Sample records for physically cross-linked polymerized

  1. The Formation Mechanism of Hydrogels.

    PubMed

    Lu, Liyan; Yuan, Shiliang; Wang, Jing; Shen, Yun; Deng, Shuwen; Xie, Luyang; Yang, Qixiang

    2017-06-12

    Hydrogels are degradable polymeric networks, in which cross-links play a vital role in structure formation and degradation. Cross-linking is a stabilization process in polymer chemistry that leads to the multi-dimensional extension of polymeric chains, resulting in network structures. By cross-linking, hydrogels are formed into stable structures that differ from their raw materials. Generally, hydrogels can be prepared from either synthetic or natural polymers. Based on the types of cross-link junctions, hydrogels can be categorized into two groups: the chemically cross-linked and the physically cross-linked. Chemically cross-linked gels have permanent junctions, in which covalent bonds are present between different polymer chains, thus leading to excellent mechanical strength. Although chemical cross-linking is a highly resourceful method for the formation of hydrogels, the cross-linkers used in hydrogel preparation should be extracted from the hydrogels before use, due to their reported toxicity, while, in physically cross-linked gels, dissolution is prevented by physical interactions, such as ionic interactions, hydrogen bonds or hydrophobic interactions. Physically cross-linked methods for the preparation of hydrogels are the alternate solution for cross-linker toxicity. Both methods will be discussed in this essay. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Facile fabrication of core cross-linked micelles by RAFT polymerization and enzyme-mediated reaction.

    PubMed

    Wu, Yukun; Lai, Quanyong; Lai, Shuqi; Wu, Jing; Wang, Wei; Yuan, Zhi

    2014-06-01

    Polymeric micelles formed in aqueous solution by assembly of amphiphilic block copolymers have been extensively investigated due to their great potential as drug carriers. However, the stability of polymeric assembly is still one of the major challenges in delivering drugs to tissues and cells. Here, we report a facile route to fabricate core cross-linked (CCL) micelles using an enzymatic polymerization as the cross-linking method. We present synthesis of poly(ethylene glycol)-block-poly(N-isopropyl acrylamide-co-N-(4-hydroxyphenethyl) acrylamide) diblock copolymer PEG-b-P(NIPAAm-co-NHPAAm) via reversible addition-fragmentation chain transfer (RAFT) polymerization. The diblock copolymer was then self-assembled into non-cross-linked (NCL) micelles upon heating above the lower critical solution temperature (LCST), and subsequently cross-linked using horseradish peroxidase (HRP) and hydrogen peroxide (H2O2) as enzyme and oxidant. The characterization of the diblock copolymer and micelles were studied by NMR, DLS, UV-vis, and fluorescence spectroscopy. The fluorescence study reveals that the cross-linking process endows the micelles with much lower critical micelle concentration (CMC). In addition, the drug release study shows that the CCL micelles have lower release amount of doxorubicin (DOX) than the NCL micelles due to the enhanced stability of the CCL micelles by core cross-linking process. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Bottlebrush-Guided Polymer Crystallization Resulting in Supersoft and Reversibly Moldable Physical Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel, William F. M.; Xie, Guojun; Vatankhah Varnoosfaderani, Mohammad

    The goal of this study is to use ABA triblock copolymers with central bottlebrush B segments and crystalline linear chain A segments to demonstrate the effect of side chains on the formation and mechanical properties of physical networks cross-linked by crystallites. For this purpose, a series of bottlebrush copolymers was synthesized consisting of central amorphous bottlebrush polymer segments with a varying degree of polymerization (DP) of poly(n-butyl acrylate) (PnBA) side chains and linear tail blocks of crystallizable poly(octadecyl acrylate-stat-docosyl acrylate) (poly(ODA-stat-DA)). The materials were generated by sequential atom transfer radical polymerization (ATRP) steps starting with a series of bifunctional macroinitiatorsmore » followed by the growth of two ODA-stat-DA linear-chain tails and eventually growing poly(nBA) side chains with increasing DPs. Crystallization of the poly(ODA-stat-DA) tails resulted in a series of reversible physical networks with bottlebrush strands bridging crystalline cross-links. They displayed very low moduli of elasticity of the order of 10 3–10 4 Pa. These distinct properties are due to the bottlebrush architecture, wherein densely grafted side chains play a dual role by facilitating disentanglement of the network strands and confining crystallization of the linear-chain tails. This combination leads to physical cross-linking of supersoft networks without percolation of the crystalline phase. The cross-link density was effectively controlled by the DP of the side chains with respect to the DP of the linear tails (n A). Furthermore, shorter side chains allowed for crystallization of the linear tails of neighboring bottlebrushes, while steric repulsion between longer side chains hindered the phase separation and crystallization process and prevented network formation.« less

  4. Bottlebrush-Guided Polymer Crystallization Resulting in Supersoft and Reversibly Moldable Physical Networks

    DOE PAGES

    Daniel, William F. M.; Xie, Guojun; Vatankhah Varnoosfaderani, Mohammad; ...

    2017-02-24

    The goal of this study is to use ABA triblock copolymers with central bottlebrush B segments and crystalline linear chain A segments to demonstrate the effect of side chains on the formation and mechanical properties of physical networks cross-linked by crystallites. For this purpose, a series of bottlebrush copolymers was synthesized consisting of central amorphous bottlebrush polymer segments with a varying degree of polymerization (DP) of poly(n-butyl acrylate) (PnBA) side chains and linear tail blocks of crystallizable poly(octadecyl acrylate-stat-docosyl acrylate) (poly(ODA-stat-DA)). The materials were generated by sequential atom transfer radical polymerization (ATRP) steps starting with a series of bifunctional macroinitiatorsmore » followed by the growth of two ODA-stat-DA linear-chain tails and eventually growing poly(nBA) side chains with increasing DPs. Crystallization of the poly(ODA-stat-DA) tails resulted in a series of reversible physical networks with bottlebrush strands bridging crystalline cross-links. They displayed very low moduli of elasticity of the order of 10 3–10 4 Pa. These distinct properties are due to the bottlebrush architecture, wherein densely grafted side chains play a dual role by facilitating disentanglement of the network strands and confining crystallization of the linear-chain tails. This combination leads to physical cross-linking of supersoft networks without percolation of the crystalline phase. The cross-link density was effectively controlled by the DP of the side chains with respect to the DP of the linear tails (n A). Furthermore, shorter side chains allowed for crystallization of the linear tails of neighboring bottlebrushes, while steric repulsion between longer side chains hindered the phase separation and crystallization process and prevented network formation.« less

  5. Fluxgate magnetorelaxometry for characterization of hydrogel polymerization kinetics and physical entrapment capacity.

    PubMed

    Heim, E; Harling, S; Ludwig, F; Menzel, H; Schilling, M

    2008-05-21

    Hydrogels have the potential for providing drug delivery systems with long release rates. The polymerization kinetics and the physical entrapment capacity of photo-cross-linked hydroxyethyl methacrylate hydroxyethylstarch hydrogels are investigated with a non-destructive method. For this purpose, superparamagnetic nanoparticles as replacements for biomolecules are used as probes. By analyzing their magnetic relaxation behavior, the amounts of physically entrapped and mobile nanoparticles can be determined. The hydrogels were loaded with five different concentrations of nanoparticles. Different methods of analysis of the relaxation curves and the influence of the microviscosity are discussed. This investigation allows one to optimize the UV light irradiation time and to determine the amount of physically entrapped nanoparticles in the hydrogel network. It was found that the polymerization kinetics is faster for decreasing nanoparticle concentration but not all nanoparticles can be physically entrapped in the network.

  6. Barnacle cement: a polymerization model based on evolutionary concepts

    PubMed Central

    Dickinson, Gary H.; Vega, Irving E.; Wahl, Kathryn J.; Orihuela, Beatriz; Beyley, Veronica; Rodriguez, Eva N.; Everett, Richard K.; Bonaventura, Joseph; Rittschof, Daniel

    2009-01-01

    Summary Enzymes and biochemical mechanisms essential to survival are under extreme selective pressure and are highly conserved through evolutionary time. We applied this evolutionary concept to barnacle cement polymerization, a process critical to barnacle fitness that involves aggregation and cross-linking of proteins. The biochemical mechanisms of cement polymerization remain largely unknown. We hypothesized that this process is biochemically similar to blood clotting, a critical physiological response that is also based on aggregation and cross-linking of proteins. Like key elements of vertebrate and invertebrate blood clotting, barnacle cement polymerization was shown to involve proteolytic activation of enzymes and structural precursors, transglutaminase cross-linking and assembly of fibrous proteins. Proteolytic activation of structural proteins maximizes the potential for bonding interactions with other proteins and with the surface. Transglutaminase cross-linking reinforces cement integrity. Remarkably, epitopes and sequences homologous to bovine trypsin and human transglutaminase were identified in barnacle cement with tandem mass spectrometry and/or western blotting. Akin to blood clotting, the peptides generated during proteolytic activation functioned as signal molecules, linking a molecular level event (protein aggregation) to a behavioral response (barnacle larval settlement). Our results draw attention to a highly conserved protein polymerization mechanism and shed light on a long-standing biochemical puzzle. We suggest that barnacle cement polymerization is a specialized form of wound healing. The polymerization mechanism common between barnacle cement and blood may be a theme for many marine animal glues. PMID:19837892

  7. Probing actin polymerization by intermolecular cross-linking.

    PubMed

    Millonig, R; Salvo, H; Aebi, U

    1988-03-01

    We have used N,N'-1,4-phenylenebismaleimide, a bifunctional sulfhydryl cross-linking reagent, to probe the oligomeric state of actin during the early stages of its polymerization into filaments. We document that one of the first steps in the polymerization of globular monomeric actin (G-actin) under a wide variety of ionic conditions is the dimerization of a significant fraction of the G-actin monomer pool. As polymerization proceeds, the yield of this initial dimer ("lower" dimer with an apparent molecular mass of 86 kD by SDS-PAGE [LD]) is attenuated, while an actin filament dimer ("upper" dimer with an apparent molecular mass of 115 kD by SDS-PAGE [UD] as characterized [Elzinga, M., and J. J. Phelan. 1984. Proc. Natl. Acad. Sci. USA. 81:6599-6602]) is formed. This shift from LD to UD occurs concomitant with formation of filaments as assayed by N-(1-pyrenyl)iodoacetamide fluorescence enhancement and electron microscopy. Isolated cross-linked LD does not form filaments, while isolated cross-linked UD will assemble into filaments indistinguishable from those polymerized from unmodified G-actin under typical filament-forming conditions. The presence of cross-linked LD does not effect the kinetics of polymerization of actin monomer, whereas cross-linked UD shortens the "lag phase" of the polymerization reaction in a concentration-dependent fashion. Several converging lines of evidence suggest that, although accounting for a significant oligomeric species formed during early polymerization, the LD is incompatible with the helical symmetry defining the mature actin filament; however, it could represent the interfilament dimer found in paracrystalline arrays or filament bundles. Furthermore, the LD is compatible with the unit cell structure and symmetry common to various types of crystalline actin arrays (Aebi, U., W. E. Fowler, G. Isenberg, T. D. Pollard, and P. R. Smith. 1981. J. Cell Biol. 91:340-351) and might represent the major structural state in which a mutant beta-actin (Leavitt, J., G. Bushar, T. Kakunaga, H. Hamada, T. Hirakawa, D. Goldman, and C. Merril. 1982. Cell. 28:259-268) is arrested under polymerizing conditions.

  8. Preparation and characterization of a magneto-polymeric nanocomposite: Fe 3O 4 nanoparticles in a grafted, cross-linked and plasticized poly(vinyl chloride) matrix

    NASA Astrophysics Data System (ADS)

    Rodríguez-Fernández, Oliverio S.; Rodríguez-Calzadíaz, C. A.; Yáñez-Flores, Isaura G.; Montemayor, Sagrario M.

    In this work two kind of materials: (1) grafted, cross-linked and plasticized poly(vinyl chloride) (PVC) "plastic films" and (2) magnetic plastic films "magneto-polymeric nanocomposites" were prepared. Precursor solutions or "plastisols" used to obtain the plastic films were obtained by mixing PVC (emulsion grade) as polymeric matrix, di(2-ethylhexyl)phthalate (DOP) as plasticizer, a thermal stabilizer based in Ca/Zn salts, and a cross-linking agent, 3-mercaptopropyltrimethoxysilane (MTMS) or 3-aminopropyltriethoxysilane (ATES), at several concentrations. Flexible films were obtained from the plastisols using static casting. The stress-strain behavior and the gel content (determined by Soxhlet extraction with boiling THF) of the flexible films were measured in order to evaluate the effect of the cross-linking agent and their content on the degree of cross-linking. The magneto-polymeric nanocomposites were obtained by mixing the optimum composition of the plastisols (analyzed previously) with magnetite (Fe 3O 4)-based ferrofluid and DOP. Later, flexible films were obtained by static casting of the plastisol/ferrofluid systems. The magnetic films were characterized by the above-mentioned techniques and X-ray diffraction, vibrating sample magnetometry and thermogravimetrical analysis.

  9. Photoresponsive cross-linked polymeric particles for phototriggered burst release.

    PubMed

    Wang, Zhen; Yu, Lili; Lv, Cong; Wang, Peng; Chen, Yedong; Tang, Xinjing

    2013-01-01

    We synthesized a series of cross-linked photoresponsive polymeric particles with photolabile monomers and cross-linkers through miniemulsion polymerization. These particles are quite stable in dark, while light irradiation caused the breakage of particles and the efficient release of encapsulated contents up to 95% based on Nile red fluorescence. Photoswitches of particle systems were confirmed by fluorescence spectroscopy, SEM and colorimetry. Particle uptake and triggered release in RAW264.7 cells were confirmed by fluorescein diacetate loaded particles. © 2013 The Authors. Photochemistry and Photobiology © 2013 The American Society of Photobiology.

  10. Polymeric micelles with ionic cores containing biodegradable cross-links for delivery of chemotherapeutic agents.

    PubMed

    Kim, Jong Oh; Sahay, Gaurav; Kabanov, Alexander V; Bronich, Tatiana K

    2010-04-12

    Novel functional polymeric nanocarriers with ionic cores containing biodegradable cross-links were developed for delivery of chemotherapeutic agents. Block ionomer complexes (BIC) of poly(ethylene oxide)-b-poly(methacylic acid) (PEO-b-PMA) and divalent metal cations (Ca(2+)) were utilized as templates. Disulfide bonds were introduced into the ionic cores by using cystamine as a biodegradable cross-linker. The resulting cross-linked micelles with disulfide bonds represented soft, hydrogel-like nanospheres and demonstrated a time-dependent degradation in the conditions mimicking the intracellular reducing environment. The ionic character of the cores allowed to achieve a very high level of doxorubicin (DOX) loading (50% w/w) into the cross-linked micelles. DOX-loaded degradable cross-linked micelles exhibited more potent cytotoxicity against human A2780 ovarian carcinoma cells as compared to micellar formulations without disulfide linkages. These novel biodegradable cross-linked micelles are expected to be attractive candidates for delivery of anticancer drugs.

  11. Method of Cross-Linking Aerogels Using a One-Pot Reaction Scheme

    NASA Technical Reports Server (NTRS)

    Meador, Ann B.; Capadona, Lynn A.

    2008-01-01

    A document discusses a new, simplified method for cross-linking silica and other oxide aerogels, with a polymeric material to increase strength of such materials without adversely affecting porosity or low density. This innovation introduces the polymer precursor into the sol before gelation either as an agent, which co-reacts with the oxide gel, or as soluble polymer precursors, which do not interact with the oxide gel in any way. Subsequent exposure to heat, light, catalyst or other method of promoting polymerization causes cross-linking without any additional infiltration steps.

  12. Oligo(ethylene glycol)-sidechain microgels prepared in absence of cross-linking agent: Polymerization, characterization and variation of particle deformability.

    PubMed

    Welsch, Nicole; Lyon, L Andrew

    2017-01-01

    We present a systematic study of self-cross-linked microgels formed by precipitation polymerization of oligo ethylene glycol methacrylates. The cross-linking density of these microgels and, thus, the network flexibility can be easily tuned through the modulation of the reaction temperature during polymerization. Microgels prepared in absence of any difunctional monomer, i.e. cross-linker, show enhanced deformability and particle spreading on solid surfaces as compared to microgels cross-linked with varying amounts of poly(ethylene glycol diacrylate) (PEG-DA) in addition to self-crosslinking. Particles prepared at low reaction temperatures exhibit the highest degree of spreading due to the lightly cross-linked and flexible polymer network. Moreover, AFM force spectroscopy studies suggest that cross-linker-free microgels constitute of a more homogeneous polymer network than PEG-DA cross-linked particles and have elastic moduli at the particle apex that are ~5 times smaller than the moduli of 5 mol-% PEG-DA cross-linked microgels. Resistive pulse sensing experiments demonstrate that microgels prepared at 75 and 80°C without PEG-DA are able to deform significantly to pass through nanopores that are smaller than the microgel size. Additionally, we found that polymer network flexibility of microgels is a useful tool to control the formation of particle dewetting patterns. This offers a promising new avenue for build-up of 2D self-assembled particle structures with patterned chemical and mechanical properties.

  13. Oligo(ethylene glycol)-sidechain microgels prepared in absence of cross-linking agent: Polymerization, characterization and variation of particle deformability

    PubMed Central

    Lyon, L. Andrew

    2017-01-01

    We present a systematic study of self-cross-linked microgels formed by precipitation polymerization of oligo ethylene glycol methacrylates. The cross-linking density of these microgels and, thus, the network flexibility can be easily tuned through the modulation of the reaction temperature during polymerization. Microgels prepared in absence of any difunctional monomer, i.e. cross-linker, show enhanced deformability and particle spreading on solid surfaces as compared to microgels cross-linked with varying amounts of poly(ethylene glycol diacrylate) (PEG-DA) in addition to self-crosslinking. Particles prepared at low reaction temperatures exhibit the highest degree of spreading due to the lightly cross-linked and flexible polymer network. Moreover, AFM force spectroscopy studies suggest that cross-linker-free microgels constitute of a more homogeneous polymer network than PEG-DA cross-linked particles and have elastic moduli at the particle apex that are ~5 times smaller than the moduli of 5 mol-% PEG-DA cross-linked microgels. Resistive pulse sensing experiments demonstrate that microgels prepared at 75 and 80°C without PEG-DA are able to deform significantly to pass through nanopores that are smaller than the microgel size. Additionally, we found that polymer network flexibility of microgels is a useful tool to control the formation of particle dewetting patterns. This offers a promising new avenue for build-up of 2D self-assembled particle structures with patterned chemical and mechanical properties. PMID:28719648

  14. From Commodity Polymers to Functional Polymers

    PubMed Central

    Xiang, Tao; Wang, Ling-Ren; Ma, Lang; Han, Zhi-Yuan; Wang, Rui; Cheng, Chong; Xia, Yi; Qin, Hui; Zhao, Chang-Sheng

    2014-01-01

    Functional polymers bear specified chemical groups, and have specified physical, chemical, biological, pharmacological, or other uses. To adjust the properties while keeping material usage low, a method for direct synthesis of functional polymers is indispensable. Here we show that various functional polymers can be synthesized by in situ cross-linked polymerization/copolymerization. We demonstrate that the polymers synthesized by the facile method using different functional monomers own outstanding pH-sensitivity and pH-reversibility, antifouling property, antibacterial, and anticoagulant property. Our study opens a route for the functionalization of commodity polymers, which lead to important advances in polymeric materials applications. PMID:24710333

  15. CuAAC-Based Click Chemistry in Self-Healing Polymers.

    PubMed

    Döhler, Diana; Michael, Philipp; Binder, Wolfgang H

    2017-10-17

    Click chemistry has emerged as a significant tool for materials science, organic chemistry, and bioscience. Based on the initial concept of Barry Sharpless in 2001, the copper(I)-catalyzed azide/alkyne cycloaddition (CuAAC) reaction has triggered a plethora of chemical concepts for linking molecules and building blocks under ambient conditions, forming the basis for applications in autonomous cross-linking materials. Self-healing systems on the other hand are often based on mild cross-linking chemistries that are able to react either autonomously or upon an external trigger. In the ideal case, self-healing takes place efficiently at low temperatures, independent of the substrate(s) used, by forming strong and stable networks, binding to the newly generated (cracked) interfaces to restore the original material properties. The use of the CuAAC in self-healing systems, most of all the careful design of copper-based catalysts linked to additives as well as the chemical diversity of substrates, has led to an enormous potential of applications of this singular reaction. The implementation of click-based strategies in self-healing systems therefore is highly attractive, as here chemical (and physical) concepts of molecular reactivity, molecular design, and even metal catalysis are connected to aspects of materials science. In this Account, we will show how CuAAC reactions of multivalent components can be used as a tool for self-healing materials, achieving cross-linking at low temperatures (exploiting concepts of autocatalysis or internal chelation within the bulk CuAAC and systematic optimization of the efficiency of the used Cu(I) catalysts). Encapsulation strategies to separate the click components by micro- and nanoencapsulation are required in this context. Consequently, the examples reported here describe chemical concepts to realize more efficient and faster click reactions in self-healing polymeric materials. Thus, enhanced chain diffusion in (hyper)branched polymers, autocatalysis, or internal chelation concepts enable efficient click cross-linking already at 5 °C with a simultaneously reduced amount of Cu(I) catalyst and increased reaction rates, culminating in the first reported self-healing system based on click cycloaddition reactions. Via tailor-made nanocarbon/Cu(I) catalysts we can further improve the click cross-linking reaction in view of efficiency and kinetics, leading to the generation of self-healing graphene-based epoxy nanocomposites. Additionally, we have designed special CuAAC click methods for chemical reporting and visualization systems based on the detection of ruptured capsules via a fluorogenic click reaction, which can be combined with CuAAC cross-linking reactions to obtain simultaneous stress detection and self-healing within polymeric materials. In a similar concept, we have prepared polymeric Cu(I)-biscarbene complexes to detect (mechanical) stress within self-healing polymeric materials via a triggered fluorogenic reaction, thus using a destructive force for a constructive chemical response.

  16. Post-print UV curing method for improving the mechanical properties of prototypes derived from two-photon lithography [A post-print UV curing method for improving the mechanical properties of prototypes derived from two-photon polymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oakdale, James S.; Ye, Jianchao; Smith, William L.

    Here, two photon polymerization (TPP) is a precise, reliable, and increasingly popular technique for rapid prototyping of micro-scale parts with sub-micron resolution. The materials of choice underlying this process are predominately acrylic resins cross-linked via free-radical polymerization. Due to the nature of the printing process, the derived parts are only partially cured and the corresponding mechanical properties, i.e. modulus and ultimate strength, are lower than if the material were cross-linked to the maximum extent. Herein, post-print curing via UV-driven radical generation, is demonstrated to increase the overall degree of cross-linking of low density, TPP-derived structures.

  17. Post-print UV curing method for improving the mechanical properties of prototypes derived from two-photon lithography [A post-print UV curing method for improving the mechanical properties of prototypes derived from two-photon polymerization

    DOE PAGES

    Oakdale, James S.; Ye, Jianchao; Smith, William L.; ...

    2016-11-28

    Here, two photon polymerization (TPP) is a precise, reliable, and increasingly popular technique for rapid prototyping of micro-scale parts with sub-micron resolution. The materials of choice underlying this process are predominately acrylic resins cross-linked via free-radical polymerization. Due to the nature of the printing process, the derived parts are only partially cured and the corresponding mechanical properties, i.e. modulus and ultimate strength, are lower than if the material were cross-linked to the maximum extent. Herein, post-print curing via UV-driven radical generation, is demonstrated to increase the overall degree of cross-linking of low density, TPP-derived structures.

  18. Iodopropyl-branched polysiloxane gel electrolytes with improved ionic conductivity upon cross-linking.

    PubMed

    De Gregorio, G L; Giannuzzi, R; Cipolla, M P; Agosta, R; Grisorio, R; Capodilupo, A; Suranna, G P; Gigli, G; Manca, M

    2014-11-21

    We here report the implementation of poly[(3-N-methylimidazoliumpropyl)methylsiloxane-co-dimethylsiloxane]iodides as suitable polymeric hosts for a novel class of in situ cross-linkable iodine/iodide-based gel-electrolytes for dye-sensitized solar cells. The polymers are first partially quaternized and then subjected to a thermal cross-linking which allows the formation of a 3D polymeric network which is accompanied by a dramatic enhancement of the ionic conductivity.

  19. Coating gigaporous polystyrene microspheres with cross-linked poly(vinyl alcohol) hydrogel as a rapid protein chromatography matrix.

    PubMed

    Qu, Jian-Bo; Huan, Guan-Sheng; Chen, Yan-Li; Zhou, Wei-Qing; Liu, Jian-Guo; Huang, Fang

    2014-08-13

    Gigaporous polystyrene (PS) microspheres were hydrophilized by in situ polymerization to give a stable cross-linked poly(vinyl alcohol) (PVA) hydrogel coating, which can shield proteins from the hydrophobic PS surface underneath. The amination of microspheres (PS-NH2) was first carried out through acetylization, oximation and reduction, and then 4,4'-azobis (4-cyanovaleric acid) (ACV), a polymerization initiator, was covalently immobilized on PS-NH2 through amide bond formation, and the cross-linked poly(vinyl acetate) (PVAc) was prepared by radical polymerization at the surfaces of ACV-immobilized PS microspheres (PS-ACV). Finally, the cross-linked PVA hydrogel coated gigaporous PS microspheres (PS-PVA) was easily achieved through alcoholysis of PVAc. Results suggested that the PS microspheres were effectively coated with cross-linked PVA hydrogel, where the gigaporrous structure remained under optimal conditions. After hydrophilic modification (PS-PVA), the protein-resistant ability of microspheres was greatly improved. The hydroxyl-rich PS-PVA surface can be easily derivatized by classical chemical methods. Performance advantages of the PS-PVA column in flow experiment include good permeability, low backpressure, and mechanical stability. These results indicated that PS-PVA should be promising in rapid protein chromatography.

  20. Photoinitiated Polymerization-Induced Self-Assembly of Glycidyl Methacrylate for the Synthesis of Epoxy-Functionalized Block Copolymer Nano-Objects.

    PubMed

    Tan, Jianbo; Liu, Dongdong; Huang, Chundong; Li, Xueliang; He, Jun; Xu, Qin; Zhang, Li

    2017-08-01

    Herein, a novel photoinitiated polymerization-induced self-assembly formulation via photoinitiated reversible addition-fragmentation chain transfer dispersion polymerization of glycidyl methacrylate (PGMA) in ethanol-water at room temperature is reported. It is demonstrated that conducting polymerization-induced self-assembly (PISA) at low temperatures is crucial for obtaining colloidal stable PGMA-based diblock copolymer nano-objects. Good control is maintained during the photo-PISA process with a high rate of polymerization. The polymerization can be switched between "ON" and "OFF" in response to visible light. A phase diagram is constructed by varying monomer concentration and degree of polymerization. The PGMA-based diblock copolymer nano-objects can be further cross-linked by using a bifunctional primary amine reagent. Finally, silver nanoparticles are loaded within cross-linked vesicles via in situ reduction, exhibiting good catalytic properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jongmin; Saba, Stacey A.; Hillmyer, Marc A.

    We report on the phase separation behaviors of polymerization mixtures containing a polylactide macro-chain transfer agent (PLA-CTA), styrene, divinylbenzene, hydroxyl-terminated PLA (PLA-OH), and a molecular chain transfer agent which enable the ability to tune the pore size of a cross-linked polymer monolith in a facile manner. Cross-linked monoliths were produced from the mixtures via reversible addition-fragmentation chain transfer (RAFT) polymerization and converted into cross-linked porous polymers by selective removal of PLA while retaining the parent morphology. We demonstrate that pore sizes are tunable over a wide range of length scales from the meso- to macroporous regimes by adjusting the ratiomore » of PLA-CTA to PLA-OH in the reaction mixture which causes the phase separation mechanism to change from polymerization-induced microphase separation to polymerization-induced phase separation. The possibility of increasing porosity and inducing simultaneous micro- and macrophase separation was also realized by adjustments in the molar mass of PLA which enabled the synthesis of hierarchically meso- and macroporous polymers.« less

  2. Selective Photophysical Modification on Light-Emitting Polymer Films for Micro- and Nano-Patterning

    PubMed Central

    Zhang, Xinping; Liu, Feifei; Li, Hongwei

    2016-01-01

    Laser-induced cross-linking in polymeric semiconductors was utilized to achieve micro- and nano-structuring in thin films. Single- and two-photon cross-linking processes led to the reduction in both the refractive index and thickness of the polymer films. The resultant photonic structures combine the features of both relief- and phase-gratings. Selective cross-linking in polymer blend films based on different optical response of different molecular phases enabled “solidification” of the phase-separation scheme, providing a stable template for further photonic structuring. Dielectric and metallic structures are demonstrated for the fabrication methods using cross-linking in polymer films. Selective cross-linking enables direct patterning into polymer films without introducing additional fabrication procedures or additional materials. The diffraction processes of the emission of the patterned polymeric semiconductors may provide enhanced output coupling for light-emitting diodes or distributed feedback for lasers. PMID:28773248

  3. Chemistry and Processing of Nanostructured Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, G A; Baumann, T F; Hope-Weeks, L J

    2002-01-18

    Nanostructured materials can be formed through the sol-gel polymerization of inorganic or organic monomer systems. For example, a two step polymerization of tetramethoxysilane (TMOS) was developed such that silica aerogels with densities as low as 3 kg/m{sup 3} ({approx} two times the density of air) could be achieved. Organic aerogels based upon resorcinol-formaldehyde and melamine-formaldehyde can also be prepared using the sol-gel process. Materials of this type have received significant attention at LLNL due to their ultrafine cell sizes, continuous porosity, high surface area and low mass density. For both types of aerogels, sol-gel polymerization depends upon the transformation ofmore » these monomers into nanometer-sized clusters followed by cross-linking into a 3-dimensional gel network. While sol-gel chemistry provides the opportunity to synthesize new material compositions, it suffers from the inability to separate the process of cluster formation from gelation. This limitation results in structural deficiencies in the gel that impact the physical properties of the aerogel, xerogel or nanocomposite. In order to control the properties of the resultant gel, one should be able to regulate the formation of the clusters and their subsequent cross-linking. Towards this goal, we are utilizing dendrimer chemistry to separate the cluster formation from the gelation so that new nanostructured materials can be produced. Dendrimers are three-dimensional, highly branched macromolecules that are prepared in such a way that their size, shape and surface functionality are readily controlled. The dendrimers will be used as pre-formed clusters of known size that can be cross-linked to form an ordered gel network.« less

  4. Actin Hydrophobic Loop (262-274) and Filament Nucleation and Elongation

    PubMed Central

    Shvetsov, Alexander; Galkin, Vitold E.; Orlova, Albina; Phillips, Martin; Bergeron, Sarah E.; Rubenstein, Peter A.; Egelman, Edward H.; Reisler, Emil

    2014-01-01

    Summary The importance of actin hydrophobic loop 262-274 dynamics to actin polymerization and filament stability has been shown recently using a yeast actin mutant, L180C/L269C/C374A, in which the hydrophobic loop could be locked in a “parked” conformation by a disulfide bond between C180 and C269. Such a cross-linked G-actin does not form filaments, suggesting nucleation and/or elongation inhibition. To determine the role of loop dynamics in filament nucleation and/or elongation, we studied the polymerization of the cross-linked actin in the presence of cofilin - to assist with actin nucleation - and with phalloidin, to stabilize the elongating filament segments. We demonstrate here that together, but not alone, phalloidin and cofilin co-rescue the polymerization of cross-linked actin. The polymerization was also rescued by filament seeds added together with phalloidin but not with cofilin. Thus, loop immobilization via cross-linking inhibits both filament nucleation and elongation. Nevertheless, the conformational changes needed to catalyze ATP hydrolysis by actin occur in the cross-linked actin. When actin filaments are fully decorated by cofilin the helical twist of F-actin changes by ~ 5° per subunit. Electron microscopic analysis of filaments rescued by cofilin and phalloidin revealed a dense contact between opposite strands in F-actin, and a change of twist by ~ 1° per subunit, indicating either partial or disordered attachment of cofilin to F-actin and/or a competition between cofilin and phalloidin to alter F-actin symmetry. Our findings show an importance of the hydrophobic loop conformational dynamics to both actin nucleation and elongation and reveal that the inhibition of these two steps in the cross-linked actin can be relieved by appropriate factors. PMID:18037437

  5. Emerging synthetic strategies for core cross-linked star (CCS) polymers and applications as interfacial stabilizers: bridging linear polymers and nanoparticles.

    PubMed

    Chen, Qijing; Cao, Xueteng; Xu, Yuanyuan; An, Zesheng

    2013-10-01

    Core cross-linked star (CCS) polymers become increasingly important in polymer science and are evaluated in many value-added applications. However, limitations exist to varied degrees for different synthetic methods. It is clear that improvement in synthetic efficiency is fundamental in driving this field moving even further. Here, the most recent advances are highlighted in synthetic strategies, including cross-linking with cross-linkers of low solubility, polymerization-induced self-assembly in aqueous-based heterogeneous media, and cross-linking via dynamic covalent bonds. The understanding of CCS polymers is also further refined to advocate their role as an intermediate between linear polymers and polymeric nanoparticles, and their use as interfacial stabilizers is rationalized within this context. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Synthesis of Cross-Linked Polymeric Micelle pH Nanosensors: An Investigation of Design Flexibility.

    PubMed

    Kumar, E K Pramod; Jølck, Rasmus I; Andresen, Thomas L

    2015-09-01

    The design flexibility that polymeric micelles offer in the fabrication of optical nanosensors for ratiometric pH measurements is investigated. pH nanosensors based on polymeric micelles are synthesized either by a mixed-micellization approach or by a postmicelle modification strategy. In the mixed-micellization approach, self-assembly of functionalized unimers followed by shell cross-linking by copper-catalyzed azide-alkyne cycloaddition (CuAAC) results in stabilized cRGD-functionalized micelle pH nanosensors. In the postmicelle modification strategy, simultaneous cross-linking and fluorophore conjugation at the micelle shell using CuAAC results in a stabilized micelle pH nanosensor. Compared to the postmicelle modification strategy, the mixed-micellization approach increases the control of the overall composition of the nanosensors. Both approaches provide stable nanosensors with similar pKa profiles and thereby nanosensors with similar pH sensitivity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Opening Furan for Tailoring Properties of Bio-based Poly(Furfuryl Alcohol) Thermoset.

    PubMed

    Falco, Guillaume; Guigo, Nathanael; Vincent, Luc; Sbirrazzuoli, Nicolas

    2018-06-11

    This work shows how furan ring-opening reactions were controlled by polymerization conditions to tune the cross-link density in bio-based poly(furfuryl alcohol) (PFA). The influence of water and isopropyl alcohol (IPA) on the polymerization of furfuryl alcohol, and particularly on furan ring-opening, was investigated by means of 13 C NMR and FT-IR spectroscopy. Results indicated that formation of open structures were favored in the presence of solvents, thus leading to modification of the thermo-mechanical properties compared to PFA cross-linked without solvent. Dynamic mechanical analyses showed that when slightly more open structures were present in PFA it resulted in an important decrease of the cross-link density. Despite lower glass-transition temperature and lower elastic modulus for PFA polymerized with solvent, the thermal stability remains very high (>350 °C) even with more open structures in PFA. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Gel Point Suppression in RAFT Polymerization of Pure Acrylic Cross-Linker Derived from Soybean Oil.

    PubMed

    Yan, Mengguo; Huang, Yuerui; Lu, Mingjia; Lin, Fang-Yi; Hernández, Nacú B; Cochran, Eric W

    2016-08-08

    Here we report the reversible addition-fragmentation chain transfer (RAFT) polymerization of acrylated epoxidized soybean oil (AESO), a cross-linker molecule, to high conversion (>50%) and molecular weight (>100 kDa) without macrogelation. Surprisingly, gelation is suppressed in this system far beyond the expectations predicated both on Flory-Stockmeyer theory and multiple other studies of RAFT polymerization featuring cross-linking moieties. By varying AESO and initiator concentrations, we show how intra- versus intermolecular cross-linking compete, yielding a trade-off between the degree of intramolecular linkages and conversion at gel point. We measured polymer chain characteristics, including molecular weight, chain dimensions, polydispersity, and intrinsic viscosity, using multidetector gel permeation chromatography and NMR to track polymerization kinetics. We show that not only the time and conversion at macrogelation, but also the chain architecture, is largely affected by these reaction conditions. At maximal AESO concentration, the gel point approaches that predicted by the Flory-Stockmeyer theory, and increases in an exponential fashion as the AESO concentration decreases. In the most dilute solutions, macrogelation cannot be detected throughout the entire reaction. Instead, cyclization/intramolecular cross-linking reactions dominate, leading to microgelation. This work is important, especially in that it demonstrates that thermoplastic rubbers could be produced based on multifunctional renewable feedstocks.

  9. Preparation of Thermo-Responsive and Cross-Linked Fluorinated Nanoparticles via RAFT-Mediated Aqueous Polymerization in Nanoreactors.

    PubMed

    Ma, Jiachen; Zhang, Luqing; Geng, Bing; Azhar, Umair; Xu, Anhou; Zhang, Shuxiang

    2017-01-25

    In this work, a thermo-responsive and cross-linked fluoropolymer poly(2,2,2-Trifluoroethyl) methacrylate (PTFEMA) was successfully prepared by reversible addition-fragmentation chain transfer (RAFT) mediated aqueous polymerization with a thermo-responsive diblock poly(dimethylacrylamide- b - N -isopropylacrylamide) (PDMA- b -PNIPAM) that performed a dual function as both a nanoreactor and macro-RAFT agent. The cross-linked polymer particles proved to be in a spherical-like structure of about 50 nm in diameter and with a relatively narrow particle size distribution. ¹H-NMR and 19 F-NMR spectra showed that thermo-responsive diblock P(DMA- b -NIPAM) and cross-linked PTFEMA particles were successfully synthesized. Influence of the amount of ammonium persulfate (APS), the molar ratio of monomers to RAFT agent, influence of the amount of cross-linker on aqueous polymerization and thermo-responsive characterization of the particles are investigated. Monomer conversion increased from 44% to 94% with increasing the molar ratio of APS and P(DMA- b -NIPAM) from 1:9 to1:3. As the reaction proceeded, the particle size increased from 29 to 49 nm due to the consumption of TFEMA monomer. The size of cross-linked nanoparticles sharply decreased from 50.3 to 40.5 nm over the temperature range 14-44 °C, suggesting good temperature sensitivity for these nanoparticles.

  10. Let there be light: photo-cross-linked block copolymer nanoparticles.

    PubMed

    Roy, Debashish; Sumerlin, Brent S

    2014-01-01

    Polymeric nanoparticles are prepared by selectively cross-linking a photo-sensitive dimethylmaleimide-containing block of a diblock copolymer via UV irradiation. A well-defined photo-cross-linkable block copolymer is prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization of a dimethylmaleimide-functional acrylamido monomer containing photoreactive pendant groups with a poly(N,N-dimethylacrylamide) (PDMA) macro-chain transfer agent. The resulting amphiphilic block copolymers form micelles in water with a hydrophilic PDMA shell and a hydrophobic photo-cross-linkable dimethylmaleimide-containing core. UV irradiation results in photodimerization of the dimethylmaleimide groups within the micelle cores to yield core-cross-linked aggregates. Alternatively, UV irradiation of homogeneous solutions of the block copolymer in a non-selective solvent leads to in situ nanoparticle formation. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Highly cross-linked nanoporous polymers

    DOEpatents

    Steckle, Jr., Warren P.; Apen, Paul G.; Mitchell, Michael A.

    1998-01-01

    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes.

  12. Highly cross-linked nanoporous polymers

    DOEpatents

    Steckle, Jr., Warren P.; Apen, Paul G.; Mitchell, Michael A.

    1997-01-01

    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes.

  13. Polymeric foams from cross-linkable poly-N-ary lenebenzimidazoles

    NASA Technical Reports Server (NTRS)

    Harrison, E. S.; Delano, C. B.; Riccitello, S. R. (Inventor)

    1978-01-01

    Foamed cross-linked poly-N-arylenebinzimidazoles are prepared by mixing an organic tetraamine and an ortho substituted aromatic dicarboxylic acid anhydride in the presence of a blowing agent, and then heating the prepolymer to a temperature sufficient to complete polymerization and foaming of the reactants. In another embodiment of the process, the reactants are heated to form a prepolymer. The prepolymer is then cured at higher temperatures to complete foaming and polymerization.

  14. Reduction in aggregation and energy transfer of quantum dots incorporated in polystyrene beads by kinetic entrapment due to cross-linking during polymerization.

    PubMed

    Vaidya, Shyam V; Couzis, Alex; Maldarelli, Charles

    2015-03-17

    We report the development of barcoded polystyrene microbeads, approximately 50 μm in diameter, which are encoded by incorporating multicolored semiconductor fluorescent nanocrystals (quantum dots or QDs) within the microbeads and using the emission spectrum of the embedded QDs as a spectral label. The polymer/nanocrystal bead composites are formed by polymerizing emulsified liquid droplets of styrene monomer and QDs suspended in an immiscible continuous phase (suspension polymerization). We focus specifically on the effect of divinylbenzene (DVB) added to cross-link the linearly growing styrene polymer chains and the effect of this cross-linking on the state of aggregation of the nanocrystals in the composite. Aggregated states of multicolor QDs give rise to nonradiative resonance energy transfer (RET) which distorts the emission label from a spectrum recorded in a reference solvent in which the nanocrystals are well dispersed and unaggregated. A simple barcode is chosen of a mixture of QDs emitting at 560 (yellow) and 620 nm (red). We find that for linear chain growth (no DVB), the QDs aggregate as is evident from the emission spectrum and the QD distribution as seen from confocal laser scanning microscopy (CLSM) and transmission electron microscopy (TEM) images. Increasing the extent of cross-linking by the addition of DVB is shown to significantly decrease the aggregation and provide a clear label. We suggest that in the absence of cross-linking, linearly growing polymer chains, through enthalpic and entropic effects, drive the nanocrystals into inclusions, while cross-linking kinetically entraps the particle and prevents their aggregation.

  15. Highly cross-linked nanoporous polymers

    DOEpatents

    Steckle, W.P. Jr.; Apen, P.G.; Mitchell, M.A.

    1998-01-20

    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes. 1 fig.

  16. Folic acid conjugated cross-linked acrylic polymer (FA-CLAP) hydrogel for site specific delivery of hydrophobic drugs to cancer cells.

    PubMed

    Pillai, Jisha Jayadevan; Thulasidasan, Arun Kumar Theralikattu; Anto, Ruby John; Chithralekha, Devika Nandan; Narayanan, Ashwanikumar; Kumar, Gopalakrishnapillai Sankaramangalam Vinod

    2014-07-15

    The hydrogel based system is found to be rarely reported for the delivery of hydrophobic drug due to the incompatibility of hydrophilicity of the polymer network and the hydrophobicity of drug. This problem can be solved by preparing semi-interpenetrating network of cross-linked polymer for tuning the hydrophilicity so as to entrap the hydrophobic drugs. The current study is to develop a folic acid conjugated cross-linked pH sensitive, biocompatible polymeric hydrogel to achieve a site specific drug delivery. For that, we have synthesized a folic acid conjugated PEG cross-linked acrylic polymer (FA-CLAP) hydrogel and investigated its loading and release of curcumin. The formed polymer hydrogel was then conjugated with folic acid for the site specific delivery of curcumin to cancer cells and then further characterized and conducted the cell uptake and cytotoxicity studies on human cervical cancer cell lines (HeLa). In this study, we synthesized folic acid conjugated cross-linked acrylic hydrogel for the delivery of hydrophobic drugs to the cancer site. Poly (ethyleneglycol) (PEG) diacrylate cross-linked acrylic polymer (PAA) was prepared via inverse emulsion polymerization technique and later conjugated it with folic acid (FA-CLAP). Hydrophobic drug curcumin is entrapped into it and investigated the entrapment efficiency. Characterization of synthesized hydogel was done by using Fourier Transform-Infrared spectroscopy (FT-IR), Transmission Electron Microscopy (TEM), Differential Scanning Calorimetry (DSC). Polymerization and folate conjugation was confirmed by FT-IR spectroscopy. The release kinetics of drug from the entrapped form was studied which showed initial burst release followed by sustained release due to swelling and increased cross-linking. In vitro cytotoxicity and cell uptake studies were conducted in human cervical cancer (HeLa) cell lines. Results showed that curcumin entrapped folate conjugated cross-linked acrylic polymer (FA-CLAP) hydrogel showed higher cellular uptake than the non folate conjugated form. So this can be suggested as a better delivery system for site specific release of hydrophobic cancer drugs.

  17. Assembly Kinetics Determine the Architecture of α-actinin Crosslinked F-actin Networks

    PubMed Central

    Falzone, Tobias T.; Lenz, Martin; Kovar, David R.; Gardel, Margaret L.

    2013-01-01

    The actin cytoskeleton is organized into diverse meshworks and bundles that support many aspects of cell physiology. Understanding the self-assembly of these actin-based structures is essential for developing predictive models of cytoskeletal organization. Here we show that the competing kinetics of bundle formation with the onset of dynamic arrest arising from filament entanglements and cross-linking determine the architecture of reconstituted actin networks formed with α-actinin cross-links. Cross-link mediated bundle formation only occurs in dilute solutions of highly mobile actin filaments. As actin polymerization proceeds, filament mobility and bundle formation are arrested concomitantly. By controlling the onset of dynamic arrest, perturbations to actin assembly kinetics dramatically alter the architecture of biochemically identical samples. Thus, the morphology of reconstituted F-actin networks is a kinetically determined structure similar to those formed by physical gels and glasses. These results establish mechanisms controlling the structure and mechanics in diverse semi-flexible biopolymer networks. PMID:22643888

  18. The properties conferred upon triple-helical collagen-mimetic peptides by the presence of cysteine residues

    PubMed Central

    Slatter, David A.; Bihan, Dominique G.; Jarvis, Gavin E.; Stone, Rachael; Pugh, Nicholas; Giddu, Sumana; Farndale, Richard W.

    2012-01-01

    Recently, the ability of polymeric collagen-like peptides to regulate cell behavior has generated great interest. A triple-helical peptide known as collagen-related peptide (CRP) contains the sequence (Gly-Pro-Hyp)10. With Gly-Pro-Cys triplets appended to both of its termini, designated CRPcys, chemical cross-linking using heterobifunctional reagents generates CRPcys-XL, a potent, widely used, polymeric agonist for platelet Glycoprotein VI, whereas non-cross-linked, monomeric CRPcys antagonizes Glycoprotein VI. Here, we describe how cysteine in these triplets may also undergo random air-induced oxidation, especially upon prolonged storage or repeated freeze–thawing, to form disulphide bonds, resulting in a lesser degree of polymerization than with chemical cross-linking. We investigated the monomeric and polymeric states of these and other cysteine-containing collagen-derived peptides, using gel filtration and dynamic light scattering, allowing the size of a CRP-XL aggregate to be estimated. The effect of cysteine thiols upon peptide adsorption to surfaces and subsequent platelet responses was investigated. This demonstrated that cysteine is required for strong binding to glass coverslips and to plastic plates used in ELISA assays. PMID:22555281

  19. The properties conferred upon triple-helical collagen-mimetic peptides by the presence of cysteine residues.

    PubMed

    Slatter, David A; Bihan, Dominique G; Jarvis, Gavin E; Stone, Rachael; Pugh, Nicholas; Giddu, Sumana; Farndale, Richard W

    2012-07-01

    Recently, the ability of polymeric collagen-like peptides to regulate cell behavior has generated great interest. A triple-helical peptide known as collagen-related peptide (CRP) contains the sequence (Gly-Pro-Hyp)(10). With Gly-Pro-Cys triplets appended to both of its termini, designated CRP(cys), chemical cross-linking using heterobifunctional reagents generates CRP(cys)-XL, a potent, widely used, polymeric agonist for platelet Glycoprotein VI, whereas non-cross-linked, monomeric CRP(cys) antagonizes Glycoprotein VI. Here, we describe how cysteine in these triplets may also undergo random air-induced oxidation, especially upon prolonged storage or repeated freeze-thawing, to form disulphide bonds, resulting in a lesser degree of polymerization than with chemical cross-linking. We investigated the monomeric and polymeric states of these and other cysteine-containing collagen-derived peptides, using gel filtration and dynamic light scattering, allowing the size of a CRP-XL aggregate to be estimated. The effect of cysteine thiols upon peptide adsorption to surfaces and subsequent platelet responses was investigated. This demonstrated that cysteine is required for strong binding to glass coverslips and to plastic plates used in ELISA assays. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Fabrication and biological imaging of polyhedral oligomeric silsesquioxane cross-linked fluorescent polymeric nanoparticles with aggregation-induced emission feature

    NASA Astrophysics Data System (ADS)

    Mao, Liucheng; Liu, Meiying; Xu, Dazhuang; Wan, Qing; Huang, Qiang; Jiang, Ruming; Shi, Yingge; Deng, Fengjie; Zhang, Xiaoyong; Wei, Yen

    2017-11-01

    Aggregation-induced emission (AIE) dyes based fluorescent polymeric nanoparticles (FNPs) have been intensively explored for biomedical applications. However, many of these AIE-active FNPs are relied on the self-assembly of amphiphilic copolymers, which are not stable in diluted solution. Therefore, the introduction of cross-linkages into these micelles has demonstrated to be an efficient route to overcome this stability problem and endow ultra-low critical micelle concentrations (CMC) of these AIE-active FNPs. In this work, we reported the fabrication of cross-linked AIE-active FNPs through controllable reversible addition fragmentation chain transfer polymerization by using commercially available octavinyl-T8-silsesquioxane (8-vinyl POSS) as the cross-linkage for the first time. The resultant cross-linked amphiphilic copolymers (named as PEG-POSS-PhE) are prone to self-assemble into stable core-shell nanoparticles with well water dispersity, strong red fluorescence and low CMC (0.0069 mg mL-1) in aqueous solution. More importantly, PEG-POSS-PhE FNPs possess some other properties such as high water dispersity, uniform morphology and small size, excellent biocompatibility and cellular internalization, providing great potential of PEG-POSS-PhE FNPs for biological imaging application.

  1. Development of photopolymerizable clay nanocomposites utilizing reactive dispersants

    NASA Astrophysics Data System (ADS)

    Owusu-Adom, Kwame

    Nanocomposites hold tremendous promise for expanding the utility of polymeric materials. However, accessing particulate sizes in the nanoscale domain continues to be a scientific challenge, especially in highly cross-linked photopolymerizable systems. In this study, photopolymerizable nanocomposites utilizing clay nanoparticles and reactive dispersants have been developed. The influence of particle size, dispersant-clay interactions, and surfactant concentration on photopolymerization behavior and nanoparticle dispersion has been elucidated. Clay particles serve as templates upon which surfactants aggregate during photopolymerization. This results in higher photopolymerization rates with addition of increasing concentrations of polymerizable surfactants. Furthermore, polymerizable surfactants induce faster photopolymerization rates compared to non-polymerizable analogues in systems that have ionically-bound dispersants on the particle surface. Utilizing reactive organoclays induces significant changes to the photopolymerization behavior depending on the choice of reactive functionality employed. Faster acrylate photopolymerization rates occur in photopolymer systems containing thiol-modified clays, while much slower rates occur for nonpolymerizable organoclay systems. In addition, chemical compatibility between monomer and clay dispersant (based on chemical similarity or polarity) allows enhancement of exfoliation in photopolymerizable formulations. With polymerizable dispersants, exfoliation is readily achieved in various multifunctional acrylate systems. The degree of exfoliation depends on the position of the reactive group relative to the surfactant's cationic site and the type of functionality. Thiolated organoclays exfoliate during polymerization, while methacrylated clays show substantially less dependence on polymerization behavior. Interestingly, changes in the physical properties of the resulting nanocomposite are independent of the degree of exfoliation in polymerizable organoclay systems. The polymer cross-link density dictates the magnitude of change in both modulus and glass transition temperature of the nanocomposite. Substantial increases in modulus and Tg occur in elastomeric and low cross-link density polymers, while decreases occur in the modulus and Tg of highly cross-linked polymer networks. Finally, these parameters have formed a basis for developing nanocomposites with higher moduli and lower volumetric shrinkage. The photopolymerization rates of these systems are controllable and increase substantially with addition of polymerizable organoclays. Such properties occur in traditional multifunctional acrylate photopolymer systems as well as new binary thiol-(meth)acrylate and ternary thiol-ene-(meth)acrylate photopolymers.

  2. ROMP-based thermosetting polymers from modified castor oil with various cross-linking agents

    NASA Astrophysics Data System (ADS)

    Ding, Rui

    Polymers derived from bio-renewable resources are finding an increase in global demand. In addition, polymers with distinctive functionalities are required in certain advanced fields, such as aerospace and civil engineering. In an attempt to meet both these needs, the goal of this work aims to develop a range of bio-based thermosetting matrix polymers for potential applications in multifunctional composites. Ring-opening metathesis polymerization (ROMP), which recently has been explored as a powerful method in polymer chemistry, was employed as a unique pathway to polymerize agricultural oil-based reactants. Specifically, a novel norbornyl-functionalized castor oil alcohol (NCA) was investigated to polymerize different cross-linking agents using ROMP. The effects of incorporating dicyclopentadiene (DCPD) and a norbornene-based crosslinker (CL) were systematically evaluated with respect to curing behavior and thermal mechanical properties of the polymers. Isothermal differential scanning calorimetry (DSC) was used to investigate the conversion during cure. Dynamic DSC scans at multiple heating rates revealed conversion-dependent activation energy by Ozawa-Flynn-Wall analysis. The glass transition temperature, storage modulus, and loss modulus for NCA/DCPD and NCA/CL copolymers with different cross-linking agent loading were compared using dynamic mechanical analysis. Cross-link density was examined to explain the very different dynamic mechanical behavior. Mechanical stress-strain curves were developed through tensile test, and thermal stability of the cross-linked polymers was evaluated by thermogravimetric analysis to further investigate the structure-property relationships in these systems.

  3. Versatile peroxidase as a valuable tool for generating new biomolecules by homogeneous and heterogeneous cross-linking.

    PubMed

    Salvachúa, Davinia; Prieto, Alicia; Mattinen, Maija-Liisa; Tamminen, Tarja; Liitiä, Tiina; Lille, Martina; Willför, Stefan; Martínez, Angel T; Martínez, María Jesús; Faulds, Craig B

    2013-05-10

    The modification and generation of new biomolecules intended to give higher molecular-mass species for biotechnological purposes, can be achieved by enzymatic cross-linking. The versatile peroxidase (VP) from Pleurotus eryngii is a high redox-potential enzyme with oxidative activity on a wide variety of substrates. In this study, VP was successfully used to catalyze the polymerization of low molecular mass compounds, such as lignans and peptides, as well as larger macromolecules, such as protein and complex polysaccharides. Different analytical, spectroscopic, and rheological techniques were used to determine structural changes and/or variations of the physicochemical properties of the reaction products. The lignans secoisolariciresinol and hydroxymatairesinol were condensed by VP forming up to 8 unit polymers in the presence of organic co-solvents and Mn(2+). Moreover, 11 unit of the peptides YIGSR and VYV were homogeneously cross-linked. The heterogeneous cross-linking of one unit of the peptide YIGSR and several lignan units was also achieved. VP could also induce gelation of feruloylated arabinoxylan and the polymerization of β-casein. These results demonstrate the efficacy of VP to catalyze homo- and hetero-condensation reactions, and reveal its potential exploitation for polymerizing different types of compounds. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Release of Self-Healing Agents in a Material: What Happens Next?

    PubMed

    Lee, Min Wook; Yoon, Sam S; Yarin, Alexander L

    2017-05-24

    A microfluidic chip-like setup consisting of a vascular system of microchannels alternatingly filled with either a resin monomer or a curing agent is used to study the intrinsic physical healing mechanism in self-healing materials. It is observed that, as a prenotched crack propagates across the chip, the resin and curing agent are released from the damaged channels. Subsequently, both the resin and the curing agent wet the surrounding polydimethylsiloxane (PDMS) matrix and spread over the crack banks until the two blobs come in contact, mix, and polymerize through an organometallic cross-linking reaction. Moreover, the polymerized domains form a system of pillars, which span the crack banks on the opposite side. This "stitching" phenomenon prevents further propagation of the crack.

  5. Photoreactive, core-shell cross-linked/hollow microspheres prepared by delayed addition of cross-linker in dispersion polymerization for antifouling and immobilization of protein.

    PubMed

    Wang, Shengliu; Yue, Kai; Liu, Lianying; Yang, Wantai

    2013-01-01

    When dispersion polymerization of styrene (St) had run for 3h, after particle rapidly growing stage, 4,4'-dimethacryloyloxybenzophenone (DMABP) cross-linker was added to reaction system and photoreactive, core(PSt)-shell(Poly(St-co-DMABP)) particles with rich benzophenone (BP) groups on surface were prepared. Polymerization of DMABP could occurred mainly on the preformed core of PSt because its diffusion could be impeded by (1) compactness of particles formed at the moment of cross-linker addition (more than 80% of monomer had been consumed, particles were no longer fully swollen by monomer), (2) reduced polarity of continuous phase, and (3) immediate occurrence of cross-linking. Subsequently, photoreactive, cross-linked hollow particles were yielded by removal of uncross-linked core in THF. SEM and TEM observation demonstrated the formation of core-shell structure and improvement of shell thickness when DMABP content increased. UV-vis spectra analysis on polymer dissolved in THF indicated that there is no polymer of DMABP in core. FTIR spectra analysis and XPS measurement further revealed that BP component on particle surface was enriched when amount of DMABP increased. Finally, an anti-fouling polymer (poly (ethylene glycol), PEG) and protein of mouse IgG was immobilized on particle surface under UV irradiation, as confirmed by FTIR spectra analysis, SEM observation and TMB color reaction. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  6. Surface morphology control of cross-linked polymer particles via dispersion polymerization.

    PubMed

    Peng, Bo; Imhof, Arnout

    2015-05-14

    Cross-linked polymer colloids (poly(methyl methacrylate) and polystyrene) with diverse shapes were prepared in polar solvents (ethanol, methanol and water) via dispersion polymerization, in which a linear addition of the cross-linker was used during reaction. Apart from spherical particles we found dented spheres or particles covered with nodules, or a combination of both. A comprehensive investigation was carried out, mainly concentrating on the effect of the experimental conditions (e.g., the addition start time and total addition time, cross-linker density and the solvency of the solvents) on particle morphologies. Consequently, we suggest a number of effective ways for the synthesis of regular (spherical) colloidal particles through maintaining a relatively low concentration of the cross-linker during the entire reaction, or forcing the co-polymerization (of monomer and cross-linker) locus to the continuous medium, or using a high quality or quantity of the stabilizer. Moreover, the size of the particles was also precisely manipulated by varying the polarity of the solvents, the concentration of the cross-linker, and the amount and average molecular weight of the stabilizer. In addition, the formation of the heavily dented particles with a very rough surface prepared under a pure or oxygen-'contaminated' nitrogen environment was monitored over time. The results accumulated in this article are of use for a better understanding of the mechanism of the polymerization and control over the structure and property of polymer particles.

  7. Paraformaldehyde fixation of neutrophils for immunolabeling of granule antigens in cryoultrasections.

    PubMed

    Elliott, E; Dennison, C; Fortgens, P H; Travis, J

    1995-10-01

    Paraformaldehyde (PFA) fixation was optimized to facilitate the immobilization and labeling of multiple granule antigens, using short fixation regimens and cryoultramicrotomy of unembedded neutrophils (PMNs). In the optimal protocol, extraction of azurophil granule antigens (especially of the abundant elastase) was obviated by manipulating the polymeric state of PFA, and hence its rate of cross-linking, by altering its concentration and pH in a multistep process. Primary fixation conditions used (4% PFA, pH 8.0, 5 min) favor fixative penetration and rapid cross-linking. Stable cross-linking of the antigen was achieved in a secondary fixation step using conditions that favor larger, more cross-linking polymeric forms of PFA (8% PFA, pH 7.2, 15 min). Immobilization of granule antigens was enhanced by flotation of cut sections on fixative (8% PFA, pH 8.0) before labeling and by using post-labeling fixation with 1% glutaraldehyde. The optimized protocol facilitated immobilization and immunolabeling of elastase, myeloperoxidase, lactoferrin, and cathepsin D in highly hydrated, unembedded PMNs.

  8. Process for impregnating a concrete or cement body with a polymeric material

    DOEpatents

    Mattus, A.J.; Spence, R.D.

    1988-05-04

    A process for impregnating cementitious solids with polymeric materials by blending polymeric materials in a grout, allowing the grout to cure, and contacting the resulting solidified grout containing the polymeric materials with an organic mixture containing a monomer, a cross-linking agent and a catalyst. The mixture dissolves the polymerized particles and forms a channel for distributing the monomer throughout the network formed by the polymeric particles. The organic components are then cured to form a substantially water-impermeable mass.

  9. Process for impregnating a concrete or cement body with a polymeric material

    DOEpatents

    Mattus, Alfred J.; Spence, Roger D.

    1989-01-01

    A process for impregnating cementitious solids with polymeric materials by blending polymeric materials in a grout, allowing the grout to cure, and contacting the resulting solidified grout containing the polymeric materials with an organic mixture containing a monomer, a cross-linking agent and a catalyst. The mixture dissolves the polymerized particles and forms a channel for distributing the monomer throughout the network formed by the polymeric particles. The organic components are then cured to form a substantially water-impermeable mass.

  10. Single chain technology: Toward the controlled synthesis of polymer nanostructures

    NASA Astrophysics Data System (ADS)

    Lyon, Christopher

    A technique for fabricating advanced polymer nanostructures enjoying recent popularity is the collapse or folding of single polymer chains in highly dilute solution mediated by intramolecular cross-linking. We term the resultant structures single-chain nanoparticles (SCNP). This technique has proven particularly valuable in the synthesis of nanomaterials on the order of 5 -- 20 nm. Many different types of covalent and non-covalent chemistries have been used to this end. This dissertation investigates the use of so-called single-chain technology to synthesize nanoparticles using modular techniques that allow for easy incorporation of functionality or special structural or characteristic features. Specifically, the synthesis of linear polymers functionalized with pendant monomer units and the subsequent intramolecular polymerization of these monomer units is discussed. In chapter 2, the synthesis of SCNP using alternating radical polymerization is described. Polymers functionalized with pendant styrene and stilbene groups are synthesized via a modular post-polymerization Wittig reaction. These polymers were exposed to radical initiators in the presence (and absence) of maleic anhydride and other electron deficient monomers in order to form intramolecular cross-links. Chapter 3 discusses templated acyclic diene metathesis (ADMET) polymerization using single-chain technology, starting with the controlled ring-opening polymerization of a glycidyl ether functionalized with an ADMET monomer. This polymer was then exposed to Grubbs' catalyst to polymerize the ADMET monomer units. The ADMET polymer was hydrolytically cleaved from the template and separated. Upon characterization, it was found that the daughter ADMET polymer had a similar degree of polymerization, but did not retain the low dispersity of the template. Chapter 4 details the synthesis of aldehyde- and diol-functionalized polymers toward the synthesis of SCNP containing dynamic, acid-degradable acetal cross-links. SCNP fabrication with these materials is beyond the scope of this dissertation.

  11. The role of living/controlled radical polymerization in the formation of improved imprinted polymers.

    PubMed

    Salian, Vishal D; Vaughan, Asa D; Byrne, Mark E

    2012-06-01

    In this work, living/controlled radical polymerization (LRP) is compared with conventional free radical polymerization in the creation of highly and weakly cross-linked imprinted poly(methacrylic acid-co-ethylene glycol dimethacrylate) networks. It elucidates, for the first time, the effect of LRP on the chain level and begins to explain why the efficiency of the imprinting process is improved using LRP. Imprinted polymers produced via LRP exhibited significantly higher template affinity and capacity compared with polymers prepared using conventional methods. The use of LRP in the creation of highly cross-linked imprinted polymers resulted in a fourfold increase in binding capacity without a decrease in affinity; whereas weakly cross-linked gels demonstrated a nearly threefold increase in binding capacity at equivalent affinity when LRP was used. In addition, by adjusting the double bond conversion, we can choose to increase either the capacity or the affinity in highly cross-linked imprinted polymers, thus allowing the creation of imprinted polymers with tailorable binding parameters. Using free radical polymerization in the creation of polymer chains, as the template-monomer ratio increased, the average molecular weight of the polymer chains decreased despite a slight increase in the double bond conversion. Thus, the polymer chains formed were shorter but greater in number. Using LRP neutralized the effect of the template. The addition of chain transfer agent resulted in slow, uniform, simultaneous chain growth, resulting in the formation of longer more monodisperse chains. Reaction analysis revealed that propagation time was extended threefold in the formation of highly cross-linked polymers when LRP techniques were used. This delayed the transition to the diffusion-controlled stage of the reaction, which in turn led to the observed enhanced binding properties, decreased polydispersity in the chains, and a more homogeneous macromolecular architecture. Copyright © 2012 John Wiley & Sons, Ltd.

  12. Polymeric electrolytes based on hydrosilyation reactions

    DOEpatents

    Kerr, John Borland [Oakland, CA; Wang, Shanger [Fairfield, CA; Hou, Jun [Painted Post, NY; Sloop, Steven Edward [Berkeley, CA; Han, Yong Bong [Berkeley, CA; Liu, Gao [Oakland, CA

    2006-09-05

    New polymer electrolytes were prepared by in situ cross-linking of allyl functional polymers based on hydrosilation reaction using a multifunctional silane cross-linker and an organoplatinum catalyst. The new cross-linked electrolytes are insoluble in organic solvent and show much better mechanical strength. In addition, the processability of the polymer electrolyte is maintained since the casting is finished well before the gel formation.

  13. Wood Sawdust/Natural Rubber Ecocomposites Cross-Linked by Electron Beam Irradiation

    PubMed Central

    Manaila, Elena; Stelescu, Maria Daniela; Craciun, Gabriela; Ighigeanu, Daniel

    2016-01-01

    The obtaining and characterization of some polymeric eco-composites based on wood sawdust and natural rubber is presented. The natural rubber was cross-linked using the electron beam irradiation. The irradiation doses were of 75, 150, 300 and 600 kGy and the concentrations of wood sawdust were of 10 and 20 phr, respectively. As a result of wood sawdust adding, the physical and mechanical properties such as hardness, modulus at 100% elongation and tensile strength, showed significant improvements. The presence of wood sawdust fibers has a reinforcing effect on natural rubber, similar or better than of mineral fillers. An increase in the irradiation dose leads to the increasing of cross-link density, which is reflected in the improvement of hardness, modulus at 100% elongation and tensile strength of blends. The cross-linking rates, appreciated using the Flory-Rehner equation, have increased with the amount of wood sawdust in blends and with the irradiation dose. Even if the gel fraction values have varied irregularly with the amount of wood sawdust and irradiation dose it was over 90% for all blends, except for the samples without wood sawdust irradiated with 75 kGy. The water uptake increased with increasing of fiber content and decreased with the irradiation dose. PMID:28773626

  14. Wood Sawdust/Natural Rubber Ecocomposites Cross-Linked by Electron Beam Irradiation.

    PubMed

    Manaila, Elena; Stelescu, Maria Daniela; Craciun, Gabriela; Ighigeanu, Daniel

    2016-06-23

    The obtaining and characterization of some polymeric eco-composites based on wood sawdust and natural rubber is presented. The natural rubber was cross-linked using the electron beam irradiation. The irradiation doses were of 75, 150, 300 and 600 kGy and the concentrations of wood sawdust were of 10 and 20 phr, respectively. As a result of wood sawdust adding, the physical and mechanical properties such as hardness, modulus at 100% elongation and tensile strength, showed significant improvements. The presence of wood sawdust fibers has a reinforcing effect on natural rubber, similar or better than of mineral fillers. An increase in the irradiation dose leads to the increasing of cross-link density, which is reflected in the improvement of hardness, modulus at 100% elongation and tensile strength of blends. The cross-linking rates, appreciated using the Flory-Rehner equation, have increased with the amount of wood sawdust in blends and with the irradiation dose. Even if the gel fraction values have varied irregularly with the amount of wood sawdust and irradiation dose it was over 90% for all blends, except for the samples without wood sawdust irradiated with 75 kGy. The water uptake increased with increasing of fiber content and decreased with the irradiation dose.

  15. Polymeric molecular sieve membranes via in situ cross-linking of non-porous polymer membrane templates.

    PubMed

    Qiao, Zhen-An; Chai, Song-Hai; Nelson, Kimberly; Bi, Zhonghe; Chen, Jihua; Mahurin, Shannon M; Zhu, Xiang; Dai, Sheng

    2014-04-16

    High-performance polymeric membranes for gas separation are attractive for molecular-level separations in industrial-scale chemical, energy and environmental processes. Molecular sieving materials are widely regarded as the next-generation membranes to simultaneously achieve high permeability and selectivity. However, most polymeric molecular sieve membranes are based on a few solution-processable polymers such as polymers of intrinsic microporosity. Here we report an in situ cross-linking strategy for the preparation of polymeric molecular sieve membranes with hierarchical and tailorable porosity. These membranes demonstrate exceptional performance as molecular sieves with high gas permeabilities and selectivities for smaller gas molecules, such as carbon dioxide and oxygen, over larger molecules such as nitrogen. Hence, these membranes have potential for large-scale gas separations of commercial and environmental relevance. Moreover, this strategy could provide a possible alternative to 'classical' methods for the preparation of porous membranes and, in some cases, the only viable synthetic route towards certain membranes.

  16. Catechol chemistry inspired approach to construct self-cross-linked polymer nanolayers as versatile biointerfaces.

    PubMed

    Liu, Xinyue; Deng, Jie; Ma, Lang; Cheng, Chong; Nie, Chuanxiong; He, Chao; Zhao, Changsheng

    2014-12-16

    In this study, we proposed a catechol chemistry inspired approach to construct surface self-cross-linked polymer nanolayers for the design of versatile biointerfaces. Several representative biofunctional polymers, P(SS-co-AA), P(SBMA-co-AA), P(EGMA-co-AA), P(VP-co-AA), and P(MTAC-co-AA), were first synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization, and then the catecholic molecules (dopamine, DA) were conjugated to the acrylic acid (AA) units by the facile carbodiimide chemistry. Then, the catechol (Cat) group conjugated biofunctional polymers, named PSS-Cat, PSBMA-Cat, PEGMA-Cat, PVP-Cat, and PMTAC-Cat, were applied for the construction of self-cross-linked nanolayers on polymeric substrates via the pH induced catechol cross-linking and immobilization. The XPS spectra, surface morphology, and wettability gave robust evidence that the catechol conjugated polymers were successfully coated, and the coated substrates possessed increased surface roughness and hydrophilicity. Furthermore, the systematic in vitro investigation of protein adsorption, platelet adhesion, activated partial thromboplastin time (APTT), thrombin time (TT), cell viability, and antibacterial ability confirmed that the coated nanolayers conferred the substrates with versatile biological performances. The PSS-Cat coated substrate had low blood component activation and excellent anticoagulant activity; while the PEGMA-Cat and PSBMA-Cat showed ideal resistance to protein fouling and inhibition of platelet activation. The PSS-Cat and PVP-Cat coated substrates exhibited promoted endothelial cell proliferation and viability. The PMTAC-Cat coated substrate showed an outstanding activity on bacterial inhibition. In conclusion, the catechol chemistry inspired approach allows the self-cross-linked nanolayers to be easily immobilized on polymeric substrates with the stable conformation and multiple biofunctionalities. It is expected that this low-cost and facile bioinspired coating system will present great potential in creating novel and versatile biointerfaces.

  17. N-isopropylacrylamide-based fine-dispersed thermosensitive ferrogels obtained via in-situ technique.

    PubMed

    Korotych, O; Samchenko, Yu; Boldeskul, I; Ulberg, Z; Zholobak, N; Sukhodub, L

    2013-03-01

    Thermosensitive hydrogels with magnetic properties (ferrogels) are very promising for medical application, first of all, for the design of targeted delivery systems with controlled release of drugs and for magnetic hyperthermia and chemotherapy treatment of cancer. These magnetic hydrogels could be obtained using diverse techniques: ex- and in-situ syntheses. The present work is devoted to the study of magnetite (Fe(3)O(4)) formation inside the nanoreactors of (co)polymeric hydrogels. Polymeric templates (hydrogel films and fine-dispersed hydrogels) used for obtaining ferrogels were based on acrylic monomers: thermosensitive N-isopropylacrylamide, and hydrophilic acrylamide. Covalent cross-linking was accomplished using bifunctional monomer N,N'-methylenebisacrylamide. Influence of hydrophilic-lipophilic balance of polymeric templates and concentration of iron cations on the magnetite formation were investigated along with the development of ferrogel preparation technique. Cytotoxicity, physical and chemical properties of obtained magnetic hydrogels have been studied in this work. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. "Click chemistry" in tailor-made polymethacrylates bearing reactive furfuryl functionality: a new class of self-healing polymeric material.

    PubMed

    Kavitha, A Amalin; Singha, Nikhil K

    2009-07-01

    This investigation reports the effective use of the Diels-Alder (DA) reaction, a "click reaction" in the preparation of thermally amendable and self-healing polymeric materials having reactive furfuryl functionality. In this case, the DA and retro-DA (rDA) reactions were carried out between the tailor-made homo- and copolymer of furfuryl methacrylate prepared by atom-transfer radical polymerization and a bismaleimide (BM). The kinetic studies of DA and rDA reactions were carried out using Fourier transform infrared spectroscopy. The DA polymers were insoluble in toluene at room temperature. When the DA polymers were heated at 100 degrees C in toluene, it was soluble. This is because of the cleavage between furfuryl functionality and BM. The chemical cross-link density was determined by the Flory-Rehner equation. The cross-linked polymer showed much greater adhesive strength at room temperature, but the adhesive strength was quite low at higher temperature. The self-healing capability was studied by using scanning electron microscopy analysis. The thermal and dynamic mechanical properties of the thermally amendable cross-linked materials were investigated by thermogravimetric analysis and dynamic mechanical analysis.

  19. Post polymerization cure shape memory polymers

    DOEpatents

    Wilson, Thomas S.; Hearon, II, Michael Keith; Bearinger, Jane P.

    2017-01-10

    This invention relates to chemical polymer compositions, methods of synthesis, and fabrication methods for devices regarding polymers capable of displaying shape memory behavior (SMPs) and which can first be polymerized to a linear or branched polymeric structure, having thermoplastic properties, subsequently processed into a device through processes typical of polymer melts, solutions, and dispersions and then crossed linked to a shape memory thermoset polymer retaining the processed shape.

  20. Post polymerization cure shape memory polymers

    DOEpatents

    Wilson, Thomas S; Hearon, Michael Keith; Bearinger, Jane P

    2014-11-11

    This invention relates to chemical polymer compositions, methods of synthesis, and fabrication methods for devices regarding polymers capable of displaying shape memory behavior (SMPs) and which can first be polymerized to a linear or branched polymeric structure, having thermoplastic properties, subsequently processed into a device through processes typical of polymer melts, solutions, and dispersions and then crossed linked to a shape memory thermoset polymer retaining the processed shape.

  1. Photocontrolled Cargo Release from Dual Cross-Linked Polymer Particles.

    PubMed

    Tan, Shereen; Cui, Jiwei; Fu, Qiang; Nam, Eunhyung; Ladewig, Katharina; Ren, Jing M; Wong, Edgar H H; Caruso, Frank; Blencowe, Anton; Qiao, Greg G

    2016-03-09

    Burst release of a payload from polymeric particles upon photoirradiation was engineered by altering the cross-linking density. This was achieved via a dual cross-linking concept whereby noncovalent cross-linking was provided by cyclodextrin host-guest interactions, and irreversible covalent cross-linking was mediated by continuous assembly of polymers (CAP). The dual cross-linked particles (DCPs) were efficiently infiltrated (∼80-93%) by the biomacromolecule dextran (molecular weight up to 500 kDa) to provide high loadings (70-75%). Upon short exposure (5 s) to UV light, the noncovalent cross-links were disrupted resulting in increased permeability and burst release of the cargo (50 mol % within 1 s) as visualized by time-lapse fluorescence microscopy. As sunlight contains UV light at low intensities, the particles can potentially be incorporated into systems used in agriculture, environmental control, and food packaging, whereby sunlight could control the release of nutrients and antimicrobial agents.

  2. Synthesis, characterization and in vitro studies of doxorubicin-loaded magnetic nanoparticles grafted to smart copolymers on A549 lung cancer cell line.

    PubMed

    Akbarzadeh, Abolfazl; Samiei, Mohammad; Joo, Sang Woo; Anzaby, Maryam; Hanifehpour, Younes; Nasrabadi, Hamid Tayefi; Davaran, Soodabeh

    2012-12-18

    The aim of present study was to develop the novel methods for chemical and physical modification of superparamagnetic iron oxide nanoparticles (SPIONs) with polymers via covalent bonding entrapment. These modified SPIONs were used for encapsulation of anticancer drug doxorubicin. At first approach silane-grafted magnetic nanoparticles was prepared and used as a template for polymerization of the N-isopropylacrylamide (NIPAAm) and methacrylic acid (MAA) via radical polymerization. This temperature/pH-sensitive copolymer was used for preparation of DOX-loaded magnetic nanocomposites. At second approach Vinyltriethoxysilane-grafted magnetic nanoparticles were used as a template to polymerize PNIPAAm-MAA in 1, 4 dioxan and methylene-bis-acrylamide (BIS) was used as a cross-linking agent. Chemical composition and magnetic properties of Dox-loaded magnetic hydrogel nanocomposites were analyzed by FT-IR, XRD, and VSM. The results demonstrate the feasibility of drug encapsulation of the magnetic nanoparticles with NIPAAm-MAA copolymer via covalent bonding. The key factors for the successful prepardtion of magnetic nanocomposites were the structure of copolymer (linear or cross-linked), concentration of copolymer and concentration of drug. The influence of pH and temperature on the release profile of doxorubicin was examined. The in vitro cytotoxicity test (MTT assay) of both magnetic DOx-loaded nanoparticles was examined. The in vitro tests showed that these systems are no toxicity and are biocompatible. IC50 of DOx-loaded Fe3O4 nanoparticles on A549 lung cancer cell line showed that systems could be useful in treatment of lung cancer.

  3. Weak reversible cross links may decrease the strength of aligned fiber bundles.

    PubMed

    Nabavi, S Soran; Hartmann, Markus A

    2016-02-21

    Reversible cross-linking is an effective strategy to specifically tailor the mechanical properties of polymeric materials that can be found in a variety of biological as well as man-made materials. Using a simple model in this paper the influence of weak, reversible cross-links on the mechanical properties of aligned fiber bundles is investigated. Special emphasis in this analysis is put on the strength of the investigated structures. Using Monte Carlo methods two topologies of cross-links exceeding the strength of the covalent backbone are studied. Most surprisingly only two cross-links are sufficient to break the backbone of a multi chain system, resulting in a reduced strength of the material. The found effect crucially depends on the ratio of inter- to intra-chain cross-links and, thus, on the grafting density that determines this ratio.

  4. Hydrophobic Coatings on Cotton Obtained by in Situ Plasma Polymerization of a Fluorinated Monomer in Ethanol Solutions.

    PubMed

    Molina, Ricardo; Teixidó, Josep Maria; Kan, Chi-Wai; Jovančić, Petar

    2017-02-15

    Plasma polymerization using hydrophobic monomers in the gas phase is a well-known technology to generate hydrophobic coatings. However, synthesis of functional hydrophobic coatings using plasma technology in liquids has not yet been accomplished. This work is consequently focused on polymerization of a liquid fluorinated monomer on cotton fabric initiated by atmospheric plasma in a dielectric barrier discharge configuration. Functional hydrophobic coatings on cotton were successfully achieved using in situ atmospheric plasma-initiated polymerization of fluorinated monomer dissolved in ethanol. Gravimetric measurements reveal that the amount of polymer deposited on cotton substrates can be modulated with the concentration of monomer in ethanol solution, and cross-linking reactions occur during plasma polymerization of a fluorinated monomer even without the presence of a cross-linking agent. FTIR and XPS analysis were used to study the chemical composition of hydrophobic coatings and to get insights into the physicochemical processes involved in plasma treatment. SEM analysis reveals that at high monomer concentration, coatings possess a three-dimensional pattern with a characteristic interconnected porous network structure. EDX analysis reveals that plasma polymerization of fluorinated monomers takes place preferentially at the surface of cotton fabric and negligible polymerization takes place inside the cotton fabric. Wetting time measurements confirm the hydrophobicity of cotton coatings obtained although equilibrium moisture content was slightly decreased. Additionally, the abrasion behavior and resistance to washing of plasma-coated cotton has been evaluated.

  5. Porous Cross-Linked Polyimide Networks

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B. (Inventor); Guo, Haiquan (Inventor)

    2015-01-01

    Porous cross-linked polyimide networks are provided. The networks comprise an anhydride end-capped polyamic acid oligomer. The oligomer (i) comprises a repeating unit of a dianhydride and a diamine and terminal anhydride groups, (ii) has an average degree of polymerization of 10 to 50, (iii) has been cross-linked via a cross-linking agent, comprising three or more amine groups, at a balanced stoichiometry of the amine groups to the terminal anhydride groups, and (iv) has been chemically imidized to yield the porous cross-linked polyimide network. Also provided are porous cross-linked polyimide aerogels comprising a cross-linked and imidized anhydride end-capped polyamic acid oligomer, wherein the oligomer comprises a repeating unit of a dianhydride and a diamine, and the aerogel has a density of 0.10 to 0.333 g/cm.sup.3 and a Young's modulus of 1.7 to 102 MPa. Also provided are thin films comprising aerogels, and methods of making porous cross-linked polyimide networks.

