on lidocaine-Eudragit L100-55 interactions, physical stability, and dissolution properties of extrudates was investigated. It was confirmed by DSC, FT-IR and Raman spectroscopy that polyelectrolyte could only form via the acid-base reaction between Eudragit L100-55 and lidocaine freebase. Due to this ionic interaction, the lidocaine extrudate was physically more stable than the lidocaine hydrochloride extrudate during the storage under stressed condition. Drug release from lidocaine extrudate was a function of drug solubility, polymer solubility, drug-polymer interaction, and drug-induced microenvironment pH. At 30% drug loading, extrudate exhibited sustained release in aqueous media at pH 1.2 and 4.5. Due to the alkaline microenvironment pH induced by dissolved lidocaine, Eudragit L100-55 was solubilized and sustained-release was not achieved in water and aqueous media at pH 5.5. In comparison, lidocaine hydrochloride induced an acidic microenvironment. Drug release of lidocaine hydrochloride extrudate was similar at pH 1.2, 4.5, 5.5 and water with drug being released over 10 h. The release of lidocaine hydrochloride from the extrudates in these media was primarily controlled by microenvironment pH. It is concluded that different forms of lidocaine resulted in different drug-polymer interactions and distinctive physicochemical properties of extrudates. Copyright © 2018. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Mardiana, Nana; Kuswanto, Heru
2017-08-01
The aims of the research concerned here were to reveal (1) the characteristics of Android-assisted PML (physics mobile learning) to improve SMA (sekolah menengah atas, Indonesian senior high school) students' divergent thinking skills and physics HOTS (higher order thinking skills); (2) the feasibility of the Android-assisted PML; and (3) the influence of using the Android-assisted PML on improvement in SMA students' divergent thinking skills and physics HOTS. The7 research was of the R&D (research and development) type, adapted from theBorg-&-Gall development model. The research data were analyzed by means of MANOVA with the significance level of 5%. The results are as follows. (1) The product of the development, a learning media in software form with the android package(apk) format, is named PML (to refer to Physics Mobile Learning), which has such characterictics as being operable with use of Android devicesand being very good in quality in the aspect oflearning, material, software technology, and audiovisual appearance. 2) The developed learning media referred to as PML is appropriate for learning activity according to evaluation by a material expert, a media expert, peer reviewers, and physics teachers as well as according to results of students' tryouts. (3) The use of the Android-assisted PML media product could improve SMA students' divergent thinking skillsand physics HOTS with the respective high-category gain scores of 0.701 and 0.759.
Impact of an Australian mass media campaign targeting physical activity in 1998.
Bauman, A E; Bellew, B; Owen, N; Vita, P
2001-07-01
Physical activity is now a public health priority, but there is only limited evidence on the effectiveness of mass-reach campaigns. Paid and unpaid television and print-media advertising, physician mail-outs, and community-level support programs and strategies. A mass-media statewide campaign to promote regular moderate-intensity activity was conducted during February 1998. The target group was adults aged 25 to 60 who were motivated but insufficiently active. Cohort and independent-sample, cross-sectional representative population surveys, before and after the campaign. The intervention was conducted in the state of New South Wales, with the other states of Australia as the comparison region. Telephone survey items on physical activity, media message awareness, physical activity knowledge, self-efficacy, and intentions. Unprompted recall of the activity messages in the campaign state increased substantially from 2.1% to 20.9% (p<0.01), with small changes elsewhere in Australia (1.2% to 2.6%). There were large changes in prompted awareness from 12.9% to 50.7% (p<0.0001), much larger than changes elsewhere (14.1% to 16%, p=0.06). Knowledge of appropriate moderate-intensity activity and physical activity self-efficacy increased significantly and only in the campaign state. Compared to all others, those in the target group who recalled the media message were 2.08 times more likely to increase their activity by at least an hour per week (95% confidence interval = 1.51-2.86). This integrated campaign positively influenced short-term physical activity message recall, knowledge, and behavior of the target population, compared to the population in the region who were not exposed.
An Inquiry-based Course Using ``Physics?'' in Cartoons and Movies
NASA Astrophysics Data System (ADS)
Rogers, Michael
2007-01-01
Books, cartoons, movies, and video games provide engaging opportunities to get both science and nonscience students excited about physics. An easy way to use these media in one's classroom is to have students view clips and identify unusual events, odd physics, or list things that violate our understanding of the physics that governs our universe.1,2 These activities provide a lesson or two of material, but how does one create an entire course on examining the physics in books, cartoons, movies, and video games? Other approaches attempt to reconcile events in various media with our understanding of physics3-8 or use cartoons themselves to help explain physics topics.9
NASA Astrophysics Data System (ADS)
Wang, Kunpeng; Tan, Handong
2017-11-01
Controlled-source audio-frequency magnetotellurics (CSAMT) has developed rapidly in recent years and are widely used in the area of mineral and oil resource exploration as well as other fields. The current theory, numerical simulation, and inversion research are based on the assumption that the underground media have resistivity isotropy. However a large number of rock and mineral physical property tests show the resistivity of underground media is generally anisotropic. With the increasing application of CSAMT, the demand for probe accuracy of practical exploration to complex targets continues to increase. The question of how to evaluate the influence of anisotropic resistivity to CSAMT response is becoming important. To meet the demand for CSAMT response research of resistivity anisotropic media, this paper examines the CSAMT electric equations, derives and realizes a three-dimensional (3D) staggered-grid finite difference numerical simulation method of CSAMT resistivity axial anisotropy. Through building a two-dimensional (2D) resistivity anisotropy geoelectric model, we validate the 3D computation result by comparing it to the result of controlled-source electromagnetic method (CSEM) resistivity anisotropy 2D finite element program. Through simulating a 3D resistivity axial anisotropy geoelectric model, we compare and analyze the responses of equatorial configuration, axial configuration, two oblique sources and tensor source. The research shows that the tensor source is suitable for CSAMT to recognize the anisotropic effect of underground structure.
Carper, Teresa L Marino; Negy, Charles; Tantleff-Dunn, Stacey
2010-09-01
The current study explored the relation between sexual orientation, media persuasion, and eating and body image concerns among 78 college men (39 gay; 39 straight). Participants completed measures of sexual orientation, eating disorder symptoms, appearance-related anxiety, perceived importance of physical attractiveness, perceptions of media influence, and media exposure. Gay men scored significantly higher on drive for thinness, body dissatisfaction, and body image-related anxiety than their straight counterparts. Additionally, perceptions of media influence were higher for gay men, and significantly mediated the relation between sexual orientation and eating and body image concerns. Sexual orientation also moderated the relation between perceived media influence and beliefs regarding the importance of physical attractiveness, as this relation was significant for gay men, but not straight men. The current findings suggest that gay men's increased vulnerability to media influence partially accounts for the relatively high rate of eating pathology observed in this population. Copyright © 2010 Elsevier Ltd. All rights reserved.
Williams, Gillian; Hamm, Michele P; Shulhan, Jocelyn; Vandermeer, Ben; Hartling, Lisa
2014-02-12
To conduct a systematic review of randomised controlled trials (RCTs) examining the use of social media to promote healthy diet and exercise in the general population. MEDLINE, CENTRAL, ERIC, PubMed, CINAHL, Academic Search Complete, Alt Health Watch, Health Source, Communication and Mass Media Complete, Web of Knowledge and ProQuest Dissertation and Thesis (2000-2013). RCTs of social media interventions promoting healthy diet and exercise behaviours in the general population were eligible. Interventions using social media, alone or as part of a complex intervention, were included. Study quality was assessed using the Cochrane Risk of Bias Tool. We describe the studies according to the target populations, objectives and nature of interventions, outcomes examined, and results and conclusions. We extracted data on the primary and secondary outcomes examined in each study. Where the same outcome was assessed in at least three studies, we combined data in a meta-analysis. 22 studies were included. Participants were typically middle-aged Caucasian women of mid-to-high socioeconomic status. There were a variety of interventions, comparison groups and outcomes. All studies showed a decrease in programme usage throughout the intervention period. Overall, no significant differences were found for primary outcomes which varied across studies. Meta-analysis showed no significant differences in changes in physical activity (standardised mean difference (SMD) 0.13 (95% CI -0.04 to 0.30), 12 studies) and weight (SMD -0.00 (95% CI -0.19 to 0.19), 10 studies); however, pooled results from five studies showed a significant decrease in dietary fat consumption with social media (SMD -0.35 (95% CI -0.68 to -0.02)). Social media may provide certain advantages for public health interventions; however, studies of social media interventions to date relating to healthy lifestyles tend to show low levels of participation and do not show significant differences between groups in key outcomes.
Media and education of the consumer.
Shapiro, Marla
2016-08-01
The landscape has changed in how consumers get their health information. A shift to the Internet and social media are now the way many consumers obtain their health and medical information. In addition, the highly complex information in medicine and science separates health journalism from other forms of journalism. In this article, the question of the role of media in educating consumers is examined. It is clear that knowledge translation is complex and begs the cooperation of scientists and journalists alike.
Zhang, Jingwen; Brackbill, Devon; Yang, Sijia; Centola, Damon
2015-01-01
To identify what features of social media - promotional messaging or peer networks - can increase physical activity. A 13-week social media-based exercise program was conducted at a large Northeastern university in Philadelphia, PA. In a randomized controlled trial, 217 graduate students from the University were randomized to three conditions: a control condition with a basic online program for enrolling in weekly exercise classes led by instructors of the University for 13 weeks, a media condition that supplemented the basic program with weekly online promotional media messages that encourage physical activity, and a social condition that replaced the media content with an online network of four to six anonymous peers composed of other participants of the program, in which each participant was able to see their peers' progress in enrolling in classes. The primary outcome was the number of enrollments in exercise classes, and the secondary outcomes were self-reported physical activities. Data were collected in 2014. Participants enrolled in 5.5 classes on average. Compared with enrollment in the control condition (mean = 4.5), promotional messages moderately increased enrollment (mean = 5.7, p = 0.08), while anonymous social networks significantly increased enrollment (mean = 6.3, p = 0.02). By the end of the program, participants in the social condition reported exercising moderately for an additional 1.6 days each week compared with the baseline, which was significantly more than an additional 0.8 days in the control condition. Social influence from anonymous online peers was more successful than promotional messages for improving physical activity. ClinicalTrials.gov: NCT02267369.
Michels, N; Amenyah, S D
2017-05-01
To inspire effective health promotion campaigns, we tested the relationship of ideal body size and body size dissatisfaction with (1) the potential resulting health-influencing factors diet, physical activity and well-being; and (2) with media as a potential influencer of body ideals. This is a cross-sectional study in 370 Ghanaian adolescents (aged 11-18 years). Questionnaires included disordered eating (EAT26), diet quality (FFQ), physical activity (IPAQ), well-being (KINDL) and media influence on appearance (SATAQ: pressure, internalisation and information). Ideal body size and body size dissatisfaction were assessed using the Stunkard figure rating scale. Body mass index (BMI), skinfolds and waist were measured. Linear regressions were adjusted for gender, age and parental education. Also, mediation was tested: 'can perceived media influence play a role in the effects of actual body size on body size dissatisfaction?'. Body size dissatisfaction was associated with lower well-being and more media influence (pressure and internalisation) but not with physical activity, diet quality or disordered eating. An underweight body size ideal might worsen disordered eating but was not significantly related to the other predictors of interest. Only a partial mediation effect by media pressure was found: especially overweight adolescents felt media pressure, and this media pressure was associated with more body size dissatisfaction. To prevent disordered eating and low well-being, health messages should include strategies that reduce body size dissatisfaction and increase body esteem by not focussing on the thin body ideal. Changing body size ideals in the media might be an appropriate way since media pressure was a mediator in the BMI-dissatisfaction relation. Copyright © 2017 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.
Winning with Pinning: Enhancing Health and Physical Education with Pinterest
ERIC Educational Resources Information Center
Franks, Hillary; Krause, Jennifer M.
2017-01-01
Social media can enhance teaching and learning by contributing to a quality health and physical education (HPE) program. Social networking has equipped HPE teachers with many novel resources for use in their classrooms. Pinterest (www.pinterest.com) is a social media website that allows teachers to search and find lesson ideas and professional…
Library Media Center Design Considerations for Physically Disabled Students.
ERIC Educational Resources Information Center
Moy, Patricia J.
Federal legislation ensures that children with physical disabilities should not be denied access to the school library. These children have the same information needs as their peers, and they want equal access to information in the school library media center. To create an accessible and functional school library, many requirements and…
Fermilab | Science | Particle Physics | Benefits of Particle Physics
Book Newsroom Newsroom News and features Press releases Photo gallery Fact sheets and brochures Media media Video of shutdown event Guest book Tevatron Impact June 11, 2012 About the symposium Symposium Home Contact Phone Book Fermilab at Work For Industry Jobs Interact Facebook Twitter Instagram Google
Using Social Media within Physical Education Teacher Education
ERIC Educational Resources Information Center
Kinchin, Gary D.; Bryant, Lance G.
2015-01-01
This article reports on a project investigating the use of social media within physical education teacher education (PETE). It specifically describes how a professional Facebook group was set up and used by PETE students in one university in England and another in the United States. The article outlines some of the professional topics the…
Creative Media Ideas for the Gym
ERIC Educational Resources Information Center
Banks, Aaron; Reed, Julian
2004-01-01
This article offers readers ideas for using mass media to enhance their physical education program. Generally, media is the term used to define the way in communicating with a large number of people. Technically, media is divided into two categories: print and film (electronic). Print (journals, newspapers, books, etc.) is "put to paper" to create…
Analysis of physical activity mass media campaign design.
Lankford, Tina; Wallace, Jana; Brown, David; Soares, Jesus; Epping, Jacqueline N; Fridinger, Fred
2014-08-01
Mass media campaigns are a necessary tool for public health practitioners to reach large populations and promote healthy behaviors. Most health scholars have concluded that mass media can significantly influence the health behaviors of populations; however the effects of such campaigns are typically modest and may require significant resources. A recent Community Preventive Services Task Force review on stand-alone mass media campaigns concluded there was insufficient evidence to determine their effectiveness in increasing physical activity, partly due to mixed methods and modest and inconsistent effects on levels of physical activity. A secondary analysis was performed on the campaigns evaluated in the Task Force review to determine use of campaign-building principles, channels, and levels of awareness and their impact on campaign outcomes. Each study was analyzed by 2 reviewers for inclusion of campaign building principles. Campaigns that included 5 or more campaign principles were more likely to be successful in achieving physical activity outcomes. Campaign success is more likely if the campaign building principles (formative research, audience segmentation, message design, channel placement, process evaluation, and theory-based) are used as part of campaign design and planning.
[Messages about physical activity and nutrition offered by Quebec mass media?].
Renaud, Lise; Lagaé, Marie Claude; Caron-Bouchard, Monique
2009-01-01
As social elements of our environment, mass media are regarded as determinants of individual and population beliefs, social norms and habits. Since it is recognized that they influence population health, this study aims to obtain a better portrait of Quebec media content regarding physical activity and nutrition messages on a public health level. First, we analyzed the content of fictional television shows (n = 1 3) and advertisements broadcast during those shows (n = 68). Second, we reviewed the content of La Presse newspaper and of French television Société Radio-Canada from 1986 to 2005 with regard to physical activity and nutrition messages. Our results indicate a difference between how men and women are portrayed on French television, with women more often being shown as underweight and men as at or above healthy body weight. The results also show that during the 20-year period of the reviewed content, there were fewer messages about physical activity than about nutrition. To be successful in their goal of improving population health, mass media should address both subjects together in their messages.
NASA Astrophysics Data System (ADS)
Mandula, Ondrej; Allier, Cédric; Hervé, Lionel; Denarier, Eric; Fourest-Lieuvin, Anne; Gory-Fauré, Sylvie; Vinit, Angélique; Morales, Sophie
2018-02-01
We present a simple and compact phase imaging microscope for long-term observation of non-absorbing biological samples such as unstained cells in nutritive media. The phase image is obtained from a single defocused image taken with a standard wide-field microscope. Using a semi-coherent light source allows us to computationally re-focus image post-acquisition and recover both phase and transmission of the complex specimen. The simplicity of the system reduces both the cost and its physical size and allows a long-term observation of samples directly in a standard biological incubator. The low cost of the system can contribute to the democratization of science by allowing to perform complex long-term biological experiments to the laboratories with constrained budget. In this proceeding we present several results taken with our prototype and discuss the possibilities and limitations of our system.
Lattice Boltzmann simulations of immiscible displacement process with large viscosity ratios
NASA Astrophysics Data System (ADS)
Rao, Parthib; Schaefer, Laura
2017-11-01
Immiscible displacement is a key physical mechanism involved in enhanced oil recovery and carbon sequestration processes. This multiphase flow phenomenon involves a complex interplay of viscous, capillary, inertial and wettability effects. The lattice Boltzmann (LB) method is an accurate and efficient technique for modeling and simulating multiphase/multicomponent flows especially in complex flow configurations and media. In this presentation we present numerical simulation results of displacement process in thin long channels. The results are based on a new psuedo-potential multicomponent LB model with multiple relaxation time collision (MRT) model and explicit forcing scheme. We demonstrate that the proposed model is capable of accurately simulating the displacement process involving fluids with a wider range of viscosity ratios (>100) and which also leads to viscosity-independent interfacial tension and reduction of some important numerical artifacts.
Key Gaps for Enabling Plant Growth in Future Missions
NASA Technical Reports Server (NTRS)
Anderson, Molly S.; Barta, Daniel; Douglas, Grace; Fritsche, Ralph; Massa, Gioia; Wheeler, Ray; Quincy, Charles; Romeyn, Matthew; Motil, Brian; Hanford, Anthony
2017-01-01
Growing plants to provide food or psychological benefits to crewmembers is a common vision for the future of human spaceflight, often represented both in media and in serious concept studies. The complexity of controlled environment agriculture and of plant growth in microgravity have and continue to be the subject of dedicated scientific research. However, actually implementing these systems in a way that will be cost effective, efficient, and sustainable for future space missions is a complex, multi-disciplinary problem. Key questions exist in many areas: human research in nutrition and psychology, horticulture, plant physiology and microbiology, multi-phase microgravity fluid physics, hardware design and technology development, and system design, operations and mission planning. The criticality of the research, and the ideal solution, will vary depending on the mission and type of system implementation being considered.
Pore-scale dynamics of salt transport in drying porous media
NASA Astrophysics Data System (ADS)
Shokri, N.
2013-12-01
Understanding the physics of water evaporation from saline porous media is important in many hydrological processes such as land-atmosphere interactions, water management, vegetation, soil salinity, and mineral-fluid interactions. We applied synchrotron x-ray micro-tomography to investigate the pore-scale dynamics of dissolved salt distribution in a three dimensional drying saline porous media using a cylindrical plastic column (15 mm in height and 8 mm in diameter) packed with sand particles saturated with CaI2 solution (5% concentration by mass) with a spatial and temporal resolution of 12 microns and 30 min, respectively. Every time the drying sand column was set to be imaged, two different images were recorded using distinct synchrotron X-rays energies immediately above (33.2690 keV) and below (33.0690 keV) the K-edge value of Iodine (33.1694 keV). Taking the difference between pixel gray values enabled us to delineate the spatial and temporal distribution of CaI2 concentration at pore scale. The experiment was continued for 12 hours. Results indicate that during early stages of evaporation, air preferentially invades large pores at the surface while finer pores remain saturated and connected to the wet zone at bottom via capillary-induced liquid flow. Consequently, the salt concentration increases preferentially in finer pores where evaporation occurs. The Peclet number (describing the competition between convection and diffusion) was greater than one in our experiment resulting in higher salt concentrations closer to the evaporation surface indicating a convection-driven process. The obtained salt profiles were used to evaluate the numerical solution of the convection-diffusion equation (CDE). Results show that the macro-scale CDE could capture the overall trend of the measured salt profiles but fail to produce the exact slope of the profiles. Our results shed new insight on the physics of salt transport and its complex dynamics in drying porous media and establish synchrotron x-ray micro-tomography as an effective tool to investigate the dynamics of dissolved salt transport in porous media with high spatial and temporal resolutions.
Residential Environment for Outdoor Play Among Children in Latino Farmworker Families.
Arcury, Thomas A; Suerken, Cynthia K; Ip, Edward H; Moore, Justin B; Quandt, Sara A
2017-04-01
Child health and development benefit from physical activity. This analysis describes the residential play environment for children aged 2-4 years in farmworker families, their parent-reported levels of play and media time, and the association of residential environment with play and media time. Mothers with a child aged 2-4 years in farmworker families (n = 248) completed interviews over 2 years. Outcome measures were daily outdoor play time and media time. Measures of the residential environment included physical and social components. The mean min/day for outdoor play was 81.8 (SD 57.3) at baseline, 111.4 (SD 90.1) at year 1 follow-up, and 103.6 (SD 76.2) at year 2 follow-up. The mean media min/day at baseline was 83.8 (SD 64.3), 93.7 (SD 80.3) min/day at year 1 follow-up, and 59.9 min/day (SD (45.6) at year 2 follow-up. One additional person per bedroom was associated with 6 fewer min/day with media. The addition of each age appropriate toy was associated with an additional 12.3 min/day of outdoor play. An additional type of inappropriate media was associated with 6.8 more min/day with media. These results suggest changes to the residential environment to improve physical activity among children in Latino farmworker families.
Recipes for Success: Independent Schools Break the Mold When It Comes to Social Media
ERIC Educational Resources Information Center
Stoner, Michael
2010-01-01
Most communicators are not giving up print or other traditional media. But they recognize that social media has quickly become an important channel for the audiences they want to reach. Social media adds texture and complexity to the marketing mix. To take advantage of social media, it pays to be nimble. Independent schools' communicators…
NASA Astrophysics Data System (ADS)
Barbier, Geoffrey; Liu, Huan
The rise of online social media is providing a wealth of social network data. Data mining techniques provide researchers and practitioners the tools needed to analyze large, complex, and frequently changing social media data. This chapter introduces the basics of data mining, reviews social media, discusses how to mine social media data, and highlights some illustrative examples with an emphasis on social networking sites and blogs.
Social media and social work education: understanding and dealing with the new digital world.
Fang, Lin; Mishna, Faye; Zhang, Vivian F; Van Wert, Melissa; Bogo, Marion
2014-10-01
Accompanying the multiple benefits and innovations of social media are the complex ethical and pedagogical issues that challenge social work educators. Without a clear understanding of the blurred boundaries between public and private, the potentially limitless and unintended audiences, as well as the permanency of the information shared online, social work students who use social media can find themselves in difficult situations in their personal and professional lives. In this article, we present three scenarios that illustrate issues and complexities involving social media use by social work students, followed by a discussion and recommendations for social work educators.
NASA Astrophysics Data System (ADS)
Dutta, Sourav; Daripa, Prabir; Fluids Team
2015-11-01
One of the most important methods of chemical enhanced oil recovery (EOR) involves the use of complex flooding schemes comprising of various layers of fluids mixed with suitable amounts of polymer or surfactant or both. The fluid flow is characterized by the spontaneous formation of complex viscous fingering patterns which is considered detrimental to oil recovery. Here we numerically study the physics of such EOR processes using a modern, hybrid method based on a combination of a discontinuous, multiscale finite element formulation and the method of characteristics. We investigate the effect of different types of heterogeneity on the fingering mechanism of these complex multiphase flows and determine the impact on oil recovery. We also study the effect of surfactants on the dynamics of the flow via reduction of capillary forces and increase in relative permeabilities. Supported by the grant NPRP 08-777-1-141 from the Qatar National Research Fund (a member of The Qatar Foundation).
Computational approach to integrate 3D X-ray microtomography and NMR data.
Lucas-Oliveira, Everton; Araujo-Ferreira, Arthur G; Trevizan, Willian A; Fortulan, Carlos A; Bonagamba, Tito J
2018-05-04
Nowadays, most of the efforts in NMR applied to porous media are dedicated to studying the molecular fluid dynamics within and among the pores. These analyses have a higher complexity due to morphology and chemical composition of rocks, besides dynamic effects as restricted diffusion, diffusional coupling, and exchange processes. Since the translational nuclear spin diffusion in a confined geometry (e.g. pores and fractures) requires specific boundary conditions, the theoretical solutions are restricted to some special problems and, in many cases, computational methods are required. The Random Walk Method is a classic way to simulate self-diffusion along a Digital Porous Medium. Bergman model considers the magnetic relaxation process of the fluid molecules by including a probability rate of magnetization survival under surface interactions. Here we propose a statistical approach to correlate surface magnetic relaxivity with the computational method applied to the NMR relaxation in order to elucidate the relationship between simulated relaxation time and pore size of the Digital Porous Medium. The proposed computational method simulates one- and two-dimensional NMR techniques reproducing, for example, longitudinal and transverse relaxation times (T 1 and T 2 , respectively), diffusion coefficients (D), as well as their correlations. For a good approximation between the numerical and experimental results, it is necessary to preserve the complexity of translational diffusion through the microstructures in the digital rocks. Therefore, we use Digital Porous Media obtained by 3D X-ray microtomography. To validate the method, relaxation times of ideal spherical pores were obtained and compared with the previous determinations by the Brownstein-Tarr model, as well as the computational approach proposed by Bergman. Furthermore, simulated and experimental results of synthetic porous media are compared. These results make evident the potential of computational physics in the analysis of the NMR data for complex porous materials. Copyright © 2018 Elsevier Inc. All rights reserved.
Prospects of molybdenum and rhenium octahedral cluster complexes as X-ray contrast agents.
Krasilnikova, Anna A; Shestopalov, Michael A; Brylev, Konstantin A; Kirilova, Irina A; Khripko, Olga P; Zubareva, Kristina E; Khripko, Yuri I; Podorognaya, Valentina T; Shestopalova, Lidiya V; Fedorov, Vladimir E; Mironov, Yuri V
2015-03-01
Investigation of new X-ray contrast media for radiography is an important field of science since discovering of X-rays in 1895. Despite the wide diversity of available X-ray contrast media the toxicity, especially nephrotoxicity, is still a big problem to be solved. The octahedral metal-cluster complexes of the general formula [{M6Q8}L6] can be considered as quite promising candidates for the role of new radiocontrast media due to the high local concentration of heavy elements, high tuning ability of ligand environment and low toxicity. To exemplify this, the X-ray computed tomography experiments for the first time were carried out on some octahedral cluster complexes of molybdenum and rhenium. Based on the obtained data it was proposed to investigate the toxicological proprieties of cluster complex Na2H8[{Re6Se8}(P(CH2CH2CONH2)(CH2CH2COO)2)6]. Observed low cytotoxic and acute toxic effects along with rapid renal excretion of the cluster complex evidence its perspective as an X-ray contrast media for radiography. Copyright © 2014 Elsevier Inc. All rights reserved.
Cooperative particle motion in complex (dusty) plasmas
NASA Astrophysics Data System (ADS)
Zhdanov, Sergey; Morfill, Gregor
2014-05-01
Strongly coupled complex (dusty) plasmas give us a unique opportunity to go beyond the limits of continuous media and study various generic processes occurring in liquids or solids at the kinetic level. A particularly interesting and challenging topic is to study dynamic cooperativity at local and intermediate scales. As an important element of self-organization, cooperative particle motion is present in many physical, astrophysical and biological systems. As a rule, cooperative dynamics, bringing to life 'abnormal' effects like enhanced diffusion, self-dragging, or self-propelling of particles, hold aspects of 'strange' kinetics. The synergy effects are also important. Such kind of cooperative behavior was evidenced for string-like formations of colloidal rods, dynamics of mono- and di-vacancies in 2d colloidal crystals. Externally manipulated 'dust molecules' and self-assembled strings in driven 3d particle clusters were other noticeable examples. There is a certain advantage to experiment with complex plasmas merely because these systems are easy to manipulate in a controllable way. We report on the first direct observation of microparticle cooperative movements occurring under natural conditions in a 2d complex plasma.
New method of dual media fermentation can produced quality methane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaseen, D.A.
The production of high quality methane by anaerobic digestion of organic wastes can be achieved by the use of a water substrate nutrient media plus an inert media to absorb surplus organic acid and carbon dioxide. Two types of media are available: polyorganosiloxanes and fluorocarbons. The physical characteristics which make these types suitable are tabulated. (JSR)
Orzech, Kathryn M.; Grandner, Michael A.; Roane, Brandy M.; Carskadon, Mary A.
2016-01-01
Digital media use is widespread in University students, and use of digital media near bedtime has a broadly negative effect on sleep outcomes. Adequate and good quality sleep is important for physical and mental health, but few studies have rigorously measured both sleep and digital media use. In this study, we investigated whether self-reported sleep patterns were associated with digital media use in a first-year University student (N = 254, 48% male) population. Students tracked their sleep through daily online diaries and provided digital media use data in 15-min blocks for 2 h prior to bedtime on nine occasions. A longer duration of digital media use was associated with reduced total sleep time and later bedtime, while greater diversity of digital media use was associated with increased total sleep time and earlier bedtime. Analysis of activities in the last hour before bedtime indicated that activity type plays a role in digital media's effect on sleep, with computer work, surfing the Internet, and listening to music showing the strongest relationship to multiple sleep variables. These findings have implications for physical and mental health of University students and can inform design of devices to minimize negative effects of digital media on sleep. PMID:28163362
Orzech, Kathryn M; Grandner, Michael A; Roane, Brandy M; Carskadon, Mary A
2016-02-01
Digital media use is widespread in University students, and use of digital media near bedtime has a broadly negative effect on sleep outcomes. Adequate and good quality sleep is important for physical and mental health, but few studies have rigorously measured both sleep and digital media use. In this study, we investigated whether self-reported sleep patterns were associated with digital media use in a first-year University student (N = 254, 48% male) population. Students tracked their sleep through daily online diaries and provided digital media use data in 15-min blocks for 2 h prior to bedtime on nine occasions. A longer duration of digital media use was associated with reduced total sleep time and later bedtime, while greater diversity of digital media use was associated with increased total sleep time and earlier bedtime. Analysis of activities in the last hour before bedtime indicated that activity type plays a role in digital media's effect on sleep, with computer work, surfing the Internet, and listening to music showing the strongest relationship to multiple sleep variables. These findings have implications for physical and mental health of University students and can inform design of devices to minimize negative effects of digital media on sleep.
Valencia-Peris, Alexandra; Devís-Devís, José; García-Massó, Xavier; Lizandra, Jorge; Pérez-Gimeno, Esther; Peiró-Velert, Carmen
2016-06-01
Previous research shows contradictory findings on potential competing effects between sedentary screen media usage (SMU) and physical activity (PA). This study examined these effects on adolescent girls via self-organizing maps analysis focusing on 3 target profiles. A sample of 1,516 girls aged 12 to 18 years self-reported daily time engagement in PA (moderate and vigorous intensity) and in screen media activities (TV/video/DVD, computer, and videogames), separately and combined. Topological interrelationships from the 13 emerging maps indicated a moderate competing effect between physically active and sedentary SMU patterns. Higher SES and overweight status were linked to either active or inactive behaviors. Three target clusters were explored in more detail. Cluster 1, named temperate-media actives, showed capabilities of being active while engaging in a moderate level of SMU (TV/video/DVD mainly). In Cluster 2, named prudent-media inactives, and Cluster 3, compulsive-media inactives, a competing effect between SMU and PA emerged, being sedentary SMU behaviors responsible for a low involvement in active pursuits. SMU and PA emerge as both related and independent behaviors in girls, resulting in a moderate competing effect. Findings support the case for recommending the timing of PA and SMU for recreational purposes considering different profiles, sociodemographic factors and types of SMU.
ERIC Educational Resources Information Center
Granner, Michelle L.; Sharpe, Patricia A.; Burroughs, Ericka L.; Fields, Regina; Hallenbeck, Joyce
2010-01-01
This study conducted a newspaper content analysis as part of an evaluation of a community-based participatory research project focused on increasing physical activity through policy and environmental changes, which included activities related to media advocacy and media-based community education. Daily papers (May 2003 to December 2005) from both…
Augmented Topological Descriptors of Pore Networks for Material Science.
Ushizima, D; Morozov, D; Weber, G H; Bianchi, A G C; Sethian, J A; Bethel, E W
2012-12-01
One potential solution to reduce the concentration of carbon dioxide in the atmosphere is the geologic storage of captured CO2 in underground rock formations, also known as carbon sequestration. There is ongoing research to guarantee that this process is both efficient and safe. We describe tools that provide measurements of media porosity, and permeability estimates, including visualization of pore structures. Existing standard algorithms make limited use of geometric information in calculating permeability of complex microstructures. This quantity is important for the analysis of biomineralization, a subsurface process that can affect physical properties of porous media. This paper introduces geometric and topological descriptors that enhance the estimation of material permeability. Our analysis framework includes the processing of experimental data, segmentation, and feature extraction and making novel use of multiscale topological analysis to quantify maximum flow through porous networks. We illustrate our results using synchrotron-based X-ray computed microtomography of glass beads during biomineralization. We also benchmark the proposed algorithms using simulated data sets modeling jammed packed bead beds of a monodispersive material.
Media Misrepresentations of a Mascot Controversy: Contested Constructions of Race and Gender
ERIC Educational Resources Information Center
Gerstl-Pepin, Cynthia; Liang, Guodong
2010-01-01
This article examines media coverage of a high school Native American mascot controversy. Discourse analysis of media documents and artifacts was utilized to explore how the issue was socially constructed for public consumption. Critical race feminism was used as a framework to examine how media discourses can oversimplify the complex interaction…
ERIC Educational Resources Information Center
Fedorov, Alexander
2012-01-01
The study of media culture and virtual world requires knowledge and skills of the analysis of media texts of different levels of complexity. In this sense, the cinematic legacy of the great French writer, screenwriter and filmmaker Alain Robbe-Grillet (1922-2008) gives productive opportunities for the analysis of works of the elite media culture…
Bioethics and the rituals of media.
Simonson, Peter
2002-01-01
Popular media may make short shrift of complex ideas and moral deliberations, but it can also serve bioethics well. Bioethics should embrace the ritual function of the media in bringing issues to public attention and in reinforcing bioethics as a field.
Anorexia Nervosa and Bulimia: Problems of “The Pleasing Child”
McSherry, J. A.
1984-01-01
Widespread media publicity has resulted in increased case findings of eating disorders such as anorexia nervosa and bulimia. The etiology of these conditions is complex and multifactorial, and they may have devastating effects on physical and psychological health. Family physicians have an important role to play in recognizing, evaluating and managing eating disorders. Severe anorexics—those who have lost 25% or more of the average weight for their age and height—require specialist management, but milder forms respond to treatment which can be undertaken by an interested family physician. Most cases of uncomplicated bulimia can be treated successfully in a family practice setting. PMID:21278973
ERIC Educational Resources Information Center
Gentile, Douglas A.; Linder, Jennifer R.; Walsh, David A.
Many studies have shown that media violence has an effect on children's subsequent aggression. This study expands upon previous research in three directions: (1) by examining several subtypes of aggression (verbal, relational, and physical); (2) by measuring media violence exposure across three types of media (television, movies/videos, and video…
Zhang, Lu; Sun, Xiangyang; Tian, Yun; Gong, Xiaoqiang
2013-01-01
Peat mined from endangered wetland ecosystems is generally used as a component in soilless potting media in horticulture but is a costly and non-renewable natural resource. The objective of this work was to study the feasibility of replacing peat with different percentages (0, 10, 30, 50, 70, 90, and 100%) of composted green waste (CGW) as growth media for the production of the ornamental plant Calathea insignis. Compared with 100% peat media, media containing CGW had improved physical and chemical characteristics to achieve the acceptable ranges. Moreover, CGW addition had increased the stability (i.e., reduced the decomposition rates) of growth media mixtures, as indicated by comparison of particle-size distribution at the start and end of a 7-month greenhouse experiment. Addition of CGW also supported increased plant growth (biomass production, root morphology, nutrient contents, and photosynthetic pigment contents). The physical and chemical characteristics of growth media and plant growth were best with a medium containing 70% CGW and were better in a medium with 100% CGW than in one with 100% peat media. These results indicate that CGW is a viable alternative to peat for the cultivation of Calathea insignis.
Zhang, Lu; Sun, Xiangyang; Tian, Yun; Gong, Xiaoqiang
2013-01-01
Peat mined from endangered wetland ecosystems is generally used as a component in soilless potting media in horticulture but is a costly and non-renewable natural resource. The objective of this work was to study the feasibility of replacing peat with different percentages (0, 10, 30, 50, 70, 90, and 100%) of composted green waste (CGW) as growth media for the production of the ornamental plant Calathea insignis. Compared with 100% peat media, media containing CGW had improved physical and chemical characteristics to achieve the acceptable ranges. Moreover, CGW addition had increased the stability (i.e., reduced the decomposition rates) of growth media mixtures, as indicated by comparison of particle-size distribution at the start and end of a 7-month greenhouse experiment. Addition of CGW also supported increased plant growth (biomass production, root morphology, nutrient contents, and photosynthetic pigment contents). The physical and chemical characteristics of growth media and plant growth were best with a medium containing 70% CGW and were better in a medium with 100% CGW than in one with 100% peat media. These results indicate that CGW is a viable alternative to peat for the cultivation of Calathea insignis. PMID:24205121
Bhattachar, Shobha N; Risley, Donald S; Werawatganone, Pornpen; Aburub, Aktham
2011-06-30
This work reports on the solubility of two weakly basic model compounds in media containing sodium lauryl sulfate (SLS). Results clearly show that the presence of SLS in the media (e.g. simulated gastric fluid or dissolution media) can result in an underestimation of solubility of some weak bases. We systematically study this phenomenon and provide evidence (chromatography and pXRD) for the first time that the decrease in solubility is likely due to formation of a less soluble salt/complex between the protonated form of the weak base and lauryl sulfate anion. Copyright © 2011 Elsevier B.V. All rights reserved.