  6. Cross-linkable liposomes stabilize a magnetic resonance contrast-enhancing polymeric fastener.

    PubMed

    Smith, Cartney E; Kong, Hyunjoon

    2014-04-08

    Liposomes are commonly used to deliver drugs and contrast agents to their target site in a controlled manner. One of the greatest obstacles in the performance of such delivery vehicles is their stability in the presence of serum. Here, we demonstrate a method to stabilize a class of liposomes that load gadolinium, a magnetic resonance (MR) contrast agent, as a model cargo on their surfaces. We hypothesized that the sequential adsorption of a gadolinium-binding chitosan fastener on the liposome surface followed by covalent cross-linking of the lipid bilayer would provide enhanced stability and improved MR signal in the presence of human serum. To investigate this hypothesis, liposomes composed of diyne-containing lipids were assembled and functionalized via chitosan conjugated with a hydrophobic anchor and diethylenetriaminepentaacetic acid (DTPA). This postadsorption cross-linking strategy served to stabilize the thermodynamically favorable association between liposome and polymeric fastener. Furthermore, the chitosan-coated, cross-linked liposomes proved more effective as delivery vehicles of gadolinium than uncross-linked liposomes due to the reduced liposome degradation and chitosan desorption. Overall, this study demonstrates a useful method to stabilize a broad class of particles used for systemic delivery of various molecular payloads.

  7. Cross-Linkable Liposomes Stabilize a Magnetic Resonance Contrast-Enhancing Polymeric Fastener

    PubMed Central

    2015-01-01

    Liposomes are commonly used to deliver drugs and contrast agents to their target site in a controlled manner. One of the greatest obstacles in the performance of such delivery vehicles is their stability in the presence of serum. Here, we demonstrate a method to stabilize a class of liposomes that load gadolinium, a magnetic resonance (MR) contrast agent, as a model cargo on their surfaces. We hypothesized that the sequential adsorption of a gadolinium-binding chitosan fastener on the liposome surface followed by covalent cross-linking of the lipid bilayer would provide enhanced stability and improved MR signal in the presence of human serum. To investigate this hypothesis, liposomes composed of diyne-containing lipids were assembled and functionalized via chitosan conjugated with a hydrophobic anchor and diethylenetriaminepentaacetic acid (DTPA). This postadsorption cross-linking strategy served to stabilize the thermodynamically favorable association between liposome and polymeric fastener. Furthermore, the chitosan-coated, cross-linked liposomes proved more effective as delivery vehicles of gadolinium than uncross-linked liposomes due to the reduced liposome degradation and chitosan desorption. Overall, this study demonstrates a useful method to stabilize a broad class of particles used for systemic delivery of various molecular payloads. PMID:24635565

  8. Stress reduction in phase-separated, cross-linked networks: influence of phase structure and kinetics of reaction

    PubMed Central

    Szczepanski, Caroline R.; Stansbury, Jeffrey W.

    2014-01-01

    A mechanism for polymerization shrinkage and stress reduction was developed for heterogeneous networks formed via ambient, photo-initiated polymerization-induced phase separation (PIPS). The material system used consists of a bulk homopolymer matrix of triethylene glycol dimethacrylate (TEGDMA) modified with one of three non-reactive, linear prepolymers (poly-methyl, ethyl and butyl methacrylate). At higher prepolymer loading levels (10–20 wt%) an enhanced reduction in both shrinkage and polymerization stress is observed. The onset of gelation in these materials is delayed to a higher degree of methacrylate conversion (~15–25%), providing more time for phase structure evolution by thermodynamically driven monomer diffusion between immiscible phases prior to network macro-gelation. The resulting phase structure was probed by introducing a fluorescently tagged prepolymer into the matrix. The phase structure evolves from a dispersion of prepolymer at low loading levels to a fully co-continuous heterogeneous network at higher loadings. The bulk modulus in phase separated networks is equivalent or greater than that of poly(TEGDMA), despite a reduced polymerization rate and cross-link density in the prepolymer-rich domains. PMID:25418999

  9. Non-strinking siloxane polymers

    DOEpatents

    Loy, Douglas A.; Rahimian, Kamyar

    2001-01-01

    Cross-linked polymers formed by ring-opening polymerization of a precursor monomer of the general formula R[CH.sub.2 CH(Si(CH.sub.3).sub.2).sub.2 O].sub.2, where R is a phenyl group or an alkyl group having at least two carbon atoms. A cross-linked polymer is synthesized by mixing the monomer with a co-monomer of the general formula CH.sub.2 CHR.sup.2 (SiMe.sub.2).sub.2 O in the presence of an anionic base to form a cross-linked polymer of recurring units of the general formula R(Me.sub.2 SiOCH.sub.2 CHSiMe.sub.2).sub.2 [CH.sub.2 CHR.sup.2 (SiMe.sub.2).sub.2 O].sub.n, where R.sup.2 is hydrogen, phenyl, ethyl, propyl or butyl. If the precursor monomer is a liquid, the polymer can be directly synthesized in the presence of an anionic base to a cross-linked polymer containing recurring units of the general formula R(Me.sub.2 SiOCH.sub.2 CHSiMe.sub.2).sub.2. The polymers have approximately less than 1% porosity and are thermally stable at temperatures up to approximately 500.degree. C. The conversion to the cross-linked polymer occurs by ring opening polymerization and results in shrinkage of less than approximately 5% by volume.

  10. In vitro reconstitution of sortase-catalyzed pilus polymerization reveals structural elements involved in pilin cross-linking.

    PubMed

    Chang, Chungyu; Amer, Brendan R; Osipiuk, Jerzy; McConnell, Scott A; Huang, I-Hsiu; Hsieh, Van; Fu, Janine; Nguyen, Hong H; Muroski, John; Flores, Erika; Ogorzalek Loo, Rachel R; Loo, Joseph A; Putkey, John A; Joachimiak, Andrzej; Das, Asis; Clubb, Robert T; Ton-That, Hung

    2018-06-12

    Covalently cross-linked pilus polymers displayed on the cell surface of Gram-positive bacteria are assembled by class C sortase enzymes. These pilus-specific transpeptidases located on the bacterial membrane catalyze a two-step protein ligation reaction, first cleaving the LPXTG motif of one pilin protomer to form an acyl-enzyme intermediate and then joining the terminal Thr to the nucleophilic Lys residue residing within the pilin motif of another pilin protomer. To date, the determinants of class C enzymes that uniquely enable them to construct pili remain unknown. Here, informed by high-resolution crystal structures of corynebacterial pilus-specific sortase (SrtA) and utilizing a structural variant of the enzyme (SrtA 2M ), whose catalytic pocket has been unmasked by activating mutations, we successfully reconstituted in vitro polymerization of the cognate major pilin (SpaA). Mass spectrometry, electron microscopy, and biochemical experiments authenticated that SrtA 2M synthesizes pilus fibers with correct Lys-Thr isopeptide bonds linking individual pilins via a thioacyl intermediate. Structural modeling of the SpaA-SrtA-SpaA polymerization intermediate depicts SrtA 2M sandwiched between the N- and C-terminal domains of SpaA harboring the reactive pilin and LPXTG motifs, respectively. Remarkably, the model uncovered a conserved TP(Y/L)XIN(S/T)H signature sequence following the catalytic Cys, in which the alanine substitutions abrogated cross-linking activity but not cleavage of LPXTG. These insights and our evidence that SrtA 2M can terminate pilus polymerization by joining the terminal pilin SpaB to SpaA and catalyze ligation of isolated SpaA domains in vitro provide a facile and versatile platform for protein engineering and bio-conjugation that has major implications for biotechnology.

  11. Facile Synthesis of Thick Films of Poly(methyl methacrylate), Poly(styrene), and Poly(vinyl pyridine) from Au Surfaces

    PubMed Central

    Saha, Sampa

    2011-01-01

    Atom transfer radical polymerization (ATRP) is commonly used to grow polymer brushes from Au surfaces, but the resulting film thicknesses are usually significantly less than with ATRP from SiO2 substrates. On Au, growth of poly(methyl methacrylate) (PMMA) blocks from poly(tert-butyl acrylate) brushes occurs more rapidly than growth of PMMA from initiator monolayers, suggesting that the disparity between growth rates from Au and SiO2 stems from the Au surface. Radical quenching by electron transfer from Au is probably not the termination mechanism because polymerization from thin, cross-linked initiators gives film thicknesses that are essentially the same as the thicknesses of films grown from SiO2 under the same polymerization conditions. However, this result is consistent with termination through desorption of thiols from non-cross-linked films, and reaction of these thiols with growing polymer chains. The enhanced stability of cross-linked initiators allows ATRP at temperatures up to ~100 °C and enables the growth of thick films of PMMA (350 nm), polystyrene (120 nm) and poly(vinyl pyridine) (200 nm) from Au surfaces in 1 hour. At temperatures >100 °C, the polymer brush layers delaminate as large area films. PMID:21728374

  12. Negatively charged polysulfone membranes with hydrophilicity and antifouling properties based on in situ cross-linked polymerization.

    PubMed

    Zhu, Lijing; Song, Haiming; Zhang, Dawei; Wang, Gang; Zeng, Zhixiang; Xue, Qunji

    2017-07-15

    Polysulfone (PSf) membrane has been widely used in water separation and purification, although, membrane fouling is still a serious problem limiting its potential. We aim to improve the antifouling of PSf membranes via a very simple and efficient method. In this work, antifouling PSf membranes were fabricated via in situ cross-linked polymerization coupled with non-solvent induced phase separation. In brief, acrylic acid (AA) and vinyltriethoxysilane (VTEOS) were copolymerized in PSf solution, then directly casted into membranes without purification. With the increase of monomers concentration, the morphology of the as-cast membranes changed from a finger-like morphology to a fully sponge-like structure due to the increased viscosity and decreased precipitation rate of the polymer solutions. Meanwhile, the hydrophilicity and electronegativity of modified membranes were highly improved leading to inhibited protein adsorption and improved antifouling property. Furthermore, in order to further find out the different roles player by AA and VTESO, the modified membrane without VTEOS was prepared and characterized. The results indicated that AA is more effective in the membrane hydrophilicity improvement, VTEOS is more crucial to improve membrane stability. This work provides valuable guidance for fabricating PSf membranes with hydrophilicity and antifouling property via in situ cross-linked polymerization. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Nanoparticle (star polymer) delivery of nitric oxide effectively negates Pseudomonas aeruginosa biofilm formation.

    PubMed

    Duong, Hien T T; Jung, Kenward; Kutty, Samuel K; Agustina, Sri; Adnan, Nik Nik M; Basuki, Johan S; Kumar, Naresh; Davis, Thomas P; Barraud, Nicolas; Boyer, Cyrille

    2014-07-14

    Biofilms are increasingly recognized as playing a major role in human infectious diseases, as they can form on both living tissues and abiotic surfaces, with serious implications for applications that rely on prolonged exposure to the body such as implantable biomedical devices or catheters. Therefore, there is an urgent need to develop improved therapeutics to effectively eradicate unwanted biofilms. Recently, the biological signaling molecule nitric oxide (NO) was identified as a key regulator of dispersal events in biofilms. In this paper, we report a new class of core cross-linked star polymers designed to store and release nitric oxide, in a controlled way, for the dispersion of biofilms. First, core cross-linked star polymers were prepared by reversible addition-fragmentation chain transfer polymerization (RAFT) via an arm first approach. Poly(oligoethylene methoxy acrylate) chains were synthesized by RAFT polymerization, and then chain extended in the presence of 2-vinyl-4,4-dimethyl-5-oxazolone monomer (VDM) with N,N-methylenebis(acrylamide) employed as a cross-linker to yield functional core cross-linked star polymers. Spermine was successfully attached to the star core by reaction with VDM. Finally, the secondary amine groups were reacted with NO gas to yield NO-core cross-linked star polymers. The core cross-linked star polymers were found to release NO in a controlled, slow delivery in bacterial cultures showing great efficacy in preventing both cell attachment and biofilm formation in Pseudomonas aeruginosa over time via a nontoxic mechanism, confining bacterial growth to the suspended liquid.

  14. Polyhedral Oligomeric Silsesquioxane (POSS)-Containing Polymer Nanocomposites

    PubMed Central

    Ayandele, Ebunoluwa; Sarkar, Biswajit; Alexandridis, Paschalis

    2012-01-01

    Hybrid materials with superior structural and functional properties can be obtained by incorporating nanofillers into polymer matrices. Polyhedral oligomeric silsesquioxane (POSS) nanoparticles have attracted much attention recently due to their nanometer size, the ease of which these particles can be incorporated into polymeric materials and the unique capability to reinforce polymers. We review here the state of POSS-containing polymer nanocomposites. We discuss the influence of the incorporation of POSS into polymer matrices via chemical cross-linking or physical blending on the structure of nanocomposites, as affected by surface functional groups, and the POSS concentration. PMID:28348318

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Brad H.; Wheeler, David R.; Black, Hayden T.

    Physical stress relaxation in rubbery, thermoset polymers is limited by cross-links, which impede segmental motion and restrict relaxation to network defects, such as chain ends. In parallel, the cure shrinkage associated with thermoset polymerizations leads to the development of internal residual stress that cannot be effectively relaxed. Recent strategies have reduced or eliminated such cure stress in thermoset polymers largely by exploiting chemical relaxation processes, wherein temporary cross-links or otherwise transient bonds are incorporated into the polymer network. In this paper, we explore an alternative approach, wherein physical relaxation is enhanced by the incorporation of organometallic sandwich moieties into themore » backbone of the polymer network. A standard epoxy resin is cured with a diamine derivative of ferrocene and compared to conventional diamine curing agents. The ferrocene-based thermoset is clearly distinguished from the conventional materials by reduced cure stress with increasing cure temperature as well as unique stress relaxation behavior above its glass transition in the fully cured state. The relaxation experiments exhibit features characteristic of a physical relaxation process. Furthermore, the cure stress is observed to vanish precipitously upon deliberate introduction of network defects through an increasing imbalance of epoxy and amine functional groups. Finally, we postulate that these beneficial properties arise from fluxional motion of the cyclopentadienyl ligands on the polymer backbone.« less

  16. Mechanisms of plastic deformation in highly cross-linked UHMWPE for total hip components--the molecular physics viewpoint.

    PubMed

    Takahashi, Yasuhito; Shishido, Takaaki; Yamamoto, Kengo; Masaoka, Toshinori; Kubo, Kosuke; Tateiwa, Toshiyuki; Pezzotti, Giuseppe

    2015-02-01

    Plastic deformation is an unavoidable event in biomedical polymeric implants for load-bearing application during long-term in-vivo service life, which involves a mass transfer process, irreversible chain motion, and molecular reorganization. Deformation-induced microstructural alterations greatly affect mechanical properties and durability of implant devices. The present research focused on evaluating, from a molecular physics viewpoint, the impact of externally applied strain (or stress) in ultra-high molecular weight polyethylene (UHMWPE) prostheses, subjected to radiation cross-linking and subsequent remelting for application in total hip arthroplasty (THA). Two different types of commercial acetabular liners, which belong to the first-generation highly cross-linked UHMWPE (HXLPE), were investigated by means of confocal/polarized Raman microprobe spectroscopy. The amount of crystalline region and the spatial distribution of molecular chain orientation were quantitatively analyzed according to a combined theory including Raman selection rules for the polyethylene orthorhombic structure and the orientation distribution function (ODF) statistical approach. The structurally important finding was that pronounced recrystallization and molecular reorientation increasingly appeared in the near-surface regions of HXLPE liners with increasing the amount of plastic (compressive) deformation stored in the microstructure. Such molecular rearrangements, occurred in response to external strains, locally increase surface cross-shear (CS) stresses, which in turn trigger microscopic wear processes in HXLPE acetabular liners. Thus, on the basis of the results obtained at the molecular scale, we emphasize here the importance of minimizing the development of irrecoverable deformation strain in order to retain the pristine and intrinsically high wear performance of HXLPE components. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Mechanical properties of ultrahigh molecular weight PHEMA hydrogels synthesized using initiated chemical vapor deposition.

    PubMed

    Bose, Ranjita K; Lau, Kenneth K S

    2010-08-09

    In this work, poly(2-hydroxyethyl methacrylate) (PHEMA), a widely used hydrogel, is synthesized using initiated chemical vapor deposition (iCVD), a one-step surface polymerization that does not use any solvents. iCVD synthesis is capable of producing linear stoichiometric polymers that are free from entrained unreacted monomer or solvent and, thus, do not require additional purification steps. The resulting films, therefore, are found to be noncytotoxic and also have low nonspecific protein adsorption. The kinetics of iCVD polymerization are tuned so as to achieve rapid deposition rates ( approximately 1.5 microm/min), which in turn yield ultrahigh molecular weight polymer films that are mechanically robust with good water transport and swellability. The films have an extremely high degree of physical chain entanglement giving rise to high tensile modulus and storage modulus without the need for chemical cross-linking that compromises hydrophilicity.

  18. Protein specific polymeric immunomicrospheres

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S. (Inventor); Dreyer, William J. (Inventor); Rembaum, Alan (Inventor)

    1980-01-01

    Small, round, bio-compatible microspheres capable of covalently bonding proteins and having a uniform diameter below about 3500 A are prepared by substantially instantaneously initiating polymerization of an aqueous emulsion containing no more than 35% total monomer including an acrylic monomer substituted with a covalently bondable group such as hydroxyl, amino or carboxyl and a minor amount of a cross-linking agent.

  19. Improvement in glucose biosensing response of electrochemically grown polypyrrole nanotubes by incorporating crosslinked glucose oxidase.

    PubMed

    Palod, Pragya Agar; Singh, Vipul

    2015-10-01

    In this paper a novel enzymatic glucose biosensor has been reported in which platinum coated alumina membranes (Anodisc™s) have been employed as templates for the growth of polypyrrole (PPy) nanotube arrays using electrochemical polymerization. The PPy nanotube arrays were grown on Anodisc™s of pore diameter 100 nm using potentiostatic electropolymerization. In order to optimize the polymerization time, immobilization of glucose oxidase (GOx) was first performed using physical adsorption followed by measuring its biosensing response which was examined amperometrically for increasing concentrations of glucose. In order to further improve the sensing performance of the biosensor fabricated for optimum polymerization duration, enzyme immobilization was carried out using cross-linking with glutaraldehyde and bovine serum albumin (BSA). Approximately six fold enhancement in the sensitivity was observed in the fabricated electrodes. The biosensors also showed a wide range of linear operation (0.2-13 mM), limit of detection of 50 μM glucose concentration, excellent selectivity for glucose, notable reliability for real sample detection and substantially improved shelf life. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Ultra-high vacuum surface analysis study of rhodopsin incorporation into supported lipid bilayers.

    PubMed

    Michel, Roger; Subramaniam, Varuni; McArthur, Sally L; Bondurant, Bruce; D'Ambruoso, Gemma D; Hall, Henry K; Brown, Michael F; Ross, Eric E; Saavedra, S Scott; Castner, David G

    2008-05-06

    Planar supported lipid bilayers that are stable under ambient atmospheric and ultra-high-vacuum conditions were prepared by cross-linking polymerization of bis-sorbylphosphatidylcholine (bis-SorbPC). X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were employed to investigate bilayers that were cross-linked using either redox-initiated radical polymerization or ultraviolet photopolymerization. The redox method yields a more structurally intact bilayer; however, the UV method is more compatible with incorporation of transmembrane proteins. UV polymerization was therefore used to prepare cross-linked bilayers with incorporated bovine rhodopsin, a light-activated, G-protein-coupled receptor (GPCR). A previous study (Subramaniam, V.; Alves, I. D.; Salgado, G. F. J.; Lau, P. W.; Wysocki, R. J.; Salamon, Z.; Tollin, G.; Hruby, V. J.; Brown, M. F.; Saavedra, S. S. J. Am. Chem. Soc. 2005, 127, 5320-5321) showed that rhodopsin retains photoactivity after incorporation into UV-polymerized bis-SorbPC, but did not address how the protein is associated with the bilayer. In this study, we show that rhodopsin is retained in supported bilayers of poly(bis-SorbPC) under ultra-high-vacuum conditions, on the basis of the increase in the XPS nitrogen concentration and the presence of characteristic amino acid peaks in the ToF-SIMS data. Angle-resolved XPS data show that the protein is inserted into the bilayer, rather than adsorbed on the bilayer surface. This is the first study to demonstrate the use of ultra-high-vacuum techniques for structural studies of supported proteolipid bilayers.

  1. Cross-linked β-cyclodextrin and carboxymethyl cellulose hydrogels for controlled drug delivery of acyclovir

    PubMed Central

    Malik, Nadia Shamshad; Ahmad, Mahmood; Minhas, Muhammad Usman

    2017-01-01

    To explore the potential role of polymers in the development of drug-delivery systems, this study investigated the use of β-cyclodextrin (β-CD), carboxymethyl cellulose (CMC), acrylic acid (AA) and N’ N’-methylenebis-acrylamide (MBA) in the synthesis of hydrogels for controlled drug delivery of acyclovir (ACV). Different proportions of β-CD, CMC, AA and MBA were blended with each other to fabricate hydrogels via free radical polymerization technique. Fourier transform infrared spectroscopy (FTIR) revealed successful grafting of components into the polymeric network. Thermal and morphological characterization confirmed the formation of thermodynamically stable hydrogels having porous structure. The pH-responsive behaviour of hydrogels has been documented by swelling dynamics and drug release behaviour in simulated gastrointestinal fluids. Drug release kinetics revealed controlled release behaviour of the antiviral drug acyclovir in developed polymeric network. Cross-linked β-cyclodextrin and carboxymethyl cellulose hydrogels can be used as promising candidates for the design and development of controlled drug-delivery systems. PMID:28245257

  2. Rapid shape memory TEMPO-oxidized cellulose nanofibers/polyacrylamide/gelatin hydrogels with enhanced mechanical strength.

    PubMed

    Li, Nan; Chen, Wei; Chen, Guangxue; Tian, Junfei

    2017-09-01

    TEMPO-oxidized cellulose nanofibers/polyacrylamide/gelatin shape memory hydrogels were successfully fabricated through a facile in-situ free-radical polymerization method, and double network was formed by chemically cross-linked polyacrylamide (PAM) network and physically cross-linked gelatin network. TEMPO-oxidized cellulose nanofibers (TOCNs) were introduced to improve the mechanical properties of the hydrogel. The structure, shape memory behaviors and mechanical properties of the resulting composite gels with varied gel compositions were investigated. The results obtained from those different studies revealed that TOCNs, gelatin, and PAM could mix with each other homogeneously. Due to the thermoreversible nature of the gelatin network, the composite hydrogels exhibited attractive thermo-induced shape memory properties. In addition, good mechanical properties (strength >200kPa, strain >650%) were achieved. Such composite hydrogels with good shape memory behavior and enhanced mechanical strength would be an attractive candidate for a wide variety of applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Cross-linked polyvinyl pyridine coated glass particle catalyst support and aqueous composition or polyvinyl pyridine adducted microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Gupta, Amitava (Inventor); Volksen, Willi (Inventor)

    1981-01-01

    Microspheres are produced by cobalt gamma radiation initiated polymerization of a dilute aqueous vinyl pyridine solution. Addition of cross-linking agent provides higher surface area beads. Addition of monomers such as hydroxyethylmethacrylate acrylamide or methacrylamide increases hydrophilic properties and surface area of the beads. High surface area catalytic supports are formed in the presence of controlled pore glass substrate.

  4. Ionic liquids in a poly ethylene oxide cross-linked gel polymer as an electrolyte for electrical double layer capacitor

    NASA Astrophysics Data System (ADS)

    Chaudoy, V.; Tran Van, F.; Deschamps, M.; Ghamouss, F.

    2017-02-01

    In the present work, we developed a gel polymer electrolyte via the incorporation of a room temperature ionic liquid into a cross-linked polymer matrix. The cross-linked gel electrolyte was prepared using a free radical polymerization of methacrylate and dimethacrylate oligomers dissolved in 1-propyl-1-methylpyrrolidinium bis(fluorosulfonyl)imide. Combining the advantages of the ionic liquids and of conventional polymers, the cross-linked gel polymer electrolyte was used both as a separator and as an electrolyte for a leakage-free and non-flammable EDLC supercapacitor. The quasi-all solid-state supercapacitors showed rather good capacitance, power and energy densities by comparison to a liquid electrolyte-based EDLC.

  5. The effect of radiation processing and filler morphology on the biomechanical stability of a thermoset polyester composite.

    PubMed

    Jayabalan, M; Shalumon, K T; Mitha, M K; Ganesan, K; Epple, M

    2010-04-01

    The effect of radiation processing and filler morphology on the biodegradation and biomechanical stability of a poly(propylene fumarate)/hydroxyapatite composite was investigated. Radiation processing influenced both cross-linking and biodegradation of the composites. Irradiation with a dose of 3 Mrad resulted in enhanced cross-linking, mechanical properties and a higher storage modulus which are favourable for dimensional stability of the implant. The particle morphology of the added hydroxyapatite in the highly cross-linked state significantly influenced the biomechanical and interfacial stability of the composites. Reorganization of agglomerated hydroxyapatite occurred in the cross-linked polymeric matrix under dynamic mechanical loading under simulated physiological conditions. Such a reorganization may increase the damping characteristics of the composite.

  6. Pervaporation separation of ethanol-water mixtures using polyethylenimine composite membranes

    DOEpatents

    Neidlinger, H.H.; Schissel, P.O.; Orth, R.A.

    1987-04-21

    Synthetic, organic, polymeric membranes were prepared from polyethylenimine for use with pervaporation apparatus in the separation of ethanol-water mixtures. The polymeric material was prepared in dilute aqueous solution and coated onto a polysulfone support film, from which excess polymeric material was subsequently removed. Cross-links were then generated by limited exposure to toluene-2,4-diisocyanate solution, after which the prepared membrane was heat-cured. The resulting membrane structures showed high selectivity in permeating ethanol or water over a wide range of feed concentrations.

  7. Pervaporation separation of ethanol-water mixtures using polyethylenimine composite membranes

    DOEpatents

    Neidlinger, Hermann H.; Schissel, Paul O.; Orth, Richard A.

    1987-01-01

    Synthetic, organic, polymeric membranes were prepared from polyethylenimine for use with pervaporation apparatus in the separation of ethanol-water mixtures. The polymeric material was prepared in dilute aqueous solution and coated onto a polysulfone support film, from which excess polymeric material was subsequently removed. Cross-links were then generated by limited exposure to toluene-2,4-diisocyanate solution, after which the prepared membrane was heat-cured. The resulting membrane structures showed high selectivity in permeating ethanol or water over a wide range of feed concentrations.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rebowski, Grzegorz; Namgoong, Suk; Boczkowska, Malgorzata

    Actin filament nucleators initiate polymerization in cells in a regulated manner. A common architecture among these molecules consists of tandem WASP homology 2 domains (W domains) that recruit three to four actin subunits to form a polymerization nucleus. We describe a low-resolution crystal structure of an actin dimer assembled by tandem W domains, where the first W domain is cross-linked to Cys374 of the actin subunit bound to it, whereas the last W domain is followed by the C-terminal pointed end-capping helix of thymosin {beta}4. While the arrangement of actin subunits in the dimer resembles that of a long-pitch helixmore » of the actin filament, important differences are observed. These differences result from steric hindrance of the W domain with intersubunit contacts in the actin filament. We also determined the structure of the first W domain of Vibrio parahaemolyticus VopL cross-linked to actin Cys374 and show it to be nearly identical with non-cross-linked W-Actin structures. This result validates the use of cross-linking as a tool for the study of actin nucleation complexes, whose natural tendency to polymerize interferes with most structural methods. Combined with a biochemical analysis of nucleation, the structures may explain why nucleators based on tandem W domains with short inter-W linkers have relatively weak activity, cannot stay bound to filaments after nucleation, and are unlikely to influence filament elongation. The findings may also explain why nucleation-promoting factors of the Arp2/3 complex, which are related to tandem-W-domain nucleators, are ejected from branch junctions after nucleation. We finally show that the simple addition of the C-terminal pointed end-capping helix of thymosin {beta}4 to tandem W domains can change their activity from actin filament nucleation to monomer sequestration.« less

  9. The Quest for Converting Biorenewable Bifunctional α-Methylene-γ-butyrolactone into Degradable and Recyclable Polyester: Controlling Vinyl-Addition/Ring-Opening/Cross-Linking Pathways.

    PubMed

    Tang, Xiaoyan; Hong, Miao; Falivene, Laura; Caporaso, Lucia; Cavallo, Luigi; Chen, Eugene Y-X

    2016-11-02

    α-Methylene-γ-butyrolactone (MBL), a naturally occurring and biomass-sourced bifunctional monomer, contains both a highly reactive exocyclic C═C bond and a highly stable five-membered γ-butyrolactone ring. Thus, all previous work led to exclusive vinyl-addition polymerization (VAP) product P(MBL) VAP . Now, this work reverses this conventional chemoselectivity to enable the first ring-opening polymerization (ROP) of MBL, thereby producing exclusively unsaturated polyester P(MBL) ROP with M n up to 21.0 kg/mol. This elusive goal was achieved through uncovering the thermodynamic, catalytic, and processing conditions. A third reaction pathway has also been discovered, which is a crossover propagation between VAP and ROP processes, thus affording cross-linked polymer P(MBL) CLP . The formation of the three types of polymers, P(MBL) VAP , P(MBL) CLP , and P(MBL) ROP , can be readily controlled by adjusting the catalyst (La)/initiator (ROH) ratio, which is determined by the unique chemoselectivity of the La-X (X = OR, NR 2 , R) group. The resulting P(MBL) ROP is degradable and can be readily postfunctionalized into cross-linked or thiolated materials but, more remarkably, can also be fully recycled back to its monomer thermochemically. Computational studies provided the theoretical basis for, and a mechanistic understanding of, the three different polymerization processes and the origin of the chemoselectivity.

  10. Poly-Cross-Linked PEI Through Aromatically Conjugated Imine Linkages as a New Class of pH-Responsive Nucleic Acids Packing Cationic Polymers

    PubMed Central

    Chen, Shun; Jin, Tuo

    2016-01-01

    Cationic polyimines polymerized through aromatically conjugated bis-imine linkages and intra-molecular cross-linking were found to be a new class of effective transfection materials for their flexibility in structural optimization, responsiveness to intracellular environment, the ability to facilitate endosome escape and cytosol release of the nucleic acids, as well as self-metabolism. When three phthalaldehydes of different substitution positions were used to polymerize highly branched low-molecular weight polyethylenimine (PEI 1.8K), the product through ortho-phthalimines (named PPOP) showed significantly higher transfection activity than its two tere- and iso-analogs (named PPTP and PPIP). Physicochemical characterization confirmed the similarity of three polyimines in pH-responded degradability, buffer capacity, as well as the size and Zeta potential of the polyplexes formed from the polymers. A mechanistic speculation may be that the ortho-positioned bis-imine linkage of PPOP may only lead to the straight trans-configuration due to steric hindrance, resulting in larger loops of intra-polymer cross-linking and more flexible backbone. PMID:26869931

  11. Effect of cross-link density on carbon dioxide separation in polydimethylsiloxane-norbornene membranes

    DOE PAGES

    Hong, Tao; Niu, Zhenbin; Hu, Xunxiang; ...

    2015-10-20

    The development of high performance materials for CO 2 separation and capture will significantly contribute to a solution for climate change. In this work, (bicycloheptenyl) ethyl terminated polydimethylsiloxane (PDMSPNB) membranes with varied cross-link densities were synthesized via ring-opening metathesis polymerization. The developed polymer membranes show higher permeability and better selectivity than those of conventional cross-linked PDMS membrane. The achieved performance (CO 2 permeability ~ 6800 Barrer and CO 2/N 2 selectivity ~ 14) is very promising for practical applications. The key to achieving this high performance is the use of an in-situ cross-linking method of the difunctional PDMS macromonomers, whichmore » provides lightly cross-linked membranes. By combining positron annihilation lifetime spectroscopy, broadband dielectric spectroscopy and gas solubility measurements, we have elucidated the key parameters necessary for achieving their excellent performance.« less

  12. Design of an injectable synthetic and biodegradable surgical biomaterial

    PubMed Central

    Zawaneh, Peter N.; Singh, Sunil P.; Padera, Robert F.; Henderson, Peter W.; Spector, Jason A.; Putnam, David

    2010-01-01

    We report the design of an injectable synthetic and biodegradable polymeric biomaterial comprised of polyethylene glycol and a polycarbonate of dihydroxyacetone (MPEG-pDHA). MPEG-pDHA is a thixotropic physically cross-linked hydrogel, displays rapid chain relaxation, is easily extruded through narrow-gauge needles, biodegrades into inert products, and is well tolerated by soft tissues. We demonstrate the clinical utility of MPEG-pDHA in the prevention of seroma, a common postoperative complication following ablative and reconstructive surgeries, in an animal model of radical breast mastectomy. This polymer holds significant promise for clinical applicability in a host of surgical procedures ranging from cosmetic surgery to cancer resection. PMID:20534478

  13. A systems-biology approach to yeast actin cables.

    PubMed

    Drake, Tyler; Yusuf, Eddy; Vavylonis, Dimitrios

    2012-01-01

    We focus on actin cables in yeast as a model system for understanding cytoskeletal organization and the workings of actin itself. In particular, we highlight quantitative approaches on the kinetics of actin-cable assembly and methods of measuring their morphology by image analysis. Actin cables described by these studies can span greater lengths than a thousand end-to-end actin-monomers. Because of this difference in length scales, control of the actin-cable system constitutes a junction between short-range interactions - among actin-monomers and nucleating, polymerization-facilitating, side-binding, severing, and cross-linking proteins - and the emergence of cell-scale physical form as embodied by the actin cables themselves.

  14. Highly temperature responsive core-shell magnetic particles: synthesis, characterization and colloidal properties.

    PubMed

    Rahman, Md Mahbubor; Chehimi, Mohamed M; Fessi, Hatem; Elaissari, Abdelhamid

    2011-08-15

    Temperature responsive magnetic polymer submicron particles were prepared by two step seed emulsion polymerization process. First, magnetic seed polymer particles were obtained by emulsion polymerization of styrene using potassium persulfate (KPS) as an initiator and divinylbenzne (DVB) as a cross-linker in the presence of oil-in-water magnetic emulsion (organic ferrofluid droplets). Thereafter, DVB cross-linked magnetic polymer particles were used as seed in the precipitation polymerization of N-isopropylacrylamide (NIPAM) to induce thermosensitive PNIPAM shell onto the hydrophobic polymer surface of the cross-linked magnetic polymer particles. To impart cationic functional groups in the thermosensitive PNIPAM backbone, the functional monomer aminoethylmethacrylate hydrochloride (AEMH) was used to polymerize with NIPAM while N,N'-methylenebisacrylamide (MBA) and 2, 2'-azobis (2-methylpropionamidine) dihydrochloride (V-50) were used as a cross-linker and as an initiator respectively. The effect of seed to monomer (w/w) ratio along with seed nature on the final particle morphology was investigated. Dynamic light scattering (DLS) results demonstrated particles swelling at below volume phase transition temperature (VPTT) and deswelling above the VPTT. The perfect core (magnetic) shell (polymer) structure of the particles prepared was confirmed by Transmission Electron Microscopy (TEM). The chemical composition of the particles were determined by thermogravimetric analysis (TGA). The effect of temperature, pH, ionic strength on the colloidal properties such as size and zeta potential of the micron sized thermo-sensitive magnetic particles were also studied. In addition, a short mechanistic discussion on the formation of core-shell morphology of magnetic polymer particles has also been discussed. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Tao; Niu, Zhenbin; Hu, Xunxiang

    The development of high performance materials for CO 2 separation and capture will significantly contribute to a solution for climate change. In this work, (bicycloheptenyl) ethyl terminated polydimethylsiloxane (PDMSPNB) membranes with varied cross-link densities were synthesized via ring-opening metathesis polymerization. The developed polymer membranes show higher permeability and better selectivity than those of conventional cross-linked PDMS membrane. The achieved performance (CO 2 permeability ~ 6800 Barrer and CO 2/N 2 selectivity ~ 14) is very promising for practical applications. The key to achieving this high performance is the use of an in-situ cross-linking method of the difunctional PDMS macromonomers, whichmore » provides lightly cross-linked membranes. By combining positron annihilation lifetime spectroscopy, broadband dielectric spectroscopy and gas solubility measurements, we have elucidated the key parameters necessary for achieving their excellent performance.« less

  16. Mena–GRASP65 interaction couples actin polymerization to Golgi ribbon linking

    PubMed Central

    Tang, Danming; Zhang, Xiaoyan; Huang, Shijiao; Yuan, Hebao; Li, Jie; Wang, Yanzhuang

    2016-01-01

    In mammalian cells, the Golgi reassembly stacking protein 65 (GRASP65) has been implicated in both Golgi stacking and ribbon linking by forming trans-oligomers through the N-terminal GRASP domain. Because the GRASP domain is globular and relatively small, but the gaps between stacks are large and heterogeneous, it remains puzzling how GRASP65 physically links Golgi stacks into a ribbon. To explore the possibility that other proteins may help GRASP65 in ribbon linking, we used biochemical methods and identified the actin elongation factor Mena as a novel GRASP65-binding protein. Mena is recruited onto the Golgi membranes through interaction with GRASP65. Depleting Mena or disrupting actin polymerization resulted in Golgi fragmentation. In cells, Mena and actin were required for Golgi ribbon formation after nocodazole washout; in vitro, Mena and microfilaments enhanced GRASP65 oligomerization and Golgi membrane fusion. Thus Mena interacts with GRASP65 to promote local actin polymerization, which facilitates Golgi ribbon linking. PMID:26538023

  17. Stress Relaxation in Epoxy Thermosets via a Ferrocene-Based Amine Curing Agent

    DOE PAGES

    Jones, Brad H.; Wheeler, David R.; Black, Hayden T.; ...

    2017-06-29

    Physical stress relaxation in rubbery, thermoset polymers is limited by cross-links, which impede segmental motion and restrict relaxation to network defects, such as chain ends. In parallel, the cure shrinkage associated with thermoset polymerizations leads to the development of internal residual stress that cannot be effectively relaxed. Recent strategies have reduced or eliminated such cure stress in thermoset polymers largely by exploiting chemical relaxation processes, wherein temporary cross-links or otherwise transient bonds are incorporated into the polymer network. In this paper, we explore an alternative approach, wherein physical relaxation is enhanced by the incorporation of organometallic sandwich moieties into themore » backbone of the polymer network. A standard epoxy resin is cured with a diamine derivative of ferrocene and compared to conventional diamine curing agents. The ferrocene-based thermoset is clearly distinguished from the conventional materials by reduced cure stress with increasing cure temperature as well as unique stress relaxation behavior above its glass transition in the fully cured state. The relaxation experiments exhibit features characteristic of a physical relaxation process. Furthermore, the cure stress is observed to vanish precipitously upon deliberate introduction of network defects through an increasing imbalance of epoxy and amine functional groups. Finally, we postulate that these beneficial properties arise from fluxional motion of the cyclopentadienyl ligands on the polymer backbone.« less

  18. Stress Relaxation in Epoxy Thermosets via a Ferrocene-Based Amine Curing Agent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Brad H.; Wheeler, David R.; Black, Hayden T.

    Physical stress relaxation in rubbery, thermoset polymers is limited by cross-links, which impede segmental motion and restrict relaxation to network defects, such as chain ends. In parallel, the cure shrinkage associated with thermoset polymerizations leads to the development of internal residual stress that cannot be effectively relaxed. Recent strategies have reduced or eliminated such cure stress in thermoset polymers largely by exploiting chemical relaxation processes, wherein temporary cross-links or otherwise transient bonds are incorporated into the polymer network. In this paper, we explore an alternative approach, wherein physical relaxation is enhanced by the incorporation of organometallic sandwich moieties into themore » backbone of the polymer network. A standard epoxy resin is cured with a diamine derivative of ferrocene and compared to conventional diamine curing agents. The ferrocene-based thermoset is clearly distinguished from the conventional materials by reduced cure stress with increasing cure temperature as well as unique stress relaxation behavior above its glass transition in the fully cured state. The relaxation experiments exhibit features characteristic of a physical relaxation process. Furthermore, the cure stress is observed to vanish precipitously upon deliberate introduction of network defects through an increasing imbalance of epoxy and amine functional groups. Finally, we postulate that these beneficial properties arise from fluxional motion of the cyclopentadienyl ligands on the polymer backbone.« less

  19. Pervaporation separation of ethanol-water mixtures using polyacrylic acid composite membranes

    DOEpatents

    Neidlinger, H.H.

    1985-05-07

    Synthetic, organic, polymeric membranes were prepared from polyacrylic acid salts for use with pervaporation apparatus in the separation of ehthanol-water mixtures. The polymeric material was prepared in dilute aqueous solution and coated onto a polysulfone support film, from which excess polymeric material was subsequently removed. Cross-links were then generated by limited exposure to toluene-2,4-diisocyanata solution, after which the prepared membrane was heat-cured. The resulting membrane structure showed selectivity in permeating water over a wide range of feed concentrations. 4 tabs.

  20. Pervaporation separation of ethanol-water mixtures using polyethylenimine composite membranes

    DOEpatents

    Neidlinger, H.H.; Schissel, P.O.; Orth, R.A.

    1985-06-19

    Synthetic, organic, polymeric membranes were prepared from polyethylenimine for use with pervaporation apparatus in the separation of ethanol-water mixtures. The polymeric material was prepared in dilute aqueous solution and coated onto a polysulfone support film, from which excess polymeric material was subsequently removed. Cross-links were then generated by limited exposure to toluene-2,4-diisocyanate solution, after which the prepared membrane was heat-cured. The resulting membrane structures showed high selectivity in permeating ethanol or water over a wide range of feed concentrations. 2 tabs.

  1. Polymeric matrix materials for infrared metamaterials

    DOEpatents

    Dirk, Shawn M; Rasberry, Roger D; Rahimian, Kamyar

    2014-04-22

    A polymeric matrix material exhibits low loss at optical frequencies and facilitates the fabrication of all-dielectric metamaterials. The low-loss polymeric matrix material can be synthesized by providing an unsaturated polymer, comprising double or triple bonds; partially hydrogenating the unsaturated polymer; depositing a film of the partially hydrogenated polymer and a crosslinker on a substrate; and photopatterning the film by exposing the film to ultraviolet light through a patterning mask, thereby cross-linking at least some of the remaining unsaturated groups of the partially hydrogenated polymer in the exposed portions.

  2. Difunctional polyisobutylene prepared by polymerization of monomer on molecular sieve

    NASA Technical Reports Server (NTRS)

    Midler, J. A., Jr.

    1970-01-01

    Process yields difunctional isobutylene polymers ranging in molecular weight from 1150 to 3600. These polymers have the potential for copolymerization and cross-linking with other monomers to form elastomeric materials.

  3. Morphology effect on the light scattering and dynamic response of polymer network liquid crystal phase modulator.

    PubMed

    Xiangjie, Zhao; Cangli, Liu; Jiazhu, Duan; Jiancheng, Zeng; Dayong, Zhang; Yongquan, Luo

    2014-06-16

    Polymer network liquid crystal (PNLC) was one of the most potential liquid crystal for submillisecond response phase modulation, which was possible to be applied in submillisecond response phase only spatial light modulator. But until now the light scattering when liquid crystal director was reoriented by external electric field limited its phase modulation application. Dynamic response of phase change when high voltage was applied was also not elucidated. The mechanism that determines the light scattering was studied by analyzing the polymer network morphology by SEM method. Samples were prepared by varying the polymerization temperature, UV curing intensity and polymerization time. The morphology effect on the dynamic response of phase change was studied, in which high voltage was usually applied and electro-striction effect was often induced. The experimental results indicate that the polymer network morphology was mainly characterized by cross linked single fibrils, cross linked fibril bundles or even both. Although the formation of fibril bundle usually induced large light scattering, such a polymer network could endure higher voltage. In contrast, although the formation of cross linked single fibrils induced small light scattering, such a polymer network cannot endure higher voltage. There is a tradeoff between the light scattering and high voltage endurance. The electro-optical properties such as threshold voltage and response time were taken to verify our conclusion. For future application, the monomer molecular structure, the liquid crystal solvent and the polymerization conditions should be optimized to generate optimal polymer network morphology.

  4. Redox agents and N-ethylmaleimide affect protein polymerization during laboratory scale dry pasta production and cooking.

    PubMed

    Bruneel, Charlotte; Buggenhout, Joke; Lagrain, Bert; Brijs, Kristof; Delcour, Jan A

    2016-04-01

    Durum wheat (Triticum durum Desf.) semolina gluten proteins consist of monomeric gliadin and polymeric glutenin and determine the quality of pasta products made therefrom. During pasta drying, glutenin starts polymerizing already below 60 °C (65% relative humidity (RH)), whereas gliadin only is incorporated in the protein network at temperatures exceeding 68 °C (68% RH) through thiol (SH)/disulfide (SS) exchange reactions. Removal of free SH groups in glutenin by adding 2.3 μmol KBrO3 or KIO3 per g dry matter semolina protein (g protein) or 13.8 μmol N-ethylmaleimide/g protein reduces gliadin-glutenin cross-linking during pasta drying and/or cooking and yields cooked pasta of high quality. Introducing free SH groups by adding 13.8 μmol glutathione/g protein increases gliadin-glutenin cross-linking during pasta processing, resulting in cooked pasta of lower quality. We hypothesize that too much gliadin incorporation in the glutenin network during pasta processing tightens the protein network and results in lower cooking quality. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Actin cable distribution and dynamics arising from cross-linking, motor pulling, and filament turnover

    PubMed Central

    Tang, Haosu; Laporte, Damien; Vavylonis, Dimitrios

    2014-01-01

    The growth of fission yeast relies on the polymerization of actin filaments nucleated by formin For3p, which localizes at tip cortical sites. These actin filaments bundle to form actin cables that span the cell and guide the movement of vesicles toward the cell tips. A big challenge is to develop a quantitative understanding of these cellular actin structures. We used computer simulations to study the spatial and dynamical properties of actin cables. We simulated individual actin filaments as semiflexible polymers in three dimensions composed of beads connected with springs. Polymerization out of For3p cortical sites, bundling by cross-linkers, pulling by type V myosin, and severing by cofilin are simulated as growth, cross-linking, pulling, and turnover of the semiflexible polymers. With the foregoing mechanisms, the model generates actin cable structures and dynamics similar to those observed in live-cell experiments. Our simulations reproduce the particular actin cable structures in myoVΔ cells and predict the effect of increased myosin V pulling. Increasing cross-linking parameters generates thicker actin cables. It also leads to antiparallel and parallel phases with straight or curved cables, consistent with observations of cells overexpressing α-actinin. Finally, the model predicts that clustering of formins at cell tips promotes actin cable formation. PMID:25103242

  6. Crosslinked, porous, polyacrylate beads

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping Siao (Inventor); Dreyer, William J. (Inventor)

    1976-01-01

    Uniformly-shaped, porous, round beads are prepared by the co-polymerization of an acrylic monomer and a cross-linking agent in the presence of 0.05 to 5% by weight of an aqueous soluble polymer such as polyethylene oxide. Cross-linking proceeds at high temperature above about 50.degree.C or at a lower temperature with irradiation. Beads of even shape and even size distribution of less than 2 micron diameter are formed. The beads will find use as adsorbents in chromatography and as markers for studies of cell surface receptors.

  7. Crosslinked, porous, polyacrylate beads

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Dreyer, William J. (Inventor)

    1977-01-01

    Uniformly-shaped, porous, round beads are prepared by the co-polymerization of an acrylic monomer and a cross-linking agent in the presence of 0.05 to 5% by weight of an aqueous soluble polymer such as polyethylene oxide. Cross-linking proceeds at high temperature above about 50.degree. C or at a lower temperature with irradiation. Beads of even shape and even size distribution of less than 2 micron diameter are formed. The beads will find use as adsorbents in chromatography and as markers for studies of cell surface receptors.

  8. Simultaneous cross-linking and p-doping of a polymeric semiconductor film by immersion into a phosphomolybdic acid solution for use in organic solar cells.

    PubMed

    Aizawa, Naoya; Fuentes-Hernandez, Canek; Kolesov, Vladimir A; Khan, Talha M; Kido, Junji; Kippelen, Bernard

    2016-03-07

    Poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT) is shown to be simultaneously cross-linked and p-doped when immersed into a phosphomolybdic acid solution, yielding conductive films with low solubility that can withstand the solution processing of subsequent photoactive layers. Such a modified PCDTBT film serves to improve hole collection and limit carrier recombination in organic solar cells.

  9. Small, porous polyacrylate beads

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping Siao (Inventor); Rembaum, Alan (Inventor); Dreyer, William J. (Inventor)

    1976-01-01

    Uniformly-shaped, porous, round beads are prepared by the co-polymerization of an acrylic monomer and a cross-linking agent in the presence of 0.05 to 5% by weight of an aqueous soluble polymer such as polyethylene oxide. Cross-linking proceeds at high temperature above about 50.degree.C or at a lower temperature with irradiation. Beads of even shape and even size distribution of less than 2 micron diameter are formed. The beads will find use as adsorbents in chromatography and as markers for studies of cell surface receptors.

  10. A Systems-Biology Approach to Yeast Actin Cables

    PubMed Central

    Drake, Tyler; Yusuf, Eddy; Vavylonis, Dimitrios

    2011-01-01

    We focus on actin cables in yeast as a model system for understanding cytoskeletal organization and the workings of actin itself. In particular, we highlight quantitative approaches on the kinetics of actin cable assembly and methods of measuring their morphology by image analysis. Actin cables described by these studies can span greater lengths than a thousand end-to-end actin monomers. Because of this difference in length scales, control of the actin-cable system constitutes a junction between short-range interactions—among actin monomers and nucleating, polymerization-facilitating, side-binding, severing, and cross-linking proteins—and the emergence of cell-scale physical form as embodied by the actin cables themselves. PMID:22161338

  11. Design considerations for multi component molecular-polymeric nonlinear optical materials

    NASA Astrophysics Data System (ADS)

    Singer, K. D.; Kuzyk, M. G.; Fang, T.; Holland, W. R.; Cahill, P. A.

    1990-08-01

    We review our work on multi component polymeric nonlinear optical materials. These materials consist of nonlinear optical molecules incorporated in a polymeric host. A cross-linked triazine polymer incorporating a dicyanovinyl terminated azo dye was found to be relatively stable at 85 deg and possess an electro-optic coefficient of 11pm/V. We have also observed the zero dispersion condition in a new anomalous dispersion dye for phase matched second harmonic generation, and expect efficient conversion to the blue. A squarylium dye, ISQ, has been found to possess a large third order nonlinearity, and may display two-level behavior.

  12. Silk fibroin-Thelebolan matrix: A promising chemopreventive scaffold for soft tissue cancer.

    PubMed

    Mukhopadhyay, Sourav K; Naskar, Deboki; Bhattacharjee, Promita; Mishra, Abheepsa; Kundu, Subhas C; Dey, Satyahari

    2017-07-01

    Research of improved functional bio-mimetic matrix for regenerative medicine is currently one of the rapidly growing fields in tissue engineering and medical sciences. This study reports a novel bio-polymeric matrix, which is fabricated using silk protein fibroin from Bombyx mori silkworm and fungal exopolysaccharide Thelebolan from Antarctic fungus Thelebolus sp. IITKGP-BT12 by solvent evaporation and freeze drying method. Natural cross linker genipin is used to imprison the Thelebolan within the fibroin network. Different cross-linked and non-cross-linked fibroin/Thelebolan matrices are fabricated and biophysically characterized. Cross-linked thin films show robustness, good mechanical strength and high temperature stability in comparison to non-cross-linked and pure matrices. The 3D sponge matrices demonstrate good cytocompatibility. Interestingly, sustained release of the Thelebolan from the cross-linked matrices induce apoptosis in colon cancer cell line (HT-29) in time dependent manner while it is nontoxic to the normal fibroblast cells (L929).The findings indicate that the cross-linked fibroin/Thelebolan matrices can be used as potential topical chemopreventive scaffold for preclusion of soft tissue carcinoma. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Preparation and characterization of safe microparticles based on xylan.

    PubMed

    Cartaxo da Costa Urtiga, Silvana; Aquino Azevedo de Lucena Gabi, Camilla; Rodrigues de Araújo Eleamen, Giovanna; Santos Souza, Bartolomeu; Pessôa, Hilzeth de Luna Freire; Marcelino, Henrique Rodrigues; Afonso de Moura Mendonça, Elisângela; Egito, Eryvaldo Sócrates Tabosa do; Oliveira, Elquio Eleamen

    2017-10-01

    This work describes the preparation and evaluation of safe xylan-based microparticles prepared by cross-linking polymerization using sodium trimetaphosphate. The resulting microparticles were evaluated for morphology, particle size, polymer-cross-link agent interaction, and in vitro toxicity. The microparticles showed narrow monodisperse size distributions with their mean sizes being between 3.5 and 12.5 µm in dried state. FT-IR analyzes confirmed the interaction between sodium trimetaphosphate and xylan during the cross-linking process with formation of phosphate ester bonds. Additionally, the X-ray diffraction patterns and FT-IR analyzes suggested that little or no cross-linking agent remained inside the microparticles. Furthermore, the in-vitro studies using Artemia salina and human erythrocytes revealed that the microparticles are not toxic. Therefore, the overall results suggest that these xylan microparticles can be used as a platform for new drug delivery system.

  14. Synthesis, characterization, and morphology study of poly(acrylamide-co-acrylic acid)-grafted-poly(styrene-co-methyl methacrylate) "raspberry"-shape like structure microgels by pre-emulsified semi-batch emulsion polymerization.

    PubMed

    Ramli, Ros Azlinawati; Hashim, Shahrir; Laftah, Waham Ashaier

    2013-02-01

    A novel microgels were polymerized using styrene (St), methyl methacrylate (MMA), acrylamide (AAm), and acrylic acid (AAc) monomers in the presence of N,N'-methylenebisacrylamide (MBA) cross-linker. Pre-emulsified monomer was first prepared followed by polymerizing monomers using semi-batch emulsion polymerization. Fourier Transform Infrared Spectroscopy (FTIR) and (1)H Nuclear Magnetic Resonance (NMR) were used to determine the chemical structure and to indentify the related functional group. Grafting and cross-linking of poly(acrylamide-co-acrilic acid)-grafted-poly(styrene-co-methyl methacrylate) [poly(AAm-co-AAc)-g-poly(St-co-MMA)] microgels are approved by the disappearance of band at 1300 cm(-1), 1200 cm(-1) and 1163 cm(-1) of FTIR spectrum and the appearance of CH peaks at 5.5-5.7 ppm in (1)H NMR spectrum. Scanning Electron Microscope (SEM) images indicated that poly(St-co-MMA) particle was lobed morphology coated by cross-linked poly(AAm-co-AAc) shell. Furthermore, SEM results revealed that poly(AAm-co-AAc)-g-poly(St-co-MMA) is composite particle that consist of "raspberry"-shape like structure core. Internal structures of the microgels showed homogeneous network of pores, an extensive interconnection among pores, thicker pore walls, and open network structures. Water absorbency test indicated that the sample with particle size 0.43 μm had lower equilibrium water content, % than the sample with particle size 7.39 μm. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. In vitro cross-linking of elastin peptides and molecular characterization of the resultant biomaterials.

    PubMed

    Heinz, Andrea; Ruttkies, Christoph K H; Jahreis, Günther; Schräder, Christoph U; Wichapong, Kanin; Sippl, Wolfgang; Keeley, Fred W; Neubert, Reinhard H H; Schmelzer, Christian E H

    2013-04-01

    Elastin is a vital protein and the major component of elastic fibers which provides resilience to many vertebrate tissues. Elastin's structure and function are influenced by extensive cross-linking, however, the cross-linking pattern is still unknown. Small peptides containing reactive allysine residues based on sequences of cross-linking domains of human elastin were incubated in vitro to form cross-links characteristic of mature elastin. The resultant insoluble polymeric biomaterials were studied by scanning electron microscopy. Both, the supernatants of the samples and the insoluble polymers, after digestion with pancreatic elastase or trypsin, were furthermore comprehensively characterized on the molecular level using MALDI-TOF/TOF mass spectrometry. MS(2) data was used to develop the software PolyLinX, which is able to sequence not only linear and bifunctionally cross-linked peptides, but for the first time also tri- and tetrafunctionally cross-linked species. Thus, it was possible to identify intra- and intermolecular cross-links including allysine aldols, dehydrolysinonorleucines and dehydromerodesmosines. The formation of the tetrafunctional cross-link desmosine or isodesmosine was unexpected, however, could be confirmed by tandem mass spectrometry and molecular dynamics simulations. The study demonstrated that it is possible to produce biopolymers containing polyfunctional cross-links characteristic of mature elastin from small elastin peptides. MALDI-TOF/TOF mass spectrometry and the newly developed software PolyLinX proved suitable for sequencing of native cross-links in proteolytic digests of elastin-like biomaterials. The study provides important insight into the formation of native elastin cross-links and represents a considerable step towards the characterization of the complex cross-linking pattern of mature elastin. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Electrical conductivity of multi-walled carbon nanotubes-SU8 epoxy composites

    NASA Astrophysics Data System (ADS)

    Grimaldi, Claudio; Mionić, Marijana; Gaal, Richard; Forró, László; Magrez, Arnaud

    2013-06-01

    We have characterized the electrical conductivity of the composite which consists of multi-walled carbon nanotubes dispersed in SU8 epoxy resin. Depending on the processing conditions of the epoxy (ranging from non-polymerized to cross-linked), we obtained tunneling and percolating-like regimes of the electrical conductivity of the composites. We interpret the observed qualitative change of the conductivity behavior in terms of reduced separation between the nanotubes induced by polymerization of the epoxy matrix.

  17. Preparation and Cross-Linking of All-Acrylamide Diblock Copolymer Nano-Objects via Polymerization-Induced Self-Assembly in Aqueous Solution

    PubMed Central

    2017-01-01

    Various carboxylic acid-functionalized poly(N,N-dimethylacrylamide) (PDMAC) macromolecular chain transfer agents (macro-CTAs) were chain-extended with diacetone acrylamide (DAAM) by reversible addition–fragmentation chain transfer (RAFT) aqueous dispersion polymerization at 70 °C and 20% w/w solids to produce a series of PDMAC–PDAAM diblock copolymer nano-objects via polymerization-induced self-assembly (PISA). TEM studies indicate that a PDMAC macro-CTA with a mean degree of polymerization (DP) of 68 or higher results in the formation of well-defined spherical nanoparticles with mean diameters ranging from 40 to 150 nm. In contrast, either highly anisotropic worms or polydisperse vesicles are formed when relatively short macro-CTAs (DP = 40–58) are used. A phase diagram was constructed to enable accurate targeting of pure copolymer morphologies. Dynamic light scattering (DLS) and aqueous electrophoresis studies indicated that in most cases these PDMAC–PDAAM nano-objects are surprisingly resistant to changes in either solution pH or temperature. However, PDMAC40–PDAAM99 worms do undergo partial dissociation to form a mixture of relatively short worms and spheres on adjusting the solution pH from pH 2–3 to around pH 9 at 20 °C. Moreover, a change in copolymer morphology from worms to a mixture of short worms and vesicles was observed by DLS and TEM on heating this worm dispersion to 50 °C. Postpolymerization cross-linking of concentrated aqueous dispersions of PDMAC–PDAAM spheres, worms, or vesicles was performed at ambient temperature using adipic acid dihydrazide (ADH), which reacts with the hydrophobic ketone-functionalized PDAAM chains. The formation of hydrazone groups was monitored by FT-IR spectroscopy and afforded covalently stabilized nano-objects that remained intact on exposure to methanol, which is a good solvent for both blocks. Rheological studies indicated that the cross-linked worms formed a stronger gel compared to linear precursor worms. PMID:28260814

  18. Thermally Stable Gold Nanoparticles with a Crosslinked Diblock Copolymer Shell

    NASA Astrophysics Data System (ADS)

    Jang, Se Gyu; Khan, Anzar; Hawker, Craig J.; Kramer, Edward J.

    2010-03-01

    The use of polymer-coated Au nanoparticles prepared using oligomeric- or polymeric-ligands tethered by Au-S bonds for incorporation into block copolymer templates under thermal processing has been limited due to dissociation of the Au-S bond at T > 100^oC where compromises their colloidal stability. We report a simple route to prepare sub-5nm gold nanoparticles with a thermally stable polymeric shell. An end-functional thiol ligand consisting of poly(styrene-b-1,2&3,4-isoprene-SH) is synthesized by anionic polymerization. After a standard thiol ligand synthesis of Au nanoparticles, the inner PI block is cross-linked through reaction with 1,1,3,3-tetramethyldisiloxane. Gold nanoparticles with the cross-linked shell are stable in organic solvents at 160^oC as well as in block copolymer films of PS-b-P2VP annealed in vacuum at 170^oC for several days. These nanoparticles can be designed to strongly segregate to the PS-P2VP interface resulting in very large Au nanoparticle volume fractions φp without macrophase separation as well as transitions between lamellar and bicontinuous morphologies as φp increases.

  19. Properties of iopamidol-incorporated poly(vinyl alcohol) microparticle as an X-ray imaging flow tracer.

    PubMed

    Ahn, Sungsook; Jung, Sung Yong; Lee, Jin Pyung; Lee, Sang Joon

    2011-02-10

    We have recently reported on poly(vinyl alcohol) microparticles containing X-ray contrast agent, iopamidol, designed as a flow tracer working in synchrotron X-ray imaging ( Biosens. Bioelectron. 2010 , 25 , 1571 ). Although iopamidol is physically encapsulated in the microparticles, it displays a great contrast enhancement and stable feasibility in in vitro human blood pool. Nonetheless, a direct relation between the absolute amount of incorporated iopamidol and the enhancement in imaging efficiency was not observed. In this study, physical properties of the designed microparticle are systematically investigated experimentally with theoretical interpretation to correlate an enhancement in X-ray imaging efficiency. The compositional ratio of X-ray contrast agent in polymeric microparticle is controlled as 1/1 and 10/1 [contrast agent/polymer microparticle (w/w)] with changed degree of cross-linkings. Flory-Huggins interaction parameter (χ), retractive force (τ) and degree of swelling of the designed polymeric microparticles are investigated. In addition, the hydrodynamic size (D(H)) and ζ-potential are evaluated in terms of environment responsiveness. The physical properties of the designed flow tracer microparticles under a given condition are observed to be strongly related with the X-ray absorption efficiency, which are also supported by the Beer-Lambert-Bouguer law. The designed microparticles are almost nontoxic with a reasonable concentration and time period, enough to be utilized as a flow tracer in various biomedical applications. This study would contribute to the basic understanding on the physical property connected with the imaging efficiency of contrast agents.

  20. Cross-linked polymeric membranes for carbon dioxide separation

    DOEpatents

    Hong, Tao; Chatterjee, Sabornie; Mahurin, Shannon Mark; Long, Brian Keith; Jiang, De-en; Mays, Jimmy Wayne; Sokolov, Alexei P.; Saito, Tomonori

    2018-01-23

    A membrane useful in gas separation, the membrane comprising a cross-linked polysiloxane structure having a cross-link density of about 0.1.times.10.sup.-5 mol/cm.sup.3 to about 6.times.10.sup.-5 mol/cm.sup.3, where, in particular embodiments, the cross-linked polysiloxane structure has the following general structure: ##STR00001## wherein R.sup.1, R.sup.2, R.sup.3, R.sup.4, R.sup.5, and R.sup.6 are independently selected from hydrocarbon groups having at least 1 and up to 6 carbon atoms; A.sup.1 and A.sup.2 are independently selected from cyclic hydrocarbon groups; L.sup.1 and L.sup.2 are linking groups or covalent bonds; n is an integer of at least 1; r and s are independently selected from integers of at least 1; and p is an integer of at least 10. The invention also includes methods for making and using the above-described membranes for gas separation.

  1. Exploring a new jellyfish collagen in the production of microparticles for protein delivery.

    PubMed

    Calejo, M Teresa; Almeida, António J; Fernandes, Ana I

    2012-01-01

    A microparticulate protein delivery system was developed using collagen, from the medusa Catostylus tagi, as a polymeric matrix. Collagen microparticles (CMPs) were produced by an emulsification-gelation-solvent extraction method and a high loading efficiency was found for the entrapment of lysozyme and α-lactalbumin. CMPs were cross-linked with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC). The uncross-linked CMPs were spherical, rough-surfaced, presenting an estimated median size of 28 µm by laser diffraction. Upon cross-linking, particle size (9.5 µm) and size distribution were reduced. CMPs showed a moderate hydrophobic behaviour and a positive surface charge. Cross-linking also resulted in greater stability in water, allowing a slow release, as shown by in vitro experiments. The assessment of lysozyme's biological activity showed that the protein remained active throughout the encapsulation and cross-linking processes. In summary, the work herein described shows the potential use of a marine collagen in the production of microparticles for the controlled release of therapeutic proteins.

  2. In-situ polymerized PLOT columns III: divinylbenzene copolymers and dimethacrylate homopolymers

    NASA Technical Reports Server (NTRS)

    Shen, T. C.; Fong, M. M.

    1994-01-01

    Studies of divinylbenzene copolymers and dimethacrylate homopolymers indicate that the polymer pore size controls the separation of water and ammonia on porous-layer-open-tubular (PLOT) columns. To a lesser degree, the polarity of the polymers also affects the separation of a water-ammonia gas mixture. Our results demonstrate that the pore size can be regulated by controlling the cross-linking density or the chain length between the cross-linking functional groups. An optimum pore size will provide the best separation of water and ammonia.

  3. Ionic Hydrogel Based on Chitosan Cross-Linked with 6-Phosphogluconic Trisodium Salt as a Drug Delivery System.

    PubMed

    Martínez-Martínez, Mayte; Rodríguez-Berna, Guillermo; Gonzalez-Alvarez, Isabel; Hernández, Ma Jesús; Corma, Avelino; Bermejo, Marival; Merino, Virginia; Gonzalez-Alvarez, Marta

    2018-04-09

    In this work, 6-phosphogluconic trisodium salt (6-PG - Na + ) is introduced as a new aqueous and nontoxic cross-linking agent to obtain ionic hydrogels. Here, it is shown the formation of hydrogels based on chitosan cross-linked with 6-PG - Na + . This formulation is obtained by ionic interaction of cationic groups of polymer with anionic groups of the cross-linker. These hydrogels are nontoxic, do not cause dermal irritation, are easy to extend, and have an adequate adhesion force to be applied as polymeric film over the skin. This formulation exhibits a first order release kinetic and can be applied as drug vehicle for topical administration or as wound dressing for wound healing. The primary goal of this communication is to report the identification and utility of 6-phosphogluconic trisodium salt (6-PG - Na + ) as a nontoxic cross-linker applicable for cationic polymers.

  4. Thermally Cross-Linked Anion Exchange Membranes from Solvent Processable Isoprene Containing Ionomers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Tsung-Han; Ertem, S. Piril; Maes, Ashley M.

    2015-01-28

    Random copolymers of isoprene and 4-vinylbenzyl chloride (VBCl) with varying compositions were synthesized via nitroxide-mediated polymerization. Subsequent quaternization afforded solvent processable and cross-linkable ionomers with a wide range of ion exchange capacities (IECs). Solution cast membranes were thermally cross-linked to form anion exchange membranes. Cross-linking was achieved by taking advantage of the unsaturations on the polyisoprene backbone, without added cross-linkers. A strong correlation was found between water uptake and ion conductivity of the membranes: conductivities of the membranes with IECs beyond a critical value were found to be constant related to their high water absorption. Environmentally controlled small-angle X-ray scatteringmore » experiments revealed a correlation between the average distance between ionic clusters and the ion conductivity, indicating that a well-connected network of ion clusters is necessary for efficient ion conduction and high ion conductivity.« less

  5. Elucidation of the Cross-Link Structure of Nadic-End-Capped Polyimides Using NMR of C-13-Labeled Polymers

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Johnston, J. Christopher; Cavano, Paul J.

    1997-01-01

    Solid NMR of C-13 isotope-labeled samples of PMR-15 was used to follow the cross-linking reaction of the nadic end cap. Some samples were labeled on one of the carbon atoms of the nadic end cap, and others on the methylene carbon atom of the methylenedianiline portion of the polymer. NMR spectra were run on these samples both before and after cross-linking. In this way, direct evidence of the major products of cross-linking under normal cure conditions is provided. The majority (approximately 85%) of the cross-linking derives from olefin polymerization through the double bond of the end cap. Approximately 15% of the products could come from a pathway involving a retro-Diels-Alder reaction. However, all of the products could be explained by a biradical intermediate without a retro-Diels-Alder reaction. Evidence is also presented that the methylene moiety in the methylenedianiline part of the polymer chain also participates in the cross-linking, albeit to a small extent, by a radical transfer reaction. Different cure conditions (higher temperatures, longer times) could change the relative distribution of the products.

  6. Design of Self-Healing Supramolecular Rubbers by Introducing Ionic Cross-Links into Natural Rubber via a Controlled Vulcanization.

    PubMed

    Xu, Chuanhui; Cao, Liming; Lin, Baofeng; Liang, Xingquan; Chen, Yukun

    2016-07-13

    Introducing ionic associations is one of the most effective approaches to realize a self-healing behavior for rubbers. However, most of commercial rubbers are nonpolar rubbers without now available functional groups to be converted into ionic groups. In this paper, our strategy was based on a controlled peroxide-induced vulcanization to generate massive ionic cross-links via polymerization of zinc dimethacrylate (ZDMA) in natural rubber (NR) and exploited it as a potential self-healable material. We controlled vulcanization process to retard the formation of covalent cross-link network, and successfully generated a reversible supramolecular network mainly constructed by ionic cross-links. Without the restriction of covalent cross-linkings, the NR chains in ionic supramolecular network had good flexibility and mobility. The nature that the ionic cross-links was easily reconstructed and rearranged facilitating the self-healing behavior, thereby enabling a fully cut sample to rejoin and retain to its original properties after a suitable self-healing process at ambient temperature. This study thus demonstrates a feasible approach to impart an ionic association induced self-healing function to commercial rubbers without ionic functional groups.

  7. To Cross-Link or Not to Cross-Link? Cross-Linking Associated Foreign Body Response of Collagen-Based Devices

    PubMed Central

    Delgado, Luis M.; Bayon, Yves; Pandit, Abhay

    2015-01-01

    Collagen-based devices, in various physical conformations, are extensively used for tissue engineering and regenerative medicine applications. Given that the natural cross-linking pathway of collagen does not occur in vitro, chemical, physical, and biological cross-linking methods have been assessed over the years to control mechanical stability, degradation rate, and immunogenicity of the device upon implantation. Although in vitro data demonstrate that mechanical properties and degradation rate can be accurately controlled as a function of the cross-linking method utilized, preclinical and clinical data indicate that cross-linking methods employed may have adverse effects on host response, especially when potent cross-linking methods are employed. Experimental data suggest that more suitable cross-linking methods should be developed to achieve a balance between stability and functional remodeling. PMID:25517923

  8. Classroom Demonstrations of Polymer Principles Part II. Polymer Formation.

    ERIC Educational Resources Information Center

    Rodriguez, F.; And Others

    1987-01-01

    This is part two in a series on classroom demonstrations of polymer principles. Described is how large molecules can be assembled from subunits (the process of polymerization). Examples chosen include both linear and branched or cross-linked molecules. (RH)

  9. Soft Listeria: actin-based propulsion of liquid drops.

    PubMed

    Boukellal, Hakim; Campás, Otger; Joanny, Jean-François; Prost, Jacques; Sykes, Cécile

    2004-06-01

    We study the motion of oil drops propelled by actin polymerization in cell extracts. Drops deform and acquire a pearlike shape under the action of the elastic stresses exerted by the actin comet, a tail of cross-linked actin filaments. We solve this free boundary problem and calculate the drop shape taking into account the elasticity of the actin gel and the variation of the polymerization velocity with normal stress. The pressure balance on the liquid drop imposes a zero propulsive force if gradients in surface tension or internal pressure are not taken into account. Quantitative parameters of actin polymerization are obtained by fitting theory to experiment.

  10. Polysulfone hemodiafiltration membranes with enhanced anti-fouling and hemocompatibility modified by poly(vinyl pyrrolidone) via in situ cross-linked polymerization.

    PubMed

    Zhu, Lijing; Song, Haiming; Wang, Jiarong; Xue, Lixin

    2017-05-01

    Poly(vinyl pyrrolidone) (PVP) and its copolymers have been widely employed for the modification of hemodiafiltration membranes due to their excellent hydrophilicity, antifouling and hemocompatibility. However, challenges still remain to simplify the modification procedure and to improve the utilization efficiency. In this paper, antifouling and hemocompatibility polysulfone (PSf) hemodiafiltration membranes were fabricated via in situ cross-linked polymerization of vinyl pyrrolidone (VP) and vinyltriethoxysilane (VTEOS) in PSf solutions and non-solvent induced phase separation (NIPS) technique. The prepared membranes were characterized by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), which suggested that VP and VTEOS have been cross-linked copolymerized in PSf membranes. The modified PSf membranes with high polymer content showed improved hydrophilicity, ultrafiltration and protein antifouling ability. In addition, the modified PSf membranes showed lower protein adsorption, inhibited platelet adhesion and deformation, prolonged the activated partial thromboplastin time (APTT), prothrombin time (PT), and decreased the content of fibrinogen (FIB) transferring to fibrin, indicating enhanced hemocompatibility. In a word, the present work provides a simple and effective one-step modification method to construct PSf membranes with improved hydrophilicity, antifouling and hemocompatibility. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Citric-Acid-Derived Photo-cross-Linked Biodegradable Elastomers

    PubMed Central

    Gyawali, Dipendra; Tran, Richard T.; Guleserian, Kristine J.; Tang, Liping; Yang, Jian

    2010-01-01

    Citric-acid-derived thermally cross-linked biodegradable elastomers (CABEs) have recently received significant attention in various biomedical applications, including tissue-engineering orthopedic devices, bioimaging and implant coatings. However, citric-acid-derived photo-cross-linked biodegradable elastomers are rarely reported. Herein, we report a novel photo-cross-linked biodegradable elastomer, referred to as poly(octamethylene maleate citrate) (POMC), which preserves pendant hydroxyl and carboxylic functionalities after cross-linking for the potential conjugation of biologically active molecules. POMC is a low-molecular-mass pre-polymer with a molecular mass average between 701 and 1291 Da. POMC networks are soft and elastic with an initial modulus of 0.07 to 1.3 MPa and an elongation at break between 38 and 382%. FT-IR–ATR results confirmed the successful surface immobilization of type-I collagen onto POMC films, which enhanced in vitro cellular attachment and proliferation. Photo-polymerized POMC films implanted subcutaneously into Sprague–Dawley rats demonstrated minimal in vivo inflammatory responses. The development of POMC enriches the family of citric-acid-derived biodegradable elastomers and expands the available biodegradable polymers for versatile needs in biomedical applications. PMID:20557687

  12. Fabrication of submicron proteinaceous structures by direct laser writing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serien, Daniela; Takeuchi, Shoji, E-mail: takeuchi@iis.u-tokyo.ac.jp; ERATO Takeuchi Biohybrid Innovation Project, Japan Science and Technology Agency, 4-6-1 Komaba, Meguro-ku, 153-8505 Tokyo

    In this paper, we provide a characterization of truly free-standing proteinaceous structures with submicron feature sizes depending on the fabrication conditions by model-based analysis. Protein cross-linking of bovine serum albumin is performed by direct laser writing and two-photon excitation of flavin adenine dinucleotide. We analyze the obtainable fabrication resolution and required threshold energy for polymerization. The applied polymerization model allows prediction of fabrication conditions and resulting fabrication size, alleviating the application of proteinaceous structure fabrication.

  13. Methacrylate derivatives incorporating pyroglutamic acid.

    PubMed

    Smith, Tara J; Mathias, Lon J

    2002-01-01

    Methacrylates containing pyroglutamic acid were synthesized in good yields. Methyl alpha-pyroglutamyl methylacrylate (PyMM) and methyl alpha-pyroglutamidoundecanoyl methylacrylate (PyUM) give very fast photopolymerization rates both in homopolymerizations and with widely used commercial monomers N-vinyl pyrrolidinone (NVP) and hydroxyethyl methacrylate (HEMA). Soluble or cross-linked homopolymers can be obtained depending upon polymerization temperature. Pyroglutamic methacrylates polymerize without added initiator in the melt. Solution cast, photocured, and thermally cured coatings gave good to excellent adhesion to poly(ethylene terephthalate) and glass surfaces.

  14. The role of temperature in forming sol-gel biocomposites containing polydopamine.

    PubMed

    Dyke, Jason Christopher; Hu, Huamin; Lee, Dong Joon; Ko, Ching-Chang; You, Wei

    2014-11-28

    To further improve the physical strength and biomedical applicability of bioceramicsbuilt on hydroxyapatite-gelatin (HAp-Gel) and siloxane sol-gel reactions, we incorporated mussel adhesive inspired polydopamine (PD) into our original composite based on HAp-Gel cross-linked with siloxane. Surprisingly, with the addition of PD, we observed that the processing conditions and temperatures play an important role in the structure and performance of these materials. A systematic study to investigate this temperature dependence behavior discloses that the rate of crosslinking of silane during the sol-gel process is significantly influenced by the temperature, whereas the polymerization of the dopamine only shows minor temperature dependence. With this discovery, we report an innovative thermal process for the design and application of these biocomposites.

  15. The role of temperature in forming sol-gel biocomposites containing polydopamine

    PubMed Central

    Dyke, Jason Christopher; Hu, Huamin; Lee, Dong Joon; Ko, Ching-Chang; You, Wei

    2014-01-01

    To further improve the physical strength and biomedical applicability of bioceramicsbuilt on hydroxyapatite-gelatin (HAp-Gel) and siloxane sol-gel reactions, we incorporated mussel adhesive inspired polydopamine (PD) into our original composite based on HAp-Gel cross-linked with siloxane. Surprisingly, with the addition of PD, we observed that the processing conditions and temperatures play an important role in the structure and performance of these materials. A systematic study to investigate this temperature dependence behavior discloses that the rate of crosslinking of silane during the sol-gel process is significantly influenced by the temperature, whereas the polymerization of the dopamine only shows minor temperature dependence. With this discovery, we report an innovative thermal process for the design and application of these biocomposites. PMID:25485111

  16. Interrelation of electret properties of polyethylene foam from the method of cross-linking

    NASA Astrophysics Data System (ADS)

    Gilmanov, I. R.; Galikhanov, M. F.; Gilmanova, A. R.

    2017-09-01

    The electret properties of chemically cross-linked polyethylene foam and physically cross-linked polyethylene foam have been studied. It has been shown that chemically cross-linked polyethylene foam has higher surface potential, effective surface charge density and electric field strength compared to physically bonded polyethylene foam. This is due to the presence of molecules and fragments of dicumyl peroxide, which can play the role of traps for injection charge carriers, a greater degree of cross-linking and with the oxidation of polyethylene, which occurs during irradiation during physical cross-linking. When the foam is deformed, its electret properties are reduced, and when the volume is relaxed, they are restored. This is due to the partial mutual compensation of homo- and heterocharge during compression and the return of the structure of the gas-filled polymer to its former position when the load is removed.

  17. Products of Chemistry: Alkanes: Abundant, Pervasive, Important, and Essential.

    ERIC Educational Resources Information Center

    Seymour, Raymond B.

    1989-01-01

    Discusses the history and commercialization of alkanes. Examines the nomenclature and uses of alkanes. Studies polymerization and several types of polyethylenes: low-density, high-density, low-molecular-weight, cross-linked, linear low-density, and ultrahigh-molecular-weight. Includes a glossary of hydrocarbon terms. (MVL)

  18. Reactive phosphorus removal from aquaculture and poultry productions systems using polymeric hydrogels.

    PubMed

    Kofinas, Peter; Kioussis, Dimitri R

    2003-01-15

    This work reports on the features of a sorption processes for the ultimate removal and recovery of reactive phosphorus from aquaculture and poultry production wastewater effluents. The sorbent used was a cross-linked polyamine (PAA-HCl) polymeric hydrogel. The PAA-HCl hydrogels were prepared by chemically cross-linking aqueous solutions of linear PAA-HCl chains with epichlorohydrin (EPI). The phosphorus binding capacity of the gels was measured in standard aqueous solutions as a function of ionic strength. Equilibrium PO4(3-), loadings of 100 mg anion/g gel were obtained. The regeneration ability of the gels was demonstrated by release of the bound phosphorus anions upon washing with 1-2 M NaOH solution, providing opportunities to recover and reuse the gel over multiple cycles. The ionic polyamine gels have been demonstrated to be appropriate materials for treating poultry and aquaculture wastewater effluents. Upon treatment phosphorus anion concentrations were reduced to levels suitable for discharge into natural surface waters.

  19. Healable Antifouling Films Composed of Partially Hydrolyzed Poly(2-ethyl-2-oxazoline) and Poly(acrylic acid).

    PubMed

    Li, Yixuan; Pan, Tiezheng; Ma, Benhua; Liu, Junqiu; Sun, Junqi

    2017-04-26

    Antifouling polymeric films can prevent undesirable adhesion of bacteria but are prone to accidental scratches, leading to a loss of their antifouling functions. To solve this problem, we report the fabrication of healable antifouling polymeric films by layer-by-layer assembly of partially hydrolyzed poly(2-ethyl-2-oxazoline) (PEtOx-EI-7%) and poly(acrylic acid) (PAA) based on hydrogen-bonding interaction as the driving force. The thermally cross-linked (PAA/PEtOx-EI-7%)*100 films show strong resistance to adhesion of both Gram-negative Escherichia coli and Gram-positive Bacillus subtilis bacteria due to the high surface and bulk concentration of the antifouling polymer PEtOx-EI-7%. Meanwhile, the dynamic nature of the hydrogen-bonding interactions and the high mobility of the polymers in the presence of water enable repeated healing of cuts of several tens of micrometers wide in cross-linked (PAA/PEtOx-EI-7%)*100 films to fully restore their antifouling function.

  20. Compartmentalization Technologies via Self-Assembly and Cross-Linking of Amphiphilic Random Block Copolymers in Water.