Media framing of complex issues: The case of endangered languages.
Rivenburgh, Nancy K
2013-08-01
This study investigates how media frame a global trend that is complex in nature, emergent in terms of scientific understanding, and has public policy implications: the rapid disappearance of languages. It analyzes how English-language media from 15 western, industrialized countries frame the causes and implications of endangered languages over 35 years (1971-2006) - a time period notable for growing, interdisciplinary concerns over the potential negative impacts of losing the world's linguistic diversity. The results reveal a media discourse characterized by three complementary frames that are sympathetic to the plight of endangered languages, but that present the problem, its cause, and societal implications in a logical structure that would promote public complacency.
Using twitter in health professional education: a case study.
Gagnon, Kendra
2015-01-01
The vast majority of health care students, providers, and organizations utilize social media to access and share information. However, there is little research exploring integration of social media into health professional education. This case study describes how the social media site Twitter was used in a first-year physical therapy professionalism course to teach, support, and model professional online communication. Twitter was used for discussion and sharing among 36 doctor of physical therapy (DPT) students enrolled in a first-year professionalism course. Participants completed four Twitter assignments. Outcome measures included student surveys of overall social media use, perceptions of Twitter use in the course, Twitter use during the course, and student engagement measured using a subset of questions from the National Survey of Student Engagement (NSSE). During the course, students posted a total of 337 tweets (mean 9.36 tweets/student). Pre- and post-course surveys showed an increase in academic and professional social media use. Perception of Twitter use in the course was generally positive. There was a small increase in mean NSSE score that was not statistically significant. Using Twitter in a physical therapy professionalism course was a positive experience for students and was associated with increased academic and professional social media use. Future studies are needed to determine whether deliberate teaching of social media as a professional technology competency will result in meaningful increases in professional online engagement and improved digital professionalism in health professional students and providers.
ERIC Educational Resources Information Center
Leavy, Justine E.; Rosenberg, Michael; Bauman, Adrian E.; Bull, Fiona C.; Giles-Corti, Billie; Shilton, Trevor; Maitland, Clover; Barnes, Rosanne
2013-01-01
Background: Internationally, over the last four decades large-scale mass media campaigns have been delivered to promote physical activity and its associated health benefits. In 2002-2005, the first Western Australian statewide adult physical activity campaign "Find Thirty. It's Not a Big Exercise" was launched. In 2007, a new iteration…
ERIC Educational Resources Information Center
Bach, Amy Jane
2010-01-01
Drawn from more than two years of ethnographic data collection, this dissertation study explores the literacy practices enacted in a youth media organization (the Youth Media Group) that is a branch of a public access television station (Manhattan Media) in New York City. Rooted in New Literacy Studies, a branch of scholarship which explores…
ERIC Educational Resources Information Center
Talib, Saman
2018-01-01
Social media permeates the daily lives of millennials, as they use it constantly for a variety of reasons. A significant contributing factor is the availability of social media through smartphones and mobile apps. This kind of immersive and complex media environment calls for a literacy pedagogy that prepares students to understand, engage with,…
Metaphor and Congruence in the Media: Barriers for International Students of Economics and Commerce.
ERIC Educational Resources Information Center
McGowan, Ursula
1997-01-01
Uses the systemic-functional concept of "congruence" to analyze media texts related to commentaries and reports surrounding the 1995 Australian Federal Budget. Results present insights into the complexity and inaccessibility of some media texts for students new to English in the context of economics or the Australian media. (17…
The Emotional Impact of Traditional and New Media in Social Events
ERIC Educational Resources Information Center
Salcudean, Minodora; Muresan, Raluca
2017-01-01
In past times, media were the sole vector to reflect in their entire complexity the events surrounding major world tragedies. Nowadays, social media are an essential component of the media process and classical press channels are connected to the social networking flow, where they can find information and, at the same time, tap into the emotional…
Media as Nexus of Practice: Remaking Identities in "What Not to Wear"
ERIC Educational Resources Information Center
Wohlwend, Karen E.; Medina, Carmen L.
2012-01-01
In this conceptual piece, we examine media as a nexus of a traditional schooling pedagogy and performance pedagogy to make visible how their overlapping elements produce media's pervasive educative force but also to gain a deeper understanding of the complexities of using media in educational contexts. Nexus analysis examines a fashion makeover…
ERIC Educational Resources Information Center
Friesem, Elizaveta
2018-01-01
Challenges of media and gender literacy classes include the danger of steering students towards "right" interpretations of media texts while simplifying the complex relationship between audiences and media texts. The current paper describes a case study that focused on two high school teachers who were motivated by their protectionist…
The Use of Mushroom Growing Media Waste for Making Composite Particle Board
NASA Astrophysics Data System (ADS)
Tjahjanti, P. H.; Sutarman; Widodo, E.; Kusuma, A. T.
2017-05-01
One of the agricultural waste is mushroom growing media, where the number of this waste is huge and accumulated after mushroom harvest. This accumulation is caused by using the new planting medias. Meanwhile, the old planting medias have thrown out and been as solid matter to widen the slope of cliff area. Therefore, this research aims to use mushroom growing media waste (MGMW) as a composite particle board added by polyester resin and mekpo (methyl ethyl ketone peroxides) as catalys. Some physical and mechanic tests which are done, namely: density, moisture content, thickness swelling after immersion in water, strength of absorption water, internal bonding, modulus of elasticity, modulus of rupture and screw holding power. The composition of 75% MGMW + 24% polyester resin + 1% catalyst mekpo suitable to the physical and mechanic tests and accordance with SNI 03-2105-2006 and JIS A 5908-2003.
Mechanical Clogging Processes in Unconsolidated Porous Media Near Pumping Wells
NASA Astrophysics Data System (ADS)
de Zwart, B.; Schotting, R.; Hassanizadeh, M.
2003-12-01
In the Netherlands water supply companies produce over more than one billion cubic meters of drinking water every year. About 2500 water wells are used to pump up the groundwater from aquifers in the Dutch subsurface. More than 50% of these wells will encounter a number of technical problems during their lifetime. The main problem is the decrease in capacity due to well clogging. Clogging shows up after a number of operation years and results in extra, expensive cleaning operations and in early replacement of the pumping wells. This problem has been acknowledged by other industries, for example the metal, petroleum, beer industry and underground storage projects. Well clogging is the result of a number of interacting mechanisms creating a complex problem in the subsurface. In most clogging cases mechanical mechanisms are involved. A large number of studies have been performed to comprehend these processes. Investigations on mechanical processes are focused on transport of small particles through pores and deposition of particles due to physical or physical-chemical processes. After a period of deposition the particles plug the pores and decrease the permeability of the medium. Particle deposition in porous media is usually modelled using filtration theory. In order to get the dynamics of clogging this theory is not sufficient. The porous media is continuously altered due to deposition and mobilization. Therefore the capture characteristics will also continuously change and deposition rates will change in time. A new formula is derived to describe (re)mobilization of particles and allow changing deposition rates. This approach incorporates detachment and reattachment of deposited particles. This work also includes derivation of the filtration theory in radial coordinates. A comparison between the radial filtration theory and the new formula will be shown.
NASA Astrophysics Data System (ADS)
Wallen, Samuel P.
Granular media are one of the most common, yet least understood forms of matter on earth. The difficulties in understanding the physics of granular media stem from the fact that they are typically heterogeneous and highly disordered, and the grains interact via nonlinear contact forces. Historically, one approach to reducing these complexities and gaining new insight has been the study of granular crystals, which are ordered arrays of similarly-shaped particles (typically spheres) in Hertzian contact. Using this setting, past works explored the rich nonlinear dynamics stemming from contact forces, and proposed avenues where such granular crystals could form designer, dynamically responsive materials, which yield beneficial functionality in dynamic regimes. In recent years, the combination of self-assembly fabrication methods and laser ultrasonic experimental characterization have enabled the study of granular crystals at microscale. While our intuition may suggest that these microscale granular crystals are simply scaled-down versions of their macroscale counterparts, in fact, the relevant physics change drastically; for example, short-range adhesive forces between particles, which are negligible at macroscale, are several orders of magnitude stronger than gravity at microscale. In this thesis, we present recent advances in analytical and computational modeling of microscale granular crystals, in particular concerning the interplay of nonlinearity, shear interactions, and particle rotations, which have previously been either absent, or included separately at macroscale. Drawing inspiration from past works on phononic crystals and nonlinear lattices, we explore problems involving locally-resonant metamaterials, nonlinear localized modes, amplitude-dependent energy partition, and other rich dynamical phenomena. This work enhances our understanding of microscale granular media, which may find applicability in fields such as ultrasonic wave tailoring, signal processing, shock and vibration mitigation, and powder processing.
Health-Related Quality of Life Among US Workers: Variability Across Occupation Groups.
Shockey, Taylor M; Zack, Matthew; Sussell, Aaron
2017-08-01
To examine the health-related quality of life among workers in 22 standard occupation groups using data from the 2013-2014 US Behavioral Risk Factor Surveillance System. We examined the health-related quality of life measures of self-rated health, frequent physical distress, frequent mental distress, frequent activity limitation, and frequent overall unhealthy days by occupation group for 155 839 currently employed adults among 17 states. We performed multiple logistic regression analyses that accounted for the Behavioral Risk Factor Surveillance System's complex survey design to obtain prevalence estimates adjusted for potential confounders. Among all occupation groups, the arts, design, entertainment, sports, and media occupation group reported the highest adjusted prevalence of frequent physical distress, frequent mental distress, frequent activity limitation, and frequent overall unhealthy days. The personal care and service occupation group had the highest adjusted prevalence for fair or poor self-rated health. Workers' jobs affect their health-related quality of life.
Adilman, Rachel; Rajmohan, Yanchini; Brooks, Edward; Urgoiti, Gloria Roldan; Chung, Caroline; Hammad, Nazik; Trinkaus, Martina; Naseem, Madiha; Simmons, Christine; Adilman, Rachel; Rajmohan, Yanchini; Brooks, Edward; Roldan Urgoiti, Gloria; Chung, Caroline; Hammad, Nazik; Trinkaus, Martina; Naseem, Madiha; Simmons, Christine
2016-01-01
Cancer management requires coordinated care from many health care providers, and its complexity requires physicians be up to date on current research. Web-based social media support physician collaboration and information sharing, but the extent to which physicians use social media for these purposes remains unknown. The complex field of oncology will benefit from increased use of online social media to enhance physician communication, education, and mentorship. To facilitate this, patterns of social media use among oncologists must be better understood. A nine-item survey investigating physician social media use, designed using online survey software, was distributed via e-mail to 680 oncology physicians and physicians in training in Canada. Responses were analyzed using descriptive statistics. A total of 207 responses (30%) were received; 72% of respondents reported using social media. Social media use was highest, at 93%, in respondents age 25 to 34 years and lowest, at 39%, in those age 45 to 54 years. This demonstrates a significant gap in social media use between younger users and mid- to late-career users. The main barrier to use was lack of free time. The identified gap in social media use between age cohorts may have negative implications for communication in oncology. Despite advancements in social media and efforts to integrate social media into medical education, most oncologists and trainees use social media rarely, which, along with the age-related gap in use, may have consequences for collaboration and education in oncology. Investigations to further understand barriers to social media use should be undertaken to enhance physician collaboration and knowledge sharing through social media.
Christensen, David G; Orr, James S; Rao, Christopher V; Wolfe, Alan J
2017-03-15
Complex media are routinely used to cultivate diverse bacteria. However, this complexity can obscure the factors that govern cell growth. While studying protein acetylation in buffered tryptone broth supplemented with glucose (TB7-glucose), we observed that Escherichia coli did not fully consume glucose prior to stationary phase. However, when we supplemented this medium with magnesium, the glucose was completely consumed during exponential growth, with concomitant increases in cell number and biomass but reduced cell size. Similar results were observed with other sugars and other peptide-based media, including lysogeny broth. Magnesium also limited cell growth for Vibrio fischeri and Bacillus subtilis in TB7-glucose. Finally, magnesium supplementation reduced protein acetylation. Based on these results, we conclude that growth in peptide-based media is magnesium limited. We further conclude that magnesium supplementation can be used to tune protein acetylation without genetic manipulation. These results have the potential to reduce potentially deleterious acetylated isoforms of recombinant proteins without negatively affecting cell growth. IMPORTANCE Bacteria are often grown in complex media. These media are thought to provide the nutrients necessary to grow bacteria to high cell densities. In this work, we found that peptide-based media containing a sugar are magnesium limited for bacterial growth. In particular, magnesium supplementation is necessary for the bacteria to use the sugar for cell growth. Interestingly, in the absence of magnesium supplementation, the bacteria still consume the sugar. However, rather than use it for cell growth, the bacteria instead use the sugar to acetylate lysines on proteins. As lysine acetylation may alter the activity of proteins, this work demonstrates how lysine acetylation can be tuned through magnesium supplementation. These findings may be useful for recombinant protein production, when acetylated isoforms are to be avoided. They also demonstrate how to increase bacterial growth in complex media. Copyright © 2017 American Society for Microbiology.
Christensen, David G.; Orr, James S.; Rao, Christopher V.
2017-01-01
ABSTRACT Complex media are routinely used to cultivate diverse bacteria. However, this complexity can obscure the factors that govern cell growth. While studying protein acetylation in buffered tryptone broth supplemented with glucose (TB7-glucose), we observed that Escherichia coli did not fully consume glucose prior to stationary phase. However, when we supplemented this medium with magnesium, the glucose was completely consumed during exponential growth, with concomitant increases in cell number and biomass but reduced cell size. Similar results were observed with other sugars and other peptide-based media, including lysogeny broth. Magnesium also limited cell growth for Vibrio fischeri and Bacillus subtilis in TB7-glucose. Finally, magnesium supplementation reduced protein acetylation. Based on these results, we conclude that growth in peptide-based media is magnesium limited. We further conclude that magnesium supplementation can be used to tune protein acetylation without genetic manipulation. These results have the potential to reduce potentially deleterious acetylated isoforms of recombinant proteins without negatively affecting cell growth. IMPORTANCE Bacteria are often grown in complex media. These media are thought to provide the nutrients necessary to grow bacteria to high cell densities. In this work, we found that peptide-based media containing a sugar are magnesium limited for bacterial growth. In particular, magnesium supplementation is necessary for the bacteria to use the sugar for cell growth. Interestingly, in the absence of magnesium supplementation, the bacteria still consume the sugar. However, rather than use it for cell growth, the bacteria instead use the sugar to acetylate lysines on proteins. As lysine acetylation may alter the activity of proteins, this work demonstrates how lysine acetylation can be tuned through magnesium supplementation. These findings may be useful for recombinant protein production, when acetylated isoforms are to be avoided. They also demonstrate how to increase bacterial growth in complex media. PMID:28062462
Adaptive wavefront shaping for controlling nonlinear multimode interactions in optical fibres
NASA Astrophysics Data System (ADS)
Tzang, Omer; Caravaca-Aguirre, Antonio M.; Wagner, Kelvin; Piestun, Rafael
2018-06-01
Recent progress in wavefront shaping has enabled control of light propagation inside linear media to focus and image through scattering objects. In particular, light propagation in multimode fibres comprises complex intermodal interactions and rich spatiotemporal dynamics. Control of physical phenomena in multimode fibres and its applications are in their infancy, opening opportunities to take advantage of complex nonlinear modal dynamics. Here, we demonstrate a wavefront shaping approach for controlling nonlinear phenomena in multimode fibres. Using a spatial light modulator at the fibre input, real-time spectral feedback and a genetic algorithm optimization, we control a highly nonlinear multimode stimulated Raman scattering cascade and its interplay with four-wave mixing via a flexible implicit control on the superposition of modes coupled into the fibre. We show versatile spectrum manipulations including shifts, suppression, and enhancement of Stokes and anti-Stokes peaks. These demonstrations illustrate the power of wavefront shaping to control and optimize nonlinear wave propagation.
A unified account of perceptual layering and surface appearance in terms of gamut relativity.
Vladusich, Tony; McDonnell, Mark D
2014-01-01
When we look at the world--or a graphical depiction of the world--we perceive surface materials (e.g. a ceramic black and white checkerboard) independently of variations in illumination (e.g. shading or shadow) and atmospheric media (e.g. clouds or smoke). Such percepts are partly based on the way physical surfaces and media reflect and transmit light and partly on the way the human visual system processes the complex patterns of light reaching the eye. One way to understand how these percepts arise is to assume that the visual system parses patterns of light into layered perceptual representations of surfaces, illumination and atmospheric media, one seen through another. Despite a great deal of previous experimental and modelling work on layered representation, however, a unified computational model of key perceptual demonstrations is still lacking. Here we present the first general computational model of perceptual layering and surface appearance--based on a boarder theoretical framework called gamut relativity--that is consistent with these demonstrations. The model (a) qualitatively explains striking effects of perceptual transparency, figure-ground separation and lightness, (b) quantitatively accounts for the role of stimulus- and task-driven constraints on perceptual matching performance, and (c) unifies two prominent theoretical frameworks for understanding surface appearance. The model thereby provides novel insights into the remarkable capacity of the human visual system to represent and identify surface materials, illumination and atmospheric media, which can be exploited in computer graphics applications.
A Unified Account of Perceptual Layering and Surface Appearance in Terms of Gamut Relativity
Vladusich, Tony; McDonnell, Mark D.
2014-01-01
When we look at the world—or a graphical depiction of the world—we perceive surface materials (e.g. a ceramic black and white checkerboard) independently of variations in illumination (e.g. shading or shadow) and atmospheric media (e.g. clouds or smoke). Such percepts are partly based on the way physical surfaces and media reflect and transmit light and partly on the way the human visual system processes the complex patterns of light reaching the eye. One way to understand how these percepts arise is to assume that the visual system parses patterns of light into layered perceptual representations of surfaces, illumination and atmospheric media, one seen through another. Despite a great deal of previous experimental and modelling work on layered representation, however, a unified computational model of key perceptual demonstrations is still lacking. Here we present the first general computational model of perceptual layering and surface appearance—based on a boarder theoretical framework called gamut relativity—that is consistent with these demonstrations. The model (a) qualitatively explains striking effects of perceptual transparency, figure-ground separation and lightness, (b) quantitatively accounts for the role of stimulus- and task-driven constraints on perceptual matching performance, and (c) unifies two prominent theoretical frameworks for understanding surface appearance. The model thereby provides novel insights into the remarkable capacity of the human visual system to represent and identify surface materials, illumination and atmospheric media, which can be exploited in computer graphics applications. PMID:25402466
Ostashev, Vladimir E; Wilson, D Keith; Muhlestein, Michael B; Attenborough, Keith
2018-02-01
Although sound propagation in a forest is important in several applications, there are currently no rigorous yet computationally tractable prediction methods. Due to the complexity of sound scattering in a forest, it is natural to formulate the problem stochastically. In this paper, it is demonstrated that the equations for the statistical moments of the sound field propagating in a forest have the same form as those for sound propagation in a turbulent atmosphere if the scattering properties of the two media are expressed in terms of the differential scattering and total cross sections. Using the existing theories for sound propagation in a turbulent atmosphere, this analogy enables the derivation of several results for predicting forest acoustics. In particular, the second-moment parabolic equation is formulated for the spatial correlation function of the sound field propagating above an impedance ground in a forest with micrometeorology. Effective numerical techniques for solving this equation have been developed in atmospheric acoustics. In another example, formulas are obtained that describe the effect of a forest on the interference between the direct and ground-reflected waves. The formulated correspondence between wave propagation in discrete and continuous random media can also be used in other fields of physics.
Huber, Patrick
2015-03-18
Spatial confinement in nanoporous media affects the structure, thermodynamics and mobility of molecular soft matter often markedly. This article reviews thermodynamic equilibrium phenomena, such as physisorption, capillary condensation, crystallisation, self-diffusion, and structural phase transitions as well as selected aspects of the emerging field of spatially confined, non-equilibrium physics, i.e. the rheology of liquids, capillarity-driven flow phenomena, and imbibition front broadening in nanoporous materials. The observations in the nanoscale systems are related to the corresponding bulk phenomenologies. The complexity of the confined molecular species is varied from simple building blocks, like noble gas atoms, normal alkanes and alcohols to liquid crystals, polymers, ionic liquids, proteins and water. Mostly, experiments with mesoporous solids of alumina, gold, carbon, silica, and silicon with pore diameters ranging from a few up to 50 nm are presented. The observed peculiarities of nanopore-confined condensed matter are also discussed with regard to applications. A particular emphasis is put on texture formation upon crystallisation in nanoporous media, a topic both of high fundamental interest and of increasing nanotechnological importance, e.g. for the synthesis of organic/inorganic hybrid materials by melt infiltration, the usage of nanoporous solids in crystal nucleation or in template-assisted electrochemical deposition of nano structures.
NASA Astrophysics Data System (ADS)
Huber, Patrick
2015-03-01
Spatial confinement in nanoporous media affects the structure, thermodynamics and mobility of molecular soft matter often markedly. This article reviews thermodynamic equilibrium phenomena, such as physisorption, capillary condensation, crystallisation, self-diffusion, and structural phase transitions as well as selected aspects of the emerging field of spatially confined, non-equilibrium physics, i.e. the rheology of liquids, capillarity-driven flow phenomena, and imbibition front broadening in nanoporous materials. The observations in the nanoscale systems are related to the corresponding bulk phenomenologies. The complexity of the confined molecular species is varied from simple building blocks, like noble gas atoms, normal alkanes and alcohols to liquid crystals, polymers, ionic liquids, proteins and water. Mostly, experiments with mesoporous solids of alumina, gold, carbon, silica, and silicon with pore diameters ranging from a few up to 50 nm are presented. The observed peculiarities of nanopore-confined condensed matter are also discussed with regard to applications. A particular emphasis is put on texture formation upon crystallisation in nanoporous media, a topic both of high fundamental interest and of increasing nanotechnological importance, e.g. for the synthesis of organic/inorganic hybrid materials by melt infiltration, the usage of nanoporous solids in crystal nucleation or in template-assisted electrochemical deposition of nano structures.
Hinkley, Trina; Timperio, Anna; Salmon, Jo; Hesketh, Kylie
2017-04-01
Little is known about the associations of preschoolers' health behaviors with their later psychosocial wellbeing. This study investigates the association of 3- to 5-year-old children's physical activity and electronic media use with their later social-emotional skills (6-8 years). Data were collected in 2008-2009 and 2011-2012 for the Healthy Active Preschool and Primary Years (HAPPY) Study in metropolitan Melbourne. Participants were a random subsample (n = 108) of the 567 children at follow-up. Physical activity was objectively measured using ActiGraph GT1M accelerometers; electronic media use (television viewing, sedentary electronic games and active electronic games) was parent proxy-reported. Social and emotional skills were child-reported using the Bar-On Emotional Quotient Inventory-Youth Version. Regression analyses controlled for sex, clustering by center of recruitment, and accelerometer wear time (for physical activity analyses). Sedentary electronic games were positively associated with intrapersonal and stress management skills and total emotional quotient. Computer/internet use was inversely associated with interpersonal, and positively associated with stress management, skills. Findings suggest that physical activity is not associated with children's psychosocial health while some types of electronic media use are. Future research should investigate the contexts in which preschoolers participate in these behaviors and potential causal mechanisms of associations.
ERIC Educational Resources Information Center
Avance, Lyonel D.; Carr, Dorothy B.
Presented is the final report of a project to develop and field test audio and visual media to accompany developmentally sequenced activities appropriate for a physical education program for handicapped children from preschool through high school. Brief sections cover the following: the purposes and accomplishments of the project; the population…
ERIC Educational Resources Information Center
van Schalkwyk, Gerrit I.; Marin, Carla E.; Ortiz, Mayra; Rolison, Max; Qayyum, Zheala; McPartland, James C.; Lebowitz, Eli R.; Volkmar, Fred R.; Silverman, Wendy K.
2017-01-01
Social media holds promise as a technology to facilitate social engagement, but may displace offline social activities. Adolescents with ASD are well suited to capitalize on the unique features of social media, which requires less decoding of complex social information. In this cross-sectional study, we assessed social media use, anxiety and…
ERIC Educational Resources Information Center
Hassell, Martin D.; Sukalich, Mary F.
2016-01-01
Introduction: The use of social media is prevalent among college students, and it is important to understand how social media use may impact students' attitudes and behaviour. Prior studies have shown negative outcomes of social media use, but researchers have not fully discovered or fully understand the processes and implications of these…
Canonical decomposition of magnetotelluric responses: Experiment on 1D anisotropic structures
NASA Astrophysics Data System (ADS)
Guo, Ze-qiu; Wei, Wen-bo; Ye, Gao-feng; Jin, Sheng; Jing, Jian-en
2015-08-01
Horizontal electrical heterogeneity of subsurface earth is mostly originated from structural complexity and electrical anisotropy, and local near-surface electrical heterogeneity will severely distort regional electromagnetic responses. Conventional distortion analyses for magnetotelluric soundings are primarily physical decomposition methods with respect to isotropic models, which mostly presume that the geoelectric distribution of geological structures is of local and regional patterns represented by 3D/2D models. Due to the widespread anisotropy of earth media, the confusion between 1D anisotropic responses and 2D isotropic responses, and the defects of physical decomposition methods, we propose to conduct modeling experiments with canonical decomposition in terms of 1D layered anisotropic models, and the method is one of the mathematical decomposition methods based on eigenstate analyses differentiated from distortion analyses, which can be used to recover electrical information such as strike directions, and maximum and minimum conductivity. We tested this method with numerical simulation experiments on several 1D synthetic models, which turned out that canonical decomposition is quite effective to reveal geological anisotropic information. Finally, for the background of anisotropy from previous study by geological and seismological methods, canonical decomposition is applied to real data acquired in North China Craton for 1D anisotropy analyses, and the result shows that, with effective modeling and cautious interpretation, canonical decomposition could be another good method to detect anisotropy of geological media.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santillán, David; Juanes, Ruben; Cueto-Felgueroso, Luis
Propagation of fluid-driven fractures plays an important role in natural and engineering processes, including transport of magma in the lithosphere, geologic sequestration of carbon dioxide, and oil and gas recovery from low-permeability formations, among many others. The simulation of fracture propagation poses a computational challenge as a result of the complex physics of fracture and the need to capture disparate length scales. Phase field models represent fractures as a diffuse interface and enjoy the advantage that fracture nucleation, propagation, branching, or twisting can be simulated without ad hoc computational strategies like remeshing or local enrichment of the solution space. Heremore » we propose a new quasi-static phase field formulation for modeling fluid-driven fracturing in elastic media at small strains. The approach fully couples the fluid flow in the fracture (described via the Reynolds lubrication approximation) and the deformation of the surrounding medium. The flow is solved on a lower dimensionality mesh immersed in the elastic medium. This approach leads to accurate coupling of both physics. We assessed the performance of the model extensively by comparing results for the evolution of fracture length, aperture, and fracture fluid pressure against analytical solutions under different fracture propagation regimes. Thus, the excellent performance of the numerical model in all regimes builds confidence in the applicability of phase field approaches to simulate fluid-driven fracture.« less
Santillán, David; Juanes, Ruben; Cueto-Felgueroso, Luis
2017-04-20
Propagation of fluid-driven fractures plays an important role in natural and engineering processes, including transport of magma in the lithosphere, geologic sequestration of carbon dioxide, and oil and gas recovery from low-permeability formations, among many others. The simulation of fracture propagation poses a computational challenge as a result of the complex physics of fracture and the need to capture disparate length scales. Phase field models represent fractures as a diffuse interface and enjoy the advantage that fracture nucleation, propagation, branching, or twisting can be simulated without ad hoc computational strategies like remeshing or local enrichment of the solution space. Heremore » we propose a new quasi-static phase field formulation for modeling fluid-driven fracturing in elastic media at small strains. The approach fully couples the fluid flow in the fracture (described via the Reynolds lubrication approximation) and the deformation of the surrounding medium. The flow is solved on a lower dimensionality mesh immersed in the elastic medium. This approach leads to accurate coupling of both physics. We assessed the performance of the model extensively by comparing results for the evolution of fracture length, aperture, and fracture fluid pressure against analytical solutions under different fracture propagation regimes. Thus, the excellent performance of the numerical model in all regimes builds confidence in the applicability of phase field approaches to simulate fluid-driven fracture.« less
Single- and two-phase flow in microfluidic porous media analogs based on Voronoi tessellation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Mengjie; Xiao, Feng; Johnson-Paben, Rebecca
2012-01-01
The objective of this study was to create a microfluidic model of complex porous media for studying single and multiphase flows. Most experimental porous media models consist of periodic geometries that lend themselves to comparison with well-developed theoretical predictions. However, most real porous media such as geological formations and biological tissues contain a degree of randomness and complexity that is not adequately represented in periodic geometries. To design an experimental tool to study these complex geometries, we created microfluidic models of random homogeneous and heterogeneous networks based on Voronoi tessellations. These networks consisted of approximately 600 grains separated by amore » highly connected network of channels with an overall porosity of 0.11 0.20. We found that introducing heterogeneities in the form of large cavities within the network changed the permeability in a way that cannot be predicted by the classical porosity-permeability relationship known as the Kozeny equation. The values of permeability found in experiments were in excellent agreement with those calculated from three-dimensional lattice Boltzmann simulations. In two-phase flow experiments of oil displacement with water we found that the surface energy of channel walls determined the pattern of water invasion, while the network topology determined the residual oil saturation. These results suggest that complex network topologies lead to fluid flow behavior that is difficult to predict based solely on porosity. The microfluidic models developed in this study using a novel geometry generation algorithm based on Voronoi tessellation are a new experimental tool for studying fluid and solute transport problems within complex porous media.« less
Exposure to Violence and Carotid Artery Intima-Media Thickness in Mexican Women.
Flores-Torres, Mario H; Lynch, Rebekka; Lopez-Ridaura, Ruy; Yunes, Elsa; Monge, Adriana; Ortiz-Panozo, Eduardo; Cantu-Brito, Carlos; Hauksdóttir, Arna; Valdimarsdóttir, Unnur; Lajous, Martín
2017-08-17
Violence against women has become a global public health threat. Data on the potential impact of exposure to violence on cardiovascular disease are scarce. We evaluated the association between exposure to violence and subclinical cardiovascular disease in 634 disease-free women from the Mexican Teachers' Cohort who responded to violence-related items from the Life Stressor Checklist and underwent measures of carotid artery intima-media thickness in 2012 and 2013. We defined exposure to violence as having ever been exposed to physical and/or sexual violence. Intima-media thickness was log-transformed, and subclinical carotid atherosclerosis was defined as intima-media thickness ≥0.8 mm or plaque. We used multivariable linear and logistic regression models adjusted for several potential confounders. Mean age was 48.9±4.3 years. Close to 40% of women reported past exposure to violence. The lifetime prevalence of sexual violence was 7.1%, and prevalence of physical violence was 23.5% (7.7% reported both sexual and physical violence). Relative to women with no history of violence, exposure to violence was associated with higher intima-media thickness (adjusted mean percentage difference=2.4%; 95% confidence interval 0.5, 4.3) and subclinical atherosclerosis (adjusted odds ratio=1.60; 95% confidence interval 1.10, 2.32). The association was stronger for exposure to physical violence, especially by mugging or physical assault by a stranger (adjusted mean % difference=4.6%; 95% confidence interval 1.8, 7.5, and odds ratio of subclinical carotid atherosclerosis=2.06; 95% confidence interval 1.22, 3.49). Exposure to violence, and in particular assault by a stranger, was strongly associated with subclinical cardiovascular disease in Mexican middle-aged women. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
Bit patterned media with composite structure for microwave assisted magnetic recording
NASA Astrophysics Data System (ADS)
Eibagi, Nasim
Patterned magnetic nano-structures are under extensive research due to their interesting emergent physics and promising applications in high-density magnetic data storage, through magnetic logic to bio-magnetic functionality. Bit-patterned media is an example of such structures which is a leading candidate to reach magnetic densities which cannot be achieved by conventional magnetic media. Patterned arrays of complex heterostructures such as exchange-coupled composites are studied in this thesis as a potential for next generation of magnetic recording media. Exchange-coupled composites have shown new functionality and performance advantages in magnetic recording and bit patterned media provide unique capability to implement such architectures. Due to unique resonant properties of such structures, their possible application in spin transfer torque memory and microwave assisted switching is also studied. This dissertation is divided into seven chapters. The first chapter covers the history of magnetic recording, the need to increase magnetic storage density, and the challenges in the field. The second chapter introduces basic concepts of magnetism. The third chapter explains the fabrication methods for thin films and various lithographic techniques that were used to pattern the devices under study for this thesis. The fourth chapter introduces the exchanged coupled system with the structure of [Co/Pd] / Fe / [Co/Pd], where the thickness of Fe is varied, and presents the magnetic properties of such structures using conventional magnetometers. The fifth chapter goes beyond what is learned in the fourth chapter and utilizes polarized neutron reflectometry to study the vertical exchange coupling and reversal mechanism in patterned structures with such structure. The sixth chapter explores the dynamic properties of the patterned samples, and their reversal mechanism under microwave field. The final chapter summarizes the results and describes the prospects for future applications of these structures.
Social Media in the Classroom: A Simple yet Complex Hybrid Environment for Students
ERIC Educational Resources Information Center
Casey, Gail
2013-01-01
This article reports on part of the author's PhD action research study. It examines the complexity of features that social media and Web 2.0 offer when combined with face-to-face teaching and learning. Action research was used to help redesign the learning programs of XXX's thirteen Middle Years classes over an eighteen month period. These…
Sharpe, Patricia A; Burroughs, Ericka L; Granner, Michelle L; Wilcox, Sara; Hutto, Brent E; Bryant, Carol A; Peck, Lara; Pekuri, Linda
2010-06-01
A physical activity intervention applied principles of community-based participatory research, the community-based prevention marketing framework, and social cognitive theory. A nonrandomized design included women ages 35 to 54 in the southeastern United States. Women (n = 430 preprogram, n = 217 postprogram) enrolled in a 24-week behavioral intervention and were exposed to a media campaign. They were compared to cross-sectional survey samples at pre- (n = 245) and postprogram (n = 820) from the media exposed county and a no-intervention county (n = 234 pre, n = 822 post). Women in the behavioral intervention had statistically significant positive changes on physical activity minutes, walking, park and trail use, knowledge of mapped routes and exercise partner, and negative change on exercise self-efficacy. Media exposed women had statistically significant pre- to postprogram differences on knowledge of mapped routes. No-intervention women had significant pre- to postprogram differences on physical activity minutes, walking, and knowledge of mapped routes.
Oshri, Assaf; Himelboim, Itai; Kwon, Josephine A.; Sutton, Tara E.; Mackillop, James
2015-01-01
Objective: The aim of the present study was to examine the links between severities of child abuse (physical vs. sexual), and alcohol use versus problems via social media (Facebook) peer connection structures. Method: A total of 318 undergraduate female students at a public university in the United States reported severity of child abuse experiences and current alcohol use and problems. Social network data were obtained directly from the individuals’ Facebook network. Results: Severity of childhood physical abuse was positively linked to alcohol use and problems via eigenvector centrality, whereas severity of childhood sexual abuse was negatively linked to alcohol use and problems via clustering coefficient. Conclusions: Childhood physical and sexual abuse were linked positively and negatively, respectively, to online social network patterns associated with alcohol use and problems. The study suggests the potential utility of these online network patterns as risk indices and ultimately using social media as a platform for targeted preventive interventions. PMID:26562592
NASA Technical Reports Server (NTRS)
Steinberg, Susan L. (Editor); Ming, Doug W. (Editor); Henninger, Don (Editor)
2002-01-01
This NASA Technical Memorandum is a compilation of presentations and discussions in the form of minutes from a workshop entitled 'Plant Production Systems for Microgravity: Critical Issues in Water, Air, and Solute Transport Through Unsaturated Porous Media' held at NASA's Johnson Space Center, July 24-25, 2000. This workshop arose from the growing belief within NASA's Advanced Life Support Program that further advances and improvements in plant production systems for microgravity would benefit from additional knowledge of fundamental processes occurring in the root zone. The objective of the workshop was to bring together individuals who had expertise in various areas of fluid physics, soil physics, plant physiology, hardware development, and flight tests to identify, discuss, and prioritize critical issues of water and air flow through porous media in microgravity. Participants of the workshop included representatives from private companies involved in flight hardware development and scientists from universities and NASA Centers with expertise in plant flight tests, plant physiology, fluid physics, and soil physics.
[Vascular aging, arterial hypertension and physical activity].
Schmidt-Trucksäss, A; Weisser, B
2011-11-01
The present review delineates the significance of intima-media-thickness, arterial stiffness and endothelial function for vascular aging. There is profound evidence for an increase in intima-media-thickness and vascular stiffness not only during healthy aging but induced also by cardiovascular risk factors. There is a central role of arterial hypertension for this progression in both structural factors. In addition, both parameters are strongly associated with cardiovascular risk. Endothelial function measured as postischemic flow-mediated vasodilatation is a functional parameter which is decreased both in healthy aging and by cardiovascular risk factors. Physical activity modifies the influence of aging and risk factors on endothelial function. A positive influence of endurance exercise on vascular stiffness and endothelial function has been demonstrated in numerous studies. In long-term studies, regular physical activity has been shown to reduce the progression of intima-media-thickness. Thus, arterial hypertension accelerates vascular aging, while physical activity has a positive influence on a variety of vascular parameters associated with vascular aging. © Georg Thieme Verlag KG Stuttgart · New York.
Oshri, Assaf; Himelboim, Itai; Kwon, Josephine A; Sutton, Tara E; Mackillop, James
2015-11-01
The aim of the present study was to examine the links between severities of child abuse (physical vs. sexual), and alcohol use versus problems via social media (Facebook) peer connection structures. A total of 318 undergraduate female students at a public university in the United States reported severity of child abuse experiences and current alcohol use and problems. Social network data were obtained directly from the individuals' Facebook network. Severity of childhood physical abuse was positively linked to alcohol use and problems via eigenvector centrality, whereas severity of childhood sexual abuse was negatively linked to alcohol use and problems via clustering coefficient. Childhood physical and sexual abuse were linked positively and negatively, respectively, to online social network patterns associated with alcohol use and problems. The study suggests the potential utility of these online network patterns as risk indices and ultimately using social media as a platform for targeted preventive interventions.
Lee, H Erin; Cho, Jaehee
2018-04-13
This study examined the relationships across social media use, social support, depression, and general psychological disposition among people with movement or mobility disabilities in Korea. First, with survey data (n = 91) collected from users of social network sites (SNSs) and online communities, hypotheses regarding positive associations between intensity of an individual's engagement in social media and four different types of social support-emotional, instrumental, informational, and appraisal support-were tested as well as hypotheses regarding mediation effects of the social support variables in the association between social media use and depression. Second, through focus group interviews (n = 15), influences of social media use on social support were more thoroughly explored as well as their influences on general psychological disposition. Results from hierarchical regression analyses confirmed that both intensity of SNS use and online community use significantly predicted instrumental, informational, and appraisal support, while they did not predict emotional support. Further regression and Sobel tests showed that higher levels of intensity of SNS use and of online community use both led to lower levels of depression through the mediation of instrumental and informational support. Analysis of the interviews further revealed the positive roles of social media use in building social support and healthy psychological dispositions. However, analysis also revealed some negative consequences of and limitations to social media use for those with physical disabilities. These findings expand our knowledge of the context and implications of engaging in online social activities for people with physical disabilities.
Finite Dimensional Approximations for Continuum Multiscale Problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berlyand, Leonid
2017-01-24
The completed research project concerns the development of novel computational techniques for modeling nonlinear multiscale physical and biological phenomena. Specifically, it addresses the theoretical development and applications of the homogenization theory (coarse graining) approach to calculation of the effective properties of highly heterogenous biological and bio-inspired materials with many spatial scales and nonlinear behavior. This theory studies properties of strongly heterogeneous media in problems arising in materials science, geoscience, biology, etc. Modeling of such media raises fundamental mathematical questions, primarily in partial differential equations (PDEs) and calculus of variations, the subject of the PI’s research. The focus of completed researchmore » was on mathematical models of biological and bio-inspired materials with the common theme of multiscale analysis and coarse grain computational techniques. Biological and bio-inspired materials offer the unique ability to create environmentally clean functional materials used for energy conversion and storage. These materials are intrinsically complex, with hierarchical organization occurring on many nested length and time scales. The potential to rationally design and tailor the properties of these materials for broad energy applications has been hampered by the lack of computational techniques, which are able to bridge from the molecular to the macroscopic scale. The project addressed the challenge of computational treatments of such complex materials by the development of a synergistic approach that combines innovative multiscale modeling/analysis techniques with high performance computing.« less
A Systematic Procedure to Describe Shale Gas Permeability Evolution during the Production Process
NASA Astrophysics Data System (ADS)
Jia, B.; Tsau, J. S.; Barati, R.
2017-12-01
Gas flow behavior in shales is complex due to the multi-physics nature of the process. Pore size reduces as the in-situ stress increases during the production process, which will reduce intrinsic permeability of the porous media. Slip flow/pore diffusion enhances gas apparent permeability, especially under low reservoir pressures. Adsorption not only increases original gas in place but also influences gas flow behavior because of the adsorption layer. Surface diffusion between free gas and adsorption phase enhances gas permeability. Pore size reduction and the adsorption layer both have complex impacts on gas apparent permeability and non-Darcy flow might be a major component in nanopores. Previously published literature is generally incomplete in terms of coupling of all these four physics with fluid flow during gas production. This work proposes a methodology to simultaneously take them into account to describe a permeability evolution process. Our results show that to fully describe shale gas permeability evolution during gas production, three sets of experimental data are needed initially: 1) intrinsic permeability under different in-situ stress, 2) adsorption isotherm under reservoir conditions and 3) surface diffusivity measurement by the pulse-decay method. Geomechanical effects, slip flow/pore diffusion, adsorption layer and surface diffusion all play roles affecting gas permeability. Neglecting any of them might lead to misleading results. The increasing in-situ stress during shale gas production is unfavorable to shale gas flow process. Slip flow/pore diffusion is important for gas permeability under low pressures in the tight porous media. They might overwhelm the geomechanical effect and enhance gas permeability at low pressures. Adsorption layer reduces the gas permeability by reducing the effective pore size, but the effect is limited. Surface diffusion increases gas permeability more under lower pressures. The total gas apparent permeability might keep increasing during the gas production process when the surface diffusivity is larger than a critical value. We believe that our workflow proposed in this study will help describe shale gas permeability evolution considering all the underlying physics altogether.
Polyelectrolyte Properties in Mono and Multi-Valent Ionic Media: Brushes and Complex Coacervates
NASA Astrophysics Data System (ADS)
Farina, Robert M.
Materials composed of polyelectrolytes have unique and interesting physical properties resulting primarily from their charged monomer segments. Polyelectrolytes, which exist in many different biological and industrial forms, have also been shown to be highly responsive to external environmental changes. Here, two specific polyelectrolyte systems, brushes and complex coacervates, are discussed in regards to how their properties can be tailored by adjusting the surrounding ionic environment with mono and multi-valent ions. End-tethered polyelectrolyte brushes, which constitute an interesting and substantial portion of polyelectrolyte applications, are well known for their ability to provide excellent lubrication and low friction when coated onto surfaces (e.g. articular cartilage and medical devices), as well as for their ability to stabilize colloidal particles in solution (e.g. paint and cosmetic materials). These properties have been extensively studied with brushes in pure mono-valent ionic media. However, polyelectrolyte brush interactions with multi-valent ions in solution are much less understood, although highly relevant considering mono and multi-valent counterions are present in most applications. Even at very low concentrations of multi-valent ions in solution, dramatic polyelectrolyte brush physical property changes can occur, resulting in collapsed chains which also adhere to one another via multi-valent bridging. Here, the strong polyelectrolyte poly(sodium styrene sulfonate) was studied using the Surface Forces Apparatus (SFA) and electrochemistry in order to investigate brush height and intermolecular interactions between two brushes as a function of multi-valent counterion population inside a brush. Complex coacervates are formed when polyanions and polycations are mixed together in proper conditions of an aqueous solution. This mixing results in a phase separation of a polymer-rich, coacervate phase composed of a chain network held together via electrostatic interactions. Complex coacervates are highly regarded for their extremely low interfacial energy resulting in an ability to spread and adhere to surfaces under water, utilized by marine organisms (e.g. mussels and tubeworms), as well as many encapsulation applications (e.g. pigment encapsulation for carbon-less paper and electronic paper displays). Here, the interfacial energy of coacervates composed of oppositely charged polypeptides, poly(L-lysine) and poly(L-glutamic acid), was investigated using the SFA in regards to changes in bulk mono-valent salt concentrations.
Body image dissatisfaction, physical activity and screen-time in Spanish adolescents.
Añez, Elizabeth; Fornieles-Deu, Albert; Fauquet-Ars, Jordi; López-Guimerà, Gemma; Puntí-Vidal, Joaquim; Sánchez-Carracedo, David
2018-01-01
This cross-sectional study contributes to the literature on whether body dissatisfaction is a barrier/facilitator to engaging in physical activity and to investigate the impact of mass-media messages via computer-time on body dissatisfaction. High-school students ( N = 1501) reported their physical activity, computer-time (homework/leisure) and body dissatisfaction. Researchers measured students' weight and height. Analyses revealed that body dissatisfaction was negatively associated with physical activity on both genders, whereas computer-time was associated only with girls' body dissatisfaction. Specifically, as computer-homework increased, body dissatisfaction decreased; as computer-leisure increased, body dissatisfaction increased. Weight-related interventions should improve body image and physical activity simultaneously, while critical consumption of mass-media interventions should include a computer component.
Williams, Gillian; Hamm, Michele P; Shulhan, Jocelyn; Vandermeer, Ben; Hartling, Lisa
2014-01-01
Objectives To conduct a systematic review of randomised controlled trials (RCTs) examining the use of social media to promote healthy diet and exercise in the general population. Data sources MEDLINE, CENTRAL, ERIC, PubMed, CINAHL, Academic Search Complete, Alt Health Watch, Health Source, Communication and Mass Media Complete, Web of Knowledge and ProQuest Dissertation and Thesis (2000–2013). Study eligibility criteria RCTs of social media interventions promoting healthy diet and exercise behaviours in the general population were eligible. Interventions using social media, alone or as part of a complex intervention, were included. Study appraisal and synthesis Study quality was assessed using the Cochrane Risk of Bias Tool. We describe the studies according to the target populations, objectives and nature of interventions, outcomes examined, and results and conclusions. We extracted data on the primary and secondary outcomes examined in each study. Where the same outcome was assessed in at least three studies, we combined data in a meta-analysis. Results 22 studies were included. Participants were typically middle-aged Caucasian women of mid-to-high socioeconomic status. There were a variety of interventions, comparison groups and outcomes. All studies showed a decrease in programme usage throughout the intervention period. Overall, no significant differences were found for primary outcomes which varied across studies. Meta-analysis showed no significant differences in changes in physical activity (standardised mean difference (SMD) 0.13 (95% CI −0.04 to 0.30), 12 studies) and weight (SMD −0.00 (95% CI −0.19 to 0.19), 10 studies); however, pooled results from five studies showed a significant decrease in dietary fat consumption with social media (SMD −0.35 (95% CI −0.68 to −0.02)). Conclusions Social media may provide certain advantages for public health interventions; however, studies of social media interventions to date relating to healthy lifestyles tend to show low levels of participation and do not show significant differences between groups in key outcomes. PMID:24525388
Experimental evidence of chaotic mixing at pore scale in 3D porous media
NASA Astrophysics Data System (ADS)
Heyman, J.; Turuban, R.; Jimenez Martinez, J.; Lester, D. R.; Meheust, Y.; Le Borgne, T.
2017-12-01
Mixing of dissolved chemical species in porous media plays a central role in many natural and industrial processes, such as contaminant transport and degradation in soils, oxygen and nitrates delivery in river beds, clogging in geothermal systems, CO2 sequestration. In particular, incomplete mixing at the pore scale may strongly affect the spatio-temporal distribution of reaction rates in soils and rocks, questioning the validity of diffusion-reaction models at the Darcy scale. Recent theoretical [1] and numerical [2] studies of flow in idealized porous media have suggested that fluid mixing may be chaotic at pore scale, hence pointing to a whole new set of models for mixing and reaction in porous media. However, so far this remained to be confirmed experimentally. Here we present experimental evidence of the chaotic nature of transverse mixing at the pore scale in three-dimensional porous media. We designed a novel experimental setup allowing high resolution pore scale imaging of the structure of a tracer plume in porous media columns consisting of 7, 10 and 20 mm glass bead packings. We conjointly used refractive index matching techniques, laser induced fluorescence and a moving laser-sheet to reconstruct the shape of a steady tracer plume as it gets deformed by the porous media flow. In this talk, we focus on the transverse behavior of mixing, that is, on the plane orthogonal to the main flow direction, in the limit of high Péclet numbers (diffusion is negligible). Moving away from the injection point, the plume cross-section turns quickly into complex, interlaced, lamellar structures. These structures elongated at an exponential rate, characteristic of a chaotic system, that can be characterized by an average Lyapunov exponent. We finally discuss the origin of this chaotic behavior and its most significant consequences for upscaling mixing and reactive transport in porous media. Reference:[1] D. R. Lester, G. Metcafle, M. G. Trefry, Physical Review Letters, 111, 174101 (2013) [2] R. Turuban, D. R. Lester, T. Le Borgne, and Y. Méheust (2017), under review.
Mapping the Daily Media Round: Novel Methods for Understanding Families' Mobile Technology Use
ERIC Educational Resources Information Center
Taylor, Katie Headrick; Takeuchi, Lori; Stevens, Reed
2018-01-01
The pervasiveness of mobile devices in families' homes has dramatically changed the physical and temporal arrangement of co-viewing media content; the representative image of American families seated around a TV set is an anachronism. But understanding and describing contemporary co-participation arrangements around digital media is challenging…
Social Marketing Campaigns and Children's Media Use
ERIC Educational Resources Information Center
Evans, W. Douglas
2008-01-01
Media-related commercial marketing aimed at promoting the purchase of products and services by children, and by adults for children, is ubiquitous and has been associated with negative health consequences such as poor nutrition and physical inactivity. But, as Douglas Evans points out, not all marketing in the electronic media is confined to the…
Fast propagation of electromagnetic fields through graded-index media.
Zhong, Huiying; Zhang, Site; Shi, Rui; Hellmann, Christian; Wyrowski, Frank
2018-04-01
Graded-index (GRIN) media are widely used for modeling different situations: some components are designed considering GRIN modulation, e.g., multi-mode fibers, optical lenses, or acousto-optical modulators; on the other hand, there are other components where the refractive-index variation is undesired due to, e.g., stress or heating; and finally, some effects in nature are characterized by a GRIN variation, like turbulence in air or biological tissues. Modeling electromagnetic fields propagating in GRIN media is then of high importance for optical simulation and design. Though ray tracing can be used to evaluate some basic effects in GRIN media, the field properties are not considered and evaluated. The general physical optics techniques, like finite element method or finite difference time domain, can be used to calculate fields in GRIN media, but they need great numerical effort or may even be impractical for large-scale components. Therefore, there still exists a demand for a fast physical optics model of field propagation through GRIN media on a large scale, which will be explored in this paper.
Preparation and Characterization of Amylose Inclusion Complexes for Drug Delivery Applications.
Carbinatto, Fernanda M; Ribeiro, Tatiana S; Colnago, Luiz Alberto; Evangelista, Raul Cesar; Cury, Beatriz S F
2016-01-01
Amylose complexes with nimesulide (NMS) and praziquantel (PZQ) were prepared by a simple and low cost method, so that high yield (>57%) and drug content (up to 68.16%) were achieved. The influence of drug:polymer ratio, temperature, and presence of palmitic acid on the complexes properties was evaluated. Differential scanning calorimetry, X-ray diffraction, and nuclear magnetic resonance data evidenced the drug-polymer interaction and the formation of inclusion complexes with semi-crystalline structures related to type II complexes. The drug release rates from complexes were lowered in acid media (pH 1.2) and phosphate buffer (pH 6.9). The presence of pancreatin promoted a significant acceleration of the release rates of both drugs, evidencing the enzymatic degradability of these complexes. The highest enzymatic resistance of PZQ1:30PA60°C complex makes the release time longer and the full release of PZQ in phosphate buffer with pancreatin occurred at 240 min, whereas the complexes with NMS and PZQ1:5PA90°C did it in 60 min. According to the Weibull model, the drug release process in media without enzyme occurred by complex mechanisms involving diffusion, swelling, and erosion. In media containing pancreatin, generally, the better correlation was with the first order, evidencing the acceleration of the release rates of drugs in the early stages of the test, due to enzymatic degradation.
Protective effects of parental monitoring of children's media use: a prospective study.
Gentile, Douglas A; Reimer, Rachel A; Nathanson, Amy I; Walsh, David A; Eisenmann, Joey C
2014-05-01
Children spend more time with electronic media than they do in any other activity, aside from sleep. Many of the negative effects that stem from media exposure may be reduced by parental monitoring of children's media use; however, there lacks a clear understanding of the mechanisms and extent of these protective effects. To determine the prospective effects of parental monitoring of children's media on physical, social, and academic outcomes. Prospective cohort design. Data were collected by in-home and in-school surveys in 2 communities in Iowa and Minnesota, where 1323 third- (n = 430), fourth- (n = 446), and fifth- (n = 423) grade students participated. A primary caregiver and teachers also provided data about the student. Participants in the current study were recruited to participate in a social ecological model-based obesity prevention program. Body mass index, average weekly sleep, school performance, prosocial behavior, and aggressive behavior. RESULTS Structural equation modeling revealed that parental monitoring of children's media influences children's sleep, school performance, and prosocial and aggressive behaviors and that these effects are mediated through total screen time and exposure to media violence. Parental monitoring of media has protective effects on a wide variety of academic, social, and physical child outcomes. Pediatricians and physicians are uniquely positioned to provide scientifically based recommendations to families; encouraging parents to monitor children's media carefully can have a wide range of health benefits for children.
Marketing physical activity: lessons learned from a statewide media campaign.
Peterson, Michael; Abraham, Avron; Waterfield, Allan
2005-10-01
Steps taken to create, implement, and initially assess a statewide physical activity social marketing campaign targeted to 18-to 30-year-olds are presented. Included is a summary demonstration of the application of the associative group analysis in formative market research and message development. Initial postcampaign questionnaire (n = 363) results indicated that 39.1% of respondents had seen the television ad, of which 31.2% indicated they intended to be more active, and 62.5% of respondents had been exposed to either the television or outdoor media ads. Lessons learned through the social marketing process including media channel effectiveness, message development and assessment, and marketing firm relationships are provided.
NASA Astrophysics Data System (ADS)
Myint, L. M. M.; Warisarn, C.
2017-05-01
Two-dimensional (2-D) interference is one of the prominent challenges in ultra-high density recording system such as bit patterned media recording (BPMR). The multi-track joint 2-D detection technique with the help of the array-head reading can tackle this problem effectively by jointly processing the multiple readback signals from the adjacent tracks. Moreover, it can robustly alleviate the impairments due to track mis-registration (TMR) and media noise. However, the computational complexity of such detectors is normally too high and hard to implement in a reality, even for a few multiple tracks. Therefore, in this paper, we mainly focus on reducing the complexity of multi-track joint 2-D Viterbi detector without paying a large penalty in terms of the performance. We propose a simplified multi-track joint 2-D Viterbi detector with a manageable complexity level for the BPMR's multi-track multi-head (MTMH) system. In the proposed method, the complexity of detector's trellis is reduced with the help of the joint-track equalization method which employs 1-D equalizers and 2-D generalized partial response (GPR) target. Moreover, we also examine the performance of a full-fledged multi-track joint 2-D detector and the conventional 2-D detection. The results show that the simplified detector can perform close to the full-fledge detector, especially when the system faces high media noise, with the significant low complexity.
SOFIRAD: France's International Commercial Media Empire.
ERIC Educational Resources Information Center
Boyd, Douglas A.; Benzies, John Y.
1983-01-01
Describes the activities of the Societe Financiere de Radiodiffusion (SOFIRAD), a government-owned corporation to promote political, cultural, and business interests via a complex network of media holdings. (PD)
[Electronic media in obesity prevention in childhood and adolescence].
Weihrauch-Blüher, Susann; Koormann, Stefanie; Brauchmann, Jana; Wiegand, Susanna
2016-11-01
The increasing prevalence of childhood obesity is - amongst other factors - due to changed leisure time habits with decreased physical activity and increased media consumption. However, electronic media such as tablets and smartphones might also provide a novel intervention approach to prevent obesity in childhood and adolescence. A summary of interventions applying electronic media to prevent childhood obesity is provided to investigate short term effects as well as long term results of these interventions. A systematic literature search was performed in PubMed/Web of Science to identify randomized and/or controlled studies that have investigated the efficacy of electronic media for obesity prevention below the age of 18. A total of 909 studies were identified, and 88 studies were included in the analysis. Active video games did increase physical activity compared to inactive games when applied within a peer group. Interventions via telephone had positive effects on certain lifestyle-relevant behaviours. Interventions via mobile were shown to decrease dropout rates by sending regular SMS messages. To date, interventions via smartphones are scarce for adolescents; however, they might improve cardiorespiratory fitness. The results from internet-based interventions showed a trend towards positive effects on lifestyle-relevant behaviors. The combination of different electronic media did not show superior results compared to interventions with only one medium. Interventions via TV, DVD or video-based interventions may increase physical activity when offered as an incentive, however, effects on weight status were not observed. Children and adolescents currently grow up in a technology- and media-rich society with computers, tablets, smartphones, etc. used daily. Thus, interventions applying electronic media to prevent childhood obesity are contemporary. Available studies applying electronic media are however heterogeneous in terms of applied medium and duration. Positive effects on body composition were not observed, but only on certain lifestyle-relevant behaviours. In addition, these effects could only be seen in the short term. Follow-up data are currently scarce.
Temperature and composition profile during double-track laser cladding of H13 tool steel
NASA Astrophysics Data System (ADS)
He, X.; Yu, G.; Mazumder, J.
2010-01-01
Multi-track laser cladding is now applied commercially in a range of industries such as automotive, mining and aerospace due to its diversified potential for material processing. The knowledge of temperature, velocity and composition distribution history is essential for a better understanding of the process and subsequent microstructure evolution and properties. Numerical simulation not only helps to understand the complex physical phenomena and underlying principles involved in this process, but it can also be used in the process prediction and system control. The double-track coaxial laser cladding with H13 tool steel powder injection is simulated using a comprehensive three-dimensional model, based on the mass, momentum, energy conservation and solute transport equation. Some important physical phenomena, such as heat transfer, phase changes, mass addition and fluid flow, are taken into account in the calculation. The physical properties for a mixture of solid and liquid phase are defined by treating it as a continuum media. The velocity of the laser beam during the transition between two tracks is considered. The evolution of temperature and composition of different monitoring locations is simulated.
PREFACE: Statistical Physics of Complex Fluids
NASA Astrophysics Data System (ADS)
Golestanian, R.; Khajehpour, M. R. H.; Kolahchi, M. R.; Rouhani, S.
2005-04-01
The field of complex fluids is a rapidly developing, highly interdisciplinary field that brings together people from a plethora of backgrounds such as mechanical engineering, chemical engineering, materials science, applied mathematics, physics, chemistry and biology. In this melting pot of science, the traditional boundaries of various scientific disciplines have been set aside. It is this very property of the field that has guaranteed its richness and prosperity since the final decade of the 20th century and into the 21st. The C3 Commission of the International Union of Pure and Applied Physics (IUPAP), which is the commission for statistical physics that organizes the international STATPHYS conferences, encourages various, more focused, satellite meetings to complement the main event. For the STATPHYS22 conference in Bangalore (July 2004), Iran was recognized by the STATPHYS22 organizers as suitable to host such a satellite meeting and the Institute for Advanced Studies in Basic Sciences (IASBS) was chosen to be the site of this meeting. It was decided to organize a meeting in the field of complex fluids, which is a fairly developed field in Iran. This international meeting, and an accompanying summer school, were intended to boost international connections for both the research groups working in Iran, and several other groups working in the Middle East, South Asia and North Africa. The meeting, entitled `Statistical Physics of Complex Fluids' was held at the Institute for Advanced Studies in Basic Sciences (IASBS) in Zanjan, Iran, from 27 June to 1 July 2004. The main topics discussed at the meeting included: biological statistical physics, wetting and microfluidics, transport in complex media, soft and granular matter, and rheology of complex fluids. At this meeting, 22 invited lectures by eminent scientists were attended by 107 participants from different countries. The poster session consisted of 45 presentations which, in addition to the main topics of the meeting, covered some of the various areas in statistical physics currently active in Iran. About half of the participants came from countries other than Iran, with a relatively broad geographic distribution. The meeting benefited greatly from the excellent administrative assistance of the conference secretary Ms Ashraf Moosavi and the IASBS staff. We are grateful to Professor Yousef Sobouti, the Director of IASBS, and Professor Reza Mansouri, the Head of the Physical Society of Iran, for their support. We also thank the organizers of STATPHYS22, Professor Rahul Pandit and his colleagues, for their suggestions and support. The conference was supported by donations from the Center for International Research and Collaboration (ISMO) and the Institute for Research and Planning in Higher Education (IRPHE) of the Iranian Ministry of Science, Research and Technology, the Islamic Development Bank, the Abdus Salam International Centre for Theoretical Physics (ICTP), the Tehran Cluster Office of the United Nations Educational, Scientific and Cultural Organization (UNESCO), the Research and Development Directorate of the National Iranian Oil Company, the Physical Society of Iran, the Iranian Meteorological Organization, and the Zanjan City Water and Waste Water Company. Finally, we would like to express our gratitude to Institute of Physics Publishing, and in particular to Professor Alexei Kornyshev and Dr Richard Palmer for suggesting publishing the proceedings of the meeting and carrying through the editorial processes with the utmost efficiency. Participants
Coyne, Sarah M
2016-02-01
Most researchers on media and aggression have examined the behavioral effects of viewing physical aggression in the media. Conversely, in the current study, I examined longitudinal associations between viewing relational aggression on TV and subsequent aggressive behavior. Participants included 467 adolescents who completed a number of different questionnaires involving media and aggression at 3 different time points. Results revealed that viewing relational aggression on TV was longitudinally associated with future relational aggression. However, early levels of relational aggression did not predict future exposure to televised relational aggression. Conversely, there was a bidirectional relationship between TV violence and physical aggression over time. No longitudinal evidence was found for a general effect of viewing TV, as all significant media effects were specific to the type of aggression viewed. These results support the general aggression model and suggest that viewing relational aggression in the media can have a long-term effect on aggressive behavior during adolescence. PsycINFO Database Record (c) 2016 APA, all rights reserved.
Wave Propagation in Inhomogeneous Excitable Media
NASA Astrophysics Data System (ADS)
Zykov, Vladimir S.; Bodenschatz, Eberhard
2018-03-01
Excitable media are ubiquitous in nature and can be found in physical, chemical, and biological systems that are far from thermodynamic equilibrium. The spatiotemporal self-organization of these systems has long attracted the deep interest of condensed matter physicists and applied mathematicians alike. Spatial inhomogeneity of excitable media leads to nontrivial spatiotemporal dynamics. Here, we report on well-established as well as recent developments in the experimental and theoretical studies of inhomogeneous excitable media.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hertz, P.R.
Fluorescence spectroscopy is a highly sensitive and selective tool for the analysis of complex systems. In order to investigate the efficacy of several steady state and dynamic techniques for the analysis of complex systems, this work focuses on two types of complex, multicomponent samples: petrolatums and coal liquids. It is shown in these studies dynamic, fluorescence lifetime-based measurements provide enhanced discrimination between complex petrolatum samples. Additionally, improved quantitative analysis of multicomponent systems is demonstrated via incorporation of organized media in coal liquid samples. This research provides the first systematic studies of (1) multifrequency phase-resolved fluorescence spectroscopy for dynamic fluorescence spectralmore » fingerprinting of complex samples, and (2) the incorporation of bile salt micellar media to improve accuracy and sensitivity for characterization of complex systems. In the petroleum studies, phase-resolved fluorescence spectroscopy is used to combine spectral and lifetime information through the measurement of phase-resolved fluorescence intensity. The intensity is collected as a function of excitation and emission wavelengths, angular modulation frequency, and detector phase angle. This multidimensional information enhances the ability to distinguish between complex samples with similar spectral characteristics. Examination of the eigenvalues and eigenvectors from factor analysis of phase-resolved and steady state excitation-emission matrices, using chemometric methods of data analysis, confirms that phase-resolved fluorescence techniques offer improved discrimination between complex samples as compared with conventional steady state methods.« less
Proposed Projects and Experiments Fermilab's Tevatron Questions for the Universe Theory Computing High Inquiring Minds Questions About Physics Other High-Energy Physics Sites More About Particle Physics Library Visual Media Services Timeline History High-Energy Physics Accelerator Science in Medicine Follow
NASA Astrophysics Data System (ADS)
Midland, Susan
Media specialists are increasingly assuming professional development roles as they collaborate with teachers to design instruction that combines content with technology. I am a media specialist in an independent school, and collaborated with two science teachers over a three-year period to integrate technology with their instruction. This action study explored integration of a digital narrative project in three eighth-grade earth science units and one ninth-grade physics unit with each unit serving as a cycle of research. Students produced short digital documentaries that combined still images with an accompanying narration. Students participating in the project wrote scripts based on selected science topics. The completed scripts served as the basis for the narratives. These projects were compared with a more traditional science writing project. Barriers and facilitators for implementation of this type of media project in a science classroom were identified. Lack of adequate access to computers proved to be a significant mechanical barrier. Acquisition of a laptop cart reduced but did not eliminate the technology access issues. The complexity of the project increased implementation time in comparison with traditional alternatives. Evaluation of the completed media projects presented problems. Scores by outside evaluators reflected evaluator unfamiliarity with assessing multimedia projects rather than student performance. Despite several revisions of the assessment rubric, low inter-rater reliability remained a concern even in the last cycle. This suggests that evaluation of media could present issues for teachers who attempt projects of this kind. A writing frame was developed to facilitate production of scripts. This reduced the time required to produce the scripts, but produced writing that was formulaic in the teacher's estimate. A graphic organizer was adopted in the final cycle to address this concern. New insights emerged as the study progressed through the four cycles of the study. At the conclusion of the study, the two teachers and I had a better understanding of barriers that can prevent smooth integration of a technology-based project.
Working towards a numerical solver for seismic wave propagation in unsaturated porous media
NASA Astrophysics Data System (ADS)
Boxberg, Marc S.; Friederich, Wolfgang
2017-04-01
Modeling the propagation of seismic waves in porous media gets more and more popular in the seismological community. However, it is still a challenging task in the field of computational seismology. Nevertheless, it is important to account for the fluid content of, e.g., reservoir rocks or soils, and the interaction between the fluid and the rock or between different immiscible fluids to accurately describe seismic wave propagation through such porous media. Often, numerical models are based on the elastic wave equation and some might include artificially introduced attenuation. This simplifies the computation, because it only approximates the physics behind that problem. However, the results are also simplified and could miss phenomena and lack accuracy in some applications. We present a numerical solver for wave propagation in porous media saturated by two immiscible fluids. It is based on Biot's theory of poroelasticity and accounts for macroscopic flow that occurs on the same scale as the wavelength of the seismic waves. Fluid flow is described by a Darcy type flow law and interactions between the fluids by means of capillary pressure curve models. In addition, consistent boundary conditions on interfaces between poroelastic media and elastic or acoustic media are derived from this poroelastic theory itself. The poroelastic solver is integrated into the larger software package NEXD that uses the nodal discontinuous Galerkin method to solve wave equations in 1D, 2D, and 3D on a mesh of linear (1D), triangular (2D), or tetrahedral (3D) elements. Triangular and tetrahedral elements have great advantages as soon as the model has a complex structure, like it is often the case for geologic models. We illustrate the capabilities of the codes by numerical examples. This work can be applied to various scientific questions in, e.g., exploration and monitoring of hydrocarbon or geothermal reservoirs as well as CO2 storage sites.
Adolescents and Music Media: Toward an Involvement-Mediational Model of Consumption and Self-Concept
ERIC Educational Resources Information Center
Kistler, Michelle; Rodgers, Kathleen Boyce; Power, Thomas; Austin, Erica Weintraub; Hill, Laura Griner
2010-01-01
Using social cognitive theory and structural regression modeling, we examined pathways between early adolescents' music media consumption, involvement with music media, and 3 domains of self-concept (physical appearance, romantic appeal, and global self-worth; N=124). A mediational model was supported for 2 domains of self-concept. Music media…
Decreasing Excessive Media Usage while Increasing Physical Activity: A Single-Subject Research Study
ERIC Educational Resources Information Center
Larwin, Karen H.; Larwin, David A.
2008-01-01
The Kaiser Family Foundation released a report entitled "Kids and Media Use" in the United States that concluded that children's use of media--including television, computers, Internet, video games, and phones--may be one of the primary contributor's to the poor fitness and obesity of many of today's adolescents. The present study examines the…
Dissolving the School Space: Young People's Media Production in and outside of School
ERIC Educational Resources Information Center
Kupiainen, Reijo
2013-01-01
Young people bring their own media and literacy practices to school as an important part of their identity, taste and social life. These practices are changing the media ecology of schools, making the physical boundaries of schools more permeable and creating new, unofficial spaces at school. During peer-based learning, the enhanced media…
The Interplay Between Digital Media Use and Development.
Gerwin, Roslyn L; Kaliebe, Kristopher; Daigle, Monica
2018-04-01
Today's youth develop immersed in a digital media world and the effects are specific to their developmental stage. Clinicians and caretakers should be mindful regarding digital media use patterns; however, this complex and reciprocal relationship defies simple linear descriptions. The impacts of digital media can be powerful. It is important to be cautious but not over-pathologize media use because digital media enables social connections, allows self-soothing in some children, and fills needs for stimulation and self-expression. Young children or those with psychiatric disorders or developmental delays should be considered vulnerable to harmful effects of media content and overuse. Copyright © 2017. Published by Elsevier Inc.
"Choose, Explore, Analyze": A Multi-Tiered Approach to Social Media in the Classroom
ERIC Educational Resources Information Center
Rosatelli, Meghan
2015-01-01
In this essay, social media are presented as complex tools that require student involvement from potential classroom implementation to the post-mortem. The "choose, explore, analyze" approach narrows social media options for the classroom based on student feedback and allows students and teachers to work together to understand why and…
USDA-ARS?s Scientific Manuscript database
Aeromonas media is an opportunistic pathogen for human and animals mainly found in aquatic habitats and which has been noted for significant genomic and phenotypic heterogeneities. We aimed to better understand the population structure and diversity of strains currently affiliated to A. media and th...
ARS-Media: A spreadsheet tool for calculating media recipes based on ion-specific constraints
USDA-ARS?s Scientific Manuscript database
ARS-Media is an ion solution calculator that uses Microsoft Excel to generate recipes of salts for complex ion mixtures specified by the user. Generating salt combinations (recipes) that result in pre-specified target ion values is a linear programming problem. Thus, the recipes are generated using ...
Evaluating the Effectiveness of a Mass Media Ethics Course.
ERIC Educational Resources Information Center
Lee, Byung; Padgett, George
2000-01-01
Examines the effectiveness of an ethics education component in a media law and ethics course. Suggests that a short-term mass media ethics study could not develop values considered essential for ethical behavior. Argues that students developed more complexity in their reasoning not measurable by the scale. Suggests a course or module on ethics…
Studying Young People's New Media Use: Methodological Shifts and Educational Innovations
ERIC Educational Resources Information Center
Pascoe, C. J.
2012-01-01
A lack of good information about what youth are doing with new media stimulates fears and hopes about the relationship between young people and digital technologies. This article focuses on new modes of inquiry into youth new media use, highlighting the challenges, complexities, and opportunities inherent in studying young people's digital…
Test methods for optical disk media characteristics (for 356 mm ruggedized magneto-optic media)
NASA Technical Reports Server (NTRS)
Podio, Fernando L.
1991-01-01
Standard test methods for computer storage media characteristics are essential and allow for conformance to media interchange standards. The test methods were developed for 356 mm two-sided laminated glass substrate with a magneto-optic active layer media technology. These test methods may be used for testing other media types, but in each case their applicability must be evaluated. Test methods are included for a series of different media characteristics, including operational, nonoperational, and storage environments; mechanical and physical characteristics; and substrate, recording layer, and preformat characteristics. Tests for environmental qualification and media lifetimes are also included. The best methods include testing conditions, testing procedures, a description of the testing setup, and the required calibration procedures.
Temporal interactions facilitate endemicity in the susceptible-infected-susceptible epidemic model
NASA Astrophysics Data System (ADS)
Speidel, Leo; Klemm, Konstantin; Eguíluz, Víctor M.; Masuda, Naoki
2016-07-01
Data of physical contacts and face-to-face communications suggest temporally varying networks as the media on which infections take place among humans and animals. Epidemic processes on temporal networks are complicated by complexity of both network structure and temporal dimensions. Theoretical approaches are much needed for identifying key factors that affect dynamics of epidemics. In particular, what factors make some temporal networks stronger media of infection than other temporal networks is under debate. We develop a theory to understand the susceptible-infected-susceptible epidemic model on arbitrary temporal networks, where each contact is used for a finite duration. We show that temporality of networks lessens the epidemic threshold such that infections persist more easily in temporal networks than in their static counterparts. We further show that the Lie commutator bracket of the adjacency matrices at different times is a key determinant of the epidemic threshold in temporal networks. The effect of temporality on the epidemic threshold, which depends on a data set, is approximately predicted by the magnitude of a commutator norm.
NASA Astrophysics Data System (ADS)
Xing, F.; Masson, R.; Lopez, S.