    PubMed

    Matsumoto, Mayuko; Terashima, Takaya; Matsumoto, Kazuma; Takenaka, Mikihito; Sawamoto, Mitsuo

    2017-05-31

    Orthogonal self-assembly and intramolecular cross-linking of amphiphilic random block copolymers in water afforded an approach to tailor-make well-defined compartments and domains in single polymer chains and nanoaggregates. For a double compartment single-chain polymer, an amphiphilic random block copolymer bearing hydrophilic poly(ethylene glycol) (PEG) and hydrophobic dodecyl, benzyl, and olefin pendants was synthesized by living radical polymerization (LRP) and postfunctionalization; the dodecyl and benzyl units were incorporated into the different block segments, whereas PEG pendants were statistically attached along a chain. The copolymer self-folded via the orthogonal self-assembly of hydrophobic dodecyl and benzyl pendants in water, followed by intramolecular cross-linking, to form a single-chain polymer carrying double yet distinct hydrophobic nanocompartments. A single-chain cross-linked polymer with a chlorine terminal served as a globular macroinitiator for LRP to provide an amphiphilic tadpole macromolecule comprising a hydrophilic nanoparticle and a hydrophobic polymer tail; the tadpole thus self-assembled into multicompartment aggregates in water.

  1. Multi angle laser light scattering evaluation of field exposed thermoplastic photovoltaic encapsulant materials

    DOE PAGES

    Kempe, Michael D.; Miller, David C.; Wohlgemuth, John H.; ...

    2016-01-08

    As creep of polymeric materials is potentially a safety concern for photovoltaic modules, the potential for module creep has become a significant topic of discussion in the development of IEC 61730 and IEC 61215. To investigate the possibility of creep, modules were constructed, using several thermoplastic encapsulant materials, into thin-film mock modules and deployed in Mesa, Arizona. The materials examined included poly(ethylene)-co-vinyl acetate (EVA, including formulations both cross-linked and with no curing agent), polyethylene/polyoctene copolymer (PO), poly(dimethylsiloxane) (PDMS), polyvinyl butyral (PVB), and thermoplastic polyurethane (TPU). The absence of creep in this experiment is attributable to several factors of which themore » most notable one was the unexpected cross-linking of an EVA formulation without a cross-linking agent. It was also found that some materials experienced both chain scission and cross-linking reactions, sometimes with a significant dependence on location within a module. The TPU and EVA samples were found to degrade with cross-linking reactions dominating over chain scission. In contrast, the PO materials degraded with chain scission dominating over cross-linking reactions. Furthermore, we found no significant indications that viscous creep is likely to occur in fielded modules capable of passing the qualification tests, we note that one should consider how a polymer degrades, chain scission or cross-linking, in assessing the suitability of a thermoplastic polymer in terrestrial photovoltaic applications.« less

  2. Bifunctional phenyl monophosphonic/sulfonic acid ion exchange resin and process for using the same

    DOEpatents

    Alexandratos, Spiro; Shelley, Christopher A.; Horwitz, E. Philip; Chiarizia, Renato

    2001-01-01

    A cross-linked water-insoluble ion exchange resin comprised of polymerized monomers having a phenyl ring is disclosed. A contemplated resin contains (i) polymerized phenyl ring-containing monomers having a phosphonic acid ligand linked to the phenyl ring, (ii) about 2 to about 5 millimoles per gram (mmol/g) of phosphorus as phosphonic acid ligands, and (iii) a sufficient amount of a sulfonic acid ligand such that the ratio of mmol/g of phosphonic acid to mmol/g sulfonic acid is up to 3:1. A process for removing polyvalent metal cations from aqueous solution, and a process for removing iron(III) cations from acidic copper(II) cation-containing solutions that utilize the contemplated resin or other resins are disclosed.

  3. Bifunctional phenyl monophosphonic/sulfonic acid ion exchange resin and process for using the same

    DOEpatents

    Alexandratos, Spiro; Shelley, Christopher A.; Horwitz, E. Philip; Chiarizia, Renato; Gula, Michael J.; Xue, Sui; Harvey, James T.

    2002-01-01

    A cross-linked water-insoluble ion exchange resin comprised of polymerized monomers having a phenyl ring is disclosed. A contemplated resin contains (i) polymerized phenyl ring-containing monomers having a phosphonic acid ligand linked to the phenyl ring, (ii) about 2 to about 5 millimoles per gram (mmol/g) of phosphorus as phosphonic acid ligands, and (iii) a sufficient amount of a sulfonic acid ligand such that the ratio of mmol/g of phosphonic acid to mmol/g sulfonic acid is up to 3:1. A process for removing polyvalent metal cations from aqueous solution, and a process for removing iron(III) cations from acidic copper(II) cation-containing solutions that utilize the contemplated resin or other resins are disclosed.

  4. Two Players Make a Formidable Combination: In Situ Generated Poly(acrylic anhydride-2-methyl-acrylic acid-2-oxirane-ethyl ester-methyl methacrylate) Cross-Linking Gel Polymer Electrolyte toward 5 V High-Voltage Batteries.

    PubMed

    Ma, Yue; Ma, Jun; Chai, Jingchao; Liu, Zhihong; Ding, Guoliang; Xu, Gaojie; Liu, Haisheng; Chen, Bingbing; Zhou, Xinhong; Cui, Guanglei; Chen, Liquan

    2017-11-29

    Electrochemical performance of high-voltage lithium batteries with high energy density is limited because of the electrolyte instability and the electrode/electrolyte interfacial reactivity. Hence, a cross-linking polymer network of poly(acrylic anhydride-2-methyl-acrylic acid-2-oxirane-ethyl ester-methyl methacrylate) (PAMM)-based electrolyte was introduced via in situ polymerization inspired by "shuangjian hebi", which is a statement in a traditional Chinese Kungfu story similar to the synergetic effect of 1 + 1 > 2. A poly(acrylic anhydride) and poly(methyl methacrylate)-based system is very promising as electrolyte materials for lithium-ion batteries, in which the anhydride and acrylate groups can provide high voltage resistance and fast ionic conductivity, respectively. As a result, the cross-linking PAMM-based electrolyte possesses a significant comprehensive enhancement, including electrochemical stability window exceeding 5 V vs Li + /Li, an ionic conductivity of 6.79 × 10 -4 S cm -1 at room temperature, high mechanical strength (27.5 MPa), good flame resistance, and excellent interface compatibility with Li metal. It is also demonstrated that this gel polymer electrolyte suppresses the negative effect resulting from dissolution of Mn 2+ ions at 25 and 55 °C. Thus, the LiNi 0.5 Mn 1.5 O 4 /Li and LiNi 0.5 Mn 1.5 O 4 /Li 4 Ti 5 O 12 cells using the optimized in situ polymerized cross-linking PAMM-based gel polymer electrolyte deliver stable charging/discharging profiles and excellent rate performance at room temperature and even at 55 °C. These findings suggest that the cross-linking PAMM is an intriguing candidate for 5 V class high-voltage gel polymer electrolyte toward high-energy lithium-on batteries.

  5. Application of controlled radical polymerization (CRP) in the design of functional biomedical architectures

    NASA Astrophysics Data System (ADS)

    Siegwart, Daniel John

    In this thesis, atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain transfer (RAFT) polymerization were utilized in the design of synthetic polymers to create tissue engineering scaffolds and drug delivery systems with improved control over structure and functionality. Thermo-sensitive injectable hydrogels based on poly(NIPAAm) with degradable ester units within the polymer backbone and at the cross-linking sites were prepared using ATRP and RAFT. Solvent induced morphologies of poly(methyl methacrylate-b-ethylene oxide-b-methyl methacrylate) triblock copolymers synthesized by ATRP were described. A micellar structure, composed of a hydrophobic PMMA core and a PEO shell was constructed for delivery of hydrophobic drugs. ATRP was carried out in inverse miniemulsion to prepare well defined functional nanogels that were capable of entrapping and releasing various molecules (Doxorubicin, carbohydrate-based drugs, fluorophores, and gold nanoparticles). The results demonstrated that nanogels prepared by ATRP in inverse miniemulsion could be internalized into cells via clathrin-mediated endocytosis. Nanogels functionalized with integrin-binding peptides increased cellular uptake. A process called Atom Transfer Radical Coupling (ATRC) was also described, which illustrated the power of functionality in ATRP. Finally, linear polymers and cross-linked nanogels were synthesized by ATRP and functionalized with biotin, pyrene, and peptide sequences, tying together the overall themes of structural control and functionality.

  6. Optimization of the fabrication of novel stealth PLA-based nanoparticles by dispersion polymerization using D-optimal mixture design.

    PubMed

    Adesina, Simeon K; Wight, Scott A; Akala, Emmanuel O

    2014-11-01

    Nanoparticle size is important in drug delivery. Clearance of nanoparticles by cells of the reticuloendothelial system has been reported to increase with increase in particle size. Further, nanoparticles should be small enough to avoid lung or spleen filtering effects. Endocytosis and accumulation in tumor tissue by the enhanced permeability and retention effect are also processes that are influenced by particle size. We present the results of studies designed to optimize cross-linked biodegradable stealth polymeric nanoparticles fabricated by dispersion polymerization. Nanoparticles were fabricated using different amounts of macromonomer, initiators, crosslinking agent and stabilizer in a dioxane/DMSO/water solvent system. Confirmation of nanoparticle formation was by scanning electron microscopy (SEM). Particle size was measured by dynamic light scattering (DLS). D-optimal mixture statistical experimental design was used for the experimental runs, followed by model generation (Scheffe polynomial) and optimization with the aid of a computer software. Model verification was done by comparing particle size data of some suggested solutions to the predicted particle sizes. Data showed that average particle sizes follow the same trend as predicted by the model. Negative terms in the model corresponding to the cross-linking agent and stabilizer indicate the important factors for minimizing particle size.

  7. Effect of 457 nm diode-pumped solid state laser on the polymerization composite resins: microhardness, cross-link density, and polymerization shrinkage.

    PubMed

    Son, Sung-Ae; Park, Jeong-Kil; Jung, Kyoung-Hwa; Ko, Ching-Chang; Jeong, Chang-Mo; Kwon, Yong Hoon

    2015-01-01

    The purpose of the present study was to test the usefulness of 457 nm diode-pumped solid state (DPSS) laser as a light source to cure composite resins. Five different composite resins were light cured using three different light-curing units (LCUs): a DPSS 457 nm laser (LAS), a light-emitting diode (LED), and quartz-tungsten-halogen (QTH) units. The light intensity of LAS was 560 mW/cm(2), whereas LED and QTH LCUs was ∼900 mW/cm(2). The degree of polymerization was tested by evaluating microhardness, cross-link density, and polymerization shrinkage. Before water immersion, the microhardness of laser-treated specimens ranged from 40.8 to 84.7 HV and from 31.7 to 79.0 HV on the top and bottom surfaces, respectively, and these values were 3.3-23.2% and 2.9-31.1% lower than the highest microhardness obtained using LED or QTH LCUs. Also, laser-treated specimens had lower top and bottom microhardnesses than the other LCUs treated specimens by 2.4-19.4% and 1.4-27.8%, respectively. After ethanol immersion for 24 h, the microhardness of laser-treated specimens ranged from 20.3 to 63.2 HV on top and bottom surfaces, but from 24.9 to 71.5 HV when specimens were cured using the other LCUs. Polymerization shrinkage was 9.8-14.7 μm for laser-treated specimens, and these were significantly similar or lower (10.2-16.0 μm) than those obtained using the other LCUs. The results may suggest that the 457 nm DPSS laser can be used as a light source for light-curing dental resin composites.

  8. Ester Cross-Link Profiling of the Cutin Polymer of Wild-Type and Cutin Synthase Tomato Mutants Highlights Different Mechanisms of Polymerization1

    PubMed Central

    Philippe, Glenn; Gaillard, Cédric; Petit, Johann; Geneix, Nathalie; Dalgalarrondo, Michèle; Bres, Cécile; Mauxion, Jean-Philippe; Franke, Rochus; Rothan, Christophe; Marion, Didier; Bakan, Bénédicte

    2016-01-01

    Cuticle function is closely related to the structure of the cutin polymer. However, the structure and formation of this hydrophobic polyester of glycerol and hydroxy/epoxy fatty acids has not been fully resolved. An apoplastic GDSL-lipase known as CUTIN SYNTHASE1 (CUS1) is required for cutin deposition in tomato (Solanum lycopersicum) fruit exocarp. In vitro, CUS1 catalyzes the self-transesterification of 2-monoacylglycerol of 9(10),16-dihydroxyhexadecanoic acid, the major tomato cutin monomer. This reaction releases glycerol and leads to the formation of oligomers with the secondary hydroxyl group remaining nonesterified. To check this mechanism in planta, a benzyl etherification of nonesterified hydroxyl groups of glycerol and hydroxy fatty acids was performed within cutin. Remarkably, in addition to a significant decrease in cutin deposition, mid-chain hydroxyl esterification of the dihydroxyhexadecanoic acid was affected in tomato RNA interference and ethyl methanesulfonate-cus1 mutants. Furthermore, in these mutants, the esterification of both sn-1,3 and sn-2 positions of glycerol was impacted, and their cutin contained a higher molar glycerol-to-dihydroxyhexadecanoic acid ratio. Therefore, in planta, CUS1 can catalyze the esterification of both primary and secondary alcohol groups of cutin monomers, and another enzymatic or nonenzymatic mechanism of polymerization may coexist with CUS1-catalyzed polymerization. This mechanism is poorly efficient with secondary alcohol groups and produces polyesters with lower molecular size. Confocal Raman imaging of benzyl etherified cutins showed that the polymerization is heterogenous at the fruit surface. Finally, by comparing tomato mutants either affected or not in cutin polymerization, we concluded that the level of cutin cross-linking had no significant impact on water permeance. PMID:26676255

  9. Ester Cross-Link Profiling of the Cutin Polymer of Wild-Type and Cutin Synthase Tomato Mutants Highlights Different Mechanisms of Polymerization.

    PubMed

    Philippe, Glenn; Gaillard, Cédric; Petit, Johann; Geneix, Nathalie; Dalgalarrondo, Michèle; Bres, Cécile; Mauxion, Jean-Philippe; Franke, Rochus; Rothan, Christophe; Schreiber, Lukas; Marion, Didier; Bakan, Bénédicte

    2016-02-01

    Cuticle function is closely related to the structure of the cutin polymer. However, the structure and formation of this hydrophobic polyester of glycerol and hydroxy/epoxy fatty acids has not been fully resolved. An apoplastic GDSL-lipase known as CUTIN SYNTHASE1 (CUS1) is required for cutin deposition in tomato (Solanum lycopersicum) fruit exocarp. In vitro, CUS1 catalyzes the self-transesterification of 2-monoacylglycerol of 9(10),16-dihydroxyhexadecanoic acid, the major tomato cutin monomer. This reaction releases glycerol and leads to the formation of oligomers with the secondary hydroxyl group remaining nonesterified. To check this mechanism in planta, a benzyl etherification of nonesterified hydroxyl groups of glycerol and hydroxy fatty acids was performed within cutin. Remarkably, in addition to a significant decrease in cutin deposition, mid-chain hydroxyl esterification of the dihydroxyhexadecanoic acid was affected in tomato RNA interference and ethyl methanesulfonate-cus1 mutants. Furthermore, in these mutants, the esterification of both sn-1,3 and sn-2 positions of glycerol was impacted, and their cutin contained a higher molar glycerol-to-dihydroxyhexadecanoic acid ratio. Therefore, in planta, CUS1 can catalyze the esterification of both primary and secondary alcohol groups of cutin monomers, and another enzymatic or nonenzymatic mechanism of polymerization may coexist with CUS1-catalyzed polymerization. This mechanism is poorly efficient with secondary alcohol groups and produces polyesters with lower molecular size. Confocal Raman imaging of benzyl etherified cutins showed that the polymerization is heterogenous at the fruit surface. Finally, by comparing tomato mutants either affected or not in cutin polymerization, we concluded that the level of cutin cross-linking had no significant impact on water permeance. © 2016 American Society of Plant Biologists. All Rights Reserved.

  10. Magnetoceramics from the bulk pyrolysis of polysilazane cross-linked by polyferrocenylcarbosilanes with hyperbranched topology.

    PubMed

    Kong, Jie; Kong, Minmin; Zhang, Xiaofei; Chen, Lixin; An, Linan

    2013-10-23

    In this contribution, we report a novel strategy for the synthesis of nanocrystal-containing magnetoceramics with an ultralow hysteresis loss by the pyrolysis of commercial polysilazane cross-linked with a functional metallopolymer possessing hyperbranched topology. The usage of hyperbranched polyferrocenylcarbosilane offers either enhanced ceramic yield or magnetic functionality of pyrolyzed ceramics. The ceramic yield was enhanced accompanied by a decreased evolution of hydrocarbons and NH3 because of the cross-linking of precursors and the hyperbranched cross-linker. The nucleation of Fe5Si3 from the reaction of iron atoms with Si-C-N amorphous phase promoted the formation of α-Si3N4 and SiC crystals. After annealing at 1300 °C, stable Fe3Si crystals were generated from the transformation of the metastable Fe5Si3 phase. The nanocrystal-containing ceramics showed good ferromagnetism with an ultralow (close to 0) hysteresis loss. This method is convenient for the generation of tunable functional ceramics using a commercial polymeric precursor cross-linked by a metallopolymer with a designed topology.

  11. New Aptes Cross-linked Polymers from Poly(ethylene oxide)s and Cyanuric Chloride for Lithium Batteries

    NASA Technical Reports Server (NTRS)

    Tigelaar, Dean M.; Meador, Mary Ann B.; Kinder, James D.; Bennett, William R.

    2005-01-01

    A new series of polymer electrolytes for use as membranes for lithium batteries are described. Electrolytes were made by polymerization between cyanuric chloride and diamino-terminated poly(ethylene oxide)s, followed by cross-linking via a sol-gel process. Thermal analysis and lithium conductivity of freestanding polymer films were studied. The effects of several variables on conductivity were investigated, such as length of backbone PEO chain, length of branching PEO chain, extent of branching, extent of cross-linking, salt content, and salt counterion. Polymer films with the highest percentage of PEO were found to be the most conductive, with a maximum lithium conductivity of 3.9 x 10(exp -5) S/cm at 25 C. Addition of plasticizer to the dry polymers increased conductivity by an order of magnitude.

  12. Silicon and aluminum doping effects on the microstructure and properties of polymeric amorphous carbon films

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoqiang; Hao, Junying; Xie, Yuntao

    2016-08-01

    Polymeric amorphous carbon films were prepared by radio frequency (R.F. 13.56 MHz) magnetron sputtering deposition. The microstructure evolution of the deposited polymeric films induced by silicon (Si) and aluminum(Al) doping were scrutinized through infrared spectroscopy, multi-wavelength Raman spectroscopy, scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). The comparative results show that Si doping can enhance polymerization and Al doping results in an increase in the ordered carbon clusters. Si and Al co-doping into polymeric films leads to the formation of an unusual dual nanostructure consisting of cross-linked polymer-like hydrocarbon chains and fullerene-like carbon clusters. The super-high elasticity and super-low friction coefficients (<0.002) under a high vacuum were obtained through Si and Al co-doping into the films. Unconventionally, the co-doped polymeric films exhibited a superior wear resistance even though they were very soft. The relationship between the microstructure and properties of the polymeric amorphous carbon films with different elements doping are also discussed in detail.

  13. Insulation Materials Comprising Fibers Having a Partially Cured Polymer Coating Thereon, Articles Including Such Insulation Materials, and Methods of Forming Such Materials and Articles

    NASA Technical Reports Server (NTRS)

    Morgan, Richard E. (Inventor); Meeks, Craig L. (Inventor)

    2017-01-01

    Insulation materials have a coating of a partially cured polymer on a plurality of fibers, and the plurality of coated fibers in a cross-linked polymeric matrix. Insulation may be formed by applying a preceramic polymer to a plurality of fibers, heating the preceramic polymer to form a partially cured polymer over at least portions of the plurality of fibers, disposing the plurality of fibers in a polymeric material, and curing the polymeric material. A rocket motor may be formed by disposing a plurality of coated fibers in an insulation precursor, curing the insulation precursor to form an insulation material without sintering the partially cured polymer, and providing an energetic material over the polymeric material. An article includes an insulation material over at least one surface.

  14. Mena-GRASP65 interaction couples actin polymerization to Golgi ribbon linking.

    PubMed

    Tang, Danming; Zhang, Xiaoyan; Huang, Shijiao; Yuan, Hebao; Li, Jie; Wang, Yanzhuang

    2016-01-01

    In mammalian cells, the Golgi reassembly stacking protein 65 (GRASP65) has been implicated in both Golgi stacking and ribbon linking by forming trans-oligomers through the N-terminal GRASP domain. Because the GRASP domain is globular and relatively small, but the gaps between stacks are large and heterogeneous, it remains puzzling how GRASP65 physically links Golgi stacks into a ribbon. To explore the possibility that other proteins may help GRASP65 in ribbon linking, we used biochemical methods and identified the actin elongation factor Mena as a novel GRASP65-binding protein. Mena is recruited onto the Golgi membranes through interaction with GRASP65. Depleting Mena or disrupting actin polymerization resulted in Golgi fragmentation. In cells, Mena and actin were required for Golgi ribbon formation after nocodazole washout; in vitro, Mena and microfilaments enhanced GRASP65 oligomerization and Golgi membrane fusion. Thus Mena interacts with GRASP65 to promote local actin polymerization, which facilitates Golgi ribbon linking. © 2016 Tang et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  15. Thermo- and electro-dual responsive poly(ionic liquid) electrolyte based smart windows.

    PubMed

    Chen, Fei; Ren, Yongyuan; Guo, Jiangna; Yan, Feng

    2017-01-31

    Thermo- and electro-dual responsive poly(ionic liquid) (PIL) based electrolytes were synthesized by co-polymerization of N-isopropylacrylamide (NIPAM) with (or without) 3-butyl-1-vinyl-imidazolium bromide ([BVIm][Br]) using diallyl-viologen (DAV) as both the cross-linking agent and electrochromic material.

  16. Cross-Linked Nanohybrid Polymer Electrolytes With POSS Cross-Linker for Solid-State Lithium Ion Batteries.

    PubMed

    Zhang, Jinfang; Li, Xiaofeng; Li, Ying; Wang, Huiqi; Ma, Cheng; Wang, Yanzhong; Hu, Shengliang; Wei, Weifeng

    2018-01-01

    A new class of freestanding cross-linked hybrid polymer electrolytes (HPEs) with POSS as the cross-linker was prepared by a one-step free radical polymerization reaction. Octavinyl octasilsesquioxane (OV-POSS) with eight functional corner groups was used to provide cross-linking sites for the connection of polymer segments and the required mechanical strength to separate the cathode and anode. The unique cross-linked structure offers additional free volume for the motion of EO chains and provides fast and continuously interconnected ion-conducting channels along the nanoparticles/polymer matrix interface. The HPE exhibits the highest ionic conductivity of 1.39 × 10 -3 S cm -1 , as well as excellent interfacial compatibility with the Li electrode at 80°C. In particular, LiFePO 4 /Li cells based on the HPE deliver good rate capability and long-term cycling performance with an initial discharge capacity of 152.1 mAh g -1 and a capacity retention ratio of 88% after 150 cycles with a current density of 0.5 C at 80°C, demonstrating great potential application in high-performance LIBs at elevated temperatures.

  17. Cross-linked Nanohybrid Polymer Electrolytes with POSS Cross-linker for Solid-state Lithium Ion Batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Jinfang; Li, Xiaofeng; Li, Ying; Wang, Huiqi; Ma, Cheng; Wang, Yanzhong; Hu, Shengliang; Wei, Weifeng

    2018-05-01

    A new class of freestanding cross-linked hybrid polymer electrolytes (HPEs) with POSS as the cross-linker was prepared by a one-step free radical polymerization reaction. Octavinyl octasilsesquioxane (OV-POSS) with eight functional corner groups was used to provide cross-linking sites for the connection of polymer segments and the required mechanical strength to separate the cathode and anode. The unique cross-linked structure offers additional free volume for the motion of EO chains and provides fast and continuously interconnected ion-conducting channels along the nanoparticles/polymer matrix interface. The HPE exhibits the highest ionic conductivity of 1.39×10-3 S cm-1, as well as excellent interfacial compatibility with the Li electrode at 80 oC. In particular, LiFePO4/Li cells based on the HPE deliver good rate capability and long-term cycling performance with an initial discharge capacity of 152.1 mAh g-1 and a capacity retention ratio of 88% after 150 cycles with a current density of 0.5 C at 80 oC, demonstrating great potential application in high-performance LIBs at elevated temperatures.

  18. Biomechanical Strengthening of the Human Cornea Induced by Nanoplatform-Based Transepithelial Riboflavin/UV-A Corneal Cross-Linking.

    PubMed

    Labate, Cristina; Lombardo, Marco; Lombardo, Giuseppe; De Santo, Maria Penelope

    2017-01-01

    The purpose of this study was to investigate the biomechanical stiffening effect induced by nanoplatform-based transepithelial riboflavin/UV-A cross-linking protocol using atomic force microscopy (AFM). Twelve eye bank donor human sclerocorneal tissues were investigated using a commercial atomic force microscope operated in force spectroscopy mode. Four specimens underwent transepithelial corneal cross-linking using a hypotonic solution of 0.1% riboflavin with biodegradable polymeric nanoparticles of 2-hydroxypropyl-β-cyclodextrin plus enhancers (trometamol and ethylenediaminetetraacetic acid) and UV-A irradiation with a 10 mW/cm2 device for 9 minutes. After treatment, the corneal epithelium was removed using the Amoils brush, and the Young's modulus of the most anterior stroma was quantified as a function of scan rate by AFM. The results were compared with those collected from four specimens that underwent conventional riboflavin/UV-A corneal cross-linking and four untreated specimens. The average Young's modulus of the most anterior stroma after the nanoplatform-based transepithelial and conventional riboflavin/UV-A corneal cross-linking treatments was 2.5 times (P < 0.001) and 1.7 times (P < 0.001) greater than untreated controls respectively. The anterior stromal stiffness was significantly different between the two corneal cross-linking procedures (P < 0.001). The indentation depth decreased after corneal cross-linking treatments, ranging from an average of 2.4 ± 0.3 μm in untreated samples to an average of 1.2 ± 0.1 μm and 1.8 ± 0.1 μm after nanoplatform-based transepithelial and conventional cross-linking, respectively. The present nanotechnology-based transepithelial riboflavin/UV-A corneal cross-linking was effective to improve the biomechanical strength of the most anterior stroma of the human cornea.

  19. Apparatus and method for stabilization or oxidation of polymeric materials

    DOEpatents

    Paulauskas, Felix L [Knoxville, TN; Sherman, Daniel M [Knoxville, TN

    2010-01-19

    An apparatus for treating polymeric materials comprises a treatment chamber adapted to maintain a selected atmosphere at a selected temperature; a means for supporting the polymeric material within the chamber; and, a source of ozone-containing gas, which decomposes at the selected temperature yielding at least one reactive oxidative species whereby the polymer is stabilized and cross linked through exposure to the oxidative species in the chamber at the selected temperature. The ozone may be generated by a plasma discharge or by various chemical processes. The apparatus may be configured for either batch-type or continuous-type processing. The apparatus and method are especially useful for preparing polymer fibers, particularly PAN fibers, for later carbonization treatments as well as to make flame-retardant fabrics.

  20. Inexpensive cross-linked polymeric separators made from water-soluble polymers. [for secondary alkaline nickel-zinc and silver-zinc cells

    NASA Technical Reports Server (NTRS)

    Hsu, L.-C.; Sheibley, D. W.

    1982-01-01

    Polyvinyl alcohol (PVA), cross-linked chemically with aldehyde reagents, produces membranes which demonstrate oxidation resistance, dimensional stability, low ionic resistivity (less than 0.8 Ohms sq cm), low zincate diffusivity (less than 1 x 10 to the -7th mols/sq cm per min), and low zinc dendrite penetration rate (greater than 350 min) which make them suitable for use as alkaline battery separators. They are intrinsically low in cost, and environmental health and safety problems associated with commercial production appear minimal. Preparation, property measurements, and cell test results in Ni/Zn and Ag/Zn cells are described and discussed.

  1. The Non-catalytic B Subunit of Coagulation Factor XIII Accelerates Fibrin Cross-linking*

    PubMed Central

    Souri, Masayoshi; Osaki, Tsukasa; Ichinose, Akitada

    2015-01-01

    Covalent cross-linking of fibrin chains is required for stable blood clot formation, which is catalyzed by coagulation factor XIII (FXIII), a proenzyme of plasma transglutaminase consisting of catalytic A (FXIII-A) and non-catalytic B subunits (FXIII-B). Herein, we demonstrate that FXIII-B accelerates fibrin cross-linking. Depletion of FXIII-B from normal plasma supplemented with a physiological level of recombinant FXIII-A resulted in delayed fibrin cross-linking, reduced incorporation of FXIII-A into fibrin clots, and impaired activation peptide cleavage by thrombin; the addition of recombinant FXIII-B restored normal fibrin cross-linking, FXIII-A incorporation into fibrin clots, and activation peptide cleavage by thrombin. Immunoprecipitation with an anti-fibrinogen antibody revealed an interaction between the FXIII heterotetramer and fibrinogen mediated by FXIII-B and not FXIII-A. FXIII-B probably binds the γ-chain of fibrinogen with its D-domain, which is near the fibrin polymerization pockets, and dissociates from fibrin during or after cross-linking between γ-chains. Thus, FXIII-B plays important roles in the formation of a ternary complex between proenzyme FXIII, prosubstrate fibrinogen, and activator thrombin. Accordingly, congenital or acquired FXIII-B deficiency may result in increased bleeding tendency through impaired fibrin stabilization due to decreased FXIII-A activation by thrombin and secondary FXIII-A deficiency arising from enhanced circulatory clearance. PMID:25809477

  2. Dynamic Remodeling of Microbial Biofilms by Functionally Distinct Exopolysaccharides

    PubMed Central

    Chew, Su Chuen; Kundukad, Binu; Seviour, Thomas; van der Maarel, Johan R. C.; Yang, Liang; Rice, Scott A.; Doyle, Patrick

    2014-01-01

    ABSTRACT Biofilms are densely populated communities of microbial cells protected and held together by a matrix of extracellular polymeric substances. The structure and rheological properties of the matrix at the microscale influence the retention and transport of molecules and cells in the biofilm, thereby dictating population and community behavior. Despite its importance, quantitative descriptions of the matrix microstructure and microrheology are limited. Here, particle-tracking microrheology in combination with genetic approaches was used to spatially and temporally study the rheological contributions of the major exopolysaccharides Pel and Psl in Pseudomonas aeruginosa biofilms. Psl increased the elasticity and effective cross-linking within the matrix, which strengthened its scaffold and appeared to facilitate the formation of microcolonies. Conversely, Pel reduced effective cross-linking within the matrix. Without Psl, the matrix becomes more viscous, which facilitates biofilm spreading. The wild-type biofilm decreased in effective cross-linking over time, which would be advantageous for the spreading and colonization of new surfaces. This suggests that there are regulatory mechanisms to control production of the exopolysaccharides that serve to remodel the matrix of developing biofilms. The exopolysaccharides were also found to have profound effects on the spatial organization and integration of P. aeruginosa in a mixed-species biofilm model of P. aeruginosa-Staphylococcus aureus. Pel was required for close association of the two species in mixed-species microcolonies. In contrast, Psl was important for P. aeruginosa to form single-species biofilms on top of S. aureus biofilms. Our results demonstrate that Pel and Psl have distinct physical properties and functional roles during biofilm formation. PMID:25096883

  3. Slide-Ring Materials Using Cyclodextrin.

    PubMed

    Ito, Kohzo

    2017-01-01

    We have recently synthesized slide-ring materials using cyclodextrin by cross-linking polyrotaxanes, a typical supramolecule. The slide-ring materials have polymer chains with bulky end groups topologically interlocked by figure-of-eight shaped junctions. This indicates that the cross-links can pass through the polymer chains similar to pulleys to relax the tension of the backbone polymer chains. The slide-ring materials also differ from conventional polymers in that the entropy of rings affects the elasticity. As a result, the slide-ring materials show quite small Young's modulus not proportional to the cross-linking density. This concept can be applied to a wide variety of polymeric materials as well as gels. In particular, the slide-ring materials show remarkable scratch-proof properties for coating materials for automobiles, cell phones, mobile computers, and so on. Further current applications include vibration-proof insulation materials for sound speakers, highly abrasive polishing media, dielectric actuators, and so on.

  4. In vitro response of retinal pigment epithelial cells exposed to chitosan materials prepared with different cross-linkers.

    PubMed

    Lai, Jui-Yang; Li, Ya-Ting; Wang, Tsu-Pin

    2010-01-01

    The interaction between cells and biopolymers is the evaluation indicator of the biocompatibility of materials. The purpose of this work was to examine the responses of retinal pigment epithelial (RPE) cells to genipin (GP) or glutaraldehyde (GTA) cross-linked chitosan by means of cell viability assays, cytokine expression analyses, and apoptosis assays. Evaluations of non-cross-linked chitosan were conducted simultaneously for comparison. Both GP and GTA treated samples with the same extent of cross-linking (around 80%) were prepared by varying cross-linking time. Our results showed that GP cross-linking was carried out by either radical polymerization of the monomers or S(N)2 nucleophilic substitution reaction involving the replacement of the ester group on the monomer with a secondary amide linkage. On the other hand, GTA could react with free amino groups of chitosan, leading to the formation of either the Schiff bases or the Michael-type adducts with terminal aldehydes. The biocompatibility of non-cross-linked chitosan membranes was demonstrated by the absence of any signs of toxicity or inflammation reaction. The present study showed that the ARPE-19 cells exposed to GTA cross-linked chitosan membranes had significantly higher cytotoxicity, interleukin-6 levels, and number of TUNEL-positive nuclei than did those exposed to GP treated samples. In addition, the materials modified with GTA trigger apoptosis at an early stage and may induce toxicity in the RPE cells later. The findings suggest that while the chitosan molecules bridged by GP are satisfactorily cytocompatible, the counterparts treated by GTA do not seem to be tolerated. In terms of material safety, the GP cross-linked chitosan may be compatible with human RPE cells and may have a potential application as delivery carriers in the treatment of posterior segment diseases.

  5. Impact of mixing time and sodium stearoyl lactylate on gluten polymerization during baking of wheat flour dough.

    PubMed

    Van Steertegem, Bénédicte; Pareyt, Bram; Brijs, Kristof; Delcour, Jan A

    2013-12-15

    The impact of differences in dough transient gluten network on gluten cross-linking during baking is insufficiently understood. We varied dough mixing times and/or added sodium stearoyl lactylate (SSL; 1.0% on flour dry matter basis) to the recipe and studied the effect on subsequent gluten polymerization during heating. The level of proteins extractable in sodium dodecyl sulfate containing media was fitted using first order kinetics. The extent and rate of gluten polymerization were lower when mixing for 8 min than when mixing for 2 min. This effect was even more outspoken in the presence of SSL. The present observations were explained as resulting from less gliadin incorporation in the polymer gluten network and from interaction of SSL with the gluten proteins. Finally, a higher degree of gluten polymerization during baking increased the firmness of the baked products. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Viscoelastic cationic polymers containing the urethane linkage

    NASA Technical Reports Server (NTRS)

    Rembaum, A. (Inventor)

    1972-01-01

    A method for the synthesis and manufacturing of elastomeric compositions and articles containing quaternary nitrogen centers and condensation residues along the polymeric backbone of the centers is presented. Linear and cross-linked straight chain and block polymers having a wide damping temperature range were synthesized. Formulae for the viscoelastic cationic polymers are presented.

  7. Polyvinyl pyridine microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Gupta, Amitava (Inventor); Volksen, Willi (Inventor)

    1980-01-01

    Microspheres are produced by cobalt gamma radiation initiated polymerization of a dilute aqueous vinyl pyridine solution. Addition of cross-linking agent provides higher surface area beads. Addition of monomers such as hydroxyethylmethacrylate acrylamide or methacrylamide increases hydrophilic properties and surface area of the beads. High surface area catalytic supports are formed in the presence of controlled pore glass substrate.

  8. Polyvinyl pyridine microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Gupta, Amitava (Inventor); Volksen, Willi (Inventor)

    1979-01-01

    Microspheres are produced by cobalt gamma radiation initiated polymerization of a dilute aqueous vinyl pyridine solution. Addition of cross-linking agent provides higher surface area beads. Addition of monomers such as hydroxyethylmethacrylate acrylamide or methacrylamide increases hydrophilic properties and surface area of the beads. High surface area catalytic supports are formed in the presence of controlled pore glass substrate.

  9. Proline-poor hydrophobic domains modulate the assembly and material properties of polymeric elastin.

    PubMed

    Muiznieks, Lisa D; Reichheld, Sean E; Sitarz, Eva E; Miao, Ming; Keeley, Fred W

    2015-10-01

    Elastin is a self-assembling extracellular matrix protein that provides elasticity to tissues. For entropic elastomers such as elastin, conformational disorder of the monomer building block, even in the polymeric form, is essential for elastomeric recoil. The highly hydrophobic monomer employs a range of strategies for maintaining disorder and flexibility within hydrophobic domains, particularly involving a minimum compositional threshold of proline and glycine residues. However, the native sequence of hydrophobic elastin domain 30 is uncharacteristically proline-poor and, as an isolated polypeptide, is susceptible to formation of amyloid-like structures comprised of stacked β-sheet. Here we investigated the biophysical and mechanical properties of multiple sets of elastin-like polypeptides designed with different numbers of proline-poor domain 30 from human or rat tropoelastins. We compared the contributions of these proline-poor hydrophobic sequences to self-assembly through characterization of phase separation, and to the tensile properties of cross-linked, polymeric materials. We demonstrate that length of hydrophobic domains and propensity to form β-structure, both affecting polypeptide chain flexibility and cross-link density, play key roles in modulating elastin mechanical properties. This study advances the understanding of elastin sequence-structure-function relationships, and provides new insights that will directly support rational approaches to the design of biomaterials with defined suites of mechanical properties. © 2015 Wiley Periodicals, Inc.

  10. Net-Immobilization of β-glucosidase on Nonwoven Fabrics to Lower the Cost of “Cellulosic Ethanol” and Increase Cellulose Conversions

    PubMed Central

    Zhu, Xing; He, Bin; Zhao, Changwen; Fan, Rong; Zhang, Lihua; Wang, Guan; Ma, Yuhong; Yang, Wantai

    2016-01-01

    The main limitation preventing the use of enzymatic cellulosic ethanol in industrial production is its higher cost which is mainly due to the elevated price of β-glucosidase (BG). Herein, we report on a simple strategy for the in-situ encapsulation of BG for repeated cellulosic ethanol production. In this strategy, BG was net-immobilized into a poly(ethylene glycol) (PEG) net-cloth layer on a PP nonwoven fabric by way of the visible light-induced surface controlled/living graft cross-linking polymerization. The visible light and mild reaction conditions could ensure the activity retention of BG during immobilization, while the non-swelling uniform net-mesh formed by living cross-linking polymerization could prevent the leakage of BG effectively (at the immobilization rate of more than 98.6% and the leakage rate of only 0.4%). When the BG-loaded fabric was used in combination with free cellulase (CEL), the results of the catalytic reaction demonstrated that these BG-loaded fabrics could not only give a 40% increase in cellulose conversions but also be reused for more than fifteen batches without losing the activity. These BG-loaded fabrics with characteristics including easy separation, excellent operation stability, a low cost of the polymeric matrix and a simple fabrication process are particularly interesting for a future bio-fuel production strategy. PMID:27009788

  11. Net-Immobilization of β-glucosidase on Nonwoven Fabrics to Lower the Cost of “Cellulosic Ethanol” and Increase Cellulose Conversions

    NASA Astrophysics Data System (ADS)

    Zhu, Xing; He, Bin; Zhao, Changwen; Fan, Rong; Zhang, Lihua; Wang, Guan; Ma, Yuhong; Yang, Wantai

    2016-03-01

    The main limitation preventing the use of enzymatic cellulosic ethanol in industrial production is its higher cost which is mainly due to the elevated price of β-glucosidase (BG). Herein, we report on a simple strategy for the in-situ encapsulation of BG for repeated cellulosic ethanol production. In this strategy, BG was net-immobilized into a poly(ethylene glycol) (PEG) net-cloth layer on a PP nonwoven fabric by way of the visible light-induced surface controlled/living graft cross-linking polymerization. The visible light and mild reaction conditions could ensure the activity retention of BG during immobilization, while the non-swelling uniform net-mesh formed by living cross-linking polymerization could prevent the leakage of BG effectively (at the immobilization rate of more than 98.6% and the leakage rate of only 0.4%). When the BG-loaded fabric was used in combination with free cellulase (CEL), the results of the catalytic reaction demonstrated that these BG-loaded fabrics could not only give a 40% increase in cellulose conversions but also be reused for more than fifteen batches without losing the activity. These BG-loaded fabrics with characteristics including easy separation, excellent operation stability, a low cost of the polymeric matrix and a simple fabrication process are particularly interesting for a future bio-fuel production strategy.

  12. Effect of silicate module of water glass on rheological parameters of poly(sodium acrylate)/sodium silicate hydrogels

    NASA Astrophysics Data System (ADS)

    Mastalska-Popiawska, J.; Izak, P.

    2017-01-01

    The poly(sodium acrylate)/sodium silicate hydrogels were synthesized in the presence of sodium thiosulphate and potassium persulphate as the redox initiators and N,N’-methylene-bisacrylamide as the cross-linking monomer. 20 wt% aqueous solution of sodium acrylate was polymerized together with water glass with different silicate modules (M) from 1.74 to 2.29, in three mass ratio of the monomer solution to the water glass 2:1, 1:1 and 1:2. Such obtained hybrid composites were rheologically tested using the oscillation method. It allowed to designate the crossover point during polymerization, as well as to define the viscoelastic properties of the casted hydrogel samples one week after the reaction. The obtained results of the oscillation measurements showed that cross-linking reaction proceeds very quickly and the lower the silicate module is, the process starts faster. After the completion of the reaction the silicate-polymer hydrogels are strongly elastic materials and the highest elasticity characterizes systems with the mass ratio 1:2, i.e. with the highest water glass content.

  13. Novel Polymer Aerogel toward High Dimensional Stability, Mechanical Property, and Fire Safety.

    PubMed

    Shang, Ke; Yang, Jun-Chi; Cao, Zhi-Jie; Liao, Wang; Wang, Yu-Zhong; Schiraldi, David A

    2017-07-12

    Inorganc silica-based aerogels, the earliest and widely used aerogels, have poorer mechanical properties than their organic substitutes, which are flammable. In this study, a novel polymeric aerogel with high strength, inherent flame retardancy, and cost-effectiveness, which is based on poly(vinyl alcohol) (PVA) cross-linked with melamine-formaldehyde (MF), was prepared under aqueous condition with an ecofriendly freeze-drying and postcuring process. Combined with the additional rigid MF network and benifited from the resulting unique infrastructure of inter-cross-linked flexible PVA segments and rigid MF segments, PVA-based aerogels exibited a significantly decreased degradation rate and sharply decreased peak heat release rate (PHRR) in cone calorimeter tests (by as much as 83%) compared with neat PVA. The polymer aerogels have a limiting oxygen index (LOI) as high as 36.5% and V-0 rating in UL-94 test. Furthermore, the aerogel samples exposured to harsh temperatures maintain their dimensions (<10% change), original mechanical strength and fire safety. Therefore, this work provides a novel stragegy for preparing pure organic polymeric aerogel materials with high mechanical strength, dimensional stability, and fire safety.

  14. Formation of Heterogeneous Toroidal-Spiral Particles -- by Drop Sedimentation and Interaction

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Nitsche, Ludwig; Gemeinhart, Richard; Sharma, Vishal; Szymusiak, Magdalena; Shen, Hao

    2013-03-01

    We describe self-assembly of polymeric particles, whereby competitive kinetics of viscous sedimentation, diffusion, and cross-linking yield a controllable toroidal-spiral (TS) structure. Precursor polymeric droplets are splashed through the surface of a less dense, miscible solution, after which viscous forces entrain the surrounding bulk solution into the sedimenting polymer drop to form TS channels. The intricate structure forms because low interfacial tension between the two miscible solutions is dominated by viscous forces. The biocompatible polymer, poly(ethylene glycol) diacrylate (PEG-DA), is used to demonstrate the solidification of the TS shapes at various configurational stages by UV-triggered cross-linking. The dimensions of the channels are controlled by Weber number during impact on the surface, and Reynolds number and viscosity ratio during subsequent sedimentation. Within the critical separation distance, interaction of multiple drops generates similar structure with more flexibility. Furthermore, the understanding of multiple drop interaction is essential for mass production of TS particles by using parallel and sequential arrays of drops. This work was supported by NSF CBET Grant CBET-1039531.

  15. Comparison of Plasma Polymerization under Collisional and Collision-Less Pressure Regimes.

    PubMed

    Saboohi, Solmaz; Jasieniak, Marek; Coad, Bryan R; Griesser, Hans J; Short, Robert D; Michelmore, Andrew

    2015-12-10

    While plasma polymerization is used extensively to fabricate functionalized surfaces, the processes leading to plasma polymer growth are not yet completely understood. Thus, reproducing processes in different reactors has remained problematic, which hinders industrial uptake and research progress. Here we examine the crucial role pressure plays in the physical and chemical processes in the plasma phase, in interactions at surfaces in contact with the plasma phase, and how this affects the chemistry of the resulting plasma polymer films using ethanol as the gas precursor. Visual inspection of the plasma reveals a change from intense homogeneous plasma at low pressure to lower intensity bulk plasma at high pressure, but with increased intensity near the walls of the chamber. It is demonstrated that this occurs at the transition from a collision-less to a collisional plasma sheath, which in turn increases ion and energy flux to surfaces at constant RF power. Surface analysis of the resulting plasma polymer films show that increasing the pressure results in increased incorporation of oxygen and lower cross-linking, parameters which are critical to film performance. These results and insights help to explain the considerable differences in plasma polymer properties observed by different research groups using nominally similar processes.

  16. Multifunctional Nanostructured Conductive Polymer Gels: Synthesis, Properties, and Applications

    DOE PAGES

    Zhao, Fei; Shi, Ye; Pan, Lijia; ...

    2017-06-26

    Conductive polymers have attracted significant interest over the past few decades because they synergize the advantageous features of conventional polymeric materials and organic conductors. With rationally designed nanostructures, conductive polymers can further exhibit exceptional mechanical, electrical, and optical properties because of their confined dimensions at the nanoscale level. Among various nanostructured conductive polymers, conductive polymer gels (CPGs) with synthetically tunable hierarchical 3D network structures show great potential for a wide range of applications, such as bioelectronics, and energy storage/conversion devices owing to their structural features. CPGs retain the properties of nanosized conductive polymers during the assembly of the nanobuilding blocksmore » into a monolithic macroscopic structure while generating structure-derived features from the highly cross-linked network. In this Account, we review our recent progress on the synthesis, properties, and novel applications of dopant cross-linked CPGs. We first describe the synthetic strategies, in which molecules with multiple functional groups are adopted as cross-linkers to cross-link conductive polymer chains into a 3D molecular network. These cross-linking molecules also act as dopants to improve the electrical conductivity of the gel network. The microstructure and physical/chemical properties of CPGs can be tuned by controlling the synthetic conditions such as species of monomers and cross-linkers, reaction temperature, and solvents. By incorporating other functional polymers or particles into the CPG matrix, hybrid gels have been synthesized with tailored structures. These hybrid gel materials retain the functionalities from each component, as well as enable synergic effects to improve mechanical and electrical properties of CPGs. We then introduce the unique structure-derived properties of the CPGs. The network facilitates both electronic and ionic transport owing to the continuous pathways for electrons and hierarchical pores for ion diffusion. CPGs also provide high surface area and solvent compatibility, similar to natural gels. With these improved properties, CPGs have been explored to enable novel conceptual devices in diverse applications from smart electronics and ultrasensitive biosensors, to energy storage and conversion devices. CPGs have also been adopted for developing hybrid materials with multifunctionalities, such as stimuli responsiveness, self-healing properties, and super-repellency to liquid. With synthetically tunable physical/chemical properties, CPGs emerge as a unique material platform to develop novel multifunctional materials that have the potential to impact electronics, energy, and environmental technologies. Our hope is that this Account promotes further efforts toward synthetic control, fundamental investigation, and application exploration of CPGs.« less

  17. Multifunctional Nanostructured Conductive Polymer Gels: Synthesis, Properties, and Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Fei; Shi, Ye; Pan, Lijia

    Conductive polymers have attracted significant interest over the past few decades because they synergize the advantageous features of conventional polymeric materials and organic conductors. With rationally designed nanostructures, conductive polymers can further exhibit exceptional mechanical, electrical, and optical properties because of their confined dimensions at the nanoscale level. Among various nanostructured conductive polymers, conductive polymer gels (CPGs) with synthetically tunable hierarchical 3D network structures show great potential for a wide range of applications, such as bioelectronics, and energy storage/conversion devices owing to their structural features. CPGs retain the properties of nanosized conductive polymers during the assembly of the nanobuilding blocksmore » into a monolithic macroscopic structure while generating structure-derived features from the highly cross-linked network. In this Account, we review our recent progress on the synthesis, properties, and novel applications of dopant cross-linked CPGs. We first describe the synthetic strategies, in which molecules with multiple functional groups are adopted as cross-linkers to cross-link conductive polymer chains into a 3D molecular network. These cross-linking molecules also act as dopants to improve the electrical conductivity of the gel network. The microstructure and physical/chemical properties of CPGs can be tuned by controlling the synthetic conditions such as species of monomers and cross-linkers, reaction temperature, and solvents. By incorporating other functional polymers or particles into the CPG matrix, hybrid gels have been synthesized with tailored structures. These hybrid gel materials retain the functionalities from each component, as well as enable synergic effects to improve mechanical and electrical properties of CPGs. We then introduce the unique structure-derived properties of the CPGs. The network facilitates both electronic and ionic transport owing to the continuous pathways for electrons and hierarchical pores for ion diffusion. CPGs also provide high surface area and solvent compatibility, similar to natural gels. With these improved properties, CPGs have been explored to enable novel conceptual devices in diverse applications from smart electronics and ultrasensitive biosensors, to energy storage and conversion devices. CPGs have also been adopted for developing hybrid materials with multifunctionalities, such as stimuli responsiveness, self-healing properties, and super-repellency to liquid. With synthetically tunable physical/chemical properties, CPGs emerge as a unique material platform to develop novel multifunctional materials that have the potential to impact electronics, energy, and environmental technologies. Our hope is that this Account promotes further efforts toward synthetic control, fundamental investigation, and application exploration of CPGs.« less

  18. Multifunctional Nanostructured Conductive Polymer Gels: Synthesis, Properties, and Applications.

    PubMed

    Zhao, Fei; Shi, Ye; Pan, Lijia; Yu, Guihua

    2017-07-18

    Conductive polymers have attracted significant interest over the past few decades because they synergize the advantageous features of conventional polymeric materials and organic conductors. With rationally designed nanostructures, conductive polymers can further exhibit exceptional mechanical, electrical, and optical properties because of their confined dimensions at the nanoscale level. Among various nanostructured conductive polymers, conductive polymer gels (CPGs) with synthetically tunable hierarchical 3D network structures show great potential for a wide range of applications, such as bioelectronics, and energy storage/conversion devices owing to their structural features. CPGs retain the properties of nanosized conductive polymers during the assembly of the nanobuilding blocks into a monolithic macroscopic structure while generating structure-derived features from the highly cross-linked network. In this Account, we review our recent progress on the synthesis, properties, and novel applications of dopant cross-linked CPGs. We first describe the synthetic strategies, in which molecules with multiple functional groups are adopted as cross-linkers to cross-link conductive polymer chains into a 3D molecular network. These cross-linking molecules also act as dopants to improve the electrical conductivity of the gel network. The microstructure and physical/chemical properties of CPGs can be tuned by controlling the synthetic conditions such as species of monomers and cross-linkers, reaction temperature, and solvents. By incorporating other functional polymers or particles into the CPG matrix, hybrid gels have been synthesized with tailored structures. These hybrid gel materials retain the functionalities from each component, as well as enable synergic effects to improve mechanical and electrical properties of CPGs. We then introduce the unique structure-derived properties of the CPGs. The network facilitates both electronic and ionic transport owing to the continuous pathways for electrons and hierarchical pores for ion diffusion. CPGs also provide high surface area and solvent compatibility, similar to natural gels. With these improved properties, CPGs have been explored to enable novel conceptual devices in diverse applications from smart electronics and ultrasensitive biosensors, to energy storage and conversion devices. CPGs have also been adopted for developing hybrid materials with multifunctionalities, such as stimuli responsiveness, self-healing properties, and super-repellency to liquid. With synthetically tunable physical/chemical properties, CPGs emerge as a unique material platform to develop novel multifunctional materials that have the potential to impact electronics, energy, and environmental technologies. We hope that this Account promotes further efforts toward synthetic control, fundamental investigation, and application exploration of CPGs.

  19. Polymerization by DNA polymerase eta is blocked by cis-diamminedichloroplatinum(II) 1,3-d(GpTpG) cross-link: implications for cytotoxic effects in nucleotide excision repair-negative tumor cells.

    PubMed

    Chijiwa, Shotaro; Masutani, Chikahide; Hanaoka, Fumio; Iwai, Shigenori; Kuraoka, Isao

    2010-03-01

    cis-Diamminedichloroplatinum(II) (cisplatin) forms DNA adducts that interfere with replication and transcription. The most common adducts formed in vivo are 1,2-intrastrand d(GpG) cross-links (Pt-GG) and d(ApG) cross-links (Pt-AG), with minor amounts of 1,3-d(GpNpG) cross-links (Pt-GNG), interstrand cross-links and monoadducts. Although the relative contribution of these different adducts to toxicity is not known, literature implicates that Pt-GG and Pt-AG adducts block replication. Thus, nucleotide excision repair (NER), by which platinum adducts are excised, and translesion DNA synthesis (TLS), which permits adduct bypass, are thought to be associated with cisplatin resistance. Recent studies have reported that the clinical benefit from platinum-based chemotherapy is high if tumor cells express low levels of NER factors. To investigate the role of platinum-DNA adducts in mediating tumor cell survival by TLS, we examined whether 1,3-intrastrand d(GpTpG) platinum cross-links (Pt-GTG), which probably exist in NER-negative tumor cells but not in NER-positive tumor cells, are bypassed by the translesion DNA polymerase eta (pol eta), which is known to bypass Pt-GG. We show that pol eta can incorporate the correct deoxycytidine triphosphate opposite the first 3'-cross-linked G of Pt-GTG but cannot insert any nucleotides opposite the second intact T or the third 5'-cross-linked G of the adducts, thereby suggesting that TLS does not facilitate replication past Pt-GTG adducts. Thus, our findings implicate Pt-GNG adducts as mediating the cytotoxicity of platinum-DNA adducts in NER-negative tumors in vivo.

  20. High-Performance Polymers Having Low Melt Viscosities

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J.

    2005-01-01

    High-performance polymers that have improved processing characteristics, and a method of making them, have been invented. One of the improved characteristics is low (relative to corresponding prior polymers) melt viscosities at given temperatures. This characteristic makes it possible to utilize such processes as resin-transfer molding and resin-film infusion and to perform autoclave processing at lower temperatures and/or pressures. Another improved characteristic is larger processing windows that is, longer times at low viscosities. Other improved characteristics include increased solubility of uncured polymer precursors that contain reactive groups, greater densities of cross-links in cured polymers, improved mechanical properties of the cured polymers, and greater resistance of the cured polymers to chemical attack. The invention is particularly applicable to poly(arylene ether)s [PAEs] and polyimides [PIs] that are useful as adhesives, matrices of composite materials, moldings, films, and coatings. PAEs and PIs synthesized according to the invention comprise mixtures of branched, linear, and star-shaped molecules. The monomers of these polymers can be capped with either reactive end groups to obtain thermosets or nonreactive end groups to obtain thermoplastics. The synthesis of a polymeric mixture according to the invention involves the use of a small amount of a trifunctional monomer. In the case of a PAE, the trifunctional monomer is a trihydroxy- containing compound for example, 1,3,5-trihydroxybenzene (THB). In the case of a PI, the trifunctional monomer is a triamine for example, triamino pyrimidine or melamine. In addition to the aforementioned trifunctional monomer, one uses the difunctional monomers of the conventional formulation of the polymer in question (see figure). In cases of nonreactive end caps, the polymeric mixtures of the invention have melt viscosities and melting temperatures lower than those of the corresponding linear polymers of equal molecular weights. The lower melting temperatures and melt viscosities provide larger processing windows. In cases of reactive end caps, the polymeric mixtures of the invention have lower melt viscosities before curing and the higher cross-link densities after curing (where branching in the uncured systems would become cross-links in the cured systems), relative to the corresponding linear polymers of equal molecular weights. The greater cross-link densities afford increased resistance to chemical attack and improved mechanical properties.

  1. Silk Hydrogels of Tunable Structure and Viscoelastic Properties Using Different Chronological Orders of Genipin and Physical Cross-Linking.

    PubMed

    Elliott, Winston H; Bonani, Walter; Maniglio, Devid; Motta, Antonella; Tan, Wei; Migliaresi, Claudio

    2015-06-10

    Catering the hydrogel manufacturing process toward defined viscoelastic properties for intended biomedical use is important to hydrogel scaffolding function and cell differentiation. Silk fibroin hydrogels may undergo "physical" cross-linking through β-sheet crystallization during high pressure carbon dioxide treatment, or covalent "chemical" cross-linking by genipin. We demonstrate here that time-dependent mechanical properties are tunable in silk fibroin hydrogels by altering the chronological order of genipin cross-linking with β-sheet formation. Genipin cross-linking before β-sheet formation affects gelation mechanics through increased molecular weight, affecting gel morphology, and decreasing stiffness response. Alternately, genipin cross-linking after gelation anchored amorphous regions of the protein chain, and increasing stiffness. These differences are highlighted and validated through large amplitude oscillatory strain near physiologic levels, after incorporation of material characterization at molecular and micron length scales.

  2. The solubilization of bone and dentin collagens by pepsin. Effect of cross-linkages and non-collagen components.

    PubMed

    Carmichael, D J; Dodd, C M; Veis, A

    1977-03-28

    Bone and dentin collagen are less susceptible to solubilization by pepsin digestion then is skin collagen. Digestion at 4 degrees C for 72 h solubilized only 35.3% of bovine cortical bone and 5.6% of bovine dentin compared with nearly 100% dissolution of bovine skin. Sodium dodecyl sulfate-acrylamide gel electrophoresis and molecular sieve chromatography showed that, for bone and dentin, intact alpha chains and cross-linked aggregates of beta, gamma and higher weight remained intact after pepsin solubilization but lower molecular weight fragments also were prevalent indicating chain scission in helical regions. Electron microscopic examination of segment long spacing precipitates of the soluble collagens confirmed the presence of solubilized polymerized collagen. The principal reducible cross-link in both bone and dentin was the precursor of dihydroxylsinonorleucine and this cross-link was also present in the solubilized collagens. Small amounts of non-collagenous proteins and glycosaminoglycans of different compositions in dentin and bone resisted extraction before pepsin digestion. However, the differences in solubilization of the collagens have been related to differences in cross-linkage placement.

  3. Apparatus and method for oxidation and stabilization of polymeric materials

    DOEpatents

    Paulauskas, Felix L [Knoxville, TN; White, Terry L [Knoxville, TN; Sherman, Daniel M [Knoxville, TN

    2009-05-19

    An apparatus for treating polymeric materials comprises a treatment chamber adapted to maintain a selected atmosphere; a means for supporting the polymeric material within the chamber; and, a source of plasma-derived gas containing at least one reactive oxidative species whereby the polymer is stabilized and cross linked through exposure to the oxidative species in the chamber at a selected temperature. The polymer may be directly exposed to the plasma, or alternatively, the plasma may be established in a separate volume from which the reactive species may be extracted and introduced into the vicinity of the polymer. The apparatus may be configured for either batch-type or continuous-type processing. The apparatus and method are especially useful for preparing polymer fibers, particularly PAN fibers, for later carbonization treatments.

  4. Apparatus and method for oxidation and stabilization of polymeric materials

    DOEpatents

    Paulauskas, Felix L [Knoxville, TN; White, Terry L [Knoxville, TN; Sherman, Daniel M [Knoxville, TN

    2010-08-31

    An apparatus for treating polymeric materials comprises a treatment chamber adapted to maintain a selected atmosphere; a means for supporting the polymeric material within the chamber; and, a source of plasma-derived gas containing at least one reactive oxidative species whereby the polymer is stabilized and cross linked through exposure to the oxidative species in the chamber at a selected temperature. The polymer may be directly exposed to the plasma, or alternatively, the plasma may be established in a separate volume from which the reactive species may be extracted and introduced into the vicinity of the polymer. The apparatus may be configured for either batch-type or continuous-type processing. The apparatus and method are especially useful for preparing polymer fibers, particularly PAN fibers, for later carbonization treatments.

  5. A Reliable Homemade Electrode Based on Glassy Polymeric Carbon

    ERIC Educational Resources Information Center

    Santos, Andre L.; Takeuchi, Regina M.; Oliviero, Herilton P.; Rodriguez, Marcello G.; Zimmerman, Robert L.

    2004-01-01

    The production of a GPC-based material by submitting a cross-linked resin precursor to control thermal conditions is discussed. The precursor material is prepolymerized at 60-degree Celsius in a mold and is carbonized in inert atmosphere by slowly raising the temperature, the rise is performed to avoid change in the shape of the carbonization…

  6. In vitro studies on the effect of physical cross-linking on the biological performance of aliphatic poly(urethane urea) for blood contact applications.

    PubMed

    Thomas, V; Kumari, T V; Jayabalan, M

    2001-01-01

    The effect of physical cross-linking in candidate cycloaliphatic and hydrophobic poly(urethane urea) (4,4'-methylenebis(cyclohexylisocyanate), H(12)MDI/hydroxy-terminated polybutadiene, HTPBD/hexamethylenediamine, HDA) and poly(ether urethane urea)s (H(12)MDI/HTPBD-PTMG/HDA) on the in vitro calcification and blood-material interaction was studied. All the candidate poly(urethane urea)s and poly(ether urethane urea)s elicit acceptable hemolytic activity, cytocompatibility, calcification, and blood compatibility in vitro. The studies on blood-material interaction reveal that the present poly(urethane urea)s are superior to polystyrene microtiter plates which were used for the studies on blood-material interaction. The present investigation reveals the influence of physical cross-link density on biological interaction differently with poly(urethane urea) and poly(ether urethane urea)s. The higher the physical cross-link density in the poly(urethane urea)s, the higher the calcification and consumption of WBC in whole blood. On the other hand, the higher the physical cross-link density in the poly(ether urethane urea)s, the lesser the calcification and consumption of WBC in whole blood. However a reverse of the above trend has been observed with the platelet consumption in the poly(urethane urea)s and poly(ether urethane urea)s.

  7. Ester-free cross-linker molecules for ultraviolet-light-cured polysilsesquioxane gate dielectric layers of organic thin-film transistors

    NASA Astrophysics Data System (ADS)

    Okada, Shuichi; Nakahara, Yoshio; Uno, Kazuyuki; Tanaka, Ichiro

    2018-04-01

    Pentacene thin-film transistors (TFTs) were fabricated with ultraviolet-light (UV)-cured polysilsesquioxane (PSQ) gate dielectric layers using cross-linker molecules with or without ester groups. To polymerize PSQ without ester groups, thiol-ene reaction was adopted. The TFTs fabricated with PSQ layers comprising ester-free cross-linkers showed a higher carrier mobility than the TFTs with PSQ layers cross-linked with ester groups, which had large electric dipole moments that limited the carrier mobility. It was demonstrated that the thiol-ene reaction is more suitable than the conventional radical reaction for UV-cured PSQ with small dielectric constant.

  8. Room-Temperature Performance of Poly(Ethylene Ether Carbonate)-Based Solid Polymer Electrolytes for All-Solid-State Lithium Batteries.

    PubMed

    Jung, Yun-Chae; Park, Myung-Soo; Kim, Duck-Hyun; Ue, Makoto; Eftekhari, Ali; Kim, Dong-Won

    2017-12-13

    Amorphous poly(ethylene ether carbonate) (PEEC), which is a copolymer of ethylene oxide and ethylene carbonate, was synthesized by ring-opening polymerization of ethylene carbonate. This route overcame the common issue of low conductivity of poly(ethylene oxide)(PEO)-based solid polymer electrolytes at low temperatures, and thus the solid polymer electrolyte could be successfully employed at the room temperature. Introducing the ethylene carbonate units into PEEC improved the ionic conductivity, electrochemical stability and lithium transference number compared with PEO. A cross-linked solid polymer electrolyte was synthesized by photo cross-linking reaction using PEEC and tetraethyleneglycol diacrylate as a cross-linking agent, in the form of a flexible thin film. The solid-state Li/LiNi 0.6 Co 0.2 Mn 0.2 O 2 cell assembled with solid polymer electrolyte based on cross-linked PEEC delivered a high initial discharge capacity of 141.4 mAh g -1 and exhibited good capacity retention at room temperature. These results demonstrate the feasibility of using this solid polymer electrolyte in all-solid-state lithium batteries that can operate at ambient temperatures.

  9. Preparation of PVA membrane for immobilization of GOD for glucose biosensor.

    PubMed

    Kumar, Jitendra; D'Souza, S F

    2008-03-15

    A membrane was prepared using polyvinyl alcohol (PVA) with low and high degree of polymerization (DOP), acetone, benzoic acid (BA) and was cross-linked by UV treatment. Membrane composition was optimized on the basis of swelling index. Membrane prepared with 12% low DOP and 8% high DOP of PVA, 2% BA, dissolved in buffer containing 20% acetone and cross-linked with UV treatment exhibited lower swelling index. Fourier transform infrared (FTIR) study of the membranes showed appearance of a strong band at approximately 2337 cm(-1) when UV was used for cross-linking in the presence of benzoic acid. Scanning electron microscope (SEM) study revealed that membrane cross-linked with UV treatment was smoother. Glucose oxidase (GOD)-PVA membrane was associated with the dissolved oxygen (DO) probe for biosensor reading. Glucose was detected on the basis of depletion of oxygen, when immobilized GOD oxidizes glucose to gluconolactone. A wide detection range, 0.9-225 mg/dl was estimated from the linear range of calibration plot of biosensor reading. Membranes were reused for 32 reactions without significant loss of activity and stored for 30 days (approximately 90% activity) at 4 degrees C. Membranes were also used with real blood samples.

  10. Elastin as a self-organizing biomaterial: use of recombinantly expressed human elastin polypeptides as a model for investigations of structure and self-assembly of elastin.

    PubMed

    Keeley, Fred W; Bellingham, Catherine M; Woodhouse, Kimberley A

    2002-02-28

    Elastin is the major extracellular matrix protein of large arteries such as the aorta, imparting characteristics of extensibility and elastic recoil. Once laid down in tissues, polymeric elastin is not subject to turnover, but is able to sustain its mechanical resilience through thousands of millions of cycles of extension and recoil. Elastin consists of ca. 36 domains with alternating hydrophobic and cross-linking characteristics. It has been suggested that these hydrophobic domains, predominantly containing glycine, proline, leucine and valine, often occurring in tandemly repeated sequences, are responsible for the ability of elastin to align monomeric chains for covalent cross-linking. We have shown that small, recombinantly expressed polypeptides based on sequences of human elastin contain sufficient information to self-organize into fibrillar structures and promote the formation of lysine-derived cross-links. These cross-linked polypeptides can also be fabricated into membrane structures that have solubility and mechanical properties reminiscent of native insoluble elastin. Understanding the basis of the self-organizational ability of elastin-based polypeptides may provide important clues for the general design of self-assembling biomaterials.

  11. Positron emission tomography based analysis of long-circulating cross-linked triblock polymeric micelles in a U87MG mouse xenograft model and comparison of DOTA and CB-TE2A as chelators of copper-64.

    PubMed

    Jensen, Andreas I; Binderup, Tina; Kumar EK, Pramod; Kjær, Andreas; Rasmussen, Palle H; Andresen, Thomas L

    2014-05-12

    Copolymers of ABC-type (PEG-PHEMA-PCMA) architecture were prepared by atom transfer radical polymerization and formulated as micelles with functionalizable primary alcohols in the shell-region (PHEMA-block) to which the metal-ion chelators DOTA or CB-TE2A were conjugated. Using this micelle system we compared the in vivo stabilities of DOTA and CB-TE2A as chelators of (64)Cu in micelle nanoparticles. The coumarin polymer (PCMA-block) micelle core was cross-linked by UV irradiation at 2 W/cm(2) for 30 min. The cross-linked micelles were labeled with (64)Cu at room temperature for 2 h (DOTA) or 80 °C for 3 h (CB-TE2A), giving labeling efficiencies of 60-76% (DOTA) and 40-47% (CB-TE2A). (64)Cu-micelles were injected into tumor-bearing mice (8 mg/kg) and PET/CT scans were carried out at 1, 22, and 46 h postinjection. The micelles showed good blood stability (T1/2: 20-26 h) and tumor uptake that was comparable with other nanoparticle systems. The DOTA micelles showed a biodistribution similar to the CB-TE2A micelles and the tumor uptake was comparable for both micelle types at 1 h (1.9% ID/g) and 22 h (3.9% ID/g) but diverged at 46 h with 3.6% ID/g (DOTA) and 4.9% ID/g (CB-TE2A). On the basis of our data, we conclude that cross-linked PEG-PHEMA-PCMA micelles have long circulating properties resulting in tumor accumulation and that DOTA and CB-TE2A (64)Cu-chelates show similar in vivo stability for the studied micelle system.

  12. Polymeric Systems for Amorphous Δ9-Tetrahydrocannabinol Produced by a Hot-Melt Method. Part II: Effect of Oxidation Mechanisms and Chemical Interactions on Stability

    PubMed Central

    MUNJAL, MANISH; ELSOHLY, MAHMOUD A.; REPKA, MICHAEL A.

    2010-01-01

    The objectives of the present research investigations were to (i) elucidate the mechanism for the oxidative degradation of Δ9-tetrahydrocannabinol (THC) in polymer matrix systems prepared by a hot-melt fabrication procedure, and (ii) study the potential for controlling these mechanisms to reduce the degradation of THC in solid dosage formulations. Various factors considered and applied included drug-excipient compatibility, use of antioxidants, cross-linking in polymeric matrices, microenvironment pH, and moisture effect. Instability of THC in polyethylene oxide (PEO)-vitamin E succinate (VES) patches was determined to be due to chemical interaction between the drug and the vitamin as well as with the atmospheric oxygen. Of the different classes and mechanisms of antioxidants studied, quenching of oxygen by reducing agents, namely, ascorbic acid was the most effective in stabilizing THC in PEO-VES matrices. Only 5.8% of the drug degraded in the ascorbic acid-containing patch as compared to the control (31.6%) after 2 months of storage at 40°C. This coupled with the cross-linking extent and adjustment of the pH microenvironment, which seemed to have an impact on the THC degradation, might be effectively utilized towards stabilization of the drug in these polymeric matrices and other pharmaceutical dosage forms. These studies are relevant to the development of a stable transmucosal matrix system for the therapeutic delivery of amorphous THC. PMID:16886199

  13. Formation of polymeric toroidal-spiral particles.

    PubMed

    Sharma, Vishal; Szymusiak, Magdalena; Shen, Hao; Nitsche, Ludwig C; Liu, Ying

    2012-01-10

    Compared to spherical matrices, particles with well-defined internal structure provide large surface to volume ratio and predictable release kinetics for the encapsulated payloads. We describe self-assembly of polymeric particles, whereby competitive kinetics of viscous sedimentation, diffusion, and cross-linking yield a controllable toroidal-spiral (T-S) structure. Precursor polymeric droplets are splashed through the surface of a less dense, miscible solution, after which viscous forces entrain the surrounding bulk solution into the sedimenting polymer drop to form T-S channels. The intricate structure forms because low interfacial tension between the two miscible solutions is dominated by viscous forces. The biocompatible polymer, poly(ethylene glycol) diacrylate (PEG-DA), is used to demonstrate the solidification of the T-S shapes at various configurational stages by UV-triggered cross-linking. The dimensions of the channels are controlled by Weber number during impact on the surface, and Reynolds number and viscosity ratio during subsequent sedimentation. We anticipate applications of the T-S particle in drug delivery, wherein diffusion through these T-S channels and the polymer matrix would offer parallel release pathways for molecules of different sizes. Polyphosphate, as a model macromolecule, is entrained in T-S particles during their formation. The in vitro release kinetics of polyphosphate from the T-S particles with various channel length and width is reported. In addition, self-assembly of T-S particles occurs in a single step under benign conditions for delicate macromolecules, and appears conducive to scaleup.

  14. Preparation and characterization of (St-DVB-MAA) ion exchange resins

    NASA Astrophysics Data System (ADS)

    Jiang, Shanquan; Sun, Xiangwei; Ling, Lixing; Wang, Shumin; Wu, Wufeng; Cheng, Shihong; Hu, Yue; Zhong, Chunyan

    2017-08-01

    In this paper, used polyvinyl alcohol as dispersing agent, Benzoyl peroxide as initiator of polymerization, Divinyl benzene as cross-linking agent, Styrene and 2-Methylpropenoic acid as monomer, ion exchange resin (copolymer of St-DVB-MAA)were prepared by suspension polymerization on 80°C. The structures, components and properties of the prepared composite micro gels were characterized by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA). The experiment of ion exchange was conducted by resin to deal with copper ions in the solution. The result showed that performance of the ion exchange capacity was excellent, which impacted by pH.

  15. Highly ordered nanocomposites via a monomer self-assembly in situ condensation approach

    DOEpatents

    Gin, D.L.; Fischer, W.M.; Gray, D.H.; Smith, R.C.

    1998-12-15

    A method for synthesizing composites with architectural control on the nanometer scale is described. A polymerizable lyotropic liquid-crystalline monomer is used to form an inverse hexagonal phase in the presence of a second polymer precursor solution. The monomer system acts as an organic template, providing the underlying matrix and order of the composite system. Polymerization of the template in the presence of an optional cross-linking agent with retention of the liquid-crystalline order is carried out followed by a second polymerization of the second polymer precursor within the channels of the polymer template to provide an ordered nanocomposite material. 13 figs.

  16. Highly ordered nanocomposites via a monomer self-assembly in situ condensation approach

    DOEpatents

    Gin, Douglas L.; Fischer, Walter M.; Gray, David H.; Smith, Ryan C.

    1998-01-01

    A method for synthesizing composites with architectural control on the nanometer scale is described. A polymerizable lyotropic liquid-crystalline monomer is used to form an inverse hexagonal phase in the presence of a second polymer precursor solution. The monomer system acts as an organic template, providing the underlying matrix and order of the composite system. Polymerization of the template in the presence of an optional cross-linking agent with retention of the liquid-crystalline order is carried out followed by a second polymerization of the second polymer precursor within the channels of the polymer template to provide an ordered nanocomposite material.

  17. Organic carbon aerogels from the sol-gel polymerization of phenolic-furfural mixtures

    DOEpatents

    Pekala, R.W.

    1998-04-28

    The sol-gel polymerization of a phenolic-furfural mixture in dilute solution leads to a highly cross-linked network that can be supercritically dried to form a high surface area foam. These porous materials have cell/pore sizes {<=}1000 {angstrom}, and although they are dark brown in color, they can be classified as a new type of aerogel. The phenolic-furfural aerogel can be pyrolyzed in an inert atmosphere at 1050 C to produce carbon aerogels. This new aerogel may be used for thermal insulation, chromatographic packing, water filtration, ion-exchange, and carbon electrodes for energy storage devices, such as batteries and double-layer capacitors. 8 figs.

  18. Organic carbon aerogels from the sol-gel polymerization of phenolic-furfural mixtures

    DOEpatents

    Pekala, Richard W.

    1998-04-28

    The sol-gel polymerization of a phenolic-furfural mixture in dilute solution leads to a highly cross-linked network that can be supercritically dried to form a high surface area foam. These porous materials have cell/pore sizes .ltoreq.1000 .ANG., and although they are dark brown in color, they can be classified as a new type of aerogel. The phenolic-furfural aerogel can be pyrolyzed in an inert atmosphere at 1050.degree. C. to produce carbon aerogels. This new aerogel may be used for thermal insulation, chromatographic packing, water filtration, ion-exchange, and carbon electrodes for energy storage devices, such as batteries and double-layer capacitors.

  19. Organic aerogels from the sol-gel polymerization of phenolic-furfural mixtures

    DOEpatents

    Pekala, Richard W.

    1995-01-01

    The sol-gel polymerization of a phenolic-furfural mixture in dilute solution leads to a highly cross-linked network that can be supercritically dried to form a high surface area foam. These porous materials have cell/pore sizes.ltoreq.1000.ANG., and although they are dark brown in color, they can be classified as a new type of aerogel. The phenolic-furfural aerogel can be pyrolyzed in an inert atmosphere at 1050.degree. C. to produce carbon aerogels. This new aerogel may be used for thermal insulation, chromatographic packing, water filtration, ion-exchange, and carbon electrodes for energy storage devices, such as batteries and double-layer capacitors.

  20. Organic aerogels from the sol-gel polymerization of phenolic-furfural mixtures

    DOEpatents

    Pekala, R.W.

    1995-12-19

    The sol-gel polymerization of a phenolic-furfural mixture in dilute solution leads to a highly cross-linked network that can be supercritically dried to form a high surface area foam. These porous materials have cell/pore sizes{<=}1000{angstrom}, and although they are dark brown in color, they can be classified as a new type of aerogel. The phenolic-furfural aerogel can be pyrolyzed in an inert atmosphere at 1050 C to produce carbon aerogels. This new aerogel may be used for thermal insulation, chromatographic packing, water filtration, ion-exchange, and carbon electrodes for energy storage devices, such as batteries and double-layer capacitors. 8 figs.

  1. Organic aerogels from the sol-gel polymerization of phenolic-furfural mixtures

    DOEpatents

    Pekala, Richard W.

    1996-01-01

    The sol-gel polymerization of a phenolic-furfural mixture in dilute solution leads to a highly cross-linked network that can be supercritically dried to form a high surface area foam. These porous materials have cell/pore sizes .ltoreq.1000.ANG., and although they are dark brown in color, they can be classified as a new type of aerogel. The phenolic-furfural aerogel can be pyrolyzed in an inert atmosphere at 1050.degree. C. to produce carbon aerogels. This new aerogel may be used for thermal insulation, chromatographic packing, water filtration, ion-exchange, and carbon electrodes for energy storage devices, such as batteries and double-layer capacitors.

  2. A Thermally Re-mendable Cross-Linked Polymeric Material

    NASA Astrophysics Data System (ADS)

    Chen, Xiangxu; Dam, Matheus A.; Ono, Kanji; Mal, Ajit; Shen, Hongbin; Nutt, Steven R.; Sheran, Kevin; Wudl, Fred

    2002-03-01

    We have developed a transparent organic polymeric material that can repeatedly mend or ``re-mend'' itself under mild conditions. The material is a tough solid at room temperature and below with mechanical properties equaling those of commercial epoxy resins. At temperatures above 120°C, approximately 30% (as determined by solid-state nuclear magnetic resonance spectroscopy) of ``intermonomer'' linkages disconnect but then reconnect upon cooling, This process is fully reversible and can be used to restore a fractured part of the polymer multiple times, and it does not require additional ingredients such as a catalyst, additional monomer, or special surface treatment of the fractured interface.

  3. Exploring Tyrosine-Triazolinedione (TAD) Reactions for the Selective Conjugation and Cross-Linking of N-Carboxyanhydride (NCA) Derived Synthetic Copolypeptides.

    PubMed

    Hanay, Saltuk B; Ritzen, Bas; Brougham, Dermot; Dias, Aylvin A; Heise, Andreas

    2017-07-01

    Highly efficient functionalization and cross-linking of polypeptides is achieved via tyrosine-triazolinedione (TAD) conjugation chemistry. The feasibility of the reaction is demonstrated by the reaction of 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD) with tyrosine containing block copolymer poly(ethylene glycol)-Tyr 4 as well as a statistical copolymer of tyrosine and lysine (poly(Lys 40 -st-Tyr 10 )) prepared form N-carboxyanhydride polymerization. Selective reaction of PTAD with the tyrosine units is obtained and verified by size exclusion chromatography and NMR spectroscopy. Moreover, two monofunctional and two difunctional TAD molecules are synthesized. It is found that their stability in the aqueous reaction media significantly varied. Under optimized reaction conditions selective functionalization and cross-linking, yielding polypeptide hydrogels, can be achieved. TAD-mediated conjugation can offer an interesting addition in the toolbox of selective (click-like) polypeptide conjugation methodologies as it does not require functional non-natural amino acids. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Biochemical separations by continuous-bed chromatography.

    PubMed

    Tisch, T L; Frost, R; Liao, J L; Lam, W K; Remy, A; Scheinpflug, E; Siebert, C; Song, H; Stapleton, A

    1998-08-07

    Innovations in column-packing media for biomolecule purification have progressed from large spherical, porous polysaccharide beads to advanced polymeric supports. Continuous-bed technology is a radical new technology for chromatography based on the polymerization of advanced monomers and ionomers directly in the chromatographic column. The polymer chains form aggregates which coalesce into a dense, homogeneous network of interconnected nodules consisting of microparticles with an average diameter of 3000 A. The voids or channels between the nodules are large enough to permit a high hydrodynamic flow. Due to the high cross-linking of the polymer matrix, the surface of each nodule is nonporous yet the polymeric microparticles provide a very large surface area for high binding capacity. This paper will demonstrate the properties and advantages of using a continuous bed support for high resolution biomolecule separations at high flow-rates without sacrificing capacity.

  5. Preparation of small bio-compatible microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Dreyer, William J. (Inventor)

    1979-01-01

    Small, round, bio-compatible microspheres capable of covalently bonding proteins and having a uniform diameter below about 3500 A are prepared by substantially instantaneously initiating polymerization of an aqueous emulsion containing no more than 35% total monomer including an acrylic monomer substituted with a covalently bondable group such a hydroxyl, amino or carboxyl and a minor amount of a cross-linking agent.

  6. 21 CFR 176.180 - Components of paper and paperboard in contact with dry food.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .... Tetraethylenepentamine Polymerization cross-linking agent. α-[p-(1,1,3,3-Tetramethylbutyl)phenyl]-omega hydroxypoly... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Components of paper and paperboard in contact with... preservative in coatings and sizings. 1,2-Benzisothiazolin-3-one (CAS Registry No. 2634-33-5) For use only as a...

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Beom-Goo; Pramanik, Nabendu B.; Singha, Nikhil K.

    The anionic block copolymerization of 4,4' -vinylphenyl-N,N-bis(4-tert-butylphenyl)benzenamine (A) with furfuryl isocyanate (B) was carried out using potassium naphthalenide (K-Naph) in tetrahydrofuran at -78 and -98 °C to prepare well-defined block copolymers containing furan groups for the formation of thermoreversible networks via a Diels Alder (DA) reaction. While no block copolymerization was observed in the absence of sodium tetraphenylborate (NaBPh 4) due to side reactions, well-defined poly-(B-b-A-b-B) (PBAB) copolymers with controlled molecular weights (M n = 18 700 19 500 g mol -1) and narrow molecular weight distributions (M w/M n = 1.08 -1.17) were successfully synthesized in the presence ofmore » excess NaBPh 4. We prevented the occurrence of the undesirable side reactions during polymerization of B of NaBPh 4, which results in the change in the countercation from K + to Na + for further polymerization of B. Moreover, the cross-linking via the DA reaction between the furan groups of PBAB and bismaleimide was proved by FT-IR and differential scanning calorimetry (DSC), and the thermoreversible properties of the cross-linked polymer were subsequently investigated using DSC and solubility testing.« less

  8. Combinatorial Methodology for Screening Selectivity in Polymeric Pervaporation Membranes.

    PubMed

    Godbole, Rutvik V; Ma, Lan; Doerfert, Michael D; Williams, Porsche; Hedden, Ronald C

    2015-11-09

    Combinatorial methodology is described for rapid screening of selectivity in polymeric pervaporation membrane materials for alcohol-water separations. The screening technique is demonstrated for ethanol-water separation using a model polyacrylate system. The materials studied are cross-linked random copolymers of a hydrophobic comonomer (n-butyl acrylate, B) and a hydrophilic comonomer (2-hydroxyethyl acrylate, H). A matrix of materials is prepared that has orthogonal variations in two key variables, H:B ratio and cross-linker concentration. For mixtures of ethanol and water, equilibrium selectivities and distribution coefficients are obtained by combining swelling measurements with high-throughput HPLC analysis. Based on the screening results, two copolymers are selected for further study as pervaporation membranes to quantify permeability selectivity and the flux of ethanol. The screening methodology described has good potential to accelerate the search for new membrane materials, as it is adaptable to a broad range of polymer chemistries.

  9. Tuning chemical and physical cross-links in silk electrogels for morphological analysis and mechanical reinforcement.

    PubMed

    Lin, Yinan; Xia, Xiaoxia; Shang, Ke; Elia, Roberto; Huang, Wenwen; Cebe, Peggy; Leisk, Gary; Omenetto, Fiorenzo; Kaplan, David L

    2013-08-12

    Electrochemically controlled, reversible assembly of biopolymers into hydrogel structures is a promising technique for on-demand cell or drug encapsulation and release systems. An electrochemically sol-gel transition has been demonstrated in regenerated Bombyx mori silk fibroin, offering a controllable way to generate biocompatible and reversible adhesives and other biomedical materials. Despite the involvement of an electrochemically triggered electrophoretic migration of the silk molecules, the mechanism of the reversible electrogelation remains unclear. It is, however, known that the freshly prepared silk electrogels (e-gels) adopt a predominantly random coil conformation, indicating a lack of cross-linking as well as thermal, mechanical, and morphological stabilities. In the present work, the tuning of covalent and physical β-sheet cross-links in silk hydrogels was studied for programming the structural properties. Scanning electron microscopy (SEM) revealed delicate morphology, including locally aligned fibrillar structures, in silk e-gels, preserved by combining glutaraldehyde-cross-linking and ethanol dehydration. Fourier transform infrared (FTIR) spectroscopic analysis of either electrogelled, vortex-induced or spontaneously formed silk hydrogels showed that the secondary structure of silk e-gels was tunable between non-β-sheet-dominated and β-sheet-dominated states. Dynamic oscillatory rheology confirmed the mechanical reinforcement of silk e-gels provided by controlled chemical and physical cross-links. The selective incorporation of either chemical or physical or both cross-links into the electrochemically responsive, originally unstructured silk e-gel should help in the design for electrochemically responsive protein polymers.

  10. Synthesis and characterization of biodegradable poly (ethylene glycol) and poly (caprolactone diol) end capped poly (propylene fumarate) cross linked amphiphilic hydrogel as tissue engineering scaffold material.

    PubMed

    Krishna, Lekshmi; Jayabalan, Muthu

    2009-12-01

    Biodegradable poly (caprolactone diol-co-propylene fumarate-co-ethylene glycol) amphiphilic polymer with poly (ethylene glycol) and poly (caprolactone diol) chain ends (PCL-PPF-PEG) was prepared. PCL-PPF-PEG undergoes fast setting with acrylamide (aqueous solution) by free radical polymerization and produces a crosslinked hydrogel. The cross linked and freeze-dried amphiphilic material has porous and interconnected network. It undergoes higher degree of swelling and water absorption to form hydrogel with hydrophilic and hydrophobic domains at the surface and appreciable tensile strength. The present hydrogel is compatible with L929 fibroblast cells. PCL-PPF-PEG/acrylamide hydrogel is a candidate scaffold material for tissue engineering applications.

  11. Solid polymeric electrolytes for lithium batteries

    DOEpatents

    Angell, Charles A.; Xu, Wu; Sun, Xiaoguang

    2006-03-14

    Novel conductive polyanionic polymers and methods for their preparion are provided. The polyanionic polymers comprise repeating units of weakly-coordinating anionic groups chemically linked to polymer chains. The polymer chains in turn comprise repeating spacer groups. Spacer groups can be chosen to be of length and structure to impart desired electrochemical and physical properties to the polymers. Preferred embodiments are prepared from precursor polymers comprising the Lewis acid borate tri-coordinated to a selected ligand and repeating spacer groups to form repeating polymer chain units. These precursor polymers are reacted with a chosen Lewis base to form a polyanionic polymer comprising weakly coordinating anionic groups spaced at chosen intervals along the polymer chain. The polyanionic polymers exhibit high conductivity and physical properties which make them suitable as solid polymeric electrolytes in lithium batteries, especially secondary lithium batteries.

  12. Near-Infrared Chromophore Functionalized Soft Actuator with Ultrafast Photoresponsive Speed and Superior Mechanical Property.

    PubMed

    Liu, Li; Liu, Mei-Hua; Deng, Lin-Lin; Lin, Bao-Ping; Yang, Hong

    2017-08-23

    In this Communication, we develop a two-step acyclic diene metathesis in situ polymerization/cross-linking method to synthesize uniaxially aligned main-chain liquid crystal elastomers with chemically bonded near-infrared absorbing four-alkenyl-tailed croconaine-core cross-linkers. Because of the extraordinary photothermal conversion property, such a soft actuator material can raise its local temperature from 18 to 260 °C in 8 s, and lift up burdens 5600 times heavier than its own weight, under 808 nm near-infrared irradiation.

  13. Optimization of protein cross-linking in bicomponent electrospun scaffolds for therapeutic use

    NASA Astrophysics Data System (ADS)

    Papa, Antonio; Guarino, Vincenzo; Cirillo, Valentina; Oliviero, Olimpia; Ambrosio, Luigi

    2015-12-01

    Bio-instructive electrospun scaffolds based on the combination of synthetic polymers, such as PCL or PLLA, and natural polymers (e.g., collagen) have been extensively investigated as temporary extracellular matrix (ECM) analogues able to support cell proliferation and stem cell differentiation for the regeneration of several tissues. The growing use of natural polymers as carrier of bioactive molecules is introducing new ideas for the design of polymeric drug delivery systems based on electrospun fibers with improved bioavailability, therapeutic efficacy and programmed drug release. In particular, the release mechanism is driven by the use of water soluble proteins (i.e., collagen, gelatin) which fully degrade in in vitro microenvironment, thus delivering the active principles. However, these protein are generally rapidly digested by enzymes (i.e., collagenase) produced by many different cell types, both in vivo and in vitro with significant drawbacks in tissue engineering and controlled drug delivery. Here, we aim at investigating different chemical strategies to improve the in vitro stability and mechanical strength of scaffolds against enzymatic degradation, by modifying the biodegradation rates of proteins embedded in bicomponent fibers. By comparing scaffolds treated by different cross-linking agents (i.e., GC, EDC, BDDGE), we have provided an extensive morphological/chemical/physical characterization via SEM and TGA to identify the best conditions to control drug release via protein degradation from bicomponent fibers without compromising in vitro cell response.

  14. Optimization of protein cross-linking in bicomponent electrospun scaffolds for therapeutic use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papa, Antonio; IMAST SCaRL, Piazza Bovio 22, 80133 Naples; Guarino, Vincenzo, E-mail: vincenzo.guarino@cnr.it

    Bio-instructive electrospun scaffolds based on the combination of synthetic polymers, such as PCL or PLLA, and natural polymers (e.g., collagen) have been extensively investigated as temporary extracellular matrix (ECM) analogues able to support cell proliferation and stem cell differentiation for the regeneration of several tissues. The growing use of natural polymers as carrier of bioactive molecules is introducing new ideas for the design of polymeric drug delivery systems based on electrospun fibers with improved bioavailability, therapeutic efficacy and programmed drug release. In particular, the release mechanism is driven by the use of water soluble proteins (i.e., collagen, gelatin) which fullymore » degrade in in vitro microenvironment, thus delivering the active principles. However, these protein are generally rapidly digested by enzymes (i.e., collagenase) produced by many different cell types, both in vivo and in vitro with significant drawbacks in tissue engineering and controlled drug delivery. Here, we aim at investigating different chemical strategies to improve the in vitro stability and mechanical strength of scaffolds against enzymatic degradation, by modifying the biodegradation rates of proteins embedded in bicomponent fibers. By comparing scaffolds treated by different cross-linking agents (i.e., GC, EDC, BDDGE), we have provided an extensive morphological/chemical/physical characterization via SEM and TGA to identify the best conditions to control drug release via protein degradation from bicomponent fibers without compromising in vitro cell response.« less

  15. Chemical stability of insulin. 3. Influence of excipients, formulation, and pH.

    PubMed

    Brange, J; Langkjaer, L

    1992-01-01

    The influence of auxiliary substances and pH on the chemical transformations of insulin in pharmaceutical formulation, including various hydrolytic and intermolecular cross-linking reactions, was studied. Bacteriostatic agents had a profound stabilizing effect--phenol > m-cresol > methylparaben--on deamidation as well as on insulin intermolecular cross-linking reactions. Of the isotonicity substances, NaCl generally had a stabilizing effect whereas glycerol and glucose led to increased chemical deterioration. Phenol and sodium chloride exerted their stabilizing effect through independent mechanisms. Zinc ions, in concentrations that promote association of insulin into hexamers, increase the stability, whereas higher zinc content had no further influence. Protamine gave rise to additional formation of covalent protamine-insulin products which increased with increasing protamine concentration. The impact of excipients on the chemical processes seems to be dictated mainly via an influence on the three-dimensional insulin structure. The effect of the physical state of the insulin on the chemical stability was also complex, suggesting an intricate dependence of intermolecular proximity of involved functional groups. At pH values below five and above eight, insulin degrades relatively fast. At acid pH, deamidation at residue A21 and covalent insulin dimerization dominates, whereas disulfide reactions leading to covalent polymerization and formation of A- and B-chains prevailed in alkaline medium. Structure-reactivity relationship is proposed to be a main determinant for the chemical transformation of insulin.

  16. Cesium-specific phenolic ion exchange resin

    DOEpatents

    Bibler, J.P.; Wallace, R.M.

    1995-08-15

    A phenolic, cesium-specific, cation exchange resin is prepared by neutralizing resorcinol with potassium hydroxide, condensing/polymerizing the resulting intermediate with formaldehyde, heat-curing the resulting polymer to effect cross-linking and grinding it to desired particle size for use. This resin will selectively and efficiently adsorb cesium ions in the presence of a high concentration of sodium ions with a low carbon to cesium ratio. 2 figs.

  17. Cesium-specific phenolic ion exchange resin

    DOEpatents

    Bibler, Jane P.; Wallace, Richard M.

    1995-01-01

    A phenolic, cesium-specific, cation exchange resin is prepared by neutralizing resorcinol with potassium hydroxide, condensing/polymerizing the resulting intermediate with formaldehyde, heat-curing the resulting polymer to effect cross-linking and grinding it to desired particle size for use. This resin will selectively and efficiently adsorb cesium ions in the presence of a high concentration of sodium ions with a low carbon to cesium ratio.

  18. Porous and non-porous water soluble polymer nanospheres

    NASA Astrophysics Data System (ADS)

    Henselwood, Fred William

    Water soluble polymer nanospheres have been prepared from the photo-cross-linking of diblock copolymer micelles formed either in water or in N,N-dimethylformamide/water mixtures. The diblock copolymers utilized in this study were poly(2-cinnamoyl-ethyl methacrylate)-block-poly(acrylic acid), poly ((2-cinnamoylethyl methacrylate)-random-(2-octanoylethyl methacrylate)) -block-poly(acrylic acid), and poly ((2-cinnamoyl-ethyl methacrylate)-random-(2-oleoylethyl methacrylate)) -block-poly(acrylic acid). These polymers were synthesized by the functionalization of diblock copolymers prepared by anionic polymerization. The photo-cross-linking was achieved through the dimerization of cinnamoyl groups by ultraviolet irradiation. Transmission electron microscopy confirmed that the polymer nanospheres had an inner core region formed by the cinnamoyl containing polymer blocks, and an outer shell layer formed by the acrylic acid polymer blocks. The hydrodynamic radius of the polymer nanospheres in water was approximately 50 to 75 nm as determined by dynamic light scattering. It has been found that the polymer nanospheres, when in water, could be readily impregnated with organic molecules. Fluorescence measurements showed that the polymer nanospheres could uptake polyaromatic hydrocarbons by the direct mixing of polyaromatic hydrocarbons with the polymer nanospheres in water. Perylene was found to be between 2.0 × 10sp5 and 4.0 × 10sp5 times more soluble in the core region of the polymer nanospheres than in water. The addition of divalent cations was shown to induce aggregation of the polymer nanospheres and resulted in the precipitation of the polymer nanospheres along with any captured perylene. This suggests that the polymer nanospheres may be useful in water remediation. Porous polymer nanospheres were prepared by the incorporation of low molecular weight polymeric porogens within the core region of the polymer nanospheres. Following photo-cross-linking the polymeric porogens were extracted out of the polymer nanospheres resulting in pore formation. Perylene loading experiments revealed that the loading of the porous polymer nanospheres was 41% higher than that achieved for non-porous polymer nanospheres prepared from the same initial diblock copolymer. This indicates that the porous polymer nanospheres may be preferred over the non-porous polymer nanospheres in applications such as drug delivery.

  19. Synthesis and self-assembly of amphiphilic polymeric microparticles.

    PubMed

    Dendukuri, Dhananjay; Hatton, T Alan; Doyle, Patrick S

    2007-04-10

    We report the synthesis and self-assembly of amphiphilic, nonspherical, polymeric microparticles. Wedge-shaped particles bearing segregated hydrophilic and hydrophobic sections were synthesized in a microfludic channel by polymerizing across laminar coflowing streams of hydrophilic and hydrophobic polymers using continuous flow lithography (CFL). Particle monodispersity was characterized by measuring both the size of the particles formed and the extent of amphiphilicity. The coefficient of variation (COV) was found to be less than 2.5% in all measured dimensions. Particle structure was further characterized by measuring the curvature of the interface between the sections and the extent of cross-linking using FTIR spectroscopy. The amphiphilic particles were allowed to self-assemble in water or at water-oil interfaces. In water, the geometry of the particles enabled the formation of micelle-like structures, while in emulsions, the particles migrated to the oil-water interface and oriented themselves to minimize their surface energy.

  20. Wound Tissue Can Utilize a Polymeric Template to Synthesize a Functional Extension of Skin

    NASA Astrophysics Data System (ADS)

    Yannas, I. V.; Burke, J. F.; Orgill, D. P.; Skrabut, E. M.

    1982-01-01

    Prompt and long-term closure of full-thickness skin wounds in guinea pigs and humans is achieved by applying a bilayer polymeric membrane. The membrane comprises a top layer of a silicone elastomer and a bottom layer of a porous cross-linked network of collagen and glycosaminoglycan. The bottom layer can be seeded with a small number of autologous basal cells before grafting. No immunosuppression is used and infection, exudation, and rejection are absent. Host tissue utilizes the sterile membrane as a culture medium to synthesize neoepidermal and neodermal tissue. A functional extension of skin over the entire wound area is formed in about 4 weeks.

  1. Nanostructured Drugs Embedded into a Polymeric Matrix: Vinpocetine/PVP Hybrids Investigated by Debye Function Analysis.

    PubMed

    Hasa, Dritan; Giacobbe, Carlotta; Perissutti, Beatrice; Voinovich, Dario; Grassi, Mario; Cervellino, Antonio; Masciocchi, Norberto; Guagliardi, Antonietta

    2016-09-06

    Microcrystalline vinpocetine, coground with cross-linked polyvinylpyrrolidone, affords hybrids containing nanosized drug nanocrystals, the size and size distributions of which depend on milling times and drug-to-polymer weight ratios. Using an innovative approach to microstructural characterization, we analyzed wide-angle X-ray total scattering data by the Debye function analysis and demonstrated the possibility to characterize pharmaceutical solid dispersions obtaining a reliable quantitative view of the physicochemical status of the drug dispersed in an amorphous carrier. The microstructural properties derived therefrom have been successfully employed in reconciling the enigmatic difference in behavior between in vitro and in vivo solubility tests performed on nanosized vinpocetine embedded in a polymeric matrix.

  2. Organic aerogels from the sol-gel polymerization of phenolic-furfural mixtures

    DOEpatents

    Pekala, R.W.

    1996-09-17

    The sol-gel polymerization of a phenolic-furfural mixture in dilute solution leads to a highly cross-linked network that can be supercritically dried to form a high surface area foam. These porous materials have cell/pore sizes {<=}1,000{angstrom}, and although they are dark brown in color, they can be classified as a new type of aerogel. The phenolic-furfural aerogel can be pyrolyzed in an inert atmosphere at 1,050 C to produce carbon aerogels. This new aerogel may be used for thermal insulation, chromatographic packing, water filtration, ion-exchange, and carbon electrodes for energy storage devices, such as batteries and double-layer capacitors. 8 figs.

  3. Linking Gestures: Cross-Cultural Variation during Instructional Analogies

    ERIC Educational Resources Information Center

    Richland, Lindsey Engle

    2015-01-01

    Deictic linking gestures, hand and arm motions that physically embody links being communicated between two or more objects in the shared communicative environment, are explored in a cross-cultural sample of mathematics instruction. Linking gestures are specifically examined here when they occur in the context of communicative analogies designed to…

  4. Silks produced by insect labial glands

    PubMed Central

    Sutherland, Tara

    2008-01-01

    Insect silks are secreted from diverse gland types; this chapter deals with the silks produced by labial glands of Holometabola (insects with pupa in their life cycle). Labial silk glands are composed of a few tens or hundreds of large polyploid cells that secrete polymerizing proteins which are stored in the gland lumen as a semi-liquid gel. Polymerization is based on weak molecular interactions between repetitive amino acid motifs present in one or more silk proteins; cross-linking by disulfide bonds may be important in the silks spun under water. The mechanism of long-term storage of the silk dope inside the glands and its conversion into the silk fiber during spinning is not fully understood. The conversion occurs within seconds at ambient temperature and pressure, under minimal drawing force and in some cases under water. The silk filament is largely built of proteins called fibroins and in Lepidoptera and Trichoptera coated by glue-type proteins known as sericins. Silks often contain small amounts of additional proteins of poorly known function. The silk components controlling dope storage and filament formation seem to be conserved at the level of orders, while the nature of polymerizing motifs in the fibroins, which determine the physical properties of silk, differ at the level of family and even genus. Most silks are based on fibroin β-sheets interrupted with other structures such as α-helices but the silk proteins of certain sawflies have predominantly a collagen-like or polyglycine II arrangement and the silks of social Hymenoptera are formed from proteins in a coiled coil arrangement. PMID:19221523

  5. Bioreducible Fluorinated Peptide Dendrimers Capable of Circumventing Various Physiological Barriers for Highly Efficient and Safe Gene Delivery.

    PubMed

    Cai, Xiaojun; Jin, Rongrong; Wang, Jiali; Yue, Dong; Jiang, Qian; Wu, Yao; Gu, Zhongwei

    2016-03-09

    Polymeric vectors have shown great promise in the development of safe and efficient gene delivery systems; however, only a few have been developed in clinical settings due to poor transport across multiple physiological barriers. To address this issue and promote clinical translocation of polymeric vectors, a new type of polymeric vector, bioreducible fluorinated peptide dendrimers (BFPDs), was designed and synthesized by reversible cross-linking of fluorinated low generation peptide dendrimers. Through masterly integration all of the features of reversible cross-linking, fluorination, and polyhedral oligomeric silsesquioxane (POSS) core-based peptide dendrimers, this novel vector exhibited lots of unique features, including (i) inactive surface to resist protein interactions; (ii) virus-mimicking surface topography to augment cellular uptake; (iii) fluorination-mediated efficient cellular uptake, endosome escape, cytoplasm trafficking, and nuclear entry, and (iv) disulfide-cleavage-mediated polyplex disassembly and DNA release that allows efficient DNA transcription. Noteworthy, all of these features are functionally important and can synergistically facilitate DNA transport from solution to the nucleus. As a consequences, BFPDs showed excellent gene transfection efficiency in several cell lines (∼95% in HEK293 cells) and superior biocompatibility compared with polyethylenimine (PEI). Meanwhile BFPDs provided excellent serum resistance in gene delivery. More importantly, BFPDs offer considerable in vivo gene transfection efficiency (in muscular tissues and in HepG2 tumor xenografts), which was approximately 77-fold higher than that of PEI in luciferase activity. These results suggest bioreducible fluorinated peptide dendrimers are a new class of highly efficient and safe gene delivery vectors and should be used in clinical settings.

  6. Rapid self-healing hydrogels

    PubMed Central

    Phadke, Ameya; Zhang, Chao; Arman, Bedri; Hsu, Cheng-Chih; Mashelkar, Raghunath A.; Lele, Ashish K.; Tauber, Michael J.; Arya, Gaurav; Varghese, Shyni

    2012-01-01

    Synthetic materials that are capable of autonomous healing upon damage are being developed at a rapid pace because of their many potential applications. Despite these advancements, achieving self-healing in permanently cross-linked hydrogels has remained elusive because of the presence of water and irreversible cross-links. Here, we demonstrate that permanently cross-linked hydrogels can be engineered to exhibit self-healing in an aqueous environment. We achieve this feature by arming the hydrogel network with flexible-pendant side chains carrying an optimal balance of hydrophilic and hydrophobic moieties that allows the side chains to mediate hydrogen bonds across the hydrogel interfaces with minimal steric hindrance and hydrophobic collapse. The self-healing reported here is rapid, occurring within seconds of the insertion of a crack into the hydrogel or juxtaposition of two separate hydrogel pieces. The healing is reversible and can be switched on and off via changes in pH, allowing external control over the healing process. Moreover, the hydrogels can sustain multiple cycles of healing and separation without compromising their mechanical properties and healing kinetics. Beyond revealing how secondary interactions could be harnessed to introduce new functions to chemically cross-linked polymeric systems, we also demonstrate various potential applications of such easy-to-synthesize, smart, self-healing hydrogels. PMID:22392977

  7. Bioinspired Coordination Micelles Integrating High Stability, Triggered Cargo Release, and Magnetic Resonance Imaging.

    PubMed

    Xin, Keting; Li, Man; Lu, Di; Meng, Xuan; Deng, Jun; Kong, Deling; Ding, Dan; Wang, Zheng; Zhao, Yanjun

    2017-01-11

    Catechol-Fe 3+ coordinated micelles show the potential for achieving on-demand drug delivery and magnetic resonance imaging in a single nanoplatform. Herein, we developed bioinspired coordination-cross-linked amphiphilic polymeric micelles loaded with a model anticancer agent, doxorubicin (Dox). The nanoscale micelles could tolerate substantial dilution to a condition below the critical micelle concentration (9.4 ± 0.3 μg/mL) without sacrificing the nanocarrier integrity due to the catechol-Fe 3+ coordinated core cross-linking. Under acidic conditions (pH 5.0), the release rate of Dox was significantly faster compared to that at pH 7.4 as a consequence of coordination collapse and particle de-cross-linking. The cell viability study in 4T1 cells showed no toxicity regarding placebo cross-linked micelles. The micelles with improved stability showed a dramatically increased Dox accumulation in tumors and hence the enhanced suppression of tumor growth in a 4T1 tumor-bearing mouse model. The presence of Fe 3+ endowed the micelles T 1 -weighted MRI capability both in vitro and in vivo without the incorporation of traditional toxic paramagnetic contrast agents. The current work presented a simple "three birds with one stone" approach to engineer the robust theranostic nanomedicine platform.

  8. A novel mechanism of UV-A and riboflavin-mediated corneal cross-linking through induction of tissue transglutaminases.

    PubMed

    Kopsachilis, Nikolaos; Tsaousis, Konstantinos T; Tsinopoulos, Ioannis T; Kruse, Friedrich E; Welge-Luessen, Ulrich

    2013-07-01

    Collagen cross-linking using UV-A irradiation combined with the photosensitizer riboflavin is a new technique for treating progressive keratoconus. The purposes of this study were to examine whether primary human corneal keratocytes (HCKs) are capable of expressing and secreting fibronectin and tissue transglutaminase (tTgase), an enzyme cross-linking extracellular matrix protein, and to examine whether fibronectin and tTgase are increased after the treatment of HCK cells with UV-A irradiation combined with riboflavin (RFUV-A), thus providing another possible physiological mechanism of the cross-linking pathway. Cell cultures established from HCKs were treated with 0.025% riboflavin solution and UV-A (370 nm) irradiance 3 mW/cm2 for 30 minutes. Induction of fibronectin and tTgase was investigated by immunohistochemistry, real-time polymerase chain reaction, and Western blot analysis. Cell viability was quantified by a microscopic live-dead assay. External tTgase activity was measured by the ability to form polymerized fibronectin and the incorporation of biotinylated cadaverine into fibronectin. Treatment of cultured HCK cells with RFUV-A increased the fibronectin and tTgase messenger RNA and protein levels. This effect was not observed in cells treated with riboflavin or UV-A radiation alone. Incorporation of biotinylated cadaverine was significantly increased when HCK cells were treated with RFUV-A. The enzymes tTgase and fibronectin are expressed by RFUV-A treatment in cultured HCK cells. This mechanism provides more information about the physiology of corneal cross-linking.

  9. Improvement on Physical Properties of Pullulan Films by Novel Cross-Linking Strategy.

    PubMed

    Chen, Chieh-Ting; Chen, Kuan-I; Chiang, Hsin-Han; Chen, Yu-Kuo; Cheng, Kuan-Chen

    2017-01-01

    Pullulan based films possess several advantages, including high transparency, low toxicity, good biodegradability, good mechanical properties, and low oxygen permeability, are preferable for food packaging. The application of pullulan films on food packaging, however, has inherent disadvantage of high water solubility. In this study, glutaraldehyde and glycerol were used as the cross-linking reagent and the plasticizer respectively to improve water resistance and physical properties of the pullulan films. Effects of cross-linking degree on physical properties, including water absorptions, swelling behaviors, water vapor permeability and tensile strengths of films were evaluated. FTIR results demonstrated that the pullulan films were successfully cross-linked by glutaraldehyde. The tensile strength of pullulan films could be enhanced significantly (P < 0.05) when glutaraldehyde was between 1% and 5% (w/w); nevertheless, the amount of glutaraldehyde above 20% (w/w) led to films brittleness. With the addition of glycerol as a plasticizer enhanced the extensibility of films as well as the hydrophilicity, resulting in higher water vapor permeability. © 2016 Institute of Food Technologists®.

  10. Fabrication of chemically cross-linked porous gelatin matrices.

    PubMed

    Bozzini, Sabrina; Petrini, Paola; Altomare, Lina; Tanzi, Maria Cristina

    2009-01-01

    The aim of this study was to chemically cross-link gelatin, by reacting its free amino groups with an aliphatic diisocyanate. To produce hydrogels with controllable properties, the number of reacting amino groups was carefully determined. Porosity was introduced into the gelatin-based hydrogels through the lyophilization process. Porous and non-porous matrices were characterized with respect to their chemical structure, morphology, water uptake and mechanical properties. The physical, chemical and mechanical properties of the porous matrices are related to the extent of their cross-linking, showing that they can be controlled by varying the reaction parameters. Water uptake values (24 hours) vary between 160% and 200% as the degree of cross-linking increases. The flexibility of the samples also decreases by changing the extent of cross-linking. Young's modulus shows values between 0.188 KPa, for the highest degree, and 0.142 KPa for the lowest degree. The matrices are potential candidates for use as tissue-engineering scaffolds by modulating their physical chemical properties according to the specific application.

  11. In vivo evaluation of folate decorated cross-linked micelles for the delivery of platinum anticancer drugs.

    PubMed

    Eliezar, Jeaniffer; Scarano, Wei; Boase, Nathan R B; Thurecht, Kristofer J; Stenzel, Martina H

    2015-02-09

    The biodistribution of micelles with and without folic acid targeting ligands were studied using a block copolymer consisting of acrylic acid (AA) and polyethylene glycol methyl ether acrylate (PEGMEA) blocks. The polymers were prepared using RAFT polymerization in the presence of a folic acid functionalized RAFT agent. Oxoplatin was conjugated onto the acrylic acid block to form amphiphilic polymers which, when diluted in water, formed stable micelles. In order to probe the in vivo stability, a selection of micelles were cross-linked using 1,8-diamino octane. The sizes of the micelles used in this study range between 75 and 200 nm, with both spherical and worm-like conformation. The effects of cross-linking, folate conjugation and different conformation on the biodistribution were studied in female nude mice (BALB/c) following intravenous injection into the tail vein. Using optical imaging to monitor the fluorophore-labeled polymer, the in vivo biodistribution of the micelles was monitored over a 48 h time-course after which the organs were removed and evaluated ex vivo. These experiments showed that both cross-linking and conjugation with folic acid led to increased fluorescence intensities in the organs, especially in the liver and kidneys, while micelles that are not conjugated with folate and not cross-linked are cleared rapidly from the body. Higher accumulation in the spleen, liver, and kidneys was also observed for micelles with worm-like shapes compared to the spherical micelles. While the various factors of cross-linking, micelle shape, and conjugation with folic acid all contribute separately to prolong the circulation time of the micelle, optimization of these parameters for drug delivery devices could potentially overcome adverse effects such as liver and kidney toxicity.

  12. Transparent, Superflexible Doubly Cross-Linked Polyvinylpolymethylsiloxane Aerogel Superinsulators via Ambient Pressure Drying.

    PubMed

    Zu, Guoqing; Shimizu, Taiyo; Kanamori, Kazuyoshi; Zhu, Yang; Maeno, Ayaka; Kaji, Hironori; Shen, Jun; Nakanishi, Kazuki

    2018-01-23

    Aerogels have many attractive properties but are usually costly and mechanically brittle, which always limit their practical applications. While many efforts have been made to reinforce the aerogels, most of the reinforcement efforts sacrifice the transparency or superinsulating properties. Here we report superflexible polyvinylpolymethylsiloxane, (CH 2 CH(Si(CH 3 )O 2/2 )) n , aerogels that are facilely prepared from a single precursor vinylmethyldimethoxysilane or vinylmethyldiethoxysilane without organic cross-linkers. The method is based on consecutive processes involving radical polymerization and hydrolytic polycondensation, followed by ultralow-cost, highly scalable, ambient-pressure drying directly from alcohol as a drying medium without any modification or additional solvent exchange. The resulting aerogels and xerogels show a homogeneous, tunable, highly porous, doubly cross-linked nanostructure with the elastic polymethylsiloxane network cross-linked with flexible hydrocarbon chains. An outstanding combination of ultralow cost, high scalability, uniform pore size, high surface area, high transparency, high hydrophobicity, excellent machinability, superflexibility in compression, superflexibility in bending, and superinsulating properties has been achieved in a single aerogel or xerogel. This study represents a significant progress of porous materials and makes the practical applications of transparent flexible aerogel-based superinsulators realistic.

  13. Investigation of molybdenum-crosslinker interfaces for affinity based electrochemical biosensing applications

    NASA Astrophysics Data System (ADS)

    Kamakoti, Vikramshankar; Shanmugam, Nandhinee Radha; Tanak, Ambalika Sanjeev; Jagannath, Badrinath; Prasad, Shalini

    2018-04-01

    Molybdenum (Mo) has been investigated for implementation as an electrode material for affinity based biosensing towards devloping flexibe electronic biosensors. Treatment of the native oxide of molybdenum was investigated through two surface treatment strategies namely thiol and carbodiimide crosslinking methods. The binding interaction between cross-linker molecules and Mo electrode surface has been characterized using Fourier Transform Infrared Spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and optical microscopy. The efficacy of treatment of Mo with its native oxide using carbodiimide cross linking methodology was established. The carbodiimide cross-linking chemistry was found to possess better surface coverage and binding affinity with Molybdenum electrode surface when compared to thiol cross-linking chemistry.Electrochemical characterization of Mo electrode using Electrochemical Impedance Spectroscopy (EIS) and Cyclic Voltametry (CV) techniques was performed to evaluate the effect of ionic properties of solution buffer on the Mo electrode's performance. Affinity based biosensing of C-Reactive Protein (CRP) has been demonstrated on a flexible nanoporous polymeric substrate with detection threshold of 100 pg/ml in synthetic urine buffer medium. The biosensor has been evaluated to be developed as a dipstick based point of care device for detection of biomarkers in urine.

  14. Kinetics of sorption of polyaromatic hydrocarbons onto granular activated carbon and Macronet hyper-cross-linked polymers (MN200).

    PubMed

    Valderrama, C; Cortina, J L; Farran, A; Gamisans, X; Lao, C

    2007-06-01

    Polymeric supports are presented as an alternative to granular activated carbon (GAC) for organic contaminant removal from groundwater using permeable reactive barriers (PRB). The search for suitable polymeric sorbents for hydrocarbon extraction from aqueous streams has prompted the synthesis of new resins incorporating new functionalities or modifying the polymer network properties that solve many of the existing problems. Between them, the new type of polymeric sorbents Macronet Hypersol containing a styrene-divinylbenzene macroporous hyperreticulated network has been evaluated. Because of their potential sorptive properties, tests were conducted to determine the feasibility of using them as a low-cost reactive material for groundwater applications. The present work describes the sorption of six polycyclic hydrocarbons (PAHs) from aqueous solution onto both Macronet polymeric sorbent MN200 and granular activated carbon. Batch experiments were performed to determine loading rates of a family of PAHs (naphthalene, fluorene, anthracene, acenaphthene, pyrene, and fluoranthene), from a simple two-rings PAH (naphthalene) up to a four-ring PAH (pyrene). The behavior of a non-functionalized Macronet support (MN200) was compared with the behavior of a recognized material, granular activated carbon (GAC). Analyses of the respective rate data with three theoretical models (pseudo-first- and pseudo-second-order reaction models and the Elovich model) were used to describe the PAH sorption kinetics. Sorption rate constants were determined by graphical analysis of the proposed models. The study showed that sorption systems followed a pseudo-first-order reaction model, although the pseudo-second-order reaction model provides an acceptable description of the sorption process. Graphical analysis showed that the sorption process with activated carbon is a more complex process than the one observed for hyper-cross-linked polymers (MN200). A simulation of the barrier thickness needed to treat a PAH-polluted plume showed that 0.1-1 m of sorption media is enough even for high water fluxes such as 0.1-2 m(3)/m(2)/day for both sorbents.

  15. Synthesis of Polylactide-Based Core-Shell Interface Cross-Linked Micelles for Anticancer Drug Delivery.

    PubMed

    Chen, Chih-Kuang; Lin, Wei-Jen; Hsia, Yu; Lo, Leu-Wei

    2017-03-01

    Well-defined poly(ethylene glycol)-b-allyl functional polylactide-b-polylactides (PEG-APLA-PLAs) are synthesized through sequential ring-opening polymerization. PEG-APLA-PLAs that have amphiphilic properties and reactive allyl side chains on their intermediate blocks are successfully transferred to core-shell interface cross-linked micelles (ICMs) by micellization and UV-initiated irradiation. ICMs have demonstrated enhanced colloidal stability in physiological-mimicking media. Hydrophobic molecules such as Nile Red or doxorubicin (Dox) are readily loaded into ICMs; the resulting drug-ICM formulations possess slow and sustained drug release profiles under physiological-mimicking conditions. ICMs exhibit negligible cytotoxicity in human uterine sarcoma cancer cells by using biodegradable aliphatic polyester as the hydrophobic segments. Relative to free Dox, Dox-loaded ICMs show a reduced cytotoxicity due to the late intracellular release of Dox from ICMs. Overall, ICMs represent a new type of biodegradable cross-linked micelle and can be employed as a promising platform for delivering a broad variety of hydrophobic drugs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Catalytic trimerization of aromatic nitriles and triaryl-s-triazine ring cross-linked high temperature resistant polymers and copolymers made thereby

    NASA Technical Reports Server (NTRS)

    Hsu, L. C. (Inventor)

    1979-01-01

    Triazine compounds and cross-linked polymer compositions are made by heating aromatic nitriles to a temperature in the range of from about 100 C to about 700 C, and preferably in the range of from about 200 C to about 350 C, in the presence of a catalyst or mixture of catalysts selected from one or more of the following groups: (1) organic sulfonic and sulfinic acids, (2) organic phosphonic and phosphinic acids, and (3)metallic acetylacetonates, at a pressure in the range of from about atmospheric pressure to about 10,000 psi and preferably in the range of from about 200 psi to about 750 psi. Aromatic nitrile-modified (terminated and/or appended) imide, benzimidazole, imidazopyrrolone, quinoxaline, and other condensation type prepolymers or their precopolymers are made which are trimerized with or without a filler by the aforementioned catalytic trimerization process into triaryl-s-triazine ring containing or cross-linked polymeric or copolymeric products useful in applications requiring high thermal-oxidative stability and high performance structural properties at elevated temperatures.

  17. Nano-channels in the spider fang for the transport of Zn ions to cross-link His-rich proteins pre-deposited in the cuticle matrix.

    PubMed

    Politi, Yael; Pippel, Eckhard; Licuco-Massouh, Ana C J; Bertinetti, Luca; Blumtritt, Horst; Barth, Friedrich G; Fratzl, Peter

    2017-01-01

    We identify the presence of multiple vascular channels within the spider fang. These channels seem to serve the transport of zinc to the tip of the fang to cross-link the protein matrix by binding to histidine residues. According to amino acid and elemental analysis of fangs extracted shortly after ecdysis, His-rich proteins are deposited before Zn is incorporated into the cuticle. Microscopic and spectroscopic investigations in the electron microscope and synchrotron radiation experiments suggest that Zn ions are transported through these channels in a liable (yet unidentified) form, and then form stable complexes upon His binding. The resulting cross-linking through the Zn-His complexes is conferring hardness to the fang. Our observations of nano-channels serving the Zn-transport within the His-rich protein matrix of the fibre reinforced spider fang may also support recent bio-inspired attempts to design artificial polymeric vascular materials for self-healing and in-situ curing. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Cross-linked polyhemoglobin-superoxide dismutase-catalase supplies oxygen without causing blood-brain barrier disruption or brain edema in a rat model of transient global brain ischemia-reperfusion.

    PubMed

    Powanda, D Douglas; Chang, Thomas M S

    2002-01-01

    In strokes, myocardial infarctions, severe sustained hemorrhagic shock, and donor organs, inadequate blood supply results in lack of oxygen to the tissue (ischemia). If ischemia is sustained, reperfusion with the needed oxygen can result in tissue injury (ischemia-reperfusion injury) due to formation of reactive oxygen species. We are studying an oxygen-carrying solution with anitoxidant activity formed by cross-linking hemoglobin, superoxide dismutase, and catalase to form PolyHb-SOD-CAT. The present report studies its effect on the blood-brain barrier and cerebral edema when used in a transient global brain ischemia-reperfusion rat model. We compare this solution to sham-control, oxygenated saline, stroma-free hemoglobin (SF-Hb), polymerized hemoglobin (PolyHb), and a mixture of SF-Hb, SOD, and CAT in free solution. The results show that the cross-linked PolyHb-SOD-CAT solution, unlike the other solutions, can supply oxygen to ischemic tissues without causing reperfusion injury in the transient global brain ischemia-reperfusion model.

  19. Fabrication of Si negative electrodes for Li-ion batteries (LIBs) using cross-linked polymer binders.

    PubMed

    Jang, Suk-Yong; Han, Sien-Ho

    2016-12-19

    Currently, Si as an active material for LIBs has been attracting much attention due to its high theoretical specific capacity (3572 mAh g -1 ). However, a disadvantage when using a Si negative electrode for LIBs is the abrupt drop of its capabilities during the cycling process. Therefore, there have been a few studies of polymers such as poly(vinylidene fluoride) (PVdF), carboxymethyl cellulose (CMC), styrene butadiene rubber (SBR) and polyacrylic acid (PAA) given that the robust structure of a polymeric binder to LIBs anodes is a promising means by which to enhance the performance of high-capacity anodes. These studies essentially focused mainly on modifying of the linear-polymer component or on copolymers dissolved in solvents. Cross-linking polymers as a binder may be preferred due to their good scratch resistance, excellent chemical resistance and high levels of adhesion and resilience. However, because these types of polymers (with a rigid structure and cross-linking points) are also insoluble in general organic solvents, applying these types in this capacity is virtually impossible.

  20. Enantiomers Recognition of Propranolol Based on Organic-Inorganic Hybrid Open-Tubular MIPs-CEC Column Using 3-(Trimethoxysilyl)Propyl Methacrylate as a Cross-Linking Monomer.

    PubMed

    Chen, Guo-Ning; Li, Ning; Luo, Tian; Dong, Yu-Ming

    2017-04-01

    In this study, 3-(trimethoxysilyl)propyl methacrylate (γ-MPS), a bifunctional group compound, was used as a single cross-linking agent to prepare molecular imprinted inorganic-organic hybrid polymers by in situ polymerization for open-tubular capillary electro chromatography (CEC) column. The optimal preparation conditions were: the ratio between template molecule and functional monomer was 1:4; the volume proportion of porogen toluene and methanol was 1:1 and the volume of cross-linking agent γ-MPS was 69 μL. The optimal separation conditions were separation voltage of 15 kV; detection wavelength at 215 nm and background electrolyte composed of 70% acetonitrile/20 mmol/L boric acid salt (pH 6.9). Under the optimized conditions, the propranolol enantiomers can be separated well by CEC. The method is simple and fast, it can be a potentially useful approach for propranolol enantiomers separation. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Advancing reversible shape memory by tuning the polymer network architecture

    DOE PAGES

    Li, Qiaoxi; Zhou, Jing; Vatankhah-Varnoosfaderani, Mohammad; ...

    2016-02-02

    Because of counteraction of a chemical network and a crystalline scaffold, semicrystalline polymer networks exhibit a peculiar behavior—reversible shape memory (RSM), which occurs naturally without applying any external force and particular structural design. There are three RSM properties: (i) range of reversible strain, (ii) rate of strain recovery, and (iii) decay of reversibility with time, which can be improved by tuning the architecture of the polymer network. Different types of poly(octylene adipate) networks were synthesized, allowing for control of cross-link density and network topology, including randomly cross-linked network by free-radical polymerization, thiol–ene clicked network with enhanced mesh uniformity, and loosemore » network with deliberately incorporated dangling chains. It is shown that the RSM properties are controlled by average cross-link density and crystal size, whereas topology of a network greatly affects its extensibility. In conclusion, we have achieved 80% maximum reversible range, 15% minimal decrease in reversibility, and fast strain recovery rate up to 0.05 K –1, i.e., ca. 5% per 10 s at a cooling rate of 5 K/min.« less

  2. Recent Advances in Polymeric Materials Used as Electron Mediators and Immobilizing Matrices in Developing Enzyme Electrodes

    PubMed Central

    Moyo, Mambo; Okonkwo, Jonathan O.; Agyei, Nana M.

    2012-01-01

    Different classes of polymeric materials such as nanomaterials, sol-gel materials, conducting polymers, functional polymers and biomaterials have been used in the design of sensors and biosensors. Various methods have been used, for example from direct adsorption, covalent bonding, crossing-linking with glutaraldehyde on composites to mixing the enzymes or use of functionalized beads for the design of sensors and biosensors using these polymeric materials in recent years. It is widely acknowledged that analytical sensing at electrodes modified with polymeric materials results in low detection limits, high sensitivities, lower applied potential, good stability, efficient electron transfer and easier immobilization of enzymes on electrodes such that sensing and biosensing of environmental pollutants is made easier. However, there are a number of challenges to be addressed in order to fulfill the applications of polymeric based polymers such as cost and shortening the long laboratory synthetic pathways involved in sensor preparation. Furthermore, the toxicological effects on flora and fauna of some of these polymeric materials have not been well studied. Given these disadvantages, efforts are now geared towards introducing low cost biomaterials that can serve as alternatives for the development of novel electrochemical sensors and biosensors. This review highlights recent contributions in the development of the electrochemical sensors and biosensors based on different polymeric material. The synergistic action of some of these polymeric materials and nanocomposites imposed when combined on electrode during sensing is discussed. PMID:22368503

  3. Synthesis of a Self-Healing Polymer Based on Reversible Diels-Alder Reaction: An Advanced Undergraduate Laboratory at the Interface of Organic Chemistry and Materials Science

    ERIC Educational Resources Information Center

    Weizman, Haim; Nielsen, Christian; Weizman, Or S.; Nemat-Nasser, Sia

    2011-01-01

    This laboratory experiment exposes students to the chemistry of self-healing polymers based on a Diels-Alder reaction. Students accomplish a multistep synthesis of a monomer building block and then polymerize it to form a cross-linked polymer. The healing capability of the polymer is verified by differential scanning calorimetry (DSC) experiments.…

  4. Noninvasive Assessment of Collagen Gel Microstructure and Mechanics Using Multiphoton Microscopy

    PubMed Central

    Raub, Christopher B.; Suresh, Vinod; Krasieva, Tatiana; Lyubovitsky, Julia; Mih, Justin D.; Putnam, Andrew J.; Tromberg, Bruce J.; George, Steven C.

    2007-01-01

    Multiphoton microscopy of collagen hydrogels produces second harmonic generation (SHG) and two-photon fluorescence (TPF) images, which can be used to noninvasively study gel microstructure at depth (∼1 mm). The microstructure is also a primary determinate of the mechanical properties of the gel; thus, we hypothesized that bulk optical properties (i.e., SHG and TPF) could be used to predict bulk mechanical properties of collagen hydrogels. We utilized polymerization temperature (4–37°C) and glutaraldehyde to manipulate collagen hydrogel fiber diameter, space-filling properties, and cross-link density. Multiphoton microscopy and scanning electron microscopy reveal that as polymerization temperature decreases (37–4°C) fiber diameter and pore size increase, whereas hydrogel storage modulus (G′, from 23 ± 3 Pa to 0.28 ± 0.16 Pa, respectively, mean ± SE) and mean SHG decrease (minimal change in TPF). In contrast, glutaraldehyde significantly increases the mean TPF signal (without impacting the SHG signal) and the storage modulus (16 ± 3.5 Pa before to 138 ± 40 Pa after cross-linking, mean ± SD). We conclude that SHG and TPF can characterize differential microscopic features of the collagen hydrogel that are strongly correlated with bulk mechanical properties. Thus, optical imaging may be a useful noninvasive tool to assess tissue mechanics. PMID:17172303

  5. Graft Polymerization of Acrylic Acid on a Polytetrafluoroethylene Panel by an Inductively Coupled Plasma

    NASA Astrophysics Data System (ADS)

    Lan, Yan; You, Qingliang; Cheng, Cheng; Zhang, Suzhen; Ni, Guohua; Nagatsu, M.; Meng, Yuedong

    2011-02-01

    Surface modification on a polytetrafluoroethylene (PTFE) panel was performed with sequential nitrogen plasma treatments and surface-initiated polymerization. By introducing COO- groups to the surface of the PTFE panel through grafting polymerization of acrylic acid (AA), a transparent poly (acrylic acid) (PAA) membrane was achieved from acrylic acid solution. Grafting polymerization initiating from the active groups was achieved on the PTFE panel surface after the nitrogen plasma treatment. Utilizing the acrylic acid as monomers, with COO- groups as cross link sites to form reticulation structure, a transparent poly (acrylic acid) membrane with arborescent macromolecular structure was formed on the PTFE panel surface. Analysis methods, such as fourier transform infrared spectroscopy (FTIR), microscopy and X-ray photoelectron spectroscopy (XPS), were utilized to characterize the structures of the macromolecule membrane on the PTFE panel surface. A contact angle measurement was performed to characterize the modified PTFE panels. The surface hydrophilicities of modified PTFE panels were significantly enhanced after the plasma treatment. It was shown that the grafting rate is related to the treating time and the power of plasma.

  6. Fluorescent porous film modified polymer optical fiber via "click" chemistry: stable dye dispersion and trace explosive detection.

    PubMed

    Ma, Jiajun; Lv, Ling; Zou, Gang; Zhang, Qijin

    2015-01-14

    In this paper, we report a facile strategy to fabricate fluorescent porous thin film on the surface of U-bent poly(methyl methacrylate) optical fiber (U-bent POF) in situ via "click" polymerization for vapor phase sensing of explosives. Upon irradiation of evanescent UV light transmitting within the fiber under ambient condition, a porous film (POSS-thiol cross-linking film, PTCF) is synthesized on the side surface of the fiber by a thiol-ene "click" reaction of vinyl-functionalized polyhedral oligomeric silsesquioxanes (POSS-V8) and alkane dithiols. When vinyl-functionalized porphyrin, containing four allyl substituents at the periphery, is added into precursors for the polymerization, fluorescence porphyrin can be covalently bonded into the cross-linked network of PTCF. This "fastened" way reduces the aggregation-induced fluorescence self-quenching of porphyrin and enhances the physicochemical stability of the porous film on the surface of U-bent POF. Fluorescent signals of the PTCF/U-bent POF probe made by this method exhibit high fluorescence quenching toward trace TNT and DNT vapor and the highest fluorescence quenching efficiency is observed for 1, 6-hexanedimercaptan-based film. In addition, because of the presence of POSS-V8 with multi cross-linkable groups, PTCF exhibits well-organized pore network and stable dye dispersion, which not only causes fast and sensitive fluorescence quenching against vapors of nitroaromatic compounds, but also provides a repeatability of the probing performance.

  7. Structure/property relationships in methacrylate/dimethacrylate polymers for dental applications

    NASA Astrophysics Data System (ADS)

    Mehlem, Jeremy John

    Since its invention Bis-GMA or one of its analogs has been the main component of the polymer portion of composites for dental restorations. The need for dilution of Bis-GMA and its analogs to optimize its properties has long been recognized. Bis-GMA is a highly viscous monomer. This high viscosity leads to early vitrification, which limits conversion during cure. This viscosity also limits filler loading. Vitrification at low conversions leads to heterogeneous systems composed of low and high cross-link density phases. The low cross-link density phases behave as defects in the system; therefore, if the amount of low cross-link density phases in the system can be reduced and a more uniform network structure can be achieved, then the mechanical properties of the resin can be improved. Since the increase in viscosity during cure causes vitrification, it is logical that a system with a low initial viscosity will delay the onset of vitrification. Reactive diluents such as triethylene glycol dimethacrylate (TEGDMA) are effective at lower levels. However, large amounts negatively affect matrix properties by increasing polymerization shrinkage and water sorption. Shrinkage has been cited as one of the main deficiencies in dental composites. The goal of this project is to improve upon standard viscosity modifying comonomers such as triethylene glycol dimethacrylate. The comonomers that were explored were phenyloxyethyl methacrylate, cyclohexyl methacrylate, and tert-butylcylcohexyl methacrylate. Multicomponent systems based on analogs of ethylene glycol dimethacrylates with different length ethyl glycol chains were also examined. The substitution of monomethacrylates for TEGDMA as a comonomer resulted in enhanced or negligible affects on the mechanical properties of Bis-MEPP based polymer systems while reducing polymerization shrinkage. 129Xenon NMR and TappingMode(TM) AFM were used to characterize the heterogeneity of dimethacrylates systems during their cure cycle as well as in their final state. Using these methods the size of the high and low cross-link density phase was examined and determined to be on the order of 50--150 nanometers. Model compounds based on phenylethyl methacrylate were formulated to determine how of nadic methyl anhydride and maleic anhydride incorporate into dimethacrylate resin systems.

  8. Nano-hydrogels of methoxy polyethylene glycol-grafted branched polyethyleneimine via biodegradable cross-linking of Zn2+-ionomer micelle template

    NASA Astrophysics Data System (ADS)

    Abolmaali, Samira Sadat; Tamaddon, Ali Mohammad; Dinarvand, Rasoul

    2013-12-01

    Soft polymeric nanomaterials were synthesized by the template-assisted method involving self-association of methoxy polyethylene glycol- g-branched polyethyleneimine (mPEG- g-branched PEI) ionomer by transition metal ions such as Zn2+ followed by chemical cross-linking of the polyamine core by dithiopropionic acid. The formation of donor-acceptor complexes of Zn2+ and PEI ionomer was characterized by FT-IR spectroscopy and potentiometric titration. Turbidimetry was performed to study the solution property of the complexes which depended on pH, relative weight fraction of mPEG, and the molar ratio of Zn2+. The cross-linking reaction was studied by TNBS assay, 1H-NMR, and size exclusion chromatography. Upon removal of Zn2+ from cl-mPEG- g-branched PEI/Zn2+ at pH 3 by dialysis, the resulting cross-linked self-assembly represented a uniform, stable, and less positively charged hydrogel-like nanosphere with an intensity-averaged size ranging from 150 to 250 nm as determined by a Zetasizer. Atomic forced microscopy imaging was performed in intermittent contact mode in air that revealed discrete and oval-to-spherically shaped particles with average sizes ranging from 40 to 50 nm depending on the degree of cross-linking. This functional nanocarrier is expected to exhibit some key features such as active encapsulation of negatively charged hydrophilic agents in the swollen core of polyamine network and a hydrophilic mPEG shell which provides an increased solubility and passive targeting of active pharmaceutical agents to impaired tissues. The nano-hydrogels especially at 12 % degrees of cross-link demonstrated excellent biocompatibility determined by different experiments such as albumin aggregation, erythrocyte aggregation, hemolysis, and MTT cytotoxicity assay. Moreover, biodegradability of the cross-links as shown by the Ellman assay can offer a time-dependent degradation and redox-stimulated release of active agents.

  9. Development of a direct three-dimensional biomicrofabrication concept based on electrospraying a custom made siloxane sol

    PubMed Central

    Sullivan, Alice C.; Jayasinghe, Suwan N.

    2007-01-01

    We demonstrate here the discovery of a unique and direct three-dimensional biomicrofabrication concept possessing the ability to revolutionize the jet-based fabrication arena. Previous work carried out on similar jet-based approaches have been successful in fabricating only vertical wall∕pillar-structures by the controlled deposition of stacked droplets. However, these advanced jet-techniques have not been able to directly fabricate self-supporting arches∕links (without molds or reaction methods) between adjacent structures (walls or pillars). Our work reported here gives birth to a unique type of jet determined by high intensity electric fields, which is derived from a specially formulated siloxane sol. The sol studied here has been chosen for its attractive properties (such as an excellent cross-linking nature as well as the ability to polymerize via polycondensation on deposition to its biocompatability), which promotes direct forming of biostructures with nanometer (<50 nm) sized droplets in three dimensions. We foresee that this direct three-dimensional biomicrofabrication jet technique coupled with a variety of formulated sols having focused and enhanced functionality will be explored throughout the physical and life sciences. PMID:19693359

  10. Quantification of metallic nanoparticle morphology with tilt series imaging by transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Dutta, Aniruddha; Yuan, Biao; Clukay, Christopher J.; Grabill, Christopher N.; Heinrich, Helge; Bhattacharya, Aniket; Kuebler, Stephen M.

    2012-02-01

    We report on the quantitative analysis of electrolessly deposited Au and Ag nanoparticles (NPs) on SU8 polymer with the help of High-Angle Annular Dark-Field Scanning Transmission Electron Microscopy (HAADF-STEM) in tilt series. Au NPs act as nucleating agents for the electroless deposition of silver. Au NPs were prepared by attachingAu^3+cations to amine functionalized SU8 polymeric surfaces and then reducing it with aqueous NaBH4. The nanoscale morphology of the deposited NPs on the surface of polymer has been studied from the dark field TEM cross sectional images. Ag NPs were deposited on the cross-linked polymeric surface from a silver citrate solution reduced by hydroquinone. HAADF-STEM enables us to determine the distances between the NPs and their exact locations at and near the surface. The particle distribution, sizes and densities provide us with the data necessary to control the parameters for the development of the electroless deposition technique for emerging nanoscale technologies.

  11. Cross linking in the radiolysis of some enzymes and related proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lynn, K.R.

    1977-01-01

    In non-covalently bound complexes of several serine proteases and of ribonuclease with DNA the enzymes were protected against the effects of ionizing radiation. No scavenging by the nucleic acids was observed. Similarly, complexing trypsin with silica protected the enzyme from radiolytic destruction. Irradiation of solutions of serine proteases required about twice the D37 dose to produce about 10% polymerization: significantly lower relative doses were effective in causing polymerization in both lima bean protease inhibitor and in the octapeptidal hormone oxytocin. Several sulfhydryl enzymes which have been examined were very efficiently inactivated by ionizing radiation. There was, at the same time,more » apparent formation of novel intra-molecular -S-S- bonds.« less

  12. Molecular dynamics study of a polymeric reverse osmosis membrane.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harder, E.; Walters, D. E.; Bodnar, Y. D.

    2009-07-30

    Molecular dynamics (MD) simulations are used to investigate the properties of an atomic model of an aromatic polyamide reverse osmosis membrane. The monomers forming the polymeric membrane are cross-linked progressively on the basis of a heuristic distance criterion during MD simulations until the system interconnectivity reaches completion. Equilibrium MD simulations of the hydrated membrane are then used to determine the density and diffusivity of water within the membrane. Given a 3 MPa pressure differential and a 0.125 {micro}m width membrane, the simulated water flux is calculated to be 1.4 x 10{sup -6} m/s, which is in fair agreement with anmore » experimental flux measurement of 7.7 x 10{sup -6} m/s.« less

  13. Waterborne Polyurethane Coatings with Covalently Linked Black Dye Sudan Black B

    PubMed Central

    Sun, Wei; Xu, Haiyan; Xu, Fei

    2017-01-01

    Colored waterborne polyurethanes have been widely used in paintings, leathers, textiles, and coatings. Here, a series of black waterborne polyurethanes (WPUs) with different ratios of black dye, Sudan Black B (SDB), were prepared by step-growth polymerization. WPU emulsions as obtained exhibit low particle sizes and remarkable storage stability at the same time. At different dye loadings, essential structural, statistical and thermal properties are characterized. FTIR (fourier transform infrared) spectra indicate that SDB is covalently linked into waterborne polyurethane chains. All of the WPUs with covalently linked SDB show better color fastness and resistance of thermal migration than those with SDB mixed physically. Besides, WPUs incorporated SDB covalently with different polymeric diols, polytetramethylene ether glycol (PTMG), polypropylene glycol (PPG), poly-1, 4-butylene adipate glycol (PBA) and polycaprolactone glycol (PCL), were prepared to obtain different properties to cater to a variety of practical demands. By a spraying method, the black WPUs can be directly used as metal coatings without complex dyeing process by simply mixing coating additive and other waterborne resins, which exhibit excellent coating performance. PMID:29143785

  14. Transglutaminase catalyzed cross-linking of sodium caseinate improves oxidative stability of flaxseed oil emulsion.

    PubMed

    Ma, Hairan; Forssell, Pirkko; Kylli, Petri; Lampi, Anna-Maija; Buchert, Johanna; Boer, Harry; Partanen, Riitta

    2012-06-20

    Sodium caseinate was modified by transglutaminase catalyzed cross-linking reaction prior to the emulsification process in order to study the effect of cross-linking on the oxidative stability of protein stabilized emulsions. The extent of the cross-linking catalyzed by different dosages of transglutaminase was investigated by following the ammonia production during the reaction and using SDS-PAGE gel. O/W emulsions prepared with the cross-linked and non-cross-linked sodium caseinates were stored for 30 days under the same conditions. Peroxide value measurement, oxygen consumption measurement, and headspace gas chromatography analysis were used to study the oxidative stability of the emulsions. The emulsion made of the cross-linked sodium caseinate showed an improved oxidative stability with reduced formation of fatty acid hydroperoxides and volatiles and a longer period of low rate oxygen consumption. The improving effect of transglutaminase catalyzed cross-linking could be most likely attributed to the enhanced physical stability of the interfacial protein layer against competitive adsorption by oil oxidation products.

  15. DNA Hydrogel with Tunable pH-Responsive Properties Produced by Rolling Circle Amplification.

    PubMed

    Xu, Wanlin; Huang, Yishun; Zhao, Haoran; Li, Pan; Liu, Guoyuan; Li, Jing; Zhu, Chengshen; Tian, Leilei

    2017-12-22

    Recently, smart DNA hydrogels, which are generally formed by the self-assembly of oligonucleotides or through the cross-linking of oligonucleotide-polymer hybrids, have attracted tremendous attention. However, the difficulties of fabricating DNA hydrogels limit their practical applications. We report herein a novel method for producing pH-responsive hydrogels by rolling circle amplification (RCA). In this method, pH-sensitive cross-linking sites were introduced into the polymeric DNA chains during DNA synthesis. As the DNA sequence can be precisely defined by its template, the properties of such hydrogels can be finely tuned in a very facile way through template design. We have investigated the process of hydrogel formation and pH-responsiveness to provide rationales for functional hydrogel design based on the RCA reaction. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Cross-Linking Reactions for the Conversion of Polyphosphazenes into Useful Materials

    DTIC Science & Technology

    1994-05-18

    Characteristics of Polymeric Materials Polymers form one of the largest classes of materials.I Together with ceramics, metals, and a number of inorganic ...the (mainly inorganic ) ceramics, semiconductors, metals, and electro-optical materials. As such, they provide access to combinations of properties that...are not found in any of the classical materials areas. Because the field of inorganic /organic materials is one of the most promising areas for the

  17. "Killer" Microcapsules That Can Selectively Destroy Target Microparticles in Their Vicinity.

    PubMed

    Arya, Chandamany; Oh, Hyuntaek; Raghavan, Srinivasa R

    2016-11-02

    We have developed microscale polymer capsules that are able to chemically degrade a certain type of polymeric microbead in their immediate vicinity. The inspiration here is from the body's immune system, where killer T cells selectively destroy cancerous cells or cells infected by pathogens while leaving healthy cells alone. The "killer" capsules are made from the cationic biopolymer chitosan by a combination of ionic cross-linking (using multivalent tripolyposphate anions) and subsequent covalent cross-linking (using glutaraldehyde). During capsule formation, the enzyme glucose oxidase (GOx) is encapsulated in these capsules. The target beads are made by ionic cross-linking of the biopolymer alginate using copper (Cu 2+ ) cations. The killer capsules harvest glucose from their surroundings, which is then enzymatically converted by GOx into gluconate ions. These ions are known for their ability to chelate Cu 2+ cations. Thus, when a killer capsule is next to a target alginate bead, the gluconate ions diffuse into the bead and extract the Cu 2+ cross-links, causing the disintegration of the target bead. Such destruction is visualized in real-time using optical microscopy. The destruction is specific, i.e., other microparticles that do not contain Cu 2+ are left undisturbed. Moreover, the destruction is localized, i.e., the targets destroyed in the short term are the ones right next to the killer beads. The time scale for destruction depends on the concentration of encapsulated enzyme in the capsules.

  18. Drug-Triggered and Cross-Linked Self-Assembling Nanofibrous Hydrogels

    PubMed Central

    Kumar, Vivek A.; Shi, Siyu; Wang, Benjamin K.; Li, I-Che; Jalan, Abhishek A.; Sarkar, Biplab; Wickremasinghe, Navindee C.; Hartgerink, Jeffrey D.

    2015-01-01

    Self-assembly of multidomain peptides (MDP) can be tailored to carry payloads that modulate the extracellular environment. Controlled release of growth factors, cytokines, and small-molecule drugs allows for unique control of in vitro and in vivo responses. In this study, we demonstrate this process of ionic cross-linking of peptides using multivalent drugs to create hydrogels for sustained long-term delivery of drugs. Using phosphate, heparin, clodronate, trypan, and suramin, we demonstrate the utility of this strategy. Although all multivalent anions result in good hydrogel formation, demonstrating the generality of this approach, suramin led to the formation of the best hydrogels per unit concentration and was studied in greater detail. Suramin ionically cross-linked MDP into a fibrous meshwork as determined by scanning and transmission electron microscopy. We measured material storage and loss modulus using rheometry and showed a distinct increase in G′ and G″ as a function of suramin concentration. Release of suramin from scaffolds was determined using UV spectroscopy and showed prolonged release over a 30 day period. Suramin bioavailability and function were demonstrated by attenuated M1 polarization of THP-1 cells compared to positive control. Overall, this design strategy has allowed for the development of a novel class of polymeric delivery vehicles with generally long-term release and, in the case of suramin, cross-linked hydrogels that can modulate cellular phenotype. PMID:25831137

  19. A General Bioinspired, Metals-Based Synergic Cross-Linking Strategy toward Mechanically Enhanced Materials.

    PubMed

    Chen, Ke; Ding, Jin; Zhang, Shuhao; Tang, Xuke; Yue, Yonghai; Guo, Lin

    2017-03-28

    Creating lightweight engineering materials combining high strength and great toughness remains a significant challenge. Despite possessing-enhanced strength and stiffness, bioinspired/polymeric materials usually suffer from clearly reduced extensibility and toughness when compared to corresponding bulk polymer materials. Herein, inspired by tiny amounts of various inorganic impurities for mechanical improvement in natural materials, we present a versatile and effective metal ion (M n+ )-based synergic cross-linking (MSC) strategy incorporating eight types of metal ions into material bulks that can drastically enhance the tensile strength (∼24.1-70.8%), toughness (∼18.6-110.1%), modulus (∼21.6-66.7%), and hardness (∼6.4-176.5%) of multiple types of pristine materials (from hydrophilic to hydrophobic and from unary to binary). More importantly, we also explore the primarily elastic-plastic deformation mechanism and brittle fracture behavior (indentation strain of >5%) of the synergic cross-linked graphene oxide (Syn-GO) paper by means of in situ nanoindentation SEM. The MSC strategy for mechanically enhanced integration can be readily attributed to the formation of the complicated metals-based cross-linking/complex networks in the interfaces and intermolecules between functional groups of materials and various metal ions that give rise to efficient energy dissipation. This work suggests a promising MSC strategy for designing advanced materials with outstanding mechanical properties by adding low amounts (<1.0 wt %) of synergic metal ions serving as synergic ion-bonding cross-linkers.

  20. [Specific immunotherapy with depigmented allergoids].

    PubMed

    Klimek, L; Thorn, C; Pfaar, O

    2010-01-01

    Specific immunotherapy is the only available causative treatment for IgE-mediated allergic conditions. The state of the art is treatment via the subcutaneous route with crude extracts in a water solution, with physically linked (semidepot) extracts or chemically modified semidepot extracts (allergoids). A relatively new purification method combines depigmentation followed by polymerization with glutaraldehyde. This modification results in increased tolerance with a reduction in both local and systemic adverse effects. As controlled clinical trials have shown, the effectiveness is comparable to that of specific immunotherapy with crude allergen extracts. Recent data suggest that the modified polymerized allergoids allow a safe rush titration in a few days or even in 1 day (ultra-rush titration).

  1. A multifunctional polymeric nanofilm with robust chemical performances for special wettability.

    PubMed

    Wang, Yabin; Lin, Feng; Dong, Yaping; Liu, Zhong; Li, Wu; Huang, Yudong

    2016-03-07

    A multifunctional polymeric nanofilm of a triazinedithiolsilane compound, which can protect metallic substrates and activate the corresponding surface simultaneously, is introduced onto a copper mesh surface via facile solution-immersion approaches. The resultant interface exhibits hydrophilic features due to the existence of silanol groups (SiOH) outward and has the potential to act as a superhydrophilic and underwater superoleophobic material. As the polymeric nanofilm atop the copper mesh is modified with long-chain octadecyltrichlorosilane (OTS), the functionalized surface becomes superhydrophobic and superoleophilic. The OTS-modified polymeric nanofilm shows outstanding chemical durability and stability that are seldom concurrently satisfied for a material with special wettability, owing to its inherent architecture. These textures generate high separation efficiency, durable separation capability and excellent thermal stability. The protective ability, originating from the textures of the underlying cross-linked disulfide units (-SS-) and siloxane networks (SiOSi) on the top of the nanofilm, prolongs the chemical durability. The activating capability stemming from the residual SiOH groups improves the chemical stability as a result of the chemical bonds developed by these sites. The significant point of this investigation lies in enlightening us on the fabrication of multifunctional polymeric nanofilms on different metal surfaces using various triazinedithiolsilane compounds, and on the construction of interfaces with controllable wettable performances in demanding research or industrial applications.

  2. Plasma-initiated polymerization of chitosan-based CS-g-P(AM-DMDAAC) flocculant for the enhanced flocculation of low-algal-turbidity water.

    PubMed

    Sun, Yongjun; Zhu, Chengyu; Sun, Wenquan; Xu, Yanhua; Xiao, Xuefeng; Zheng, Huaili; Wu, Huifang; Liu, Cuiyun

    2017-05-15

    In this work, a highly efficient and environmentally friendly chitosan-based graft flocculant, namely, acrylamide- and dimethyl diallyl ammonium chloride-grafted chitosan [CS-g-P(AM-DMDAAC)], was prepared successfully through plasma initiation. FTIR results confirmed the successful polymerization of CS-g-P(AM-DMDAAC) and P(AM-DMDAAC). P(AM-DMDAAC) was the copolymer of acrylamide- and dimethyl diallyl ammonium chloride. SEM results revealed that a densely cross-linked network structure formed on the surface. XRD results verified that the ordered crystal structure of chitosan in CS-g-P(AM-DMDAAC) was changed into an amorphous structure after plasma-induced polymerization. The flocculation results of low-algal-turbidity water further showed the optimal flocculation efficiency of turbidity removal rate, COD removal rate, and Chl-a removal rate were 99.02%, 96.11%, and 92.20%, respectively. The flocculation efficiency of CS-g-P(AM-DMDAAC) were significantly higher than those obtained by cationic polyacrylamide (CPAM) and Polymeric aluminum and iron (PAFC). This work provided a valuable basis for the design of eco-friendly naturally modified polymeric flocculants to enhance the flocculation of low-algal-turbidity water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Tunable Enzymatic Activity and Enhanced Stability of Cellulase Immobilized in Biohybrid Nanogels.

    PubMed

    Peng, Huan; Rübsam, Kristin; Jakob, Felix; Schwaneberg, Ulrich; Pich, Andrij

    2016-11-14

    This paper reports a facile approach for encapsulation of enzymes in nanogels. Our approach is based on the use of reactive copolymers able to get conjugated with enzyme and build 3D colloidal networks or biohybrid nanogels. In a systematic study, we address the following question: how the chemical structure of nanogel network influences the biocatalytic activity of entrapped enzyme? The developed method allows precise control of the enzyme activity and improvement of enzyme resistance against harsh store conditions, chaotropic agents, and organic solvents. The nanogels were constructed via direct chemical cross-linking of water-soluble reactive copolymers poly(N-vinylpyrrolidone-co-N-methacryloxysuccinimide) with proteins such as enhanced green fluorescent protein (EGFP) and cellulase in water-in-oil emulsion. The water-soluble reactive copolymers with controlled amount of reactive succinimide groups and narrow dispersity were synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. Poly(ethylene glycol) bis(3-aminopropyl) and branched polyethylenimine were utilized as model cross-linkers to optimize synthesis of nanogels with different architectures in the preliminary experiments. Biofluorescent nanogels with different loading amount of EGFP and varying cross-linking densities were obtained. We demonstrate that the biocatalytic activity of cellulase-conjugated nanogels (CNG) can be elegantly tuned by control of their cross-linking degrees. Circular dichroism (CD) spectra demonstrated that the secondary structures of the immobilized cellulase were changed in the aspect of α-helix contents. The secondary structures of cellulase in highly cross-linked nanogels were strongly altered compared with loosely cross-linked nanogels. The fluorescence resonance energy transfer (FRET) based study further revealed that nanogels with lower cross-linking degree enable higher substrate transport rate, providing easier access to the active site of the enzyme. The biohybrid nanogels demonstrated significantly improved stability in preserving enzymatic activity compared with free cellulase. The functional biohybrid nanogels with tunable enzymatic activity and improved stability are promising candidates for applications in biocatalysis, biomass conversion, or energy utilization fields.

  4. PEG Molecular Net-Cloth Grafted on Polymeric Substrates and Its Bio-Merits

    NASA Astrophysics Data System (ADS)

    Zhao, Changwen; Lin, Zhifeng; Yin, Huabing; Ma, Yuhong; Xu, Fujian; Yang, Wantai

    2014-05-01

    Polymer brushes and hydrogels are sensitive to the environment, which can cause uncontrolled variations on their performance. Herein, for the first time, we report a non-swelling ``PEG molecular net-cloth'' on a solid surface, fabricated using a novel ``visible light induced surface controlled graft cross-linking polymerization'' (VSCGCP) technique. Via this method, we show that 1) the 3D-network structure of the net-cloth can be precisely modulated and its thickness controlled; 2) the PEG net-cloth has excellent resistance to non-specific protein adsorption and cell adhesion; 3) the mild polymerization conditions (i.e. visible light and room temperature) provided an ideal tool for in situ encapsulation of delicate biomolecules such as enzymes; 4) the successive grafting of reactive three-dimensional patterns on the PEG net-cloth enables the creation of protein microarrays with high signal to noise ratio. Importantly, this strategy is applicable to any C-H containing surface, and can be easily tailored for a broad range of applications.

  5. Thermo-responsive hydrogels for intravitreal injection and biomolecule release

    NASA Astrophysics Data System (ADS)

    Drapala, Pawel

    In this dissertation, we develop an injectable polymer system to enable localized and prolonged release of therapeutic biomolecules for improved treatment of Age-Related Macular Degeneration (AMD). Thermo-responsive hydrogels derived from N-isopropylacrylamide (NIPAAm) and cross-linked with poly(ethylene glycol) (PEG) poly(L-Lactic acid) (PLLA) copolymer were synthesized via free-radical polymerization. These materials were investigated for (a) phase change behavior, (b) in-vitro degradation, (c) capacity for controlled drug delivery, and (d) biocompatibility. The volume-phase transition temperature (VPTT) of the PNIPAAm- co-PEG-b-PLLA hydrogels was adjusted using hydrophilic and hydrophobic moieties so that it is ca. 33°C. These hydrogels did not initially show evidence of degradation at 37°C due to physical cross-links of collapsed PNIPAAm. Only after addition of glutathione chain transfer agents (CTA)s to the precursor did the collapsed hydrogels become fully soluble at 37°C. CTAs significantly affected the release kinetics of biomolecules; addition of 1.0 mg/mL glutathione to 3 mM cross-linker accelerated hydrogel degradation, resulting in 100% release in less than 2 days. This work also explored the effect of PEGylation in order to tether biomolecules to the polymer matrix. It was demonstrated that non-site-specific PEGylation can postpone the burst release of solutes (up to 10 days in hydrogels with 0.5 mg/mL glutathione). Cell viability assays showed that at least two 20-minute buffer extraction steps were needed to remove cytotoxic elements from the hydrogels. Clinically-used therapeutic biomolecules LucentisRTM and AvastinRTM were demonstrated to be both stable and bioactive after release form PNIPAAm-co-PEG-b-PLLA hydrogels. The thermo-responsive hydrogels presented here offer a promising platform for the localized delivery of proteins such as recombinant antibodies.

  6. Mullins effect in a filled elastomer under uniaxial tension

    DOE PAGES

    Maiti, A.; Small, W.; Gee, R. H.; ...

    2014-01-16

    Modulus softening and permanent set in filled polymeric materials due to cyclic loading and unloading, commonly known as the Mullins effect, can have a significant impact on their use as support cushions. The quantitative analysis of such behavior is essential to ensure the effectiveness of such materials in long-term deployment. In this work we combine existing ideas of filler-induced modulus enhancement, strain amplification, and irreversible deformation within a simple non-Gaussian constitutive model to quantitatively interpret recent measurements on a relevant PDMS-based elastomeric cushion. Also, we find that the experimental stress-strain data is consistent with the picture that during stretching (loading)more » two effects take place simultaneously: (1) the physical constraints (entanglements) initially present in the polymer network get disentangled, thus leading to a gradual decrease in the effective cross-link density, and (2) the effective filler volume fraction gradually decreases with increasing strain due to the irreversible pulling out of an initially occluded volume of the soft polymer domain.« less

  7. Investigation of different cross-linking approaches on 3D gelatin scaffolds for tissue engineering application: A comparative analysis.

    PubMed

    Shankar, K Gopal; Gostynska, Natalia; Montesi, Monica; Panseri, Silvia; Sprio, Simone; Kon, Elizaveta; Marcacci, Maurilio; Tampieri, Anna; Sandri, Monica

    2017-02-01

    The present study aims to investigate the physical-chemical and biological features exhibited by porous scaffolds for regeneration of cartilaginous tissues obtained through stabilization of 3D gelatin hydrogels by physical (DHT), chemical (BDDGE) and natural (Genipin) cross-linking approaches. The study aimed at comparatively assessing the porous microstructure and the long-term resistance of the scaffolds upon degradation in wet physiological conditions (37°C, pH=7.4). The degree of cross-linking increases as function of incorporation of cross-linkers which was maximum up to 73% for BDDGE. The infrared spectroscopy and thermal analysis confirmed the gelatin structure was preserved during the cross-linking treatments. Mechanical properties of the scaffolds were analysed by static and dynamic compression test, which showed different viscoelastic behaviour upon various cross-linking strategies. The biological performance of the scaffolds investigated using human chondrocytes showed good cell adhesion, viability and proliferation, as well as extensive 3D scaffold colonization. Besides, the analysis of gene expression related to the formation of new chondral tissue reported increasing ability with time in the formation of new extra-cellular matrix. In conclusion, out of three different cross-linking methods, the gelatin scaffolds subjected to dehydrothermal treatment (DHT) represented to be the most favourable 3D scaffold for cartilage regeneration. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Glyoxalated polyacrylamide as a covalently attachable and rapidly cross-linkable binder for Si electrode in lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Yoo, Jung-Keun; Jeon, Jaebeom; Kang, Kisuk; Jung, Yeon Sik

    2017-03-01

    Recently, investigation of Si-based anode materials for rechargeable battery applications garnered much interest due to its exceptionally high capacity. High-capacity Si anode ( 4,200 mAhg-1) is highly desirable for the replacement of conventional graphite anode (< 400 mAhg-1) for large-scale energy-storage applications such as in electric vehicles (EVs) and energy storage systems (ESSs) for renewable energy sources. However, Si-based anodes suffer from poor cycling stability due to their large volumetric changes during repeated Li insertion. Therefore, development of highly efficient binder materials that can suppress the volume change of Si is one of the most essential parts of improving the performance of batteries. We herein demonstrate highly cross-linked polymeric binder (glyoxalated polyacrylamide) with an enhanced mechanical property by applying wet-strengthening chemistry used in paper industry. We found that the degree of cross-linking can be systematically adjusted by controlling the acidity of the slurry and has a profound effect on the cell performance using Si anode. The enhanced cycle performance of Si nanoparticles obtained by treating the binder at pH 4 can be explained by its strong interaction between the binder and Si surface and current collector, and also rigidity of binder by cross-linking.

  9. Biomimetic hydrogels gate transport of calcium ions across cell culture inserts.

    PubMed

    Kotanen, Christian N; Wilson, A Nolan; Wilson, Ann M; Ishihara, Kazuhiko; Guiseppi-Elie, Anthony

    2012-06-01

    Control of the in vitro spatiotemporal availability of calcium ions is one means by which the microenvironments of hematopoietic stem cells grown in culture may be reproduced. The effects of cross-linking density on the diffusivity of calcium ions through cell culture compatible poly(2-hydroxyethyl methacrylate) [poly(HEMA)]-based bioactive hydrogels possessing 1.0 mol% 2-methacryloyloxyethyl phosphorylcholine (MPC), 5 mol% N,N-(dimethylamino)ethylmethacrylate (DMAEMA) and ca. 17 mol% n-butyl acrylate (n-BA) have been investigated to determine if varying cross-link density is a viable approach to controlling transport of calcium across hydrogel membranes. Cross-linking density was varied by changing the composition of cross-linker, tetraethyleneglycol diacrylate (TEGDA). The hydrogel membranes were formed by sandwich casting onto the external surface of track-etched polycarbonate membranes (T = 10 μm, φ = 0.4 μm pores) of cell culture inserts, polymerized in place by UV light irradiation and immersed in buffered (0.025 HEPES, pH 7.4) 0.10 M calcium chloride solution. The transport of calcium ions across the hydrogel membrane was monitored using a calcium ion selective electrode set within the insert. Degree of hydration (21.6 ± 1.0%) and void fraction were found to be constant across all cross-linking densities. Diffusion coefficients, determined using time-lag analysis, were shown to be strongly dependent on and to exponentially decrease with increasing cross-linking density. Compared to that found in buffer (2.0-2.5 × 10⁻⁶ cm²/s), diffusion coefficients ranged from 1.40 × 10⁻⁶ cm²/s to 1.80 × 10⁻⁷ cm²/s and tortuosity values ranged from 1.7 to 10.0 for the 1 and 12 mol% TEGDA cross-linked hydrogels respectively. Changes in tortuosity arising from variations in cross-link density were found to be the primary modality for controlling diffusivity through novel n-BA containing poly(HEMA)-based bioactive hydrogels.