2017-09-01
This paper introduces a new discrete fracture model accounting for non-isothermal compositional multiphase Darcy flows and complex networks of fractures with intersecting, immersed and non-immersed fractures. The so called hybrid-dimensional model using a 2D model in the fractures coupled with a 3D model in the matrix is first derived rigorously starting from the equi-dimensional matrix fracture model. Then, it is discretized using a fully implicit time integration combined with the Vertex Approximate Gradient (VAG) finite volume scheme which is adapted to polyhedral meshes and anisotropic heterogeneous media. The fully coupled systems are assembled and solved in parallel using the Single Program Multiple Data (SPMD) paradigm with one layer of ghost cells. This strategy allows for a local assembly of the discrete systems. An efficient preconditioner is implemented to solve the linear systems at each time step and each Newton type iteration of the simulation. The numerical efficiency of our approach is assessed on different meshes, fracture networks, and physical settings in terms of parallel scalability, nonlinear convergence and linear convergence.
First light with Trident: multi-platform synthetic quasar spectra
NASA Astrophysics Data System (ADS)
Silvia, Devin W.; Hummels, Cameron B.; Smith, Britton
2017-01-01
Observational efforts to better understand the nature of the intergalactic and circumgalactic media have relied heavily on the information encoded in the absorption line systems of quasar spectra. Numerical simulations of large-scale structure and galaxy evolution are well-suited to explore the properties of those same media owing to the relative ease with which one can access physical quantities from complex, three-dimensional data. However, a difficulty arises when one tries to make direct “apple-to-apples” comparisons between observed spectra and simulated data. In an effort to provide a common language capable of linking theory and observation, we announce the release of Trident. Trident is a publicly available software tool that enables the creation of realistic synthetic absorption spectra from virtually all widely-used hydrodynamics simulation codes. Through user-controlled levels of spectral realism, direct comparisons between simulated and observed data become not only possible, but greatly simplified. We present the methods for extracting artificial quasar sightlines and generating spectra as well as early-stage applications of those spectra to intergalactic and circumgalactic absorption line studies.
NASA Astrophysics Data System (ADS)
Kim, Kunhwi; Rutqvist, Jonny; Nakagawa, Seiji; Birkholzer, Jens
2017-11-01
This paper presents coupled hydro-mechanical modeling of hydraulic fracturing processes in complex fractured media using a discrete fracture network (DFN) approach. The individual physical processes in the fracture propagation are represented by separate program modules: the TOUGH2 code for multiphase flow and mass transport based on the finite volume approach; and the rigid-body-spring network (RBSN) model for mechanical and fracture-damage behavior, which are coupled with each other. Fractures are modeled as discrete features, of which the hydrological properties are evaluated from the fracture deformation and aperture change. The verification of the TOUGH-RBSN code is performed against a 2D analytical model for single hydraulic fracture propagation. Subsequently, modeling capabilities for hydraulic fracturing are demonstrated through simulations of laboratory experiments conducted on rock-analogue (soda-lime glass) samples containing a designed network of pre-existing fractures. Sensitivity analyses are also conducted by changing the modeling parameters, such as viscosity of injected fluid, strength of pre-existing fractures, and confining stress conditions. The hydraulic fracturing characteristics attributed to the modeling parameters are investigated through comparisons of the simulation results.
Scholarly literature and the press: scientific impact and social perception of physics computing
NASA Astrophysics Data System (ADS)
Pia, M. G.; Basaglia, T.; Bell, Z. W.; Dressendorfer, P. V.
2014-06-01
The broad coverage of the search for the Higgs boson in the mainstream media is a relative novelty for high energy physics (HEP) research, whose achievements have traditionally been limited to scholarly literature. This paper illustrates the results of a scientometric analysis of HEP computing in scientific literature, institutional media and the press, and a comparative overview of similar metrics concerning representative particle physics measurements. The picture emerging from these scientometric data documents the relationship between the scientific impact and the social perception of HEP physics research versus that of HEP computing. The results of this analysis suggest that improved communication of the scientific and social role of HEP computing via press releases from the major HEP laboratories would be beneficial to the high energy physics community.
Vandelanotte, Corneel; Kirwan, Morwenna; Rebar, Amanda; Alley, Stephanie; Short, Camille; Fallon, Luke; Buzza, Gavin; Schoeppe, Stephanie; Maher, Carol; Duncan, Mitch J
2014-08-17
It has been shown that physical activity is more likely to increase if web-based interventions apply evidence-based components (e.g. self-monitoring) and incorporate interactive social media applications (e.g. social networking), but it is unclear to what extent these are being utilized in the publicly available web-based physical activity interventions. The purpose of this study was to evaluate whether freely accessible websites delivering physical activity interventions use evidence-based behavior change techniques and provide social media applications. In 2013, a systematic search strategy examined 750 websites. Data was extracted on a wide range of variables (e.g. self-monitoring, goal setting, and social media applications). To evaluate website quality a new tool, comprising three sub-scores (Behavioral Components, Interactivity and User Generated Content), was developed to assess implementation of behavior change techniques and social media applications. An overall website quality scored was obtained by summing the three sub-scores. Forty-six publicly available websites were included in the study. The use of self-monitoring (54.3%), goal setting (41.3%) and provision of feedback (46%) was relatively low given the amount of evidence supporting these features. Whereas the presence of features allowing users to generate content (73.9%), and social media components (Facebook (65.2%), Twitter (47.8%), YouTube (48.7%), smartphone applications (34.8%)) was relatively high considering their innovative and untested nature. Nearly all websites applied some behavioral and social media applications. The average Behavioral Components score was 3.45 (±2.53) out of 10. The average Interactivity score was 3.57 (±2.16) out of 10. The average User Generated Content Score was 4.02 (±2.77) out of 10. The average overall website quality score was 11.04 (±6.92) out of 30. Four websites (8.7%) were classified as high quality, 12 websites (26.1%) were classified as moderate quality, and 30 websites (65.2%) were classified as low quality. Despite large developments in Internet technology and growth in the knowledge of how to develop more effective web-based interventions, overall website quality was low and the majority of freely available physical activity websites lack the components associated with behavior change. However, the results show that website quality can be improved by taking a number of simple steps, and the presence of social media applications in most websites is encouraging.
Barreto, Jose E; Whitehair, Curtis L
2017-05-01
The use of social media has become very instinctive to many. It has become part of a daily routine. Enhanced communication, liberated expressions of self, becoming updated with all the trends and news, and marketing promotion are only some of the reasons why most people use social media. Health care providers including physicians should take advantage of these platforms for professional purposes. Social media extends far beyond the famous platforms such as Facebook, Twitter, Pinterest, and Instagram, used mostly for social connections. There are sites dedicated to serve professionals, for example, LinkedIn, or even physician-specific forums such as Sermo. The physical medicine and rehabilitation community has a forum (Phyzforum) created by the American Academy of Physical Medicine and Rehabilitation to share questions, comments, and ideas. Moreover, there are broadcast media (Podcast) and blogging sites (WordPress) used by many physiatrists. Surveys show that physicians actively use an average of 2-4 hours of professional-leaning networking sites per week; for example, 44% of physicians use Sermo and 42% use LinkedIn. The participation also extends to more popular sites, with 40%, 25%, and 20% physician participation in YouTube, Blogging, and Twitter, respectively. There are numerous guidelines available for medical practitioners pertaining to professional use of social media. Strategies such as timing of postings and posting content as well as methods to maintain your online reputation are discussed. Various benefits and potential pitfalls with regards to social media use are also analyzed, including how to engage followers and addressing negative comments and reviews. Copyright © 2017 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
How Physics World reaches out in a digital age
NASA Astrophysics Data System (ADS)
Durrani, Matin
Physics World is an award-winning international magazine that exists in print and digital formats. Exploiting the opportunities available with digital publishing and apps, our output has expanded hugely in recent years to include technology-linked focus issues, regional special reports on the likes of China, India, Mexico and Brazil, plus audio, video and interactive material too. This growth in content - and new media for presenting physics - reflects wider changes in communication. People increasingly want to access content in a manner and time of their choosing, seeking out information presented in a way that suits them and their needs. That can be challenging for physics communicators because it means tailoring your message to different audiences and the medium they are using. But it's exciting too as you can reach out to many more people into physics - and in many different ways - than was possible in the past. This talk outlines some principles of good communication, including telling a good story, bearing the reader, viewer or listener in mind, using appropriate media, keeping up with social media, and exploiting the power of video. But with new forms of communication constantly emerging, it's worth remembering there is no one ``right answer''.
A fluorescence anisotropy method for measuring protein concentration in complex cell culture media.
Groza, Radu Constantin; Calvet, Amandine; Ryder, Alan G
2014-04-22
The rapid, quantitative analysis of the complex cell culture media used in biopharmaceutical manufacturing is of critical importance. Requirements for cell culture media composition profiling, or changes in specific analyte concentrations (e.g. amino acids in the media or product protein in the bioprocess broth) often necessitate the use of complicated analytical methods and extensive sample handling. Rapid spectroscopic methods like multi-dimensional fluorescence (MDF) spectroscopy have been successfully applied for the routine determination of compositional changes in cell culture media and bioprocess broths. Quantifying macromolecules in cell culture media is a specific challenge as there is a need to implement measurements rapidly on the prepared media. However, the use of standard fluorescence spectroscopy is complicated by the emission overlap from many media components. Here, we demonstrate how combining anisotropy measurements with standard total synchronous fluorescence spectroscopy (TSFS) provides a rapid, accurate quantitation method for cell culture media. Anisotropy provides emission resolution between large and small fluorophores while TSFS provides a robust measurement space. Model cell culture media was prepared using yeastolate (2.5 mg mL(-1)) spiked with bovine serum albumin (0 to 5 mg mL(-1)). Using this method, protein emission is clearly discriminated from background yeastolate emission, allowing for accurate bovine serum albumin (BSA) quantification over a 0.1 to 4.0 mg mL(-1) range with a limit of detection (LOD) of 13.8 μg mL(-1). Copyright © 2014. Published by Elsevier B.V.
Body image, eating disorders, and the relationship to adolescent media use.
Benowitz-Fredericks, Carson A; Garcia, Kaylor; Massey, Meredith; Vasagar, Brintha; Borzekowski, Dina L G
2012-06-01
Historically and currently, media messages around body shape and size emphasize the importance of being below-average weight for women and hypermuscular for men. The media messages around physical appearance are not realistic for most and lead to body dissatisfaction for most adolescents. Interventions designed to mitigate the influence of negative media messages on adolescents' body image are presented; however, most have shown limited success. Copyright © 2012 Elsevier Inc. All rights reserved.
Fixation of radioactive ions in porous media with ion exchange gels
Mercer, Jr., Basil W.; Godfrey, Wesley L.
1979-01-01
A method is provided for fixing radioactive ions in porous media by injecting into the porous media water-soluble organic monomers which are polymerizable to gel structures with ion exchange sites and polymerizing the monomers to form ion exchange gels. The ions and the particles of the porous media are thereby physically fixed in place by the gel structure and, in addition, the ions are chemically fixed by the ion exchange properties of the resulting gel.
Wójcicki, Thomas R; Grigsby-Toussaint, Diana; Hillman, Charles H; Huhman, Marian; McAuley, Edward
2014-10-30
The World Wide Web is an effective method for delivering health behavior programs, yet major limitations remain (eg, cost of development, time and resource requirements, limited interactivity). Social media, however, has the potential to deliver highly customizable and socially interactive behavioral interventions with fewer constraints. Thus, the evaluation of social media as a means to influence health behaviors is warranted. The objective of this trial was to examine and demonstrate the feasibility of using an established social networking platform (ie, Facebook) to deliver an 8 week physical activity intervention to a sample of low-active adolescents (N=21; estimated marginal mean age 13.48 years). Participants were randomized to either an experimental (ie, Behavioral) or attentional control (ie, Informational) condition. Both conditions received access to a restricted-access, study-specific Facebook group where the group's administrator made two daily wall posts containing youth-based physical activity information and resources. Primary outcomes included physical activity as assessed by accelerometry and self-report. Interactions and main effects were examined, as well as mean differences in effect sizes. Analyses revealed significant improvements over time on subjectively reported weekly leisure-time physical activity (F1,18=8.426, P=.009, η2 = .319). However, there was no interaction between time and condition (F1,18=0.002, P=.968, η2 = .000). There were no significant time or interaction effects among the objectively measured physical activity variables. Examination of effect sizes revealed moderate-to-large changes in physical activity outcomes. Results provide initial support for the feasibility of delivery of a physical activity intervention to low-active adolescents via social media. Whether by employing behavioral interventions via social media can result in statistically meaningful changes in health-related behaviors and outcomes remains to be determined. ClinicalTrials.gov NCT01870323; http://clinicaltrials.gov/show/NCT01870323 (Archived by WebCite at http://www.webcitation.org/6SUTmSeZZ).
Manz, K; Schlack, R; Poethko-Müller, C; Mensink, G; Finger, J; Lampert, T
2014-07-01
Physical activity during childhood and adolescence has numerous health benefits, while sedentary behavior, especially electronic media use, is associated with the development of overweight. Therefore, the promotion of physical activity during childhood and adolescence is an integral part of national public health efforts. The aim of this article is to describe the physical activity behavior of German children and adolescents based on the nationwide data of the German Health Interview and Examination Survey for Children and Adolescents (KiGGS wave 1). Furthermore, the association between physical activity and sports participation and use of screen-based media in youth aged 11 to 17 years was analyzed. The analyses included data from 10,426 children and adolescents aged 3-17 years collected by telephone interviews. Children older than 11 years answered the questions by themselves, whereas a parent was interviewed for younger children. The descriptive analyses were performed under consideration of social and demographic factors. According to the results of KiGGS wave 1 a total of 77.5% (95% Cl 76.0-78.9 %) of the children and adolescents participated in sports activities, and 59.7% (58.1-61.3 %) were members of a sports club. The recommendation of the World Health Organization (WHO) to be physically active at least 60 min per day was achieved by 27.5% (26.0-28.9 %). Children and adolescents with a low socioeconomic status (SES) participated less in sports activities than children of higher SES groups. Excessive use of screen-based media was more likely to be associated with lack of sports participation than with a lack of physical activity. In the future, preventive measures should promote the daily physical activity of children and adolescents and additionally encourage children and adolescents with low SES to participate in sports activities.
Reflection and Refraction of Light in Absorbing Media
NASA Astrophysics Data System (ADS)
Katsumata, Koichi; Sasaki, Shosuke
2018-05-01
The results of a rigorous calculation of optical phenomena in absorbing media based on Maxwell's equations are reported. In the case of an absorbing dielectric, we assume a complex dielectric constant. We find an expression for the angle of refraction as a function of the incident angle and the real and imaginary parts of the complex dielectric constant, all of which are real. The amplitudes of the reflected and transmitted waves are calculated on the same footing. These amplitudes are shown to be complex, from which we deduce the magnitude and phase change of the reflection and transmission coefficients. The same argument applies to an absorbing magnetic material if we replace the complex dielectric constant by a complex magnetic permeability.
Li, Wenjing; Zhang, Jingjing; Xue, Zhongxin; Wang, Jingming; Jiang, Lei
2018-01-24
Manipulation of gas bubble behaviors is crucial for gas bubble-related applications. Generally, the manipulation of gas bubble behaviors generally takes advantage of their buoyancy force. It is very difficult to control the transportation of gas bubbles in a specific direction. Several approaches have been developed to collect and transport bubbles in aqueous media; however, most reliable and effective manipulation of gas bubbles in aqueous media occurs on the interfaces with simple shapes (i.e., cylinder and cone shapes). Reliable strategies for spontaneous and directional transport of gas bubbles on interfaces with complex shapes remain enormously challenging. Herein, a type of 3D gradient porous network was constructed on copper wire interfaces, with rectangle, wave, and helix shapes. The superhydrophobic copper wires were immersed in water, and continuous and stable gas films then formed on the interfaces. With the assistance of the Laplace pressure gradient between two bubbles, gas bubbles (including microscopic gas bubbles) in the aqueous media were subsequently transported, continuously and directionally, on the copper wires with complex shapes. The small gas bubbles always moved to the larger ones.
2011-01-01
The success of quenching process during industrial heat treatment mainly depends on the heat transfer characteristics of the quenching medium. In the case of quenching, the scope for redesigning the system or operational parameters for enhancing the heat transfer is very much limited and the emphasis should be on designing quench media with enhanced heat transfer characteristics. Recent studies on nanofluids have shown that these fluids offer improved wetting and heat transfer characteristics. Further water-based nanofluids are environment friendly as compared to mineral oil quench media. These potential advantages have led to the development of nanofluid-based quench media for heat treatment practices. In this article, thermo-physical properties, wetting and boiling heat transfer characteristics of nanofluids are reviewed and discussed. The unique thermal and heat transfer characteristics of nanofluids would be extremely useful for exploiting them as quench media for industrial heat treatment. PMID:21711877
Ramesh, Gopalan; Prabhu, Narayan Kotekar
2011-04-14
The success of quenching process during industrial heat treatment mainly depends on the heat transfer characteristics of the quenching medium. In the case of quenching, the scope for redesigning the system or operational parameters for enhancing the heat transfer is very much limited and the emphasis should be on designing quench media with enhanced heat transfer characteristics. Recent studies on nanofluids have shown that these fluids offer improved wetting and heat transfer characteristics. Further water-based nanofluids are environment friendly as compared to mineral oil quench media. These potential advantages have led to the development of nanofluid-based quench media for heat treatment practices. In this article, thermo-physical properties, wetting and boiling heat transfer characteristics of nanofluids are reviewed and discussed. The unique thermal and heat transfer characteristics of nanofluids would be extremely useful for exploiting them as quench media for industrial heat treatment.
Insights on Flow Behavior of Foam in Unsaturated Porous Media during Soil Flushing.
Zhao, Yong S; Su, Yan; Lian, Jing R; Wang, He F; Li, Lu L; Qin, Chuan Y
2016-11-01
One-dimensional column and two-dimensional tank experiments were carried out to determine (1) the physics of foam flow and propagation of foaming gas, foaming liquid, and foam; (2) the pressure distribution along foam flow and the effect of media permeability, foam flow rate and foam quality on foam injection pressure; and (3) the migration and distribution property of foam flow in homogeneous and heterogeneous sediments. The results demonstrated that: (1) gas and liquid front were formed ahead of the foam flow front, the transport speed order is foaming gas > foaming liquid > foam flowing; (2) injection pressure mainly comes from the resistance to bubble migration. Effect of media permeability on foam injection pressure mainly depends on the physics and behavior of foam flow; (3) foam has a stronger capacity of lateral spreading, besides, foam flow was uniformly distributed across the foam-occupied region, regardless of the heterogeneity of porous media.
Cancer Research in the Media (CRiM) is a two-day seminar designed for international journalists to increase their understanding of complex scientific findings, improving their ability to communicate accurate cancer-related information to the public.
Library Media Facilities Access: Do You Really Want Your Library Media Center Used?
ERIC Educational Resources Information Center
Hart, Thomas L.
2005-01-01
In this article, the author discusses and provides some examples on how students and teachers should use library media centers. He also discusses the common problems with facilities design as it changes along with other aspects of society. He states that flexibility in design ensures that the physical facility will meet future program needs.…
The Evaluation of the "Media-Smart Youth"[R] Curriculum
ERIC Educational Resources Information Center
National Institute of Child Health and Human Development (NICHD), 2009
2009-01-01
Media-Smart Youth: Eat, Think, and Be Active![R] is an after-school curriculum that seeks to empower young people aged 11 to 13 years to make healthful choices about nutrition and physical activity by helping them understand how media can influence their lives. This is a unique intervention for young people in that it addresses four key areas of…
Physical activity and cognitive-health content in top-circulating magazines, 2006-2008.
Price, Anna E; Corwin, Sara J; Friedman, Daniela B; Laditka, Sarah B; Colabianchi, Natalie; Montgomery, Kara M
2011-04-01
Physical activity may promote cognitive health in older adults. Popular media play an important role in preventive health communication. This study examined articles discussing associations between physical activity and cognitive health in top-circulating magazines targeting older adults. 42,753 pages of magazines published from 2006 to 2008 were reviewed; 26 articles met inclusion criteria. Explanations regarding the link between physical activity and cognitive health were provided in 57.7% of articles. These explanations were generally consistent with empirical evidence; however, few articles included empirical evidence. Physical activity recommendations were presented in 80.8% of articles; a wide range was recommended (90-300 min of physical activity per wk). Socioeconomic status and education level were not mentioned in the text. Results suggest an opportunity for greater coverage regarding the role of physical activity in promoting cognitive health in popular media. Magazine content would benefit from including more empirical evidence, culturally sensitive content, and physical activity recommendations that are consistent with U.S. guidelines.
Zhou, Xin; Krishnan, Archana
2018-01-26
Habitual exercising is an important precursor to both physical and psychological well-being. There is, thus, a strong interest in identifying key factors that can best motivate individuals to sustain regular exercise regimen. In addition to the importance of psychographic factors, social media use may act as external motivator by allowing users to interact and communicate about exercise. In this study, we examined the influence of health consciousness, health-oriented beliefs, intrinsic motivation, as willingness to communicate about health on social media, social media activity on exercise, and online social support on exercise maintenance and well-being on a sample of 532 American adults. Employing structural equation modeling, we found that health-oriented beliefs mediated the effect of health consciousness on intrinsic motivation which in turn was a significant predictor of exercise maintenance. Exercise maintenance significantly predicted both physical and psychological well-being. Extrinsic motivators, as measured by willingness to communicate about health on social media, social media activity on exercise, and online social support did not however significantly influence exercise maintenance. These findings have implications for the design and implementation of exercise-promoting interventions by identifying underlying factors that influence exercise maintenance.
Mojica, Cynthia M; Parra-Medina, Deborah; Yin, Zenong; Akopian, David; Esparza, Laura A
2014-07-01
Increasing physical activity (PA) during preadolescence and adolescence is critical to reversing the obesity epidemic. A recent report described the promising role of eHealth--the use of new media for purposes of health promotion--in reducing and preventing childhood obesity. This study assessed access/use of various media (cell phones, computers, gaming systems, Internet) among adolescent Latino girls and examined the relationship between PA and media access/use. A convenience sample of 110 Latino girls ages 11 to 14 was recruited from Girl Scouts of Southwest Texas and other groups. The media survey was self-administered (April-July 2010) on personal digital assistants. Of the girls, 55% reported owning a cell phone and spending 40 (SD = 4.2) hours per week talking, texting, listening to music, and browsing the Internet. Cell phone access increased significantly with age (p = .029). Compared to those with no cell phone, girls with a cell phone have greater odds of reporting more than 5 days of PA in the past week (odds ratio = 5.5, 95% confidence interval [CI] = 2.1, 14) and engaging in daily physical education classes (odds ratio = 2.6, 95% CI = 1.1, 5.9). Since girls with cell phones report greater PA, cell phones may be an effective strategy for communicating with girls about engaging in PA. © 2013 Society for Public Health Education.
Social Media, Health Policy, and Knowledge Translation.
Roland, Damian
2018-01-01
Social media has been cited as a methodology for reducing the knowledge translation gap, creating communities of practice, and reducing traditional hierarchical divisions. Social movements have also embraced social media as a means of spreading their aims and reaching wide audiences. However, its impact on health policy is seldom considered. The author examines the complexity of clinicians' use of social media to influence policy and how policy and government groups may use social media to help their own objectives. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.
Teacher Motivations for Digital and Media Literacy: An Examination of Turkish Educators
ERIC Educational Resources Information Center
Hobbs, Renee; Tuzel, Sait
2017-01-01
Educators have a variety of beliefs and attitudes about the best ways to support students' critical thinking, creativity, communication and collaboration skills by connecting the classroom to contemporary society, mass media and popular culture. Teachers who advance digital and media literacy may have a complex set of attitudes and habits of mind…
How Many "Friends" Do You Need? Teaching Students How to Network Using Social Media
ERIC Educational Resources Information Center
Sacks, Michael Alan; Graves, Nikki
2012-01-01
Student reliance on social media is undeniable. However, while we largely regard social media as a new phenomena, the concepts underlying it come directly from social network theory in sociology and organizational behavior. In this article, the authors examine how the social network concepts of size, quality, complexity, diffusion, and distance…
ERIC Educational Resources Information Center
Edling, Silvia
2015-01-01
The paper highlights four tendencies in the media reporting of teachers and education: (a) recurring patterns of defining education in crisis, (b) mantling responsibility as exterior spokespersons for education and teachers, (c) excluding teachers' and educational researchers' knowledge and experiences in the media and (d) simplifying the notion…
Responding Intelligently when Would-Be Censors Charge: "That Book Can Make Them...!"
ERIC Educational Resources Information Center
Martinson, David L.
2007-01-01
School administrators and teachers need to recognize that most persons--including would-be censors of school-related media communications--simply do not understand the complexities germane to measuring the impact of the mass media and the specific messages transmitted to broader audiences via a variety of media channels. In particular, what most…
On the predictivity of pore-scale simulations: Estimating uncertainties with multilevel Monte Carlo
NASA Astrophysics Data System (ADS)
Icardi, Matteo; Boccardo, Gianluca; Tempone, Raúl
2016-09-01
A fast method with tunable accuracy is proposed to estimate errors and uncertainties in pore-scale and Digital Rock Physics (DRP) problems. The overall predictivity of these studies can be, in fact, hindered by many factors including sample heterogeneity, computational and imaging limitations, model inadequacy and not perfectly known physical parameters. The typical objective of pore-scale studies is the estimation of macroscopic effective parameters such as permeability, effective diffusivity and hydrodynamic dispersion. However, these are often non-deterministic quantities (i.e., results obtained for specific pore-scale sample and setup are not totally reproducible by another ;equivalent; sample and setup). The stochastic nature can arise due to the multi-scale heterogeneity, the computational and experimental limitations in considering large samples, and the complexity of the physical models. These approximations, in fact, introduce an error that, being dependent on a large number of complex factors, can be modeled as random. We propose a general simulation tool, based on multilevel Monte Carlo, that can reduce drastically the computational cost needed for computing accurate statistics of effective parameters and other quantities of interest, under any of these random errors. This is, to our knowledge, the first attempt to include Uncertainty Quantification (UQ) in pore-scale physics and simulation. The method can also provide estimates of the discretization error and it is tested on three-dimensional transport problems in heterogeneous materials, where the sampling procedure is done by generation algorithms able to reproduce realistic consolidated and unconsolidated random sphere and ellipsoid packings and arrangements. A totally automatic workflow is developed in an open-source code [1], that include rigid body physics and random packing algorithms, unstructured mesh discretization, finite volume solvers, extrapolation and post-processing techniques. The proposed method can be efficiently used in many porous media applications for problems such as stochastic homogenization/upscaling, propagation of uncertainty from microscopic fluid and rock properties to macro-scale parameters, robust estimation of Representative Elementary Volume size for arbitrary physics.
Silver, Roxane Cohen; Holman, E Alison; Andersen, Judith Pizarro; Poulin, Michael; McIntosh, Daniel N; Gil-Rivas, Virginia
2013-09-01
Millions of people witnessed early, repeated television coverage of the September 11 (9/11), 2001, terrorist attacks and were subsequently exposed to graphic media images of the Iraq War. In the present study, we examined psychological- and physical-health impacts of exposure to these collective traumas. A U.S. national sample (N = 2,189) completed Web-based surveys 1 to 3 weeks after 9/11; a subsample (n = 1,322) also completed surveys at the initiation of the Iraq War. These surveys measured media exposure and acute stress responses. Posttraumatic stress symptoms related to 9/11 and physician-diagnosed health ailments were assessed annually for 3 years. Early 9/11- and Iraq War-related television exposure and frequency of exposure to war images predicted increased posttraumatic stress symptoms 2 to 3 years after 9/11. Exposure to 4 or more hr daily of early 9/11-related television and cumulative acute stress predicted increased incidence of health ailments 2 to 3 years later. These findings suggest that exposure to graphic media images may result in physical and psychological effects previously assumed to require direct trauma exposure.
Devices, systems, and methods for conducting sandwich assays using sedimentation
Schaff, Ulrich Y; Sommer, Gregory J; Singh, Anup K; Hatch, Anson V
2015-02-03
Embodiments of the present invention are directed toward devices, systems, and method for conducting sandwich assays using sedimentation. In one example, a method includes generating complexes on a plurality of beads in a fluid sample, individual ones of the complexes comprising a capture agent, a target analyte, and a labeling agent. The plurality of beads including the complexes may be transported through a density media, wherein the density media has a density lower than a density of the beads and higher than a density of the fluid sample, and wherein the transporting occurs, at least in part, by sedimentation. Signal may be detected from the labeling agents of the complexes.
Code of Federal Regulations, 2012 CFR
2012-01-01
...: (a) Individual means a citizen of the United States or an alien lawfully admitted for permanent residence; (b) Information means papers, records, photographs, magnetic storage media, micro storage media, and other documentary materials, regardless of physical form or characteristics, containing data about...
Code of Federal Regulations, 2013 CFR
2013-01-01
...: (a) Individual means a citizen of the United States or an alien lawfully admitted for permanent residence; (b) Information means papers, records, photographs, magnetic storage media, micro storage media, and other documentary materials, regardless of physical form or characteristics, containing data about...
Code of Federal Regulations, 2014 CFR
2014-01-01
...: (a) Individual means a citizen of the United States or an alien lawfully admitted for permanent residence; (b) Information means papers, records, photographs, magnetic storage media, micro storage media, and other documentary materials, regardless of physical form or characteristics, containing data about...
Code of Federal Regulations, 2010 CFR
2010-01-01
... Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS PERSONNEL RECORDS Basic..., magnetic storage media, micro storage media, and other documentary materials regardless of physical form or... procedure; Maintain includes collect, use, or disseminate; Office means the Office of Personnel Management...
Fermilab | Science at Fermilab | Experiments & Projects | Intensity
Theory Computing High-performance Computing Grid Computing Networking Mass Storage Plan for the Future List Historic Results Inquiring Minds Questions About Physics Other High-Energy Physics Sites More About Particle Physics Library Visual Media Services Timeline History High-Energy Physics Accelerator
Media, racism and public health psychology.
Nairn, Raymond; Pega, Frank; McCreanor, Tim; Rankine, Jenny; Barnes, Angela
2006-03-01
International literature has established that racism contributes to ill-health of migrants, ethnic minorities and indigenous peoples. Racism generally negates wellbeing, adversely affecting physical and psychological health. Numerous studies have shown that media contribute marginalizing particular ethnic and cultural groups depicting them primarily as problems for and threats to the dominant. This articles frames media representations of, and their effect on, the indigenous Maori of Aotearoa, New Zealand within the ongoing processes of colonization. We argue that reflects the media contribution to maintenance and naturalisation of colonial relationships and seek to include critical media scholarship in a critical public health psychology.
Leveraging Social Media in #FamilyNursing Practice.
Schroeder, Wilma K
2017-02-01
The use of social media to find and disseminate health information is rapidly increasing worldwide. It is essential for family nurses to participate in this trend, and to meet our clients where they are, on social media. Nurses can use social media to promote family health, reduce illness suffering, and meet family needs for information and support. As well, social media provides a way to build relationships with families outside of the physical health care setting or clinic. It is important to understand the types and potential uses of social media, as well as the risks and pitfalls. Standards for e-professionalism must be maintained. Through using social media, family nurses can increase their reach and effectiveness for family health promotion.
Calvet, Amandine; Ryder, Alan G
2014-08-20
The quality of the cell culture media used in biopharmaceutical manufacturing is a crucial factor affecting bioprocess performance and the quality of the final product. Due to their complex composition these media are inherently unstable, and significant compositional variations can occur particularly when in the prepared liquid state. For example photo-degradation of cell culture media can have adverse effects on cell viability and thus process performance. There is therefore, from quality control, quality assurance and process management view points, an urgent demand for the development of rapid and inexpensive tools for the stability monitoring of these complex mixtures. Spectroscopic methods, based on fluorescence or Raman measurements, have now become viable alternatives to more time-consuming and expensive (on a unit analysis cost) chromatographic and/or mass spectrometry based methods for routine analysis of media. Here we demonstrate the application of surface enhanced Raman scattering (SERS) spectroscopy for the simple, fast, analysis of cell culture media degradation. Once stringent reproducibility controls are implemented, chemometric data analysis methods can then be used to rapidly monitor the compositional changes in chemically defined media. SERS shows clearly that even when media are stored at low temperature (2-8°C) and in the dark, significant chemical changes occur, particularly with regard to cysteine/cystine concentration. Copyright © 2014 Elsevier B.V. All rights reserved.
Beyond the media: A new strategy for distributing scientific and technical information
DOE Office of Scientific and Technical Information (OSTI.GOV)
Preecs, B.L.
Communications media -- newspapers, television, magazines, etc. -- may be the most powerful single influence on modern life. Certainly they are the most important source of information citizens use to form opinions about such complex scientific questions as global warming or nuclear waste cleanup. But commercial news media have built-in limitations on their effectiveness as information sources. Reliance on advertising for revenue means the media are limited in the volume of material they can cover. In addition, the need to attract the largest possible, or the most select, audience for advertisers limits the complexity of information that the media canmore » present. Finally, existing media organizations offer few, if any, ways for users to retrieve past information. These limitations deprive citizens of needed information, increase pressure on political leaders, and create the gridlock over scientific and public policy questions caused by the Not in My Backyard'' snydrome. Fortunately, modern communications technology is changing in ways that allow public policy makers to address these shortenings. Companies now barred from the information business are seeking to enter, existing media companies are looking for new sources of revenue, and new information products are seeking markets. Several changes to existing media and communications policy will be suggested and general principles for building a better overall communications system will be discussed. 18 refs.« less
Markopoulos, Constantinos; Andreas, Cord J; Vertzoni, Maria; Dressman, Jennifer; Reppas, Christos
2015-06-01
Biorelevant media for evaluation of dosage form performance in the gastrointestinal lumen were first introduced in the late 1990s. Since then, a variety of additional media have been proposed, making it now possible to simulate most regions in the gastrointestinal tract in both prandial states. However, recent work suggests that the complexity and degree of biorelevance required to predict in-vivo release varies with the drug, dosage form and dosing conditions. The aim of this commentary was to establish which levels of biorelevant media are appropriate to various combinations of active pharmaceutical ingredient(s), dosage form and dosing conditions. With regard to their application, a decision tree for the selection of the appropriate biorelevant medium/media is proposed and illustrative case scenarios are provided. Additionally, media to represent the distal small intestine in both prandial states are presented. The newly proposed levels of biorelevance and accompanying decision tree may serve as a useful tool during formulation development in order to ensure high quality, predictive performance results without unnecessary complexity of media. In future work, further specific case examples will be evolved, which will additionally address the need to take gastrointestinal passage times and type and intensity of agitation into consideration. Copyright © 2015 Elsevier B.V. All rights reserved.
Tomlinson, Emily; Spector, Aimee; Nurock, Shirley; Stott, Joshua
2015-09-01
Despite media and academic interest on assisted dying in dementia, little is known of the views of those directly affected. This study explored the views of former carers on assisted dying in dementia. This was a qualitative study using thematic analysis. A total of 16 former carers of people with dementia were recruited through national dementia charities and participated in semi-structured interviews. While many supported the individual's right to die, the complexity of assisted dying in dementia was emphasized. Existential, physical, psychological and psychosocial aspects of suffering were identified as potential reasons to desire an assisted death. Most believed it would help to talk with a trained health professional if contemplating an assisted death. Health workers should be mindful of the holistic experience of dementia at the end of life. The psychological and existential aspects of suffering should be addressed, as well as relief of physical pain. Further research is required. © The Author(s) 2015.
2005-11-04
KENNEDY SPACE CENTER, FLA. - In the clean room at KSC’s Payload Hazardous Servicing Facility, the New Horizons spacecraft is prepared for a media event. Photographers and reporters will be able to photograph the New Horizons spacecraft and talk with project management and test team members from NASA and the Johns Hopkins University Applied Physics Laboratory. Seen behind the spacecraft is one half of the fairing that will enclose it for launch, scheduled for January 2006. Carrying seven scientific instruments, the compact 1,060-pound New Horizons probe will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will fly by Pluto and Charon as early as summer 2015.
2005-11-04
KENNEDY SPACE CENTER, FLA. - In the clean room at KSC’s Payload Hazardous Servicing Facility, technicians prepare the New Horizons spacecraft for a media event. Photographers and reporters will be able to photograph the New Horizons spacecraft and talk with project management and test team members from NASA and the Johns Hopkins University Applied Physics Laboratory. Seen behind the spacecraft is one half of the fairing that will enclose it for launch, scheduled for January 2006. Carrying seven scientific instruments, the compact 1,060-pound New Horizons probe will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will fly by Pluto and Charon as early as summer 2015.
2005-11-04
KENNEDY SPACE CENTER, FLA. - In the clean room at KSC’s Payload Hazardous Servicing Facility, the New Horizons spacecraft is ready for a media event. Photographers and reporters will be able to photograph the New Horizons spacecraft and talk with project management and test team members from NASA and the Johns Hopkins University Applied Physics Laboratory. Seen behind the spacecraft is one half of the fairing that will enclose it for launch, scheduled for January 2006. Carrying seven scientific instruments, the compact 1,060-pound New Horizons probe will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will fly by Pluto and Charon as early as summer 2015.
2005-11-04
KENNEDY SPACE CENTER, FLA. - In the clean room at KSC’s Payload Hazardous Servicing Facility, technicians prepare the New Horizons spacecraft for a media event. Photographers and reporters will be able to photograph the New Horizons spacecraft and talk with project management and test team members from NASA and the Johns Hopkins University Applied Physics Laboratory. Seen behind the spacecraft is one half of the fairing that will enclose it for launch, scheduled for January 2006. Carrying seven scientific instruments, the compact 1,060-pound New Horizons probe will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will fly by Pluto and Charon as early as summer 2015.
2005-11-04
KENNEDY SPACE CENTER, FLA. - In the clean room at KSC’s Payload Hazardous Servicing Facility, the New Horizons spacecraft is being prepared for a media event. Photographers and reporters will be able to photograph the New Horizons spacecraft and talk with project management and test team members from NASA and the Johns Hopkins University Applied Physics Laboratory. Seen behind the spacecraft is one half of the fairing that will enclose it for launch, scheduled for January 2006. Carrying seven scientific instruments, the compact 1,060-pound New Horizons probe will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will fly by Pluto and Charon as early as summer 2015.
Correlated Photon Dynamics in Dissipative Rydberg Media
NASA Astrophysics Data System (ADS)
Zeuthen, Emil; Gullans, Michael J.; Maghrebi, Mohammad F.; Gorshkov, Alexey V.
2017-07-01
Rydberg blockade physics in optically dense atomic media under the conditions of electromagnetically induced transparency (EIT) leads to strong dissipative interactions between single photons. We introduce a new approach to analyzing this challenging many-body problem in the limit of a large optical depth per blockade radius. In our approach, we separate the single-polariton EIT physics from Rydberg-Rydberg interactions in a serialized manner while using a hard-sphere model for the latter, thus capturing the dualistic particle-wave nature of light as it manifests itself in dissipative Rydberg-EIT media. Using this approach, we analyze the saturation behavior of the transmission through one-dimensional Rydberg-EIT media in the regime of nonperturbative dissipative interactions relevant to current experiments. Our model is able to capture the many-body dynamics of bright, coherent pulses through these strongly interacting media. We compare our model with available experimental data in this regime and find good agreement. We also analyze a scheme for generating regular trains of single photons from continuous-wave input and derive its scaling behavior in the presence of imperfect single-photon EIT.
Answers Submit a Question Frontiers of Particle Physics Benefits to Society Benefits to Society Medicine Visual Media Services Timeline History High-Energy Physics Accelerator Science in Medicine Follow
TNT removal from culture media by three commonly available wild plants growing in the Caribbean.
Correa-Torres, Sandra N; Pacheco-Londoño, Leonardo C; Espinosa-Fuentes, Eduardo A; Rodríguez, Lolita; Souto-Bachiller, Fernando A; Hernández-Rivera, Samuel P
2012-01-01
Plants growing in the Caribbean, Rubia tinctorum, Lippia dulcis and Spermacoce remota, were used in vitro to remove TNT from culture media. Plants were found to be resistant to high TNT levels. S. remota was able to remove TNT in less than 48 h. Part of the TNT was physically removed from the culture media by evaporation.
ERIC Educational Resources Information Center
Williams-Pierce, Caroline
2016-01-01
This commentary serves as an introduction to multiple scholarly fields about the value of digital media for providing contexts for and provoking learning. The author proposes that rather than considering a dichotomy between reading physical books and reading digital media, as encouraged by Cavanaugh et al. (2015), instead consider a scale of sorts…
Forest Products Industry in a Digital Age: A Look at E-Commerce and Social Media
Iris Montague; Kathryn Arano Gazal; Jan Wiedenbeck; Jean-Gabriel Shepherd
2016-01-01
The business of marketing, promotions in particular, has changed substantially during the past decade. Physical means of promotion (e.g., newspapers, magazines, radio, billboards) have seen a decline, and the use of social media as a marketing tool has increased significantly. While a number of studies regarding the use of social media among Fortune 500 companies have...
Lukanov, Simeon; Tzankov, Nikolay; Handschuh, Stephan; Heiss, Egon; Naumov, Borislav; Natchev, Nikolay
2016-06-01
Feeding behavior in salamanders undergoing seasonal habitat shifts poses substantial challenges caused by differences in the physical properties of air and water. Adapting to these specific environments, urodelans use suction feeding predominantly under water as opposed to lingual food prehension on land. This study aims to determine the functionality of aquatic and terrestrial feeding behavior in the Balkan-Anatolian crested newt (Triturus ivanbureschi) in its terrestrial stage. During the terrestrial stage, these newts feed frequently in water where they use hydrodynamic mechanisms for prey capture. On land, prey apprehension is accomplished mainly by lingual prehension, while jaw prehension seems to be the exception (16.67%) in all terrestrial prey capture events. In jaw prehension events there was no detectable depression of the hyo-lingual complex. The success of terrestrial prey capture was significantly higher when T. ivanbureschi used lingual prehension. In addition to prey capture, we studied the mechanisms involved in the subduction of prey. In both media, the newts frequently used a shaking behavior to immobilize the captured earthworms. Apparently, prey shaking constitutes a significant element in the feeding behavior of T. ivanbureschi. Prey immobilization was applied more frequently during underwater feeding, which necessitates a discussion of the influence of the feeding media on food manipulation. We also investigated the osteology of the cranio-cervical complex in T. ivanbureschi to compare it to that of the predominantly terrestrial salamandrid Salamandra salamandra. Copyright © 2016 Elsevier GmbH. All rights reserved.
ERIC Educational Resources Information Center
Crow, Deserai Anderson
2011-01-01
Local news media help shape the agendas from which new policies emerge. Furthermore, local media help determine public understanding of complex issues. Media should inform citizens and policymakers on important policy issues. This study uses a content analysis of 11 newspapers to understand the manner in which reporters covered a specific…
Microfluidic Model Porous Media: Fabrication and Applications.
Anbari, Alimohammad; Chien, Hung-Ta; Datta, Sujit S; Deng, Wen; Weitz, David A; Fan, Jing
2018-05-01
Complex fluid flow in porous media is ubiquitous in many natural and industrial processes. Direct visualization of the fluid structure and flow dynamics is critical for understanding and eventually manipulating these processes. However, the opacity of realistic porous media makes such visualization very challenging. Micromodels, microfluidic model porous media systems, have been developed to address this challenge. They provide a transparent interconnected porous network that enables the optical visualization of the complex fluid flow occurring inside at the pore scale. In this Review, the materials and fabrication methods to make micromodels, the main research activities that are conducted with micromodels and their applications in petroleum, geologic, and environmental engineering, as well as in the food and wood industries, are discussed. The potential applications of micromodels in other areas are also discussed and the key issues that should be addressed in the near future are proposed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Low level chemiluminescence from liquid culture media.
Vogel, R; Süssmuth, R
1999-06-01
Low level chemiluminescence (CL) can be observed from autoclaved liquid culture media, as used in microbiology. The light emission is oxygen-dependent and arises from reactions following auto-oxidation of reducing Maillard products which are formed during autoclaving. The inhibition of this CL by radical scavengers and antioxidants has been studied. As superoxide radicals and hydrogen peroxide are predominantly involved in the initiation of the CL, the investigation of CL from culture media offers a convenient tool for the detection of exogenous (medium-mediated) oxidative stress being imposed onto micro-organisms in culture. Transition metal ions showed, dependent on concentration, both inhibitory and stimulating effects on the CL, which was also affected by the presence of complexing agents. Iron porphyrins and related complexes displayed a very efficient quenching of the CL, which may be of particular importance, as aerobic micro-organisms have been previously shown to be very efficient in quenching the CL from culture media.
Direct Numerical Simulation of Liquid Transport Through Fibrous Porous Media
NASA Astrophysics Data System (ADS)
Palakurthi, Nikhil Kumar
Fluid flow through fibrous media occurs in many industrial processes, including, but not limited, to fuel cell technology, drug delivery patches, sanitary products, textile reinforcement, filtration, heat exchangers, and performance fabrics. Understanding the physical processes involved in fluid flow through fibrous media is essential for their characterization as well as for the optimization and development of new products. Macroscopic porous-media equations require constitutive relations, which account for the physical processes occurring at the micro-scale, to predict liquid transport at the macro-scale. In this study, micro-scale simulations were conducted using conventional computational fluid dynamics (CFD) technique (finite-volume method) to determine the macroscopic constitutive relations. The first part of this thesis deals with the single-phase flow in fibrous media, following which multi-phase flow through fibrous media was studied. Darcy permeability is an important parameter that characterizes creeping flow through a fibrous porous medium. It has a complex dependence on the medium's properties such as fibers' in-plane and through-plane orientation, diameter, aspect ratio, curvature, and porosity. A suite of 3D virtual fibrous structures with a wide range of geometric properties were constructed, and the permeability values of the structures were calculated by solving the 3D incompressible Navier-Stokes equations. The through-plane permeability was found to be a function of only the fiber diameter, the fibers' through-plane orientation, and the porosity of the medium. The numerical results were used to extend a permeability-porosity relation, developed in literature for 3D isotropic fibrous media, to a wide range of fibers' through-plane orientations. In applications where rate of capillary penetration is important, characterization of porous media usually involves determination of either the effective pore radius from capillary penetration experiments or a representative pore radius (R50) from pore-size distribution data. The relationship between effective and representative pore radii was studied by performing direct simulations of capillary penetration of a wetting liquid using a finite-volume-based volume-of-fluid (VOF) method. The simulated unidirectional liquid penetration through fibrous media followed Lucas-Washburn kinetics (L ˜ t1/2), except during the initial stages, which are dominated by inertial forces. Even though fluid properties and contact angle were kept constant in the simulations, the effective pore radii were found to be quite different from the representative radii. It can be concluded that the differences between effective and representative pore radii did not arise from contact angle variations. The unsaturated flow through fibrous media at the macro-scale is typically described using Richard's equation which requires constitutive relations: capillary pressure and permeability as a function of liquid saturation. In the present study, the quasi-static capillary pressure-saturation (P c-S) relationship for the primary drainage in a 3D isotropic fibrous medium was determined by performing micro-scale simulations using a VOF method. The Pc-S relationship obtained from the VOF method was compared with the results from the full-morphology (FM) method. Good agreement was observed between the results from the VOF and FM methods, thus suggesting that the FM method, a computationally less intensive method as compared to VOF method, may be sufficient for estimating the Pc-S relationship for primary drainage.
Statistical strategy for anisotropic adventitia modelling in IVUS.
Gil, Debora; Hernández, Aura; Rodriguez, Oriol; Mauri, Josepa; Radeva, Petia
2006-06-01
Vessel plaque assessment by analysis of intravascular ultrasound sequences is a useful tool for cardiac disease diagnosis and intervention. Manual detection of luminal (inner) and media-adventitia (external) vessel borders is the main activity of physicians in the process of lumen narrowing (plaque) quantification. Difficult definition of vessel border descriptors, as well as, shades, artifacts, and blurred signal response due to ultrasound physical properties trouble automated adventitia segmentation. In order to efficiently approach such a complex problem, we propose blending advanced anisotropic filtering operators and statistical classification techniques into a vessel border modelling strategy. Our systematic statistical analysis shows that the reported adventitia detection achieves an accuracy in the range of interobserver variability regardless of plaque nature, vessel geometry, and incomplete vessel borders.
Surface Plasmon States in Inhomogeneous Media at Critical and Subcritical Metal Concentrations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seal, Katyayani; Genov, Dentcho A.
Semicontinuous metal-dielectric films are composed of a wide range of metal clusters of various geometries—sizes as well as structures. This ensures that at any given wavelength of incident radiation, clusters exist in the film that will respond resonantly, akin to resonating nanoantennas, resulting in the broad optical response (absorption) that is a characteristic of semicontinuous films. The physics of the surface plasmon states that are supported by such systems is complex and can involve both localized and propagating plasmons. This chapter describes near-field experimental and numerical studies of the surface plasmon states in semicontinuous films at critical and subcritical metalmore » concentrations and evaluates the local field intensity statistics to discuss the interplay between various eigenmodes.« less
Barelko, V. V.; Pomogailo, A. D.; Dzhardimalieva, G. I.; Evstratova, S. I.; Rozenberg, A. S.; Uflyand, I. E.
1999-06-01
The phenomenon of autowave (frontal) solid phase polymerization of metal-containing monomers based on metal-acrylamide complexes is considered. The comparison of the features of autowave processes realized in both the single-component matrices of the monomer and the matrices filled by the fiberglass materials is performed. The unstable regimes of the polymerization wave as well as the conditions for the stabilization of the flat front in the filled matrices are described. The peculiarities of the frontal regimes in the three- and two-dimensional media are studied. Some possibilities for using of autowave polymerization in the fabrication of the polymer-fiberglass composites and composition prepregs are discussed. (c) 1999 American Institute of Physics.
Blommaert, Didier; Franck, Thierry; Donnay, Isabelle; Lejeune, Jean-Philippe; Detilleux, Johann; Serteyn, Didier
2016-02-01
The aim of this work was to completely replace the egg yolk a classical diluent for freezing equine semen by a cyclodextrin-cholesterol complex. At the same time, the reduction in the glycerol content used for cryopreservation and the incubation time between sperm and the freezing media were evaluated. Horse ejaculates were frozen with four different freezing extenders: a frozen reference medium (IF) containing egg yolk and 2.5% glycerol and media without egg yolk but supplemented with 1.5 mg 2-hydroxypropyl-beta-cyclodextrin cholesterol (HPβCD-C) complex and containing either 1% (G1), 2% (G2) or 3% glycerol (G3). Three incubation times (90, 120 and 180 min) at 4 °C between the fresh semen and the different media were tested before freezing. Viability and motility analyses were performed with computer assisted semen analysis (CASA). Results showed that the freezing media containing the HPβCD-C complex with 1%, 2% and 3% glycerol significantly improve the 3 in vitro parameters of post thawing semen quality (viability, progressive and total mobilities) compared to IF. The best improvement of the parameters was obtained with G1 medium and the longest contact time. The substitution of egg yolk by HPβCD-C complex allows the decrease of protein charge of the medium while favouring the cholesterol supply to membrane spermatozoa offering it a better resistance to osmotic imbalance and a better tolerance to the glycerol toxicity. Our results highlight that the egg yolk of an extender for the freezing of horse semen can be completely substituted by HPβCD-C complex. Copyright © 2015. Published by Elsevier Inc.
Jackson, Todd; Jiang, Chengcheng; Chen, Hong
2016-06-01
In this study, we evaluated associations of experiences with mass media imported from Western nations such as the United States versus mass media from China and other Asian countries with eating and body image disturbances of young Chinese women. Participating women (N=456) completed self-report measures of disordered eating, specific sources of appearance dissatisfaction (fatness, facial features, stature), and Western versus Chinese/Asian mass media influences. The sample was significantly more likely to report perceived pressure from, comparisons with, and preferences for physical appearance depictions in Chinese/Asian mass media than Western media. Chinese/Asian media influences also combined for more unique variance in prediction models for all disturbances except stature concerns. While experiences with Western media were related to disturbances as well, the overall impact of Chinese/Asian media influences was more prominent. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bibiloni, Maria del Mar; Pich, Jordi; Córdova, Alfredo; Pons, Antoni; Tur, Josep A
2012-08-30
Many different factors influenced food habits and physical activity patterns of adolescents in a complex interactive way. The aim of this study was to assess association between sedentary behaviour and socioeconomic factors, diet and lifestyle among the Balearic Islands adolescents. A cross-sectional survey (n = 1961; 12-17 years old) was carried out. Physical activity was assessed using the International Physical Activity Questionnaire for adolescents (IPAQ-A). Sedentary behaviour was defined as <300 min/week of moderate and vigorous physical activity. Anthropometric measurements, body image, socio-economic and lifestyle determinants, food consumption, and adherence to the Mediterranean diet were assessed. The prevalence of sedentary behaviour was 37.1% (22.0% boys, 50.8% girls). Active boys consumed frequently breakfast cereals and fresh fruit; active girls yogurt, cheese, breakfast cereals, and fresh fruit; and sedentary girls high fat foods and soft drinks. Sedentary behaviour of girls was directly associated to age, and time spent on media screen and homework, and inversely related to adherence to Mediterranean diet, and body composition. Sedentary behaviour of boys was inversely related to adherence to the Mediterranean diet, and the desire to remain the same weight. The prevalence of sedentary behaviour among Balearic Islands adolescents is high, mainly among girls. Age, sex, parental educational and profession levels, body size dissatisfaction, and poor quality diet are important factors of physical activity practice among adolescents.
Rogue waves: a unique approach to multidisciplinary physics
NASA Astrophysics Data System (ADS)
Residori, S.; Onorato, M.; Bortolozzo, U.; Arecchi, F. T.
2017-01-01
Rogue waves are giant waves appearing erratically and unexpectedly on the ocean surfaces. Their existence, considered as mythical in the ancient times, has recently been recognised by the scientific community and, since then, rogue waves have become the object of numerous theoretical and experimental studies. Their relevance is not restricted to oceanography, but it extends in a wide spectrum of physical contexts. General models and mathematical tools have been developed on a interdisciplinary ground and many experiments have been specifically conceived for the observation of rogue waves in a variety of different physical systems. Rogue wave phenomena are, nowadays, studied, for instance, in hydrodynamics, optics, plasmas, complex media, Bose-Einstein condensation and acoustics. We can, therefore, consider rogue waves as a paradigmatic description, able to account for the manifestation of extreme events in multidisciplinary physics. In this review, we present the main physical concepts and mathematical tools for the description of rogue waves. We will refer mostly to examples from water waves and optics, the two domains having in common the non-linear Schrödinger equation from which prototype rogue wave solutions can be derived. We will highlight the most common features of the rogue wave phenomena, as the large deviations from the Gaussian statistics of the amplitude, the existence of many uncorrelated 'grains' of activity and their clustering in inhomogeneous spatial domains via large-scale symmetry breaking.
Barnes, R; Giles-Corti, B; Bauman, A; Rosenberg, M; Bull, F C; Leavy, J E
2013-02-01
Mass media campaigns are widely used in Australia and elsewhere to promote physical activity among adults. Neighbourhood walkability is consistently shown to be associated with walking and total activity. Campaigns may have different effects on individuals living in high and low walkable neighbourhoods. The purpose of this study is to compare pre- and post-campaign cognitive and behavioural impacts of the Heart Foundation's Find Thirty every day® campaign, in respondents living in high and lower walkable neighbourhoods. Pre- and post-campaign cross-sectional survey data were linked with objectively measured neighbourhood walkability. Cognitive and behavioural impacts were assessed using logistic regression stratified by walkability. Cognitive impacts were significantly higher post-campaign and consistently higher in respondents in high compared with lower walkable neighbourhoods. Post campaign sufficient activity was significantly higher and transport walking significantly lower, but only in residents of lower walkable areas. Cognitive impacts of mass media physical activity campaigns may be enhanced by living in a more walkable neighbourhood.
NASA Astrophysics Data System (ADS)
Beznosyuk, Sergey A.; Maslova, Olga A.; Zhukovsky, Mark S.; Valeryeva, Ekaterina V.; Terentyeva, Yulia V.
2017-12-01
The task of modeling the multiscale infrastructure of quantum attosecond actuators and femtosecond sensors of nonequilibrium physical media in smart materials is considered. Computer design and calculation of supra-atomic femtosecond sensors of nonequilibrium physical media in materials based on layered graphene-transition metal nanosystems are carried out by vdW-DF and B3LYP methods. It is shown that the molybdenum substrate provides fixation of graphene nanosheets by Van der Waals forces at a considerable distance (5.3 Å) from the metal surface. This minimizes the effect of the electronic and nuclear subsystem of the substrate metal on the sensory properties of "pure" graphene. The conclusion is substantiated that graphene-molybdenum nanosensors are able to accurately orient and position one molecule of carbon monoxide. It is shown that graphene selectively adsorbs CO and fixes the oxygen atom of the molecule at the position of the center of the graphene ring C6.
Photochemistry in Organized Media.
ERIC Educational Resources Information Center
Fendler, Janos H.
1983-01-01
Describes common artificially produced organized media such as colloids, surfactants, and polymers and their usefulness in studying complex biochemical processes. Discusses selected recent photophysical and photochemical exploitations of these systems, including artificial photosynthesis, in situ generation of colloidal gold and platinum,…
Devices, systems, and methods for detecting nucleic acids using sedimentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koh, Chung-Yan; Schaff, Ulrich Y.; Sommer, Gregory J.
Embodiments of the present invention are directed toward devices, systems, and method for conducting nucleic acid purification and quantification using sedimentation. In one example, a method includes generating complexes which bind to a plurality of beads in a fluid sample, individual ones of the complexes comprising a nucleic acid molecule such as DNA or RNA and a labeling agent. The plurality of beads including the complexes may be transported through a density media, wherein the density media has a density lower than a density of the beads and higher than a density of the fluid sample, and wherein the transportingmore » occurs, at least in part, by sedimentation. Signal may be detected from the labeling agents of the complexes.« less
, he started the Boston Virtual Reality Meetup group, develops physics plugins for games and demos for physically accurate lighting model, Second Conference on Computational Semiotics for Games and New Media
Chen, Tzu-An; Baranowski, Janice; Thompson, Deborah; Baranowski, Tom
2013-01-01
Abstract Background Children's physical activity (PA) is inversely associated with children's weight status. Parents may be an important influence on children's PA by restricting sedentary time or supporting PA. The aim of this study was to investigate the association of PA and screen-media–related [television (TV) and videogame] parenting practices with children's PA. Methods Secondary analyses of baseline data were performed from an intervention with 9- to 12-year-olds who received active or inactive videogames (n=83) to promote PA. Children's PA was assessed with 1 week of accelerometry at baseline. Parents reported their PA, TV, and videogame parenting practices and child's bedroom screen-media availability. Associations were investigated using Spearman's partial correlations and linear regressions. Results Although several TV and videogame parenting practices were significantly intercorrelated, only a few significant correlations existed between screen-media and PA parenting practices. In linear regression models, restrictive TV parenting practices were associated with greater child sedentary time (p=0.03) and less moderate-to-vigorous PA (MVPA; p=0.01). PA logistic support parenting practices were associated with greater child MVPA (p=0.03). Increased availability of screen-media equipment in the child's bedroom was associated with more sedentary time (p=0.02) and less light PA (p=0.01) and MVPA (p=0.05) in all three models. Conclusion In this cross-sectional sample, restrictive screen-media and supportive PA parenting practices had opposite associations with children's PA. Longitudinal and experimental child PA studies should assess PA and screen-media parenting separately to understand how parents influence their child's PA behaviors and whether the child's baseline PA or screen media behaviors affect the parent's use of parenting practices. Recommendations to remove screens from children's bedrooms may also affect their PA. PMID:24028564
NASA Astrophysics Data System (ADS)
Albrecht, Remy; Gourry, Jean Christophe; Simonnot, Marie-Odile; Leyval, Corinne
2011-11-01
Several laboratory studies have recently demonstrated the utility of geophysical methods for the investigation of microbial-induced changes over contaminated sites. However, it remains difficult to distinguish the effects due to the new physical properties imparted by microbial processes, to bacterial growth, or to the development of bacterial biofilm. We chose to study the influence of biofilm formation on geophysical response using complex conductivity measurements (0.1-1000 Hz) in phenanthrene-contaminated media. Biotic assays were conducted with two phenanthrene (PHE) degrading bacterial strains: Burkholderia sp (NAH1), which produced biofilm and Stenophomonas maltophilia (MATE10), which did not, and an abiotic control. Results showed that bacterial densities for NAH1 and MATE10 strains continuously increased at the same rate during the experiment. However, the complex conductivity signature showed noticeable differences between the two bacteria, with a phase shift of 50 mrad at 4 Hz for NAH1, which produced biofilm. Biofilm volume was quantified by Scanning Confocal Laser Microscopy (SCLM). Significant correlations were established between phase shift decrease and biofilm volume for NAH1 assays. Results suggest that complex conductivity measurements, specifically phase shift, can be a useful indicator of biofilm formation inside the overall signal of microbial activity on contaminated sites.
Virtual boundaries: ethical considerations for use of social media in social work.
Kimball, Ericka; Kim, JaeRan
2013-04-01
In real life, we often use physical cues to help us identify our role and put the appropriate boundaries in place, but online it is more difficult to determine where our boundaries lie. This article provides and overview of various social media tools and uses along with personal and professional considerations to help in guiding the ethical use of social media tools. As the use of social media continues to grow, the importance of virtual boundaries will also rise. Therefore, proactive considerations that include policies and guidelines that encourage responsible and ethical use of social media are needed to help social workers mediate personal and professional boundaries.
ULTRASONIC STUDIES OF THE FUNDAMENTAL MECHANISMS OF RECRYSTALLIZATION AND SINTERING OF METALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
TURNER, JOSEPH A.
2005-11-30
The purpose of this project was to develop a fundamental understanding of the interaction of an ultrasonic wave with complex media, with specific emphases on recrystallization and sintering of metals. A combined analytical, numerical, and experimental research program was implemented. Theoretical models of elastic wave propagation through these complex materials were developed using stochastic wave field techniques. The numerical simulations focused on finite element wave propagation solutions through complex media. The experimental efforts were focused on corroboration of the models developed and on the development of new experimental techniques. The analytical and numerical research allows the experimental results to bemore » interpreted quantitatively.« less
Toxin activity assays, devices, methods and systems therefor
Koh, Chung-Yan; Schaff, Ulrich Y.; Sommer, Gregory Jon
2016-04-05
Embodiments of the present invention are directed toward devices, system and method for conducting toxin activity assay using sedimentation. The toxin activity assay may include generating complexes which bind to a plurality of beads in a fluid sample. The complexes may include a target toxin and a labeling agent, or may be generated due to presence of active target toxin and/or labeling agent designed to be incorporated into complexes responsive to the presence of target active toxin. The plurality of beads including the complexes may be transported through a density media, wherein the density media has a lower density than a density of the beads and higher than a density of the fluid sample, and wherein the transporting occurs, at least in part, by sedimentation. Signal may be detected from the labeling agents of the complexes.
The Progression of Podcasting/Vodcasting in a Technical Physics Class
NASA Astrophysics Data System (ADS)
Glanville, Y. J.
2010-11-01
Technology such as Microsoft PowerPoint presentations, clickers, podcasting, and learning management suites is becoming prevalent in classrooms. Instructors are using these media in both large lecture hall settings and small classrooms with just a handful of students. Traditionally, each of these media is instructor driven. For instance, podcasting (audio recordings) provided my technical physics course with supplemental notes to accompany a traditional algebra-based physics lecture. Podcasting is an ideal tool for this mode of instruction, but podcasting/vodcasting is also an ideal technique for student projects and student-driven learning. I present here the various podcasting/vodcasting projects my students and I have undertaken over the last few years.
ERIC Educational Resources Information Center
Eapen, K. E.
As background information for a discussion of India's communication system and its potential for social change, this paper briefly describes the country's physical characteristics, some of its cultural heritage and demographics, and the development of its education and railways. After a discussion of the folk media (traditional changes) of…
What's Cooking in the School Library Media Center?
ERIC Educational Resources Information Center
Barron, Daniel D.
2001-01-01
Discusses ways in which cooking and food can be used to integrate school library media programs into the curriculum. Topics include gender consciousness; family literacy; alternative formats for special physical or learning challenges; history and social studies applications; world cultures; and cookbooks and literature. (LRW)
Super-Coulombic atom–atom interactions in hyperbolic media
Cortes, Cristian L.; Jacob, Zubin
2017-01-01
Dipole–dipole interactions, which govern phenomena such as cooperative Lamb shifts, superradiant decay rates, Van der Waals forces and resonance energy transfer rates, are conventionally limited to the Coulombic near-field. Here we reveal a class of real-photon and virtual-photon long-range quantum electrodynamic interactions that have a singularity in media with hyperbolic dispersion. The singularity in the dipole–dipole coupling, referred to as a super-Coulombic interaction, is a result of an effective interaction distance that goes to zero in the ideal limit irrespective of the physical distance. We investigate the entire landscape of atom–atom interactions in hyperbolic media confirming the giant long-range enhancement. We also propose multiple experimental platforms to verify our predicted effect with phonon–polaritonic hexagonal boron nitride, plasmonic super-lattices and hyperbolic meta-surfaces as well. Our work paves the way for the control of cold atoms above hyperbolic meta-surfaces and the study of many-body physics with hyperbolic media. PMID:28120826
Super-Coulombic atom-atom interactions in hyperbolic media
NASA Astrophysics Data System (ADS)
Cortes, Cristian L.; Jacob, Zubin
2017-01-01
Dipole-dipole interactions, which govern phenomena such as cooperative Lamb shifts, superradiant decay rates, Van der Waals forces and resonance energy transfer rates, are conventionally limited to the Coulombic near-field. Here we reveal a class of real-photon and virtual-photon long-range quantum electrodynamic interactions that have a singularity in media with hyperbolic dispersion. The singularity in the dipole-dipole coupling, referred to as a super-Coulombic interaction, is a result of an effective interaction distance that goes to zero in the ideal limit irrespective of the physical distance. We investigate the entire landscape of atom-atom interactions in hyperbolic media confirming the giant long-range enhancement. We also propose multiple experimental platforms to verify our predicted effect with phonon-polaritonic hexagonal boron nitride, plasmonic super-lattices and hyperbolic meta-surfaces as well. Our work paves the way for the control of cold atoms above hyperbolic meta-surfaces and the study of many-body physics with hyperbolic media.
MULTIPHASE FLOW AND TRANSPORT IN POROUS MEDIA
Multiphase flow and transport of compositionally complex fluids in geologic media is of importance in a number of applied problems which have major social and economic effects. n petroleum reservoir engineering efficient recovery of energy reserves is the principal goal. nfortuna...
Data communication through multiple physical media: applications to munitions
NASA Astrophysics Data System (ADS)
Dhadwal, Harbans S.; Rastegar, Jahangir; Feng, Dake; Kwok, Philip
2015-05-01
Electronic systems comprising of subassemblies, distributed across different physical media, require seamless communication between processors and sensors embedded in the disparate volumes. For example, smart munitions systems embed sensors and other key control electronics, throughout the structure, in vastly different physical media. In addition to the obvious space constraints, these structures are subjected to high G forces during launch. Thus, communications through wire harnesses becomes cumbersome, make assembly process and testing difficult, and challenging to make survive high G firing. Here we focus on an approach that takes advantage of the partial optical transparency of epoxy material commonly used in potting electronic components in munitions, as well as the wave guiding that is possible through the body of the munitions wall which is made from composite materials. Experimental results show that a wireless optical link, connecting various parts of the distributed system, is possible at near IR frequencies. Data can be rapidly parsed between a processor, sensors and actuators. We present experimental data for a commercial epoxy system, which is used to embed a number of IrDA devices inside the cone of 120 mm mortar shell. IrDA devices using the FIR data rates establish point-to-point communication through various media, representative of the environment inside the 120 mm mortar cone.
PREFACE: The 7th International Seminar on Geometry, Continua and Microstructures
NASA Astrophysics Data System (ADS)
Burton, David A.
2007-04-01
It gives me great pleasure to present the proceedings of the 7th International Seminar on Geometry, Continua and Microstructures (GCM 7). The conference took place on 25-27 September 2006 at Lancaster University and the local organisers were Robin Tucker, Tim Walton, myself and Jonathan Gratus of the Lancaster University Mathematical Physics Group. Modern field theories of mechanically and electrically responsive continua have a wealth of interesting applications in physics. Such theories provide effective macroscopic models of complex systems, such as living tissue and material with dynamical defects, that capture macroscopic consequences of microscopic phenomena. GCM is an interdisciplinary conference series, initiated by the Eringen medallist Gérard A Maugin, that brings together physicists and applied mathematicians who have interests in continuum mechanics and differential geometry and who aim to develop new and powerful methods for analysing the behaviour of complex mechanical systems. The earlier conferences in the series were held in Paris, Madrid, Mannheim, Turin, Sinaia and Belgrade. This volume addresses a variety of topics including the physics of saturated porous media, the relationship between growth in living tissue and molecular transport, the mechanics of polymer bonds, the macroscopic properties of damaged elastomers, the mechanics of carbon nanotubes, the geometry of balance systems in Continuum Thermodynamics and wave propagation in the material manifold. I would like to warmly thank the rest of the organising committee and the conference participants for making GCM 7 an enjoyable and rewarding occasion. Photographs may be found at http://www.lancs.ac.uk/depts/spc/conf/gcm7/wss/index.htm David A Burton Editor
Complete energy conversion by autoresonant three-wave mixing in nonuniform media.
Yaakobi, O; Caspani, L; Clerici, M; Vidal, F; Morandotti, R
2013-01-28
Resonant three-wave interactions appear in many fields of physics e.g. nonlinear optics, plasma physics, acoustics and hydrodynamics. A general theory of autoresonant three-wave mixing in a nonuniform media is derived analytically and demonstrated numerically. It is shown that due to the medium nonuniformity, a stable phase-locked evolution is automatically established. For a weak nonuniformity, the efficiency of the energy conversion between the interacting waves can reach almost 100%. One of the potential applications of our theory is the design of highly-efficient optical parametric amplifiers.
van Schalkwyk, Gerrit I; Marin, Carla E; Ortiz, Mayra; Rolison, Max; Qayyum, Zheala; McPartland, James C; Lebowitz, Eli R; Volkmar, Fred R; Silverman, Wendy K
2017-09-01
Social media holds promise as a technology to facilitate social engagement, but may displace offline social activities. Adolescents with ASD are well suited to capitalize on the unique features of social media, which requires less decoding of complex social information. In this cross-sectional study, we assessed social media use, anxiety and friendship quality in 44 adolescents with ASD, and 56 clinical comparison controls. Social media use was significantly associated with high friendship quality in adolescents with ASD, which was moderated by the adolescents' anxiety levels. No associations were founds between social media use, anxiety and friendship quality in the controls. Social media may be a way for adolescents with ASD without significant anxiety to improve the quality of their friendships.
NASA Astrophysics Data System (ADS)
Chhikara, Bhupender S.; Misra, Santosh K.; Bhattacharya, Santanu
2012-02-01
Methods which disperse single-walled carbon nanotubes (SWNTs) in water as ‘debundled’, while maintaining their unique physical properties are highly useful. We present here a family of cationic cholesterol compounds (Chol+) {Cholest-5en-3β-oxyethyl pyridinium bromide (Chol-PB+), Cholest-5en-3β-oxyethyl N-methyl pyrrolidinium bromide (Chol-MPB+), Cholest-5en-3β-oxyethyl N-methyl morpholinium bromide (Chol-MMB+) and Cholest-5en-3β-oxyethyl diazabicyclo octanium bromide (Chol-DOB+)}. Each of these could be easily dispersed in water. The resulting cationic cholesterol (Chol+) suspensions solubilized single-walled carbon nanotubes (SWCNTs) by the non-specific physical adsorption of Chol+ to form stable, transparent, dark aqueous suspensions at room temperature. Electron microscopy reveals the existence of highly segregated CNTs in these samples. Zeta potential measurements showed an increase in potential of cationic cholesterol aggregates on addition of CNTs. The CNT-Chol+ suspensions were capable of forming stable complexes with genes (DNA) efficiently. The release of double-helical DNA from such CNT-Chol+ complexes could be induced upon the addition of anionic micellar solution of SDS. Furthermore, the CNT-based DNA complexes containing cationic cholesterol aggregates showed higher stability in fetal bovine serum media at physiological conditions. Confocal studies confirm that CNT-Chol+ formulations adhere to HeLa cell surfaces and get internalized more efficiently than the cationic cholesterol suspensions alone (devoid of any CNTs). These cationic cholesterol-CNT suspensions therefore appear to be a promising system for further use in biological applications.
Method to manufacture bit patterned magnetic recording media
Raeymaekers, Bart; Sinha, Dipen N
2014-05-13
A method to increase the storage density on magnetic recording media by physically separating the individual bits from each other with a non-magnetic medium (so-called bit patterned media). This allows the bits to be closely packed together without creating magnetic "cross-talk" between adjacent bits. In one embodiment, ferromagnetic particles are submerged in a resin solution, contained in a reservoir. The bottom of the reservoir is made of piezoelectric material.
[Infection of chronic otitis media with Acinetobacter:6 cases report].
Zhang, K; Qu, P; Jia, N; Fu, T
2016-12-01
Objective: To investigate the clinical characteristics, diagnostic methods and prognosis of patients with chronic otitis media with Acinetobacter infection. Method: Retrospective analysis of clinical data of 6 cases of chronic otitis media complicated with Acinetobacter infection. Including history, clinical manifestations, laboratory examination, audiology, inner ear, CT, MRI imaging characteristics, treatment and prognosis of etc. to summarize the clinical characteristics, diagnosis and treatment of chronic otitis media with Acinetobacter infection. Result: The age was between 17 years old and 61 years old (Median age 30 years) .Two of them was male and 4 were female. Four cases were had underlying diseases. Five cases with main symptom of cholesteatoma, 1 case with earache symptoms, and 1 case with facial paralysis symptoms. Four cases had vary degrees of physical decline and destruction of bone. After surgery treatment, five patients improved ear pus, among 3 cases was cured, 2 cases of recurrence. Conclusion: Chronic otitis media with Acinetobacter infection occurs in the patient with elderly, poor physical constitution. However, the recurrence rate of conventional treatment is higher. The disease has high misdiagnosis rate. Operation combined with sensitive antibiotic therapy is a radical cure method. Copyright© by the Editorial Department of Journal of Clinical Otorhinolaryngology Head and Neck Surgery.