  10. Accessing conjugated polymers with precisely controlled heterobisfunctional chain ends via post-polymerization modification of the OTf group and controlled Pd(0)/t-Bu 3P-catalyzed Suzuki cross-coupling polymerization

    DOE PAGES

    Hu, Qiao -Sheng; Hong, Kunlun; Zhang, Hong -Hai

    2015-08-12

    In this study, a general strategy toward the synthesis of well-defined conjugated polymers with controlled heterobisfunctional chain ends via combination of controlled Pd(0)/t-Bu 3P Suzuki cross-coupling polymerization with the post-polymerization modification of the triflate (OTf) group was disclosed.

  11. Accessing conjugated polymers with precisely controlled heterobisfunctional chain ends via post-polymerization modification of the OTf group and controlled Pd(0)/t-Bu 3P-catalyzed Suzuki cross-coupling polymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Qiao -Sheng; Hong, Kunlun; Zhang, Hong -Hai

    In this study, a general strategy toward the synthesis of well-defined conjugated polymers with controlled heterobisfunctional chain ends via combination of controlled Pd(0)/t-Bu 3P Suzuki cross-coupling polymerization with the post-polymerization modification of the triflate (OTf) group was disclosed.

  12. Inexpensive cross-linked polymeric separators made from water soluble polymers

    NASA Technical Reports Server (NTRS)

    Hsu, L. C.; Sheibley, D. W.

    1979-01-01

    Polyvinyl alcohol (PVA) crosslinked chemically with aldehyde reagents produces membranes which demonstrate oxidation resistance, dimensional stability, low ionic resistivity, low zincate diffusivity, and low zinc dendrite penetration rate which make them suitable for use as alkaline battery separators. They are intrinsically low in cost and environmental health and safety problems associated with commercial production appear minimal. Preparation, property measurements, and cell test results in Ni/Zn and Ag/Zn cells are described and discussed.

  13. Physico-Chemical Factors Affecting Hydrothermal Resistance and Bonding of Polymeric Composites to Steel Surfaces

    DTIC Science & Technology

    1985-11-01

    and 1.0% PM-odified zinc phosphate hydrate crystals. -117- temperature of decomposition at -1750C, is associated with the dehydration of the...reactions between divalent Ca ions released from CaO-SIO2 grains and carboxylate anions "(COO) yielded during the hydrolysis of functional pendent carboxyl...deterioration of polymers, caused by the hydrolysis of a pendent carbcxyl group, can be restrained by ionic cross-linking initiated by the strongly

  14. Prediction of Adsorption Equilibrium of VOCs onto Hyper-Cross-Linked Polymeric Resin at Environmentally Relevant Temperatures and Concentrations Using Inverse Gas Chromatography.

    PubMed

    Jia, Lijuan; Ma, Jiakai; Shi, Qiuyi; Long, Chao

    2017-01-03

    Hyper-cross-linked polymeric resin (HPR) represents a class of predominantly microporous adsorbents and has good adsorption performance toward VOCs. However, adsorption equilibrium of VOCs onto HPR are limited. In this research, a novel method for predicting adsorption capacities of VOCs on HPR at environmentally relevant temperatures and concentrations using inverse gas chromatography data was proposed. Adsorption equilibrium of six VOCs (n-pentane, n-hexane, dichloromethane, acetone, benzene, 1, 2-dichloroethane) onto HPR in the temperature range of 403-443 K were measured by inverse gas chromatography (IGC). Adsorption capacities at environmentally relevant temperatures (293-328 K) and concentrations (P/P s = 0.1-0.7) were predicted using Dubinin-Radushkevich (DR) equation based on Polany's theory. Taking consideration of the swelling properties of HPR, the volume swelling ratio (r) was introduced and r·V micro was used instead of V micro determined by N 2 adsorption data at 77 K as the parameter q 0 (limiting micropore volume) of the DR equation. The results showed that the adsorption capacities of VOCs at environmentally relevant temperatures and concentrations can be predicted effectively using IGC data, the root-mean-square errors between the predicted and experimental data was below 9.63%. The results are meaningful because they allow accurate prediction of adsorption capacities of adsorbents more quickly and conveniently using IGC data.

  15. Transport Properties of Ibuprofen Encapsulated in Cyclodextrin Nanosponge Hydrogels: A Proton HR-MAS NMR Spectroscopy Study.

    PubMed

    Ferro, Monica; Castiglione, Franca; Punta, Carlo; Melone, Lucio; Panzeri, Walter; Rossi, Barbara; Trotta, Francesco; Mele, Andrea

    2016-08-15

    The chemical cross-linking of β-cyclodextrin (β-CD) with ethylenediaminetetraacetic dianhydride (EDTA) led to branched polymers referred to as cyclodextrin nanosponges (CDNSEDTA). Two different preparations are described with 1:4 and 1:8 CD-EDTA molar ratios. The corresponding cross-linked polymers were contacted with 0.27 M aqueous solution of ibuprofen sodium salt (IP) leading to homogeneous, colorless, drug loaded hydrogels. The systems were characterized by high resolution magic angle spinning (HR-MAS) NMR spectroscopy. Pulsed field gradient spin echo (PGSE) NMR spectroscopy was used to determine the mean square displacement (MSD) of IP inside the polymeric gel at different observation times td. The data were further processed in order to study the time dependence of MSD: MSD = f(td). The proposed methodology is useful to characterize the different diffusion regimes that, in principle, the solute may experience inside the hydrogel, namely normal or anomalous diffusion. The full protocols including the polymer preparation and purification, the obtainment of drug-loaded hydrogels, the NMR sample preparation, the measurement of MSD by HR-MAS NMR spectroscopy and the final data processing to achieve the time dependence of MSD are here reported and discussed. The presented experiments represent a paradigmatic case and the data are discussed in terms of innovative approach to the characterization of the transport properties of an encapsulated guest within a polymeric host of potential application for drug delivery.

  16. Initiated Chemical Vapor Deposition (iCVD) of Highly Cross-Linked Polymer Films for Advanced Lithium-Ion Battery Separators.

    PubMed

    Yoo, Youngmin; Kim, Byung Gon; Pak, Kwanyong; Han, Sung Jae; Song, Heon-Sik; Choi, Jang Wook; Im, Sung Gap

    2015-08-26

    We report an initiated chemical vapor deposition (iCVD) process to coat polyethylene (PE) separators in Li-ion batteries with a highly cross-linked, mechanically strong polymer, namely, polyhexavinyldisiloxane (pHVDS). The highly cross-linked but ultrathin pHVDS films can only be obtained by a vapor-phase process, because the pHVDS is insoluble in most solvents and thus infeasible with conventional solution-based methods. Moreover, even after the pHVDS coating, the initial porous structure of the separator is well preserved owing to the conformal vapor-phase deposition. The coating thickness is delicately controlled by deposition time to the level that the pore size decreases to below 7% compared to the original dimension. The pHVDS-coated PE shows substantially improved thermal stability and electrolyte wettability. After incubation at 140 °C for 30 min, the pHVDS-coated PE causes only a 12% areal shrinkage (versus 90% of the pristine separator). The superior wettability results in increased electrolyte uptake and ionic conductivity, leading to significantly improved rate performance. The current approach is applicable to a wide range of porous polymeric separators that suffer from thermal shrinkage and poor electrolyte wetting.

  17. Sodium lauryl sulfate impedes drug release from zinc-crosslinked alginate beads: switching from enteric coating release into biphasic profiles.

    PubMed

    Taha, Mutasem O; Nasser, Wissam; Ardakani, Adel; Alkhatib, Hatim S

    2008-02-28

    The aim of this research is to investigate the effects of sodium lauryl sulfate (SLS) on ionotropically cross-linked alginate beads. Different levels of SLS were mixed with sodium alginate and chlorpheniramine maleate (as loaded model drug). The resulting viscous solutions were dropped onto aqueous solutions of zinc or calcium ions for ionotropic curing. The generated beads were assessed by their drug releasing profiles, infrared and differential scanning colorimetery (DSC) traits. SLS was found to exert profound concentration-dependent impacts on the characteristics of zinc-crosslinked alginate beads such that moderate modifications in the levels of SLS switched drug release from enteric coating-like behavior to a biphasic release modifiable to sustained-release by the addition of minute amounts of xanthan gum. Calcium cross-linking failed to reproduce the same behavior, probably due to the mainly ionic nature of calcium-carboxylate bonds compared to the coordinate character of their zinc-carboxylate counterparts. Apparently, moderate levels of SLS repel water penetration into the beads, and therefore minimize chlorpheniramine release. However, higher SLS levels seem to discourage polymeric cross-linking and therefore allow biphasic drug release.

  18. Self-Healing Natural Rubber with Tailorable Mechanical Properties Based on Ionic Supramolecular Hybrid Network.

    PubMed

    Xu, Chuanhui; Cao, Liming; Huang, Xunhui; Chen, Yukun; Lin, Baofeng; Fu, Lihua

    2017-08-30

    In most cases, the strength of self-healing supramolecular rubber based on noncovalent bonds is in the order of KPa, which is a challenge for their further applications. Incorporation of conventional fillers can effectively enhance the strength of rubbers, but usually accompanied by a sacrifice of self-healing capability due to that the filler system is independent of the reversible supramolecular network. In the present work, in situ reaction of methacrylic acid (MAA) and excess zinc oxide (ZnO) was realized in natural rubber (NR). Ionic cross-links in NR matrix were obtained by limiting the covalent cross-linking of NR molecules and allowing the in situ polymerization of MAA/ZnO. Because of the natural affinity between Zn 2+ ion-rich domains and ZnO, the residual nano ZnO participated in formation of a reversible ionic supramolecular hybrid network, thus having little obstructions on the reconstruction of ionic cross-links. Meanwhile, the well dispersed residual ZnO could tailor the mechanical properties of NR by changing the MAA/ZnO molar ratios. The present study thus provides a simple method to fabricate a new self-healing NR with tailorable mechanical properties that may have more potential applications.

  19. A direct comparison between gas state and atomised liquid state precursor in the deposition of functional coatings by pin corona plasma

    NASA Astrophysics Data System (ADS)

    Herbert, P. A. F.; Jaroszyńska-Wolińska, J.

    2011-07-01

    An atmospheric pressure non-thermal equilibrium pin corona plasma jet was used to deposit polymeric coatings from monomer precursor in both vapour and liquid aerosol states to allow a direct comparison of the quality and performance of the as-deposited coatings, specifically with respect to the achievement of soft plasma polymerisation (SPP) where the coating exhibits minimal fragmentation or damage to the monomer molecule while, at the same time, being highly cross-linked. A long chain perfluorocarbon molecule was introduced into the helium plasma and coatings deposited at rates of up to 50 nm/min. XPS, FTIR, contact angle and ellipsometric measurements indicated that a controlled polymerisation reaction had taken place in the case of the vapour deposited samples through the vinyl group of the monomer, with only minor fragmentation of the functional perfluoro chain. Furthermore, a high level of cross-linking was achieved and the coatings were stable to a toluene wash. In contrast, while the liquid deposition samples showed good retention of monomer molecular structure, they exhibited negligible cross-linking and were readily removed by immersion in toluene rendering them functionally useless.

  20. Highly efficient method towards in situ immobilization of invertase using cryogelation.

    PubMed

    Olcer, Zehra; Ozmen, Mehmet Murat; Sahin, Zeynep M; Yilmaz, Faruk; Tanriseven, Aziz

    2013-12-01

    A novel method was developed for the immobilization of Saccharomyces cerevisiae invertase within supermacroporous polyacrylamide cryogel and was used to produce invert sugar. First, the cross-linking of invertase with soluble polyglutaraldehyde (PGA) was carried out prior to immobilization in order to increase the bulkiness of invertase and thus preventing the leakage of the cross-linked enzyme after immobilization by entrapment. And then, in situ immobilization of PGA cross-linked invertase within cryogel synthesis was achieved by free radical polymerization in semi-frozen state. The method resulted in 100 % immobilization and 74 % activity yields. The immobilized invertase retained all the initial activity for 30 days and 30 batch reactions. Immobilization had no effect on optimum temperature and it was 60 °C for both free and immobilized enzyme. However, optimum pH was affected upon immobilization. Optimum pH values for free and immobilized enzyme were 4.5 and 5.0, respectively. The immobilized enzyme was more stable than the free enzyme at high pH and temperatures. The kinetic parameters for free and immobilized invertase were also determined. The newly developed method is simple yet effective and could be used for the immobilization of some other enzymes and microorganisms.

  1. Rigid Origami via Optical Programming and Deferred Self-Folding of a Two-Stage Photopolymer.

    PubMed

    Glugla, David J; Alim, Marvin D; Byars, Keaton D; Nair, Devatha P; Bowman, Christopher N; Maute, Kurt K; McLeod, Robert R

    2016-11-02

    We demonstrate the formation of shape-programmed, glassy origami structures using a single-layer photopolymer with two mechanically distinct phases. The latent origami pattern consisting of rigid, high cross-link density panels and flexible, low cross-link density creases is fabricated using a series of photomask exposures. Strong optical absorption of the polymer formulation creates depth-wise gradients in the cross-link density of the creases, enforcing directed folding which enables programming of both mountain and valley folds within the same sheet. These multiple photomask patterns can be sequentially applied because the sheet remains flat until immersed into a photopolymerizable monomer solution that differentially swells the polymer to fold and form the origami structure. After folding, a uniform photoexposure polymerizes the absorbed solution, permanently fixing the shape of the folded structure while simultaneously increasing the modulus of the folds. This approach creates sharp folds by mimicking the stiff panels and flexible creases of paper origami while overcoming the traditional trade-off of self-actuated materials that require low modulus for folding and high modulus for mechanical robustness. Using this process, we demonstrate a waterbomb base capable of supporting 1500 times its own weight.

  2. Transition-metal-ion-mediated polymerization of dopamine: mussel-inspired approach for the facile synthesis of robust transition-metal nanoparticle-graphene hybrids.

    PubMed

    Yang, Liping; Kong, Junhua; Zhou, Dan; Ang, Jia Ming; Phua, Si Lei; Yee, Wu Aik; Liu, Hai; Huang, Yizhong; Lu, Xuehong

    2014-06-16

    Inspired by the high transition-metal-ion content in mussel glues, and the cross-linking and mechanical reinforcement effects of some transition-metal ions in mussel threads, high concentrations of nickel(II), cobalt(II), and manganese(II) ions have been purposely introduced into the reaction system for dopamine polymerization. Kinetics studies were conducted for the Ni(2+)-dopamine system to investigate the polymerization mechanism. The results show that the Ni(2+) ions could accelerate the assembly of dopamine oligomers in the polymerization process. Spectroscopic and electron microscopic studies reveal that the Ni(2+) ions are chelated with polydopamine (PDA) units, forming homogeneous Ni(2+)-PDA complexes. This facile one-pot approach is utilized to construct transition-metal-ion-PDA complex thin coatings on graphene oxide, which can be carbonized to produce robust hybrid nanosheets with well-dispersed metallic nickel/metallic cobalt/manganese(II) oxide nanoparticles embedded in PDA-derived thin graphitic carbon layers. The nickel-graphene hybrid prepared by using this approach shows good catalytic properties and recyclability for the reduction of p-nitrophenol. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Mechanics of responsive polymers via conformationally switchable molecules

    NASA Astrophysics Data System (ADS)

    Brighenti, Roberto; Artoni, Federico; Vernerey, Franck; Torelli, Martina; Pedrini, Alessandro; Domenichelli, Ilaria; Dalcanale, Enrico

    2018-04-01

    Active materials are those capable of giving some physical reaction under external stimuli coming from the environment such as temperature, pH, light, mechanical stress, etc. Reactive polymeric materials can be obtained through the introduction of switchable molecules in their network, i.e. molecules having two distinct stable conformations: if properly linked to the hosting polymer chains, the switching from one state to the other can promote a mechanical reaction of the material, detectable at the macroscale, and thus enables us to tune the response according to a desired functionality. In the present paper, the main aspects of the mechanical behavior of polymeric materials with embedded switchable molecules-properly linked to the polymer's chains-are presented and discussed. Starting from the micro mechanisms occurring in such active material, a continuum model is developed, providing a straightforward implementation in computational approaches. Finally, some experimental outcomes related to a switchable molecules (known as quinoxaline cavitands) added to an elastomeric PDMS under chemical stimuli, are presented and quantitatively discussed through the use of the developed mechanical framework.

  4. Controlled Shape Memory Behavior of a Smectic Main-Chain Liquid Crystalline Elastomer

    DOE PAGES

    Li, Yuzhan; Pruitt, Cole; Rios, Orlando; ...

    2015-04-10

    Here, we describe how a smectic main-chain liquid crystalline elastomer (LCE), with controlled shape memory behavior, is synthesized by polymerizing a biphenyl-based epoxy monomer with an aliphatic carboxylic acid curing agent. Microstructures of the LCEs, including their liquid crystallinity and cross-linking density, are modified by adjusting the stoichiometric ratio of the reactants to tailor the thermomechanical properties and shape memory behavior of the material. Thermal and liquid crystalline properties of the LCEs, characterized using differential scanning calorimetry and dynamic mechanical analysis, and structural analysis, performed using small-angle and wide-angle X-ray scattering, show that liquid crystallinity, cross-linking density, and network rigiditymore » are strongly affected by the stoichiometry of the curing reaction. With appropriate structural modifications it is possible to tune the thermal, dynamic mechanical, and thermomechanical properties as well as the shape memory and thermal degradation behavior of LCEs.« less

  5. Controlled Shape Memory Behavior of a Smectic Main-Chain Liquid Crystalline Elastomer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yuzhan; Pruitt, Cole; Rios, Orlando

    Here, we describe how a smectic main-chain liquid crystalline elastomer (LCE), with controlled shape memory behavior, is synthesized by polymerizing a biphenyl-based epoxy monomer with an aliphatic carboxylic acid curing agent. Microstructures of the LCEs, including their liquid crystallinity and cross-linking density, are modified by adjusting the stoichiometric ratio of the reactants to tailor the thermomechanical properties and shape memory behavior of the material. Thermal and liquid crystalline properties of the LCEs, characterized using differential scanning calorimetry and dynamic mechanical analysis, and structural analysis, performed using small-angle and wide-angle X-ray scattering, show that liquid crystallinity, cross-linking density, and network rigiditymore » are strongly affected by the stoichiometry of the curing reaction. With appropriate structural modifications it is possible to tune the thermal, dynamic mechanical, and thermomechanical properties as well as the shape memory and thermal degradation behavior of LCEs.« less

  6. Synthesis and Properties of Cross-Linked Polyamide Aerogels

    NASA Technical Reports Server (NTRS)

    Williams, Jarrod C.; Meador, Mary Ann; McCorkle, Linda

    2015-01-01

    We report the first synthesis of cross-linked polyamide aerogels through step growth polymerization using a combination of diamines, diacid chloride and triacid chloride. Polyamide oligomers endcapped with amines are prepared as stable solutions in N-methylpyrrolidinone from several different diamine precursors and 1,3-benzenedicarbonyl dichloride. Addition of 1,3,5-benzenetricarbonyl trichloride yields gels which form in under five minutes according to the scheme shown. Solvent exchange of the gels into ethanol, followed by drying using supercritical CO2 extraction gives colorless aerogels with densities around 0.1 to 0.2 gcm3. Thicker monolithes of the polyamide aerogels are stiff and strong, while thin films of certain formulations are highly flexible, durable, and even translucent. These materials may have use as insulation for deployable space structures, rovers, habitats or extravehicular activity suits as well as in many terrestrial applications. Strucure property relationships of the aerogels, including surface area, mechanical properties, and thermal conductivity will be discussed.

  7. Single- and double-ion type cross-linked polysiloxane solid electrolytes for lithium cells

    NASA Astrophysics Data System (ADS)

    Tsutsumi, Hiromori; Yamamoto, Masahiro; Morita, Masayuki; Matsuda, Yoshiharu; Nakamura, Takashi; Asai, Hiroyuki

    Polymeric solid electrolytes, that have poly(dimethylsiloxane) (PMS) backbone and cross-linked network, were applied to a rechargeable lithium battery system. Single- (PMS-Li) and double-ion type (PMS-LiClO 4) electrolytes were prepared from the same prepolymers. Lithium electrode in the both electrolytes showed reversible stripping and deposition of lithium. Intercalation and deintercalation processes of lithium ion between lithium-manganese composite oxide (Li xMnO 2) electrode and the electrolytes were also confirmed by cyclic voltammetry, however, peak current decreased with several cycles in both cases. The model cell, Li/PMS-Li/Li xMnO 2 cell had 1.4 mA h g -1 (per 1 g of active material, current density: 3.77 μA cm -2), and the Li/PMS-LiClO 4/Li xMnO 2 cell had 1.6 mA h g -1 (current density: 75.3 μA cm -2).

  8. Novel soy protein wound dressings with controlled antibiotic release: mechanical and physical properties.

    PubMed

    Peles, Zachi; Zilberman, Meital

    2012-01-01

    Naturally derived materials are becoming widely used in the biomedical field. Soy protein has advantages over various types of natural proteins employed for biomedical applications due to its low price, non-animal origin and relatively long storage time and stability. In the current study soy protein isolate (SPI) was investigated as a matrix for wound dressing applications. The antibiotic drug gentamicin was incorporated into the matrix for local controlled release and, thus, protection against bacterial infection. Homogeneous yellowish films were cast from aqueous solutions. After cross-linking they combined high tensile strength and Young's modulus with the desired ductility. The plasticizer type, cross-linking agent and method of cross-linking were found to strongly affect the tensile properties of the SPI films. Selected SPI films were tested for relevant physical properties and the gentamicin release profile. The cross-linking method affected the degree of water uptake and the weight loss profile. The water vapor transmission rate of the films was in the desired range for wound dressings (∼2300 g m(-2) day(-1)) and was not affected by the cross-linking method. The gentamicin release profile exhibited a moderate burst effect followed by a decreasing release rate which was maintained for at least 4 weeks. Diffusion was the dominant release mechanism of gentamicin from cross-linked SPI films. Appropriate selection of the process parameters yielded SPI wound dressings with the desired mechanical and physical properties and drug release behavior to protect against bacterial infection. These unique structures are thus potentially useful as burn and ulcer dressings. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Intraindividual variability in cognitive performance in three groups of older adults: cross-domain links to physical status and self-perceived affect and beliefs.

    PubMed

    Strauss, Esther; MacDonald, Stuart W S; Hunter, Michael; Moll, Alex; Hultsch, David F

    2002-11-01

    Intraindividual variability of physical status and affect/beliefs as well as their relations with cognition were examined in 3 groups of older adults: healthy elderly, individuals with a nonneurological health-related disturbance (arthritis) and people with neurological compromise (dementia). The findings showed that greater inconsistency in physical performance was observed in groups characterized by central nervous system dysfunction. By contrast, fluctuations in affect appeared to reflect other more transient sources, such as pain. In general, increased inconsistency in non-cognitive domains was associated with poorer cognitive function. There were cross-domain links between inconsistency in physical functioning and fluctuations in cognitive performance, although the nature of the links depended largely upon the neurological status of the individuals. Considered together, the result indicated that measures of cognitive as well as physical variability are important behavioral markers of neurological integrity.

  10. Neuron cells uptake of polymeric microcapsules and subsequent intracellular release.

    PubMed

    Pavlov, Anton M; Sapelkin, Andrei V; Huang, Xinyue; P'ng, Ken M Y; Bushby, Andy J; Sukhorukov, Gleb B; Skirtach, André G

    2011-06-14

    Neuron cells uptake of biodegradable and synthetic polymeric microcapsules functionalized with aggregates of gold nanoparticles incorporated into their shells is demonstrated in situ. In addition to traditionally used optical microscopy, electron microscopy is used both for higher-resolution imaging and for confirming the uptake by focused ion beam cross-sectioning of specific cells in situ. Subsequently, physical methods of release are compared to chemical methods wherein laser-induced intracellular release of dextran molecules into the cytosol of hippocampal neuron cells is studied in comparison to biodegradation. Implications of this work for neuroscience, bio-medicine and single cell studies are discussed. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Curvature and torsion in growing actin networks

    NASA Astrophysics Data System (ADS)

    Shaevitz, Joshua W.; Fletcher, Daniel A.

    2008-06-01

    Intracellular pathogens such as Listeria monocytogenes and Rickettsia rickettsii move within a host cell by polymerizing a comet-tail of actin fibers that ultimately pushes the cell forward. This dense network of cross-linked actin polymers typically exhibits a striking curvature that causes bacteria to move in gently looping paths. Theoretically, tail curvature has been linked to details of motility by considering force and torque balances from a finite number of polymerizing filaments. Here we track beads coated with a prokaryotic activator of actin polymerization in three dimensions to directly quantify the curvature and torsion of bead motility paths. We find that bead paths are more likely to have low rather than high curvature at any given time. Furthermore, path curvature changes very slowly in time, with an autocorrelation decay time of 200 s. Paths with a small radius of curvature, therefore, remain so for an extended period resulting in loops when confined to two dimensions. When allowed to explore a three-dimensional (3D) space, path loops are less evident. Finally, we quantify the torsion in the bead paths and show that beads do not exhibit a significant left- or right-handed bias to their motion in 3D. These results suggest that paths of actin-propelled objects may be attributed to slow changes in curvature, possibly associated with filament debranching, rather than a fixed torque.

  12. Gel-forming reagents and uses thereof for preparing microarrays

    DOEpatents

    Golova, Julia; Chernov, Boris; Perov, Alexander

    2010-11-09

    New gel-forming reagents including monomers and cross-linkers, which can be applied to gel-drop microarray manufacturing by using co-polymerization approaches are disclosed. Compositions for the preparation of co-polymerization mixtures with new gel-forming monomers and cross-linker reagents are described herein. New co-polymerization compositions and cross-linkers with variable length linker groups between unsaturated C.dbd.C bonds that participate in the formation of gel networks are disclosed.

  13. Degradable Hydrogels and Nanogels for the Delivery of Cells and Therapeutics

    NASA Astrophysics Data System (ADS)

    Boehnke, Natalie

    Degradable polymeric materials such as hydrogels are extensively utilized as delivery vehicles due to their biocompatibility and tunable properties. Encapsulating therapeutic agents inside hydrogels stabilizes the cargo by preventing degradation, extending circulation time, and also allows for targeted release and delivery. Due to their small size and tunable properties, nano-scale hydrogels, or nanogels, are frequently utilized to deliver therapeutics to areas difficult to reach, such as tumors and the cytoplasm, through traditional means. To control hydro- and nanogel function, degradable cross-links can be installed, allowing for cargo release in response to specific stimuli, such as hydrolysis or reduction. This dissertation offers three degradable strategies that can be applied to synthesize hydrogels and nanogels for the stabilization and release of therapeutic cargo. In the first example, mixed imine cross-linking chemistry was applied to synthesize poly(ethylene glycol) (PEG)-based hydrogels with tunable degradability to encapsulate and deliver cells. Time to degradation of the gels could be controlled from 24 hours to more than 7 days by varying the hydrazone structure and the ratio of hydrazone and oxime cross-links. Encapsulated cells exhibited high viability up to at least 7 days, suggesting this system may be useful for cell delivery applications. In the second example, disulfide cross-links were utilized to form redox-responsive nanogels comprised of trehalose copolymers. The synthesis of a methacrylate trehalose monomer (TrMA) was optimized, improving the overall yield from 14% to 42%. TrMA was subsequently copolymerized with pyridyl disulfide ethyl methacrylate (PDSMA) using free radical polymerization conditions to form copolymers with two monomer ratios (1:1 and 2:1) which were cross-linked with 1 kDa PEG-dithiol via disulfide exchange to form uniform nanogels approximately 9 nm in diameter. The addition of a cross-linker eliminated the need to add reducing agent to facilitate cross-linking and nanogel formation, making this approach ideal for the encapsulation of sensitive therapeutic agents. Next, PDSMA-co-TrMA nanogels were utilized to encapsulate, stabilize, and release glucagon, an unstable peptide hormone used to treat hypoglycemia. The amines on glucagon were modified with thiol groups while retaining their positive charges for reversible conjugation and cross-linking. Glucagon-nanogel conjugates were synthesized with >80% conjugation yield, and the reversible disulfide linkage between peptide and polymer allowed for efficient cargo release under mild reducing conditions. The nanogels stabilized glucagon against aggregation in solution up to five days as well as solubilized the peptide at neutral pH. In vitro bioactivity of the modified peptide was found to be comparable to native glucagon, suggesting this may be a promising formulation strategy for further in vivo study. Finally, a series of dual-enzyme responsive peptides was synthesized by masking the epsilon-amine of lysine with protease substrates. After unmasking the amine by enzymatic cleavage, a second enzyme was able to cleave at the C terminus of lysine, which was monitored colorimetrically. Three different dual-enzyme responsive peptides were prepared, (AcAAF)K-pNA, (AcFG)K-pNA, and (AcDEVD)K-pNA, for chymotrypsin, papain, and caspase 3 sensitivity, respectively, followed by trypsin sensitivity after cleavage by the first enzyme. This modular peptide design could be useful for selective drug delivery, studies on dual enzyme activity, as well as for diagnostic enzyme screening.

  14. Interactions of histatin-3 and histatin-5 with actin.

    PubMed

    Blotnick, Edna; Sol, Asaf; Bachrach, Gilad; Muhlrad, Andras

    2017-03-06

    Histatins are histidine rich polypeptides produced in the parotid and submandibular gland and secreted into the saliva. Histatin-3 and -5 are the most important polycationic histatins. They possess antimicrobial activity against fungi such as Candida albicans. Histatin-5 has a higher antifungal activity than histatin-3 while histatin-3 is mostly involved in wound healing in the oral cavity. We found that these histatins, like other polycationic peptides and proteins, such as LL-37, lysozyme and histones, interact with extracellular actin. Histatin-3 and -5 polymerize globular actin (G-actin) to filamentous actin (F-actin) and bundle F-actin filaments. Both actin polymerization and bundling by histatins is pH sensitive due to the high histidine content of histatins. In spite of the equal number of net positive charges and histidine residues in histatin-3 and -5, less histatin-3 is needed than histatin-5 for polymerization and bundling of actin. The efficiency of actin polymerization and bundling by histatins greatly increases with decreasing pH. Histatin-3 and -5 induced actin bundles are dissociated by 100 and 50 mM NaCl, respectively. The relatively low NaCl concentration required to dissociate histatin-induced bundles implies that the actin-histatin filaments bind to each other mainly by electrostatic forces. The binding of histatin-3 to F-actin is stronger than that of histatin-5 showing that hydrophobic forces have also some role in histatin-3- actin interaction. Histatins affect the fluorescence of probes attached to the D-loop of G-actin indicating histatin induced changes in actin structure. Transglutaminase cross-links histatins to actin. Competition and limited proteolysis experiments indicate that the main histatin cross-linking site on actin is glutamine-49 on the D-loop of actin. Both histatin-3 and -5 interacts with actin, however, histatin 3 binds stronger to actin and affects actin structure at lower concentration than histatin-5 due to the extra 8 amino acid sequence at the C-terminus of histatin-3. Extracellular actin might regulate histatin activity in the oral cavity, which should be the subject of further investigation.

  15. Multi-functional Textiles for Military Applications

    NASA Astrophysics Data System (ADS)

    Malshe, Priyadarshini

    The objective of this research was to develop the standard rip-stop weave military uniform fabric made of 50/50 nylon/cotton (NyCo) to achieve a repellent front surface and an antibacterial bulk for protection from chemical-biological warfare agents. Diallyldimethylammonium chloride (DADMAC), a quaternary ammonium salt monomer was graft polymerized on NyCo fabric to impart antimicrobial capability using atmospheric pressure glow discharge plasma. Plasma was used to induce free radical chain polymerization of the DADMAC monomer to introduce a graft polymerized network on the fabric with durable antimicrobial properties. Pentaerythritol tertraacrylate was used as a cross-linking agent to obtain a highly cross-linked, durable polymer network. The presence of polyDADMAC on the fabric surface was confirmed using acid dye staining, SEM, and TOF-SIMS. Antibacterial performance was evaluated using standard AATCC test method 100 for both gram positive and gram negative bacteria. Results showed 99.9% reduction in the bacterial activities of K. pneumoniae and S. aureus. To achieve repellency on NyCo front surface, an environmentally benign C6 fluorocarbon monomer, 2-(perfluorohexyl) ethyl acrylate was graft polymerized using plasma on the front surface of the NyCo fabric which was already grafted with polyDADMAC for anti-microbial properties. The surface was characterized by IR spectroscopy and XPS. The presence of fluorine on the surface was mapped and confirmed by TOF-SIMS. SEM images showed a uniform layer of fluorocarbon polymer on the fiber surface. High water contact angle of 144° was obtained on the surface. The surface also achieved a high AATCC Test Method 193 rating of 9 and AATCC Test Method 118 rating of 5, indicating that the surface could repel a fluid with surface tension as low as 24 dynes/cm. Appropriate experimental designs and statistical modeling of data helped identify the experimental space and optimal factor combinations for best response. The study helped create a multi-functional fabric with an anti-bacterial bulk, hydrophilic back surface and repellent front surface for enhanced protective and aesthetic values.

  16. Catalytic molecularly imprinted polymer membranes: development of the biomimetic sensor for phenols detection.

    PubMed

    Sergeyeva, T A; Slinchenko, O A; Gorbach, L A; Matyushov, V F; Brovko, O O; Piletsky, S A; Sergeeva, L M; Elska, G V

    2010-02-05

    Portable biomimetic sensor devices for the express control of phenols content in water were developed. The synthetic binding sites mimicking active site of the enzyme tyrosinase were formed in the structure of free-standing molecularly imprinted polymer membranes. Molecularly imprinted polymer membranes with the catalytic activity were obtained by co-polymerization of the complex Cu(II)-catechol-urocanic acid ethyl ester with (tri)ethyleneglycoldimethacrylate, and oligourethaneacrylate. Addition of the elastic component oligourethaneacrylate provided formation of the highly cross-linked polymer with the catalytic activity in a form of thin, flexible, and mechanically stable membrane. High accessibility of the artificial catalytic sites for the interaction with the analyzed phenol molecules was achieved due to addition of linear polymer (polyethyleneglycol Mw 20,000) to the initial monomer mixture before the polymerization. As a result, typical semi-interpenetrating polymer networks (semi-IPNs) were formed. The cross-linked component of the semi-IPN was represented by the highly cross-linked catalytic molecularly imprinted polymer, while the linear one was represented by polyethyleneglycol Mw 20,000. Extraction of the linear polymer from the fully formed semi-IPN resulted in formation of large pores in the membranes' structure. Concentration of phenols in the analyzed samples was detected using universal portable device oxymeter with the oxygen electrode in a close contact with the catalytic molecularly imprinted polymer membrane as a transducer. The detection limit of phenols detection using the developed sensor system based on polymers-biomimics with the optimized composition comprised 0.063 mM, while the linear range of the sensor comprised 0.063-1 mM. The working characteristics of the portable sensor devices were investigated. Storage stability of sensor systems at room temperature comprised 12 months (87%). As compared to traditional methods of phenols detection the developed sensor system is characterized by simplicity of operation, compactness, and low cost. Copyright 2009 Elsevier B.V. All rights reserved.

  17. How actin binds and assembles onto plasma membranes from Dictyostelium discoideum

    PubMed Central

    1988-01-01

    We have shown previously (Schwartz, M. A., and E. J. Luna. 1986. J. Cell Biol. 102: 2067-2075) that actin binds with positive cooperativity to plasma membranes from Dictyostelium discoideum. Actin is polymerized at the membrane surface even at concentrations well below the critical concentration for polymerization in solution. Low salt buffer that blocks actin polymerization in solution also prevents actin binding to membranes. To further explore the relationship between actin polymerization and binding to membranes, we prepared four chemically modified actins that appear to be incapable of polymerizing in solution. Three of these derivatives also lost their ability to bind to membranes. The fourth derivative (EF actin), in which histidine-40 is labeled with ethoxyformic anhydride, binds to membranes with reduced affinity. Binding curves exhibit positive cooperativity, and cross- linking experiments show that membrane-bound actin is multimeric. Thus, binding and polymerization are tightly coupled, and the ability of these membranes to polymerize actin is dramatically demonstrated. EF actin coassembles weakly with untreated actin in solution, but coassembles well on membranes. Binding by untreated actin and EF actin are mutually competitive, indicating that they bind to the same membrane sites. Hill plots indicate that an actin trimer is the minimum assembly state required for tight binding to membranes. The best explanation for our data is a model in which actin oligomers assemble by binding to clustered membrane sites with successive monomers on one side of the actin filament bound to the membrane. Individual binding affinities are expected to be low, but the overall actin-membrane avidity is high, due to multivalency. Our results imply that extracellular factors that cluster membrane proteins may create sites for the formation of actin nuclei and thus trigger actin polymerization in the cell. PMID:3392099

  18. Peripherally cross-linking the shell of core-shell polymer micelles decreases premature release of physically loaded combretastatin A4 in whole blood and increases its mean residence time and subsequent potency against primary murine breast tumors after IV administration.

    PubMed

    Wakaskar, Rajesh R; Bathena, Sai Praneeth R; Tallapaka, Shailendra B; Ambardekar, Vishakha V; Gautam, Nagsen; Thakare, Rhishikesh; Simet, Samantha M; Curran, Stephen M; Singh, Rakesh K; Dong, Yuxiang; Vetro, Joseph A

    2015-03-01

    Determine the feasibility and potential benefit of peripherally cross-linking the shell of core-shell polymer micelles on the premature release of physically loaded hydrophobic drug in whole blood and subsequent potency against solid tumors. Individual Pluronic F127 polymer micelles (F127 PM) peripherally cross-linked with ethylenediamine at 76% of total PEO blocks (X-F127 PM) were physically loaded with combretastatin A4 (CA4) by the solid dispersion method and compared to CA4 physically loaded in uncross-linked F127 PM, CA4 in DMSO in vitro, or water-soluble CA4 phosphate (CA4P) in vivo. X-F127 PM had similar CA4 loading and aqueous solubility as F127 PM up to 10 mg CA4 / mL at 22.9 wt% and did not aggregate in PBS or 90% (v/v) human serum at 37°C for at least 24 h. In contrast, X-F127 PM decreased the unbound fraction of CA4 in whole blood (fu) and increased the mean plasma residence time and subsequent potency of CA4 against the vascular function and growth of primary murine 4T1 breast tumors over CA4 in F127 PM and water-soluble CA4P after IV administration. Given that decreasing the fu is an indication of decreased drug release, peripherally cross-linking the shell of core-shell polymer micelles may be a simple approach to decrease premature release of physically loaded hydrophobic drug in the blood and increase subsequent potency in solid tumors.

  19. E-beam-Cure Fabrication of Polymer Fiber/Matrix Composites for Multifunctional Radiation Shielding

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Jensen, Brian J.; Thibeault, Sheila A.; Hou, Tan-Hung; Saether, Erik; Glaessgen, Edward H.; Humes, Donald H.; Chang, Chie K.; Badavi, Francis F.; Kiefer, Rrichard L.; hide

    2004-01-01

    Aliphatic polymers were identified as optimum radiation polymeric shielding materials for building multifunctional structural elements. Conceptual damage-tolerant configurations of polyolefins have been proposed but many issues on the manufacture remain. In the present paper, we will investigate fabrication technologies with e-beam curing for inclusion of high-strength aliphatic polymer fibers into a highly cross-linked polyolefin matrix. A second stage of development is the fabrication methods for applying face sheets to aliphatic polymer closed-cell foams.

  20. Multichannel microscale system for high throughput preparative separation with comprehensive collection and analysis

    DOEpatents

    Karger, Barry L.; Kotler, Lev; Foret, Frantisek; Minarik, Marek; Kleparnik, Karel

    2003-12-09

    A modular multiple lane or capillary electrophoresis (chromatography) system that permits automated parallel separation and comprehensive collection of all fractions from samples in all lanes or columns, with the option of further on-line automated sample fraction analysis, is disclosed. Preferably, fractions are collected in a multi-well fraction collection unit, or plate (40). The multi-well collection plate (40) is preferably made of a solvent permeable gel, most preferably a hydrophilic, polymeric gel such as agarose or cross-linked polyacrylamide.

  1. Identification of Transglutaminase Reactive Residues in Human Osteopontin and Their Role in Polymerization

    PubMed Central

    Christensen, Brian; Zachariae, Elias D.; Scavenius, Carsten; Thybo, Morten; Callesen, Morten M.; Kløverpris, Søren; Oxvig, Claus; Enghild, Jan J.; Sørensen, Esben S.

    2014-01-01

    Osteopontin (OPN) is a highly posttranslationally modified protein present in several tissues where it is implicated in numerous physiological processes. OPN primarily exerts its functions through interaction with integrins via the Arg-Gly-Asp and Ser-Val-Val-Tyr-Gly-Leu-Arg sequences located in the N-terminal part of the protein. OPN can be polymerized by the cross-linking enzyme transglutaminase 2 (TG2), and polymerization has been shown to enhance the biological activity of OPN. However, little is known about the reactivity and location of the glutamine and lysine residues involved in the TG2-mediated modification of OPN. Here we show that TG2 catalyses the incorporation of 5-(Biotinamido)pentylamine at glutamines in both the N- and C-terminal parts of OPN, whereas TG2 primarily incorporated the glutamine-donor peptide biotinyl-TVQQEL-OH into the C-terminal part of OPN. By mass spectrometric analyses we identified Gln34, Gln42, Gln193 and Gln248 as the major TG2 reactive glutamines in OPN. The distribution of reactive Gln and Lys residues in OPN proved to be important, as the full-length protein but not the physiologically highly active integrin-binding N-terminal part of OPN were able to polymerize in a TG2-mediated reaction. Collectively, these data provide important new molecular knowledge about the mechanism of OPN polymerization. PMID:25419572

  2. On Healable Polymers and Fiber-Reinforced Composites

    NASA Astrophysics Data System (ADS)

    Nielsen, Christian Eric

    Polymeric materials capable of healing damage would be valuable in structural applications where access for repair is limited. Approaches to creating such materials are reviewed, with the present work focusing on polymers with thermally reversible covalent cross-links. These special cross-links are Diels-Alder (DA) adducts, which can be separated and re-formed, enabling healing of mechanical damage at the molecular level. Several DA-based polymers, including 2MEP4FS, are mechanically and thermally characterized. The polymerization reaction of 2MEP4FS is modeled and the number of established DA adducts is associated with the glass transition temperature of the polymer. The models are applied to concentric cylinder rotational measurements of 2MEP4FS prepolymer at room and elevated temperatures to describe the viscosity as a function of time, temperature, and conversion. Mechanical damage including cracks and scratches are imparted in cured polymer samples and subsequently healed. Damage due to high temperature thermal degradation is observed to not be reversible. The ability to repair damage without flowing polymer chains makes DA-based healable polymers particularly well-suited for crack healing. The double cleavage drilled compression (DCDC) fracture test is investigated as a useful method of creating and incrementally growing cracks in a sample. The effect of sample geometry on the fracture behavior is experimentally and computationally studied. Computational and empirical models are developed to estimate critical stress intensity factors from DCDC results. Glass and carbon fiber-reinforced composites are fabricated with 2MEP4FS as the matrix material. A prepreg process is developed that uses temperature to control the polymerization rate of the monomers and produce homogeneous prepolymer for integration with a layer of unidirectional fiber. Multiple prepreg layers are laminated to form multi-layered cross-ply healable composites, which are characterized in bending using dynamic mechanical analysis (DMA). Simple, theory-based analyses indicate that numerous cracks are present before testing due to thermal expansion mismatches, and during testing, these cracks must be healing. Extending healable composites to include healable fiber-matrix interfaces is discussed as future work and interfacial healing characterization approaches are considered.

  3. Semi-interpenetrating solid polymer electrolyte based on thiol-ene cross-linker for all-solid-state lithium batteries

    NASA Astrophysics Data System (ADS)

    Suk, Jungdon; Lee, Yu Hwa; Kim, Do Youb; Kim, Dong Wook; Cho, Song Yun; Kim, Ji Man; Kang, Yongku

    2016-12-01

    We developed highly promising solid polymer electrolytes (SPEs) based on a novel cross-linker containing star-shaped phosphazene with poly(ethylene oxide) (PEO) branches with very high ionic conductivity (7.6 × 10-4 S cm-1), improved mechanical stability, and good electrochemical stability for all-solid-state lithium batteries. In particular, allyl groups were introduced at the ends of the cross-linker in order to overcome the easy self-polymerization of existing cross-linking acrylate end groups. A novel semi-interpenetrating network (semi-IPN) SPE was prepared by in-situ radical polymerization of a precursor solution containing lithium salt, poly(ethylene glycol) dimethyl ether as a plasticizer, and a mixture of pentaerythritol tetrakis(3-mercaptopropionate) and a synthesized hexakis(allyloxy)cyclotriphosphazene (thiol-ene PAL) as the cross-linker. Batteries employing LiFePO4 as the cathode, lithium foil as the anode, and the SPE thin film as the electrolyte were assembled and tested. At ambient temperature, the initial discharge capacity was 147 mAh/g at 0.1 °C and 132 mAh/g at 0.5 °C, and 97% of the capacity was retained at the 100th cycle. All-solid-state pouch-package lithium cells assembled with the SPEs exhibited stable electrochemical performance, even under a severely wrinkled state. These outstanding properties of SPEs based on thiol-ene PAL demonstrate feasibility for practical battery applications with improved reliability and safety.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Lingxiang; Omid, Maryam; Lin, Haiqing

    Cross-linking has been widely utilized to modify polyimide nanostructures for membrane gas separations, such as increasing size sieving ability and diffusivity selectivity for H2/CO2 and CO2/CH4 separation, and improving resistance to plasticization derived from CO2 and heavy hydrocarbons for CO2/CH4 and C3H6/C3H8 separations. However, there is a lack of fundamental understanding of the relationship between cross linked structure and membrane gas separation properties. This chapter critically reviews the effect of cross linking on polymer physical properties (such as glass transition temperature, Tg), and current strategies adopted to cross link polyimides for membrane gas separation. The information is synthesized to elucidatemore » the effect of cross linking on Tg and cross linking density in polyimides, which is then used to interpret the changes of gas permeability and selectivity. The benefits of cross linking in improving gas separation properties are also illustrated in Robeson’s upper bound plots for H2/CO2, CO2/CH4 and C3H6/C3H8 separation.« less

  5. Polythioether Particles Armored with Modifiable Graphene Oxide Nanosheets.

    PubMed

    Rodier, Bradley J; Mosher, Eric P; Burton, Spencer T; Matthews, Rachael; Pentzer, Emily

    2016-06-01

    Facile and scalable fabrication methods are attractive to prepare materials for diverse applications. Herein, a method is presented to prepare cross-linked polymeric nanoparticles with graphene oxide (GO) nanosheets covalently attached to the surface. Alkene-modified GO serves as a surfactant in a miniemulsion polymerization, and the alkene functionalities of GO exposed to the oil-phase are incorporated into the polymer particle through thiol-ene reactions, leaving the unreacted alkene functional groups of the other face of GO available for further functionalization. The surface of GO-armored polymer particles is then modified with a small molecule fluorophore or carboxylic acid functional groups that bind to Fe2 O3 and TiO2 nanoparticles. This methodology provides a facile route to preparing complex hybrid composite materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Radiation-induced polymerization for the immobilization of penicillin acylase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boccu, E.; Carenza, M.; Lora, S.

    The immobilization of Escherichia coli penicillin acylase was investigated by radiation-induced polymerization of 2-hydroxyethyl methacrylate at low temperature. A leak-proof composite that does not swell in water was obtained by adding the cross-linking agent trimethylolpropane trimethacrylate to the monomer-aqueous enzyme mixture. Penicillin acylase, which was immobilized with greater than 70% yield, possessed a higher Km value toward the substrate 6-nitro-3-phenylacetamidobenzoic acid than the free enzyme form (Km = 1.7 X 10(-5) and 1 X 10(-5) M, respectively). The structural stability of immobilized penicillin acylase, as assessed by heat, guanidinium chloride, and pH denaturation profiles, was very similar to that ofmore » the free-enzyme form, thus suggesting that penicillin acylase was entrapped in its native state into aqueous free spaces of the polymer matrix.« less

  7. Tailoring Elastic Properties of Silica Aerogels Cross-Linked with Polystyrene

    NASA Technical Reports Server (NTRS)

    Nguyen, Baochau N.; Meador, Mary Ann B.; Tousley, Marissa E.; Shonkwiler, Brian; McCorkle, Linda; Scheiman, Daniel A.; Palczer, Anna

    2009-01-01

    The effect of incorporating an organic linking group, 1,6-bis(trimethoxysilyl)hexane (BTMSH), into the underlying silica structure of a styrene cross-linked silica aerogel is examined. Vinyltrimethoxysilane (VTMS) is used to provide a reactive site on the silica backbone for styrene polymerization. Replacement of up to 88 mol 1 of the silicon from tetramethoxyorthosilicate with silicon derived from BTMSH and VTMS during the making of silica gels improves the elastic behavior in some formulations of the crosslinked aerogels, as evidenced by measurement of the recovered length after compression of samples to 251 strain. This is especially true for some higher density formulations, which recover nearly 100% of their length after compression to 251 strain twice. The compressive modulus of the more elastic monoliths ranged from 0.2 to 3 MPa. Although some of these monoliths had greatly reduced surface areas, changing the solvent used to produce the gels from methanol to ethanol increased the surface area in one instance from 6 to 220 sq m2/g with little affect on the modulus, elastic recovery, porosity, or density.

  8. Zirconium oxocluster/polymer hybrid nanoparticles prepared by photoactivated miniemulsion copolymerization

    NASA Astrophysics Data System (ADS)

    Benedetti, Cesare; Flouda, Paraskevi; Antonello, Alice; Rosenauer, Christine; Pérez-Pla, Francisco F.; Landfester, Katharina; Gross, Silvia; Muñoz-Espí, Rafael

    2017-09-01

    The photoactivated free radical miniemulsion copolymerization of methyl methacrylate (MMA) and the zirconium oxocluster Zr4O2(methacrylate)12 is used as an effective and fast preparation method for polymer/inorganic hybrid nanoparticles. The oxoclusters, covalently anchored to the polymer network, act as metal-organic cross-linkers, thus improving the thermomechanical properties of the resulting hybrid nanoparticles. Benzoin carbonyl organic compounds were used as photoinitiators. The obtained materials are compared in terms of cross-linking, effectiveness of cluster incorporation, and size distribution with the analogous nanoparticles produced by using conventional thermally induced free radical miniemulsion copolymerization. The kinetics of the polymerization process in the absence and in the presence of the oxocluster is also investigated.

  9. Controlled molecular self-assembly of complex three-dimensional structures in soft materials

    PubMed Central

    Huang, Changjin; Quinn, David; Suresh, Subra

    2018-01-01

    Many applications in tissue engineering, flexible electronics, and soft robotics call for approaches that are capable of producing complex 3D architectures in soft materials. Here we present a method using molecular self-assembly to generate hydrogel-based 3D architectures that resembles the appealing features of the bottom-up process in morphogenesis of living tissues. Our strategy effectively utilizes the three essential components dictating living tissue morphogenesis to produce complex 3D architectures: modulation of local chemistry, material transport, and mechanics, which can be engineered by controlling the local distribution of polymerization inhibitor (i.e., oxygen), diffusion of monomers/cross-linkers through the porous structures of cross-linked polymer network, and mechanical constraints, respectively. We show that oxygen plays a role in hydrogel polymerization which is mechanistically similar to the role of growth factors in tissue growth, and the continued growth of hydrogel enabled by diffusion of monomers/cross-linkers into the porous hydrogel similar to the mechanisms of tissue growth enabled by material transport. The capability and versatility of our strategy are demonstrated through biomimetics of tissue morphogenesis for both plants and animals, and its application to generate other complex 3D architectures. Our technique opens avenues to studying many growth phenomena found in nature and generating complex 3D structures to benefit diverse applications. PMID:29255037

  10. Synthesis of controlled polymeric cross-linked coatings via iniferter polymerisation in the presence of tetraethyl thiuram disulphide chain terminator.

    PubMed

    Bossi, A; Whitcombe, M J; Uludag, Y; Fowler, S; Chianella, I; Subrahmanyam, S; Sanchez, I; Piletsky, S A

    2010-05-15

    A "grafting from" approach has been used for controlled deposition of cross-linked polymers by living radical polymerisation. Borosilicate glass was modified with N,N-diethylaminodithiocarbamoylpropyl(trimethoxy)silane, in order to confine the iniferter reactive groups solely at its surface, then placed in solution with monomers and cross-linker. The polymerisation was initiated by UV irradiation. Formation of the cross-linked polymers was studied in terms of time course of the reaction, type of monomers incorporated and influence of oxygen. Grafted surfaces were characterised by AFM, FT-IR, ellipsometry and contact angle measurements. The ability to control the grafted layer improved dramatically when the chain terminator agent, N,N-N',N'-tetraethyl thiuram disulphide (TED) was added. Upon irradiation TED increases the concentration of passive capping radicals and decreases the possibility of recombination of active macro-radicals, thus prolonging their lifetime. In the absence of TED the thickness of produced coatings was below 10 nm. TED added at different concentrations assisted in the formation of grafted layers of 10-130 nm thickness. Iniferter chemistry in the presence of TED can be used for growing nanometre-scale polymer layers on solid supports. It constitutes a robust general platform for controlled grafting and offer a general solution to address the needs of surface derivatisation in sensors technology. 2010 Elsevier B.V. All rights reserved.

  11. Fabrication of elastomeric silk fibers.

    PubMed

    Bradner, Sarah A; Partlow, Benjamin P; Cebe, Peggy; Omenetto, Fiorenzo G; Kaplan, David L

    2017-09-01

    Methods to generate fibers from hydrogels, with control over mechanical properties, fiber diameter, and crystallinity, while retaining cytocompatibility and degradability, would expand options for biomaterials. Here, we exploited features of silk fibroin protein for the formation of tunable silk hydrogel fibers. The biological, chemical, and morphological features inherent to silk were combined with elastomeric properties gained through enzymatic crosslinking of the protein. Postprocessing via methanol and autoclaving provided tunable control of fiber features. Mechanical, optical, and chemical analyses demonstrated control of fiber properties by exploiting the physical cross-links, and generating double network hydrogels consisting of chemical and physical cross-links. Structure and chemical analyses revealed crystallinity from 30 to 50%, modulus from 0.5 to 4 MPa, and ultimate strength 1-5 MPa depending on the processing method. Fabrication and postprocessing combined provided fibers with extensibility from 100 to 400% ultimate strain. Fibers strained to 100% exhibited fourth order birefringence, revealing macroscopic orientation driven by chain mobility. The physical cross-links were influenced in part by the drying rate of fabricated materials, where bound water, packing density, and microstructural homogeneity influenced cross-linking efficiency. The ability to generate robust and versatile hydrogel microfibers is desirable for bottom-up assembly of biological tissues and for broader biomaterial applications. © 2017 Wiley Periodicals, Inc.

  12. Template-based preparation of free-standing semiconducting polymeric nanorod arrays on conductive substrates.

    PubMed

    Haberkorn, Niko; Weber, Stefan A L; Berger, Rüdiger; Theato, Patrick

    2010-06-01

    We describe the synthesis and characterization of a cross-linkable siloxane-derivatized tetraphenylbenzidine (DTMS-TPD), which was used for the fabrication of semiconducting highly ordered nanorod arrays on conductive indium tin oxide or Pt-coated substrates. The stepwise process allow fabricating of macroscopic areas of well-ordered free-standing nanorod arrays, which feature a high resistance against organic solvents, semiconducting properties and a good adhesion to the substrate. Thin films of the TPD derivate with good hole-conducting properties could be prepared by cross-linking and covalently attaching to hydroxylated substrates utilizing an initiator-free thermal curing at 160 degrees C. The nanorod arrays composed of cross-linked DTMS-TPD were fabricated by an anodic aluminum oxide (AAO) template approach. Furthermore, the nanorod arrays were investigated by a recently introduced method allowing to probe local conductivity on fragile structures. It revealed that more than 98% of the nanorods exhibit electrical conductance and consequently feature a good electrical contact to the substrate. The prepared nanorod arrays have the potential to find application in the fabrication of multilayered device architectures for building well-ordered bulk-heterojunction solar cells.

  13. Highly Conductive Ionic-Liquid Gels Prepared with Orthogonal Double Networks of a Low-Molecular-Weight Gelator and Cross-Linked Polymer.

    PubMed

    Kataoka, Toshikazu; Ishioka, Yumi; Mizuhata, Minoru; Minami, Hideto; Maruyama, Tatsuo

    2015-10-21

    We prepared a heterogeneous double-network (DN) ionogel containing a low-molecular-weight gelator network and a polymer network that can exhibit high ionic conductivity and high mechanical strength. An imidazolium-based ionic liquid was first gelated by the molecular self-assembly of a low-molecular-weight gelator (benzenetricarboxamide derivative), and methyl methacrylate was polymerized with a cross-linker to form a cross-linked poly(methyl methacrylate) (PMMA) network within the ionogel. Microscopic observation and calorimetric measurement revealed that the fibrous network of the low-molecular-weight gelator was maintained in the DN ionogel. The PMMA network strengthened the ionogel of the low-molecular-weight gelator and allowed us to handle the ionogel using tweezers. The orthogonal DNs produced ionogels with a broad range of storage elastic moduli. DN ionogels with low PMMA concentrations exhibited high ionic conductivity that was comparable to that of a neat ionic liquid. The present study demonstrates that the ionic conductivities of the DN and single-network, low-molecular-weight gelator or polymer ionogels strongly depended on their storage elastic moduli.

  14. One-pot synthesis of redox-responsive polymers-coated mesoporous silica nanoparticles and their controlled drug release.

    PubMed

    Sun, Jiao-Tong; Piao, Ji-Gang; Wang, Long-Hai; Javed, Mohsin; Hong, Chun-Yan; Pan, Cai-Yuan

    2013-09-01

    A versatile one-pot strategy for the preparation of reversibly cross-linked polymer-coated mesoporous silica nanoparticles (MSNs) via surface reversible addition-fragmentation chain transfer (RAFT) polymerization is presented for the first time in this paper. The less reactive monomer oligo(ethylene glycol) acrylate (OEGA) and the more reactive cross-linker N,N'-cystaminebismethacrylamide (CBMA) are chosen to be copolymerized on the external surfaces of RAFT agent-functionalized MSNs to form the cross-linked polymer shells. Owing to the reversible cleavage and restoration of disulfide bonds via reduction/oxidation reactions, the polymer shells can control the on/off switching of the nanopores and regulate the drug loading and release. The redox-responsive release of doxorubicin (DOX) from this drug carrier is realized. The protein adsorption, in vitro cytotoxicity assays, and endocytosis studies demonstrate that this biocompatible vehicle is a potential candidate for delivering drugs. It is expected that this versatile grafting strategy may help fabricate satisfying MSN-based drug delivery systems for clinical application. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Polymeric ionic liquid bucky gels as sorbent coatings for solid-phase microextraction.

    PubMed

    Zhang, Cheng; Anderson, Jared L

    2014-05-30

    Novel cross-linked polymeric ionic liquid (PIL) bucky gels were formed by free-radical polymerization of polymerizable ionic liquids gelled with multi-walled carbon nanotubes (MWCNT) and used as sorbent coatings for solid-phase microextraction (SPME). The combination of PIL with MWCNTs significantly enhanced the π-π interaction between the sorbent coatings and the aromatic analytes. Compared to the neat PIL-based sorbent coating, the PIL bucky gel sorbent coatings demonstrated higher extraction efficiency for the extraction of polycyclic aromatic hydrocarbons (PAHs). A partitioning extraction mechanism was observed for the PIL/MWCNT-based sorbent coatings indicating that the addition of MWCNTs did not seem to affect the extraction mechanism of the sorbent coating. The analyte-to-coating partition coefficients (logKfs) were estimated and the limits of detection (LOD) for selected PIL bucky gel sorbent coating were determined to be in the range of 1-2.5 ng L(-1). Recovery studies were also performed for PAHs in river and tap water to validate the applicability of the developed method. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Functionalized Polymeric Materials for Electronics and Optics

    DTIC Science & Technology

    1993-05-31

    some of the physical characteristics of the photocrosslinkable systems derived from a cinnamate functionalized NLO-dye and the photoreactive polymers...chromophore. Figure 12.12 is a UV-Vis spectrum of polyvinyl cinnamate film doped with 10% of the cross-linkable NLO azo dye CNNB-R. The spectrum for the poled...can be similarly prepared from aqueous solutions containing aniline and hydrochloric or sulfuric acids . A very useful review of synthetic methods for

  17. Degree of conversion and cross-link density within a resin-matrix composite.

    PubMed

    Al-Zain, Afnan O; Eckert, George J; Lukic, Henry; Megremis, Spiro J; Platt, Jeffrey A

    2018-05-01

    The aims of this study were to profile light radiated from two light-curing units (LCUs) and evaluate profile relationship to polymerization patterns within a resin-matrix composite (RMC). Beam profiles of one multiple emission peak light-emitting-diode and one quartz-tungsten-halogen curing-unit were measured using a beam profiler/spectrometer system. A camera-based profiler and an integrating sphere/spectrometer assembly were used to evaluate each LCU beam. Polymerization patterns within a nano-hybrid RMC were investigated using a mapping approach by assessing the degree of conversion utilizing micro-Raman spectroscopy and indirectly estimating cross-link-density by repeated microhardness testing before and after exposure to ethanol (%KH reduction, n = 3). The irradiance received on the top and bottom specimen surfaces from both LCUs was measured using a MARC-RC system. The investigated beam profile area from both LCUs was non-uniform and yielded localized discrepancies in DC (55.7-74.9%) and %KH reduction (26.7-54.1%). The LCU irradiance received at the bottom of the specimens was ∼10% of the top value. This study demonstrated that LCU beam profiles were non-uniform in the area explored. Localized differences in DC and %KH reduction existed throughout the RMC specimens but did not follow a specific pattern. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1496-1504, 2018. © 2017 Wiley Periodicals, Inc.

  18. Spontaneous stacking of purple membranes during immobilization with physical cross-linked poly(vinyl alcohol) hydrogel with retaining native-like functionality of bacteriorhodopsin

    NASA Astrophysics Data System (ADS)

    Yokoyama, Yasunori; Tanaka, Hikaru; Yano, Shunsuke; Takahashi, Hiroshi; Kikukawa, Takashi; Sonoyama, Masashi; Takenaka, Koshi

    2017-05-01

    We previously discovered the correlation between light-induced chromophore color change of a photo-receptor membrane protein bacteriorhodopsin (bR) and its two-dimensional crystalline state in the membrane. To apply this phenomenon to a novel optical memory device, it is necessary that bR molecules are immobilized as maintaining their structure and functional properties. In this work, a poly(vinyl alcohol) (PVA) hydrogel with physical cross-linkages (hydrogen bonds between PVA chains) that resulted from repeated freezing-and-thawing (FT) cycles was used as an immobilization medium. To investigate the effects of physically cross-linked PVA gelation on the structure and function of bR in purple membranes (PMs), spectroscopic techniques were employed against PM/PVA immobilized samples prepared with different FT cycle numbers. Visible circular dichroism spectroscopy strongly suggested PM stacking during gelation. X-ray diffraction data also indicated the PM stacking as well as its native-like crystalline lattice even after gelation. Time-resolved absorption spectroscopy showed that bR photocycle behaviors in PM/PVA immobilized samples were almost identical to that in suspension. These results suggested that a physically cross-linked PVA hydrogel is appropriate for immobilizing membrane proteins in terms of maintaining their structure and functionality.

  19. Nanoporous thermosetting polymers.

    PubMed

    Raman, Vijay I; Palmese, Giuseppe R

    2005-02-15

    Potential applications of nanoporous thermosetting polymers include polyelectrolytes in fuel cells, separation membranes, adsorption media, and sensors. Design of nanoporous polymers for such applications entails controlling permeability by tailoring pore size, structure, and interface chemistry. Nanoporous thermosetting polymers are often synthesized via free radical mechanisms using solvents that phase separate during polymerization. In this work, a novel technique for the synthesis of nanoporous thermosets is presented that is based on the reactive encapsulation of an inert solvent using step-growth cross-linking polymerization without micro/macroscopic phase separation. The criteria for selecting such a monomer-polymer-solvent system are discussed based on FTIR analysis, observed micro/macroscopic phase separation, and thermodynamics of swelling. Investigation of resulting network pore structures by scanning electron microscopy (SEM) and small-angle X-ray scattering following extraction and supercritical drying using carbon dioxide showed that nanoporous polymeric materials with pore sizes ranging from 1 to 50 nm can be synthesized by varying the solvent content. The differences in the porous morphology of these materials compared to more common free radically polymerized analogues that exhibit phase separation were evident from SEM imaging. Furthermore, it was demonstrated that the chemical activity of the nanoporous materials obtained by our method could be tailored by grafting appropriate functional groups at the pore interface.

  20. Novel synthesis and characterization of a collagen-based biopolymer initiated by hydroxyapatite nanoparticles.

    PubMed

    Bhuiyan, D; Jablonsky, M J; Kolesov, I; Middleton, J; Wick, T M; Tannenbaum, R

    2015-03-01

    In this study, we developed a novel synthesis method to create a complex collagen-based biopolymer that promises to possess the necessary material properties for a bone graft substitute. The synthesis was carried out in several steps. In the first step, a ring-opening polymerization reaction initiated by hydroxyapatite nanoparticles was used to polymerize d,l-lactide and glycolide monomers to form poly(lactide-co-glycolide) co-polymer. In the second step, the polymerization product was coupled with succinic anhydride, and subsequently was reacted with N-hydroxysuccinimide in the presence of dicyclohexylcarbodiimide as the cross-linking agent, in order to activate the co-polymer for collagen attachment. In the third and final step, the activated co-polymer was attached to calf skin collagen type I, in hydrochloric acid/phosphate buffer solution and the precipitated co-polymer with attached collagen was isolated. The synthesis was monitored by proton nuclear magnetic resonance, infrared and Raman spectroscopies, and the products after each step were characterized by thermal and mechanical analysis. Calculations of the relative amounts of the various components, coupled with initial dynamic mechanical analysis testing of the resulting biopolymer, afforded a preliminary assessment of the structure of the complex biomaterial formed by this novel polymerization process. Copyright © 2015. Published by Elsevier Ltd.

  1. Superabsorbent biphasic system based on poly(lactic acid) and poly(acrylic acid)

    NASA Astrophysics Data System (ADS)

    Sartore, Luciana; Pandini, Stefano; Baldi, Francesco; Bignotti, Fabio

    2016-05-01

    In this research work, biocomposites based on crosslinked particles of poly(acrylic acid), commonly used as superabsorbent polymer (SAP), and poly-L-lactic acid (PLLA) were developed to elucidate the role of the filler (i.e., polymeric crosslinked particles) on the overall physico-mechanical behavior and to obtain superabsorbent thermoplastic products. Samples prepared by melt-blending of components in different ratios showed a biphasic system with a regular distribution of particles, with diameter ranging from 5 to 10 μm, within the PLLA polymeric matrix. The polymeric biphasic system, coded PLASA i.e. superabsorbent poly(lactic acid), showed excellent swelling properties, demonstrating that cross-linked particles retain their superabsorbent ability, as in their free counterparts, even if distributed in a thermoplastic polymeric matrix. The thermal characteristics of the biocomposites evidence enhanced thermal stability in comparison with neat PLLA and also mechanical properties are markedly modified by addition of crosslinked particles which induce regular stiffening effect. Furthermore, in aqueous environments the particles swell and are leached from PLLA matrix generating very high porosity. These new open-pore PLLA foams, produced in absence of organic solvents and chemical foaming agents, with good physico-mechanical properties appear very promising for several applications, for instance in tissue engineering for scaffold production.

  2. Effect of amine structure on CO2 capture by polymeric membranes.

    PubMed

    Taniguchi, Ikuo; Kinugasa, Kae; Toyoda, Mariko; Minezaki, Koki

    2017-01-01

    Poly(amidoamine)s (PAMAMs) incorporated into a cross-linked poly(ethylene glycol) exhibited excellent CO 2 separation properties over H 2 . However, the CO 2 permeability should be increased for practical applications. Monoethanolamine (MEA) used as a CO 2 determining agent in the current CO 2 capture technology at demonstration scale was readily immobilized in poly(vinyl alcohol) (PVA) matrix by solvent casting of aqueous mixture of PVA and the amine. The resulting polymeric membranes can be self-standing with the thickness above 3 μm and the amine fraction less than 80 wt%. The gas permeation properties were examined at 40 °C and under 80% relative humidity. The CO 2 separation performance increased with increase of the amine content in the polymeric membranes. When the amine fraction was 80 wt%, the CO 2 permeability coefficient of MEA containing membrane was 604 barrer with CO 2 selectivity of 58.5 over H 2 , which was much higher than the PAMAM membrane (83.7 barrer and 51.8, respectively) under the same operation conditions. On the other hand, ethylamine (EA) was also incorporated into PVA matrix to form a thin membrane. However, the resulting polymeric membranes exhibited slight CO 2 -selective gas permeation properties. The hydroxyl group of MEA was crucial for high CO 2 separation performance.

  3. Effect of amine structure on CO2 capture by polymeric membranes

    PubMed Central

    Taniguchi, Ikuo; Kinugasa, Kae; Toyoda, Mariko; Minezaki, Koki

    2017-01-01

    Abstract Poly(amidoamine)s (PAMAMs) incorporated into a cross-linked poly(ethylene glycol) exhibited excellent CO2 separation properties over H2. However, the CO2 permeability should be increased for practical applications. Monoethanolamine (MEA) used as a CO2 determining agent in the current CO2 capture technology at demonstration scale was readily immobilized in poly(vinyl alcohol) (PVA) matrix by solvent casting of aqueous mixture of PVA and the amine. The resulting polymeric membranes can be self-standing with the thickness above 3 μm and the amine fraction less than 80 wt%. The gas permeation properties were examined at 40 °C and under 80% relative humidity. The CO2 separation performance increased with increase of the amine content in the polymeric membranes. When the amine fraction was 80 wt%, the CO2 permeability coefficient of MEA containing membrane was 604 barrer with CO2 selectivity of 58.5 over H2, which was much higher than the PAMAM membrane (83.7 barrer and 51.8, respectively) under the same operation conditions. On the other hand, ethylamine (EA) was also incorporated into PVA matrix to form a thin membrane. However, the resulting polymeric membranes exhibited slight CO2-selective gas permeation properties. The hydroxyl group of MEA was crucial for high CO2 separation performance. PMID:29383045

  4. Aging Mechanisms and Nondestructive Aging Indicator of Filled Cross-linked Polyethylene (XLPE) Exposed to Simultaneous Thermal and Gamma Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Shuaishuai; Fifield, Leonard S.; Bowler, Nicola

    Aging mechanisms and a nondestructive aging indicator of filled cross-linked polyethylene (XLPE) cable insulation material used in nuclear power plants (NPPs) are studied. Using various material characterization techniques, likely candidates and functions for the main additives in a commercial filled-XLPE insulation material have been identified. These include decabromodiphenyl ether and Sb2O3 as flame retardants, ZnS as white pigment and polymerized 1,2-dihydro-2,2,4-trimethylquinoline as antioxidant. Gas chromatography-mass spectrometry, differential scanning calorimetry, oxidation induction time and measurements of dielectric loss tangent are utilized to monitor property changes as a function of thermal and radiation exposure of the cable material. Small-molecular-weight hydrocarbons are evolvemore » with gamma radiation aging at 90 °C. The level of antioxidant decreases with aging by volatilization and chemical reaction with free radicals. Thermal aging at 90 °C for 25 days or less causes no observable change to the cross-linked polymer structure. Gamma radiation causes damage to crystalline polymer regions and introduces defects. Dielectric loss tangent is shown to be an effective and reliable nondestructive indicator of the aging severity of the filled-XLPE insulation material.« less

  5. Maltodextrin-powered enzymatic fuel cell through a non-natural enzymatic pathway

    NASA Astrophysics Data System (ADS)

    Zhu, Zhiguang; Wang, Yiran; Minteer, Shelley D.; Percival Zhang, Y.-H.

    Enzymatic fuel cells (EFCs) use a variety of fuels to generate electricity through oxidoreductase enzymes, such as oxidases or dehydrogenases, as catalysts on electrodes. We have developed a novel synthetic enzymatic pathway containing two free enzymes (maltodextrin phosphorylase and phosphoglucomutase) and one immobilized glucose-6-phosphate dehydrogenase that can utilize an oligomeric substrate maltodextrin for producing electrons mediated via a diaphorase and vitamin K 3 electron shuttle system. Three different enzyme immobilization approaches were compared based on electrostatic force entrapment, chemical cross-linking, and cross-linking with the aid of carbon nanotubes. At 10 mM glucose-6-phosphate (G6P) as a substrate concentration, the maximum power density of 0.06 mW cm -2 and retaining 42% of power output after 11 days were obtained through the method of chemical cross-linking with carbon nanotubes, approximately 6-fold and 3.5-fold better than those of the electrostatic force-based method, respectively. When changed to maltodextrin (degree of polymerization = 19) as the substrate, the EFC achieved a maximum power density of 0.085 mW cm -2. With the advantages of stable, low cost, high energy density, non-inhibitor to enzymes, and environmental friendly, maltodextrin is suggested to be an ideal fuel to power enzymatic fuel cells.

  6. Functionalized graphene oxide nanoparticles for cancer cell-specific delivery of antitumor drug.

    PubMed

    Zhao, Xubo; Yang, Liangwei; Li, Xiaorui; Jia, Xu; Liu, Lei; Zeng, Jin; Guo, Jinshan; Liu, Peng

    2015-01-21

    The unique reduction-triggered functional graphene oxide nanoparticles (GON) with well-defined size and uniform distribution were designed as an innovative drug delivery platform for cancer treatment for the first time, via the redox radical polymerization of methacrylic acid from the polyethylene glycol (PEG) modified GON (GON-PEG), following by cross-linking with cystamine. Thermogravimetric analysis demonstrates that the typical PMAA2-GON-PEG carriers contain about 16 wt % PEG segments and 33 wt % poly(methacrylic acid) (PMAA) brushes. PEG moieties are incorporated to make the drug delivery platforms stealthy during blood circulation. Notably, introducing the cross-linked PMAA brushes efficiently minimizes the premature release of doxorubicin (DOX) in the stimulated normal tissues, and accelerates DOX release in the stimulated tumor tissues through response to reduce agent. The carriers showed a 6-fold faster releasing rate at pH 5.0 in the presence of 10 mM glutathione (GSH) (stimulated tumor tissues) than at pH 7.4 with 10 μM GSH (stimulated normal tissues). In vitro cytotoxicity test also showed that the cross-linked PMAA2-GON-PEG (CPMAA2-GON-PEG) carriers had remarkable cytocompatibility, and that the DOX-loaded CPMAA2-GON-PEG had excellent killing capability to SiHa cells.

  7. Preliminary Characterization of Genipin-Cross-Linked Silk Sericin/Poly(vinyl alcohol) Films as Two-Dimensional Wound Dressings for the Healing of Superficial Wounds

    PubMed Central

    Siritientong, Tippawan; Ratanavaraporn, Juthamas; Srichana, Teerapol; Aramwit, Pornanong

    2013-01-01

    The genipin-cross-linked silk sericin/poly(vinyl alcohol) (PVA) films were developed aiming to be applied as two-dimensional wound dressings for the treatment of superficial wounds. The effects of genipin cross-linking concentration on the physical and biological properties of the films were investigated. The genipin-cross-linked silk sericin/PVA films showed the increased surface density, tensile strength, and percentage of elongation, but decreased percentage of light transmission, water vapor transmission rate, and water swelling, compared to the non-cross-linked films. This explained that the cross-linking bonds between genipin and silk sericin would reduce the mobility of molecular chains within the films, resulting in the more rigid molecular structure. Silk sericin was released from the genipin-cross-linked films in a sustained manner. In addition, either L929 mouse fibroblast or HaCat keratinocyte cells showed high percentage of viability when cultured on the silk sericin/PVA films cross-linked with 0.075 and 0.1% w/v genipin. The in vivo safety test performed according to ISO 10993-6 confirmed that the genipin-cross-linked silk sericin/PVA films were safe for the medical usages. The efficacy of the films for the treatment of superficial skin wounds will be further investigated in vivo and clinically. The genipin-cross-linked silk sericin/PVA films would be promising choices of two-dimensional wound dressings for the treatment of superficial wounds. PMID:24106722

  8. Preliminary characterization of genipin-cross-linked silk sericin/poly(vinyl alcohol) films as two-dimensional wound dressings for the healing of superficial wounds.

    PubMed

    Siritientong, Tippawan; Ratanavaraporn, Juthamas; Srichana, Teerapol; Aramwit, Pornanong

    2013-01-01

    The genipin-cross-linked silk sericin/poly(vinyl alcohol) (PVA) films were developed aiming to be applied as two-dimensional wound dressings for the treatment of superficial wounds. The effects of genipin cross-linking concentration on the physical and biological properties of the films were investigated. The genipin-cross-linked silk sericin/PVA films showed the increased surface density, tensile strength, and percentage of elongation, but decreased percentage of light transmission, water vapor transmission rate, and water swelling, compared to the non-cross-linked films. This explained that the cross-linking bonds between genipin and silk sericin would reduce the mobility of molecular chains within the films, resulting in the more rigid molecular structure. Silk sericin was released from the genipin-cross-linked films in a sustained manner. In addition, either L929 mouse fibroblast or HaCat keratinocyte cells showed high percentage of viability when cultured on the silk sericin/PVA films cross-linked with 0.075 and 0.1% w/v genipin. The in vivo safety test performed according to ISO 10993-6 confirmed that the genipin-cross-linked silk sericin/PVA films were safe for the medical usages. The efficacy of the films for the treatment of superficial skin wounds will be further investigated in vivo and clinically. The genipin-cross-linked silk sericin/PVA films would be promising choices of two-dimensional wound dressings for the treatment of superficial wounds.

  9. Structure of the Z Ring-associated Protein, ZapD, Bound to the C-terminal Domain of the Tubulin-like Protein, FtsZ, Suggests Mechanism of Z Ring Stabilization through FtsZ Cross-linking.

    PubMed

    Schumacher, Maria A; Huang, Kuo-Hsiang; Zeng, Wenjie; Janakiraman, Anuradha

    2017-03-03

    Cell division in most bacteria is mediated by the tubulin-like FtsZ protein, which polymerizes in a GTP-dependent manner to form the cytokinetic Z ring. A diverse repertoire of FtsZ-binding proteins affects FtsZ localization and polymerization to ensure correct Z ring formation. Many of these proteins bind the C-terminal domain (CTD) of FtsZ, which serves as a hub for FtsZ regulation. FtsZ ring-associated proteins, ZapA-D (Zaps), are important FtsZ regulatory proteins that stabilize FtsZ assembly and enhance Z ring formation by increasing lateral assembly of FtsZ protofilaments, which then form the Z ring. There are no structures of a Zap protein bound to FtsZ; therefore, how these proteins affect FtsZ polymerization has been unclear. Recent data showed ZapD binds specifically to the FtsZ CTD. Thus, to obtain insight into the ZapD-CTD interaction and how it may mediate FtsZ protofilament assembly, we determined the Escherichia coli ZapD-FtsZ CTD structure to 2.67 Å resolution. The structure shows that the CTD docks within a hydrophobic cleft in the ZapD helical domain and adopts an unusual structure composed of two turns of helix separated by a proline kink. FtsZ CTD residue Phe-377 inserts into the ZapD pocket, anchoring the CTD in place and permitting hydrophobic contacts between FtsZ residues Ile-374, Pro-375, and Leu-378 with ZapD residues Leu-74, Trp-77, Leu-91, and Leu-174. The structural findings were supported by mutagenesis coupled with biochemical and in vivo studies. The combined data suggest that ZapD acts as a molecular cross-linking reagent between FtsZ protofilaments to enhance FtsZ assembly. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Jacket-free stir bar sorptive extraction with bio-inspired polydopamine-functionalized immobilization of cross-linked polymer on stainless steel wire.

    PubMed

    Zhang, Zixin; Zhang, Wenpeng; Bao, Tao; Chen, Zilin

    2015-08-14

    Stainless steel wire (SSW) is a good substrate for stir bar sorptive extraction (SBSE). However, it is still a challenge to immobilize commonly used cross-linked polymers onto SSW. In this work, we present a new approach for immobilization of the cross-linked organic polymer onto SSW for jacket-free SBSE. A dopamine derivative was firstly synthesized; by introducing a mussel-inspired polydopamine process, a stable coating layer was finally generated on the surface of SSW. Secondly, the cross-linked polymer was synthesized on the polydopamine-modified SSW by using acetonitrile as the porogen, acrylamide (AA) as the functional monomer, ethylene glycol dimethacrylate (EGDMA) as the cross-linker and 2,2'-azobis (2-methylpropionitrile) as the initiator. A diluted pre-polymerization solution was carefully prepared to generate a thin layer of the polymer. The prepared poly(EGDMA-AA)-modified stir bar showed high stability and good tolerance toward stirring, ultrasonication, organic solvents, and strong acidic and basic conditions. Morphology and structure characterization of coatings were performed by scanning electron microscopy and Fourier transform infrared spectra, respectively. The prepared poly(EGDMA-AA)-modified stir bar showed great extraction efficiency toward protoberberines, with enrichment factors of 19-42. An SBSE-HPLC method was also developed for quantitative analysis of protoberberines. The method showed low limits of detection (0.06-0.15 ng mL(-1)), wide linear range (0.5-400 ng mL(-1)), good linearity (R≥0.9980) and good reproducibility (RSD≤3.60% for intra-day, RSD≤4.73% for inter-day). The developed method has been successfully applied to determine protoberberines in herb and rat plasma samples, with recoveries of 88.53-114.61%. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Design and fabrication of a chitosan hydrogel with gradient structures via a step-by-step cross-linking process.