Principled Libraries: Finding Stability in Changing Times.
ERIC Educational Resources Information Center
Crawford, Walt
2000-01-01
Discusses the transition that libraries are currently experiencing between physical resources and electronic access. Topics include technology as tools rather than solutions; media and technology; desktop publishing; electronic books; Web commerce; instant books, or books printed on demand; new types of media; and serving the users. (LRW)
Focus on Library Media Skills for the Young Reader.
ERIC Educational Resources Information Center
School Library Media Activities Monthly, 1989
1989-01-01
Offers suggestions relating to the general characteristics of young readers to aid library media specialists in effective teaching and communication. Topics discussed include physical access, dependence, and activity levels; the use of games and dramatic play; children's interests; conceptual development; and emotional needs and behaviors. (CLB)
Care and Handling of Computer Magnetic Storage Media.
ERIC Educational Resources Information Center
Geller, Sidney B.
Intended for use by data processing installation managers, operating personnel, and technical staff, this publication provides a comprehensive set of care and handling guidelines for the physical/chemical preservation of computer magnetic storage media--principally computer magnetic tapes--and their stored data. Emphasis is placed on media…
Visualizing Transmedia Networks: Links, Paths and Peripheries
ERIC Educational Resources Information Center
Ruppel, Marc Nathaniel
2012-01-01
'Visualizing Transmedia Networks: Links, Paths and Peripheries' examines the increasingly complex rhetorical intersections between narrative and media ("old" and "new") in the creation of transmedia fictions, loosely defined as multisensory and multimodal stories told extensively across a diverse media set. In order…
Trends in Nuclear Explosion Monitoring Research & Development - A Physics Perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maceira, Monica; Blom, Philip Stephen; MacCarthy, Jonathan K.
This document entitled “Trends in Nuclear Explosion Monitoring Research and Development – A Physics Perspective” reviews the accessible literature, as it relates to nuclear explosion monitoring and the Comprehensive Nuclear-Test-Ban Treaty (CTBT, 1996), for four research areas: source physics (understanding signal generation), signal propagation (accounting for changes through physical media), sensors (recording the signals), and signal analysis (processing the signal). Over 40 trends are addressed, such as moving from 1D to 3D earth models, from pick-based seismic event processing to full waveform processing, and from separate treatment of mechanical waves in different media to combined analyses. Highlighted in the documentmore » for each trend are the value and benefit to the monitoring mission, key papers that advanced the science, and promising research and development for the future.« less
ERIC Educational Resources Information Center
Public Health Service (DHHS), Rockville, MD. Office of Disease Prevention and Health Promotion.
Several interested organizations and agencies completed an exploration of the complexities and challenges affecting the communication of health information through the mass media. The goal of this effort was to create a shared agenda for increasing cooperation between mass media and public health professionals in addressing the issues, problems,…
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2009-05-01
The Department of Energy's Oak Ridge National Laboratory (ORNL) conducts cutting edge scientific research. ORNL utilizes removable electronic media, such as computer hard drives, compact disks, data tapes, etc., to store vast amounts of classified information. Incidents involving breakdowns in controls over classified removable electronic media have been a continuous challenge for the Department. The loss of even one piece of such media can have serious national security implications. In 2004, the Department had a complex-wide 'stand-down' of all activities using classified removable electronic media, and such media containing Secret/Restricted Data or higher classified data was designated 'Accountable Classified Removablemore » Electronic Media' (ACREM). As part of the stand-down, sites were required to conduct a 100 percent physical inventory of all ACREM; enter it all into accountability; and conduct security procedure reviews and training. Further, the Department implemented a series of controls, including conducting periodic inventories, utilizing tamper proof devices on ACREM safes, and appointing trained custodians to be responsible for the material. After performance testing and validation that the required accountability systems were in place, ACREM operations at ORNL were approved for restart on August 10, 2004. We conducted a review at ORNL and associated facilities to determine whether ACREM is managed, protected, and controlled consistent with applicable requirements. We found that: (1) Eight pieces of Secret/Restricted Data media had not been identified as ACREM and placed into a system of accountability. Consequently, the items were not subject to all required protections and controls, such as periodic accountability inventories, oversight by a trained custodian, or storage in a designated ACREM safe. (However, the items were secured in safes approved for classified material.) (2) Other required ACREM protections and controls were not implemented as follows: a tamper indicating device was not being used on an ACREM safe; records documenting when a certain safe was opened did not support that a purported inventory had been conducted; and a safe inventory had not been completed in a timely manner. (3) A Personal Digital Assistant and a thumb drive, both capable of recording or transmitting data, were stored in a security area without an analysis to identify vulnerabilities and compensatory measures having been conducted, as required. We also found that an ORNL Cooperative Research and Development Agreement partner had not disabled classified computer ports at the partner's site that were capable of writing classified information to external or removable media, as required. We made several recommendations designed to enhance the security of ACREM, security areas, and computers.« less
Bedroom media, sedentary time and screen-time in children: a longitudinal analysis
2013-01-01
Background Having electronic media in the bedroom is cross-sectionally associated with greater screen-time in children, but few longitudinal studies exist. The aim of this study was to describe longitudinal patterns of ownership and examine cross-sectional and longitudinal associations of bedroom media with children’s sedentary behaviour. Methods Data are from the Sport, Physical activity and Eating behaviour: Environmental Determinants in Young people (SPEEDY) study, collected at 3 time-points: baseline (2007, T0; age 10.3 ± 0.3 years), 1-year (T1y) and 4-year (T4y) follow-up. For each assessment, 1512 (44.9% male), 715 (41.0% male), and 319 (48.3% male) participants provided valid accelerometer data. Outcome variables were accelerometer-assessed sedentary time and self-reported screen-time. The presence of a television or computer in the bedroom was self-reported by participants and a combined bedroom media score calculated as the sum of such items. Cross-sectional and longitudinal associations between bedroom media and each outcome were examined using multi-level linear regression. Results Bedroom TV ownership fell from 70.9% at T0 to 42.5% at T4y. Having a TV in the bedroom (beta; 95% CI*100, T0: -1.17; -1.88, -0.46. T1y: -1.68; -2.67, -0.70) and combined bedroom media (T0: -0.76; -1.26, -0.27. T1y: -0.79; -1.51, -0.07) were negatively associated with objectively measured weekly sedentary time at T0 and T1y. Having a computer in the bedroom (beta; 95% CI, T0: 0.15; 0.02, 0.29. T4y: 0.35; 0.10, 0.60) and combined bedroom media (T0: 0.09: 0.01, 0.18. T4y: 0.20; 0.05, 0.34) were positively associated with screen-time at T0 and T4y. Relative to participants without a computer throughout the study, children that had a computer in their bedroom at T0 but not at T4y (beta; 95% CI for change in screen-time: -8.02; -12.75, -3.29) reported smaller increases in screen-time. Conclusions The bedroom media environment changes with age and exhibits a complex relationship with children’s sedentary behaviour. Modifying children’s bedroom media environment may impact upon screen-time but appears unlikely to influence overall sedentary time. PMID:24341426
NASA Astrophysics Data System (ADS)
Wu, Lin
2018-05-01
In this paper, we model the depletion dynamics of the molecularly thin layer of lubricants on a bit patterned media disk of hard disk drives under a sliding air bearing head. The dominant physics and consequently, the lubricant depletion dynamics on a patterned disk are shown to be significantly different from the well-studied cases of a smooth disk. Our results indicate that the surface tension effect, which is negligible on a flat disk, apparently suppresses depletion by enforcing a bottleneck effect around the disk pattern peak regions to thwart the migration of lubricants. When the disjoining pressure is relatively small, it assists the depletion. But, when the disjoining pressure becomes dominant, the disjoining pressure resists depletion. Disk pattern orientation plays a critical role in the depletion process. The effect of disk pattern orientation on depletion originates from its complex interaction with other intermingled factors of external air shearing stress distribution and lubricant particle trajectory. Patterning a disk surface with nanostructures of high density, large height/pitch ratio, and particular orientation is demonstrated to be one efficient way to alleviate the formation of lubricant depletion tracks.
Diffusion of rod-like nanoparticles in non-adhesive and adhesive porous polymeric gels
NASA Astrophysics Data System (ADS)
Wang, Jiuling; Yang, Yiwei; Yu, Miaorong; Hu, Guoqing; Gan, Yong; Gao, Huajian; Shi, Xinghua
2018-03-01
It is known that rod-like nanoparticles (NPs) can achieve higher diffusivity than their spherical counterparts in biological porous media such as mucus and tumor interstitial matrix, but the underlying mechanisms still remain elusive. Here, we present a joint experimental and theoretical study to show that the aspect ratio (AR) of NPs and their adhesive interactions with the host medium play key roles in such anomalous diffusion behaviors of nanorods. In an adhesive polymer solution/gel (e.g., mucus), hopping diffusion enables nanorods to achieve higher diffusivity than spherical NPs with diameters equal to the minor axis of the rods, and there exists an optimal AR that leads to maximum diffusivity. In contrast, the diffusivity of nanorods decreases monotonically with increasing AR in a non-adhesive polymer solution/gel (e.g., hydroxyethyl cellulose, HEC). Our theoretical model, which captures all the experimental observations, generalizes the so-called obstruction-scaling model by incorporating the effects of the NPs/matrix interaction via the mean first passage time (MFPT) theory. This work reveals the physical origin of the anomalous diffusion behaviors of rod-like NPs in biological gels and may provide guidelines for a range of applications that involve NPs diffusion in complex porous media.
Diffusion MRI: literature review in salivary gland tumors.
Attyé, A; Troprès, I; Rouchy, R-C; Righini, C; Espinoza, S; Kastler, A; Krainik, A
2017-07-01
Surgical resection is currently the best treatment for salivary gland tumors. A reliable magnetic resonance imaging mapping, encompassing tumor grade, location, and extension may assist safe and effective tumor resection and provide better information for patients regarding potential risks and morbidity after surgical intervention. However, direct examination of the tumor grade and extension using conventional morphological MRI remains difficult, often requiring contrast media injection and complex algorithms on perfusion imaging to estimate the degree of malignancy. In addition, contrast-enhanced MRI technique may be problematic due to the recently demonstrated gadolinium accumulation in the dentate nucleus of the cerebellum. Significant developments in magnetic resonance diffusion imaging, involving voxel-based quantitative analysis through the measurement of the apparent diffusion coefficient, have enhanced our knowledge on the different histopathological salivary tumor grades. Other diffusion imaging-derived techniques, including high-order tractography models, have recently demonstrated their usefulness in assessing the facial nerve location in parotid tumor context. All of these imaging techniques do not require contrast media injection. Our review starts by outlining the physical basis of diffusion imaging, before discussing findings from diagnostic studies testing its usefulness in assessing salivary glands tumors with diffusion MRI. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Food, Class, and Health: The Role of the Perceived Body in the Social Reproduction of Health
Carroll Chapman, Shawna L.; Wu, Li-Tzy
2012-01-01
The association between social class and cardiovascular health is complex, involving a constant interplay of factors as individuals integrate external information from the media, health care providers, and people they know with personal experience to produce health behaviors. This ethnographic study took place from February 2008 to February 2009 to assess how cardiovascular health information circulating in Kansas City influenced a sample of 55 women in the area. Participants were primarily Caucasian (n=41) but diverse in terms of age, income, and education. Themes identified in transcripts showed women shared the same idea of an ideal body: young and thin, and associated this perception with ideas about good health, intelligence, and morality. Transcript themes corresponded to those found at health events and in the media that emphasized individual control over determinants of disease. Women’s physical appearance and health behaviors corresponded to class indicators. Four categories were identified to represent women’s shared beliefs and practices in relation to class, cardiovascular disease, and obesity. Findings were placed within an existing body of social theory to better understand how cardiovascular health information and women’s associated beliefs relate to health inequality. PMID:22746270
Bovet, Alexandre; Morone, Flaviano; Makse, Hernán A
2018-06-06
Measuring and forecasting opinion trends from real-time social media is a long-standing goal of big-data analytics. Despite the large amount of work addressing this question, there has been no clear validation of online social media opinion trend with traditional surveys. Here we develop a method to infer the opinion of Twitter users by using a combination of statistical physics of complex networks and machine learning based on hashtags co-occurrence to build an in-domain training set of the order of a million tweets. We validate our method in the context of 2016 US Presidential Election by comparing the Twitter opinion trend with the New York Times National Polling Average, representing an aggregate of hundreds of independent traditional polls. The Twitter opinion trend follows the aggregated NYT polls with remarkable accuracy. We investigate the dynamics of the social network formed by the interactions among millions of Twitter supporters and infer the support of each user to the presidential candidates. Our analytics unleash the power of Twitter to uncover social trends from elections, brands to political movements, and at a fraction of the cost of traditional surveys.
Recruiting Adolescent Research Participants: In-Person Compared to Social Media Approaches.
Moreno, Megan A; Waite, Alan; Pumper, Megan; Colburn, Trina; Holm, Matt; Mendoza, Jason
2017-01-01
Recruiting adolescent participants for research is challenging. The purpose of this study was to compare traditional in-person recruitment methods to social media recruitment. We recruited adolescents aged 14-18 years for a pilot physical activity intervention study, including a wearable physical activity tracking device and a Facebook group. Participants were recruited (a) in person from a local high school and an adolescent medicine clinic and (b) through social media, including Facebook targeted ads, sponsored tweets on Twitter, and a blog post. Data collected included total exposure (i.e., reach), engagement (i.e., interaction), and effectiveness. Effectiveness included screening and enrollment for each recruitment method, as well as time and resources spent on each recruitment method. In-person recruitment reached a total of 297 potential participants of which 37 enrolled in the study. Social media recruitment reached a total of 34,272 potential participants of which 8 enrolled in the study. Social media recruitment methods utilized an average of 1.6 hours of staff time and cost an average of $40.99 per participant enrolled, while in-person recruitment methods utilized an average of 0.75 hours of staff time and cost an average of $19.09 per participant enrolled. Social media recruitment reached more potential participants, but the cost per participant enrolled was higher compared to traditional methods. Studies need to consider benefits and downsides of traditional and social media recruitment methods based on study goals and population.
Kahle, Kate; Sharon, Aviv J; Baram-Tsabari, Ayelet
2016-01-01
Although the scientific community increasingly recognizes that its communication with the public may shape civic engagement with science, few studies have characterized how this communication occurs online. Social media plays a growing role in this engagement, yet it is not known if or how different platforms support different types of engagement. This study sets out to explore how users engage with science communication items on different platforms of social media, and what are the characteristics of the items that tend to attract large numbers of user interactions. Here, user interactions with almost identical items on five of CERN's social media platforms were quantitatively compared over an eight-week period, including likes, comments, shares, click-throughs, and time spent on CERN's site. The most popular items were qualitatively analyzed for content features. Findings indicate that as audience size of a social media platform grows, the total rate of engagement with content tends to grow as well. However, per user, engagement tends to decline with audience size. Across all platforms, similar topics tend to consistently receive high engagement. In particular, awe-inspiring imagery tends to frequently attract high engagement across platforms, independent of newsworthiness. To our knowledge, this study provides the first cross-platform characterization of public engagement with science on social media. Findings, although focused on particle physics, have a multidisciplinary nature; they may serve to benchmark social media analytics for assessing science communication activities in various domains. Evidence-based suggestions for practitioners are also offered.
Baram-Tsabari, Ayelet
2016-01-01
Although the scientific community increasingly recognizes that its communication with the public may shape civic engagement with science, few studies have characterized how this communication occurs online. Social media plays a growing role in this engagement, yet it is not known if or how different platforms support different types of engagement. This study sets out to explore how users engage with science communication items on different platforms of social media, and what are the characteristics of the items that tend to attract large numbers of user interactions. Here, user interactions with almost identical items on five of CERN's social media platforms were quantitatively compared over an eight-week period, including likes, comments, shares, click-throughs, and time spent on CERN's site. The most popular items were qualitatively analyzed for content features. Findings indicate that as audience size of a social media platform grows, the total rate of engagement with content tends to grow as well. However, per user, engagement tends to decline with audience size. Across all platforms, similar topics tend to consistently receive high engagement. In particular, awe-inspiring imagery tends to frequently attract high engagement across platforms, independent of newsworthiness. To our knowledge, this study provides the first cross-platform characterization of public engagement with science on social media. Findings, although focused on particle physics, have a multidisciplinary nature; they may serve to benchmark social media analytics for assessing science communication activities in various domains. Evidence-based suggestions for practitioners are also offered. PMID:27232498
An Inquiry-Based Course Using "Physics?" in Cartoons and Movies
ERIC Educational Resources Information Center
Rogers, Michael
2007-01-01
Books, cartoons, movies, and video games provide engaging opportunities to get both science and nonscience students excited about physics. An easy way to use these media in one's classroom is to have students view clips and identify unusual events, odd physics, or list things that violate our understanding of the physics that governs our universe.…
NASA Astrophysics Data System (ADS)
Jiménez, Noé; Camarena, Francisco; Redondo, Javier; Sánchez-Morcillo, Víctor; Konofagou, Elisa E.
2015-10-01
We report a numerical method for solving the constitutive relations of nonlinear acoustics, where multiple relaxation processes are included in a generalized formulation that allows the time-domain numerical solution by an explicit finite differences scheme. Thus, the proposed physical model overcomes the limitations of the one-way Khokhlov-Zabolotskaya-Kuznetsov (KZK) type models and, due to the Lagrangian density is implicitly included in the calculation, the proposed method also overcomes the limitations of Westervelt equation in complex configurations for medical ultrasound. In order to model frequency power law attenuation and dispersion, such as observed in biological media, the relaxation parameters are fitted to both exact frequency power law attenuation/dispersion media and also empirically measured attenuation of a variety of tissues that does not fit an exact power law. Finally, a computational technique based on artificial relaxation is included to correct the non-negligible numerical dispersion of the finite difference scheme, and, on the other hand, improve stability trough artificial attenuation when shock waves are present. This technique avoids the use of high-order finite-differences schemes leading to fast calculations. The present algorithm is especially suited for practical configuration where spatial discontinuities are present in the domain (e.g. axisymmetric domains or zero normal velocity boundary conditions in general). The accuracy of the method is discussed by comparing the proposed simulation solutions to one dimensional analytical and k-space numerical solutions.
Electronic screen media for persons with autism spectrum disorders: results of a survey.
Shane, Howard C; Albert, Patti Ducoff
2008-09-01
Social and anecdotal reports suggest a predilection for visual media among individuals on the autism spectrum, yet no formal investigation has explored the extent of that use. Using a distributed questionnaire design, parents and caregivers report on time allotted toward media, including observable behaviors and communicative responses. More time was spent engaged with electronic screen media (ESM) than any other leisure activity. Television and movie viewing was more popular than computer usage. Across media platforms, animated programs were more highly preferred. Prevalent verbal and physical imitation was reported to occur during and following exposure to ESM. Clinical implications to strategically incorporate ESM into learning approaches for children with autism spectrum disorders (ASD) are provided.
Rapid surface-biostructure interaction analysis using strong metal-based nanomagnets.
Rotzetter, Aline C C; Schumacher, Christoph M; Zako, Tamotsu; Stark, Wendelin J; Maeda, Mizuo
2013-11-19
Nanomaterials are increasingly suggested for the selective adsorption and extraction of complex compounds in biomedicine. Binding of the latter requires specific surface modifications of the nanostructures. However, even complicated macromolecules such as proteins can afford affinities toward basic surface characteristics such as hydrophobicity, topology, and electrostatic charge. In this study, we address these more basic physical interactions. In a model system, the interaction of bovine serum albumin and amyloid β 42 fibrillar aggregates with carbon-coated cobalt nanoparticles, functionalized with various polymers differing in character, was studied. The possibility of rapid magnetic separation upon binding to the surface represents a valuable tool for studying surface interactions and selectivities. We find that the surface interaction of Aβ 42 fibrillar aggregates is mostly hydrophobic in nature. Because bovine serum albumin (BSA) is conformationally adaptive, it is known to bind surfaces with widely differing properties (charge, topology, and hydrophobicity). However, the rate of tight binding (no desorption upon washing) can vary largely depending on the extent of necessary conformational changes for a specific surface. We found that BSA can only bind slowly to polyethylenimine-coated nanomagnets. Under competitive conditions (high excess BSA compared to that for β 42 fibrillar aggregates), this effect is beneficial for targeting the fibrillar species. These findings highlight the possibility of selective extractions from complex media when advantageous basic physical surface properties are chosen.
Affective Support for Intellectual Access: Preventing Accidents on the On-Ramp.
ERIC Educational Resources Information Center
Havener, W. Michael; Latrobe, Kathy
1995-01-01
Discussion of how students can successfully enter the information highway focuses on the role of the school media specialist. Topics include information-seeking behavior; missions and goals of library media programs; affective access, including interpersonal communication, physical and affective ergonomics, and social interaction; and global…
Conceptual understanding of screen media parenting: Report of a working group
USDA-ARS?s Scientific Manuscript database
Screen media (television, computers, and videogames) use has been linked to multiple child outcomes, including obesity. Parents can be an important influence on children's screen use. There has been an increase in the number of instruments available to assess parenting in feeding and physical activi...
The Progression of Podcasting/Vodcasting in a Technical Physics Class
ERIC Educational Resources Information Center
Glanville, Y. J.
2010-01-01
Technology such as Microsoft PowerPoint presentations, clickers, podcasting, and learning management suites is becoming prevalent in classrooms. Instructors are using these media in both large lecture hall settings and small classrooms with just a handful of students. Traditionally, each of these media is instructor driven. For instance,…
news For the media Particle Physics Neutrinos Fermilab and the LHC Dark matter and dark energy ADMX discoveries Questions for the universe Ask a scientist Tevatron Tevatron Timeline Tevatron accelerator Tevatron experiments Tevatron operation Shutdown process For the media Video of shutdown event Guest book
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-07
... tip messages to Facebook or Twitter using their personal social media account. Through leveraging the user's existing social network, the user is more likely to experience positive feedback and encouragement in achieving their dietary and/or physical activity goals. Social media functionality is provided...
Weerts to lead Physical Sciences and Engineering directorate | Argonne
Electrochemical Energy Science CTRCenter for Transportation Research CRIChain Reaction Innovations CIComputation Search Energy Environment National Security User Facilities Science Work with Us About Safety News Press Releases Feature Stories Science Highlights In the News Argonne Now Magazine Media Contacts Social Media
36 CFR 1226.24 - How must agencies destroy temporary records?
Code of Federal Regulations, 2010 CFR
2010-07-01
... documents. (2) Records on electronic and other media. Records other than paper records (audio, visual, and electronic records on physical media data tapes, disks, and diskettes) may be salvaged and sold in the same... ADMINISTRATION RECORDS MANAGEMENT IMPLEMENTING DISPOSITION § 1226.24 How must agencies destroy temporary records...
36 CFR 1226.24 - How must agencies destroy temporary records?
Code of Federal Regulations, 2012 CFR
2012-07-01
... documents. (2) Records on electronic and other media. Records other than paper records (audio, visual, and electronic records on physical media data tapes, disks, and diskettes) may be salvaged and sold in the same... ADMINISTRATION RECORDS MANAGEMENT IMPLEMENTING DISPOSITION § 1226.24 How must agencies destroy temporary records...
36 CFR 1226.24 - How must agencies destroy temporary records?
Code of Federal Regulations, 2011 CFR
2011-07-01
... documents. (2) Records on electronic and other media. Records other than paper records (audio, visual, and electronic records on physical media data tapes, disks, and diskettes) may be salvaged and sold in the same... ADMINISTRATION RECORDS MANAGEMENT IMPLEMENTING DISPOSITION § 1226.24 How must agencies destroy temporary records...
36 CFR 1226.24 - How must agencies destroy temporary records?
Code of Federal Regulations, 2014 CFR
2014-07-01
... documents. (2) Records on electronic and other media. Records other than paper records (audio, visual, and electronic records on physical media data tapes, disks, and diskettes) may be salvaged and sold in the same... ADMINISTRATION RECORDS MANAGEMENT IMPLEMENTING DISPOSITION § 1226.24 How must agencies destroy temporary records...
36 CFR § 1226.24 - How must agencies destroy temporary records?
Code of Federal Regulations, 2013 CFR
2013-07-01
... records or documents. (2) Records on electronic and other media. Records other than paper records (audio, visual, and electronic records on physical media data tapes, disks, and diskettes) may be salvaged and... RECORDS ADMINISTRATION RECORDS MANAGEMENT IMPLEMENTING DISPOSITION § 1226.24 How must agencies destroy...
Fermilab | Physics for Everyone | Lecture Series
Book Newsroom Newsroom News and features Press releases Photo gallery Fact sheets and brochures Media media Video of shutdown event Guest book Tevatron Impact June 11, 2012 About the symposium Symposium Book Fermilab at Work For Industry Jobs Interact Facebook Twitter Instagram Google+ YouTube Flickr
Fermilab | Science | Particle Physics
Book Newsroom Newsroom News and features Press releases Photo gallery Fact sheets and brochures Media media Video of shutdown event Guest book Tevatron Impact June 11, 2012 About the symposium Symposium Quick Links Home Contact Phone Book Fermilab at Work For Industry Jobs Interact Facebook Twitter
40 CFR 25.4 - Information, notification, and consultation responsibilities.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., consistent with applicable statutory requirements, the social, economic, and environmental consequences of... complex technical materials that relate to significant decisions should be summarized for public and media... media in advance of times at which major decisions not covered by notice requirements for public...
40 CFR 25.4 - Information, notification, and consultation responsibilities.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., consistent with applicable statutory requirements, the social, economic, and environmental consequences of... complex technical materials that relate to significant decisions should be summarized for public and media... media in advance of times at which major decisions not covered by notice requirements for public...
40 CFR 25.4 - Information, notification, and consultation responsibilities.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., consistent with applicable statutory requirements, the social, economic, and environmental consequences of... complex technical materials that relate to significant decisions should be summarized for public and media... media in advance of times at which major decisions not covered by notice requirements for public...
40 CFR 25.4 - Information, notification, and consultation responsibilities.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., consistent with applicable statutory requirements, the social, economic, and environmental consequences of... complex technical materials that relate to significant decisions should be summarized for public and media... media in advance of times at which major decisions not covered by notice requirements for public...
40 CFR 25.4 - Information, notification, and consultation responsibilities.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., consistent with applicable statutory requirements, the social, economic, and environmental consequences of... complex technical materials that relate to significant decisions should be summarized for public and media... media in advance of times at which major decisions not covered by notice requirements for public...
Anisotropic microporous supports impregnated with polymeric ion-exchange materials
Friesen, Dwayne; Babcock, Walter C.; Tuttle, Mark
1985-05-07
Novel ion-exchange media are disclosed, the media comprising polymeric anisotropic microporous supports containing polymeric ion-exchange or ion-complexing materials. The supports are anisotropic, having small exterior pores and larger interior pores, and are preferably in the form of beads, fibers and sheets.
NASA Astrophysics Data System (ADS)
Sukhanov, P. T.; Chibisova, T. V.; Korenman, Ya. I.
2014-12-01
The extraction of local anesthetics from aqueous media with mixtures of solvent is examined and its synergistic and antagonistic effects are determined. Synergism parameters, separation factors, constants for the formation of anesthetic complexes, and solvate numbers are calculated.
USDA-ARS?s Scientific Manuscript database
ARS-Media for Excel is an ion solution calculator that uses Microsoft Excel to generate recipes of salts for complex ion mixtures specified by the user. Generating salt combinations (recipes) that result in pre-specified target ion values is a linear programming problem. Thus, the recipes are genera...
Demyan, Amy L; Anderson, Timothy
2012-04-01
This study examined the effects of a mass-media video intervention on expectations, attitudes, and intentions to seek help from professional mental health care services. A public service announcement-style, mass-media video intervention was developed, with prior empirical research on help-seeking behaviors organized according to the theory of reasoned action/planned behavior. In total, 228 participants were randomly assigned to 1 of 2 conditions: (a) the media-exposed intervention group, who watched programming in which the media intervention was inserted, and (b) the control group, who watched the same programming without the media intervention. The media intervention was not influential on expectation and belief-based barrier variables. However, the media intervention was effective at increasing positive attitudes toward help seeking. Findings regarding the intervention's ability to increase help-seeking intentions for interpersonal problems were complex. Implications of these findings for future research are discussed.
Jennane, Rachid; Aufort, Gabriel; Benhamou, Claude Laurent; Ceylan, Murat; Ozbay, Yüksel; Ucan, Osman Nuri
2012-04-01
Curve and surface thinning are widely-used skeletonization techniques for modeling objects in three dimensions. In the case of disordered porous media analysis, however, neither is really efficient since the internal geometry of the object is usually composed of both rod and plate shapes. This paper presents an alternative to compute a hybrid shape-dependent skeleton and its application to porous media. The resulting skeleton combines 2D surfaces and 1D curves to represent respectively the plate-shaped and rod-shaped parts of the object. For this purpose, a new technique based on neural networks is proposed: cascade combinations of complex wavelet transform (CWT) and complex-valued artificial neural network (CVANN). The ability of the skeleton to characterize hybrid shaped porous media is demonstrated on a trabecular bone sample. Results show that the proposed method achieves high accuracy rates about 99.78%-99.97%. Especially, CWT (2nd level)-CVANN structure converges to optimum results as high accuracy rate-minimum time consumption.
Involving Your Many Publics in Support of Physical Education.
ERIC Educational Resources Information Center
Conrad, C. Carson
The author presents suggestions for publicizing physical education programs more effectively and for involving as many "publics" as possible in support of physical education. Methods discussed include: (1) the use of students as "salespeople" to other students, parents, and teachers; (2) publicizing through mass communications media, through…
ChelomEx: Isotope-assisted discovery of metal chelates in complex media using high-resolution LC-MS.
Baars, Oliver; Morel, François M M; Perlman, David H
2014-11-18
Chelating agents can control the speciation and reactivity of trace metals in biological, environmental, and laboratory-derived media. A large number of trace metals (including Fe, Cu, Zn, Hg, and others) show characteristic isotopic fingerprints that can be exploited for the discovery of known and unknown organic metal complexes and related chelating ligands in very complex sample matrices using high-resolution liquid chromatography mass spectrometry (LC-MS). However, there is currently no free open-source software available for this purpose. We present a novel software tool, ChelomEx, which identifies isotope pattern-matched chromatographic features associated with metal complexes along with free ligands and other related adducts in high-resolution LC-MS data. High sensitivity and exclusion of false positives are achieved by evaluation of the chromatographic coherence of the isotope pattern within chromatographic features, which we demonstrate through the analysis of bacterial culture media. A built-in graphical user interface and compound library aid in identification and efficient evaluation of results. ChelomEx is implemented in MatLab. The source code, binaries for MS Windows and MAC OS X as well as test LC-MS data are available for download at SourceForge ( http://sourceforge.net/projects/chelomex ).
Complexation of lead by Bermuda grass root exudates in aqueous media.
Thomas, Catherine; Butler, Afrachanna; Larson, Steven; Medina, Victor; Begonia, Maria
2014-01-01
Exudates produced from Bermuda grass roots were collected in deionized water from sterilized Bermuda grass sod at 3-day intervals over a period of 15 days. Exudates were analyzed for total organic carbon, and characterized via Fourier Transform Infrared Spectroscopy. Exudate samples were adjusted to pH values of 4.5, 6.5, and 7.5, amended with lead and quantified for soluble and complexed lead via Inductively Coupled Plasma--Optical Emission Spectrometry. Data obtained from total organic carbon measurements indicated compositional changes in Bermuda grass root exudates as organic carbon concentrations increased over time. Analysis of the infrared spectroscopy data indicated that carboxylic acids and amine functional groups were present in root exudates. Also, the ability of root-exuded compounds to solubilize lead in aqueous media was demonstrated as exudate samples dissolved an average of 60% more lead than deionized water. At pH values 4.5 and 7.5, lead complexation by Bermuda grass root exudates increased with decreasing molecular weight size fractions, while an opposite trend was observed at pH 6.5. Results from this study demonstrated the ability of Bermuda grass root exudates to complex lead in aqueous media.
77 FR 65191 - Agency Forms Undergoing Paperwork Reduction Act Review
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-25
... Community Transformation Grants: Evaluation of Nutrition, Physical Activity, and Obesity-related Television... effectiveness of media campaigns targeting nutrition, physical activity, and obesity (NPAO). A number of.... These efforts provide a [[Page 65192
Data management, archiving, visualization and analysis of space physics data
NASA Technical Reports Server (NTRS)
Russell, C. T.
1995-01-01
A series of programs for the visualization and analysis of space physics data has been developed at UCLA. In the course of those developments, a number of lessons have been learned regarding data management and data archiving, as well as data analysis. The issues now facing those wishing to develop such software, as well as the lessons learned, are reviewed. Modern media have eased many of the earlier problems of the physical volume required to store data, the speed of access, and the permanence of the records. However, the ultimate longevity of these media is still a question of debate. Finally, while software development has become easier, cost is still a limiting factor in developing visualization and analysis software.
Emerging adults' perceptions of messages about physical appearance.
Gillen, Meghan M; Lefkowitz, Eva S
2009-06-01
Emerging adults receive messages about physical appearance from a range of sources, but few studies have examined the content of these messages. Undergraduates (N=154) who identified as African American, Latino American, and European American answered 4 open-ended questions about messages they perceived about physical appearance from family, peers, school, and media. Raters coded responses for content and affect. The most common messages perceived were the importance/non-importance of appearance, positive comments about appearance, and the link between attractiveness and success. The perception of these messages frequently differed by gender and source, but rarely by ethnicity. Women perceived more frequent and more negative messages than did men. Individuals perceived the media as transmitting more negative messages and the family more healthful and positive ones.
Advances in design and modeling of porous materials
NASA Astrophysics Data System (ADS)
Ayral, André; Calas-Etienne, Sylvie; Coasne, Benoit; Deratani, André; Evstratov, Alexis; Galarneau, Anne; Grande, Daniel; Hureau, Matthieu; Jobic, Hervé; Morlay, Catherine; Parmentier, Julien; Prelot, Bénédicte; Rossignol, Sylvie; Simon-Masseron, Angélique; Thibault-Starzyk, Frédéric
2015-07-01
This special issue of the European Physical Journal Special Topics is dedicated to selected papers from the symposium "High surface area porous and granular materials" organized in the frame of the conference "Matériaux 2014", held on November 24-28, 2014 in Montpellier, France. Porous materials and granular materials gather a wide variety of heterogeneous, isotropic or anisotropic media made of inorganic, organic or hybrid solid skeletons, with open or closed porosity, and pore sizes ranging from the centimeter scale to the sub-nanometer scale. Their technological and industrial applications cover numerous areas from building and civil engineering to microelectronics, including also metallurgy, chemistry, health, waste water and gas effluent treatment. Many emerging processes related to environmental protection and sustainable development also rely on this class of materials. Their functional properties are related to specific transfer mechanisms (matter, heat, radiation, electrical charge), to pore surface chemistry (exchange, adsorption, heterogeneous catalysis) and to retention inside confined volumes (storage, separation, exchange, controlled release). The development of innovative synthesis, shaping, characterization and modeling approaches enables the design of advanced materials with enhanced functional performance. The papers collected in this special issue offer a good overview of the state-of-the-art and science of these complex media. We would like to thank all the speakers and participants for their contribution to the success of the symposium. We also express our gratitude to the organization committee of "Matériaux 2014". We finally thank the reviewers and the staff of the European Physical Journal Special Topics who made the publication of this special issue possible.
Host-guest chemistry of cyclodextrin carbamates and cellulose derivatives in aqueous solution.
Guo, Xin; Jia, Xiangxiang; Du, Jiaojiao; Xiao, Longqiang; Li, Feifei; Liao, Liqiong; Liu, Lijian
2013-10-15
Supramolecular polymer micelles were prepared on basis of the inclusion complexation between cyclodextrin carbamates and cellulose derivatives in aqueous media. Cyclodextrin carbamates were synthesized by microwave-assisted method from cyclodextrin and urea. The urea modified cyclodextrin shows the higher yield than the physical mixture of urea/cyclodextrin in the micellization with cellulose derivatives. The supramolecular structure of the core-shell micelles was demonstrated by (1)H NMR spectra, TEM images, and fluorescence spectra. The drug release behavior of the supramolecular polymer micelles was evaluated using prednisone acetate as a model drug. The drug loaded micelles showed steady and long time drug release behavior. With these properties, the supramolecular polymer micelles are attractive as drug carriers for pharmaceutical applications. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zavidonov, I. V.
The history of the most important scientific discovery of the early space era - the discovery of the inner and outer radiation belts of the Earth in 1958 is reconstructed. The paper uses archival records to bring to light the relative contributions of Soviet and American reseachers to the complex process of discovery. It also shows how misuses of science in mass-media political propaganda led to misrepresentations of the real historical portrayal of early space research.
From Loschmidt daemons to time-reversed waves.
Fink, Mathias
2016-06-13
Time-reversal invariance can be exploited in wave physics to control wave propagation in complex media. Because time and space play a similar role in wave propagation, time-reversed waves can be obtained by manipulating spatial boundaries or by manipulating time boundaries. The two dual approaches will be discussed in this paper. The first approach uses 'time-reversal mirrors' with a wave manipulation along a spatial boundary sampled by a finite number of antennas. Related to this method, the role of the spatio-temporal degrees of freedom of the wavefield will be emphasized. In a second approach, waves are manipulated from a time boundary and we show that 'instantaneous time mirrors', mimicking the Loschmidt point of view, simultaneously acting in the entire space at once can also radiate time-reversed waves. © 2016 The Author(s).