    PubMed

    Xu, Yongxiang; Yuan, Shenpo; Han, Jianmin; Lin, Hong; Zhang, Xuehui

    2017-11-15

    The development of scaffolds to mimic the gradient structure of natural tissue is an important consideration for effective tissue engineering. In the present study, a physical cross-linking chitosan hydrogel with gradient structures was fabricated via a step-by-step cross-linking process using sodium tripolyphosphate and sodium hydroxide as sequential cross-linkers. Chitosan hydrogels with different structures (single, double, and triple layers) were prepared by modifying the gelling process. The properties of the hydrogels were further adjusted by varying the gelling conditions, such as gelling time, pH, and composition of the crosslinking solution. Slight cytotoxicity was showed in MTT assay for hydrogels with uncross-linking chitosan solution and non-cytotoxicity was showed for other hydrogels. The results suggest that step-by-step cross-linking represents a practicable method to fabricate scaffolds with gradient structures. Copyright © 2017. Published by Elsevier Ltd.

  12. N(4)C-ethyl-N(4)C cross-linked DNA: synthesis and characterization of duplexes with interstrand cross-links of different orientations.

    PubMed

    Noronha, Anne M; Noll, David M; Wilds, Christopher J; Miller, Paul S

    2002-01-22

    The preparation and physical properties of short DNA duplexes that contain a N(4)C-ethyl-N(4)C interstrand cross-link are described. Duplexes that contain an interstrand cross-link between mismatched C-C residues and duplexes in which the C residues of a -CG- or -GC- step are linked to give "staggered" interstrand cross-links were prepared using a novel N(4)C-ethyl-N(4)C phosphoramidite reagent. Duplexes with the C-C mismatch cross-link have UV thermal transition temperatures that are 25 degrees C higher than the melting temperatures of control duplexes in which the cross-link is replaced with a G-C base pair. It appears that this cross-link stabilizes adjacent base pairs and does not perturb the structure of the helix, a conclusion that is supported by the CD spectrum of this duplex and by molecular models. An even higher level of stabilization, 49 degrees C, is seen with the duplex that contains a -CG- staggered cross-link. Molecular models suggest that this cross-link may induce propeller twisting in the cross-linked base pairs, and the CD spectrum of this duplex exhibits an unusual negative band at 298 nm, although the remainder of the spectrum is similar to that of B-form DNA. Mismatched C-C or -CG- staggered cross-linked duplexes that have complementary overhanging ends can undergo self-ligation catalyzed by T4 DNA ligase. Analysis of the ligated oligomers by nondenaturing polyacrylamide gel electrophoresis shows that the resulting oligomers migrate in a manner similar to that of a mixture of non-cross-linked control oligomers and suggests that these cross-links do not result in significant bending of the helix. However, the orientation of the staggered cross-link can have a significant effect on the structure and stability of the cross-linked duplex. Thus, the thermal stability of the duplex that contains a -GC- staggered cross-link is 10 degrees C lower than the melting temperature of the control, non-cross-linked duplex. Unlike the -CG- staggered cross-link, in which the cross-linked base pairs can still maintain hydrogen bond contacts, molecular models suggest that formation of the -GC- staggered cross-link disrupts hydrogen bonding and may also perturb adjacent base pairs leading to an overall reduction in helix stability. Duplexes with specifically positioned and oriented cross-links can be used as substrates to study DNA repair mechanisms.

  13. Computer simulation of thermal conductivity in vulcanized polyisoprene at variable strain and temperature

    NASA Astrophysics Data System (ADS)

    Engelmann, Sven; Meyer, Jan; Hentschke, Reinhard

    2017-08-01

    We study the thermal conductivity tensor in an atomistic model of vulcanized cis-1,4-polyisoprene (PI) rubber via molecular dynamics simulations. Our polymer force field is based on V. A. Harmandaris et al. [J. Chem. Phys. 116, 436 (2002), 10.1063/1.1416872], whereas the polymerization algorithm follows the description in J. Hager et al. [Macromolecules 48, 9039 (2015), 10.1021/acs.macromol.5b01864]. The polymer chains are chemically cross linked via sulfur bridges of adjustable cross-link density. A volume-conserving uniaxial strain of up to 200% is applied to the systems. The widely used GROMACS simulation package is adapted to allow using the Green-Kubo approach to calculate the thermal conductivity tensor components. Our analysis of the heat flux autocorrelation functions leads to the conclusion that the thermal conductivity in PI is governed by short-lived phonon modes at low wave numbers due to deformation of the monomers along the polymer backbone. Applying uniaxial strain causes increased orientation of monomers along the strain direction, which enhances the attendant thermal conductivity component. We find an exponential increase of the conductivity in stretch direction in terms of an attendant orientation order parameter. This is accompanied by a simultaneous decline of thermal conductivity in the orthogonal directions. Increase of the cross-link density only has a weak effect on thermal conductivity in the unstrained system, even at high cross-link density. In the strained system we do observed a rising thermal conductivity in the limit of high stress. This increase is attributed to enhanced coupling between chains rather than to their orientation.

  14. Linking composition of extracellular polymeric substances (EPS) to the physical structure and hydraulic resistance of membrane biofilms.

    PubMed

    Desmond, Peter; Best, James P; Morgenroth, Eberhard; Derlon, Nicolas

    2018-04-01

    The effect of extracellular polymeric substances (EPS) on the meso-scale physical structure and hydraulic resistance of membrane biofilms during gravity driven membrane (GDM) filtration was investigated. Biofilms were developed on the surface of ultrafiltration membranes during dead-end filtration at ultra-low pressure (70 mbar). Biofilm EPS composition (total protein, polysaccharide and eDNA) was manipulated by growing biofilms under contrasting nutrient conditions. Nutrient conditions consisted of (i) a nutrient enriched condition with a nutrient ratio of 100:30:10 (C: N: P), (ii) a phosphorus limitation (C: N: P ratio: 100:30:0), and (iii) a nitrogen limitation (C: N: P ratio: 100:0:10). The structure of the biofilm was characterised at meso-scale using Optical Coherence Tomography (OCT). Biofilm composition was analysed with respect to total organic carbon, total cellular mass and extracellular concentrations of proteins, polysaccharides, and eDNA. 2D-confocal Raman mapping was used to characterise the functional group composition and micro-scale distribution of the biofilms EPS. Our study reveals that the composition of the EPS matrix can determine the meso-scale physical structure of membrane biofilms and in turn its hydraulic resistance. Biofilms grown under P limiting conditions were characterised by dense and homogeneous physical structures with high concentrations of polysaccharides and eDNA. Biofilm grown under nutrient enriched or N limiting conditions were characterised by heterogeneous physical structures with lower concentrations of polysaccharides and eDNA. For P limiting biofilms, 2D-confocal Raman microscopy revealed a homogeneous spatial distribution of anionic functional groups in homogeneous biofilm structures with higher polysaccharide and eDNA concentrations. This study links EPS composition, physical structure and hydraulic resistance of membrane biofilms, with practical relevance for the hydraulic performances of GDM ultrafiltration. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Two-photon absorption spectrum of the photoinitiator Lucirin TPO-L

    NASA Astrophysics Data System (ADS)

    Mendonca, C. R.; Correa, D. S.; Baldacchini, T.; Tayalia, P.; Mazur, E.

    2008-03-01

    Two-photon absorption induced polymerization provides a powerful method for the fabrication of intricate three-dimensional microstructures. Recently, Lucirin TPO-L was shown to be a photoinitiator with several advantageous properties for two-photon induced polymerization. Here we measure the two-photon absorption cross-section spectrum of Lucirin TPO-L, which presents a maximum of 1.2 GM at 610 nm. Despite its small two-photon absorption cross-section, it is possible to fabricate excellent microstructures by two-photon polymerization due to the high polymerization quantum yield of Lucirin TPO-L. These results indicate that optimization of the two-photon absorption cross-section is not the only material parameter to be considered when searching for new photoinitiators for microfabrication via two-photon absorption.

  16. Development of Remendable Polymer Composites using a Thermoreversible Reaction

    NASA Astrophysics Data System (ADS)

    Peterson, Amy Michelle

    2011-12-01

    Materials that can repair cracks and recover from mechanical failure are desirable. Because remendable materials both repair and prevent the propagation of cracks on the micro scale, they offer the potential for increased durability, safety, and cost efficiency for many applications. The focus of this work was to understand the kinetic and physical parameters that control thermoreversible Diels-Alder bond formation in different types of healable polymeric systems. Three healing systems were developed based on the thermoreversible Diets-Alder reaction of furan and maleimide. In one, crack healing of a thermoset was induced by thermally reversible cross-linking of a secondary phase. In another, a furan-functionalized epoxy-amine thermoset were healed with a bismaleimide solution at room temperature and minimal pressure, with significant load recovery possible multiple times. The third system allowed for interfacial healing of glass fiber-reinforced epoxy-amine composites via compatible functionalization of glass fibers and the polymer network. The Diels-Alder reaction was characterized in all systems as well as highly mobile small molecule solutions. It was found that mobility, coupled with kinetics, dictate the extent of reaction and consequent strength recovery.

  17. Experimental and numerical measurements of adhesion energies between PHEMA and PGLYMA with hydroxyapatite crystal.

    PubMed

    Youssefian, Sina; Liu, Pingsheng; Askarinejad, Sina; Shalchy, Faezeh; Song, Jie; Rahbar, Nima

    2015-07-16

    Synthetic orthopaedic materials consisting of a single bioinert polymeric material do not meet the complex biological and physical requirements of scaffold-guided bone tissue repair and regeneration. Of particular interest is the design of biocompatible hydrogel-hydroxyapatite composite bone substitutes with outstanding interfacial adhesion that would warranty the ability for the composite to withstand functional loadings without exhibiting brittle fractures during the dynamic guided tissue regeneration. For this purpose, the hydroxylated side chain of chemically cross-linked poly (2-hydroxyethyl methacrylate) (pHEMA) is substitute with a carboxylated side chain to make poly (glycerol methacrylate) (pGLYMA). Here, we carry out atomistic simulations and atomic force microscopy to predict and experimentally determine the interfacial adhesion energies of pHEMA and pGLYMA with the surface of single-crystalline hydroxyapatite (HA) whiskers. Both experimental and numerical results showed that pGLYMA has stronger adhesion forces with HA and may be used for preparing a high-affinity polymer-HA composite. The high adhesive interactions between pGLYMA and HA were found to be due to strong electrostatic energies.

  18. Development of a direct three-dimensional biomicrofabrication concept based on electrospraying a custom made siloxane sol.

    PubMed

    Sullivan, Alice C; Jayasinghe, Suwan N

    2007-07-19

    We demonstrate here the discovery of a unique and direct three-dimensional biomicrofabrication concept possessing the ability to revolutionize the jet-based fabrication arena. Previous work carried out on similar jet-based approaches have been successful in fabricating only vertical wallpillar-structures by the controlled deposition of stacked droplets. However, these advanced jet-techniques have not been able to directly fabricate self-supporting archeslinks (without molds or reaction methods) between adjacent structures (walls or pillars). Our work reported here gives birth to a unique type of jet determined by high intensity electric fields, which is derived from a specially formulated siloxane sol. The sol studied here has been chosen for its attractive properties (such as an excellent cross-linking nature as well as the ability to polymerize via polycondensation on deposition to its biocompatability), which promotes direct forming of biostructures with nanometer (<50 nm) sized droplets in three dimensions. We foresee that this direct three-dimensional biomicrofabrication jet technique coupled with a variety of formulated sols having focused and enhanced functionality will be explored throughout the physical and life sciences.

  19. Exploring the kinetics of gelation and final architecture of enzymatically cross-linked chitosan/gelatin gels.

    PubMed

    da Silva, Marcelo A; Bode, Franziska; Grillo, Isabelle; Dreiss, Cécile A

    2015-04-13

    Small-angle neutron scattering (SANS) was used to characterize the nanoscale structure of enzymatically cross-linked chitosan/gelatin hydrogels obtained from two protocols: a pure chemical cross-linking process (C), which uses the natural enzyme microbial transglutaminase, and a physical-co-chemical (PC) hybrid process, where covalent cross-linking is combined with the temperature-triggered gelation of gelatin, occurring through the formation of triple-helices. SANS measurements on the final and evolving networks provide a correlation length (ξ), which reflects the average size of expanding clusters. Their growth in PC gels is restricted by the triple-helices (ξ ∼ 10s of Å), while ξ in pure chemical gels increases with cross-linker concentration (∼100s of Å). In addition, the shear elastic modulus in PC gels is higher than in pure C gels. Our results thus demonstrate that gelatin triple helices provide a template to guide the cross-linking process; overall, this work provides important structural insight to improve the design of biopolymer-based gels.

  20. Polymeric and composite materials for use in systems utilizing hot, flowing geothermal brine. II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lorensen, L.E.; Walkup, C.M.

    1978-04-13

    Further progress is reported on a continuing experimental program designed to select high-performance polymeric materials for use in geothermal power plants. In field tests 12 nozzles, 27 wear plates, and 2 types of polymer lined pipe were tested. Nozzles made of Teflons TFE and PFA, Tefzel, Ryton PPS and H-Resin/carbon cloth were little changed except for some scaling. The fluorocarbons scaled least rapidly. All blade type wear plates eroded, those based on Tefzel, PPQ, and PPS the least. Fluorocarbon lined pipes were little affected by exposure. In laboratory tests samples were heated at 250 and 300/sup 0/C in brine. Severalmore » materials including fluorocarbon and unhydrolyzable aromatic or cross-linked aliphatic, thermally stable polymers survived for periods up to 1300 h. In erosion tests, coatings based on epoxy resins and a fluorocarbon were most resistant; good adhesion was required.« less

  1. Mechanism of conductivity relaxation in liquid and polymeric electrolytes: Direct link between conductivity and diffusivity

    DOE PAGES

    Gainaru, Catalin P.; Technische Univ. Dortmund, Dortmund; Stacy, Eric W.; ...

    2016-09-28

    Combining broadband impedance spectroscopy, differential scanning calorimetry, and nuclear magnetic resonance we analyzed charge and mass transport in two polymerized ionic liquids and one of their monomeric precursors. In order to establish a general procedure for extracting single-particle diffusivity from their conductivity spectra, we critically assessed several approaches previously employed to describe the onset of diffusive charge dynamics and of the electrode polarization in ion conducting materials. Based on the analysis of the permittivity spectra, we demonstrate that the conductivity relaxation process provides information on ion diffusion and the magnitude of cross-correlation effects between ionic motions. A new approach ismore » introduced which is able to estimate ionic diffusivities from the characteristic times of conductivity relaxation and ion concentration without any adjustable parameters. Furthermore, this opens the venue for a deeper understanding of charge transport in concentrated and diluted electrolyte solutions.« less

  2. Extrudable polymer-polymer composites based on ultra-high molecular weight polyethylene

    NASA Astrophysics Data System (ADS)

    Panin, S. V.; Kornienko, L. A.; Alexenko, V. O.; Buslovich, D. G.; Dontsov, Yu. V.

    2017-12-01

    Mechanical and tribotechnical characteristics of polymer-polymeric composites of UHMWPE are studied with the aim of developing extrudable, wear-resistant, self-lubricant polymer mixtures for Additive Manufacturing (AM). The motivation of the study is their further application as feedstocks for 3D printing. Blends of UHMWPE with graft- and block copolymers of low-density polyethylene (HDPE-g-VTMS, HDPE-g-SMA, HDPE-b-EVA), polypropylene (PP), block copolymers of polypropylene and polyamide with linear low density polyethylene (PP-b-LLDPE, PA-b-LLDPE), as well as cross-linked polyethylene (PEX-b), are examined. The choice of compatible polymer components for an ultra- high molecular weight matrix for increasing processability (extrudability) is motivated by the search for commercially available and efficient additives aimed at developing wear-resistant extrudable polymer composites for additive manufacturing. The extrudability, mechanical properties and wear resistance of UHMWPE-based polymer-polymeric composites under sliding friction with different velocities and loads are studied.

  3. Living Additive Manufacturing: Transformation of Parent Gels into Diversely Functionalized Daughter Gels Made Possible by Visible Light Photoredox Catalysis

    PubMed Central

    2017-01-01

    Light-initiated additive manufacturing techniques typically rely on layer-by-layer addition or continuous extraction of polymers formed via nonliving, free radical polymerization methods that render the final materials “dead” toward further monomer insertion; the polymer chains within the materials cannot be reactivated to induce chain extension. An alternative “living additive manufacturing” strategy would involve the use of photocontrolled living radical polymerization to spatiotemporally insert monomers into dormant “parent” materials to generate more complex and diversely functionalized “daughter” materials. Here, we demonstrate a proof-of-concept study of living additive manufacturing using end-linked polymer gels embedded with trithiocarbonate iniferters that can be activated by photoinduced single-electron transfer from an organic photoredox catalyst in solution. This system enables the synthesis of a wide range of chemically and mechanically differentiated daughter gels from a single type of parent gel via light-controlled modification of the parent’s average composition, strand length, and/or cross-linking density. Daughter gels that are softer than their parent, stiffer than their parent, larger but with the same modulus as their parent, thermally responsive, polarity responsive, healable, and weldable are all realized. PMID:28280779

  4. Living Additive Manufacturing: Transformation of Parent Gels into Diversely Functionalized Daughter Gels Made Possible by Visible Light Photoredox Catalysis.

    PubMed

    Chen, Mao; Gu, Yuwei; Singh, Awaneesh; Zhong, Mingjiang; Jordan, Alex M; Biswas, Santidan; Korley, LaShanda T J; Balazs, Anna C; Johnson, Jeremiah A

    2017-02-22

    Light-initiated additive manufacturing techniques typically rely on layer-by-layer addition or continuous extraction of polymers formed via nonliving, free radical polymerization methods that render the final materials "dead" toward further monomer insertion; the polymer chains within the materials cannot be reactivated to induce chain extension. An alternative "living additive manufacturing" strategy would involve the use of photocontrolled living radical polymerization to spatiotemporally insert monomers into dormant "parent" materials to generate more complex and diversely functionalized "daughter" materials. Here, we demonstrate a proof-of-concept study of living additive manufacturing using end-linked polymer gels embedded with trithiocarbonate iniferters that can be activated by photoinduced single-electron transfer from an organic photoredox catalyst in solution. This system enables the synthesis of a wide range of chemically and mechanically differentiated daughter gels from a single type of parent gel via light-controlled modification of the parent's average composition, strand length, and/or cross-linking density. Daughter gels that are softer than their parent, stiffer than their parent, larger but with the same modulus as their parent, thermally responsive, polarity responsive, healable, and weldable are all realized.

  5. Gelation studies on cross-linking of zein with various reagents using oscillatory rheometry and sample property comparison

    USDA-ARS?s Scientific Manuscript database

    Zein, the dominant protein present in the co-products of the bio-ethanol industry, is a resource that is currently under-utilized. This is mainly due to poor physical properties and solvent sensitivity. It has been found by various researchers that treatment of zein with suitable cross-linking rea...

  6. Microwave-assisted cross-linking of milk proteins induced by microbial transglutaminase

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Chi; Hsieh, Jung-Feng

    2016-12-01

    We investigated the combined effects of microbial transglutaminase (MTGase, 7.0 units/mL) and microwave irradiation (MI) on the polymerization of milk proteins at 30 °C for 3 h. The addition of MTGase caused the milk proteins to become polymerized, which resulted in the formation of components with a higher molecular-weight (>130 kDa). SDS-PAGE analysis revealed reductions in the protein content of β-lactoglobulin (β-LG), αS-casein (αS-CN), κ-casein (κ-CN) and β-casein (β-CN) to 50.4 ± 2.9, 33.5 ± 3.0, 4.2 ± 0.5 and 1.2 ± 0.1%, respectively. The use of MTGase in conjunction MI with led to a 3-fold increase in the rate of milk protein polymerization, compared to a sample that contained MTGase but did not undergo MI. Results of two-dimensional gel electrophoresis (2-DE) indicated that κ-CN, β-CN, a fraction of serum albumin (SA), β-LG, α-lactalbumin (α-LA), αs1-casein (αs1-CN), and αs2-casein (αs2-CN) were polymerized in the milk, following incubation with MTGase and MI at 30 °C for 1 h. Based on this result, the combined use of MTGase and MI appears to be a better way to polymerize milk proteins.

  7. Interfacially polymerized layers for oxygen enrichment: a method to overcome Robeson's upper-bound limit.

    PubMed

    Tsai, Ching-Wei; Tsai, Chieh; Ruaan, Ruoh-Chyu; Hu, Chien-Chieh; Lee, Kueir-Rarn

    2013-06-26

    Interfacial polymerization of four aqueous phase monomers, diethylenetriamine (DETA), m-phenylenediamine (mPD), melamine (Mela), and piperazine (PIP), and two organic phase monomers, trimethyl chloride (TMC) and cyanuric chloride (CC), produce a thin-film composite membrane of polymerized polyamide layer capable of O2/N2 separation. To achieve maximum efficiency in gas permeance and O2/N2 permselectivity, the concentrations of monomers, time of interfacial polymerization, number of reactive groups in monomers, and the structure of monomers need to be optimized. By controlling the aqueous/organic monomer ratio between 1.9 and 2.7, we were able to obtain a uniformly interfacial polymerized layer. To achieve a highly cross-linked layer, three reactive groups in both the aqueous and organic phase monomers are required; however, if the monomers were arranged in a planar structure, the likelihood of structural defects also increased. On the contrary, linear polymers are less likely to result in structural defects, and can also produce polymer layers with moderate O2/N2 selectivity. To minimize structural defects while maximizing O2/N2 selectivity, the planar monomer, TMC, containing 3 reactive groups, was reacted with the semirigid monomer, PIP, containing 2 reactive groups to produce a membrane with an adequate gas permeance of 7.72 × 10(-6) cm(3) (STP) s(-1) cm(-2) cm Hg(-1) and a high O2/N2 selectivity of 10.43, allowing us to exceed the upper-bound limit of conventional thin-film composite membranes.

  8. Manipulation of in vitro collagen matrix architecture for scaffolds of improved physiological relevance

    NASA Astrophysics Data System (ADS)

    Hapach, Lauren A.; VanderBurgh, Jacob A.; Miller, Joseph P.; Reinhart-King, Cynthia A.

    2015-12-01

    Type I collagen is a versatile biomaterial that is widely used in medical applications due to its weak antigenicity, robust biocompatibility, and its ability to be modified for a wide array of applications. As such, collagen has become a major component of many tissue engineering scaffolds, drug delivery platforms, and substrates for in vitro cell culture. In these applications, collagen constructs are fabricated to recapitulate a diverse set of conditions. Collagen fibrils can be aligned during or post-fabrication, cross-linked via numerous techniques, polymerized to create various fibril sizes and densities, and copolymerized into a wide array of composite scaffolds. Here, we review approaches that have been used to tune collagen to better recapitulate physiological environments for use in tissue engineering applications and studies of basic cell behavior. We discuss techniques to control fibril alignment, methods for cross-linking collagen constructs to modulate stiffness, and composite collagen constructs to better mimic physiological extracellular matrix.

  9. Through the looking glass: Unraveling the network structure of coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregory, D. M.; Stec, D. F.; Botto, R. E.

    1999-12-23

    Since the original idea by Sanada and Honda of treating coal as a three-dimensional cross-linked network, coal structure has been probed by monitoring ingress of solvents using traditional volumetric or gravimetric methods. However, using these techniques has allowed only an indirect observation of the swelling process. More recently, the authors have developed magnetic resonance microscopy (MRM) approaches for studying solvent ingress in polymeric systems, about which fundamental aspects of the swelling process can be deduced directly and quantitatively. The aim of their work is to utilize solvent transport and network response parameters obtained from these methods to assess fundamental propertiesmore » of the system under investigation. Polymer and coal samples have been studied to date. Numerous swelling parameters measured by magnetic resonance microscopy are found to correlate with cross-link density of the polymer network under investigation. Use of these parameters to assess the three-dimensional network structure of coal is discussed.« less

  10. Synthesis and characterization of smart N-isopropylacrylamide-based magnetic nanocomposites containing doxorubicin anti-cancer drug.

    PubMed

    Motaali, Soheila; Pashaeiasl, Maryam; Akbarzadeh, Abolfazl; Davaran, Soodabeh

    2017-05-01

    In the present study, magnetic and thermo/pH-sensitive (multiresponsive) nanocomposites based on N-isopropylacrylamide (NIPAAM) were synthesized and characterized. Nanocomposites were synthesized by free radical emulsion polymerization of NIPAAM as thermosensitive monomer and N,N-dimethyl-aminoethyl methacrylate (DMAEMA) as pH-sensitive monomer in the presence of methylene-bis-acrylamide as cross-linking agent. Doxorubicin, an anti-cancer drug, was loaded into these nanocomposites via equilibrium swelling method. Thermo/pH-sensitive cross-linked poly (NIPAAM-DMAEMA)-Fe 3 O 4 nanocomposites were characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and vibrating sample magnetometer (VSM). The volume of the loaded drug and drug release amount was determined by UV measurements. The results showed that this thermo/pH-sensitive magnetic nanocomposite has a high drug-loading efficiency. Doxorubicin was released at 40 °C and pH 5.8 more than the 37 °C and pH 7.4.

  11. Using Amphiphilic Copolymers and Nanoparticles to Organize Charged Biopolymers

    NASA Astrophysics Data System (ADS)

    Park, Jung Hyun; McConnell, Marla; Sun, Yujie; Goldman, Yale; Composto, Russell

    2009-03-01

    Nanoparticles (NPs) on amphiphilic random copolymers control filamentous actin (F-actin) attachment. 3-aminopropyltriethoxysilane (APTES) coated silica NPs are selectively bonded to acrylic acid groups on the surface of a poly(styrene-r-acrylic acid) (PS-r-PAA) film. By changing the concentration of NPs in the medium, the surface density of positively charged anchors is tuned. Using total internal reflection fluorescence (TIRF) microscopy, immobilization of F-actin is observed via electrostatic interaction with NPs at high NP coverages. Below a critical coverage, F-actin is weakly attached and undergoes thermal fluctuations near the surface. Another method to tune F-actin attachment is to use APTES to cross-link and create positive charge in PAA films. Here, the surface coverage of F-actin decreases as APTES concentration increases. This observation is attributed to an increase in surface roughness and hydrophobicity that reduces the effective surface sites that attract F-actin. In addition, in-situ G-actin polymerization to F-actin is observed on both the NP and cross-linked PAA templates.

  12. Surface micromorphology of cross-linked tetrafunctional polylactide scaffolds inducing vessel growth and bone formation.

    PubMed

    Kuznetsova, D; Ageykin, A; Koroleva, A; Deiwick, A; Shpichka, A; Solovieva, A; Kostjuk, S; Meleshina, A; Rodimova, S; Akovanceva, A; Butnaru, D; Frolova, A; Zagaynova, E; Chichkov, B; Bagratashvili, V; Timashev, P

    2017-04-28

    In the presented study, we have developed a synthetic strategy allowing a gradual variation of a polylactide arms' length, which later influences the micromorphology of the scaffold surface, formed by a two-photon polymerization technique. It has been demonstrated that the highest number of cells is present on the scaffolds with the roughest surface made of the polylactide with longer arms (PLA760), and osteogenic differentiation of mesenchymal stem cells is most pronounced on such scaffolds. According to the results of biological testing, the PLA760 scaffolds were implanted into a created cranial defect in a mouse for an in vivo assessment of the bone tissue formation. The in vivo experiments have shown that, by week 10, deposition of calcium phosphate particles occurs in the scaffold at the defect site, as well as, the formation of a new bone and ingrowth of blood vessels from the surrounding tissues. These results demonstrate that the cross-linked microstructured tetrafunctional polylactide scaffolds are promising microstructures for bone regeneration in tissue engineering.

  13. Cross-linked sulfonated poly(ether ether ketone) by using diamino-organosilicon for proton exchange fuel cells.

    PubMed

    Kayser, Marie J; Reinholdt, Marc X; Kaliaguine, Serge

    2011-03-31

    Fuel cells are at the battlefront to find alternate sources of energy to the highly polluting, economically and environmentally constraining fossil fuels. This work uses an organosilicon molecule presenting two amine functions, bis(3-aminopropyl)-tetramethyldisiloxane (APTMDS) with the aim of preparing cross-linked sulfonated poly(ether ether ketone) (SPEEK) based membranes. The hybrid membranes obtained at varying APTMDS loadings are characterized for their acid, proton conductivity, water uptake, and swelling properties. APTMDS may be considered as an extreme case of silica nanoparticle and is therefore most advantageously distributed within the polymeric matrix. The two amine groups can interact, via electrostatic interactions, with the sulfonic acid groups of SPEEK, resulting in a double anchoring of the molecule. The addition of a small amount of APTMDS is enhancing the mechanical and hydrolytic properties of the membranes and allows some unfolding of the polymer chains, rendering some acid sites accessible to water molecules and thus available for proton transport.

  14. Physicochemical characterization of chitosan/nylon6/polyurethane foam chemically cross-linked ternary blends.

    PubMed

    Jayakumar, S; Sudha, P N

    2013-03-15

    Chitosan/nylon6/polyurethane foam (CS/Ny6/PUF) ternary blend was prepared and chemically cross-linked with glutaraldehyde. Structural, thermal and morphological studies were performed for the prepared ternary blends. Characterizations of the ternary blends were investigated by Fourier transform infrared spectroscopy (FTIR), thermo gravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and scanning electron microscope (SEM). The FTIR results showed that the strong intermolecular hydrogen bonds took place between CS, Ny6 and PUF. TGA and DSC studies reveal that the thermal stability of the blend is enhanced by glutaraldehyde as crosslinking agent. Results of XRD indicated that the relative crystalline of pure CS film was reduced when the polymeric network was reticulated by glutaraldehyde. Finally, the results of scanning electron microscopy (SEM) indicated that the morphology of the blend is rough and heterogeneous, further it confirms the interaction between the functional groups of the blend components. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Light-Sensitive Ruthenium Complex-Loaded Cross-linked Polymeric Nanoassemblies for the Treatment of Cancer

    PubMed Central

    Dickerson, M; Howerton, B.; Bae, Y.; Glazer, E.

    2016-01-01

    This work focuses on improving the efficacy of photoactivatable Ru complexes for photodynamic therapy by employing cross-linked nanoassemblies (CNAs) as a delivery approach. The effects of complex photoactivation, hydrophobicity, and solution ionic strength and pH on complex loading and release from CNAs were analyzed. The cell cytotoxicity of CNA formulations was similar to free Ru complexes despite reduced or eliminated DNA interactions. The release rate and the amount of each Ru complex released (%) varied inversely with complex hydrophobicity, while the effect of solution ionic strength was dependent on complex hydrophobicity. Premature release of two photoactivatable prodrugs prior to irradiation was believed to account for higher activity in cells studies compared to DNA interaction studies; however, for photostable 1O2 generator-loaded CNAs this cannot explain the high cytotoxicity and lack of DNA interactions because release was incomplete after 48 hrs. The cause remains unclear, but among other possibilities, accelerated release in a cell culture environment may be responsible. PMID:26855780

  16. Synthesis and characterization of PEG-P(MAA-SS-VCL) nanoparticles

    NASA Astrophysics Data System (ADS)

    Yu, L. L.; Yang, K.; Mu, R. H.; Zhang, N.; Su, L.

    2016-07-01

    The PEG-P(MAA-SS-VCL) nanoparticles were obtained using disulfide containing dimethacrylate (SS) as cross-linking agent, using polyethylene glycol methyl acrylate (PEGMA), N-Vinyl-ε-caprolactam (VCL), and methacrylic acid (MAA) as monomers via homogeneous polymerization in aqueous. The PEG-P(MAA-SS-VCL) nanoparticles were characterized by FT-IR and TGA. The particle size and morphology variation in different environments were detected by dynamic light scattering (DLS) and scanning electron microscopy (SEM). It is the very method that PEG-P(MAA-SS-VCL) nanoparticles can be obtained in this study.

  17. Composite Materials for Hazard Mitigation of Reactive Metal Hydrides.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratt, Joseph William; Cordaro, Joseph Gabriel; Sartor, George B.

    2012-02-01

    In an attempt to mitigate the hazards associated with storing large quantities of reactive metal hydrides, polymer composite materials were synthesized and tested under simulated usage and accident conditions. The composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride. Composites with vinyl-containing siloxane oligomers were also polymerized with and without added styrene and divinyl benzene. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride reduced the inherent hydrogen storage capacity of the material. The composites were found to be initially effective at reducing the amount of heatmore » released during oxidation. However, upon cycling the composites, the mitigating behavior was lost. While the polymer composites we investigated have mitigating potential and are physically robust, they undergo a chemical change upon cycling that makes them subsequently ineffective at mitigating heat release upon oxidation of the metal hydride. Acknowledgements The authors would like to thank the following people who participated in this project: Ned Stetson (U.S. Department of Energy) for sponsorship and support of the project. Ken Stewart (Sandia) for building the flow-through calorimeter and cycling test stations. Isidro Ruvalcaba, Jr. (Sandia) for qualitative experiments on the interaction of sodium alanate with water. Terry Johnson (Sandia) for sharing his expertise and knowledge of metal hydrides, and sodium alanate in particular. Marcina Moreno (Sandia) for programmatic assistance. John Khalil (United Technologies Research Corp) for insight into the hazards of reactive metal hydrides and real-world accident scenario experiments. Summary In an attempt to mitigate and/or manage hazards associated with storing bulk quantities of reactive metal hydrides, polymer composite materials (a mixture of a mitigating polymer and a metal hydride) were synthesized and tested under simulated usage and accident conditions. Mitigating the hazards associated with reactive metal hydrides during an accident while finding a way to keep the original capability of the active material intact during normal use has been the focus of this work. These composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride, in this case a prepared sodium alanate (chosen as a representative reactive metal hydride). It was found that the polymerization of styrene and divinyl benzene could be initiated using AIBN in toluene at 70°C. The resulting composite materials can be either hard or brittle solids depending on the cross-linking density. Thermal decomposition of these styrene-based composite materials is lower than neat polystyrene indicating that the chemical nature of the polymer is affected by the formation of the composite. The char-forming nature of cross-linked polystyrene is low and therefore, not an ideal polymer for hazard mitigation. To obtain composite materials containing a polymer with higher char-forming potential, siloxane-based monomers were investigated. Four vinyl-containing siloxane oligomers were polymerized with and without added styrene and divinyl benzene. Like the styrene materials, these composite materials exhibited thermal decomposition behavior significantly different than the neat polymers. Specifically, the thermal decomposition temperature was shifted approximately 100 °C lower than the neat polymer signifying a major chemical change to the polymer network. Thermal analysis of the cycled samples was performed on the siloxane-based composite materials. It was found that after 30 cycles the siloxane-containing polymer composite material has similar TGA/DSC-MS traces as the virgin composite material indicating that the polymer is physically intact upon cycling. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride in the form of a composite material reduced the inherent hydrogen storage capacity of the material. This reduction in capacity was observed to be independent of the amount of charge/discharge cycles except for the composites containing siloxane, which showed less of an impact on hydrogen storage capacity as it was cycled further. While the reason for this is not clear, it may be due to a chemically stabilizing effect of the siloxane on the metal hydride. Flow-through calorimetry was used to characterize the mitigating effectiveness of the different composites relative to the neat (no polymer) material. The composites were found to be initially effective at reducing the amount of heat released during oxidation, and the best performing material was the siloxane-containing composite which reduced the heat release to less than 50% of the value of the neat material. However, upon cycling the composites, all mitigating behavior was lost. The combined results of the flow-through calorimetry, hydrogen capacity, and thermogravimetric analysis tests lead to the proposed conclusion that while the polymer composites have mitigating potential and are physically robust under cycling, they undergo a chemical change upon cycling that makes them ineffective at mitigating heat release upon oxidation of the metal hydride.« less

  18. Synthesis, Characterization, and Antibacterial Activity of Cross-Linked Chitosan-Glutaraldehyde

    PubMed Central

    Li, Bin; Shan, Chang-Lin; Zhou, Qing; Fang, Yuan; Wang, Yang-Li; Xu, Fei; Han, Li-Rong; Ibrahim, Muhammad; Guo, Long-Biao; Xie, Guan-Lin; Sun, Guo-Chang

    2013-01-01

    This present study deals with synthesis, characterization and antibacterial activity of cross-linked chitosan-glutaraldehyde. Results from this study indicated that cross-linked chitosan-glutaraldehyde markedly inhibited the growth of antibiotic-resistant Burkholderia cepacia complex regardless of bacterial species and incubation time while bacterial growth was unaffected by solid chitosan. Furthermore, high temperature treated cross-linked chitosan-glutaraldehyde showed strong antibacterial activity against the selected strain 0901 although the inhibitory effects varied with different temperatures. In addition, physical-chemical and structural characterization revealed that the cross-linking of chitosan with glutaraldehyde resulted in a rougher surface morphology, a characteristic Fourier transform infrared (FTIR) band at 1559 cm−1, a specific X-ray diffraction peak centered at 2θ = 15°, a lower contents of carbon, hydrogen and nitrogen, and a higher stability of glucose units compared to chitosan based on scanning electron microscopic observation, FTIR spectra, X-ray diffraction pattern, as well as elemental and thermo gravimetric analysis. Overall, this study indicated that cross-linked chitosan-glutaraldehyde is promising to be developed as a new antibacterial drug. PMID:23670533

  19. Low-power upconversion in dye-doped polymer nanoparticles.

    PubMed

    Simon, Yoan C; Bai, Shuo; Sing, Michelle K; Dietsch, Hervé; Achermann, Marc; Weder, Christoph

    2012-04-13

    Examples of nanoscale low-power upconverting systems are rapidly increasing because of their potential application in numerous areas such as bioimaging or drug delivery. The fabrication of dye-doped cross-linked rubbery nanoparticles that exhibit upconversion even at relatively low power densities is reported here. The nanoparticles were prepared by surfactant-free emulsion polymerization of n-butylacrylate with divinylbenzene as a cross-linker, followed by dyeing of the resulting particles with a two-chromophore system composed of a palladium porphyrin sensitizer, and diphenylanthracene. Blue emission (≈440 nm) of these systems was observed upon excitation at 532 nm. In addition to their optical properties, the particles were characterized by electron microscopy and dynamic light scattering. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Dynamic remodeling of microbial biofilms by functionally distinct exopolysaccharides.

    PubMed

    Chew, Su Chuen; Kundukad, Binu; Seviour, Thomas; van der Maarel, Johan R C; Yang, Liang; Rice, Scott A; Doyle, Patrick; Kjelleberg, Staffan

    2014-08-05

    Biofilms are densely populated communities of microbial cells protected and held together by a matrix of extracellular polymeric substances. The structure and rheological properties of the matrix at the microscale influence the retention and transport of molecules and cells in the biofilm, thereby dictating population and community behavior. Despite its importance, quantitative descriptions of the matrix microstructure and microrheology are limited. Here, particle-tracking microrheology in combination with genetic approaches was used to spatially and temporally study the rheological contributions of the major exopolysaccharides Pel and Psl in Pseudomonas aeruginosa biofilms. Psl increased the elasticity and effective cross-linking within the matrix, which strengthened its scaffold and appeared to facilitate the formation of microcolonies. Conversely, Pel reduced effective cross-linking within the matrix. Without Psl, the matrix becomes more viscous, which facilitates biofilm spreading. The wild-type biofilm decreased in effective cross-linking over time, which would be advantageous for the spreading and colonization of new surfaces. This suggests that there are regulatory mechanisms to control production of the exopolysaccharides that serve to remodel the matrix of developing biofilms. The exopolysaccharides were also found to have profound effects on the spatial organization and integration of P. aeruginosa in a mixed-species biofilm model of P. aeruginosa-Staphylococcus aureus. Pel was required for close association of the two species in mixed-species microcolonies. In contrast, Psl was important for P. aeruginosa to form single-species biofilms on top of S. aureus biofilms. Our results demonstrate that Pel and Psl have distinct physical properties and functional roles during biofilm formation. Importance: Most bacteria grow as biofilms in the environment or in association with eukaryotic hosts. Removal of biofilms that form on surfaces is a challenge in clinical and industrial settings. One of the defining features of a biofilm is its extracellular matrix. The matrix has a heterogeneous structure and is formed from a secretion of various biopolymers, including proteins, extracellular DNA, and polysaccharides. It is generally known to interact with biofilm cells, thus affecting cell physiology and cell-cell communication. Despite the fact that the matrix may comprise up to 90% of the biofilm dry weight, how the matrix properties affect biofilm structure, maturation, and interspecies interactions remain largely unexplored. This study reveals that bacteria can use specific extracellular polymers to modulate the physical properties of their microenvironment. This in turn impacts biofilm structure, differentiation, and interspecies interactions. Copyright © 2014 Chew et al.

  1. Molecularly Imprinted Biodegradable Nanoparticles

    NASA Astrophysics Data System (ADS)

    Gagliardi, Mariacristina; Bertero, Alice; Bifone, Angelo

    2017-01-01

    Biodegradable polymer nanoparticles are promising carriers for targeted drug delivery in nanomedicine applications. Molecu- lar imprinting is a potential strategy to target polymer nanoparticles through binding of endogenous ligands that may promote recognition and active transport into specific cells and tissues. However, the lock-and-key mechanism of molecular imprinting requires relatively rigid cross-linked structures, unlike those of many biodegradable polymers. To date, no fully biodegradable molecularly imprinted particles have been reported in the literature. This paper reports the synthesis of a novel molecularly- imprinted nanocarrier, based on poly(lactide-co-glycolide) (PLGA) and acrylic acid, that combines biodegradability and molec- ular recognition properties. A novel three-arm biodegradable cross-linker was synthesized by ring-opening polymerization of glycolide and lactide initiated by glycerol. The resulting macromer was functionalized by introduction of end-functions through reaction with acryloyl chloride. Macromer and acrylic acid were used for the synthesis of narrowly-dispersed nanoparticles by radical polymerization in diluted conditions in the presence of biotin as template molecule. The binding capacity of the imprinted nanoparticles towards biotin and biotinylated bovine serum albumin was twentyfold that of non-imprinted nanoparti- cles. Degradation rates and functional performances were assessed in in vitro tests and cell cultures, demonstrating effective biotin-mediated cell internalization.

  2. Transparent oxygen and water vapor barriers for flexible electronics using semi-crystalline polymer matrix thin films

    NASA Astrophysics Data System (ADS)

    Sehgal, Akhil

    Electronic components such as organic light emitting diodes (OLED) and photo-voltaics have been of more focus with the advancement of technology. These electronics are susceptible to degradable in the presence of gases such as water vapor and oxygen. Being that these gases are constituents of the atmosphere and can be found in nearly every environment, certain protocols must take place to mitigate the issues that occur. New generation electronics are sensitive to oxidation and corrosion in the presence of extremely low concentrations of moisture and oxygen and therefore the development and improvements of gas barriers are vital for advancements in electronics technology. The improvements of appliances such as flexible solar cells and OLEDs require barriers that need to be flexible in order to achieve high longevity. The area of research has been focused on designing flexible polymer films with composite nanoparticles and cross-linking agents that have low permeability to moisture and oxygen gas. The polymers studied are in the family of methacrylates. Due to the properties of methacrylate polymers, it has been proposed that they are capable of having efficient barrier properties due to their ability to cross link and form crystalline structures with low chain mobility. The change in intensities of the FTIR peaks of different functional groups indicates the cross-linking and crystallinity of the polymer films. The UV-Vis data indicates high transparency of the films. SEM images of the films show continuous and well cured surfaces with minimal deviations, pores and defects. The addition of cross-linking agents and nanoparticles increased polymerization and cross-linking of the methacrylate polymer chains, therefore increasing inter-chain density and long range order. The incorporation of these additives increased the crystallinity of the films and by decreasing the distances and number of voids between polymer chains along with having minimal sorption sites for gases to bond to, the ability of gases such as moisture and oxygen to penetrate through the films has decreased.

  3. Imprinting of metal receptors into multilayer polyelectrolyte films: fabrication and applications in marine antifouling† †Electronic supplementary information (ESI) available: FTIR, NMR spectra of synthesized polymers, XPS spectra and AFM images of non-cross linked and cross linked LBLA and LBLB films, UV-Visible absorption spectra of copper complexation with PAH-His, QCM data of LBLA and LBLB films and stability of the films are provided in the electronic supplementary information. See DOI: 10.1039/c4sc02367f Click here for additional data file.

    PubMed Central

    Puniredd, Sreenivasa Reddy; Go, Dewi Pitrasari; Zhu, Xiaoying; Guo, Shifeng; Ming Teo, Serena Lay; Chen Lee, Serina Siew

    2015-01-01

    Polymeric films constructed using the layer-by-layer (LbL) fabrication process were employed as a platform for metal ion immobilization and applied as a marine antifouling coating. The novel Cu2+ ion imprinting process described is based on the use of metal ion templates and LbL multilayer covalent cross-linking. Custom synthesized, peptide mimicking polycations composed of histidine grafted poly(allylamine) (PAH) to bind metal ions, and methyl ester containing polyanions for convenient cross-linking were used in the fabrication process. Two methods of LbL film formation have been investigated using alternate polyelectrolyte deposition namely non-imprinted LbLA, and imprinted LbLB. Both LbL films were cross linked at mild temperature to yield covalent bridging of the layers for improved stability in a sea water environment. A comparative study of the non-imprinted LbLA films and imprinted LbLB films for Cu2+ ion binding capacity, leaching rate and stability of the films was performed. The results reveal that the imprinted films possess enhanced affinity to retain metal ions due to the preorganization of imidazole bearing histidine receptors. As a result the binding capacity of the films for Cu2+ could be improved by seven fold. Antifouling properties of the resulting materials in a marine environment have been demonstrated against the settlement of barnacle larvae, indicating that controlled release of Cu ions was achieved. PMID:28966763

  4. The Synergy of Double Cross-linking Agents on the Properties of Styrene Butadiene Rubber Foams

    PubMed Central

    Shao, Liang; Ji, Zhan-You; Ma, Jian-Zhong; Xue, Chao-Hua; Ma, Zhong-Lei; Zhang, Jing

    2016-01-01

    Sulfur (S) cross-linking styrene butadiene rubber (SBR) foams show high shrinkage due to the cure reversion, leading to reduced yield and increased processing cost. In this paper, double cross-linking system by S and dicumyl peroxide (DCP) was used to decrease the shrinkage of SBR foams. Most importantly, the synergy of double cross-linking agents was reported for the first time to our knowledge. The cell size and its distribution of SBR foams were investigated by FESEM images, which show the effect of DCP content on the cell structure of the SBR foams. The relationships between shrinkage and crystalline of SBR foams were analyzed by the synergy of double cross-linking agents, which were demonstrated by FTIR, Raman spectra, XRD, DSC and TGA. When the DCP content was 0.6 phr, the SBR foams exhibit excellent physical and mechanical properties such as low density (0.223 g/cm3), reduced shrinkage (2.25%) and compression set (10.96%), as well as elevated elongation at break (1.78 × 103%) and tear strength (54.63 N/mm). The results show that these properties are related to the double cross-linking system of SBR foams. Moreover, the double cross-linking SBR foams present high electromagnetic interference (EMI) shielding properties compared with the S cross-linking SBR foams. PMID:27841307

  5. The Synergy of Double Cross-linking Agents on the Properties of Styrene Butadiene Rubber Foams

    NASA Astrophysics Data System (ADS)

    Shao, Liang; Ji, Zhan-You; Ma, Jian-Zhong; Xue, Chao-Hua; Ma, Zhong-Lei; Zhang, Jing

    2016-11-01

    Sulfur (S) cross-linking styrene butadiene rubber (SBR) foams show high shrinkage due to the cure reversion, leading to reduced yield and increased processing cost. In this paper, double cross-linking system by S and dicumyl peroxide (DCP) was used to decrease the shrinkage of SBR foams. Most importantly, the synergy of double cross-linking agents was reported for the first time to our knowledge. The cell size and its distribution of SBR foams were investigated by FESEM images, which show the effect of DCP content on the cell structure of the SBR foams. The relationships between shrinkage and crystalline of SBR foams were analyzed by the synergy of double cross-linking agents, which were demonstrated by FTIR, Raman spectra, XRD, DSC and TGA. When the DCP content was 0.6 phr, the SBR foams exhibit excellent physical and mechanical properties such as low density (0.223 g/cm3), reduced shrinkage (2.25%) and compression set (10.96%), as well as elevated elongation at break (1.78 × 103%) and tear strength (54.63 N/mm). The results show that these properties are related to the double cross-linking system of SBR foams. Moreover, the double cross-linking SBR foams present high electromagnetic interference (EMI) shielding properties compared with the S cross-linking SBR foams.

  6. Self-healing and thermoreversible rubber from supramolecular assembly.

    PubMed

    Cordier, Philippe; Tournilhac, François; Soulié-Ziakovic, Corinne; Leibler, Ludwik

    2008-02-21

    Rubbers exhibit enormous extensibility up to several hundred per cent, compared with a few per cent for ordinary solids, and have the ability to recover their original shape and dimensions on release of stress. Rubber elasticity is a property of macromolecules that are either covalently cross-linked or connected in a network by physical associations such as small glassy or crystalline domains, ionic aggregates or multiple hydrogen bonds. Covalent cross-links or strong physical associations prevent flow and creep. Here we design and synthesize molecules that associate together to form both chains and cross-links via hydrogen bonds. The system shows recoverable extensibility up to several hundred per cent and little creep under load. In striking contrast to conventional cross-linked or thermoreversible rubbers made of macromolecules, these systems, when broken or cut, can be simply repaired by bringing together fractured surfaces to self-heal at room temperature. Repaired samples recuperate their enormous extensibility. The process of breaking and healing can be repeated many times. These materials can be easily processed, re-used and recycled. Their unique self-repairing properties, the simplicity of their synthesis, their availability from renewable resources and the low cost of raw ingredients (fatty acids and urea) bode well for future applications.

  7. Controlled molecular self-assembly of complex three-dimensional structures in soft materials.

    PubMed

    Huang, Changjin; Quinn, David; Suresh, Subra; Hsia, K Jimmy

    2018-01-02

    Many applications in tissue engineering, flexible electronics, and soft robotics call for approaches that are capable of producing complex 3D architectures in soft materials. Here we present a method using molecular self-assembly to generate hydrogel-based 3D architectures that resembles the appealing features of the bottom-up process in morphogenesis of living tissues. Our strategy effectively utilizes the three essential components dictating living tissue morphogenesis to produce complex 3D architectures: modulation of local chemistry, material transport, and mechanics, which can be engineered by controlling the local distribution of polymerization inhibitor (i.e., oxygen), diffusion of monomers/cross-linkers through the porous structures of cross-linked polymer network, and mechanical constraints, respectively. We show that oxygen plays a role in hydrogel polymerization which is mechanistically similar to the role of growth factors in tissue growth, and the continued growth of hydrogel enabled by diffusion of monomers/cross-linkers into the porous hydrogel similar to the mechanisms of tissue growth enabled by material transport. The capability and versatility of our strategy are demonstrated through biomimetics of tissue morphogenesis for both plants and animals, and its application to generate other complex 3D architectures. Our technique opens avenues to studying many growth phenomena found in nature and generating complex 3D structures to benefit diverse applications. Copyright © 2017 the Author(s). Published by PNAS.

  8. Soft nanocomposites of gelatin and poly(3-hydroxybutyrate) nanoparticles for dual drug release.

    PubMed

    Bini, Rafael A; Silva, Mônica F; Varanda, Laudemir C; da Silva, Marcelo A; Dreiss, Cécile A

    2017-09-01

    We developed a nanocomposite gel composed of gelatin and poly(3-hydroxybutyrate) polymeric nanoparticles (PNP) to be used as an injectable gel for the contemporaneous, dual sustained release of bioactive molecules. The hydrogel matrix was formed by a very simple process, using either the physical gelation of gelatin or the natural enzyme transglutaminase to covalently cross-link the gelatin chains in the presence of embedded PNP. Oscillatory rheological measurements showed that the addition of the PNP induced an increase in the storage modulus compared to pure gelatin gels, for both physical and chemical gels. Micrographs from scanning electron microscopy revealed that the presence of PNP disrupted the native structure of the gelatin chains in the hydrogel matrix. Dual drug encapsulation was achieved with curcumin (CM) in the PNP and naproxen sodium(NS) in the gelatin matrix. In vitro release studies showed that the hydrogel matrix acts both as a physical and chemical barrier, delaying the diffusion of the drugs. An initial burst release was observed in the first hours of the measurement, and around 90% was released on the third day for naproxen sodium. In free PNP, 82% of curcumin was relased after four days, while when PNP were embedded in the gelatin matrix only 40% was released over the same time period. Overall, these simple, sustainable soft nanocomposites show potential as an injectable co-sustained drug release system. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Tensile bond strength between auto-polymerized acrylic resin and acrylic denture teeth treated with MF-MA solution.

    PubMed

    Thongrakard, Ticha; Wiwatwarrapan, Chairat

    2016-08-01

    This study evaluated the effect of chemical surface treatment using methyl formate-methyl acetate (MF-MA) solution on the tensile bond strength between acrylic denture teeth and auto-polymerized acrylic resin. Seventy maxillary central incisor acrylic denture teeth for each of three different brands (Yamahachi New Ace; Major Dent; Cosmo HXL) were embedded with incisal edge downwards in auto-polymerized resin in polyethylene pipes and ground with silicone carbide paper on their ridge lap surfaces. The teeth of each brand were divided into seven groups (n=10): no surface treatment (control group), MF-MA solution at a ratio of 25:75 (v/v) for 15 seconds, 30 seconds, 60 seconds, 120 seconds, 180 seconds, and MMA for 180 seconds. Auto-polymerized acrylic resin (Unifast Trad) was applied to the ground surface and polymerized in a pressure cooker. A tensile strength test was performed with a universal testing machine. Statistical analysis of the results was performed using two-way analysis of variance (ANOVA) and post-hoc Dunnett T3 test (α=.05). The surface treatment groups had significantly higher mean tensile bond strengths compared with the control group (P<.05) when compared within the same brand. Among the surface treatment groups of each brand, there were no significantly different tensile bond strengths between the MF-MA groups and the MMA 180 second group (P>.05), except for the Yamahachi New Ace MF-MA 180-second group (P<.05). 15-second MF-MA solution can be an alternative chemical surface treatment for repairing a denture base and rebonding acrylic denture teeth with auto-polymerized acrylic resin, for both conventional and cross-linked teeth.

  10. A theory for fracture of polymeric gels

    NASA Astrophysics Data System (ADS)

    Mao, Yunwei; Anand, Lallit

    2018-06-01

    A polymeric gel is a cross-linked polymer network swollen with a solvent. If the concentration of the solvent or the deformation is increased to substantial levels, especially in the presence of flaws, then the gel may rupture. Although various theoretical aspects of coupling of fluid permeation with large deformation of polymeric gels are reasonably well-understood and modeled in the literature, the understanding and modeling of the effects of fluid diffusion on the damage and fracture of polymeric gels is still in its infancy. In this paper we formulate a thermodynamically-consistent theory for fracture of polymeric gels - a theory which accounts for the coupled effects of fluid diffusion, large deformations, damage, and also the gradient effects of damage. The particular constitutive equations for fracture of a gel proposed in our paper, contain two essential new ingredients: (i) Our constitutive equation for the change in free energy of a polymer network accounts for not only changes in the entropy, but also changes in the internal energy due the stretching of the Kuhn segments of the polymer chains in the network. (ii) The damage and failure of the polymer network is taken to occur by chain-scission, a process which is driven by the changes in the internal energy of the stretched polymer chains in the network, and not directly by changes in the configurational entropy of the polymer chains. The theory developed in this paper is numerically implemented in an open-source finite element code MOOSE, by writing our own application. Using this simulation capability we report on our study of the fracture of a polymeric gel, and some interesting phenomena which show the importance of the diffusion of the fluid on fracture response of the gel are highlighted.

  11. Synthesis and Characterization of Microencapsulated Phase Change Materials with Poly(urea-urethane) Shells Containing Cellulose Nanocrystals.

    PubMed

    Yoo, Youngman; Martinez, Carlos; Youngblood, Jeffrey P

    2017-09-20

    The main objective of this study is to develop microencapsulation technology for thermal energy storage incorporating a phase change material (PCM) in a composite wall shell, which can be used to create a stable environment and allow the PCM to undergo phase change without any outside influence. Surface modification of cellulose nanocrystals (CNCs) was conducted by grafting poly(lactic acid) oligomers and oleic acid to improve the dispersion of nanoparticles in a polymeric shell. A microencapsulated phase change material (methyl laurate) with poly(urea-urethane) (PU) composite shells containing the hydrophobized cellulose nanocrystals (hCNCs) was fabricated using an in situ emulsion interfacial polymerization process. The encapsulation process of the PCMs with subsequent interfacial hCNC-PU to form composite microcapsules as well as their morphology, composition, thermal properties, and release rates was examined in this study. Oil soluble Sudan II dye solution in methyl laurate was used as a model hydrophobic fill, representing other latent fills with low partition coefficients, and their encapsulation efficiency as well as dye release rates were measured spectroscopically in a water medium. The influence of polyol content in the PU polymer matrix of microcapsules was investigated. An increase in polyol contents leads to an increase in the mean size of microcapsules but a decrease in the gel content (degree of cross-linking density) and permeability of their shell structure. The encapsulated PCMs for thermal energy storage demonstrated here exhibited promising performance for possible use in building or paving materials in terms of released heat, desired phase transformation temperature, chemical and physical stability, and concrete durability during placement.

  12. Correlating Free-Volume Hole Distribution to the Glass Transition Temperature of Epoxy Polymers.

    PubMed

    Aramoon, Amin; Breitzman, Timothy D; Woodward, Christopher; El-Awady, Jaafar A

    2017-09-07

    A new algorithm is developed to quantify the free-volume hole distribution and its evolution in coarse-grained molecular dynamics simulations of polymeric networks. This is achieved by analyzing the geometry of the network rather than a voxelized image of the structure to accurately and efficiently find and quantify free-volume hole distributions within large scale simulations of polymer networks. The free-volume holes are quantified by fitting the largest ellipsoids and spheres in the free-volumes between polymer chains. The free-volume hole distributions calculated from this algorithm are shown to be in excellent agreement with those measured from positron annihilation lifetime spectroscopy (PALS) experiments at different temperature and pressures. Based on the results predicted using this algorithm, an evolution model is proposed for the thermal behavior of an individual free-volume hole. This model is calibrated such that the average radius of free-volumes holes mimics the one predicted from the simulations. The model is then employed to predict the glass-transition temperature of epoxy polymers with different degrees of cross-linking and lengths of prepolymers. Comparison between the predicted glass-transition temperatures and those measured from simulations or experiments implies that this model is capable of successfully predicting the glass-transition temperature of the material using only a PDF of the initial free-volume holes radii of each microstructure. This provides an effective approach for the optimized design of polymeric systems on the basis of the glass-transition temperature, degree of cross-linking, and average length of prepolymers.

  13. Thrombin-dependent Incorporation of von Willebrand Factor into a Fibrin Network*

    PubMed Central

    Miszta, Adam; Pelkmans, Leonie; Lindhout, Theo; Krishnamoorthy, Ganeshram; de Groot, Philip G.; Hemker, Coenraad H.; Heemskerk, Johan W. M.; Kelchtermans, Hilde; de Laat, Bas

    2014-01-01

    Attachment of platelets from the circulation onto a growing thrombus is a process involving multiple platelet receptors, endothelial matrix components, and coagulation factors. It has been indicated previously that during a transglutaminase reaction activated factor XIII (FXIIIa) covalently cross-links von Willebrand factor (VWF) to polymerizing fibrin. Bound VWF further recruits and activates platelets via interactions with the platelet receptor complex glycoprotein Ib (GPIb). In the present study we found proof for binding of VWF to a fibrin monomer layer during the process of fibrinogen-to-fibrin conversion in the presence of thrombin, arvin, or a snake venom from Crotalus atrox. Using a domain deletion mutant we demonstrated the involvement of the C domains of VWF in this binding. Substantial binding of VWF to fibrin monomers persisted in the presence of the FXIIIa inhibitor K9-DON, illustrating that cross-linking via factor XIII is not essential for this phenomenon and suggesting the identification of a second mechanism through which VWF multimers incorporate into a fibrin network. Under high shear conditions, platelets were shown to adhere to fibrin only if VWF had been incorporated. In conclusion, our experiments show that the C domains of VWF and the E domain of fibrin monomers are involved in the incorporation of VWF during the polymerization of fibrin and that this incorporation fosters binding and activation of platelets. Fibrin thus is not an inert end product but partakes in further thrombus growth. Our findings help to elucidate the mechanism of thrombus growth and platelet adhesion under conditions of arterial shear rate. PMID:25381443

  14. Effective removal of effluent organic matter (EfOM) from bio-treated coking wastewater by a recyclable aminated hyper-cross-linked polymer.

    PubMed

    Yang, Wenlan; Li, Xuchun; Pan, Bingcai; Lv, Lu; Zhang, Weiming

    2013-09-01

    Effluent organic matter (EfOM) is a complex matrix of organic substance mainly from bio-treated sewage effluent and is considered as the main constraint to further advanced treatment. Here a recyclable aminated hyper-cross-linked polymeric adsorbent (NDA-802) featured with aminated functional groups, large specific surface area, and sufficient micropore region was synthesized for effective removal of EfOM from the bio-treated coking wastewater (BTCW), and its removal characteristics was investigated. It was found that hydrophobic fraction was the main constituent (64.8% of DOC) in EfOM of BTCW, and the hydrophobic-neutral fraction had the highest SUVA level (7.06 L mg(-1) m(-1)), which were significantly different from that in the domestic wastewater. Column adsorption experiments showed that NDA-802 exhibited much higher removal efficiency of EfOM than other polymeric adsorbents D-301, XAD-4, and XAD-7, and the efficiency could be readily sustained according to continuous 28-cycle batch adsorption-regeneration experiments. Moreover, dissolved organic matter (DOM) fractionation and excitation-emission matrix (EEM) fluorescence spectroscopy study indicated that NDA-802 showed attractive adsorption preference as well as high removal efficiency of hydrophobic and aromatic compounds. Possibly ascribed to the presence of functional aminated groups, relatively large specific surface area and micropore region of the unique polymer, NDA-802 possesses high and sustained efficiency for the removal of EfOM, and provides a potential alternative for the advanced treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Efficient sampling of reversible cross-linking polymers: Self-assembly of single-chain polymeric nanoparticles

    NASA Astrophysics Data System (ADS)

    Oyarzún, Bernardo; Mognetti, Bortolo Matteo

    2018-03-01

    We present a new simulation technique to study systems of polymers functionalized by reactive sites that bind/unbind forming reversible linkages. Functionalized polymers feature self-assembly and responsive properties that are unmatched by the systems lacking selective interactions. The scales at which the functional properties of these materials emerge are difficult to model, especially in the reversible regime where such properties result from many binding/unbinding events. This difficulty is related to large entropic barriers associated with the formation of intra-molecular loops. In this work, we present a simulation scheme that sidesteps configurational costs by dedicated Monte Carlo moves capable of binding/unbinding reactive sites in a single step. Cross-linking reactions are implemented by trial moves that reconstruct chain sections attempting, at the same time, a dimerization reaction between pairs of reactive sites. The model is parametrized by the reaction equilibrium constant of the reactive species free in solution. This quantity can be obtained by means of experiments or atomistic/quantum simulations. We use the proposed methodology to study the self-assembly of single-chain polymeric nanoparticles, starting from flexible precursors carrying regularly or randomly distributed reactive sites. We focus on understanding differences in the morphology of chain nanoparticles when linkages are reversible as compared to the well-studied case of irreversible reactions. Intriguingly, we find that the size of regularly functionalized chains, in good solvent conditions, is non-monotonous as a function of the degree of functionalization. We clarify how this result follows from excluded volume interactions and is peculiar of reversible linkages and regular functionalizations.

  16. Electrochemical Sensor Based on Rh(III) Ion-Imprinted Polymer as a New Modifying Agent for Rhodium Determination.

    PubMed

    Bai, Huiping; Xiong, Caiyun; Wang, Chunqiong; Liu, Peng; Dong, Su; Cao, Qiue

    2018-05-01

    A rhodium (III) ion carbon paste electrode (CPE) based on an ion imprinted polymer (IIP) as a new modifying agent has been prepared and studied. Rh(III) ion imprinted polymer was synthesized by copolymerization of acrylamide-Rh(III) complex and ethylene glycol dimethacrylate according to the precipitation polymerization. Acrylamide acted as both functional monomer and complexing agent to create selective coordination sites in a cross-linked polymer. The ion imprinted carbon paste electrode (IIP-CPE) was prepared by mixing rhodium IIP-nanoparticles and graphite powder in n-eicosane as an adhesive and then embedding them in a Teflon tube. Amperometric i-t curve method was applied as the determination technique. Several parameters, including the functional monomer, molar ratio of template, monomer and cross-linking agent, the amounts of IIP, the applied potential, the buffer solution and pH have been studied. According to the results, IIP-CPE showed a considerably higher response in comparison with the electrode embedded with non-imprinted polymer (NIP), indicating the formation of suitable recognition sites in the IIP structure during the polymerization stage. The introduced electrode showed a linear range of 1.00×10-8~3.0×10-5 mol·L-1 and detection limit of 6.0 nmol L-1 (S/N = 3). The IIP-CPE was successfully applied for the trace rhodium determination in catalyst and plant samples with RSD of less than 3.3% (n = 5) and recoveries in the range of 95.5~102.5%.

  17. Computer Simulations of Bottle Brushes: From Melts to Soft Networks

    DOE PAGES

    Cao, Zhen; Carrillo, Jan-Michael Y.; Sheiko, Sergei S.; ...

    2015-07-13

    We use a combination of Molecular dynamics simulations and analytical calculations, and study dens bottle-brush systems in a melt and network State. Analysis of our simulation results shows that bottle-brush macromolecules in melt behave as ideal chains with effective Kuhn length b K. Simulations show that the bottle-brush-induced bending rigidity is due to an entropy decrease caused by redistribution of the side chains upon backbone bending. The Kuhn length of the bottle:brushes increases with increasing the side-chain degree of polymerization n sc as b K proportional to n sc 0.46. Moreover, this model of bottle brush macromolecules is extended tomore » describe mechanical properties of bottle brush networks in linear and nonlinear deformation regimes. In the linear deformation regime, the network shear modulus scales with the degree of polymerization of the side chains as G 0 proportional to (n sc + 1) -1 as long as the ratio of the Kuhn length, b K, to the size of the fully extended bottle-brush backbone between cross-links, R-max, is smaller than unity, b K/R max << 1. Bottle-brush networks With b K/R max proportional to 1 demonstrate behavior similar to that of networks Of semiflexible chains with G 0 proportional to n sc -0.5. Finally, in the nonlinear network deformation regime, the deformation-dependent shear modulus is a universal function of the first strain invariant I 1 and bottle-brush backbone deformation ratio beta describing stretching ability of the bottle-brush backbone between cross-links.« less

  18. Vinculin promotes cell spreading by mechanically coupling integrins to the cytoskeleton

    NASA Technical Reports Server (NTRS)

    Ezzell, R. M.; Goldmann, W. H.; Wang, N.; Parasharama, N.; Ingber, D. E.

    1997-01-01

    Mouse F9 embryonic carcinoma 5.51 cells that lack the cytoskeletal protein vinculin spread poorly on extracellular matrix compared with wild-type F9 cells or two vinculin-transfected clones (5.51Vin3 and Vin4; Samuels et al., 1993, J. Cell Biol. 121, 909-921). In the present study, we used this model system to determine how the presence of vinculin promotes cytoskeletal alterations and associated changes in cell shape. Microscopic analysis of cell spreading at early times, revealed that 5.51 cells retained the ability to form filopodia; however, they could not form lamellipodia, assemble stress fibers, or efficiently spread over the culture substrate. Detergent (Triton X-100) studies revealed that these major differences in cell morphology and cytoskeletal organization did not result from differences in levels of total polymerized or cross-linked actin. Biochemical studies showed that 5.51 cells, in addition to lacking vinculin, exhibited slightly reduced levels of alpha-actinin and paxillin in their detergent-insoluble cytoskeleton. The absence of vinculin correlated with a decrease in the mechanical stiffness of the integrin-cytoskeleton linkage, as measured using cell magnetometry. Furthermore, when vinculin was replaced by transfection in 5.51Vin3 and 5.51Vin4 cells, the levels of cytoskeletal-associated alpha-actinin and paxillin, the efficiency of transmembrane mechanical coupling, and the formation of actin stress fibers were all restored to near wild-type levels. These findings suggest that vinculin may promote cell spreading by stabilizing focal adhesions and transferring mechanical stresses that drive cytoskeletal remodeling, rather than by altering the total level of actin polymerization or cross-linking.

  19. Fibrinogen variant B[beta]D432A has normal polymerization but does not bind knob 'B'

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowley, Sheryl R.; Lord, Susan T.; UNC)

    2009-10-23

    Fibrinogen residue B{beta}432Asp is part of hole 'b' that interacts with knob 'B,' whose sequence starts with Gly-His-Arg-Pro-amide (GHRP). Because previous studies showed B{beta}D432A has normal polymerization, we hypothesized that B{beta}432Asp is not critical for knob 'B' binding and that new knob-hole interactions would compensate for the loss of this Asp residue. To test this hypothesis, we solved the crystal structure of fragment D from B{beta}D432A. Surprisingly, the structure (rfD-B{beta}D432A+GH) showed the peptide GHRP was not bound to hole 'b.' We then re-evaluated the polymerization of this variant by examining clot turbidity, clot structure, and the rate of FXIIIa cross-linking.more » The turbidity and the rate of - dimer formation for B{beta}D432A were indistinguishable compared with normal fibrinogen. Scanning electron microscopy showed no significant differences between the clots of B{beta}D432A and normal, but the thrombin-derived clots had thicker fibers than clots obtained from batroxobin, suggesting that cleavage of FpB is more important than 'B:b' interactions. We conclude that hole 'b' and 'B:b' knob-hole binding per se have no influence on fibrin polymerization.« less

  20. Universal Surface-initiated Polymerization of Antifouling Zwitterionic Brushes Using A Mussel-Mimetic Peptide Initiator

    PubMed Central

    Kuang, Jinghao; Messersmith, Phillip B.

    2012-01-01

    We report a universal method for the surface-initated polymerization (SIP) of a antifouling polymer brush on various classes of surfaces, including noble metals, metal oxides and inert polymers. Inspired by the versatility of mussel adhesive proteins, we synthesized a novel bifunctional tripeptide bromide (BrYKY) which combines an atom transfer radical polymerization (ATRP) initiating alkyl bromide with l-3,4-dihydroxyphenylalanine (DOPA) and lysine. Simple dip-coating of substrates with variable wetting properties and compositions, including Teflon®, in a BrYKY solution at pH 8.5 led to formation of a thin film of cross-linked BrYKY. Subsequently, we showed that the BrYKY layer initiated the ATRP of a zwitterionic monomer, sulfobetaine methacrylate (SBMA) on all substrates, resulting in high density antifouling pSBMA brushes. Both BrYKY deposition and pSBMA grafting were unambiguously confirmed by ellipsometry, X-ray photoelectron spectroscopy and goniometry. All substrates that were coated with BrYKY/pSBMA dramatically reduced bacterial adhesion for 24 h and also resisted mammalian cell adhesion for at least 4 months, demonstrating the long-term stability of the BrYKY anchoring and antifouling properties of pSBMA. The use of BrYKY as a primer and polymerization initiator has the potential to be widely employed in surface grafted polymer brush modifications for biomedical and other applications. PMID:22506651

  1. An easily regenerable enzyme reactor prepared from polymerized high internal phase emulsions.

    PubMed

    Ruan, Guihua; Wu, Zhenwei; Huang, Yipeng; Wei, Meiping; Su, Rihui; Du, Fuyou

    2016-04-22

    A large-scale high-efficient enzyme reactor based on polymerized high internal phase emulsion monolith (polyHIPE) was prepared. First, a porous cross-linked polyHIPE monolith was prepared by in-situ thermal polymerization of a high internal phase emulsion containing styrene, divinylbenzene and polyglutaraldehyde. The enzyme of TPCK-Trypsin was then immobilized on the monolithic polyHIPE. The performance of the resultant enzyme reactor was assessed according to the conversion ability of Nα-benzoyl-l-arginine ethyl ester to Nα-benzoyl-l-arginine, and the protein digestibility of bovine serum albumin (BSA) and cytochrome (Cyt-C). The results showed that the prepared enzyme reactor exhibited high enzyme immobilization efficiency and fast and easy-control protein digestibility. BSA and Cyt-C could be digested in 10 min with sequence coverage of 59% and 78%, respectively. The peptides and residual protein could be easily rinsed out from reactor and the reactor could be regenerated easily with 4 M HCl without any structure destruction. Properties of multiple interconnected chambers with good permeability, fast digestion facility and easily reproducibility indicated that the polyHIPE enzyme reactor was a good selector potentially applied in proteomics and catalysis areas. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Effects of quaternization on the morphological stability and antibacterial activity of electrospun poly(DMAEMA-co-AMA) nanofibers.

    PubMed

    Xu, Jing-Wei; Wang, Yao; Yang, Yun-Feng; Ye, Xiang-Yu; Yao, Ke; Ji, Jian; Xu, Zhi-Kang

    2015-09-01

    Electrospun nanofibers with antibacterial activity are greatly promising for medical treatment and water purification. Herein we report antibacterial nanofibers electrospun from a series of poly(dimethylamino ethyl methacrylate-co-alkyl methacrylates) (poly(DMAEMA-co-AMA)) and to distinguish the effects of free and cross-linked cations derived from quanternization on the antibacterial activity. Poly(DMAEMA-co-AMA)s are simply synthesized by free radical polymerization from commercial monomers. DSC analysis indicates that they have Tg lower than room temperature and thus the electrospun nanofibers adhere to each other and evenly tend to form films, instead of keeping cylinderic shape. Benzyl chloride (BC) and p-xylylene dichloride (XDC) can quaternize DMAEMA units and to generate cations on the nanofiber surface. XPS analysis and colorimetric assay determine the quaternization degree and the surface accessible quaternary amines (N(+)), respectively. It is very promising that this quaternization endows the electrospun nanofibers with both stable morphology and antibacterial activity. The BC-quaternized fibers show better antibacterial behavior against Escherichia coli and Staphylococcus aureus than those of the XDC-quaternized/cross-linked ones, because cross-linking suppresses the chain mobility of cations. Our results confirm that antibacterial nanofibers can be facilely prepared and chain mobility of the formed cations is the necessary prerequisite for their antibacterial activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Self-replenishing ability of cross-linked low surface energy polymer films investigated by a complementary experimental-simulation approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esteves, A. C. C., E-mail: a.c.c.esteves@tue.nl, E-mail: g.dewith@tue.nl; Lyakhova, K.; Riel, J. M. van

    2014-03-28

    Nowadays, many self-healing strategies are available for recovering mechanical damage of bulk polymeric materials. The recovery of surface-dependent functionalities on polymer films is, however, equally important and has been less investigated. In this work we study the ability of low surface energy cross-linked poly(ester urethane) networks containing perfluorinated dangling chains to self-replenish their surface, after being submitted to repeated surface damage. For this purpose we used a combined experimental-simulation approach. Experimentally, the cross-linked films were intentionally damaged by cryo-microtoming to remove top layers and create new surfaces which were characterized by water Contact Angle measurements and X-Ray Photoelectron Spectroscopy. Themore » same systems were simultaneously represented by a Dissipative Particles Dynamics simulation method, where the damage was modeled by removing the top film layers in the simulation box and replacing it by new “air” beads. The influence of different experimental parameters, such as the concentration of the low surface energy component and the molecular mobility span of the dangling chains, on the surface recovery is discussed. The combined approach reveals important details of the self-replenishing ability of damaged polymer films such as the occurrence of multiple-healing events, the self-replenishing efficiency, and the minimum “healing agent” concentration for a maximum recovery.« less

  4. Enzymatically and chemically oxidized lignin nanoparticles for biomaterial applications.

    PubMed

    Mattinen, Maija-Liisa; Valle-Delgado, Juan José; Leskinen, Timo; Anttila, Tuomas; Riviere, Guillaume; Sipponen, Mika; Paananen, Arja; Lintinen, Kalle; Kostiainen, Mauri; Österberg, Monika

    2018-04-01

    Cross-linked and decolorized lignin nanoparticles (LNPs) were prepared enzymatically and chemically from softwood Kraft lignin. Colloidal lignin particles (CLPs, ca. 200 nm) in a non-malodorous aqueous dispersion could be dried and redispersed in tetrahydrofuran (THF) or in water retaining their stability i.e. spherical shape and size. Two fungal laccases, Trametes hirsuta (ThL) and Melanocarpus albomyces (MaL) were used in the cross-linking reactions. Reactivity of ThL and MaL on Lignoboost™ lignin and LNPs was confirmed by high performance size exclusion chromatography (HPSEC) and oxygen consumption measurements with simultaneous detection of red-brown color due to the formation of quinones. Zeta potential measurements verified oxidation of LNPs via formation of surface-oriented carboxylic acid groups. Dynamic light scattering (DLS) revealed minor changes in the particle size distributions of LNPs after laccase catalyzed radicalization, indicating preferably covalent intraparticular cross-linking over polymerization. Changes in the surface morphology of laccase treated LNPs were imaged by atomic force (AFM) and transmission emission (TEM) microscopy. Furthermore, decolorization of LNPs without degradation was obtained using ultrasonication with H 2 O 2 in alkaline reaction conditions. The research results have high impact for the utilization of Kraft lignin as nanosized colloidal particles in advanced bionanomaterial applications in medicine, foods and cosmetics including different sectors from chemical industry. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. An Investigation of Siloxane Cross-linked Hydroxyapatite-Gelatin/Copolymer Composites for Potential Orthopedic Applications†

    PubMed Central

    Dyke, Jason Christopher; Knight, Kelly Jane; Zhou, Huaxing; Chiu, Chi-Kai; Ko, Ching-Chang; You, Wei

    2012-01-01

    Causes of bone deficiency are numerous, but biomimetic alloplastic grafts provide an alternative to repair tissue naturally. Previously, a hydroxyapatite-gelatin modified siloxane (HAp-Gemosil) composite was prepared by cross-linking (N, N′-bis[(3-trimethoxysilyl)propyl]ethylene diamine (enTMOS) around the HAp-Gel nanocomposite particles, to mimic the natural composition and properties of bone. However, the tensile strength remained too low for many orthopedic applications. It was hypothesized that incorporating a polymer chain into the composite could help improve long range interaction. Furthermore, designing this polymer to interact with the enTMOS siloxane cross-linked matrix would provide improved adhesion between the polymer and the ceramic composite, and improve mechanical properties. To this end, copolymers of L-Lactide (LLA), and a novel alkyne derivatized trimethylene carbonate, propargyl carbonate (PC), were synthesized. Incorporation of PC during copolymerization affects properties of copolymers such as molecular weight, Tg, and % PC incorporation. More importantly, PC monomers bear a synthetic handle, allowing copolymers to undergo post-polymerization functionalization with graft monomers to specifically tailor the properties of the final composite. For our investigation, P(LLA-co-PC) copolymers were functionalized by an azido-silane (AS) via copper catalyzed azide-alkyne cycloaddition (CuAAC) through terminal alkyne on PC monomers. The new functionalized polymer, P(LLA-co-PC)(AS) was blended with HAp-Gemosil, with the azido-silane linking the copolymer to the silsesquioxane matrix within the final composite. These HAp-Gemosil/P(LLA-co-PC)(AS) composites were subjected to mechanical and biological testing, and the results were compared with those from the HAp-Gemosil composites. This study revealed that incorporating a cross-linkable polymer served to increase the flexural strength of the composite by 50%, while maintaining the biocompatibility of HAp-Gemosil ceramics. PMID:23139457

  6. CLMSVault: A Software Suite for Protein Cross-Linking Mass-Spectrometry Data Analysis and Visualization.

    PubMed

    Courcelles, Mathieu; Coulombe-Huntington, Jasmin; Cossette, Émilie; Gingras, Anne-Claude; Thibault, Pierre; Tyers, Mike

    2017-07-07

    Protein cross-linking mass spectrometry (CL-MS) enables the sensitive detection of protein interactions and the inference of protein complex topology. The detection of chemical cross-links between protein residues can identify intra- and interprotein contact sites or provide physical constraints for molecular modeling of protein structure. Recent innovations in cross-linker design, sample preparation, mass spectrometry, and software tools have significantly improved CL-MS approaches. Although a number of algorithms now exist for the identification of cross-linked peptides from mass spectral data, a dearth of user-friendly analysis tools represent a practical bottleneck to the broad adoption of the approach. To facilitate the analysis of CL-MS data, we developed CLMSVault, a software suite designed to leverage existing CL-MS algorithms and provide intuitive and flexible tools for cross-platform data interpretation. CLMSVault stores and combines complementary information obtained from different cross-linkers and search algorithms. CLMSVault provides filtering, comparison, and visualization tools to support CL-MS analyses and includes a workflow for label-free quantification of cross-linked peptides. An embedded 3D viewer enables the visualization of quantitative data and the mapping of cross-linked sites onto PDB structural models. We demonstrate the application of CLMSVault for the analysis of a noncovalent Cdc34-ubiquitin protein complex cross-linked under different conditions. CLMSVault is open-source software (available at https://gitlab.com/courcelm/clmsvault.git ), and a live demo is available at http://democlmsvault.tyerslab.com/ .