Robotic Mining Competition - Media Day
2017-05-25
Stan Starr, branch chief for Applied Physics in the Exploration Research and Technology Programs, is interviewed on-camera by Sarah McNulty, with the Communication and Public Engagement Directorate, during NASA's 8th Annual Robotic Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. used their uniquely-designed mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, and participated in other competition requirements, May 22-26. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.
SpaceX CRS-14 What's On Board Science Briefing
2018-04-01
From left, Pete Hasbrook, associate program scientist, International Space Station Program at NASA's Johnson Space Center in Houston; Craig Kundrot, director, NASA's Space Life and Physical Science Research and Applications; Marie Lewis, moderator, Kennedy Space Center; and Patrick O'Neill, Marketing and Communications Manager, Center for the Advancement of Science in Space, speak to members of the media in the Kennedy Space Center Press Site auditorium. The briefing focused on research planned for launch to the International Space Station. The scientific materials and supplies will be aboard a Dragon spacecraft scheduled for liftoff from Cape Canaveral Air Force Station's Space Launch Complex 40 at 4:30 p.m. EST, on April 2, 2018. The SpaceX Falcon 9 rocket will launch the company's 14th Commercial Resupply Services mission to the space station.
Interactive basic mathematics web using Wordpress
NASA Astrophysics Data System (ADS)
Septia, Tika; Husna; Cesaria, Anna
2017-12-01
Wordpress is a popular open source tool that can be used for developing learning media. Basic Mathematics is the difficult subject for a physics student. The students need an interactive learning to improve their knowledge. The aims of this study were to develop the interactive media using Wordpress and to know the effectiveness of web as a learning media to improve the ICT Literacy students. This study used ADDIE models. The effectiveness of interactive web can be described as the students’ equipness of ICT literacy. The population is physics students. The findings show that the interactive web is valid for the content, presentation, linguistic, and graphic aspects. The results concluded that basic mathematic interactive web is effective to equip the learners ICT literacy of categories of high, medium, and low with the observations and questionnaires are in very good criteria.
A content analysis of cognitive health promotion in popular magazines.
Friedman, Daniela B; Laditka, Sarah B; Laditka, James N; Price, Anna E
2011-01-01
Health behaviors, particularly physical activity, may promote cognitive health. The public agenda for health behaviors is influenced by popular media. We analyzed the cognitive health content of 20 United States magazines, examining every page of every 2006-2007 issue of the highest circulating magazines for general audiences, women, men, African Americans, and the health conscious (n = 178). Diet was the greatest focus. Physical activity coverage was limited. Important behavior-related cognitive health risks, including hypertension and diabetes, were not mentioned. Publications for African Americans had little cognitive health content. Coverage of cognitive health was not commensurate with growing evidence that health behaviors may help to maintain it. Findings may be useful to public health officials, health care providers, non-profit organizations that promote cognitive health, individuals evaluating cognitive health information in popular media, and those responsible for magazines or other media.
Cole, Charlotte F; Lee, June H; Bucuvalas, Abigail; Sırali, Yasemin
2018-03-01
Children's media have the capacity to prepare young learners to develop the knowledge, attitudes, and skills they need to contribute to a more peaceful world. Research suggests international coproductions of Sesame Street and other children's media efforts are linked to positive impact on how viewers perceive themselves and their own cultures, as well as how they perceive others. Creating such media, however, relies on a commitment to a complex development process where the educational needs of children are considered alongside intra- and intergroup dynamics and political realities. This paper presents a practitioners' perspective on the essential components of children's media programs for peacebuilding and, in so doing, recommends a way forward for producing children's media in this domain. © 2018 Wiley Periodicals, Inc.
Olson, Gordon L.
2015-09-24
One-dimensional models for the transport of radiation through binary stochastic media do not work in multi-dimensions. In addition, authors have attempted to modify or extend the 1D models to work in multidimensions without success. Analytic one-dimensional models are successful in 1D only when assuming greatly simplified physics. State of the art theories for stochastic media radiation transport do not address multi-dimensions and temperature-dependent physics coefficients. Here, the concept of effective opacities and effective heat capacities is found to well represent the ensemble averaged transport solutions in cases with gray or multigroup temperature-dependent opacities and constant or temperature-dependent heat capacities. Inmore » every case analyzed here, effective physics coefficients fit the transport solutions over a useful range of parameter space. The transport equation is solved with the spherical harmonics method with angle orders of n=1 and 5. Although the details depend on what order of solution is used, the general results are similar, independent of angular order.« less
NASA Astrophysics Data System (ADS)
Askar'yan, G. A.
1982-07-01
An analysis is made and experimental results are reported of studies of the transmission of laser and other radiation by turbid physical and biological media, such as layers of a scattering medium or human tissue of thickness much greater than the characteristic attenuation length. It is reported that the transmission increases strongly as a result of depression and piercing of soft scattering media. A local pressure applied to a biological tissue produces a transmission enhancement considerably greater than compression of a layer of a physically turbid medium: this is due to the displacement of blood and of muscle out of the compressed region. A reduction in the scattering and absorption is expected to occur also in the case of rf and ionizing radiations, such as charged particles, x rays, gamma rays, etc. It is pointed out that this could be useful in deep irradiation carried out with the aim of inhibiting internal morbid processes (for example, in the spinal cord) and in treatment of neuroinfectious diseases (amyotrophic lateral sclerosis, multiple sclerosis, poliomyelitis, etc.), as well as in oncological conditions, ulcers, etc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olson, Gordon L.
One-dimensional models for the transport of radiation through binary stochastic media do not work in multi-dimensions. In addition, authors have attempted to modify or extend the 1D models to work in multidimensions without success. Analytic one-dimensional models are successful in 1D only when assuming greatly simplified physics. State of the art theories for stochastic media radiation transport do not address multi-dimensions and temperature-dependent physics coefficients. Here, the concept of effective opacities and effective heat capacities is found to well represent the ensemble averaged transport solutions in cases with gray or multigroup temperature-dependent opacities and constant or temperature-dependent heat capacities. Inmore » every case analyzed here, effective physics coefficients fit the transport solutions over a useful range of parameter space. The transport equation is solved with the spherical harmonics method with angle orders of n=1 and 5. Although the details depend on what order of solution is used, the general results are similar, independent of angular order.« less
NASA Social and Media Briefing on Next Mars Mission
2018-05-03
News media and social media participants gathered at Vandenberg Air Force Base in Central California Thursday, May 3 to hear from NASA and its partners about the agency’s mission to study the interior of the Red Planet. NASA’s Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) is scheduled to launch May 5 on a United Launch Alliance Atlas V rocket, from Space Launch Complex 3 at Vandenberg.
A Generalized Hybrid Multiscale Modeling Approach for Flow and Reactive Transport in Porous Media
NASA Astrophysics Data System (ADS)
Yang, X.; Meng, X.; Tang, Y. H.; Guo, Z.; Karniadakis, G. E.
2017-12-01
Using emerging understanding of biological and environmental processes at fundamental scales to advance predictions of the larger system behavior requires the development of multiscale approaches, and there is strong interest in coupling models at different scales together in a hybrid multiscale simulation framework. A limited number of hybrid multiscale simulation methods have been developed for subsurface applications, mostly using application-specific approaches for model coupling. The proposed generalized hybrid multiscale approach is designed with minimal intrusiveness to the at-scale simulators (pre-selected) and provides a set of lightweight C++ scripts to manage a complex multiscale workflow utilizing a concurrent coupling approach. The workflow includes at-scale simulators (using the lattice-Boltzmann method, LBM, at the pore and Darcy scale, respectively), scripts for boundary treatment (coupling and kriging), and a multiscale universal interface (MUI) for data exchange. The current study aims to apply the generalized hybrid multiscale modeling approach to couple pore- and Darcy-scale models for flow and mixing-controlled reaction with precipitation/dissolution in heterogeneous porous media. The model domain is packed heterogeneously that the mixing front geometry is more complex and not known a priori. To address those challenges, the generalized hybrid multiscale modeling approach is further developed to 1) adaptively define the locations of pore-scale subdomains, 2) provide a suite of physical boundary coupling schemes and 3) consider the dynamic change of the pore structures due to mineral precipitation/dissolution. The results are validated and evaluated by comparing with single-scale simulations in terms of velocities, reactive concentrations and computing cost.
Voice - How humans communicate?
Tiwari, Manjul; Tiwari, Maneesha
2012-01-01
Voices are important things for humans. They are the medium through which we do a lot of communicating with the outside world: our ideas, of course, and also our emotions and our personality. The voice is the very emblem of the speaker, indelibly woven into the fabric of speech. In this sense, each of our utterances of spoken language carries not only its own message but also, through accent, tone of voice and habitual voice quality it is at the same time an audible declaration of our membership of particular social regional groups, of our individual physical and psychological identity, and of our momentary mood. Voices are also one of the media through which we (successfully, most of the time) recognize other humans who are important to us-members of our family, media personalities, our friends, and enemies. Although evidence from DNA analysis is potentially vastly more eloquent in its power than evidence from voices, DNA cannot talk. It cannot be recorded planning, carrying out or confessing to a crime. It cannot be so apparently directly incriminating. As will quickly become evident, voices are extremely complex things, and some of the inherent limitations of the forensic-phonetic method are in part a consequence of the interaction between their complexity and the real world in which they are used. It is one of the aims of this article to explain how this comes about. This subject have unsolved questions, but there is no direct way to present the information that is necessary to understand how voices can be related, or not, to their owners.
Weak Ergodicity Breaking of Receptor Motion in Living Cells Stemming from Random Diffusivity
NASA Astrophysics Data System (ADS)
Manzo, Carlo; Torreno-Pina, Juan A.; Massignan, Pietro; Lapeyre, Gerald J.; Lewenstein, Maciej; Garcia Parajo, Maria F.
2015-01-01
Molecular transport in living systems regulates numerous processes underlying biological function. Although many cellular components exhibit anomalous diffusion, only recently has the subdiffusive motion been associated with nonergodic behavior. These findings have stimulated new questions for their implications in statistical mechanics and cell biology. Is nonergodicity a common strategy shared by living systems? Which physical mechanisms generate it? What are its implications for biological function? Here, we use single-particle tracking to demonstrate that the motion of dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN), a receptor with unique pathogen-recognition capabilities, reveals nonergodic subdiffusion on living-cell membranes In contrast to previous studies, this behavior is incompatible with transient immobilization, and, therefore, it cannot be interpreted according to continuous-time random-walk theory. We show that the receptor undergoes changes of diffusivity, consistent with the current view of the cell membrane as a highly dynamic and diverse environment. Simulations based on a model of an ordinary random walk in complex media quantitatively reproduce all our observations, pointing toward diffusion heterogeneity as the cause of DC-SIGN behavior. By studying different receptor mutants, we further correlate receptor motion to its molecular structure, thus establishing a strong link between nonergodicity and biological function. These results underscore the role of disorder in cell membranes and its connection with function regulation. Because of its generality, our approach offers a framework to interpret anomalous transport in other complex media where dynamic heterogeneity might play a major role, such as those found, e.g., in soft condensed matter, geology, and ecology.
Geometric and topological characterization of porous media: insights from eigenvector centrality
NASA Astrophysics Data System (ADS)
Jimenez-Martinez, J.; Negre, C.
2017-12-01
Solving flow and transport through complex geometries such as porous media involves an extreme computational cost. Simplifications such as pore networks, where the pores are represented by nodes and the pore throats by edges connecting pores, have been proposed. These models have the ability to preserve the connectivity of the medium. However, they have difficulties capturing preferential paths (high velocity) and stagnation zones (low velocity), as they do not consider the specific relations between nodes. Network theory approaches, where the complex network is conceptualized like a graph, can help to simplify and better understand fluid dynamics and transport in porous media. To address this issue, we propose a method based on eigenvector centrality. It has been corrected to overcome the centralization problem and modified to introduce a bias in the centrality distribution along a particular direction which allows considering the flow and transport anisotropy in porous media. The model predictions are compared with millifluidic transport experiments, showing that this technique is computationally efficient and has potential for predicting preferential paths and stagnation zones for flow and transport in porous media. Entropy computed from the eigenvector centrality probability distribution is proposed as an indicator of the "mixing capacity" of the system.
Earthquake location in transversely isotropic media with a tilted symmetry axis
NASA Astrophysics Data System (ADS)
Zhao, Aihua; Ding, Zhifeng
2009-04-01
The conventional intersection method for earthquake location in isotropic media is developed in the case of transversely isotropic media with a tilted symmetry axis (TTI media). The hypocenter is determined using its loci, which are calculated through a minimum travel time tree algorithm for ray tracing in TTI media. There are no restrictions on the structural complexity of the model or on the anisotropy strength of the medium. The location method is validated by its application to determine the hypocenter and origin time of an event in a complex TTI structure, in accordance with four hypotheses or study cases: (a) accurate model and arrival times, (b) perturbed model with randomly variable elastic parameter, (c) noisy arrival time data, and (d) incomplete set of observations from the seismic stations. Furthermore, several numerical tests demonstrate that the orientation of the symmetry axis has a significant effect on the hypocenter location when the seismic anisotropy is not very weak. Moreover, if the hypocentral determination is based on an isotropic reference model while the real medium is anisotropic, the resultant location errors can be considerable even though the anisotropy strength does not exceed 6.10%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haas, J.C.; Olivo, C.A.; Wilson, K.B.
1994-04-01
An experimental test plan has been prepared for DOE/METC review and approval to develop a filter media suitable for multi-contaminant control in granular-bed filter (GBF) applications. The plan includes identification, development, and demonstration of methods for enhanced media morphology, chemical reactivity, and mechanical strength. The test plan includes media preparation methods, physical and chemical characterization methods for fresh and reacted media, media evaluation criteria, details of test and analytical equipment, and test matrix of the proposed media testing. A filter media composed of agglomerated limestone and clay was determined to be the best candidate for multi-contaminate control in GBF operation.more » The combined limestone/clay agglomerate has the potential to remove sulfur and alkali species, in addition to particulate, and possibly halogens and trace heavy metals from coal process streams.« less
Anisotropic microporous supports impregnated with polymeric ion-exchange materials
Friesen, D.; Babcock, W.C.; Tuttle, M.
1985-05-07
Novel ion-exchange media are disclosed, the media comprising polymeric anisotropic microporous supports containing polymeric ion-exchange or ion-complexing materials. The supports are anisotropic, having small exterior pores and larger interior pores, and are preferably in the form of beads, fibers and sheets. 5 figs.
Picture This: Media Representations of Visual Art and Artists.
ERIC Educational Resources Information Center
Hayward, Philip, Ed.
Media, particularly in the form of broadcast television, has revolutionized an individual's relationship to culture and cultural practices. This anthology examines the complex set of relationships between art forms, popular cultural practices (including watching television), technology, and audiences. Focus is upon visual arts and artists, and…
Golan, Sharon; Aytar, Burcu S; Muller, John P E; Kondo, Yukishige; Lynn, David M; Abbott, Nicholas L; Talmon, Yeshayahu
2011-06-07
Biological media affect the physicochemical properties of cationic lipid-DNA complexes (lipoplexes) and can influence their ability to transfect cells. To develop new lipids for efficient DNA delivery, the influence of serum-containing media on the structures and properties of the resulting lipoplexes must be understood. To date, however, a clear and general picture of how serum-containing media influences the structures of lipoplexes has not been established. Some studies suggest that serum can disintegrate lipoplexes formed using certain types of cationic lipids, resulting in the inhibition of transfection. Other studies have demonstrated that lipoplexes formulated from other lipids are stable in the presence of serum and are able to transfect cells efficiently. In this article, we describe the influence of serum-containing media on lipoplexes formed using the redox-active cationic lipid bis(n-ferrocenylundecyl)dimethylammonium bromide (BFDMA). This lipoplex system promotes markedly decreased levels of transgene expression in COS-7 cells as serum concentrations are increased from 0 to 2, 5, 10, and 50% (v/v). To understand the cause of this decrease in transfection efficiency, we used cryogenic transmission electron microscopy (cryo-TEM) and measurements of zeta potential to characterize lipoplexes in cell culture media supplemented with 0, 2, 5, 10, and 50% serum. Cryo-TEM revealed that in serum-free media BFDMA lipoplexes form onionlike, multilamellar nanostructures. However, the presence of serum in the media caused disassociation of the intact multilamellar lipoplexes. At low serum concentrations (2 and 5%), DNA threads appeared to separate from the complex, leaving the nanostructure of the lipoplexes disrupted. At higher serum concentration (10%), disassociation increased and bundles of multilamellae were discharged from the main multilamellar complex. In contrast, lipoplexes characterized in serum-free aqueous salt (Li(2)SO(4)) medium and in OptiMEM cell culture medium (no serum) did not exhibit significant structural changes. The zeta potentials of lipoplexes in serum-free media (salt medium and cell culture medium) were similar (e.g., approximately -35 mV). Interestingly, the presence of serum caused the zeta potentials to become less negative (about -20 mV in OptiMEM and -10 mV in Li(2)SO(4)), even though serum contains negatively charged entities that have been demonstrated to lead to more negative zeta potentials in other lipoplex systems. The combined measurements of zeta potential and cryo-TEM are consistent with the proposition that DNA threads separate from the lipoplex in the presence of serum, resulting in a decrease in the net negative charge of the surface of the lipoplex.
The Top 100 Social Media Influencers in Plastic Surgery on Twitter: Who Should You Be Following?
Chandawarkar, Akash A; Gould, Daniel J; Grant Stevens, W
2018-03-06
Recent studies demonstrate that board-certified plastic surgeons are underrepresented amongst individuals posting public-directed marketing plastic surgery-related content on Instagram. However, peer-to-peer and education-based social media influence has not been studied. Twitter is a social media platform has been suggested to be useful for educating the masses and connecting with colleagues. The purpose of this study is to identify the top influencers in plastic surgery on Twitter, characterize who they are, and relate their social media influence to academic influence. Twitter influence scores for the topic search "plastic surgery" were collected in July 2017 using Right Relevance software. The accounts associated with the highest influencer scores were linked to individual names, status as a plastic surgeon, board certification, location, and academic h-index. The top 100 Twitter influencers in plastic surgery are presented. Seventy-seven percent of the top influencers are trained as plastic surgeons or facial plastic surgeons. Sixty-one percent of influencers are board-certified plastic surgeons or board-eligible/future eligible trainees. International plastic surgeons made up 16% of influencers. Other medical doctors made up another 10%. The other 13% of influencers were nonphysicians. Three-quarters of social media influencers were physically located in the United States. Academic h-index of social media influencers ranged from 0 to 62 (mean, 8.6). This study shows that the top plastic surgery social media influencers on Twitter are predominantly board-certified or eligible plastic surgeons and physically based in the United States. This study also provides the influencer network for other plastic surgeons to engage with to improve their own influence within the plastic surgery social media sphere.
Cao, Xiaolin; Loussaert, James A; Wen, Zai-qing
2016-02-05
Growth media for mammalian cell culture are very complex mixtures of several dozens of ingredients, and thus the preparation of qualified media is critical to viable cell density and final product titers. For liquid media prepared from powdered ingredients, sterile filtration is required prior to use to safeguard the cell culture process. Recently one batch of our prepared media failed to pass through the sterile filtration due to the membrane clogging. In this study, we report the root cause analysis of the failed sterile filtration based on the investigations of both the fouling media and the clogged membranes with multiple microspectroscopic techniques. Cellular particles or fragments were identified in the fouling media and on the surfaces of the clogged membranes, which were presumably introduced to the media from the bacterial contamination. This study demonstrated that microspectroscopic techniques may be used to rapidly identify both microbial particles and inorganic precipitates in the cell culture media. Copyright © 2015 Elsevier B.V. All rights reserved.
Media and mental illness: relevance to India.
Padhy, S K; Khatana, S; Sarkar, S
2014-01-01
Media has a complex interrelationship with mental illnesses. This narrative review takes a look at the various ways in which media and mental illnesses interact. Relevant scientific literature and electronic databases were searched, including Pubmed and GoogleScholar, to identify studies, viewpoints and recommendations using keywords related to media and mental illnesses. This review discusses both the positive and the negative portrayals of mental illnesses through the media. The portrayal of mental health professionals and psychiatric treatment is also discussed. The theories explaining the relationship of how media influences the attitudes and behavior are discussed. Media has also been suggested to be a risk factor for the genesis or exacerbation of mental illnesses like eating disorders and substance use disorders. The potential use of media to understand the psychopathology and plight of those with psychiatric disorders is referred to. The manner in which media can be used as a tool for change to reduce the stigma surrounding mental illnesses is explored.
Nan, Xiaoli; Zhao, Xiaoquan
2016-01-01
This research advances and tests a normative mediation model of media effects on youth smoking. The model predicts that exposure to various types of smoking-related media messages, including anti-smoking ads, cigarette ads, and smoking scenes in movies and television shows, exerts indirect effects on youth smoking intentions through the mediation of perceived descriptive and injunctive norms. Analysis of the data from the 3rd Legacy Media Tracking Survey offers general support for the proposed model with some unexpected findings, revealing a complex picture of media influence on youth smoking via normative and non-normative mechanisms. Theoretical and practical implications of the findings are discussed.
Interdisciplinary education in optics and photonics based on microcontrollers
NASA Astrophysics Data System (ADS)
Dreßler, Paul; Wielage, Heinz-Hermann; Haiss, Ulrich; Vauderwange, Oliver; Curticapean, Dan
2014-07-01
Not only is the number of new devices constantly increasing, but so is their application complexity and power. Most of their applications are in optics, photonics, acoustic and mobile devices. Working speed and functionality is achieved in most of media devices by strategic use of digital signal processors and microcontrollers of the new generation. Considering all these premises of media development dynamics, the authors present how to integrate microcontrollers and digital signal processors in the curricula of media technology lectures by using adequate content. This also includes interdisciplinary content that consists of using the acquired knowledge in media software. These entries offer a deeper understanding of photonics, acoustics and media engineering.
[Amylase production by Aureobasidium pullulans in liquid and solid media].
Lodato, P B; Forchiassin, F; Segovia de Huergo, M B
1997-01-01
Amylase production by a strain of Aureobasidium pullulans isolated in the laboratory was evaluated in liquid media (complex and synthetic) and in solid medium (wheat bran). There was an inhibitory effect in amylase production or amylase secretion by glucose. Asparagine was the best nitrogen source for amylase production (4-6 g/l). Only chlamidospores and melanin but not, amylase activity, were obtained with ammonium sulfate. Amylase production in solid culture was higher than the production obtained in the liquid media assayed. Optimum initial moisture content in solid culture ranged between 57 and 74%. No difference was observed in amylase production between solid media inoculated with cells grown in liquid or solid media.
2012-01-01
Background Many different factors influenced food habits and physical activity patterns of adolescents in a complex interactive way. The aim of this study was to assess association between sedentary behaviour and socioeconomic factors, diet and lifestyle among the Balearic Islands adolescents. Methods A cross-sectional survey (n = 1961; 12–17 years old) was carried out. Physical activity was assessed using the International Physical Activity Questionnaire for adolescents (IPAQ-A). Sedentary behaviour was defined as <300 min/week of moderate and vigorous physical activity. Anthropometric measurements, body image, socio-economic and lifestyle determinants, food consumption, and adherence to the Mediterranean diet were assessed. Results The prevalence of sedentary behaviour was 37.1% (22.0% boys, 50.8% girls). Active boys consumed frequently breakfast cereals and fresh fruit; active girls yogurt, cheese, breakfast cereals, and fresh fruit; and sedentary girls high fat foods and soft drinks. Sedentary behaviour of girls was directly associated to age, and time spent on media screen and homework, and inversely related to adherence to Mediterranean diet, and body composition. Sedentary behaviour of boys was inversely related to adherence to the Mediterranean diet, and the desire to remain the same weight. Conclusions The prevalence of sedentary behaviour among Balearic Islands adolescents is high, mainly among girls. Age, sex, parental educational and profession levels, body size dissatisfaction, and poor quality diet are important factors of physical activity practice among adolescents. PMID:22935441
Scale-Dependent Rates of Uranyl Surface Complexation Reaction in Sediments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Chongxuan; Shang, Jianying; Kerisit, Sebastien N.
Scale-dependency of uranyl[U(VI)] surface complexation rates was investigated in stirred flow-cell and column systems using a U(VI)-contaminated sediment from the US Department of Energy, Hanford site, WA. The experimental results were used to estimate the apparent rate of U(VI) surface complexation at the grain-scale and in porous media. Numerical simulations using molecular, pore-scale, and continuum models were performed to provide insights into and to estimate the rate constants of U(VI) surface complexation at the different scales. The results showed that the grain-scale rate constant of U(VI) surface complexation was over 3 to 10 orders of magnitude smaller, dependent on themore » temporal scale, than the rate constant calculated using the molecular simulations. The grain-scale rate was faster initially and slower with time, showing the temporal scale-dependency. The largest rate constant at the grain-scale decreased additional 2 orders of magnitude when the rate was scaled to the porous media in the column. The scaling effect from the grain-scale to the porous media became less important for the slower sorption sites. Pore-scale simulations revealed the importance of coupled mass transport and reactions in both intragranular and inter-granular domains, which caused both spatial and temporal dependence of U(VI) surface complexation rates in the sediment. Pore-scale simulations also revealed a new rate-limiting mechanism in the intragranular porous domains that the rate of coupled diffusion and surface complexation reaction was slower than either process alone. The results provided important implications for developing models to scale geochemical/biogeochemical reactions.« less
A personal reflection on social media in medicine: I stand, no wiser than before.
Weiner, John
2015-04-01
Social media has enabled information, communication and reach for health professionals. There are clear benefits to patients and consumers when health information is broadcast. But there are unanswered questions on professionalism, education, and the complex mentoring relationship between doctor and student. This personal perspective raises a number of questions: What is online medical professionalism? Can online medical professionalism be taught? Can online medical professionalism be enforced? Is an online presence necessary to achieve the highest level of clinical excellence? Is there evidence that social media is superior to traditional methods of teaching in medical education? Does social media encourage multitasking and impairment of the learning process? Are there downsides to the perfunctory laconic nature of social media? Does social media waste time that is better spent attaining clinical skills?
The effects of violent media content on aggression.
Bender, Patrick K; Plante, Courtney; Gentile, Douglas A
2018-02-01
Decades of research have shown that violent media exposure is one risk factor for aggression. This review presents findings from recent cross-sectional, experimental, and longitudinal studies, demonstrating the triangulation of evidence within the field. Importantly, this review also illustrates how media violence research has started to move away from merely establishing the existence of media effects and instead has begun to investigate the mechanisms underlying these effects and their limitations. Such studies range from investigations into cross-cultural differences to neurophysiological effects, and the interplay between media, individual, and contextual factors. Although violent media effects have been well-established for some time, they are not monolithic, and recent findings continue to shed light on the nuances and complexities of such effects. Copyright © 2017 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The solid fraction (fiber) from the effluent of the anaerobic digestion of dairy manure by plug flow technology yields material that has consistent physical properties (total porosity, air filled porosity at saturation, and water holding capacity) to perform satisfactorily as a plant growth media su...
Fermilab | Science | Inquiring Minds | Questions About Physics
Book Newsroom Newsroom News and features Press releases Photo gallery Fact sheets and brochures Media media Video of shutdown event Guest book Tevatron Impact June 11, 2012 About the symposium Symposium Science Security, Privacy, Legal Use of Cookies Quick Links Home Contact Phone Book Fermilab at Work For
ERIC Educational Resources Information Center
Coyne, Sarah M.
2016-01-01
Most researchers on media and aggression have examined the behavioral effects of viewing physical aggression in the media. Conversely, in the current study, I examined longitudinal associations between viewing "relational aggression" on TV and subsequent aggressive behavior. Participants included 467 adolescents who completed a number of…
ERIC Educational Resources Information Center
Kallman, Davi
2017-01-01
Individuals with disabilities comprise the largest minority group in the world, yet they are the most underrepresented minority group in higher education, the job market and entertainment media such as literature. This population is often underrepresented because of the overlapping physical, attitudinal and policy barriers that prevent them from…
Polysensory Learning through Multi-Media Instruction in Trade and Technical Education.
ERIC Educational Resources Information Center
Allen, David; And Others
This report explains a teaching system designed to stimulate polysensory learning by use of multi-media instructional materials, which use as many of the physical senses as practical to augment traditional instruction. They include motion pictures, filmstrips, audio tapes, models, mock-ups, etc., according to school facilities and course needs.…
[The good and the bad. The abuse of mass-media. Tasks in child care].
Rodé, Magdolna
2004-10-24
People would like to spend their increasing spare-time with entertainment and, therefore, the use of media has been growing. This has both advantages and disadvantages (physical and mental disturbances in their growing). Pediatricians need to know this problems and to recognize it in time to avert.
NASA Astrophysics Data System (ADS)
Lee, Hyoung-In; Mok, Jinsik
2018-05-01
We investigate electromagnetic waves propagating through non-magnetic and loss-free dielectric media, but with spatially inhomogeneous refractive indices. We derive hence a set of analytic formulae for conservation laws and energy-current (Poynting) vector. As a result, we deduce that the energy-current vector cannot be neatly separated into its orbital and spin parts in contrast to the cases with spatially homogeneous media. In addition, we present physical interpretations of the two additional terms due to spatial material inhomogeneity.
Improving in vitro mineral nutrition for diverse germplasm
USDA-ARS?s Scientific Manuscript database
Complex chemical interactions in growth media and variation in genotype response make it very difficult to optimize mineral nutrition of in vitro plants. Germplasm collections contain diverse species and cultivars that often do not grow well on standard tissue culture media or do not grow at all. Se...
Practical aspects of running DOE for improving growth media for in vitro plants
USDA-ARS?s Scientific Manuscript database
Experiments using DOE software to improve plant tissue culture growth medium are complicated and require complex setups. Once the experimental design is set and the treatment points calculated, media sheets and mixing charts must be developed. Since these experiments require three passages on the sa...
An efficient polymeric micromotor doped with Pt nanoparticle@carbon nanotubes for complex bio-media.
Li, Yana; Wu, Jie; Xie, Yuzhe; Ju, Huangxian
2015-04-14
A highly efficient polymeric tubular micromotor doped with Pt nanoparticle@carbon nanotubes is fabricated by template-assisted electrochemical growth. The micromotors preserve good navigation in multi-media and surface modification, along with simple synthesis, easy functionalization and good biocompatibility, displaying great promise in biological applications.
Planning and Implementing Technical Services Workstations.
ERIC Educational Resources Information Center
Kaplan, Michael, Ed.
The job of the library cataloger has grown increasingly complex. Catalogers must draw from a vast pool of dynamic information as they handle traditional and new forms of media. Technical Services Workstations (TSWs) provide catalogers the network data, application programs, and standard hardware required to catalog all types of media quickly and…
ERIC Educational Resources Information Center
Pulley, John
2009-01-01
At a time when the evolutionary pace of new media resembles the real-time mutation of certain microorganisms, the age-old question of how best to connect with constituents can seem impossibly complex--even for an elite institution plugged into the motherboard of Silicon Valley. Identifying the most effective vehicle for reaching a particular…
Technology for Teachers. 6th Edition.
ERIC Educational Resources Information Center
Volker, Roger; Simonson, Michael
This book helps teachers learn how to use and make educational media, covering traditional and new media such as computer laboratories, authentic assessment, theory bases, and hypermedia. Chapter topics progress from simple to complex. Each chapter includes clearly stated behavioral objectives that provide a study guide for students and can serve…
Shifting Interests: Changes in the Lexical Semantics of ED-MEDIA
ERIC Educational Resources Information Center
Wild, Fridolin; Valentine, Chris; Scott, Peter
2010-01-01
Large research networks naturally form complex communities with overlapping but not identical expertise. To map the distribution of professional competence in field of "technology-enhanced learning", the lexical semantics expressed in research articles published in a representative, large-scale conference (ED-MEDIA) can be investigated and changes…
Snap Shots: Using Photography for Intercultural Awareness and Understanding
ERIC Educational Resources Information Center
Alvaray, Luisela
2014-01-01
Watching images through mass media presents a challenge for understanding the complexities of different cultures within and outside the United States. Photographic images, in particular, are ubiquitous in our mediated world, populating old and interactive media and many times serving to perpetuate established codes of understanding and action.…
New Trends in Physics Teaching, Volume II, 1970.
ERIC Educational Resources Information Center
Nagy, E.
This UNESCO publication on physics education at the college level is a compilation of articles from authors around the world. The publication is divided into five major areas: course content, laboratory, methods and media, testing, and new physics courses. Because of the varied nature of programs in different countries, it is of paramount…
Astronomy, New Instrumentation, and the News Media
NASA Technical Reports Server (NTRS)
Maran, Stephen P.
2000-01-01
Reporting of astronomical discoveries and events in the news media continues to expand to satisfy a seemingly voracious public interest. New telescopes, instruments, and facilities both up in space and on the ground, provide unique opportunities for media outreach on what scientists are accomplishing. And, new media such as website news providers, high-definition television, and video news walls help to fuel the growing activity. Ever since Tycho Brahe operated his own printing press, astronomers have striven to document their accomplishments for the wider world. In recent years, astronomers' media outreach has been successful in reaching the mass television audience through successful efforts at animation and scientific visualization, and through dramatic images acquired by some facilities, such as the solar physics satellites and ground observatories.
Concepts, Terms, and Mental Models: Everyday Challenges to Older Adult Social Media Adoption.
Quinn, Kelly; Smith-Ray, Renae; Boulter, Kristin
2016-07-01
Social connection and social support are strong predictors of wellbeing, but maintaining social relations often becomes more difficult at older ages. Because social media enhance feelings of connectedness and reduce feelings of loneliness, they may present accessible and relatively low cost mechanisms to enhance life quality at older ages. Using data gathered from two focus groups of potential older adult social media learners, we explored the physical and cognitive challenges to social media use, perceptions of social media benefits, and conceptual barriers to use. Findings support earlier studies that identify perceived benefit as important to social media adoption at older ages, and extend these by identifying that a lack in conceptual knowledge of these technologies is an additional barrier to use. We then discuss the cognitive implications of gaining this knowledge.
Concepts, Terms, and Mental Models: Everyday Challenges to Older Adult Social Media Adoption
Smith-Ray, Renae; Boulter, Kristin
2017-01-01
Social connection and social support are strong predictors of wellbeing, but maintaining social relations often becomes more difficult at older ages. Because social media enhance feelings of connectedness and reduce feelings of loneliness, they may present accessible and relatively low cost mechanisms to enhance life quality at older ages. Using data gathered from two focus groups of potential older adult social media learners, we explored the physical and cognitive challenges to social media use, perceptions of social media benefits, and conceptual barriers to use. Findings support earlier studies that identify perceived benefit as important to social media adoption at older ages, and extend these by identifying that a lack in conceptual knowledge of these technologies is an additional barrier to use. We then discuss the cognitive implications of gaining this knowledge. PMID:28990010
NASA Astrophysics Data System (ADS)
Faybishenko, Boris; Witherspoon, Paul A.; Gale, John
How to characterize fluid flow, heat, and chemical transport in geologic media remains a central challenge for geoscientists and engineers worldwide. Investigations of fluid flow and transport within rock relate to such fundamental and applied problems as environmental remediation; nonaqueous phase liquid (NAPL) transport; exploitation of oil, gas, and geothermal resources; disposal of spent nuclear fuel; and geotechnical engineering. It is widely acknowledged that fractures in unsaturated-saturated rock can play a major role in solute transport from the land surface to underlying aquifers. It is also evident that general issues concerning flow and transport predictions in subsurface fractured zones can be resolved in a practical manner by integrating investigations into the physical nature of flow in fractures, developing relevant mathematical models and modeling approaches, and collecting site characterization data. Because of the complexity of flow and transport processes in most fractured rock flow problems, it is not yet possible to develop models directly from first principles. One reason for this is the presence of episodic, preferential water seepage and solute transport, which usually proceed more rapidly than expected from volume-averaged and time-averaged models. However, the physics of these processes is still known.
2005-11-04
KENNEDY SPACE CENTER, FLA. - In the clean room at KSC’s Payload Hazardous Servicing Facility is NASA’s New Horizons spacecraft that is scheduled to be launched to Pluto and its moon Charon in January 2006. Seen here is the Radio Science Experiment (REX) that will measure atmospheric composition and temperature. The spacecraft is being prepared for a media event. Photographers and reporters will be able to photograph the New Horizons spacecraft and talk with project management and test team members from NASA and the Johns Hopkins University Applied Physics Laboratory. Carrying seven scientific instruments, the compact 1,060-pound New Horizons probe will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will fly by Pluto and Charon as early as summer 2015.
NASA Astrophysics Data System (ADS)
Voronin, A. A.; Panchenko, V. Ya; Zheltikov, A. M.