  7. Observation of the time-course for peptidoglycan lipid intermediate II polymerization by Staphylococcus aureus monofunctional transglycosylase.

    PubMed

    Braddick, Darren; Sandhu, Sandeep; Roper, David I; Chappell, Michael J; Bugg, Timothy D H

    2014-08-01

    The polymerization of lipid intermediate II by the transglycosylase activity of penicillin-binding proteins (PBPs) represents an important target for antibacterial action, but limited methods are available for quantitative assay of this reaction, or screening potential inhibitors. A new labelling method for lipid II polymerization products using Sanger's reagent (fluoro-2,4-dinitrobenzene), followed by gel permeation HPLC analysis, has permitted the observation of intermediate polymerization products for Staphylococcus aureus monofunctional transglycosylase MGT. Peak formation is inhibited by 6 µM ramoplanin or enduracidin. Characterization by mass spectrometry indicates the formation of tetrasaccharide and octasaccharide intermediates, but not a hexasaccharide intermediate, suggesting a dimerization of a lipid-linked tetrasaccharide. Numerical modelling of the time-course data supports a kinetic model involving addition to lipid-linked tetrasaccharide of either lipid II or lipid-linked tetrasaccharide. Observation of free octasaccharide suggests that hydrolysis of the undecaprenyl diphosphate lipid carrier occurs at this stage in peptidoglycan transglycosylation. © 2014 The Authors.

  8. Enantiomeric Cross-Inhibition in the Synthesis of Oligonucleotides on a Nonchiral Template

    NASA Technical Reports Server (NTRS)

    Schmidt, Jurgen G.; Nielsen, Peter E.; Orgel, Leslie E.

    1997-01-01

    Prebiotic syntheses of chiral monomers always yield racemic mixtures. Living systems, however, utilize L-amino acids and D-nucleotides in their biopolymers. The generation of optical asymmetry by selection and amplification in an autocatalytic process is, therefore, an important element in many theories of the origin of life. Replication of polynucleotides in template-directed syntheses is an obvious candidate for such an amplification step in a pre-'RNA world'. A serious objection to this suggestion is the observation that the efficiency of template-directed syntheses of RNA is limited by enantiomeric cross-inhibition. Peptide Nucleic Acids (PNAs), amide-linked, nonchiral analogues of RNA, have been 'copied' into RNA and constitute an alternative to chiral polynucleotides as an informational replicating system. Here, we use PNA as model for a hypothetical, nonchiral precursor of RNA in experiments re-examining enantiomeric cross-inhibition. We find that enantiomeric cross-inhibition is as serious in the polymerization of nucleotides on a PNA template as it is on a conventional RNA or DNA template.

  9. Syntheses and Post-Polymerization Modifications of Well-Defined Styrenic Polymers Containing Three-Membered Heterocyclic Functionalities

    NASA Astrophysics Data System (ADS)

    McLeod, David Charles

    Macromolecules that contain electrophilic moieties, such as benzyl halides, activated esters, and epoxides, will readily undergo efficient nucleophilic substitution reactions with a wide variety of compounds under mild conditions, and are therefore ideally suited to act as "universal" precursors to functional materials. Epoxide-containing polymers derived from the radical polymerization of commercially-available glycidyl methacrylate are often employed in this role; however, methacrylic polymers suffer from certain limitations as a result of the incorporated ester groups, which are not stabile in the presence of strong nucleophiles, acids, bases, or esterase enzymes. Styrenic polymers that do not contain labile carbonyl moieties are usually the precursors of choice when high chemical stability is desired in the end product, but the production of functional materials from epoxide-containing styrenic polymers is relatively unexplored. In this dissertation, improved methods were developed for synthesizing 4-vinylphenyloxirane (4VPO) and 4-vinylphenyl glycidyl ether (4VPGE), two of the better-known epoxide-containing styrenic monomers, in high-yield and purity. Well-defined, epoxide-containing styrenic polymers with targeted molecular weights, narrow molecular weight distributions, and controlled architectures (specifically, linear and star-shaped homopolymers, as well as linear block copolymers with styrene) were produced from 4VPO and 4VPGE for the first time using reversible-deactivation radical polymerization techniques, such as low-catalyst-concentration atom transfer radical polymerization (LCC ATRP) and reversible addition-fragmentation chain-transfer (RAFT) polymerization. The robust nature and utility of poly4VPO and poly4VPGE were then demonstrated by the efficient, ring-opening modification of the pendant epoxide groups with a structurally- and functionally-diverse array of alcohols under acidic conditions at ambient temperature. The macromolecular compositions, architectures, and thermal stabilities of the resulting ?-hydroxy ether-functionalized homopolymers were evaluated using NMR and FTIR spectroscopy, size exclusion chromatography, and thermal gravimetric analysis. Aziridines and thiiranes (saturated, three-membered heterocycles containing either a single nitrogen or sulfur atom, respectively) are also susceptible to nucleophilic ring-opening reactions, and functional materials derived from aziridine- or thiirane-containing polymers could potentially have many interesting properties as a result of their high amine or thiol content, such as the ability to form pH- or redox-responsive structures. The synthesis of polymers containing aziridines that are activated towards nucleophilic ring-opening by C-aryl and/or N-sulfonyl substituents is unprecedented in the literature. Efficient methods for synthesizing styrenic monomers that contain these highly-reactive functionalities, namely 2-(4-vinylphenyl)aziridine (VPA) and its sulfonyl-activated derivative, N-mesyl-2-(4-vinylphenyl)aziridine (NMVPA), were developed utilizing 4VPO as a starting material. VPA was polymerized under LCC ATRP and RAFT conditions, but these methods were ineffective at producing well-defined polymers due to side reactions between the aziridine groups and the polymerization mediating compounds. Nitroxide-mediated radical polymerization (NMRP) produced well-defined polyVPA at low to moderate conversions of monomer, but cross-linking side reactions were evident at higher monomer conversions. Nearly all undesirable side reactions were prevented by attaching a mesyl group to the aziridine nitrogen atom, and well-defined polyNMVPA was realized under RAFT and NMRP conditions. Under ATRP conditions, reactions between the aziridine groups and catalyst still occurred, so the polymerization of NMVPA was not controlled using this technique. The synthesis of thiirane-containing styrenic polymers from either 2-(4-vinylphenyl)thiirane (VPT) or 2-((4-vinylphenoxy)methyl)thiirane (VPOMT), which were produced in a facile manner from 4VPO or 4VPGE, respectively, was attempted under conventional radical polymerization and RAFT polymerization conditions. Rapid desulfurization or ring-opening polymerization of VPT occurred when elevated temperatures or UV radiation was applied to reactions containing this monomer. The more-stable VPOMT monomer was successfully polymerized at elevated temperatures using thermally-labile azo-type initiators, and, under RAFT conditions, polymers of VPOMT increased in molecular weight as higher conversions of monomer were reached; however, the polymers produced under RAFT conditions were ill-defined and eventually underwent macrogelation, due to cross-linking side reactions of the thiirane moieties.

  10. Biopolymer-based strategies in the design of smart medical devices and artificial organs.

    PubMed

    Altomare, Lina; Bonetti, Lorenzo; Campiglio, Chiara E; De Nardo, Luigi; Draghi, Lorenza; Tana, Francesca; Farè, Silvia

    2018-06-01

    Advances in regenerative medicine and in modern biomedical therapies are fast evolving and set goals causing an upheaval in the field of materials science. This review discusses recent developments involving the use of biopolymers as smart materials, in terms of material properties and stimulus-responsive behavior, in the presence of environmental physico-chemical changes. An overview on the transformations that can be triggered in natural-based polymeric systems (sol-gel transition, polymer relaxation, cross-linking, and swelling) is presented, with specific focus on the benefits these materials can provide in biomedical applications.

  11. E-Beam Processing of Polymer Matrix Composites for Multifunctional Radiation Shielding

    NASA Technical Reports Server (NTRS)

    Hou, Tan-Hung; Wilson, John W.; Jensen, Brian J.; Thibeault, Sheila A.; Chang, Chie K.; Kiefer, Richard L.

    2005-01-01

    Aliphatic polymers were identified as optimum radiation shielding polymeric materials for building multifunctional structural elements for in-space habitats. Conceptual damage tolerant configurations of polyolefins have been proposed, but many manufacturing issues relied on methods and materials which have sub-optimal radiation shielding characteristics (for example, epoxy matrix and adhesives). In the present approach, we shall investigate e-beam processing technologies for inclusion of high-strength aliphatic polymer reinforcement structures into a highly cross-linked polyolefin matrix. This paper reports the baseline thermo-mechanical properties of low density polyethylene and highly crystallized polyethylene.

  12. Synthesis of polycyclic aromatic hydrocarbon-protein conjugates for preparation and immunoassay of antibodies.

    PubMed

    Glushkov, Andrey N; Kostyanko, Mikhail V; Cherno, Sergey V; Vasilchenko, Ilya L

    2002-04-01

    The method is described dealing with the synthesis of conjugates protein-polycyclic aromatic hydrocarbons (PAHs), highly soluble in water, stable without special stabilizers and containing the minimum quantity of cross-linked products. The reaction of protein with PAH containing an aldehyde group, has been carried out in an alkaline solution, and stabilization of the conjugate has been achieved by reduction with sodium borohydride in the presence of a compound blocking the formation of an insoluble polymeric fraction. The efficiency of synthesized conjugates for the induction and immunoassay of Abs to PAH for benzo[a]pyrene is shown.

  13. Electron Beam Materials Irradiators

    NASA Astrophysics Data System (ADS)

    Cleland, Marshall R.

    2012-06-01

    Radiation processing is a well established method for enhancing the properties of materials and commercial products by treating them with ionizing energy in the form of high-energy electrons, X-rays, and gamma rays. Beneficial effects include polymerizing, cross-linking, grafting and degrading plastics, sterilizing single-use medical devices, disinfecting and disinfesting fresh foods, purifying drinking water, treating wastewater and other toxic waste materials that harm the environment, and many other applications that are still being evaluated. Industrial electron accelerators of several types have been developed and are being used for these applications. More than 1800 electron accelerators are presently installed in facilities worldwide for these purposes.

  14. Synthesis, characterization and catalytic activity of novel large network polystyrene-immobilized organic bases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tassi, Marco; Bartollini, Elena; Adriaensens, Peter

    2015-12-07

    In view of searching for efficient polymeric supports for organic bases to be used in environmentally friendly reaction conditions, novel gel-type cross-linked polystyrenes functionalized with diethylamine and 1,5,7-triazabicyclo[4.4.0]dec-5-ene, have been prepared. Moreover, the structural properties and morphology of these catalysts have been determined by extensive solid state NMR experiments, FTIR spectroscopy and SEM/TEM microscopy. SPACeR-supported bases were found to exhibit high catalytic activity in the epoxide ring opening by phenols. Finally, a range of β-substituted alcohols have been readily and regioselectively synthesized.

  15. New Gel-Like Polymers as Selective Weak-Base Anion Exchangers

    PubMed Central

    Gierczyk, Błażej; Cegłowski, Michał; Zalas, Maciej

    2015-01-01

    A group of new anion exchangers, based on polyamine podands and of excellent ion-binding capacity, were synthesized. The materials were obtained in reactions between various poly(ethyleneamines) with glycidyl derivatives of cyclotetrasiloxane. The final polymeric, strongly cross-linked materials form gel-like solids. Their structures and interactions with anions adsorbed were studied by spectroscopic methods (CP-MAS NMR, FR-IR, UV-Vis). The sorption isotherms and kinetic parameters were determined for 29 anions. Materials studied show high ion capacity and selectivity towards some important anions, e.g., selenate(VI) or perrhenate. PMID:25946220

  16. The built environment, neighborhood safety, and physical activity among low-income children.

    DOT National Transportation Integrated Search

    2009-09-01

    There is a growing body of evidence that environmental factors are related to physical activity and active modes of transportation. There is a separate body of research that links neighborhood safety to physical activity. This study used a cross sect...

  17. [Physical properties of resins for veneer crown. (Part 1) Bending strength of thermosetting methacrylic resins (author's transl)].

    PubMed

    Kashiwada, T

    1979-01-01

    The physical properties of thermosetting methacrylic resins contain a kind or more than two kinds of cross linking agents were investigated. Knoop hardness and bending strength after drying, water sorption and thermal cycling were listed in table 4 and 5. Hydrophilic resins absorbed water about 3 times as much as hydrophobic resins. The materials contain a small amount of hydrophobic cross linking agents in MMA indicate comparatively excellent properties after drying, water sorption and thermal cycling. Knoop hardness of resins generally reduced by water sorption, especially in the case of the resin contains a large amount of triethylene glycol dimethacrylate.

  18. Living additive manufacturing: Transformation of parent gels into diversely functionalized daughter gels made possible by visible light photoredox catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Mao; Gu, Yuwei; Singh, Awaneesh

    Light-initiated additive manufacturing techniques typically rely on layer-by-layer addition or continuous extraction of polymers formed via nonliving, free radical polymerization methods that render the final materials “dead” toward further monomer insertion; the polymer chains within the materials cannot be reactivated to induce chain extension. An alternative “living additive manufacturing” strategy would involve the use of photocontrolled living radical polymerization to spatiotemporally insert monomers into dormant “parent” materials to generate more complex and diversely functionalized “daughter” materials. Here, we demonstrate a proof-of-concept study of living additive manufacturing using end-linked polymer gels embedded with trithiocarbonate iniferters that can be activated by photoinducedmore » single-electron transfer from an organic photoredox catalyst in solution. This system enables the synthesis of a wide range of chemically and mechanically differentiated daughter gels from a single type of parent gel via light-controlled modification of the parent’s average composition, strand length, and/or cross-linking density. Furthermore, daughter gels that are softer than their parent, stiffer than their parent, larger but with the same modulus as their parent, thermally responsive, polarity responsive, healable, and weldable are all realized.« less

  19. Living additive manufacturing: Transformation of parent gels into diversely functionalized daughter gels made possible by visible light photoredox catalysis

    DOE PAGES

    Chen, Mao; Gu, Yuwei; Singh, Awaneesh; ...

    2017-01-13

    Light-initiated additive manufacturing techniques typically rely on layer-by-layer addition or continuous extraction of polymers formed via nonliving, free radical polymerization methods that render the final materials “dead” toward further monomer insertion; the polymer chains within the materials cannot be reactivated to induce chain extension. An alternative “living additive manufacturing” strategy would involve the use of photocontrolled living radical polymerization to spatiotemporally insert monomers into dormant “parent” materials to generate more complex and diversely functionalized “daughter” materials. Here, we demonstrate a proof-of-concept study of living additive manufacturing using end-linked polymer gels embedded with trithiocarbonate iniferters that can be activated by photoinducedmore » single-electron transfer from an organic photoredox catalyst in solution. This system enables the synthesis of a wide range of chemically and mechanically differentiated daughter gels from a single type of parent gel via light-controlled modification of the parent’s average composition, strand length, and/or cross-linking density. Furthermore, daughter gels that are softer than their parent, stiffer than their parent, larger but with the same modulus as their parent, thermally responsive, polarity responsive, healable, and weldable are all realized.« less

  20. Assessment of UVA-Riboflavin Corneal Cross-Linking Using Small Amplitude Oscillatory Shear Measurements.

    PubMed

    Aslanides, Ioannis M; Dessi, Claudia; Georgoudis, Panagiotis; Charalambidis, Georgios; Vlassopoulos, Dimitris; Coutsolelos, Athanassios G; Kymionis, George; Mukherjee, Achyut; Kitsopoulos, Theofanis N

    2016-04-01

    The effect of ultraviolet (UV)-riboflavin cross-linking (CXL) has been measured primarily using the strip extensometry technique. We propose a simple and reliable methodology for the assessment of CXL treatment by using an established rheologic protocol based on small amplitude oscillatory shear (SAOS) measurements. It provides information on the average cross-link density and the elastic modulus of treated cornea samples. Three fresh postmortem porcine corneas were used to study the feasibility of the technique, one serving as control and two receiving corneal collagen cross-linking treatment. Subsequently, five pairs of fresh postmortem porcine corneas received corneal collagen cross-linking treatment with riboflavin and UVA-irradiation (370 nm; irradiance of 3 mW/cm2) for 30 minutes (Dresden protocol); the contralateral porcine corneas were used as control samples. After the treatment, the linear viscoelastic moduli of the corneal samples were measured using SAOS measurements and the average cross-linking densities extracted. For all cases investigated, the dynamic moduli of the cross-linked corneas were higher compared to those of the corresponding control samples. The increase of the elastic modulus of the treated samples was between 122% and 1750%. The difference was statistically significant for all tested samples (P = 0.018, 2-tailed t-test). We report a simple and accurate methodology for quantifying the effects of cross-linking on porcine corneas treated with the Dresden protocol by means of SAOS measurements in the linear regime. The measured dynamic moduli, elastic and viscous modulus, represent the energy storage and energy dissipation, respectively. Hence, they provide a means to assess the changing physical properties of the cross-linked collagen networks after CXL treatment.

  1. Physical properties and biocompatibility of chitosan/soy blended membranes.

    PubMed

    Silva, S S; Santos, M I; Coutinho, O P; Mano, J F; Reis, R L

    2005-06-01

    Blends of polysaccharides and proteins are a source for the development of novel materials with interesting and tailorable properties, with potential to be used in a range of biomedical applications. in this work a series of blended membranes composed by chitosan and soy protein isolate was prepared by solvent casting methodology. in addition, cross-linking was performed in situ with glutaraldehyde solutions in the range 5x10(-3)-0.1 M. Furthermore, the influence of the composition and cross-linking on the degradation behaviour, water uptake and cell adhesion was investigated. The obtained results showed that the incorporation of chitosan, associated to network formation by cross linking, promoted a slight decrease of water absorption and a slower degradability of the membranes. Moreover, direct contact biocompatibility studies, with L929 cells, indicate that the cross-linking enhances the capability of the material to support cell growth.

  2. Synthesis and Characterization of Cleavable Core-Cross-Linked Micelles Based on Amphiphilic Block Copolypeptoids as Smart Drug Carriers.

    PubMed

    Li, Ang; Zhang, Donghui

    2016-03-14

    Amphiphilic block copolypeptoids consisting of a hydrophilic poly(N-ethyl glycine) segment and a hydrophobic poly[(N-propargyl glycine)-r-(N-decyl glycine)] random copolymer segment [PNEG-b-P(NPgG-r-NDG), EPgD] have been synthesized by sequential primary amine-initiated ring-opening polymerization (ROP) of the corresponding N-alkyl N-carboxyanhydride monomers. The block copolypeptoids form micelles in water and the micellar core can be cross-linked with a disulfide-containing diazide cross-linker by copper-mediated alkyne-azide cycloaddition (CuAAC) in aqueous solution. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis revealed the formation of spherical micelles with uniform size for both the core-cross-linked micelles (CCLMs) and non-cross-linked micelles (NCLMs) precursors for selective block copolypeptoid polymers. The CCLMs exhibited increased dimensional stability relative to the NCLMs in DMF, a nonselective solvent for the core and corona segments. Micellar dissociation of CCLMs can be induced upon addition of a reducing agent (e.g., dithiothreitol) in dilute aqueous solutions, as verified by a combination of fluorescence spectroscopy, size exclusion chromatography (SEC), and (1)H NMR spectroscopic measurement. Doxorubicin (DOX), an anticancer drug, can be loaded into the hydrophobic core of CCLMs with a maximal 23% drug loading capacity (DLC) and 37% drug loading efficiency (DLE). In vitro DOX release from the CCLMs can be triggered by DTT (10 mM), in contrast to significantly reduced DOX release in the absence of DTT, attesting to the reductively responsive characteristic of the CCLMs. While the CCLMs exhibited minimal cytotoxicity toward HepG2 cancer cells, DOX-loaded CCLMs inhibited the proliferation of the HepG2 cancer cells in a concentration and time dependent manner, suggesting the controlled release of DOX from the DOX-loaded CCLMS in the cellular environment.

  3. Preparation and characterization of chemically defined oligomers of rabbit immunoglobulin G molecules for the complement binding studies.

    PubMed Central

    Wright, J K; Tschopp, J; Jaton, J C

    1980-01-01

    Pure dimers, trimers, tetramers and pentamers of rabbit non-immune IgG (immunoglobulin G) or antibody IgG were prepared by polymerization in the presence of the bifunctional cross-linking reagent dithiobis (succinimidylpropionate). Oligomerization was performed either in the presence of polysaccharide antigen and specific monomeric antibody (method A) or by random cross-linking of non-immune rabbit IgG in the absence of antigen (method B). By repeated gel-filtration chromatography, samples prepared by both methods exhibited a single band in analytical sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. The electrophoretic mobilities of samples prepared by method A were slightly greater than those for the corresponding samples prepared by method B. This might suggest a role played by antigen in the orientation of IgG molecules within the clusters, which may be more compact than those formed by random cross-linking. The average numbers of cross-linker molecules per oligomer varied between 3 and 6 for clusters made by method A and between 1 and 3 for clusters made by method B. Ultracentrifugal analyses of the oligomers yielded sedimentation coefficients (S20,w) of 9.6S for the dimer, 11.2S for the trimer, 13.6S for the tetramer and 16.1S for the pentamer. Comparison of the observed sedimentation coefficients with those predicted by various hydrodynamic models suggested these oligomers possessed open and linear structures. Reduction of the cross-linking molecules converted oligomers into monomeric species of IgG. C.d. spectra of some oligomers studied in the range 200-250 nm were essentially the same as that of monomeric IgG molecules, thus strongly suggesting no major conformation changes in IgG molecules within clusters. These oligomers were found to be stable for up to 2 months when stored at -70 degrees C. Images Fig. 1. Fig. 4. PMID:7188424

  4. Effect of cross-linking of interfacial sodium caseinate by natural processing on the oxidative stability of oil-in-water (o/w) emulsions.

    PubMed

    Phoon, Pui Yeu; Paul, Lake N; Burgner, John W; San Martin-Gonzalez, M Fernanda; Narsimhan, Ganesan

    2014-04-02

    This study investigated how enzymatic cross-linking of interfacial sodium caseinate and emulsification, via high-pressure homogenization, influenced the intrinsic oxidative stability of 4% (w/v) menhaden oil-in-water emulsions stabilized by 1% (w/v) caseinate at pH 7. Oil oxidation was monitored by the ferric thiocyanate perioxide value assay. Higher homogenization pressure resulted in improved intrinsic emulsion oxidative stability, which is attributed to increased interfacial cross-linking as indicated by higher weighted average sedimentation coefficients of interfacial protein species (from 11.2 S for 0 kpsi/0.1 MPa to 18 S for 20 kpsi/137.9 MPa). Moderate dosage of transglutaminase at 0.5-1.0 U/mL emulsion enhanced intrinsic emulsion oxidative stability further, despite a contradictory reduction in the antioxidant property of cross-linked caseinate as tested by the 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay. This implied the prominent role of cross-linked interfacial caseinate as a physical barrier for oxygen transfer, hence its efficacy in retarding oil oxidation.

  5. Effect of varying molecular weight of dextran on acrylic-derivatized dextran and concanavalin A glucose-responsive materials for closed-loop insulin delivery.

    PubMed

    Sahota, Tarsem; Sawicka, Kirsty; Taylor, Joan; Tanna, Sangeeta

    2011-03-01

    Dextran methacrylate (dex-MA) and concanavalin A (con A)-methacrylamide were photopolymerized to produce covalently cross-linked glucose-sensitive gels for the basis of an implantable closed-loop insulin delivery device. The viscoelastic properties of these polymerized gels were tested rheologically in the non-destructive oscillatory mode within the linear viscoelastic range at glucose concentrations between 0 and 5% (w/w). For each cross-linked gel, as the glucose concentration was raised, a decrease in storage modulus, loss modulus and complex viscosity (compared at 1 Hz) was observed, indicating that these materials were glucose responsive. The higher molecular weight acrylic-derivatized dextrans [degree of substitution (DS) 3 and 8%] produced higher complex viscosities across the glucose concentration range. These studies coupled with in vitro diffusion experiments show that dex-MA of 70 kDa and DS (3%) was the optimum mass average molar mass to produce gels that show reduced component leach, glucose responsiveness, and insulin transport useful as part of a self-regulating insulin delivery device.

  6. Controlled Cross-Linking with Glucose Oxidase for the Enhancement of Gelling Potential of Pork Myofibrillar Protein.

    PubMed

    Wang, Xu; Xiong, Youling L; Sato, Hiroaki; Kumazawa, Yoshiyuki

    2016-12-21

    Differential oxidative modifications of myofibrillar protein (MP) by hydroxyl radicals generated in an enzymatic system with glucose oxidase (GluOx) in the presence of glucose/FeSO 4 versus a Fenton system (H 2 O 2 /FeSO 4 ) were investigated. Pork MP was modified at 4 °C and pH 6.25 with hydroxyl radicals produced from 1 mg/mL glucose in the presence of 80, 160, or 320 μg/mL GluOx and 10 μM FeSO 4 . Total sulfhydryl content, solubility, cross-linking pattern, and gelation properties of MP were measured. H 2 O 2 production proceeded linearly with the concentration of GluOx and increased with reaction time. GluOx- and H 2 O 2 -dose-dependent protein polymerization, evidenced by faded myosin heavy chain and actin in SDS-PAGE as well as significant decreases in sulfhydryls, coincided with protein solubility loss. Firmer and more elastic MP gels were produced by GluOx than by the Fenton system at comparable H 2 O 2 levels due to an altered radical reaction pathway.

  7. Colorimetric photonic hydrogel aptasensor for the screening of heavy metal ions.

    PubMed

    Ye, Bao-Fen; Zhao, Yuan-Jin; Cheng, Yao; Li, Ting-Ting; Xie, Zhuo-Ying; Zhao, Xiang-Wei; Gu, Zhong-Ze

    2012-09-28

    We have developed a robust method for the visual detection of heavy metal ions (such as Hg(2+) and Pb(2+)) by using aptamer-functionalized colloidal photonic crystal hydrogel (CPCH) films. The CPCHs were derived from a colloidal crystal array of monodisperse silica nanoparticles, which were polymerized within the polyacrylamide hydrogel. The heavy metal ion-responsive aptamers were then cross-linked in the hydrogel network. During detection, the specific binding of heavy metal ions and cross-linked single-stranded aptamers in the hydrogel network caused the hydrogel to shrink, which was detected as a corresponding blue shift in the Bragg diffraction peak position of the CPCHs. The shift value could be used to estimate, quantitatively, the amount of the target ion. It was demonstrated that our CPCH aptasensor could screen a wide concentration range of heavy metal ions with high selectivity and reversibility. In addition, these aptasensors could be rehydrated from dried gels for storage and aptamer protection. It is anticipated that our technology may also be used in the screening of a broad range of metal ions in food, drugs and the environment.

  8. Self-Healable and Cold-Resistant Supercapacitor Based on a Multifunctional Hydrogel Electrolyte.

    PubMed

    Tao, Feng; Qin, Liming; Wang, Zhikui; Pan, Qinmin

    2017-05-10

    Excellent self-healability and cold resistance are attractive properties for a portable/wearable energy-storage device. However, achieving the features is fundamentally dependent on an intrinsically self-healable electrolyte with high ionic conduction at low temperature. Here we report such a hydrogel electrolyte comprising sodium alginate cross-linked by dynamic catechol-borate ester bonding. Since its dynamically cross-linked alginate network can tolerate high-content inorganic salts, the electrolyte possesses excellent healing efficiency/cyclability but also high ionic conduction at both room temperature and low temperature. A supercapacitor with the multifunctional hydrogel electrolyte completely restores its capacitive properties even after breaking/healing for 10 cycles without external stimulus. At a low temperature of -10 °C, the capacitor is even able to maintain at least 80% of its room-temperature capacitance. Our investigations offer a strategy to assemble self-healable and cold-resistant energy storage devices by using a multifunctional hydrogel electrolyte with rationally designed polymeric networks, which has potential application in portable/wearable electronics, intelligent apparel or flexible robot, and so on.

  9. Fouling-release coatings prepared from alpha,omega-dihydroxypoly(dimethylsiloxane) cross-linked with (heptadecafluoro-1,1,2,2-tetrahydrodecyl)triethoxysilane.

    PubMed

    Berglin, Mattias; Wynne, Kenneth J; Gatenholm, Paul

    2003-01-15

    Surface properties of pristine and water-aged polymeric films made of alpha,omega-dihydroxypoly(dimethylsiloxane) (PDMS) cross-linked with (heptadecafluoro-1,1,2,2-tetrahydrodecyl)triethoxysilane (FTEOS17) or tetraethoxysilane (TEOS) were investigated. The FTEOS17-cured coatings showed stable advancing and receding contact angles over a period of 3 months of water exposure, compared to a 70 degrees decrease in receding contact angle for the TEOS-cured coatings. After immersion in water, hydroxyl groups were detected on the TEOS-cured coatings with attenuated total reflection infrared spectroscopy (ATR-FT/IR). Tapping-mode atomic force microscopy (TM-AFM) on pristine FTEOS17-cured coatings showed surfaces topologies ranging from smooth and featureless to topologically complex, depending on FTEOS17 concentration. The fluorinated coatings showed a stable surface morphology after water immersion, which we believe is due to the formation of a fluorinated siliceous phase that prevented the surface reconstruction, water penetration, and hydrolysis. The smooth pristine TEOS-cured coatings showed an increased roughness with cracks and erosion pits present on the surface after water immersion.

  10. Preparation of liquid-core nanocapsules from poly[(ethylene oxide)-co-glycidol] with multiple hydrophobic linoleates at an oil-water interface and its encapsulation of pyrene.

    PubMed

    Ren, Yong; Wang, Guowei; Huang, Junlian

    2007-06-01

    A convenient approach is provided to prepare liquid-core nanocapsules by cross-linking an amphiphilic copolymer at an oil-water interface. The hydrophilic copolymer poly[(ethylene oxide)-co-glycidol] was prepared by anionic polymerization of ethylene oxide and ethoxyethyl glycidyl ether first, then the hydroxyl groups on the backbone were recovered after hydrolysis and partly modified by hydrophobic conjugated linoleic acid. The copolymer with multiple linoleate pendants was absorbed at an oil-water interface and then cross-linked to form stable nanocapsules. The mean diameter of the nanocapsule was below 350 nm, and the size distribution was relatively narrow (<0.2) at low concentrations of oil in acetone (<10 mg/mL). The particle size could be tuned easily by variation of the emulsification conditions. The nanocapsule was stable in water for at least 5 months, and the shell maintained its integrity after removal of the oily core by solvent. Pyrene was encapsulated in these nanocapsules, and a loading efficiency as high as 94% was measured by UV spectroscopy.

  11. Precision synthesis of functional materials via RAFT polymerization and click-type chemical reactions

    NASA Astrophysics Data System (ADS)

    Flores, Joel Diez

    2011-12-01

    The need to tailor polymeric architectures with specific physico-chemical properties via the simplest, cleanest, and most efficient synthetic route possible has become the ultimate goal in polymer synthesis. Recent progress in macromolecular science, such as the discoveries of controlled/"living" free radical polymerization (CRP) methods, has brought about synthetic capabilities to prepare (co)polymers with advanced topologies, predetermined molecular weights, narrow molecular weight distributions, and precisely located functional groups. In addition, the establishment of click chemistry has redefined the selected few highly efficient chemical reactions that become highly useful in post-polymerization modification strategies. Hence, the ability to make well-defined topologies afforded by controlled polymerization techniques and the facile incorporation of functionalities along the chain via click-type reactions have yielded complex architectures, allowing the investigation of physical phenomena which otherwise could not be studied with systems prepared via conventional methods. The overarching theme of the research work described in this dissertation is the fusion of the excellent attributes of reversible addition-fragmentation chain transfer (RAFT) polymerization method, which is one of the CRP techniques, and click-type chemical reactions in the precision of synthesis of advanced functional materials. Chapter IV is divided into three sections. In Section I, the direct RAFT homopolymerization of 2-(acryloyloxy)ethyl isocyanate (AOI) and subsequent post-polymerization modifications are described. The polymerization conditions were optimized in terms of the choice of RAFT chain transfer agent (CTA), polymerization temperature and the reaction medium. Direct RAFT polymerization of AOI requires a neutral CTA, and relatively low reaction temperature to yield AOI homopolymers with low polydispersities. Efficient side-chain functionalization of PAOI homopolymers was achieved via reaction with model amine, thiol and alcohol compounds yielding urea, thiourethane and urethane derivatives, respectively. Reactions with amines and thiols (in the presence of base) were rapid, quantitative and efficient. However, the reaction with alcohols catalyzed by dibutyltin dilaurate (DBTDL) was relatively slow but proceeded to completion. Selective reaction pathways for the addition of difunctional ethanolamine and mercaptoethanol were also investigated. A related strategy is described in Section II wherein a hydroxyl-containing diblock copolymer precursor was transformed into a library of functional copolymers via two sequential post-polymerization modification reactions. A diblock copolymer scaffold, poly[(N,N-dimethylacrylamide)-b-( N-(2-hydroxyethyl)acrylamide] (PDMA-b-PHEA) was first prepared. The hydroxyl groups of the HEA block were then reacted with 2-(acryloyloxy)ethylisocyanate (AOI) and allylisocyanate (AI) resulting in acrylate- and allyl-functionalized copolymer precursors, respectively. The efficiencies of Michael-type and free radical thiol addition reactions were investigated using selected thiols having alkyl, aryl, hydroxyl, carboxylic acid, amine and amino acid functionalities. The steps of RAFT polymerization, isocyanate-hydroxyl coupling and thiol-ene addition are accomplished under mild conditions, thus offering facile and modular routes to synthesize functional copolymers. The synthesis and solution studies of pH- and salt-responsive triblock copolymer are described in Section III. This system is capable of forming self-locked micellar structures which may be controlled by changing solution pH as well as ionic strength. A triblock copolymer containing a permanently hydrophilic poly(N,N-dimethylacrylamide) (PDMA) outer block, a salt-sensitive zwitterionic poly(3[2-(N-methylacrylamido)ethyl dimethylammonio]propanesulfonate) (PMAEDAPS) middle block and a pH-responsive 3-acrylamido-3-methylbutanoic acid (PAMBA) core block was synthesized using aqueous RAFT polymerization. A facile formation of "self-locking" shell cross-linked micelles is achieved by changing solution pH and salt concentration. The reversible "self-locking" is attained from the interactions of zwitterionic groups in the middle block that constitutes the shell of the micelles. The structure slowly dissociates into unimers in 2-3 days at pH above the pKa of the PAMBA block.

  12. Block copolymers for biomimetic composites

    NASA Astrophysics Data System (ADS)

    Calvert, Paul D.; Oner, Mualla; Burdon, Jeremy; Rieke, Peter C.; Farmer, Kelly

    1993-07-01

    Mineralized biological tissues can be regarded as composites where a fine reinforcement is laid down in a very controlled fashion within a tough polymeric matrix. Such materials include bone, antler, tooth enamel, mollusc shell, and crustacean shell. We have been exploring ways of forming similar structures by synthetic routes involving precipitation of reinforcing particles directly into a polymeric matrix. Part of this biomimetic approach requires polymer matrices which can exert a high degree of control over the mineralization process. Polymer gels have been formed from cross-linked methacrylates with various types of functionality within the gel. By incorporating calcium binding groups we have been producing gels which lead to preferential mineralization of the gel when it is incubated in a supersaturated solution of calcium oxalate or calcium carbonate. Similarly we have been incorporating silane groups within the gel in order to promote the deposition of silica in a gel body when it is immersed in a metastable solution of partly hydrolysed silicon alkoxides.

  13. Novel biocompatible hydrogel nanoparticles: generation and size-tuning of nanoparticles by the formation of micelle templates obtained from thermo-responsive monomers mixtures

    NASA Astrophysics Data System (ADS)

    Khandadash, Raz; Machtey, Victoria; Shainer, Inbal; Gottlieb, Hugo E.; Gothilf, Yoav; Ebenstein, Yuval; Weiss, Aryeh; Byk, Gerardo

    2014-12-01

    Biocompatible hydrogel nanoparticles are prepared by polymerization and cross-linking of N-isopropyl acrylamide in a micelle template formed by block copolymers macro-monomers at high temperature. Different monomer ratios form, at high temperature, well-defined micelles of different sizes which are further polymerized leading to nanoparticles with varied sizes from 20 to 390 nm. Physico-chemical characterization of the nanoparticles demonstrates their composition and homogeneity. The NPs were tested in vitro and in vivo biocompatibility assays, and their lack of toxicity was proven. The NPs can be labeled with fluorescent probes, and their intracellular fate can be visualized and quantified using confocal microscopy. Their uptake by live stem cells and distribution in whole developing animals is reported. On the basis of our results, a mechanism of nanoparticle formation is suggested. The lack of toxicity makes these nanoparticles especially attractive for biological applications such as screening and bio-sensing.

  14. Thermomechanical Formation–Structure–Property Relationships in Photopolymerized Copper-Catalyzed Azide–Alkyne (CuAAC) Networks

    PubMed Central

    Baranek, Austin; Song, Han Byul; McBride, Mathew; Finnegan, Patricia; Bowman, Christopher N.

    2016-01-01

    Bulk photopolymerization of a library of synthesized multifunctional azides and alkynes was carried out toward developing structure–property relationships for CuAAC-based polymer networks. Multifunctional azides and alkynes were formulated with a copper catalyst and a photoinitiator, cured, and analyzed for their mechanical properties. Material properties such as the glass transition temperatures (Tg) show a strong dependence on monomer structure with Tg values ranging from 41 to 90 °C for the series of CuAAC monomers synthesized in this study. Compared to the triazoles, analogous thioether-based polymer networks exhibit a 45–49 °C lower Tg whereas analogous monomers composed of ethers in place of carbamates exhibit a 40 °C lower Tg. Here, the formation of the triazole moiety during the polymerization represents a critical component in dictating the material properties of the ultimate polymer network where material properties such as the rubbery modulus, cross-link density, and Tg all exhibit strong dependence on polymerization conversion, monomer composition, and structure postgelation. PMID:27867223

  15. Waterborne polyurethane-acrylic hybrid nanoparticles by miniemulsion polymerization: applications in pressure-sensitive adhesives.

    PubMed

    Lopez, Aitziber; Degrandi-Contraires, Elise; Canetta, Elisabetta; Creton, Costantino; Keddie, Joseph L; Asua, José M

    2011-04-05

    Waterborne polyurethane-acrylic hybrid nanoparticles for application as pressure-sensitive adhesives (PSAs) were prepared by one-step miniemulsion polymerization. The addition of polyurethane to a standard waterborne acrylic formulation results in a large increase in the cohesive strength and hence a much higher shear holding time (greater than seven weeks at room temperature), which is a very desirable characteristic for PSAs. However, with the increase in cohesion, there is a decrease in the relative viscous component, and hence there is a decrease in the tack energy. The presence of a small concentration of methyl methacrylate (MMA) in the acrylic copolymer led to phase separation within the particles and created a hemispherical morphology. The tack energy was particularly low in the hybrid containing MMA because of the effects of lower energy dissipation and greater cross-linking. These results highlight the great sensitivity of the viscoelastic and adhesive properties to the details of the polymer network architecture and hence to the precise composition and synthesis conditions.

  16. Green synthesis and characterization of alginate nanoparticles and its role as a biosorbent for Cr(VI) ions

    NASA Astrophysics Data System (ADS)

    Geetha, P.; Latha, M. S.; Pillai, Saumya S.; Deepa, B.; Santhosh Kumar, K.; Koshy, Mathew

    2016-02-01

    Green synthesis of nanoparticles has attained considerable attention in recent years because of its myriad of applications including drug delivery, tissue engineering and water purification. In the present study, alginate nanoparticles stabilized by honey were prepared by cross-linking aqueous solution of alginate with calcium ions. Honey mediated synthesis has been reported earlier for the production of metal nanoparticles. However no literature is available on the use of this technique for polymeric nanoparticles. Highly stable nanoparticles of 10-100 nm size were generated by this technique. The synthesised nanoparticles were characterized by transmission electron microscopy, scanning electron microscopy, atomic force microscopy, dynamic light scattering and Fourier transform infrared spectroscopic techniques. Potential of using these nanoparticles for heavy metal removal was studied by using Cr(VI) from aqueous solution, where a maximum removal efficiency of 93.5% was obtained. This method was also successfully employed for the production of other polymeric nanoparticles like casein, chitosan and albumin.

  17. Gelatin Methacrylate Microspheres for Growth Factor Controlled Release

    PubMed Central

    Nguyen, Anh H.; McKinney, Jay; Miller, Tobias; Bongiorno, Tom; McDevitt, Todd C.

    2014-01-01

    Gelatin has been commonly used as a delivery vehicle for various biomolecules for tissue engineering and regenerative medicine applications due to its simple fabrication methods, inherent electrostatic binding properties, and proteolytic degradability. Compared to traditional chemical cross-linking methods, such as the use of glutaraldehyde (GA), methacrylate modification of gelatin offers an alternative method to better control the extent of hydrogel cross-linking. Here we examined the physical properties and growth factor delivery of gelatin methacrylate (GMA) microparticles formulated with a wide range of different cross-linking densities (15–90%). Less methacrylated MPs had decreased elastic moduli and larger mesh sizes compared to GA MPs, with increasing methacrylation correlating to greater moduli and smaller mesh sizes. As expected, an inverse correlation between microparticle cross-linking density and degradation was observed, with the lowest cross-linked GMA MPs degrading at the fastest rate, comparable to GA MPs. Interestingly, GMA MPs at lower cross-linking densities could be loaded with up to a 10-fold higher relative amount of growth factor over conventional GA cross-linked MPs, despite an order of magnitude greater gelatin content of GA MPs. Moreover, a reduced GMA cross-linking density resulted in more complete release of bone morphogenic protein 4 (BMP4) and basic fibroblast growth factor (bFGF) and accelerated release rate with collagenase treatment. These studies demonstrate that GMA MPs provide a more flexible platform for growth factor delivery by enhancing the relative binding capacity and permitting proteolytic degradation tunability, thereby offering a more potent controlled release system for growth factor delivery. PMID:25463489

  18. An Acrylonitrile–Butadiene–Lignin Renewable Skin with Programmable and Switchable Electrical Conductivity for Stress/Strain-Sensing Applications

    DOE PAGES

    Nguyen, Ngoc A.; Meek, Kelly M.; Bowland, Christopher C.; ...

    2017-12-28

    We report an approach for programming electrical conductivity of a bio-based leathery skin devised with a layer of 60 nm metallic nanoparticles. Lignin-based renewable shape-memory materials were made, for the first time, to program and restore the materials’ electrical conductivity after repeated deformation up to 100% strain amplitude, at a temperature 60–115 °C above the glass transition temperature (T g) of the rubbery matrix. We cross-linked lignin macromolecules with an acrylonitrile–butadiene rubbery melt in high quantities ranging from 40 to 60 wt % and processed the resulting thermoplastics into thin films. Chemical and physical networks within the polymeric materials significantlymore » enhanced key characteristics such as mechanical stiffness, strain fixity, and temperature-stimulated recovery of shape. The branched structures of the guaiacylpropane-dominant softwood lignin significantly improve the rubber’s T g and produced a film with stored and recoverable elastic work density that was an order of magnitude greater than those of the neat rubber and of samples made with syringylpropane-rich hardwood lignin. The devices could exhibit switching of conductivity before and after shape recovery.« less

  19. Bio-based Polymer Foam from Soyoil

    NASA Astrophysics Data System (ADS)

    Bonnaillie, Laetitia M.; Wool, Richard P.

    2006-03-01

    The growing bio-based polymeric foam industry is presently lead by plant oil-based polyols for polyurethanes and starch foams. We developed a new resilient, thermosetting foam system with a bio-based content higher than 80%. The acrylated epoxidized soybean oil and its fatty acid monomers is foamed with pressurized carbon dioxide and cured with free-radical initiators. The foam structure and pore dynamics are highly dependent on the temperature, viscosity and extent of reaction. Low-temperature cure hinds the destructive pore coalescence and the application of a controlled vacuum results in foams with lower densities ˜ 0.1 g/cc, but larger cells. We analyze the physics of foam formation and stability, as well as the structure and mechanical properties of the cured foam using rigidity percolation theory. The parameters studied include temperature, vacuum applied, and cross-link density. Additives bring additional improvements: nucleating agents and surfactants help produce foams with a high concentration of small cells and low bulk density. Hard and soft thermosetting foams with a bio content superior to 80% are successfully produced and tested. Potential applications include foam-core composites for hurricane-resistant housing, structural reinforcement for windmill blades, and tissue scaffolds.

  20. Development of porous structured polyvinyl alcohol/zeolite/carbon composites as adsorbent

    NASA Astrophysics Data System (ADS)

    Laksmono, J. A.; Sudibandriyo, M.; Saputra, A. H.; Haryono, A.

    2017-05-01

    Adsorption is a separation process that has higher energy efficiency than others. Analyzing the nature of the adsorbate and the selection of suitable adsorbent are key success in adsorption. The performance of the adsorbent can be modified either physically or chemically to obtain the efficiency and effectiveness of the adsorption, this can be facilitated by using a composite adsorbent. In this study, we have conducted the preparation process of a polyvinyl alcohol (PVA)/zeolite/carbon composites. The resulting adsorbent composites are dedicated for ethanol - water dehydration proposes. The composites were prepared using cross-linked polymerization method followed by supercritical fluid extraction (SFE) to obtain the porous structured upon drying process. The characterization of the functional groups and morphology were performed by using Fourier Transform Infra-Red (FTIR) and Scanning Electron Microscopy (SEM), respectively. The FTIR analysis showed that composite prepared by SFE method formed hydrogen bonding confirmed by the appearance of peaks at 2950 - 3000 cm-1 compared to composite without SFE method, whereas, the results of SEM study showed the formation of three layered structures. On basis of the obtained results, it can be shown that PVA/zeolite/carbon has high potential to be develop further as an adsorbent composite.

  1. Glycoprotein of the wall of sycamore tissue-culture cells.

    PubMed

    Heath, M F; Northcote, D H

    1971-12-01

    1. A glycoprotein containing a large amount of hydroxyproline is present in the cell walls of sycamore callus cells. This protein is insoluble and remained in the alpha-cellulose when a mild separation procedure was used to obtain the polysaccharide fractions of the wall. The glycoprotein contained a high proportion of arabinose and galactose. 2. Soluble glycopeptides were prepared from the alpha-cellulose fraction when peptide bonds were broken by hydrazinolysis. The soluble material was fractionated by gel filtration and one glycopeptide was further purified by electrophoresis; it had a composition of 10% hydroxyproline, 35% arabinose and 55% galactose, and each hydroxyproline residue carried a glycosyl radical so that the oligosaccharides on the glycopeptide had an average degree of polymerization of 9. 3. The extraction of the glycopeptides was achieved without cleavage of glycosyl bonds, so that the glycoprotein cannot act as a covalent cross-link between the major polysaccharides of the wall. 4. The wall protein approximates in conformation to polyhydroxyproline and therefore it probably has similar physicochemical properties to polyhydroxyproline. This is discussed in relation to the function of the glycoprotein and its effect on the physical and chemical nature of the wall.

  2. β-cyclodextrin-poly(β-amino ester) nanoparticles for sustained drug delivery across the blood-brain barrier.

    PubMed

    Gil, Eun Seok; Wu, Linfeng; Xu, Lichong; Lowe, Tao Lu

    2012-11-12

    Novel biodegradable polymeric nanoparticles composed of β-cyclodextrin and poly(β-amino ester) segments have been developed for sustained drug delivery across the blood-brain barrier (BBB). The nanoparticles have been synthesized by cross-linking β-cyclodextrin with poly(β-amino ester) via the Michael addition method. The chemical, physical, and degradation properties of the nanoparticles have been characterized by matrix-assisted laser desoption/ionization time-of-flight, attenuated total reflectance Fourier transform infrared spectroscopy, nuclear magnetic resonance, dynamic light scattering, and atomic force microscopy techniques. Bovine and human brain microvascular endothelial cell monolayers have been constructed as in vitro BBB models. Preliminary results show that the nanoparticles do not affect the integrity of the in vitro BBB models, and the nanoparticles have much higher permeability than dextran control across the in vitro BBB models. Doxorubicin has been loaded into the nanoparticles with a loading efficiency of 86%, and can be released from the nanoparticles for at least one month. The developed β-cyclodextrin-poly(β-amino ester) nanoparticles might be useful as drug carriers for transporting drugs across the BBB to treat chronic diseases in the brain.

  3. An Acrylonitrile–Butadiene–Lignin Renewable Skin with Programmable and Switchable Electrical Conductivity for Stress/Strain-Sensing Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ngoc A.; Meek, Kelly M.; Bowland, Christopher C.

    We report an approach for programming electrical conductivity of a bio-based leathery skin devised with a layer of 60 nm metallic nanoparticles. Lignin-based renewable shape-memory materials were made, for the first time, to program and restore the materials’ electrical conductivity after repeated deformation up to 100% strain amplitude, at a temperature 60–115 °C above the glass transition temperature (T g) of the rubbery matrix. We cross-linked lignin macromolecules with an acrylonitrile–butadiene rubbery melt in high quantities ranging from 40 to 60 wt % and processed the resulting thermoplastics into thin films. Chemical and physical networks within the polymeric materials significantlymore » enhanced key characteristics such as mechanical stiffness, strain fixity, and temperature-stimulated recovery of shape. The branched structures of the guaiacylpropane-dominant softwood lignin significantly improve the rubber’s T g and produced a film with stored and recoverable elastic work density that was an order of magnitude greater than those of the neat rubber and of samples made with syringylpropane-rich hardwood lignin. The devices could exhibit switching of conductivity before and after shape recovery.« less

  4. Enzymatic polymerization of natural anacardic acid and antibiofouling effects of polyanacardic acid coatings.

    PubMed

    Chelikani, Rahul; Kim, Yong Hwan; Yoon, Do-Young; Kim, Dong-Shik

    2009-05-01

    Anacardic acid, separated from cashew nut shell liquid, is well known for its strong antibiotic and antioxidant activities. Recent findings indicate that phenolic compounds from plant sources have an effect on Gram-negative bacteria biofilm formation. In this work, a polyphenolic coating was prepared from anacardic acid using enzymatic synthesis and tested for its effects on biofilm formation of both Gram-negative and Gram-positive bacteria. Natural anacardic acid was enzymatically polymerized using soybean peroxidase. Hydrogen peroxide and phenothiazine-10-propionic acid were used as an oxidizing agent and redox mediator, respectively. Nuclear magnetic resonance and Fourier transform infrared (FTIR) analyses showed the formation of oxyphenylene and phenylene units through the phenol rings. No linkage through the alkyl chain was observed, which proved a high chemo-selectivity of the enzyme. Aqueous solvents turned out to play an important role in the polymer production yield and molecular weight. With 2-propanol, the highest production yield (61%) of polymer (molecular weight = 3,900) was observed, and with methanol, higher-molecular-weight polymers (5,000) were produced with lower production yields (43%). The resulting polyanacardic acid was cross-linked on a solid surface to form a permanent natural polymer coating. The FTIR analysis indicates that the cross-linking between the polymers took place through the unsaturated alkyl side chains. The polyanacardic acid coating was then tested for its antibiofouling effect against Gram-negative and Gram-positive bacteria and compared with the antibiofouling effects of polycardanol coatings reported in the literature. The polyanacardic acid coating showed more reduction in biofilm formation on its surface than polycardanol coatings in the case of Gram-positive bacteria, while in the case of Gram-negative bacteria, it showed a similar reduction in biofilm formation as polycardanol.

  5. pH-sensitive polymeric nanoparticles to improve oral bioavailability of peptide/protein drugs and poorly water-soluble drugs.

    PubMed

    Wang, Xue-Qing; Zhang, Qiang

    2012-10-01

    pH-sensitive polymeric nanoparticles are promising for oral drug delivery, especially for peptide/protein drugs and poorly water-soluble medicines. This review describes current status of pH-sensitive polymeric nanoparticles for oral drug delivery and introduces the mechanisms of drug release from them as well as possible reasons for absorption improvement, with emphasis on our contribution to this field. pH-sensitive polymeric nanoparticles are prepared mainly with polyanions, polycations, their mixtures or cross-linked polymers. The mechanisms of drug release are the result of carriers' dissolution, swelling or both of them at specific pH. The possible reasons for improvement of oral bioavailability include the following: improve drug stability, enhance mucoadhesion, prolong resident time in GI tract, ameliorate intestinal permeability and increase saturation solubility and dissolution rate for poorly water-soluble drugs. As for the advantages of pH-sensitive nanoparticles over conventional nanoparticles, we conclude that (1) most carriers used are enteric-coating materials and their safety has been approved. (2) The rapid dissolution or swelling of carriers at specific pH results in quick drug release and high drug concentration gradient, which is helpful for absorption. (3) At the specific pH carriers dissolve or swell, and the bioadhesion of carriers to mucosa becomes high because nanoparticles turn from solid to gel, which can facilitate drug absorption. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Fabrication and characterization of hydrothermal cross-linked chitosan porous scaffolds for cartilage tissue engineering applications.

    PubMed

    Shamekhi, Mohammad Amin; Rabiee, Ahmad; Mirzadeh, Hamid; Mahdavi, Hamid; Mohebbi-Kalhori, Davod; Baghaban Eslaminejad, Mohamadreza

    2017-11-01

    The use of various chemical cross-linking agents for the improvement of scaffolds physical and mechanical properties is a common practical method, which is limited by cytotoxicity effects. Due to exerting contract type forces, chondrocytes are known to implement shrinkage on the tissue engineered constructs, which can be avoided by the scaffold cross-linking. In the this research, chitosan scaffolds are cross-linked with hydrothermal treatment with autoclave sterilization time of 0, 10, 20 and 30min, to avoid the application of the traditional chemical toxic materials. The optimization studies with gel content and crosslink density measurements indicate that for 20min sterilization time, the gel content approaches to ~80%. The scaffolds are fully characterized by the conventional techniques such as SEM, porosity and permeability, XRD, compression, thermal analysis and dynamic mechanical thermal analysis (DMTA). FT-IR studies shows that autoclave inter-chain cross-linking reduces the amine group absorption at 1560cm -1 and increase the absorption of N-acetylated groups at 1629cm -1 . It is anticipated, that this observation evidenced by chitosan scaffold browning upon autoclave cross-linking is an indication of the familiar maillard reaction between amine moieties and carbonyl groups. The biodegradation rate analysis shows that chitosan scaffolds with lower concentrations, possess suitable degradation rate for cartilage tissue engineering applications. In addition, cytotoxicity analysis shows that fabricated scaffolds are biocompatible. The human articular chondrocytes seeding into 3D cross-linked scaffolds shows a higher viability and proliferation in comparison with the uncross-linked samples and 2D controls. Investigation of cell morphology on the scaffolds by SEM, shows a more spherical morphology of chondrocytes on the cross-linked scaffolds for 21days of in vitro culture. Copyright © 2017. Published by Elsevier B.V.

  7. Hyper-Cross-Linked Additives that Impede Aging and Enhance Permeability in Thin Polyacetylene Films for Organic Solvent Nanofiltration.

    PubMed

    Cheng, Xi Quan; Konstas, Kristina; Doherty, Cara M; Wood, Colin D; Mulet, Xavier; Xie, Zongli; Ng, Derrick; Hill, Matthew R; Shao, Lu; Lau, Cher Hon

    2017-04-26

    Membrane materials with high permeability to solvents while rejecting dissolved contaminants are crucial to lowering the energy costs associated with liquid separations. However, the current lack of stable high-permeability materials require innovative engineering solutions to yield high-performance, thin membranes using stable polymers with low permeabilities. Poly[1-(trimethylsilyl)-1-propyne] (PTMSP) is one of the most permeable polymers but is extremely susceptible to physical aging. Despite recent developments in anti-aging polymer membranes, this research breakthrough has yet to be demonstrated on thin PTMSP films supported on porous polymer substrates, a crucial step toward commercializing anti-aging membranes for industrial applications. Here we report the development of scalable, thin film nanocomposite membranes supported on polymer substrates that are resistant to physical aging while having high permeabilities to alcohols. The selective layer is made up of PTMSP and nanoporous polymeric additives. The nanoporous additives provide additional passageways to solvents, enhancing the high permeability of the PTMSP materials further. Through intercalation of polyacetylene chains into the sub-nm pores of organic additives, physical aging in the consequent was significantly hindered in continuous long-term operation. Remarkably we also demonstrate that the additives enhance both membrane permeability and rejection of dissolved contaminants across the membranes, as ethanol permeability at 5.5 × 10 -6 L m m -2 h -1 bar -1 with 93% Rose Bengal (1017.6 g mol -1 ) rejection, drastically outperforming commercial and state-of-the-art membranes. These membranes can replace energy-intensive separation processes such as distillation, lowering operation costs in well-established pharmaceutical production processes.

  8. Linking Physical and Mental Health Summary Scores from the Veterans RAND 12-Item Health Survey (VR-12) to the PROMIS(®) Global Health Scale.

    PubMed

    Schalet, Benjamin D; Rothrock, Nan E; Hays, Ron D; Kazis, Lewis E; Cook, Karon F; Rutsohn, Joshua P; Cella, David

    2015-10-01

    Global health measures represent an attractive option for researchers and clinicians seeking a brief snapshot of a patient's overall perspective on his or her health. Because scores on different global health measures are not comparable, comparative effectiveness research (CER) is challenging. To establish a common reporting metric so that the physical and mental health scores on the Veterans RAND 12-Item Health Survey (VR-12 (©) ) can be converted into scores on the corresponding Patient Reported Outcomes Measurement Information System (PROMIS(®)) Global Health scores. Following a single-sample linking design, participants from an Internet panel completed items from the PROMIS Global Health and VR-12 Health Survey. A common metric was created using analyses based on item response theory (IRT), producing score cross-walk tables for the mental and physical health components of each measure. The linking relationships were evaluated by calculating the standard deviation of differences between the observed and linked PROMIS scores and estimating confidence intervals by sample size. Participants (N = 2025) were 49 % male and 73 % white; mean age was 46 years. Mental and physical health subscales of the PROMIS Global Health and the VR-12. The mean VR-12 physical component and mental component scores were 45.2 and 46.6, respectively; the mean PROMIS physical and mental health scores were 48.3 and 48.5, respectively. We found evidence that the combined set of VR-12 and PROMIS items were relatively unidimensional and that we could proceed with linking. Linking worked better between the physical health than mental health scores using VR-12 item responses (vs. linking based on algorithmic scores). For each of the cross-walks, users can minimize the impact of linking error with modest increases in sample sizes. VR-12 scores can be expressed on the PROMIS Global Health metric to facilitate the evaluation of treatment, including CER. Extending these results to other common measures of global health is encouraged.

  9. Mechanical and physical properties of carbon-graphite fiber-reinforced polymers intended for implant suprastructures.

    PubMed

    Segerström, Susanna; Ruyter, I Eystein

    2007-09-01

    Mechanical properties and quality of fiber/matrix adhesion of poly(methyl methacrylate) (PMMA)-based materials, reinforced with carbon-graphite (CG) fibers that are able to remain in a plastic state until polymerization, were examined. Tubes of cleaned braided CG fibers were treated with a sizing resin. Two resin mixtures, resin A and resin B, stable in the fluid state and containing different cross-linking agents, were reinforced with CG fiber loadings of 24, 36, and 47 wt% (20, 29, and 38 vol.%). In addition, resin B was reinforced with 58 wt% (47 vol.%). After heat-polymerization, flexural strength and modulus were evaluated, both dry and after water storage. Coefficient of thermal expansion, longitudinally and in the transverse direction of the specimens, was determined. Adhesion between fibers and matrix was evaluated with scanning electron microscopy (SEM). Flexural properties and linear coefficient of thermal expansion were similar for both fiber composites. With increased fiber loading, flexural properties increased. For 47 wt% fibers in polymer A the flexural strength was 547.7 (28.12) MPa and for polymer B 563.3 (89.24) MPa when water saturated. Linear coefficient of thermal expansion was for 47 wt% CG fiber-reinforced polymers; -2.5 x 10(-6) degrees C-1 longitudinally and 62.4 x 10(-6) degrees C-1 in the transverse direction of the specimens. SEM revealed good adhesion between fibers and matrix. More porosity was observed with fiber loading of 58 wt%. The fiber treatment and the developed resin matrices resulted in good adhesion between CG fibers and matrix. The properties observed indicate a potential for implant-retained prostheses.

  10. Preparation of styrene-co-4-vinylpyridine magnetic polymer beads by microwave irradiation for analysis of trace 24-epibrassinolide in plant samples using high performance liquid chromatography.

    PubMed

    Zhang, Zhuomin; Zhang, Yi; Tan, Wei; Li, Gongke; Hu, Yuling

    2010-10-15

    In the study, a kind of novel styrene-co-4-vinylpyridine (St-co-4-VP) porous magnetic polymer beads was prepared by microwave irradiation using suspension polymerization. Microwave heating preparation greatly reduced the polymerization time to 1h. Physical characteristic tests suggested that these beads were cross-linking and possessed spherical shape, good magnetic response and porous morphologies with a narrow diameter distribution of 70-180 μm. Therefore, these beads displayed the long-term stability after undergoing 100-time extractions. Then, an analytical method for the determination of trace 24-epiBR in plant samples was developed by magnetic polymer bead extraction coupled with high performance liquid chromatography-fluorescence detection. St-co-4-VP magnetic polymer beads demonstrated the higher extraction selectivity for 24-epiBR than other reference compounds. Linear range was 10.00-100.0 μg/L with a relative standard deviation (RSD) of 6.7%, and the detection limit was 6.5 μg/kg. This analytical method was successfully applied to analyze the trace 24-epiBR in cole and breaking-wall rape pollen samples with recoveries of 77.2-90.0% and 72.3-83.4%, respectively, and RSDs were less than 4.1%. The amount of 24-epiBR in real breaking-wall rape pollen samples was found to be 26.2 μg/kg finally. This work proposed a sensitive, rapid, reliable and convenient analytical method for the determination of trace brassinosteroids in complicated plant samples by the use of St-co-4-VP magnetic polymer bead extraction coupled with chromatographic method. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Swelling-induced optical anisotropy of thermoresponsive hydrogels based on poly(2-(2-methoxyethoxy)ethyl methacrylate): deswelling kinetics probed by quantitative Mueller matrix polarimetry.

    PubMed

    Patil, Nagaraj; Soni, Jalpa; Ghosh, Nirmalya; De, Priyadarsi

    2012-11-29

    Thermodynamically favored polymer-water interactions below the lower critical solution temperature (LCST) caused swelling-induced optical anisotropy (linear retardance) of thermoresponsive hydrogels based on poly(2-(2-methoxyethoxy)ethyl methacrylate). This was exploited to study the macroscopic deswelling kinetics quantitatively by a generalized polarimetry analysis method, based on measurement of the Mueller matrix and its subsequent inverse analysis via the polar decomposition approach. The derived medium polarization parameters, namely, linear retardance (δ), diattenuation (d), and depolarization coefficient (Δ), of the hydrogels showed interesting differences between the gels prepared by conventional free radical polymerization (FRP) and reversible addition-fragmentation chain transfer polymerization (RAFT) and also between dry and swollen state. The effect of temperature, cross-linking density, and polymerization technique employed to synthesize hydrogel on deswelling kinetics was systematically studied via conventional gravimetry and corroborated further with the corresponding Mueller matrix derived quantitative polarimetry characteristics (δ, d, and Δ). The RAFT gels exhibited higher swelling ratio and swelling-induced optical anisotropy compared to FRP gels and also deswelled faster at 30 °C. On the contrary, at 45 °C, deswelling was significantly retarded for the RAFT gels due to formation of a skin layer, which was confirmed and quantified via the enhanced diattenuation and depolarization parameters.

  12. Competitive concurrence of surface wrinkling and dewetting of liquid crystalline polymer films on non-wettable substrates.

    PubMed

    Song, Sung E; Choi, Gwan H; Yi, Gi-Ra; Yoo, Pil J

    2017-11-01

    Polymeric thin films coated on non-wettable substrates undergo film-instabilities, which are usually manifested as surface deformation in the form of dewetting or wrinkling. The former takes place in fluidic films, whereas the latter occurs in solid films. Therefore, there have rarely been reports of systems involving simultaneous deformations of dewetting and wrinkling. In this study, we propose polymeric thin films of liquid crystalline (LC) mesogens prepared on a non-wettable Si substrate and apply a treatment of plasma irradiation to form a thin polymerized layer at the surface. The resulting compressive stress generated in the surface region drives the formation of wrinkles, while at the same time, dipolar attraction between LC molecules induces competitive cohesive dewetting. Intriguing surface structures were obtained whereby dewetting-like hole arrays are nested inside the randomly propagated wrinkles. The structural features are readily controlled by the degree of surface cross-linking, hydrophilicity of the substrates, and the LC film thickness. In particular, dewetting of LC mesogens is observed to be restricted to occur at the trough regions of wrinkles, exhibiting the typical behavior of geometrically confined dewetting. Finally, wrinkling-dewetting mixed structures are separated from the substrate in the form of free standing films to demonstrate the potential applicability as membranes.

  13. Plasma graft-polymerization for synthesis of highly stable hydroxide exchange membrane

    NASA Astrophysics Data System (ADS)

    Hu, Jue; Zhang, Chengxu; Jiang, Lin; Fang, Shidong; Zhang, Xiaodong; Wang, Xiangke; Meng, Yuedong

    2014-02-01

    A novel plasma graft-polymerization approach is adopted to prepare hydroxide exchange membranes (HEMs) using cardo polyetherketone powders (PEK-C) and vinylbenzyl chloride. The benzylic chloromethyl groups can be successfully introduced into the PEK-C polymer matrix via plasma graft-polymerization. This approach enables a well preservation in the structure of functional groups and formation of a highly cross-linked structure in the membrane, leading to an improvement on the stability and performance of HEMs. The chemical stabilities, including alkaline and oxidative stability, are evaluated under severe conditions by measuring hydroxide conductivity and weight changes during aging. The obtained PGP-NOH membrane retains 86% of the initial hydroxide conductivity in 6 mol L-1 KOH solution at 60 °C for 120 h, and 94% of the initial weight in 3 wt% H2O2 solution at 60 °C for 262 h. The PGP-NOH membrane also possesses excellent thermal stability (safely used below 120 °C), alcohol resistance (ethanol permeability of 6.6 × 10-11 m2 s-1 and diffusion coefficient of 3.7 × 10-13 m2 s-1), and an acceptable hydroxide conductivity (8.3 mS cm-1 at 20 °C in deionized water), suggesting a good candidate of PGP-NOH membrane for HEMFC applications.

  14. Mesoporous Polymer Frameworks from End-Reactive Bottlebrush Copolymers

    DOE PAGES

    Altay, Esra; Nykypanchuk, Dmytro; Rzayev, Javid

    2017-08-07

    Reticulated nanoporous materials generated by versatile molecular framework approaches are limited to pore dimensions on the scale of the utilized rigid molecular building blocks (<5 nm). The inherent flexibility of linear polymers precludes their utilization as long framework connectors for the extension of this strategy to larger length scales. We report a method for the fabrication of mesoporous frameworks by using bottlebrush copolymers with reactive end blocks serving as rigid macromolecular interconnectors with directional reactivity. End-reactive bottlebrush copolymers with pendant alkene functionalities were synthesized by a combination of controlled radical polymerization and polymer modification protocols. Ru-catalyzed cross-metathesis cross-linking of bottlebrushmore » copolymers with two reactive end blocks resulted in the formation of polymer frameworks where isolated cross-linked domains were interconnected with bottlebrush copolymer bridges. The resulting materials were characterized by a continuous network pore structure with average pore sizes of 9–50 nm, conveniently tunable by the length of the utilized bottlebrush copolymer building blocks. As a result, the materials fabrication strategy described in this work expands the length scale of molecular framework materials and provides access to mesoporous polymers with a molecularly tunable reticulated pore structure without the need for templating, sacrificial component etching, or supercritical fluid drying.« less

  15. Topological versus rheological entanglement length in primitive-path analysis protocols, tube models, and slip-link models

    NASA Astrophysics Data System (ADS)

    Everaers, Ralf

    2012-08-01

    We show that the front factor appearing in the shear modulus of a phantom network, Gph=(1-2/f)(ρkBT)/Ns, also controls the ratio of the strand length, Ns, and the number of monomers per Kuhn length of the primitive paths, NphPPKuhn, characterizing the average network conformation. In particular, NphPPKuhn=Ns/(1-2/f) and Gph=(ρkBT)/NphPPKuhn. Neglecting the difference between cross-links and slip-links, these results can be transferred to entangled systems and the interpretation of primitive path analysis data. In agreement with the tube model, the analogy to phantom networks suggest that the rheological entanglement length, Nerheo=(ρkBT)/Ge, should equal NePPKuhn. Assuming binary entanglements with f=4 functional junctions, we expect that Nerheo should be twice as large as the topological entanglement length, Netopo. These results are in good agreement with reported primitive path analysis results for model systems and a wide range of polymeric materials. Implications for tube and slip-link models are discussed.

  16. Characterization of hydrophilic-rich phase mimic in dentin adhesive and computer-aided molecular design of water compatible visible light initiators

    NASA Astrophysics Data System (ADS)

    Abedin, Farhana

    The clinical lifetime of moderate-to-large dental composite restorations is lower than dental amalgam restorations. With the imminent and significant reduction in the use and availability of dental amalgam, the application of composite for the restoration of teeth will increase. Since composite has a higher failure rate, the increased use of composite will translate to an increase in the frequency of dental restoration replacement, overall cost for dental health and discomfort for patients. The composite is too viscous to bond directly to the tooth and thus, a low viscosity adhesive is used to form the bond between the composite and tooth. The bond at the adhesive/tooth is intended to form an impervious seal that protects the restored tooth from acids, oral fluids and bacteria that will undermine the composite restoration. The integrity of the adhesive/tooth bond (the exposed tooth structure is largely composed of enamel and dentin) plays an important role in preventing secondary caries which undermine the composite restoration. This study focuses on the durability of etch-and-rinse dental adhesives. As the adhesive infiltrates the demineralized dentin matrix, it undergoes phase separation into hydrophobic- and hydrophilic-rich phases. The hydrophilic-rich phase contains the conventional hydrophobic photo-initiator system (camphorquinone/ethyl 4-(dimethylamino)benzoate) and cross-linker both in inadequate concentrations. This may compromise the polymerization reaction and the cross-linking density of this phase, making it vulnerable to failure. The goal of this study is to characterize the hydrophilic-rich phase of the dental adhesive by monitoring its polymerization kinetics and glass transition temperature under the presence of an iodonium salt (reaction accelerator), and varying water concentration, photo-initiator concentration and light intensity. The final goal is to develop a computational framework for designing water compatible visible light photosensitizers specifically for the hydrophilic-rich phase of dental adhesives. It was observed that the degree of conversion of the hydrophilic-rich mimics is dominated by the photo-initiator concentration and not the cross-linker. A secondary rate maxima was observed in the case of hydrophilic-rich phase mimics which was associated with the formation of microgels during polymerization. A polymerization mechanism involving polymerization- and solvent-induced phase separation was proposed for the hydrophilic-rich mimics. The hydrophilic dental resins were sensitive to light intensity, i.e. at low light intensities the degree of conversion of the hydrophilic resin was reduced substantially in the presence of camphorquinone/ethyl 4-(dimethylamino)benzoate as photo-initiators, whereas a substantial degree of conversion was observed for the hydrophobic resin even at these lower light intensities. The addition of iodonium salt in the hydrophilic resin significantly improved the degree of conversion of the hydrophilic resin at low light intensities. These studies also showed that the iodonium salt could lead to enhanced cyclization and shorter polymer chain lengths within the hydrophilic-rich phase. For the physically separated hydrophilic-rich phase specimens, it was observed that in the presence of the conventional photo-initiator system (camphorquinone/ethyl 4-(dimethylamino)benzoate), there was no polymerization, mostly due to the insufficient partition concentrations of the photo-initiator components within this phase. The addition of iodoinum salt in this case significantly improved the degree of conversion but it was still significantly lower. These studies indicated that the overall polymerization efficiency of the hydrophilic-rich phase was lower than the hydrophobic-rich phase. The lower polymerization efficiency of the hydrophilic-rich phase led to a phase that lacks integrity; the hydrophilic-rich phase could be infiltrated by oral fluids and cariogenic bacteria. The infiltration of these noxious agents at the interface between the material and tooth could pave the way for enhanced degradation of the tooth structure (collagen and mineral) as well as the adhesive polymer. Novel photosensitizer molecules were proposed to improve the polymerization efficiency of this phase. Computer-aided molecular design (CAMD) was employed to obtain the new photosensitizers. These photosensitizers were capable of improving the degree of conversion of the hydrophilic-rich phase. An enhanced degree of conversion of the hydrophilic-rich phase would lead to a better seal at the adhesive/dentin interface and higher bond strength. Computer-aided molecular design (CAMD) is a fast and inexpensive technique compared to the conventional trial-and-error method to rationally design products. (Abstract shortened by ProQuest.).

  17. Industrial uses of radiation processing in Belgium

    NASA Astrophysics Data System (ADS)

    Lacroix, J. P.

    Since 1979, the Irradiation Department of IRE, in conjunction with universities and the industrial sector, has set up an extensive programme of research, development and promotion of the radiation process applied to cross-linking and polymerization of plastics, to waste treatment and to food preservation. Starting from scratch, it is thanks to our research in this last-mentioned field that we have been able to develop and to increase the application of the irradiation process within the food industry. At present, two irradiation facilities of a total design capacity of 2.5 10 6 Ci irradiate 24 hours per day mostly for the agro-industry.

  18. Fabrication of submicron structures in nanoparticle/polymer composite by holographic lithography and reactive ion etching

    NASA Astrophysics Data System (ADS)

    Zhang, A. Ping; He, Sailing; Kim, Kyoung Tae; Yoon, Yong-Kyu; Burzynski, Ryszard; Samoc, Marek; Prasad, Paras N.

    2008-11-01

    We report on the fabrication of nanoparticle/polymer submicron structures by combining holographic lithography and reactive ion etching. Silica nanoparticles are uniformly dispersed in a (SU8) polymer matrix at a high concentration, and in situ polymerization (cross-linking) is used to form a nanoparticle/polymer composite. Another photosensitive SU8 layer cast upon the nanoparticle/SU8 composite layer is structured through holographic lithography, whose pattern is finally transferred to the nanoparticle/SU8 layer by the reactive ion etching process. Honeycomb structures in a submicron scale are experimentally realized in the nanoparticle/SU8 composite.

  19. In-vitro Equilibrium Phosphate Binding Study of Sevelamer Carbonate by UV-Vis Spectrophotometry.

    PubMed

    Prasaja, Budi; Syabani, M Maulana; Sari, Endah; Chilmi, Uci; Cahyaningsih, Prawitasari; Kosasih, Theresia Weliana

    2018-06-12

    Sevelamer carbonate is a cross-linked polymeric amine; it is the active ingredient in Renvela ® tablets. US FDA provides recommendation for demonstrating bioequivalence for the development of a generic product of sevelamer carbonte using in-vitro equilibrium binding study. A simple UV-vis spectrophotometry method was developed and validated for quantification of free phosphate to determine the binding parameter constant of sevelamer. The method validation demonstrated the specificity, limit of quantification, accuracy and precision of measurements. The validated method has been successfully used to analyze samples in in-vitro equilibrium binding study for demonstrating bioequivalence. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Ion-exchange hollow fibers

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Klein, Elias (Inventor)

    1980-01-01

    An ion-exchange hollow fiber is prepared by introducing into the wall of the fiber polymerizable liquid monomers, and polymerizing the monomers therein to form solid, insoluble, cross-linked, ion-exchange resin particles which embed in the wall of the fiber. Excess particles blocking the central passage or bore of the fiber are removed by forcing liquid through the fiber. The fibers have high ion-exchange capacity, a practical wall permeability and good mechanical strength even with very thin wall dimensions. Experimental investigation of bundles of ion-exchange hollow fibers attached to a header assembly have shown the fiber to be very efficient in removing counterions from solution.

  1. Ion-exchange hollow fibers

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Klein, Elias (Inventor)

    1977-01-01

    An ion-exchange hollow fiber is prepared by introducing into the wall of the fiber polymerizable liquid monomers, and polymerizing the monomers therein to form solid, insoluble, cross-linked, ion-exchange resin particles which embed in the wall of the fiber. Excess particles blocking the central passage or bore of the fiber are removed by forcing liquid through the fiber. The fibers have high ion-exchange capacity, a practical wall permeability and good mechanical strength even with very thin wall dimensions. Experimental investigation of bundles of ion-exchange hollow fibers attached to a header assembly have shown the fiber to be very efficient in removing counterions from solution.

  2. Disparity in Physical Activity among Urban Youth: An Ecologically Guided Assessment

    ERIC Educational Resources Information Center

    Lenhart, Clare M.; Patterson, Freda; Brown, Michael D.; O'Brien, Matthew J.; Nelson, Deborah B.

    2014-01-01

    Background: Insufficient physical activity among urban youth increases risk of chronic disease.Purpose:This study assessed reported physical activity to determine when disparities in participation emerge and what ecologically guided factors are linked with high activity. Methods:We administered a cross-sectional survey to a diverse sample of 321…

  3. Skin-Inspired Multifunctional Autonomic-Intrinsic Conductive Self-Healing Hydrogels with Pressure Sensitivity, Stretchability, and 3D Printability.

    PubMed

    Darabi, Mohammad Ali; Khosrozadeh, Ali; Mbeleck, Rene; Liu, Yuqing; Chang, Qiang; Jiang, Junzi; Cai, Jun; Wang, Quan; Luo, Gaoxing; Xing, Malcolm

    2017-08-01

    The advent of conductive self-healing (CSH) hydrogels, a class of novel materials mimicking human skin, may change the trajectory of the industrial process because of their potential applications in soft robots, biomimetic prostheses, and health-monitoring systems. Here, the development of a mechanically and electrically self-healing hydrogel based on physically and chemically cross-linked networks is reported. The autonomous intrinsic self-healing of the hydrogel is attained through dynamic ionic interactions between carboxylic groups of poly(acrylic acid) and ferric ions. A covalent cross-linking is used to support the mechanical structure of the hydrogel. Establishing a fair balance between the chemical and physical cross-linking networks together with the conductive nanostructure of polypyrrole networks leads to a double network hydrogel with bulk conductivity, mechanical and electrical self-healing properties (100% mechanical recovery in 2 min), ultrastretchability (1500%), and pressure sensitivity. The practical potential of CSH hydrogels is further revealed by their application in human motion detection and their 3D-printing performance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Preparation of Nanocellulose Reinforced Chitosan Films, Cross-Linked by Adipic Acid

    PubMed Central

    Falamarzpour, Pouria; Behzad, Tayebeh; Zamani, Akram

    2017-01-01

    Adipic acid, an abundant and nontoxic compound, was used to dissolve and cross-link chitosan. After the preparation of chitosan films through casting technique, the in situ amidation reaction was performed at 80–100 °C as verified by Fourier transform infrared (FT-IR). The reaction was accompanied by the release of water which was employed to investigate the reaction kinetics. Accordingly, the reaction rate followed the first-order model and Arrhenius equation, and the activation energy was calculated to be 18 kJ/mol. Furthermore, the mechanical properties of the chitosan films were comprehensively studied. First, optimal curing conditions (84 °C, 93 min) were introduced through a central composite design. In order to evaluate the effects of adipic acid, the mechanical properties of physically cross-linked (uncured), chemically cross-linked (cured), and uncross-linked (prepared by acetic acid) films were compared. The use of adipic acid improved the tensile strength of uncured and chemically cross-linked films more than 60% and 113%, respectively. Finally, the effect of cellulose nanofibrils (CNFs) on the mechanical performance of cured films, in the presence of glycerol as a plasticizer, was investigated. The plasticized chitosan films reinforced by 5 wt % CNFs showed superior properties as a promising material for the development of chitosan-based biomaterials. PMID:28208822

  5. Preparation of Nanocellulose Reinforced Chitosan Films, Cross-Linked by Adipic Acid.

    PubMed

    Falamarzpour, Pouria; Behzad, Tayebeh; Zamani, Akram

    2017-02-13

    Adipic acid, an abundant and nontoxic compound, was used to dissolve and cross-link chitosan. After the preparation of chitosan films through casting technique, the in situ amidation reaction was performed at 80-100 °C as verified by Fourier transform infrared (FT-IR). The reaction was accompanied by the release of water which was employed to investigate the reaction kinetics. Accordingly, the reaction rate followed the first-order model and Arrhenius equation, and the activation energy was calculated to be 18 kJ/mol. Furthermore, the mechanical properties of the chitosan films were comprehensively studied. First, optimal curing conditions (84 °C, 93 min) were introduced through a central composite design. In order to evaluate the effects of adipic acid, the mechanical properties of physically cross-linked (uncured), chemically cross-linked (cured), and uncross-linked (prepared by acetic acid) films were compared. The use of adipic acid improved the tensile strength of uncured and chemically cross-linked films more than 60% and 113%, respectively. Finally, the effect of cellulose nanofibrils (CNFs) on the mechanical performance of cured films, in the presence of glycerol as a plasticizer, was investigated. The plasticized chitosan films reinforced by 5 wt % CNFs showed superior properties as a promising material for the development of chitosan-based biomaterials.

  6. Ion Exchange Equilibrium and Kinetic Properties of Polyacrylate Films and Applications to Chemical Analysis and Environmental Decontamination

    NASA Technical Reports Server (NTRS)

    Tanner, Stephen P.

    1997-01-01

    One of the goals of the original proposal was to study how cross-linking affects the properties of an ion exchange material(IEM) developed at Lewis Research Center. However, prior to the start of this work, other workers at LERC investigated the effect of cross-linking on the properties of this material. Other than variation in the ion exchange capacity, the chemical characteristics were shown to be independent of the cross-linking agent, and the degree of cross-linking. New physical forms of the film were developed (film, supported film, various sizes of beads, and powder). All showed similar properties with respect to ion exchange equilibria but the kinetics of ion exchange depended on the surface area per unit mass; the powder form of the IEM exchanging much more rapidly than the other forms. The research performed under this grant was directed towards the application of the IEM to the analysis of metal ions at environmental concentrations.