2016-06-01
High-intensity ultrashort laser pulses propagating in gas media or in condensed matter undergo complex nonlinear spatiotemporal evolution where temporal transformations of optical field waveforms are strongly coupled to an intricate beam dynamics and ultrafast field-induced ionization processes. At the level of laser peak powers orders of magnitude above the critical power of self-focusing, the beam exhibits modulation instabilities, producing random field hot spots and breaking up into multiple noise-seeded filaments. This problem is described by a (3 + 1)-dimensional nonlinear field evolution equation, which needs to be solved jointly with the equation for ultrafast ionization of a medium. Analysis of this problem, which is equivalent to solving a billion-dimensional evolution problem, is only possible by means of supercomputer simulations augmented with coordinated big-data processing of large volumes of information acquired through theory-guiding experiments and supercomputations. Here, we review the main challenges of supercomputations and big-data processing encountered in strong-field ultrafast optical physics and discuss strategies to confront these challenges.
Infiltration into soils: Conceptual approaches and solutions
NASA Astrophysics Data System (ADS)
Assouline, Shmuel
2013-04-01
Infiltration is a key process in aspects of hydrology, agricultural and civil engineering, irrigation design, and soil and water conservation. It is complex, depending on soil and rainfall properties and initial and boundary conditions within the flow domain. During the last century, a great deal of effort has been invested to understand the physics of infiltration and to develop quantitative predictors of infiltration dynamics. Jean-Yves Parlange and Wilfried Brutsaert have made seminal contributions, especially in the area of infiltration theory and related analytical solutions to the flow equations. This review retraces the landmark discoveries and the evolution of the conceptual approaches and the mathematical solutions applied to the problem of infiltration into porous media, highlighting the pivotal contributions of Parlange and Brutsaert. A historical retrospective of physical models of infiltration is followed by the presentation of mathematical methods leading to analytical solutions of the flow equations. This review then addresses the time compression approximation developed to estimate infiltration at the transition between preponding and postponding conditions. Finally, the effects of special conditions, such as the presence of air and heterogeneity in soil properties, on infiltration are considered.
NASA Astrophysics Data System (ADS)
Yamamoto, H.; Nakajima, K.; Zhang, K.; Nanai, S.
2015-12-01
Powerful numerical codes that are capable of modeling complex coupled processes of physics and chemistry have been developed for predicting the fate of CO2 in reservoirs as well as its potential impacts on groundwater and subsurface environments. However, they are often computationally demanding for solving highly non-linear models in sufficient spatial and temporal resolutions. Geological heterogeneity and uncertainties further increase the challenges in modeling works. Two-phase flow simulations in heterogeneous media usually require much longer computational time than that in homogeneous media. Uncertainties in reservoir properties may necessitate stochastic simulations with multiple realizations. Recently, massively parallel supercomputers with more than thousands of processors become available in scientific and engineering communities. Such supercomputers may attract attentions from geoscientist and reservoir engineers for solving the large and non-linear models in higher resolutions within a reasonable time. However, for making it a useful tool, it is essential to tackle several practical obstacles to utilize large number of processors effectively for general-purpose reservoir simulators. We have implemented massively-parallel versions of two TOUGH2 family codes (a multi-phase flow simulator TOUGH2 and a chemically reactive transport simulator TOUGHREACT) on two different types (vector- and scalar-type) of supercomputers with a thousand to tens of thousands of processors. After completing implementation and extensive tune-up on the supercomputers, the computational performance was measured for three simulations with multi-million grid models, including a simulation of the dissolution-diffusion-convection process that requires high spatial and temporal resolutions to simulate the growth of small convective fingers of CO2-dissolved water to larger ones in a reservoir scale. The performance measurement confirmed that the both simulators exhibit excellent scalabilities showing almost linear speedup against number of processors up to over ten thousand cores. Generally this allows us to perform coupled multi-physics (THC) simulations on high resolution geologic models with multi-million grid in a practical time (e.g., less than a second per time step).
NASA Astrophysics Data System (ADS)
Kitanidis, P. K.
2017-08-01
The process of dispersion in porous media is the effect of combined variability in fluid velocity and concentration at scales smaller than the ones resolved that contributes to spreading and mixing. It is usually introduced in textbooks and taught in classes through the Fick-Scheidegger parameterization, which is introduced as a scientific law of universal validity. This parameterization is based on observations in bench-scale laboratory experiments using homogeneous media. Fickian means that dispersive flux is proportional to the gradient of the resolved concentration while the Scheidegger parameterization is a particular way to compute the dispersion coefficients. The unresolved scales are thus associated with the pore-grain geometry that is ignored when the composite pore-grain medium is replaced by a homogeneous continuum. However, the challenge faced in practice is how to account for dispersion in numerical models that discretize the domain into blocks, often cubic meters in size, that contain multiple geologic facies. Although the Fick-Scheidegger parameterization is by far the one most commonly used, its validity has been questioned. This work presents a method of teaching dispersion that emphasizes the physical basis of dispersion and highlights the conditions under which a Fickian dispersion model is justified. In particular, we show that Fickian dispersion has a solid physical basis provided that an equilibrium condition is met. The issue of the Scheidegger parameterization is more complex but it is shown that the approximation that the dispersion coefficients should scale linearly with the mean velocity is often reasonable, at least as a practical approximation, but may not necessarily be always appropriate. Generally in Hydrogeology, the Scheidegger feature of constant dispersivity is considered as a physical law and inseparable from the Fickian model, but both perceptions are wrong. We also explain why Fickian dispersion fails under certain conditions, such as dispersion inside and directly upstream of a contaminant source. Other issues discussed are the relevance of column tests and confusion regarding the meaning of terms dispersion and Fickian.
Lameiras, Ana Rita; Silva, Deodato; O Neill, Assunção; Escada, Pedro
2018-01-31
Quality of life is an important measure for health-outcome evaluation. Although otitis media is one of the most common childhood diseases, its impact on Portuguese children's quality of life is unknown. The aim of this study is to determine the quality of life of Portuguese children with chronic otitis media with effusion and/or recurrent acute otitis media and the short-term impact of transtympanic ventilation tubes, using the Portuguese version of the OM-6 questionnaire, a valid, reliable and sensitive instrument to evaluate the health-related quality of life in children with otitis media. This study was conducted in a tertiary referral center, to where children are referred from primary care and hospital pediatric consultations. The Portuguese version of the OM-6 questionnaire was applied to children with chronic otitis media with effusion and/or recurrent acute otitis media. The instrument was re-administered at two months postoperatively to a group of children who underwent tympanostomy tube placement, to evaluate the change in quality of life with the surgical procedure. The study involved a sample of 169 children, aged between 6 months and 12 years (mean: 4.20 ± 2.05 years). The average score in the survey was 3.3 ± 1.47, of a maximum of 7 (worst quality of life). The domains 'caregiver concerns', 'hearing loss' and 'physical suffering' had the highest scores. The domain 'hearing loss' was correlated with the domain 'speech impairment' (rs = 0.41; p < 0.001) and the domain 'physical suffering' correlated with the domain 'activity limitation' (rs = 0.47; p < 0.001). There was a correlation between the score on 'hearing loss' and the presence of conduction hearing loss (χ2 (6) = 24.662; p = 0.022). Children with chronic otitis media with effusion had lower scores on the domain 'physical suffering', while children with recurrent acute otitis media had lower scores in the domain 'hearing loss' and higher scores in the domain 'emotional distress'. There was an improvement in the quality of life in all the dimensions studied by the questionnaire after surgery. The improvement was large in 55%, moderate in 15% and small in 10% of the cases. The presence of otorrhea postoperatively did not decrease the quality of life improvement achieved with surgery. Otitis media has a negative impact on Portuguese children quality of life. Tympanostomy tubes improve quality of life related to the middle ear in most children. The application of validated disease-specific questionnaires allows an enhanced understanding of the impact of otitis media on Portuguese children quality of life and of the success of therapeutic measures.
Embedded Media: Failed Test or the Future of Military/Media Relations?
2004-03-19
Napoleon The Media View? “War is a drug…….it is peddled by myth makers, historians, war correspondents, filmmakers , novelists and the state... effectively throwing fuel on a fire that was already beginning to burn out of control. As the administration wrestled with the challenge of getting its...press censorship , no matter how complex the problems that might have generated.”10 This is an indicator of how extensively the relationship had
Kure, Bunsho; Matsumoto, Takahiro; Ichikawa, Koji; Fukuzumi, Shunichi; Higuchi, Yoshiki; Yagi, Tatsuhiko; Ogo, Seiji
2008-09-21
The pH-dependent hydrogen isotope exchange reaction between gaseous isotopes and medium isotopes and hydrogenation of the carbonyl compounds have been investigated with water-soluble bis(mu-thiolate)(mu-hydride)NiRu complexes, Ni(II)(mu-SR)(2)(mu-H)Ru(II) {(mu-SR)(2) = N,N'-dimethyl-N,N'-bis(2-mercaptoethyl)-1,3-propanediamine}, as functional models for [NiFe]hydrogenases. In acidic media (at pH 4-6), the mu-H ligand of the Ni(II)(mu-SR)(2)(mu-H)Ru(II) complexes has H(+) properties, and the complexes catalyse the hydrogen isotope exchange reaction between gaseous isotopes and medium isotopes. A mechanism of the hydrogen isotope exchange reaction between gaseous isotopes and medium isotopes through a low-valent Ni(I)(mu-SR)(2)Ru(I) complex is proposed. In contrast, in neutral-basic media (at pH 7-10), the mu-H ligand of the Ni(II)(mu-SR)(2)(mu-H)Ru(II) complexes acts as H(-), and the complexes catalyse the hydrogenation of carbonyl compounds.
Designing the ideal habitat for entomopathogen use in nursery production.
Nielsen, Anne L; Lewis, Edwin E
2012-07-01
Greenhouse and nursery producers use entomopathogens (nematodes and fungi) to control soil pests. Although it is known that the physical and chemical properties of mineral soil significantly impact upon soil pathogens, the influence of soilless media used for plant production on entomopathogen performance is poorly understood. Survival and foraging distance were differently affected by sand:peat, bark and sawdust media for entomopathogenic nematodes, but not for the immobile fungus Metarhizium anisopliae. Redwood sawdust medium consistently had a negative impact upon entomopathogenic nematodes. Dividing media into individual components supported the hypothesis that redwood sawdust reduced foraging and infection abilities of S. riobrave and H. bacteriophora. Physically altering the components by adding sand significantly improved foraging and infection success for S. riobrave in media not optimum for foraging. This study is the first to highlight the importance of selecting the appropriate soilless media and pathogen species combinations to increase efficacy of biological control. H. bacteriophora was able to find hosts in a wider diversity of medium components than S. riobrave, although both nematode species performed well in peat moss and recycled plant material. These results suggest that peat moss, recycled plant material and hardwood bark are components amenable to EPN biological control programs. Copyright © 2012 Society of Chemical Industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gronke, M.; Dijkstra, M., E-mail: maxbg@astro.uio.no
We perform Lyman- α (Ly α ) Monte-Carlo radiative transfer calculations on a suite of 2500 models of multiphase, outflowing media, which are characterized by 14 parameters. We focus on the Ly α spectra emerging from these media and investigate which properties are dominant in shaping the emerging Ly α profile. Multiphase models give rise to a wide variety of emerging spectra, including single-, double-, and triple-peaked spectra. We find that the dominant parameters in shaping the spectra include (i) the cloud covering factor, f {sub c} , which is in agreement with earlier studies, and (ii) the temperature andmore » number density of residual H i in the hot ionized medium. We attempt to reproduce spectra emerging from multiphase models with “shell models” which are commonly used to fit observed Ly α spectra, and investigate the connection between shell-model parameters and the physical parameters of the clumpy media. In shell models, the neutral hydrogen content of the shell is one of the key parameters controlling Ly α radiative transfer. Because Ly α spectra emerging from multiphase media depend much less on the neutral hydrogen content of the clumps, the shell-model parameters such as H i column density (but also shell velocity and dust content) are generally not well matched to the associated physical parameters of the clumpy media.« less
Magnetic resonance of porous media (MRPM): a perspective.
Song, Yi-Qiao
2013-04-01
Porous media are ubiquitous in our environment and their application is extremely broad. The common connection between these diverse materials is the importance of the microstructure (μm to mm scale) in determining the physical, chemical and biological functions and properties. Magnetic resonance and its imaging modality have been essential for noninvasive characterization of these materials, in the development of catalysts, understanding cement hydration, fluid transport in rocks and soil, geological prospecting, and characterization of tissue properties for medical diagnosis. The past two decades have witnessed significant development of MRPM that couples advances in physics, chemistry and engineering with a broad range of applications. This article will summarize key advances in basic physics and methodology, examine their limitations and envision future R&D directions. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Murphy, Glen; Salomone, Sonia
2013-03-01
While highly cohesive groups are potentially advantageous they are also often correlated with the emergence of knowledge and information silos based around those same functional or occupational clusters. Consequently, an essential challenge for engineering organisations wishing to overcome informational silos is to implement mechanisms that facilitate, encourage and sustain interactions between otherwise disconnected groups. This paper acts as a primer for those seeking to gain an understanding of the design, functionality and utility of a suite of software tools generically termed social media technologies in the context of optimising the management of tacit engineering knowledge. Underpinned by knowledge management theory and using detailed case examples, this paper explores how social media technologies achieve such goals, allowing for the transfer of knowledge by tapping into the tacit and explicit knowledge of disparate groups in complex engineering environments.
Quantifying uncertainty and computational complexity for pore-scale simulations
NASA Astrophysics Data System (ADS)
Chen, C.; Yuan, Z.; Wang, P.; Yang, X.; Zhenyan, L.
2016-12-01
Pore-scale simulation is an essential tool to understand the complex physical process in many environmental problems, from multi-phase flow in the subsurface to fuel cells. However, in practice, factors such as sample heterogeneity, data sparsity and in general, our insufficient knowledge of the underlying process, render many simulation parameters and hence the prediction results uncertain. Meanwhile, most pore-scale simulations (in particular, direct numerical simulation) incur high computational cost due to finely-resolved spatio-temporal scales, which further limits our data/samples collection. To address those challenges, we propose a novel framework based on the general polynomial chaos (gPC) and build a surrogate model representing the essential features of the underlying system. To be specific, we apply the novel framework to analyze the uncertainties of the system behavior based on a series of pore-scale numerical experiments, such as flow and reactive transport in 2D heterogeneous porous media and 3D packed beds. Comparing with recent pore-scale uncertainty quantification studies using Monte Carlo techniques, our new framework requires fewer number of realizations and hence considerably reduce the overall computational cost, while maintaining the desired accuracy.
Lewis, F.M.; Voss, C.I.; Rubin, Jacob
1986-01-01
A model was developed that can simulate the effect of certain chemical and sorption reactions simultaneously among solutes involved in advective-dispersive transport through porous media. The model is based on a methodology that utilizes physical-chemical relationships in the development of the basic solute mass-balance equations; however, the form of these equations allows their solution to be obtained by methods that do not depend on the chemical processes. The chemical environment is governed by the condition of local chemical equilibrium, and may be defined either by the linear sorption of a single species and two soluble complexation reactions which also involve that species, or binary ion exchange and one complexation reaction involving a common ion. Partial differential equations that describe solute mass balance entirely in the liquid phase are developed for each tenad (a chemical entity whose total mass is independent of the reaction process) in terms of their total dissolved concentration. These equations are solved numerically in two dimensions through the modification of an existing groundwater flow/transport computer code. (Author 's abstract)
Complex Resistivity experiment of Methane Hydrate in Porous Media
NASA Astrophysics Data System (ADS)
Chen, Q.; Wang, C.
2017-12-01
Electric logging plays an important role in gas hydrate exploration and saturation estimation. However, due to the lack of specialized model, some classical models of petroleum industry were used to calculate the hydrate reserves such as Archie's law. But the widely used resistivity model is unable to characterize the electrical properties of hydrate bearing sediments comprehensively, while the complex resistivity method can reveal more details about the electric properties of gas hydrate porous media. In this paper, a series of electrochemical impedance spectroscope tests were carried out during methane hydrate formation and dissociation process in porous media with 3.5% brine. The hydrate saturation was controlled by decrease the pressure at certain temperature. At each saturation, complex resistivities with frequency of 0.1 Hz 1 MHz were acquired and the frequency dispersion characteristics were analyzed. Conclusion as below: 1. It exhibited remarkable frequency dispersion characteristics in hydrate porous media, especially when the frequency was below 10Hz. At certain hydrate saturation, the resistivity amplitude/real part/imaginary part decreased with frequency, but the resistivity variation trends were complicated with frequency: between 0.1- 2.3Hz, the resistivity amplitude and real part were decreased as hydrate saturation increasing; however when the frequency become higher, the resistivity were increased with hydrate saturation. 2. In the hydrate porous media test, the resistivity amplitude/real part/imaginary part didn't show a linear variation with hydrate saturation in the double logarithmic coordinate, so the Archie's law cannot get constant a, m parameters. Moreover, different frequency lead to different resistivity value at certain saturation, Archie's law parameters must be readjusted to certain logging method. 3. In this study the impedance spectroscopy of porous medium containing hydrate can be fitted through an equivalent circuit model with a resistor and capacitor in series, and the resultant complex resistivity model can be used to calculate the gas hydrate saturation which may provide a new way to predict hydrate reserves.
Label-Free Biosensing with High Selectivity in Complex Media using Microtoroidal Optical Resonators
NASA Astrophysics Data System (ADS)
Ozgur, Erol; Toren, Pelin; Aktas, Ozan; Huseyinoglu, Ersin; Bayindir, Mehmet
2015-08-01
Although label-free biosensors comprised of optical microcavities inherently possess the capability of resolving molecular interactions at individual level, this extreme sensitivity restricts their convenience for large scale applications by inducing vulnerability towards non-specific interactions that readily occur within complex media. Therefore, the use of optical microresonators for biosensing is mostly limited within strictly defined laboratory conditions, instead of field applications as early detection of cancer markers in blood, or identification of contamination in food. Here, we propose a novel surface modification strategy suitable for but not limited to optical microresonator based biosensors, enabling highly selective biosensing with considerable sensitivity as well. Using a robust, silane-based surface coating which is simultaneously protein resistant and bioconjugable, we demonstrate that it becomes possible to perform biosensing within complex media, without compromising the sensitivity or reliability of the measurement. Functionalized microtoroids are successfully shown to resist nonspecific interactions, while simultaneously being used as sensitive biological sensors. This strategy could pave the way for important applications in terms of extending the use of state-of-the-art biosensors for solving problems similar to the aforementioned.
Armenian media coverage of science topics
NASA Astrophysics Data System (ADS)
Mkhitaryan, Marie
2016-12-01
The article discusses features and issues of Armenian media coverage on scientific topics and provides recommendations on how to promote scientific topics in media. The media is more interested in social or public reaction rather than in scientific information itself. Medical science has a large share of the global media coverage. It is followed by articles about environment, space, technology, physics and other areas. Armenian media mainly tends to focus on a scientific topic if at first sight it contains something revolutionary. Media primarily reviews whether that scientific study can affect the Armenian economy and only then decides to refer to it. Unfortunately, nowadays the perception of science is a little distorted in media. We can often see headlines of news where is mentioned that the scientist has made "an invention". Nowadays it is hard to see the border between a scientist and an inventor. In fact, the technological term "invention" attracts the media by making illusionary sensation and ensuring large audience. The report also addresses the "Gitamard" ("A science-man") special project started in 2016 in Mediamax that tells about scientists and their motivations.
Social Media Engagement and the Critical Care Medicine Community.
Barnes, Sean S; Kaul, Viren; Kudchadkar, Sapna R
2018-01-01
Over the last decade, social media has transformed how we communicate in the medical community. Microblogging through platforms such as Twitter has made social media a vehicle for succinct, targeted, and innovative dissemination of content in critical care medicine. Common uses of social media in medicine include dissemination of information, knowledge acquisition, professional networking, and patient advocacy. Social media engagement at conferences represents all of these categories and is often the first time health-care providers are introduced to Twitter. Most of the major critical care medicine conferences, journals, and societies leverage social media for education, research, and advocacy, and social media users can tailor the inflow of content based on their own interests. From these interactions, networks and communities are built within critical care medicine and beyond, overcoming the barriers of physical proximity. In this review, we summarize the history and current status of health-care social media as it relates to critical care medicine and provide a primer for those new to health-care social media with a focus on Twitter, one of the most popular microblogging platforms.
Screen Media Exposure and Obesity in Children and Adolescents
Robinson, Thomas N.; Banda, Jorge A.; Hale, Lauren; Lu, Amy Shirong; Fleming-Milici, Frances; Calvert, Sandra L.; Wartella, Ellen
2018-01-01
Obesity is one of the best-documented outcomes of screen media exposure. Many observational studies find relationships between screen media exposure and increased risks of obesity. Randomized controlled trials of reducing screen time in community settings have reduced weight gain in children, demonstrating a cause and effect relationship. Current evidence suggests that screen media exposure leads to obesity in children and adolescents through increased eating while viewing; exposure to high-calorie, low-nutrient food and beverage marketing that influences children’s preferences, purchase requests, consumption habits; and reduced sleep duration. Some evidence also suggests promise for using interactive media to improve eating and physical activity behaviors to prevent or reduce obesity. Future interdisciplinary research is needed to examine the effects of newer mobile and other digital media exposures on obesity; to examine the effectiveness of additional interventions to mitigate the adverse effects of media exposures on obesity and possible moderators and mediators of intervention effects; to effectively use digital media interventions to prevent and reduce obesity; and to uncover the mechanisms underlying the causal relationships and interactions between obesity-related outcomes and media content, characteristics, and context. PMID:29093041
Determinants of the prevalence and incidence of overweight in children and adolescents.
Plachta-Danielzik, Sandra; Landsberg, Beate; Johannsen, Maike; Lange, Dominique; Müller, Manfred James
2010-11-01
To systematically analyse determinants of overweight prevalence and incidence in children and adolescents, as a basis of treatment and prevention. Cross-sectional and longitudinal data of the Kiel Obesity Prevention Study (KOPS). Schools in Kiel, Germany. Cross-sectional data from 6249 students aged 5-16 years and 4-year longitudinal data from 1087 children aged 5-11 years. Weight status of students was assessed and familial factors (weight status of parents and siblings, smoking habits), social factors (socio-economic status, nationality, single parenting), birth weight as well as lifestyle variables (physical activity, media time, nutrition) were considered as independent variables in multivariate logistic regression analyses to predict the likelihood of the student being overweight. The cross-sectional data revealed the prevalence of overweight as 18·3 % in boys and 19·2 % in girls. In both sexes determinants of overweight prevalence were overweight and obese parents, overweight siblings, parental smoking, single parenthood and non-German nationality. High birth weight and low physical activity additionally increased the risk in boys. High media time and low parental education were significant determinants in girls. Effect of media time was mediated by maternal weight status in boys as well as by socio-economic status and age in girls. From the longitudinal data, the 4-year cumulative incidence of overweight was 10·0 % in boys and 8·2 % in girls. Parental obesity, parental smoking and low physical activity were determinants of overweight incidence in boys, whereas paternal obesity increased the risk in girls. Treatment and prevention should address family and social determinants with a focus on physical activity and media use.
Schrempft, Stephanie; van Jaarsveld, Cornelia H M; Fisher, Abigail; Wardle, Jane
2015-01-01
The home environment is thought to play a key role in early weight trajectories, although direct evidence is limited. There is general agreement that multiple factors exert small individual effects on weight-related outcomes, so use of composite measures could demonstrate stronger effects. This study therefore examined whether composite measures reflecting the 'obesogenic' home environment are associated with diet, physical activity, TV viewing, and BMI in preschool children. Families from the Gemini cohort (n = 1096) completed a telephone interview (Home Environment Interview; HEI) when their children were 4 years old. Diet, physical activity, and TV viewing were reported at interview. Child height and weight measurements were taken by the parents (using standard scales and height charts) and reported at interview. Responses to the HEI were standardized and summed to create four composite scores representing the food (sum of 21 variables), activity (sum of 6 variables), media (sum of 5 variables), and overall (food composite/21 + activity composite/6 + media composite/5) home environments. These were categorized into 'obesogenic risk' tertiles. Children in 'higher-risk' food environments consumed less fruit (OR; 95% CI = 0.39; 0.27-0.57) and vegetables (0.47; 0.34-0.64), and more energy-dense snacks (3.48; 2.16-5.62) and sweetened drinks (3.49; 2.10-5.81) than children in 'lower-risk' food environments. Children in 'higher-risk' activity environments were less physically active (0.43; 0.32-0.59) than children in 'lower-risk' activity environments. Children in 'higher-risk' media environments watched more TV (3.51; 2.48-4.96) than children in 'lower-risk' media environments. Neither the individual nor the overall composite measures were associated with BMI. Composite measures of the obesogenic home environment were associated as expected with diet, physical activity, and TV viewing. Associations with BMI were not apparent at this age.
Gräfe, Markus; Donner, Erica; Collins, Richard N; Lombi, Enzo
2014-04-25
Element specificity is one of the key factors underlying the widespread use and acceptance of X-ray absorption spectroscopy (XAS) as a research tool in the environmental and geo-sciences. Independent of physical state (solid, liquid, gas), XAS analyses of metal(loid)s in complex environmental matrices over the past two decades have provided important information about speciation at environmentally relevant interfaces (e.g. solid-liquid) as well as in different media: plant tissues, rhizosphere, soils, sediments, ores, mineral process tailings, etc. Limited sample preparation requirements, the concomitant ability to preserve original physical and chemical states, and independence from crystallinity add to the advantages of using XAS in environmental investigations. Interpretations of XAS data are founded on sound physical and statistical models that can be applied to spectra of reference materials and mixed phases, respectively. For spectra collected directly from environmental matrices, abstract factor analysis and linear combination fitting provide the means to ascertain chemical, bonding, and crystalline states, and to extract quantitative information about their distribution within the data set. Through advances in optics, detectors, and data processing, X-ray fluorescence microprobes capable of focusing X-rays to micro- and nano-meter size have become competitive research venues for resolving the complexity of environmental samples at their inherent scale. The application of μ-XANES imaging, a new combinatorial approach of X-ray fluorescence spectrometry and XANES spectroscopy at the micron scale, is one of the latest technological advances allowing for lateral resolution of chemical states over wide areas due to vastly improved data processing and detector technology. Copyright © 2014. Published by Elsevier B.V.
Muñoz, Vanesa A; Ferrari, Gabriela V; Montaña, M Paulina; Miskoski, Sandra; García, Norman A
2016-09-01
Visible-light irradiation of aqueous-ethanolic solutions of Riboflavin (Rf) in the individual presence of the flavone chrysin (Chr) and its complex with Cu(2+) ([Chr2Cu]; 2:1 L:M) generates singlet molecular oxygen O2((1)Δg), that concomitantly interact with both flavone derivatives. Overall (kt) and reactive (kr) rate constants in the order of 10(7)M(-1)s(-1) were determined for the process. Metal chelation greatly enhances the scavenging ability of [Chr2Cu] towards O2((1)Δg) through a mechanism dominated, in >80%, by the physical component. In this way, practically all O2((1)Δg) is deactivated by the complex without significant loss of the quencher. The isolated flavone quenches O2((1)Δg) in a prevailing reactive fashion. The very low value exhibited by [Chr2Cu] for the kr/kt ratio constitutes a positive quality for antioxidative protectors in biological media, where elevated local concentration and high reactivity of significant molecules make them initial targets for O2((1)Δg) aggression. Finally, two interesting properties in the field of free radicals scavenging by [Chr2Cu] must be mentioned. In first place metal chelation itself, in the obvious sense of free metal ion withdrawal from the oxidizable medium, prevents the initiation of a free radical-mediated oxidation processes through mechanisms of Fenton or lipid peroxidation. In addition, the incorporation of Cu adds to [Chr2Cu] the ability of a free radical scavenger, already described for similar Cu-chelate compounds. This collection of beneficial properties positions the complex as a remarkably promising bioprotector towards ROS-mediated oxidation. A quantification of the efficiency on the initial anti-oxidative effect exerted by Chr and [Chr2Cu] towards tryptophan was carried out. The amino acid is an archetypal molecular model, commonly employed to monitor oxidative degradation of proteinaceous media. It was efficiently photoprotected against O2((1)Δg)-mediated photooxidation by [Chr2Cu]. Copyright © 2016. Published by Elsevier B.V.
Spallek, Heiko; Turner, Sharon P; Donate-Bartfield, Evelyn; Chambers, David; McAndrew, Maureen; Zarkowski, Pamela; Karimbux, Nadeem
2015-10-01
Social media consist of powerful tools that impact not only communication but relationships among people, thus posing an inherent challenge to the traditional standards of who we are as dental educators and what we can expect of each other. This article examines how the world of social media has changed dental education. Its goal is to outline the complex issues that social media use presents for academic dental institutions and to examine these issues from personal, professional, and legal perspectives. After providing an update on social media, the article considers the advantages and risks associated with the use of social media at the interpersonal, professional, and institutional levels. Policies and legal issues of which academic dental institutions need to be aware from a compliance perspective are examined, along with considerations and resources needed to develop effective social media policies. The challenge facing dental educators is how to capitalize on the benefits that social media offer, while minimizing risks and complying with the various forms of legal constraint.
High temperature dissolution of oxides in complexing media
NASA Astrophysics Data System (ADS)
Sathyaseelan, Valil S.; Rufus, Appadurai L.; Subramanian, Hariharan; Bhaskarapillai, Anupkumar; Wilson, Shiny; Narasimhan, Sevilimedu V.; Velmurugan, Sankaralingam
2011-12-01
Dissolution of transition metal oxides such as magnetite (Fe 3O 4), mixed ferrites (NiFe 2O 4, ZnFe 2O 4, MgFe 2O 4), bonaccordite (Ni 2FeBO 5) and chromium oxide (Cr 2O 3) in organic complexing media was attempted at higher temperatures (80-180 °C). On increasing the temperature from 80 to 180 °C, the dissolution rate of magnetite in nitrilo triacetic acid (NTA) medium increased six folds. The trend obtained for the dissolution of other oxides was ZnFe 2O 4 > NiFe 2O 4 > MgFe 2O 4 > Cr 2O 3, which followed the same trend as the lability of their metal-oxo bonds. Other complexing agents such as ethylene diamine tetra acetic acid (EDTA), pyridine dicarboxylic acid (PDCA), citric acid and reducing agents viz., oxalic acid and ascorbic acid were also evaluated for their oxide dissolution efficiency at 160 °C. EDTA showed maximum dissolution rate of 21.4 μm/h for magnetite. Addition of oxalic acid/ascorbic acid to complexing media (NTA/EDTA) showed identical effect on the dissolution of magnetite. Addition of hydrazine, another reducing agent, to NTA decreased the rate of dissolution of magnetite by 50%.
Predicting Physical Interactions between Protein Complexes*
Clancy, Trevor; Rødland, Einar Andreas; Nygard, Ståle; Hovig, Eivind
2013-01-01
Protein complexes enact most biochemical functions in the cell. Dynamic interactions between protein complexes are frequent in many cellular processes. As they are often of a transient nature, they may be difficult to detect using current genome-wide screens. Here, we describe a method to computationally predict physical interactions between protein complexes, applied to both humans and yeast. We integrated manually curated protein complexes and physical protein interaction networks, and we designed a statistical method to identify pairs of protein complexes where the number of protein interactions between a complex pair is due to an actual physical interaction between the complexes. An evaluation against manually curated physical complex-complex interactions in yeast revealed that 50% of these interactions could be predicted in this manner. A community network analysis of the highest scoring pairs revealed a biologically sensible organization of physical complex-complex interactions in the cell. Such analyses of proteomes may serve as a guide to the discovery of novel functional cellular relationships. PMID:23438732
ERIC Educational Resources Information Center
Devis-Devis, Jose; Peiro-Velert, Carmen; Beltran-Carrillo, Vicente J.; Tomas, Jose Manuel
2012-01-01
This study examined the relationship between socio-demographic factors, screen media time usage, and light, moderate and vigorous activities on weekdays and weekends. Cross-sectional data was collected from 323 Spanish adolescents (mean age 13.59 years) who completed an interview administered recall questionnaire. Structural equation models…
The Games People Play: Information and Media Literacies in the Hunger Games Trilogy
ERIC Educational Resources Information Center
Latham, Don; Hollister, Jonathan M.
2014-01-01
Katniss Everdeen, the narrator and protagonist of Suzanne Collins' Hunger Games Trilogy, survives the grueling ordeal of forced participation in two games to the death through both physical prowess and mental agility. Both within and outside of the Games, she demonstrates information and media literacies. By becoming adept at interpreting and…
A Child Constructs an Understanding of a Water Wheel in Five Media.
ERIC Educational Resources Information Center
Forman, George
1996-01-01
Presents case study of a child trying to represent and understand the water wheel as an example of knowledge construction from the constructivism perspective. Focuses on how his understanding of physical perspective taking advances through conflicts in the use of different media (telling, drawing, paper, clay, or wood model) and how the Reggio…
Curating a Public Self: Exploring Social Media Images of Women in the Outdoors
ERIC Educational Resources Information Center
Gray, Tonia; Norton, Christine; Breault-Hood, Joelle; Christie, Beth; Taylor, Nicole
2018-01-01
Two social media posts (Highland, 2015; Johnson, 2015) about the authenticity of women's experiences in the outdoors fueled an intense dialogue among the authors of this paper. These posts sparked healthy debate, and we asked ourselves, "Why does our apparel, our aesthetic appeal, our physicality, or even our motivation become subject to…
ERIC Educational Resources Information Center
Blanco Ramírez, Gerardo; Palu-ay, Lyssa
2015-01-01
Social media sites and other contemporary technologies open the possibility for the construction of online identities that are loosely connected to physical bodies; this construction allows individuals to edit their identities constantly, in a continuous process of self-recreation. In parallel, universities utilise printed and electronic media to…
[Communicating research with social media].
Bennato, Davide
2014-09-01
Participation is the new keyword of communication. In the scientific field, communication is a very complex task that can't ignore the careful consideration of the target audience. To minimize the difficulties, it is useful to rely on storytelling: it can greatly benefit from the space offered by social media that can be used to raise awareness and to engage through the sharing of experiences. The marriage between scientific research and social media can take place, as long as you carefully reflect on the roles, strategies and appropriate tools.
Khan, Khalid; Badshah, Syed Lal; Ahmad, Nasir; Rashid, Haroon Ur; Mabkhot, Yahia
2017-05-11
The inclusion complexes of a new family of nonionic amphiphilic calix[4]arenes with the anti-inflammatory hydrophobic drugs naproxen (NAP) and ibuprofen (IBP) were investigated. The effects of the alkyl chain's length and the inner core of calix[4]arenes on the interaction of the two drugs with the calix[4]arenes were explored. The inclusion complexes of Amphiphiles 1a - c with NAP and IBP increased the solubility of these drugs in aqueous media. The interaction of 1a - c with the drugs in aqueous media was investigated through fluorescence, molecular modeling, and ¹H-NMR analysis. TEM studies further supported the formation of inclusion complexes. The length of lipophilic alkyl chains and the intrinsic cyclic nature of cailx[4]arene derivatives 1a - c were found to have a significant impact on the solubility of NAP and IBP in pure water.
NASA Technical Reports Server (NTRS)
1986-01-01
Activities of the Goddard Space Flight Center are described in the areas of planets and interplanetary media, comets, astronomy and high-energy physics, solar physics, atmospheres, terrestrial physics, ocean science, sensors and space technology, techniques, user space data systems, space communications and navigation, and system and software engineering. Flight projects and mission definition studies are presented, and institutional technology is described.
Instructional Strategy: Didactic Media Presentation to Optimize Student Learning
ERIC Educational Resources Information Center
Schilling, Jim
2017-01-01
Context: Subject matter is presented to athletic training students in the classroom using various modes of media. The specific type of mode and when to use it should be considered to maximize learning effectiveness. Other factors to consider in this process include a student's knowledge base and the complexity of material. Objective: To introduce…
New Media, New Voices: A Complex School Public Relations and Human Resources Challenge
ERIC Educational Resources Information Center
Peck, Craig M.; Mullen, Carol A.
2008-01-01
An unprecedented increase in students' personal technology use presents a new area for study within the educational leadership and administration field. Cellular phones, video posting websites, and online social networking destinations empower students to create and distribute school-related images and stories. Student-developed media content can…
Model-Driven Development of Interactive Multimedia Applications with MML
NASA Astrophysics Data System (ADS)
Pleuss, Andreas; Hussmann, Heinrich
There is an increasing demand for high-quality interactive applications which combine complex application logic with a sophisticated user interface, making use of individual media objects like graphics, animations, 3D graphics, audio or video. Their development is still challenging as it requires the integration of software design, user interface design, and media design.
Role of Media Rumors in the Modern Society
ERIC Educational Resources Information Center
Zheltukhina, Marina R.; Slyshkin, Gennady G.; Ponomarenko, Elena B.; Busygina, Maryana V.; Omelchenko, Anatoly V.
2016-01-01
The article examines the using of media rumors as pragmatic influence mechanism in the modern communication. The printed and electronic messages with rumors make the material of research. The complex methods of analysis of the rumors role in the modern society are used. The inductive, descriptive and comparative, cognitive and discursive,…
ERIC Educational Resources Information Center
Fells, Stephanie
2012-01-01
The design of online or distributed problem-based learning (dPBL) is a nascent, complex design problem. Instructional designers are challenged to effectively unite the constructivist principles of problem-based learning (PBL) with appropriate media in order to create quality dPBL environments. While computer-mediated communication (CMC) tools and…