  7. The counterbend dynamics of cross-linked filament bundles and flagella

    PubMed Central

    Coy, Rachel

    2017-01-01

    Cross-linked filament bundles, such as in cilia and flagella, are ubiquitous in biology. They are considered in textbooks as simple filaments with larger stiffness. Recent observations of flagellar counterbend, however, show that induction of curvature in one section of a passive flagellum instigates a compensatory counter-curvature elsewhere, exposing the intricate role of the diminutive cross-linking proteins at large scales. We show that this effect, a material property of the cross-linking mechanics, modifies the bundle dynamics and induces a bimodal L2 − L3 length-dependent material response that departs from the Euler–Bernoulli theory. Hence, the use of simpler theories to analyse experiments can result in paradoxical interpretations. Remarkably, the counterbend dynamics instigates counter-waves in opposition to driven oscillations in distant parts of the bundle, with potential impact on the regulation of flagellar bending waves. These results have a range of physical and biological applications, including the empirical disentanglement of material quantities via counterbend dynamics. PMID:28566516

  8. Self-Healing Gelatin Hydrogels Cross-Linked by Combining Multiple Hydrogen Bonding and Ionic Coordination.

    PubMed

    Zhang, Guangzhao; Lv, Lei; Deng, Yonghong; Wang, Chaoyang

    2017-06-01

    Self-healing hydrogels have been studied by many researchers via multiple cross-linking approaches including physical and chemical interactions. It is an interesting project in multifunctional hydrogel exploration that a water soluble polymer matrix is cross-linked by combining the ionic coordination and the multiple hydrogen bonds to fabricate self-healing hydrogels with injectable property. This study introduces a general procedure of preparing the hydrogels (termed gelatin-UPy-Fe) cross-linked by both ionic coordination of Fe 3+ and carboxyl group from the gelatin and the quadruple hydrogen bonding interaction from the ureido-pyrimidinone (UPy) dimers. The gelatin-UPy-Fe hydrogels possess an excellent self-healing property. The effects of the ionic coordination of Fe 3+ and quadruple hydrogen bonding of UPy on the formation and mechanical behavior of the prepared hydrogels are investigated. In vitro drug release of the gelatin-UPy-Fe hydrogels is also observed, giving an intriguing glimpse into possible biological applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The effect of virtual cross linking on the oxidative stability and lipid uptake of aliphatic poly(urethane urea).

    PubMed

    Thomas, Vinoy; Jayabalan, Muthu

    2002-01-01

    In vitro oxidative degradation and lipid sorption of aliphatic, low elastic modulus and virtually cross-linked poly(urethane urea)s based on 4,4' methylene bis(cyclohexyl isocyanate), hydroxy terminated poly butadiene and hexamethylene diamine were evaluated. The aged samples revealed no weight loss in the oxidation medium. The IR spectral analyses revealed the stability of unsaturated double bonds at 964 cm(-1) (characteristic for polybutadiene soft segment) with no change in peak intensity. The poly(tetramethylene glycol) (PTMG)-added poly(ether urethane urea) polymer also revealed no disappearance of IR peaks for ether and unsaturated double bonds in samples aged in vitro oxidation medium. All the polymers have shown increase in weight due to lipid up take in lipid-rich medium (palm oil) but it was rather low in Dulbecco's modified eagle medium (DMEM) cholesterol. The slight change in mechanical properties of the present polymers in oxidation and DMEM is due to the rearrangement of molecular structure with virtual cross links of hydrogen bonding (physical cross linking) without degradation and plasticization effect of lipid. The influence of these media on the rearrangement of virtual cross links has been observed. Higher the virtual cross-link density, lesser is the loss of tensile properties of poly(urethane urea)s in the oxidation medium and vice versa. On the other hand, higher the virtual cross-link density of poly(urethane urea), higher is the loss of ultimate tensile strength and stress at 100% strain and vice versa in DMEM medium.

  10. Molecular dynamics simulation studies of tailored nanostructured polymers

    NASA Astrophysics Data System (ADS)

    Liu, Lixin

    With recent advancements in the synthesis and characterization of polymeric materials, scientists are able to create multi-scale novel polymers with various cases of chemical functionalities, diversified topologies, as well as cross-linking networks. Due to those remarkable achievements, there are a broad range of possible applications of smart polymers in catalysis, in environmental remediation, and especially in drug-delivery. Because of rising interest in developing therapeutic drug binding to specific treating target, polymer chemists are in particular interests in design and engineering the drug delivery materials to be not only bio-compatible, but also to be capable of self-assembly at various in-vivo physiological stimulus. Both experimental and theoretical work indicate that the thermodynamic properties relating to the hydrophobic effect play an important role in determining self-assembly process. At the same time, computational simulation and modeling are powerful instruments to contribute to microscopic thermodynamics' understanding toward self-assembly phenomenon. Along with statistical approaches, constructing empirical model based on simulation results would also help predict for further development of tailored nano-structured materials. My Research mainly focused on investigating physical and chemical characteristics of polymer materials through molecular dynamics simulation and probing the fundamental thermodynamic driving force of self-assembly behavior. We tried to surmount technological obstacles in computational chemistry and build an efficient scheme to identify the physical and chemical Feature of molecules, to reproduce underlying properties, to understand the origin of thermodynamic signatures, and to speed up current trial and error process in screening new materials.

  11. Hybrid Scaffolds of Hyaluronic Acid and Collagen Loaded with Prednisolone: an Interesting System for Osteoarthritis.

    PubMed

    Mohammadi, Farhad; Mohammadi Samani, Soliman; Tanideh, Nader; Ahmadi, Fatemeh

    2018-03-01

    Purpose: Cartilage regeneration by using polymeric scaffolds is a new option for treatment of osteoarthritis. A good scaffold for tissue engineering should copy the characteristics of natural extracellular matrix. The purpose of this study was to make a dosage form with proper reliability and stability for cartilage repair. Methods: Hybrid scaffolds containing different ratios of hyaluronic acid (HA) and collagen were prepared and loaded with prednisolone as anti-inflammatory agent. Two different dosage forms (lyophilized implantable disk and thermo-sensitive gels) were examined. A scaffold of cross-linked HA was used as control. Different characterization tests were considered including differential scanning calorimetry (DSC), scanning electron microscopy, mechanical evaluations, and drug release. Results: The physical and chemical performance of hybrid-scaffolds was better than HA scaffold. Increasing the concentration of HA and collagen improved the physical and chemical characteristics. Regarding the mechanical properties of the hybrid scaffold, the pore size was 20-200µm, compressive modulus was 54.77±0.31 kPa, more than 1200% water uptake was observed after 4 days, gelation temperature was 32±0.16°C, gelation time was 2.4±0.1 min, and drug release was controlled for 5 days by Higuchi release kinetic model. Conclusion: It seems that this porous hybrid scaffold could be a suitable choice in cartilage regeneration as well as a controlled-release system for delivery of prednisolone in osteoarthritis.

  12. Stable optical oxygen sensing materials based on click-coupling of fluorinated platinum(II) and palladium(II) porphyrins—A convenient way to eliminate dye migration and leaching

    PubMed Central

    Koren, Klaus; Borisov, Sergey M.; Klimant, Ingo

    2012-01-01

    Nucleophilic substitution of the labile para-fluorine atoms of 2,3,4,5,6-pentafluorophenyl groups enables a click-based covalent linkage of an oxygen indicator (platinum(II) or palladium(II) 5,10,15,20-meso-tetrakis-(2,3,4,5,6-pentafluorophenyl)-porphyrin) to the sensor matrix. Copolymers of styrene and pentafluorostyrene are chosen as polymeric materials. Depending on the reaction conditions either soluble sensor materials or cross-linked microparticles are obtained. Additionally, we prepared Ormosil-based sensors with linked indicator, which showed very high sensitivity toward oxygen. The effect of covalent coupling on sensor characteristics, stability and photophysical properties is studied. It is demonstrated that leaching and migration of the dye are eliminated in the new materials but excellent photophysical properties of the indicators are preserved. PMID:23576845

  13. Embedded cluster metal-polymeric micro interface and process for producing the same

    DOEpatents

    Menezes, Marlon E.; Birnbaum, Howard K.; Robertson, Ian M.

    2002-01-29

    A micro interface between a polymeric layer and a metal layer includes isolated clusters of metal partially embedded in the polymeric layer. The exposed portion of the clusters is smaller than embedded portions, so that a cross section, taken parallel to the interface, of an exposed portion of an individual cluster is smaller than a cross section, taken parallel to the interface, of an embedded portion of the individual cluster. At least half, but not all of the height of a preferred spherical cluster is embedded. The metal layer is completed by a continuous layer of metal bonded to the exposed portions of the discontinuous clusters. The micro interface is formed by heating a polymeric layer to a temperature, near its glass transition temperature, sufficient to allow penetration of the layer by metal clusters, after isolated clusters have been deposited on the layer at lower temperatures. The layer is recooled after embedding, and a continuous metal layer is deposited upon the polymeric layer to bond with the discontinuous metal clusters.

  14. Impact of Pb content on the physical parameters of Se-Te-Pb system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anjali,; Sharma, Raman; Thakur, Nagesh

    2015-05-15

    In the present study, we have investigated the impact of Pb content on the physical parameters in Se-Te-Pb system via average coordination number, constraints, the fraction of floppy modes, cross-linking density, lone pairs electrons, heat of atomization, mean bond energy, cohesive energy and electronegativity. The bulk samples have been prepared by using melt quenching technique. X-ray diffraction pattern of various samples indicates the amorphous nature of investigated glassy alloys. It is observed that average coordination number, average number of constraints and cross-linking density increase with Pb content. However, lone-pair electrons, floppy modes, average heat of atomization, cohesive energy and meanmore » bond energy are found to decrease with Pb atomic percentage.« less

  15. Selective, ultrathin membrane skins prepared by deposition of novel polymer films on porous alumina supports

    NASA Astrophysics Data System (ADS)

    Balachandra, Anagi Manjula

    Membrane-based separations are attractive in industrial processes because of their low energy costs and simple operation. However, low permeabilities often make membrane processes uneconomical. Since flux is inversely proportional to membrane thickness, composite membranes consisting of ultrathin, selective skins on highly permeable supports are required to simultaneously achieve high throughput and high selectivity. However, the synthesis of defect-free skins with thicknesses less than 50 nm is difficult, and thus flux is often limited. Layer-by-layer deposition of oppositely charged polyelectrolytes on porous supports is an attractive method to synthesize ultrathin ion-separation membranes with high flux and high selectivity. The ion-transport selectivity of multilayer polyelectrolyte membranes (MPMs) is primarily due to Donnan exclusion; therefore increase in fixed charge density should yield high selectivity. However, control over charge density in MPMs is difficult because charges on polycations are electrostatically compensated by charges on polyanions, and the net charge in the bulk of these films is small. To overcome this problem, we introduced a templating method to create ion-exchange sites in the bulk of the membrane. This strategy involves alternating deposition of a Cu2+-poly(acrylic acid) complex and poly(allylamine hydrochloride) on a porous alumina support followed by removal of Cu2+ and deprotonation to yield free -COO- ion-exchange sites. Diffusion dialysis studies showed that the Cl-/SO42-. Selectivity of Cu2+-templated membranes is 4-fold higher than that of membranes prepared in the absence of Cu2+. Post-deposition cross-linking of these membranes by heat-induced amide bond formation further increased Cl-/SO42- selectivity to values as high as 600. Room-temperature, surface-initiated atom transfer radical polymerization (ATRP) provides another convenient method for formation of ultrathin polymer skins. This process involves attachment of polymerization initiators to a porous alumina support and subsequent polymerization from these initiators. Because ATRP is a controlled polymerization technique, it yields well-defined polymer films with low polydispersity indices (narrow molecular weight distributions). Additionally, this method is attractive because film thickness can be easily controlled by adjusting polymerization time. Gas-permeability data showed that grafted poly(ethylene glycol dimethacrylate) membranes have a CO 2/CH4 selectivity of 20, whereas poly(2-hydroxyethyl methacrylate) (PHEMA) films grown from a surface have negligible selectivity. However, derivatization of PHEMA with pentadecafluorooctanoyl chloride increases the solubility of CO2 in the membrane and results in a CO2/CH4 selectivity of 9. Although composite PHEMA membranes have no significant gas-transport selectivity, diffusion dialysis studies with PHEMA membranes showed moderate ion-transport selectivities. Cross-linking of PHEMA membranes by reaction with succinyl chloride greatly enhanced anion-transport selectivities while maintaining reasonable flux. The selectivities of these systems demonstrate that alternating polyelectrolyte deposition and surface-initiated ATRP are indeed capable of forming ultrathin, defect-free membrane skins that can potentially be modified for specific separations.

  16. Nanostructured hybrid hydrogels prepared by a combination of atom transfer radical polymerization and free radical polymerization

    PubMed Central

    Bencherif, Sidi A.; Siegwart, Daniel J.; Srinivasan, Abiraman; Horkay, Ferenc; Hollinger, Jeffrey O.; Washburn, Newell R.; Matyjaszewski, Krzysztof

    2012-01-01

    A new method to prepare nanostructured hybrid hydrogels by incorporating well-defined poly(oligo (ethylene oxide) monomethyl ether methacrylate) (POEO300MA) nanogels of sizes 110–120 nm into a larger three-dimensional (3D) matrix was developed for drug delivery scaffolds for tissue engineering applications. Rhodamine B isothiocyanate-labeled dextran (RITC-Dx) or fluorescein isothiocyanate-labeled dextran (FITC-Dx)-loaded POEO300MA nanogels with pendant hydroxyl groups were prepared by activators generated electron transfer atom transfer radical polymerization (AGET ATRP) in cyclohexane inverse miniemulsion. Hydroxyl-containing nanogels were functionalized with methacrylated groups to generate photoreactive nanospheres. 1H NMR spectroscopy confirmed that polymerizable nanogels were successfully incorporated covalently into 3D hyaluronic acid-glycidyl methacrylate (HAGM) hydrogels after free radical photo-polymerization (FRP). The introduction of disulfide moieties into the polymerizable groups resulted in a controlled release of nanogels from cross-linked HAGM hydrogels under a reducing environment. The effect of gel hybridization on the macroscopic properties (swelling and mechanics) was studied. It is shown that swelling and nanogel content are independent of scaffold mechanics. In-vitro assays showed the nanostructured hybrid hydrogels were cytocompatible and the GRGDS (Gly–Arg–Gly–Asp–Ser) contained in the nanogel structure promoted cell–substrate interactions within 4 days of incubation. These nanostructured hydrogels have potential as an artificial extracellular matrix (ECM) impermeable to low molecular weight biomolecules and with controlled pharmaceutical release capability. Moreover, the nanogels can control drug or biomolecule delivery, while hyaluronic acid based-hydrogels can act as a macroscopic scaffold for tissue regeneration and regulator for nanogel release. PMID:19592087

  17. Large strain deformation behavior of polymeric gels in shear- and cavitation rheology

    NASA Astrophysics Data System (ADS)

    Hashemnejad, Seyed Meysam; Kundu, Santanu

    Polymeric gels are used in many applications including in biomedical and in food industries. Investigation of mechanical responses of swollen polymer gels and linking that to the polymer chain dynamics are of significant interest. Here, large strain deformation behavior of two different gel systems and with different network architecture will be presented. We consider biologically relevant polysaccharide hydrogels, formed through ionic and covalent crosslinking, and physically associating triblock copolymer gels in a midblock selective solvent. Gels with similar low-strain shear modulus display distinctly different non-linear rheological behavior in large strain shear deformation. Both these gels display strain-stiffening behavior in shear-deformation prior to macroscopic fracture of the network, however, only the alginate gels display negative normal stress. The cavitation rheology data show that the critical pressure for cavitation is higher for alginate gels than that observed for triblock gels. These distinctly different large-strain deformation behavior has been related to the gel network structure, as alginate chains are much stiffer than the triblock polymer chains.

  18. Physicochemical Characteristics and Slow Release Performances of Chlorpyrifos Encapsulated by Poly(butyl acrylate-co-styrene) with the Cross-Linker Ethylene Glycol Dimethacrylate.

    PubMed

    Wang, Yu; Gao, Zideng; Shen, Feng; Li, Yang; Zhang, Sainan; Ren, Xueqin; Hu, Shuwen

    2015-06-03

    Chlorpyrifos' application and delivery to the target substrate needs to be controlled to improve its use. Herein, poly(butyl acrylate-co-styrene) (poly(BA/St)) and poly(BA/St/ethylene glycol dimethacrylate (EGDMA)) microcapsules loaded with chlorpyrifos as a slow release formulation were prepared by emulsion polymerization. The effects of structural characteristics on the chlorpyrifos microcapsule particle size, entrapment rate (ER), pesticide loading (PL), and release behaviors in ethyl alcohol were investigated. Fourier transform infrared and thermogravimetric analysis confirmed the successful entrapment of chlorpyrifos. The ER and PL varied with the BA/St monomer ratio, chlorpyrifos/monomer core-to-shell ratio, and EGDMA cross-linker content with consequence that suitable PL was estimated to be smaller than 3.09% and the highest ER was observed as 96.74%. The microcapsule particle size (88.36-101.8 nm) remained mostly constant. The extent of sustainable release decreased with increasing content of BA, St, or chlorpyrifos in the oil phase. Specifically, an adequate degree of cross-linking with EGMDA (0.5-2.5%) increased the extent of sustainable release considerably. However, higher levels of cross-linking with EGDMA (5-10%) reduced the extent of sustainable release. Chlorpyrifos release from specific microcapsules (monomer ratio 1:2 with 0.5% EGDMA or 5 g chlopyrifos) tended to be a diffusion-controlled process, while for others, the kinetics probably indicated the initial rupture release.

  19. Nanoporous Thermosets with Percolating Pores from Block Polymers Chemically Fixed above the Order–Disorder Transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vidil, Thomas; Hampu, Nicholas; Hillmyer, Marc A.

    A lamellar diblock polymer combining a cross-linkable segment with a chemically etchable segment was cross-linked above its order–disorder temperature (TODT) to kinetically trap the morphology associated with the fluctuating disordered state. After removal of the etchable block, evaluation of the resulting porous thermoset allows for an unprecedented experimental characterization of the trapped disordered phase. Through a combination of small-angle X-ray scattering, nitrogen sorption, scanning electron microscopy, and electron tomography experiments we demonstrate that the nanoporous structure exhibits a narrow pore size distribution and a high surface to volume ratio and is bicontinuous over a large sample area. Together with themore » processability of the polymeric starting material, the proposed system combines attractive attributes for many advanced applications. In particular, it was used to design new composite membranes for the ultrafiltration of water.« less

  20. Poly(β-amino amine) cross-linked PEIs as highly efficient gene vectors.

    PubMed

    Deng, Ji-Zhe; Sun, Yun-Xia; Wang, Hui-Yuan; Li, Cao; Huang, Fu-Wei; Cheng, Si-Xue; Zhuo, Ren-Xi; Zhang, Xian-Zheng

    2011-05-01

    To increase the release of DNA into the cytoplasm and further improve transgene expression of nucleic acid novel polymeric gene carriers were prepared which would be biodegradable under the reducing conditions in the cytoplasm. Disulfide-containing poly(β-amino amine)s were first synthesized and then used to cross-link low molecular weight polyethyleneimine (1800 Da) through Michael addition to obtain SS-PBAA-PEIs as the final gene carriers. The physicochemical characteristics of SS-PBAA-PEI/DNA complexes were characterized. In vitro transfection mediated by the SS-PBAA-PEIs under serum conditions was carried out. Cell uptake of the gene delivery systems was observed by confocal laser scanning microscopy. The results of the physicochemical characterisation demonstrated that the SS-PBAA-PEIs could efficiently condense DNA. In vitro transfection under serum conditions showed that SS-PBAA-PEIs had comparable or even higher transfection efficiencies than 25 kDa PEI. And SS-PBAA-PEIs showed much lower cytotoxicity compared with 25 kDa PEI. In summary, the SS-PBAA-PEIs possess great potential as non-viral gene vectors and exhibit high transfection efficiency under serum conditions. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Dual-Functional Hydrazide-Reactive and Anhydride-Containing Oligomeric Hydrogel Building Blocks.

    PubMed

    Kascholke, Christian; Loth, Tina; Kohn-Polster, Caroline; Möller, Stephanie; Bellstedt, Peter; Schulz-Siegmund, Michaela; Schnabelrauch, Matthias; Hacker, Michael C

    2017-03-13

    Biomimetic hydrogels are advanced biomaterials that have been developed following different synthetic routes. Covalent postfabrication functionalization is a promising strategy to achieve efficient matrix modification decoupled of general material properties. To this end, dual-functional macromers were synthesized by free radical polymerization of maleic anhydride with diacetone acrylamide (N-(1,1-dimethyl-3-oxobutyl)acrylamide) and pentaerythritol diacrylate monostearate. Amphiphilic oligomers (M n < 7.5 kDa) with anhydride contents of 7-20% offered cross-linking reactivity to yield rigid hydrogels with gelatinous peptides (E = 4-13 kPa) and good cell adhesion properties. Mildly reactive methyl ketones as second functionality remained intact during hydrogel formation and potential of covalent matrix modification was shown using hydrazide and hydrazine model compounds. Successful secondary dihydrazide cross-linking was demonstrated by an increase of hydrogel stiffness (>40%). Efficient hydrazide/hydrazine immobilization depending on solution pH, hydrogel ketone content as well as ligand concentration for bioconjugation was shown and reversibility of hydrazone formation was indicated by physiologically relevant hydrazide release over 7 days. Proof-of-concept experiments with hydrazido-functionalized hyaluronan demonstrated potential for covalent aECM immobilization. The presented dual-functional macromers have perspective as reactive hydrogel building blocks for various biomedical applications.

  2. Adsorption induced enzyme denaturation: the role of polymer hydrophobicity in adsorption and denaturation of alpha-chymotrypsin on allyl glycidyl ether (AGE)-ethylene glycol dimethacrylate (EGDM) copolymers.

    PubMed

    Lahari, Challa; Jasti, Lakshmi S; Fadnavis, Nitin W; Sontakke, Kalpana; Ingavle, Ganesh; Deokar, Sarika; Ponrathnam, Surendra

    2010-01-19

    Effects of changes in hydrophobicity of polymeric support on structure and activity of alpha-chymotrypsin (E.C. 3.4.21.1) have been studied with copolymers of allyl glycidyl ether (AGE) and ethylene glycol dimethacrylate (EGDM) with increasing molar ratio of EGDM to AGE (cross-link density 0.05 to 1.5). The enzyme is readily adsorbed from aqueous buffer at room temperature following Langmuir adsorption isotherms in unexpectedly large amounts (25% w/w). Relative hydrophobicity of the copolymers has been assessed by studying adsorption of naphthalene and Fmoc-methionine by the series of copolymers from aqueous solutions. Polymer hydrophobicity appears to increase linearly on increasing cross-link density from 0.05 to 0.25. Further increase in cross-link density causes a decrease in naphthalene binding but has little effect on binding of Fmoc-Met. Binding of alpha-chymotrypsin to these copolymers follow the trend for Fmoc-methionine binding, rather than naphthalene binding, indicating involvement of polar interactions along with hydrophobic interactions during binding of protein to the polymer. The adsorbed enzyme undergoes extensive denaturation (ca. 80%) with loss of both tertiary and secondary structure on contact with the copolymers as revealed by fluorescence, CD and Raman spectra of the adsorbed protein. Comparison of enzyme adsorption behavior with Eupergit C, macroporous Amberlite XAD-2, and XAD-7 suggests that polar interactions of the EGDM ester functional groups with the protein play a significant role in enzyme denaturation.

  3. Design & synthesis of silicone elastomer networks with tunable physico-chemical characteristics

    NASA Astrophysics Data System (ADS)

    Willoughby, Julie Ann-Crowe

    2007-05-01

    We have engineered functional surfaces via the manipulation of silicone elastomers (SEs). The most common silicone, poly(dimethylsiloxane) PDMS, can be both challenging and advantageous in the design of surfaces due to its inherent inertness and flexibility of the siloxane backbone. This unique polymer is approaching a $10 billion dollar market attributed to its formulation in a wide array of applications; from the personal care industry to the electronics industry. While it can be used for many applications, surface design with PDMS usually requires a chemical or physical modification of the polymeric network. In addition, surface characteristics are tailored for specific functions since there is not one surface that fits all end-uses. In studying the intrinsic behavior of engineered SEs, we asked questions regarding surface stability, environmental conformation and adaptability, and tuning physical features. We report on the formation of responsive surfaces with tailorable surface-reconstruction kinetics and switching hysteresis by thiol-ene radical addition of mercaptoalkanols with variable lengths to poly(vinylmethylsiloxane) networks. Exposing the modified surfaces to water led to a rearrangement of the hydrophilic alkanes at the surface. The rearrangement kinetics decreases with increasing number of the methylene spacers (n) in the mercaptoalkanol. The response kinetics is found to be very fast for n = 2 and 6. For instance, upon exposing to water, the water contact angle on 3-mercaptopropanol-based surfaces decreases by ≈35° at the rate of 2°/second. The high flexibility of the siloxane backbone endows these materials with switching longevity; the materials were able to switch their wettability over 10 cycles with minimum hysteresis. Increasing the number of methylene spacers to n = 11 decreases the surface reorganization dramatically. Formation of semi-crystalline regions in such materials (detected via IR) is responsible for initial "sluggish" kinetics and eventual surface "freezing". The effects of surface chemistry and topology on cellular adhesion and proliferation have been studied extensively in the past. However, little work exists that aims at probing the effects of surface morphology and elastic modulus on cell behavior. To achieve timely and comprehensive experimental design, there is need for the availability of novel substrata with tunable mechanical properties (or compliance) at the micro and meso-scale level ranging from individual cells to whole tissues. Despite expansive research that has targeted the understanding of cellular response to its host scaffold, the choice of material and extrapolation of findings from one cell/material system to another has proven difficult. Thus establishing general relationships between substrate compliance and cell behavior cannot be considered independent of the material and cell type. In our work, we have explored creating surfaces from SEs comprising gradients in stiffness (or elastic modulus), by controlling the degree of cross-linking. Network regions consisting of higher cross-linking demonstrate a greater elastic modulus. We present two methods to control the mechanical properties of silicone elastomers. The first technique utilizes interdiffusion of multiple SEs with varied molecular weights that are subsequently cross-linked into a network. The second method involves synthesizing a UV-curable SE. This method controls the degree of cross-linking by regulating the intensity of the UV light via a transparency with tunable transmittance placed on top of the SE film. Our results show that it is possible to generate compliance gradients through either route, enabling a large range of both gradient patterns and stiffness.

  4. Polymer-silica hybrids for separation of CO2 and catalysis of organic reactions

    NASA Astrophysics Data System (ADS)

    Silva Mojica, Ernesto

    Porous materials comprising polymeric and inorganic segments have attracted interest from the scientific community due to their unique properties and functionalities. The physical and chemical characteristics of these materials can be effectively exploited for adsorption applications. This dissertation covers the experimental techniques for fabrication of poly(vinyl alcohol) (PVA) and silica (SiO2) porous supports, and their functionalization with polyamines for developing adsorbents with potential applications in separation of CO2 and catalysis of organic reactions. The supports were synthesized by processes involving (i) covalent cross-linking of PVA, (ii) hydrolysis and poly-condensation of silica precursors (i,e,. sol-gel synthesis), and formation of porous structures via (iii) direct templating and (iv) phase inversion techniques. Their physical structure was controlled by the proper combination of the preparation procedures, which resulted in micro-structured porous materials in the form of micro-particles, membranes, and pellets. Their adsorption characteristics were tailored by functionalization with polyethyleneimine (PEI), and their physicochemical properties were characterized by vibrational spectroscopy (FTIR, UV-vis), microscopy (SEM), calorimetry (TGA, DSC), and adsorption techniques (BET, step-switch adsorption). Spectroscopic investigations of the interfacial cross-linking reactions of PEI and PVA with glutaraldehyde (GA) revealed that PEI catalyzes the cross-linking reactions of PVA in absence of external acid catalysts. In-situ IR spectroscopy coupled with a focal plane array (FPA) image detector allowed the characterization of a gradient interface on a PEI/PVA composite membrane and the investigation of the cross-linking reactions as a function of time and position. The results served as a basis to postulate possible intermediates, and propose the reaction mechanisms. The formulation of amine-functionalized CO2 capture sorbents was based on the spectroscopic investigation of the interactions of CO 2 with amine molecules under simulated CO2 capture conditions. Industrial CO2 capture processes involve fluidization and require degradation-resistant sorbents in the form of pellets. Agglomeration of silica-based CO2 capture sorbents involved the formulation of a polymer binder solution and the design of a scalable pelletization process. The characterization of these pellets revealed the formation of a CO 2-permeable polymer-silica network, which is resistant to attrition, and exhibits similar CO2 capture and degradation performance as the non-pelletized sorbents. The performance of these sorbents and pellets was tested in lab-scale and bench-scale adsorption units, using in-house fabricated fixed-bed and fluidized-bed reactors. A compartmental modeling technique was used to simulate the CO2 adsorption process and to elucidate the kinetic and thermodynamic parameters that impact the commercial viability of emerging CO2 capture technologies. The fundamental concepts and experimental techniques developed for the preparation of CO2 capture sorbents served as a basis for fabricating amine-functionalized polymer-silica hybrids for applications in catalysis of organic reactions. (i) Basic catalysts for carbon-carbon addition reactions were prepared by immobilization of amine molecules on silica supports. The activity of these catalysts and the mechanisms of base-catalyzed organic condensation reactions were investigated by an in-situ FTIR micro-scale reactor. (ii) Particle-loaded PVA composite membranes were selected for immobilization of glucose oxidase (GOx). GOx was immobilized by adsorption at pH values between 3.5 and 7.1. The results showed that adsorption was primarily achieved via hydrophobic interactions, and that PVA membranes loaded with amine-functionalized particles could help retain the activity of immobilized GOx by providing a proper hydrophilic/hydrophobic balance to the immobilized enzymes micro-environment.

  5. Resilin-like polypeptide-poly(ethylene gylcol) hybrid hydrogels for mechanically-demanding tissue engineering applications

    NASA Astrophysics Data System (ADS)

    McGann, Christopher Leland

    Technological progress in the life sciences and engineering has combined with important insights in the fields of biology and material science to make possible the development of biological substitutes which aim to restore function to damaged tissue. Numerous biomimetic hydrogels have been developed with the purpose of harnessing the regenerative capacity of cells and tissue through the rational deployment of biological signals. Aided by recombinant DNA technology and protein engineering methods, a new class of hydrogel precursor, the biosynthetic protein polymer, has demonstrated great promise towards the development of highly functional tissue engineering materials. In particular, protein polymers based upon resilin, a natural protein elastomer, have demonstrated outstanding mechanical properties that would have great value in soft tissue applications. This dissertation introduces hybrid hydrogels composed of recombinant resilin-like polypeptides (RLPs) cross-linked with multi-arm PEG macromers. Two different chemical strategies were employed to form RLP-PEG hydrogels: one utilized a Michael-type addition reaction between the thiols of cysteine residues present within the RLP and vinyl sulfone moieties functionalized on a multi-arm PEG macromer; the second system cross-links a norbornene-functionalized RLP with a thiol-functionalized multi-arm PEG macromer via a photoinitiated thiol-ene step polymerization. Oscillatory rheology and tensile testing confirmed the formation of elastic, resilient hydrogels in the RLP-PEG system cross-linked via Michael-type addition. These hydrogels supported the encapsulation and culture of both human aortic adventitial fibroblasts and human mesenchymal stem cells. Additionally, these RLP-PEG hydrogels exhibited phase separation behavior during cross-linking that led to the formation of a heterogeneous microstructure. Degradation could be triggered through incubation with matrix metalloproteinase. Photocross-linking was conferred to RLPs through the successful conjugation of norbornene acid to the protein. Oscillatory rheology characterized the gelation and subsequent mechanical properties of the photoreactive RLP-PEG hydrogels while the cytocompatibility was confirmed via the successful encapsulation and culture of human mesenchymal stem cells. Both strategies demonstrate the utility of hybrid materials that combine biosynthetic proteins with synthetic polymers. As resilient and cytocompatible materials, RLP-PEG hybrid hydrogels offer an exciting strategy towards the development of biomimetic tissue engineering scaffolds for mechanically-demanding applications.

  6. Use of the interior cavity of the P22 capsid for site-specific initiation of atom-transfer radical polymerization with high-density cargo loading

    NASA Astrophysics Data System (ADS)

    Lucon, Janice; Qazi, Shefah; Uchida, Masaki; Bedwell, Gregory J.; Lafrance, Ben; Prevelige, Peter E.; Douglas, Trevor

    2012-10-01

    Virus-like particles (VLPs) have emerged as important and versatile architectures for chemical manipulation in the development of functional hybrid nanostructures. Here we demonstrate a successful site-selective initiation of atom-transfer radical polymerization reactions to form an addressable polymer constrained within the interior cavity of a VLP. Potentially, this protein-polymer hybrid of P22 and cross-linked poly(2-aminoethyl methacrylate) could be useful as a new high-density delivery vehicle for the encapsulation and delivery of small-molecule cargos. In particular, the encapsulated polymer can act as a scaffold for the attachment of small functional molecules, such as fluorescein dye or the magnetic resonance imaging (MRI) contrast agent Gd-diethylenetriaminepentacetate, through reactions with its pendant primary amine groups. Using this approach, a significant increase in the labelling density of the VLP, compared to that of previous modifications of VLPs, can be achieved. These results highlight the use of multimeric protein-polymer conjugates for their potential utility in the development of VLP-based MRI contrast agents with the possibility of loading other cargos.

  7. Dry entrapment of enzymes by epoxy or polyester resins hardened on different solid supports.

    PubMed

    Barig, Susann; Funke, Andreas; Merseburg, Andrea; Schnitzlein, Klaus; Stahmann, K-Peter

    2014-06-10

    Embedding of enzymes was performed with epoxy or polyester resin by mixing in a dried enzyme preparation before polymerization was started. This fast and low-cost immobilization method produced enzymatically active layers on different solid supports. As model enzymes the well-characterized Thermomyces lanuginosus lipase and a new threonine aldolase from Ashbya gossypii were used. It was shown that T. lanuginosus lipase recombinantly expressed in Aspergillus oryzae is a monomeric enzyme with a molecular mass of 34kDa, while A. gossypii threonine aldolase expressed in Escherichia coli is a pyridoxal-5'-phosphate binding homotetramer with a mass of 180kDa. The enzymes were used freeze dried, in four different preparations: freely diffusing, adsorbed on octyl sepharose, as well as cross-linked enzyme aggregates or as suspensions in organic solvent. They were mixed with standard two-component resins and prepared as layers on solid supports made of different materials e.g. metal, glass, polyester. Polymerization led to encapsulated enzyme preparations showing activities comparable to literature values. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Light-responsive polymer microcapsules as delivery systems for natural active agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bizzarro, Valentina; Carfagna, Cosimo; Cerruti, Pierfrancesco

    2016-05-18

    In this work we report the preparation and the release behavior of UV-responsive polymeric microcapsules containing essential oils as a core. The oil acted also as a monomer solvent during polymerization. Accordingly, the potentially toxic organic solvent traditionally used was replaced with a natural active substance, resulting in a more sustainable functional system. Polymer shell was based on a lightly cross-linked polyamide containing UV-sensitive azobenzene moieties in the main chain. The micro-sized capsules were obtained via interfacial polycondensation in o/w emulsion, and their mean size was measured via Dynamic Light Scattering. Shape and morphology were analyzed through Scanning Electron andmore » Optical Microscopy. UV-responsive behavior was evaluated via spectrofluorimetry, by assessing the release kinetics of a fluorescent probe molecule upon UV light irradiation (λ{sub max}=360 nm). The irradiated samples showed an increase in fluorescence intensity, in accordance with the increase of the probe molecule concentration in the release medium. As for the un-irradiated sample, no changes could be detected demonstrating the effectiveness of the obtained releasing system.« less

  9. Antibacterial inorganic-organic hybrid coatings on stainless steel via consecutive surface-initiated atom transfer radical polymerization for biocorrosion prevention.

    PubMed

    Yuan, S J; Pehkonen, S O; Ting, Y P; Neoh, K G; Kang, E T

    2010-05-04

    To enhance the corrosion resistance of stainless steel (SS) and to impart its surface with antibacterial functionality for inhibiting biofilm formation and biocorrosion, well-defined inorganic-organic hybrid coatings, consisting of a polysilsesquioxane inner layer and quaternized poly(2-(dimethyamino)ethyl methacrylate) (P(DMAEMA)) outer blocks, were prepared via successive surface-initiated atom transfer radical polymerization (ATRP) of 3-(trimethoxysilyl)propyl methacrylate (TMSPMA) and 2-(dimethylamino)ethyl methacrylate (DMAEMA). The cross-linked P(TMASPMA), or polysilsesquioxane, inner layer provided a durable and resistant coating to electrolytes. The pendant tertiary amino groups of the P(DMAEMA) outer block were quaternized with alkyl halide to produce a high concentration of quaternary ammonium groups with biocidal functionality. The so-synthesized inorganic-organic hybrid coatings on the SS substrates exhibited good anticorrosion and antibacterial effects and inhibited biocorrosion induced by sulfate-reducing bacteria (SRB) in seawater media, as revealed by antibacterial assay and electrochemical analyses, and they are potentially useful to steel-based equipment under harsh industrial and marine environments.

  10. Self-Supporting, Hydrophobic, Ionic Liquid-Based Reference Electrodes Prepared by Polymerization-Induced Microphase Separation.

    PubMed

    Chopade, Sujay A; Anderson, Evan L; Schmidt, Peter W; Lodge, Timothy P; Hillmyer, Marc A; Bühlmann, Philippe

    2017-10-27

    Interfaces of ionic liquids and aqueous solutions exhibit stable electrical potentials over a wide range of aqueous electrolyte concentrations. This makes ionic liquids suitable as bridge materials that separate in electroanalytical measurements the reference electrode from samples with low and/or unknown ionic strengths. However, methods for the preparation of ionic liquid-based reference electrodes have not been explored widely. We have designed a convenient and reliable synthesis of ionic liquid-based reference electrodes by polymerization-induced microphase separation. This technique allows for a facile, single-pot synthesis of ready-to-use reference electrodes that incorporate ion conducting nanochannels filled with either 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide or 1-dodecyl-3-methylimidazolium bis(trifluoromethyl sulfonyl)imide as ionic liquid, supported by a mechanically robust cross-linked polystyrene phase. This synthesis procedure allows for the straightforward design of various reference electrode geometries. These reference electrodes exhibit a low resistance as well as good reference potential stability and reproducibility when immersed into aqueous solutions varying from deionized, purified water to 100 mM KCl, while requiring no correction for liquid junction potentials.

  11. Wrinkling of solidifying polymeric coatings

    NASA Astrophysics Data System (ADS)

    Basu, Soumendra Kumar

    2005-07-01

    In coatings, wrinkles are viewed as defects or as desired features for low gloss, and texture. In either case, discovering the origin of wrinkles and the conditions that lead to their formation is important. This research examines what wrinkling requires and proposes a mechanism to explain the observations. All curing wrinkling coatings contain multi-functional reactants. Upon curing, all develop a depth-wise gradient in solidification that result in a cross-linked elastic skin atop a viscous bottom layer. It is hypothesized that compressive stress develops in the skin when liquid below diffuses up into the skin. High enough compressive stress buckles the skin to produce wrinkles. The hypothesis is substantiated by experimental and theoretical evidences. Effects of various application and compositional parameters on wrinkle size in a liquid-applied acrylic coating and a powder-applied epoxy coating were examined. All three components, namely resin, cross-linker and catalyst blocked with at least equimolar volatile blocker, proved to be required for wrinkling. The wrinkling phenomenon was modeled with a theory that accounts for gradient generation, cross-linking reaction and skinning; predictions compared well with observations. Two-layer non-curing coatings that have a stiff elastic layer atop a complaint elastic bottom layer wrinkled when the top layer is compressed. The top layer was compressed by either moisture absorption or differential thermal expansion. Experimental observations compared well with predictions from a theory based on force balance in multilayer systems subjected to differential contraction or expansion. A model based on the Flory-Rehner free energy of a constrained cross-linked gel was constructed that predicts the compressive stress generated in a coating when it absorbs solvent. Linear stability analysis predicts that when a compressed elastic layer is attached atop a viscous layer, it is always unstable to buckles whose wavelength exceeds a critical value; more cross-linking and poor solvent produce higher wavelength, lower amplitude wrinkles. When a compressed elastic layer is attached atop an elastic layer and subjected to more than a critical compressive stress, it is unstable to intermediate wavelengths of buckling; better solvent, higher ratio of bottom-to-top layer thickness, and lower bottom layer modulus produce higher wavelength, higher amplitude wrinkles.

  12. Polymeric mechanical amplifiers of immune cytokine-mediated apoptosis

    NASA Astrophysics Data System (ADS)

    Mitchell, Michael J.; Webster, Jamie; Chung, Amanda; Guimarães, Pedro P. G.; Khan, Omar F.; Langer, Robert

    2017-03-01

    Physical forces affect tumour growth, progression and metastasis. Here, we develop polymeric mechanical amplifiers that exploit in vitro and in vivo physical forces to increase immune cytokine-mediated tumour cell apoptosis. Mechanical amplifiers, consisting of biodegradable polymeric particles tethered to the tumour cell surface via polyethylene glycol linkers, increase the apoptotic effect of an immune cytokine on tumour cells under fluid shear exposure by as much as 50% compared with treatment under static conditions. We show that targeted polymeric particles delivered to tumour cells in vivo amplify the apoptotic effect of a subsequent treatment of immune cytokine, reduce circulating tumour cells in blood and overall tumour cell burden by over 90% and reduce solid tumour growth in combination with the antioxidant resveratrol. The work introduces a potentially new application for a broad range of micro- and nanoparticles to maximize receptor-mediated signalling and function in the presence of physical forces.

  13. Gas-phase transfer of polymer cross-linking agents and by-products to solid oral pharmaceuticals.

    PubMed

    Maus, Russell G; Li, Min; Clement, Christopher M; Kinzer, Jeffery A

    2007-11-05

    In the pharmaceutical industry, solid oral compressed tablets (OCT) are frequently transported in bulk containers prior to packaging. While in this state, the product is generally protected from interaction with liquid and solid contaminants by physical barriers (e.g., polyethylene bags, drums, etc.). Vapor phase contamination, although generally less frequently observed, is possible. A specific example of the detection and identification of volatile by-products (acetophenone and 2-phenyl-2-propanol) of a common polymer cross-linking agent (dicumyl peroxide) is presented. The product tablets were compressed, placed into double polyethylene bags, and subsequently placed into a polyethylene drum for shipment overseas. To cushion the product during transit, a cross-linked polyethylene foam disk (designed to fit into the bottom of the drum) was placed below the bag of tablets. Initially, these contaminants were detected by HPLC with UV detection at the receiving laboratory, and assumed to be degradates of the active components of the product. Further analysis showed that neither the collected UV absorbance data nor the observed levels of the contaminants were consistent with known degradates of the product. Liquid extraction followed by GC-MS analysis of the product as well as the cross-linked foam disk exhibited measurable quantities of the contaminants in question. Vapor phase transfer of these cross-linking agent by-products, originating in the cross-linked foam pads, was determined to be the root cause for the presence of these compounds in the product.

  14. Radical-induced generation of small silver particles in SPEEK/PVA polymer films and solutions: UV-Vis, EPR, and FT-IR studies.

    PubMed

    Korchev, A S; Konovalova, T; Cammarata, V; Kispert, L; Slaten, L; Mills, G

    2006-01-03

    The present study is centered on the processes involved in the photochemical generation of nanometer-sized Ag particles via illumination at 350 nm of aqueous solutions and cross linked films containing sulfonated poly(ether ether ketone) and poly(vinyl alcohol). Optical and electron paramagnetic resonance experiments, including electron nuclear double resonance data, proved conclusively that the photogenerated chromophore exhibiting a band with lambda(max) = 565 nm is an alpha-hydroxy aromatic (ketyl) radical of the polymeric ketone. This reducing species was produced by illumination of either solutions or films, but the radical lifetime extended from minutes in the fluid phase to hours in the solid. Direct evidence is presented that this long-lived chromophore reduces Ag(I), Cu(II), and Au(III) ions in solution. A rate constant of k = 1.4 x 10(3) M(-)(1) s(-)(1) was obtained for the reduction of Ag(+) by the ketyl radical from the post-irradiation formation of Ag crystallites. FTIR results confirmed that the photoprocess yielding polymeric ketyl radicals involves a reaction between the macromolecules. The photochemical oxidation of the polymeric alcohol, as well as the formation of light-absorbing macromolecular products and polyols, indicates that the sulfonated polyketone experienced transformations similar to those encountered during illumination of the benzophenone/2-propanol system.

  15. Fluorogenic pH-sensitive polydiacetylene (PDA) liposomes as a drug carrier.

    PubMed

    Won, Sang Ho; Lee, Jong Uk; Sim, Sang Jun

    2013-06-01

    A crucial issue for current liposomal carriers in clinical applications is the sustained-release property of the encapsulated drugs. We have developed novel fluorogenic pH-sensitive polymerized liposomes composed of polydiacetylene (PDA) lipids and other types of lipids. Unilamellar liposomes containing 10,12-pentacosadiynoic acid (PCDA), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), and N-palmitoyl homocysteine (PHC) were loaded with ampicillin. These liposomes fused to each other rapidly when the medium pH was lowered from 7 to 4. The polymerized liposomes were characterized in terms of particle size distribution. The liposome size increased approximately 20-fold from 110.0 +/- 19.3 nm to 2046.7 +/- 487.4 nm as the pH was lowered. Cross-linking of the diacetylene lipids prevents drug leakage and the encapsulated drug can be instantaneously released at acidic pH condition. The ampicillin was nearly completely released (74.4 +/- 3.9%) from liposomes within 4 h under acidic pH conditions and the released amounts of ampicillin were analyzed by HPLC. Finally, the therapeutic effect was observed by the appearance of plaques on a lawn of E. coli, and fluorescent images of the PDA liposomes were taken from the plaques for drug release monitoring. As a result, this research demonstrates that such novel pH-sensitive polymerized liposomes have great prospects as a drug carrier.

  16. Absorption of polycyclic aromatic hydrocarbons by a highly absorptive polymeric medium.

    PubMed

    Francisco, Olga; Idowu, Ifeoluwa; Friesen, Kelsey L; McDougall, Matthew; Choi, Sara Seoin; Bolluch, Patrique; Daramola, Oluwadamilola; Johnson, Wesley; Palace, Vince; Stetefeld, Jörg; Tomy, Gregg T

    2018-06-01

    The efficacy of a lightly cross-linked polymeric bead to absorb polycyclic aromatic hydrocarbons (PAHs) from the surface of fresh- and salt-water in a simulated oil-spill scenario was assessed in this study. A layer of PAHs at the water surface was created by first preparing the PAHs in hexane and then carefully spiking this mixture onto the surface of water. Beads were then applied to the surface of the organic phase and the amount of hydrocarbons absorbed by the beads was examined at prescribed time intervals and at different temperatures. Absorption of PAHs into the beads was exhaustive with ∼86 ± 4% being selectively removed from the organic phase by 120 s. First order reaction rates best described the uptake kinetics and absorption rates ranged from 0.0085 (naphthalene) to 0.0325 s- 1 (dibenzo[a,h]anthracene). Absorption of PAHs into the beads was driven by molecular volume (A 3 ). Uptake rates increased markedly for PAHs with molecular volumes between 130 A 3 and 190 A 3 . Beyond this molecular volume there was no apparent change in the rate of uptake. This study shows that these polymeric beads have a high affinity for PAHs and can be used under various environmental conditions with negligible difference in absorptive efficacy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Nonperturbative Renormalization Group Approach to Polymerized Membranes

    NASA Astrophysics Data System (ADS)

    Essafi, Karim; Kownacki, Jean-Philippe; Mouhanna, Dominique

    2014-03-01

    Membranes or membrane-like materials play an important role in many fields ranging from biology to physics. These systems form a very rich domain in statistical physics. The interplay between geometry and thermal fluctuations lead to exciting phases such flat, tubular and disordered flat phases. Roughly speaking, membranes can be divided into two group: fluid membranes in which the molecules are free to diffuse and thus no shear modulus. On the other hand, in polymerized membranes the connectivity is fixed which leads to elastic forces. This difference between fluid and polymerized membranes leads to a difference in their critical behaviour. For instance, fluid membranes are always crumpled, whereas polymerized membranes exhibit a phase transition between a crumpled phase and a flat phase. In this talk, I will focus only on polymerized phantom, i.e. non-self-avoiding, membranes. The critical behaviour of both isotropic and anisotropic polymerized membranes are studied using a nonperturbative renormalization group approach (NPRG). This allows for the investigation of the phase transitions and the low temperature flat phase in any internal dimension D and embedding d. Interestingly, graphene behaves just as a polymerized membrane in its flat phase.

  18. Novel Biocompatible Thermoresponsive Poly(N-vinyl Caprolactam)/Clay Nanocomposite Hydrogels with Macroporous Structure and Improved Mechanical Characteristics.

    PubMed

    Shi, Kun; Liu, Zhuang; Yang, Chao; Li, Xiao-Ying; Sun, Yi-Min; Deng, Yi; Wang, Wei; Ju, Xiao-Jie; Xie, Rui; Chu, Liang-Yin

    2017-07-05

    Poly(N-vinyl caprolactam) (PVCL) hydrogels usually suffer from the imporous structure and poor mechanical characteristics as well as the toxicity of cross-linkers, although PVCL itself is biocompatible. In this paper, novel biocompatible thermoresponsive poly(N-vinyl caprolactam)/clay nanocomposite (PVCL-Clay) hydrogels with macroporous structure and improved mechanical characteristics are developed for the first time. The macroporosity in the hydrogel is introduced by using Pickering emulsions as templates, which contain N-vinyl caprolactam (VCL) monomer as dispersed phase and clay sheets as stabilizers at the interface. After polymerization, macropores are formed inside the hydrogels with the residual unreacted VCL droplets as templates. The three-dimensional PVCL polymer networks are cross-linked by the clay nanosheets. Due to the nanocomposite structure, the hydrogel exhibits better mechanical characteristics in comparison to the conventional PVCL hydrogels cross-linked by N,N'-methylene diacrylamide (BIS). The prepared PVCL-Clay hydrogel possesses remarkable temperature-responsive characteristics with a volume phase transition temperature (VPTT) around 35 °C, and provides a feasible platform for cell culture. With macroporous structure and good mechanical characteristics as well as flexible assembly performance, the proposed biocompatible thermoresponsive PVCL-Clay nanocomposite hydrogels are ideal material candidates for biomedical, analytical, and other applications such as entrapment of enzymes, cell culture, tissue engineering, and affinity and displacement chromatography.

  19. In vivo study on alkylation site in DNA by the bifunctional dianhydrogalactitol.

    PubMed

    Institoris, E

    1981-05-01

    In vivo alkylation of Yoshida sarcoma cell DNA by 3H-labelled 1,2:5,6-dianhydrogalactitol (DAG) yielded N-7 monogalactitylguanines and 1,6-di-(guanin-7-yl)-galactitol, similar to the alkylated products obtained by in vitro reaction of DNA with dianhydrogalactitol in neutral solution. The ratio between monoalkylguanines and diguaninyl product was 2-2.5, slightly increasing with doses. Persistence of alkylated products in DNA was followed in function of time. There was no significant loss of either monoalkylated bases or diguaninyl derivative during the observation period i.e. 7-24 h after treatment. In contrast, the physical measurements of the amount of renaturable DNA showed a rapid opening of cross-links in the same period. Taking the presence of diguaninyl moiety as an indicator of cross-links in DNA, these two latter findings show an apparent contradiction which could be reconciled however by the mechanism proposed by Reid and Walker (Biochim. Biophys. Acta, 179 (1969) 179) for the removal of cross-linkage induced by HN2. Accordingly, one arm of the cross-links is removed, probably enzymically, leaving the DNA non-renaturable, while the other arm of cross-link is still covalently attached to the DNA molecule rendering possible the detection of diguaninyl moiety in DNA at some later time. This concept for the removal of cross-links from DNA seems to be supported by our results too.

  20. Double-Layer Structured CO2 Adsorbent Functionalized with Modified Polyethyleneimine for High Physical and Chemical Stability.

    PubMed

    Jeon, Sunbin; Jung, Hyunchul; Kim, Sung Hyun; Lee, Ki Bong

    2018-06-18

    CO 2 capture using polyethyleneimine (PEI)-impregnated silica adsorbents has been receiving a lot of attention. However, the absence of physical stability (evaporation and leaching of amine) and chemical stability (urea formation) of the PEI-impregnated silica adsorbent has been generally established. Therefore, in this study, a double-layer impregnated structure, developed using modified PEI, is newly proposed to enhance the physical and chemical stabilities of the adsorbent. Epoxy-modified PEI and diepoxide-cross-linked PEI were impregnated via a dry impregnation method in the first and second layers, respectively. The physical stability of the double-layer structured adsorbent was noticeably enhanced when compared to the conventional adsorbents with a single layer. In addition to the enhanced physical stability, the result of simulated temperature swing adsorption cycles revealed that the double-layer structured adsorbent presented a high potential working capacity (3.5 mmol/g) and less urea formation under CO 2 -rich regeneration conditions. The enhanced physical and chemical stabilities as well as the high CO 2 working capacity of the double-layer structured adsorbent were mainly attributed to the second layer consisting of diepoxide-cross-linked PEI.

  1. Hydrogel-forming Microneedle Arrays Exhibit Antimicrobial Properties: Potential for Enhanced Patient Safety

    PubMed Central

    Donnelly, Ryan F.; Singh, Thakur Raghu Raj; Alkilani, Ahlam Zaid; McCrudden, Maelíosa T.C.; O’Mahony, Conor; Armstrong, Keith; McLoone, Nabla; Kole, Prashant; Woolfson, A. David

    2014-01-01

    We describe, for the first time, the microbial characterisation of hydrogel-forming polymeric microneedle arrays and the potential for passage of microorganisms into skin following microneedle penetration. Uniquely, we also present insights into the storage stability of these hydroscopic formulations, from physical and microbiological viewpoints, and examine clinical performance and safety in human volunteers. Experiments employing excised porcine skin and radiolabelled microorganisms showed that microorganisms can penetrate skin beyond the stratum corneum following microneedle puncture. Indeed, the numbers of microorganisms crossing the stratum corneum following microneedle puncture was greater than 105 cfu in each case. However, no microorganisms crossed the epidermal skin. When using a 21G hypodermic needle, more than 104 microorganisms penetrated into the viable tissue and 106 cfu of C. albicans and S. epidermidis completely crossed the epidermal skin in 24 h. The hydrogel-forming materials contained no microorganisms following de-moulding and exhibited no microbial growth during storage, while also maintaining their mechanical strength, apart from when stored at relative humidities of 86%. No microbial penetration through the swelling microneedles was detectable, while human volunteer studies confirmed that skin or systemic infection is highly unlikely when polymeric microneedles are used for transdermal drug delivery. Since no pharmacopoeial standards currently exist for microneedle-based products, the exact requirements for a proprietary product based on hydrogel-forming microneedles are at present unclear. However, we are currently working towards a comprehensive specification set for this microneedle system that may inform future developments in this regard. PMID:23644043

  2. Design of polymeric immunomicrospheres for cell labelling and cell separation

    NASA Technical Reports Server (NTRS)

    Rembaum, A.; Margel, S.

    1978-01-01

    Synthesis of several classes of hydrophylic microspheres applied to cell labeling and cell separation is described. Five classes of cross-linked microspheres with functional groups such as carboxyl, hydroxyl, amide and/or pyridine groups were synthesized. These functional groups were used to bind covalently antibodies and other proteins to the surface of the microspheres. To optimize the derivatisation technique, polyglutaraldehyde immunomicrospheres were prepared and utilized. Specific populations of human and murine lymphocytes were labelled with microspheres synthesized by the emulsion of the ionizing radiation technique. The labelling of the cells by means of microspheres containing an iron core produced successful separation of B from T lymphocytes by means of a magnetic field.

  3. Self-supported fibrin-polyvinyl alcohol interpenetrating polymer networks: an easily handled and rehydratable biomaterial.

    PubMed

    Bidault, Laurent; Deneufchatel, Marie; Vancaeyzeele, Cédric; Fichet, Odile; Larreta-Garde, Véronique

    2013-11-11

    A fibrin hydrogel at physiological concentration (5 mg/mL) was associated with polyvinyl alcohol (PVA) inside an interpenetrating polymer networks (IPN) architecture. Previously, PVA has been modified with methacrylate functions in order to cross-link it by free-radical polymerization. The fibrin network was synthesized by the enzymatic hydrolysis of fibrinogen by thrombin. The resulting self-supported materials simultaneously exhibit the properties of the fibrin hydrogel and those of the synthetic polymer network. Their storage modulus is 50-fold higher than that of the fibrin hydrogel and they are completely rehydratable. These materials are noncytotoxic toward human fibroblast and the fibrin present on the surface of PVAm-based IPNs favors cell development.

  4. Self-supporting hydrogel stamps for the microcontact printing of proteins.

    PubMed

    Coq, Naïs; van Bommel, Ties; Hikmet, Rifat A; Stapert, Hendrik R; Dittmer, Wendy U

    2007-04-24

    In this work we explore a new hydrogel stamp material obtained from polymerizing 2-hydroxyethyl acrylate and poly(ethylene glycol) diacrylate in the presence of water for the microcontact printing of proteins directly on gold substrates and by covalent coupling to self-assembled monolayers of alkanethiols. At high cross-link density, the hydrogel is rigid, hydrophilic, and with a high buffer holding capacity to enable the unsupported printing of protein patterns homogeneously and reproducibly, with micrometer-range precision. The stamps were used to print antibodies to human parathyroid hormone, which were shown using immunoassay tests to retain their biological function with binding capacities comparable to those of solution-adsorbed antibodies.

  5. Prestressed F-actin networks cross-linked by hinged filamins replicate mechanical properties of cells

    NASA Astrophysics Data System (ADS)

    Gardel, M. L.; Nakamura, F.; Hartwig, J. H.; Crocker, J. C.; Stossel, T. P.; Weitz, D. A.

    2006-02-01

    We show that actin filaments, shortened to physiological lengths by gelsolin and cross-linked with recombinant human filamins (FLNs), exhibit dynamic elastic properties similar to those reported for live cells. To achieve elasticity values of comparable magnitude to those of cells, the in vitro network must be subjected to external prestress, which directly controls network elasticity. A molecular requirement for the strain-related behavior at physiological conditionsis a flexible hinge found in FLNa and some FLNb molecules. Basic physical properties of the in vitro filamin-F-actin network replicate the essential mechanical properties of living cells. This physical behavior could accommodate passive deformation and internal organelle trafficking at low strains yet resist externally or internally generated high shear forces. cytoskeleton | cell mechanics | nonlinear rheology

  6. Tough stimuli-responsive supramolecular hydrogels with hydrogen-bonding network junctions.

    PubMed

    Guo, Mingyu; Pitet, Louis M; Wyss, Hans M; Vos, Matthijn; Dankers, Patricia Y W; Meijer, E W

    2014-05-14

    Hydrogels were prepared with physical cross-links comprising 2-ureido-4[1H]-pyrimidinone (UPy) hydrogen-bonding units within the backbone of segmented amphiphilic macromolecules having hydrophilic poly(ethylene glycol) (PEG). The bulk materials adopt nanoscopic physical cross-links composed of UPy-UPy dimers embedded in segregated hydrophobic domains dispersed within the PEG matrix as comfirmed by cryo-electron microscopy. The amphiphilic network was swollen with high weight fractions of water (w(H2O) ≈ 0.8) owing to the high PEG weight fraction within the pristine polymers (w(PEG) ≈ 0.9). Two different PEG chain lengths were investigated and illustrate the corresponding consequences of cross-link density on mechanical properties. The resulting hydrogels exhibited high strength and resilience upon deformation, consistent with a microphase separated network, in which the UPy-UPy interactions were adequately shielded within hydrophobic nanoscale pockets that maintain the network despite extensive water content. The cumulative result is a series of tough hydrogels with tunable mechanical properties and tractable synthetic preparation and processing. Furthermore, the melting transition of PEG in the dry polymer was shown to be an effective stimulus for shape memory behavior.

  7. Transient Binding and Viscous Dissipation in Semi-flexible Polymer Networks

    NASA Astrophysics Data System (ADS)

    Lieleg, Oliver; Claessens, Mireille; Bausch, Andreas

    2008-03-01

    Nature specifically chooses from a myriad of actin binding proteins (ABPs) to tailor the cytoskeletal microstructure. Herein, cells rely on the dynamics of the cytoskeleton as its structural and mechanical adaptability is crucial to allow for dynamic processes. A molecular understanding of such biological complexity calls for an in vitro system with well-defined structural rearrangements and cross-linker dynamics to elucidate the physical origin of the unique viscoelastic properties of cells. As we present here, the frequency-dependent viscoelastic response of cross-linked in vitro actin networks is determined by the binding kinetics of cross-linking molecules. Independent from the particular network structure, the viscous dissipation (loss modulus) exhibits a pronounced minimum in an intermediate frequency which is dominated by elasticity. We show that in this frequency regime the molecular origin of the viscoelastic response is given by the non-static nature of actin/ABP bonds as they are subjugated to chemical on/off kinetics. The time scale of the resulting stress release is set by the lifetime distribution of the cross-linking molecule and therefore can be tuned independently from other relaxation mechanisms. We speculate that unbinding of distinct cross-links might be the molecular mechanism employed by cells for mechanosensing.

  8. Radiation-induced polymerization of glass-forming systems. V. Initial polymerization rate in binary glass-forming systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaetsu, Isao; Okubo, Hiroshi; Ito, Akihiko

    1973-06-01

    The radiation-induced polymerization of binary systems consisting of glass-forming monomer and glass-forming solvent in supercooled phase was studied. The initial polymerization rates were markedly affected by T/sub g/ (glass transition temperature) and T/sub v/ of the system (30-50 deg C higher than T/sub g/), which are functions of the composition. The composition and temperature dependence of initial polymerization rate in binary glass-forming systems were much affected by homogeneity of the polymerization system and the T of the glass- forming solvent. The composition and temperature dependences in the glycidyl methacrylate --triacetin system as a typical homogeneous polymerization system were studied inmore » detail, and the polymerizations of hydroxyethyl methacrylate triacetln and hydroxyethyl methacrylate --isoamyl acetate systems were studied for the heterogeneous polymerization systems; the former illustrates the combination of lower T/sub g/ monomer and higher T/sub g/ solvent and the latter typifies a system consisting of higher T/sub g/ monomer and lower T/sub g/ solvent. All experimental results for the composition and temperature dependence of initial polymerization rate in binary glass-forming systems could be explained by considering the product of the effect of the physical effect relating to T/sub v/ and T/sub g/ of the system and the effect of composition in normal solution polymerization at higher temperature, which was also the product of a dilution effect and a chemical or physical acceleration effect. (auth)« less

  9. Towards development of nanofibrous large strain flexible strain sensors with programmable shape memory properties

    NASA Astrophysics Data System (ADS)

    Khalili, N.; Asif, H.; Naguib, H. E.

    2018-05-01

    Electrospun polymeric fibers can be used as strain sensors due to their large surface to weight/volume ratio, high porosity and pore interconnectivity. Large strain flexible strain sensors are used in numerous applications including rehabilitation, health monitoring, and sports performance monitoring where large strain detection should be accommodated by the sensor. This has boosted the demand for a stretchable, flexible and highly sensitive sensor able to detect a wide range of mechanically induced deformations. Herein, a physically cross-linked polylactic acid (PLA) and thermoplastic polyurethane (TPU) blend is made into nanofiber networks via electrospinning. The PLA/TPU weight ratio is optimized to obtain a maximum attainable strain of 100% while maintaining its mechanical integrity. The TPU/PLA fibers also allowed for their thermally activated recovery due to shape memory properties of the substrate. This novel feature enhances the sensor’s performance as it is no longer limited by its plastic deformation. Using spray coating method, a homogeneous layer of single-walled carbon nanotube is deposited onto the as-spun fiber mat to induce electrical conductivity to the surface of the fibers. It is shown that stretching and bending the sensor result in a highly sensitive and linear response with a maximum gauge factor of 33.

  10. Super-Resolution Fluorescence Imaging of Spatial Organization of Proteins and Lipids in Natural Rubber.

    PubMed

    Wu, Jinrong; Qu, Wei; Huang, Guangsu; Wang, Siyuan; Huang, Cheng; Liu, Han

    2017-06-12

    Natural rubber (NR) with proteins and lipids has superior mechanical properties to its synthetic counterpart, polyisoprene rubber. However, it is a challenge to unravel the morphology of proteins and lipids. Here we used two-color stochastic optical reconstruction microscopy (STORM) to directly visualize the spatial organization of proteins and lipids in NR. We found that the proteins and lipids form an interdispersed stabilizing layer on the surface of NR latex particles. After drying, the proteins and lipids form aggregates of up to 300 nm in diameter. The aggregates physically interact with the terminal groups of polyisoprene chains, leading to the formation of a network, which contributes to the high elasticity and mechanical property of NR. If we remove proteins in NR, the large phospholipid aggregates disintegrate into small ones. However, it does not decompose the network but rather reduces the effective cross-linking density, thus the deproteinized NR is still elastic-like with decreased mechanical property. Removing both proteins and lipids wholly decomposes the network, thus, results in a liquid-like behavior of the rubber. The STORM measurements in this paper enable more insight into the structure-property relationship of NR, which also shows a great potential of STORM in studying the fine structure of polymeric materials and nanocomposites.

  11. Effect of microwave treatment on structure of binders based on sodium carboxymethyl starch: FT-IR, FT-Raman and XRD investigations

    NASA Astrophysics Data System (ADS)

    Kaczmarska, Karolina; Grabowska, Beata; Spychaj, Tadeusz; Zdanowicz, Magdalena; Sitarz, Maciej; Bobrowski, Artur; Cukrowicz, Sylwia

    2018-06-01

    The paper deals with the influence of the microwave treatment on sodium carboxymethyl starch (CMS-Na) applied as a binder for moulding sands. The Fourier transformation infrared spectrometry (FT-IR), Raman spectroscopy (FT-Raman) and XRD analysis data of native potato starch and three different carboxymethyl starches (CMS-Na) with various degree of substitution (DS) before and after exposition to microwave radiation have been compared. FT-IR studies showed that polar groups present in CMS-Na structure take part in the formation of new hydrogen bonds network after water evaporation. However, these changes depend on DS value of the modified starch. The FT-Raman study confirmed that due to the impact on the samples by microwave, the changes of intensity in the characteristic bands associated with the crystalline regions in the sample were noticed. The X-ray diffraction data for microwave treated CMS-Na samples have been compared with the diffractograms of initial materials and analysis of XRD patterns confirmed that microwave-treated samples exhibit completely amorphous structure. Analysis of structural changes allows to state that the binding of sand grains in moulding sand with CMS-Na polymeric binder consists in the formation of hydrogen bonds networks (physical cross-linking).

  12. Effect of microwave treatment on structure of binders based on sodium carboxymethyl starch: FT-IR, FT-Raman and XRD investigations.

    PubMed

    Kaczmarska, Karolina; Grabowska, Beata; Spychaj, Tadeusz; Zdanowicz, Magdalena; Sitarz, Maciej; Bobrowski, Artur; Cukrowicz, Sylwia

    2018-06-15

    The paper deals with the influence of the microwave treatment on sodium carboxymethyl starch (CMS-Na) applied as a binder for moulding sands. The Fourier transformation infrared spectrometry (FT-IR), Raman spectroscopy (FT-Raman) and XRD analysis data of native potato starch and three different carboxymethyl starches (CMS-Na) with various degree of substitution (DS) before and after exposition to microwave radiation have been compared. FT-IR studies showed that polar groups present in CMS-Na structure take part in the formation of new hydrogen bonds network after water evaporation. However, these changes depend on DS value of the modified starch. The FT-Raman study confirmed that due to the impact on the samples by microwave, the changes of intensity in the characteristic bands associated with the crystalline regions in the sample were noticed. The X-ray diffraction data for microwave treated CMS-Na samples have been compared with the diffractograms of initial materials and analysis of XRD patterns confirmed that microwave-treated samples exhibit completely amorphous structure. Analysis of structural changes allows to state that the binding of sand grains in moulding sand with CMS-Na polymeric binder consists in the formation of hydrogen bonds networks (physical cross-linking). Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Application of solidifiers for oil spill containment: A review.

    PubMed

    Motta, Fernanda L; Stoyanov, Stanislav R; Soares, João B P

    2018-03-01

    The need for new and/or improvement of existing oil spill remediation measures has increased substantially amidst growing public concern with the increased transportation of unconventional crudes, such as diluted bitumen products. Solidifiers may be a very good spill response measure to contain and mitigate the effects of oil discharge incidents, as these interact with the oil to limit hydrocarbon release into air and water, prevent it from adhering onto sediment and debris, and could allow for oil recovery and reuse. Solidifiers change the physical state of the spilled oil from liquid to a coherent mass by chemical interactions between the spilled oil and the solidifier. Currently, the use of solidifiers is limited to small spills near shorelines. To extend their use to large-scale spill containment operations, it is necessary to understand the mechanism of solidifier action and to establish consistent criteria for evaluation of their effectiveness. The research effort to date has been focused mainly on gelators and cross-linking agents, with particularly impressive advancements in the areas of phase-selective polymeric and small-molecule gelators. Substantial research efforts are needed to improve solidifier performance and integrate solidifiers as part of spill response procedures, particularly for acute oil spills involving unconventional petroleum products. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  14. Pyrogallol-imprinted polymers with methyl methacrylate via precipitation polymerization

    NASA Astrophysics Data System (ADS)

    Mehamod, Faizatul Shimal; Othman, Nor Amira; Bulat, Ku Halim Ku; Suah, Faiz Bukhari Mohd

    2018-06-01

    Molecular simulation techniques are important to study the understanding of chemical and physical properties of any material. Computational modeling is considered as time reducer in finding the best recipes for Molecularly-Imprinted Polymers (MIPs). In this study, Pyrogallol-imprinted polymers (PIP) and non-imprinted polymers (NIPs) were synthesized via precipitation polymerization using Pyrogallol (Py), methyl methacrylate (MMA), divinylbenzene (DVB) as template, functional monomer and cross-linker, respectively. The recipe was according to the results from computational techniques. The synthesized PIP and NIPs were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) and UV-visible spectroscopy (UV-vis). Studies on adsorption isotherm showed that PIP and NIPs follow Scatchard isotherm models. Sorption kinetic study found that PIP and NIPs follow pseudo-second order which indicates the rate-limiting step is the surface adsorption. The imprinting factor of PIP was determined by selectivity study and showed the value of k >1, which proved that PIP was selective toward Pyrogallol compared to NIP.

  15. Precision Aliphatic Polyesters with Alternating Microstructures via Cross-Metathesis Polymerization: An Event of Sequence Control.

    PubMed

    Li, Zi-Long; Zeng, Fu-Rong; Ma, Ji-Mei; Sun, Lin-Hao; Zeng, Zhen; Jiang, Hong

    2017-06-01

    Sequence-regulated polymerization is realized upon sequential cross-metathesis polymerization (CMP) and exhaustive hydrogenation to afford precision aliphatic polyesters with alternating sequences. This strategy is particularly suitable for the arrangement of well-known monomer units including glycolic acid, lactic acid, and caprolactic acid on polymer chain in a predetermined sequence. First of all, structurally asymmetric monomers bearing acrylate and α-olefin terminuses are generated in an efficient and straightforward fashion. Subsequently, cross-metathesis (co)polymerization of M1 and M2 using the Hoveyda-Grubbs second-generation catalyst (HG-II) furnishes P1-P3, respectively. Finally, hydrogenation yields the desired saturated polyesters HP1-HP3. It is noteworthy that the ε-caprolactone-derived unit is generated in situ rather than introduced to tailor-made monomers prior to CMP. NMR and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) results verify the microstructural periodicity of these precision polyesters. Differential scanning calorimetry (DSC) results reflect that polyesters without methyl side groups exhibit crystallinity, and unsaturated polyester samples show higher glass transition temperatures than their hydrogenated counterparts owing to structural rigidity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Candida antarctica Lipase B Chemically Immobilized on Epoxy-Activate Micro- and Nanobeads: Catalysts for Polyester Synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen,B.; Hu, J.; Miller, E.

    2008-01-01

    Candida antarctica Lipase B (CALB) was covalently immobilized onto epoxy-activated macroporous poly(methyl methacrylate) Amberzyme beads (235 {mu}m particle size, 220 Angstroms pore size) and nanoparticles (nanoPSG, diameter 68 nm) with a poly(glycidyl methacrylate) outer region. Amberzyme beads allowed CALB loading up to 0.16 g of enzyme per gram of support. IR microspectroscopy generated images of Amberzyme-CALB beads showed CALB is localized within a 50 {mu}m thick loading front. IR microspectroscopy images, recorded prior to and after treatment of Amberzyme-CALB with DMSO/aqueous Triton X-100, are similar, confirming that CALB is largely chemically linked to Amberzyme. The activity of CALB immobilized onmore » Amberzyme, Lewatit (i.e., Novozym 435 catalyst), and nanoPSG was assessed for lactone ring-opening and step-condensation polymerizations. For example, the percent conversion of -caprolactone using the same amount of enzyme catalyzed by Amberzym-CALB, Novozym 435, and nanoPSG-CALB for 20 min was 7.0, 16, and 65%, respectively. Differences in CALB reactivity were discussed based on resin physical parameters and availability of active sites determined by active site titrations. Regardless of the matrix used and chemical versus physical immobilization, -CL ring-opening polymerizations occur by a chain growth mechanism without chain termination. To test Amberzyme-CALB stability, the catalyst was reused over three reaction cycles for -CL ring-opening polymerization (70 C, 70 min reactions) and glycerol/1, 8-octanediol/adipic acid polycondensation reactions (90 C, 64 h). Amberzyme-CALB was found to have far better stability for reuse relative to Novozym 435 for the polycondensation reaction.« less

  17. Interrelation of Sport Participation, Physical Activity, Social Capital and Mental Health in Disadvantaged Communities: A SEM-Analysis

    PubMed Central

    Marlier, Mathieu; Van Dyck, Delfien; Cardon, Greet; De Bourdeaudhuij, Ilse; Babiak, Kathy; Willem, Annick

    2015-01-01

    Background The Health through Sport conceptual model links sport participation with physical, social and psychological outcomes and stresses the need for more understanding between these outcomes. The present study aims to uncover how sport participation, physical activity, social capital and mental health are interrelated by examining these outcomes in one model. Methods A cross-sectional survey was conducted in nine disadvantaged communities in Antwerp (Belgium). Two hundred adults (aged 18–56) per community were randomly selected and visited at home to fill out a questionnaire on socio-demographics, sport participation, physical activity, social capital and mental health. A sample of 414 adults participated in the study. Results Structural Equation Modeling analysis showed that sport participation (β = .095) and not total physical activity (β = .027) was associated with better mental health. No association was found between sport participation and community social capital (β = .009) or individual social capital (β = .045). Furthermore, only community social capital was linked with physical activity (β = .114), individual social capital was not (β = -.013). In contrast, only individual social capital was directly associated with mental health (β = .152), community social capital was not (β = .070). Conclusion This study emphasizes the importance of sport participation and individual social capital to improve mental health in disadvantaged communities. It further gives a unique insight into the functionalities of how sport participation, physical activity, social capital and mental health are interrelated. Implications for policy are that cross-sector initiatives between the sport, social and health sector need to be supported as their outcomes are directly linked to one another. PMID:26451731

  18. Interrelation of Sport Participation, Physical Activity, Social Capital and Mental Health in Disadvantaged Communities: A SEM-Analysis.

    PubMed

    Marlier, Mathieu; Van Dyck, Delfien; Cardon, Greet; De Bourdeaudhuij, Ilse; Babiak, Kathy; Willem, Annick

    2015-01-01

    The Health through Sport conceptual model links sport participation with physical, social and psychological outcomes and stresses the need for more understanding between these outcomes. The present study aims to uncover how sport participation, physical activity, social capital and mental health are interrelated by examining these outcomes in one model. A cross-sectional survey was conducted in nine disadvantaged communities in Antwerp (Belgium). Two hundred adults (aged 18-56) per community were randomly selected and visited at home to fill out a questionnaire on socio-demographics, sport participation, physical activity, social capital and mental health. A sample of 414 adults participated in the study. Structural Equation Modeling analysis showed that sport participation (β = .095) and not total physical activity (β = .027) was associated with better mental health. No association was found between sport participation and community social capital (β = .009) or individual social capital (β = .045). Furthermore, only community social capital was linked with physical activity (β = .114), individual social capital was not (β = -.013). In contrast, only individual social capital was directly associated with mental health (β = .152), community social capital was not (β = .070). This study emphasizes the importance of sport participation and individual social capital to improve mental health in disadvantaged communities. It further gives a unique insight into the functionalities of how sport participation, physical activity, social capital and mental health are interrelated. Implications for policy are that cross-sector initiatives between the sport, social and health sector need to be supported as their outcomes are directly linked to one another.

  19. Versatile and Rapid Postfunctionalization from Cyclodextrin Modified Host Polymeric Membrane Substrate.

    PubMed

    Deng, Jie; Liu, Xinyue; Zhang, Shuqing; Cheng, Chong; Nie, Chuanxiong; Zhao, Changsheng

    2015-09-08

    Surface modification has long been of great interest to impart desired functionalities to the bioimplants. However, due to the limitations of recent technologies in surface modification, it is highly desirable to explore novel protocols, which can advantageously and efficiently endow the inert material surfaces with versatile biofunctionalities. Herein, to achieve versatile and rapid postfunctionalization of polymeric membrane, we demonstrate a new strategy for the fabrication of β-cyclodextrin (β-CD) modified host membrane substrate that can recognize a series of well-designed guest macromolecules. The surface assembly procedure was driven by the host-guest interaction between adamantane (Ad) and β-CD. β-CD immobilized host membrane was fabricated via two steps: (1) epoxy groups enriched poly(ether sulfone) (PES) membrane was first prepared via in situ cross-linking polymerization and subsequently phase separation; (2) mono-6-deoxy-6-ethylenediamine-β-CD (EDA-β-CD) was then anchored onto the surface of the epoxy functionalized PES membrane to obtain PES-CD. Subsequently, three types of Ad-terminated polymers, including Ad-poly(styrenesulfonate-co-sodium acrylate) (Ad-PSA), Ad-methoxypoly(ethylene glycol) (Ad-PEG), and Ad-poly(methyl chloride-quaternized 2-(dimethylamino)ethyl methacrylate (Ad-PMT), were separately assembled onto the β-CD immobilized surfaces to endow the membranes with anticoagulant, antifouling, and antibacterial capability, respectively. Activated partial thromboplastin time (APTT), thrombin time (TT), and prothrombin time (PT) measurements were carried out to explore the anticoagulant activity. The antifouling capability was evaluated via protein adsorption and platelet adhesion measurements. Moreover, Staphyllococcous aureus (S. aureus) was selected as model bacteria to evaluate the antibacterial ability of the functionalized membranes. The results indicated that well-regulated blood compatibility, antifouling capability, and bactericidal activity could be achieved by the proposed rapid postfunctionalization on polymeric membranes. This approach of versatile and rapid postfunctionalization is promising for the preparation of multifunctional polymeric membrane materials to meet with various demands for the further applications.

  20. Novel Tertiary Amino Containing Blinding Composite Membranes via Raft Polymerization and Their Preliminary CO2 Permeation Performance

    PubMed Central

    Zhu, Lifang; Zhou, Mali; Yang, Shanshan; Shen, Jiangnan

    2015-01-01

    Facile synthesis of poly (N,N-dimethylaminoethyl methacrylate) (PDMAEMA) star polymers on the basis of the prepolymer chains, PDMAEMA as the macro chain transfer agent and divinyl benzene (DVB) as the cross-linking reagent by reversible addition-fragmentation chain transfer (RAFT) polymerization was described. The RAFT polymerizations of DMAEMA at 70 °C using four RAFT agents with different R and Z group were investigated. The RAFT agents used in these polymerizations were dibenzyl trithiocarbonate (DBTTC), s-1-dodecyl-s'-(α,α'-dimethyl-α-acetic acid) trithiocarbonate (MTTCD), s,s'-bis (2-hydroxyethyl-2'-dimethylacrylate) trithiocarbonate (BDATC) and s-(2-cyanoprop-2-yl)-s-dodecyltrithiocarbonate (CPTCD). The results indicated that the structure of the end-group of RAFT agents had significant effects on the ability to control polymerization. Compared with the above-mentioned RAFT agents, CPTCD provides better control over the molecular weight and molecular weight distribution. The polydispersity index (PDI) was determined to be within the scope of 1.26 to 1.36. The yields, molecular weight, and distribution of the star polymers can be tuned by changing the molar ratio of DVB/PDMAEMA-CPTCD. The chemical composition and structure of the linear and star polymers were characterized by GPC, FTIR, 1H NMR, XRD analysis. For the pure Chitosan membrane, a great improvement was observed for both CO2 permeation rate and ideal selectivity of the blending composite membrane upon increasing the content of SPDMAEMA-8. At a feed gas pressure of 37.5 cmHg and 30 °C, the blinding composite membrane (Cs: SPDMAEMA-8 = 4:4) has a CO2 permeation rate of 8.54 × 10−4 cm3 (STP) cm−2∙s−1∙cm∙Hg−1 and a N2 permeation rate of 6.76 × 10−5 cm3 (STP) cm−2∙s−1∙cm∙Hg−1, and an ideal CO2/N2 selectivity of 35.2. PMID:25915025

Top