Sample records for physically crosslinked high

  1. The Formation Mechanism of Hydrogels.

    PubMed

    Lu, Liyan; Yuan, Shiliang; Wang, Jing; Shen, Yun; Deng, Shuwen; Xie, Luyang; Yang, Qixiang

    2017-06-12

    Hydrogels are degradable polymeric networks, in which cross-links play a vital role in structure formation and degradation. Cross-linking is a stabilization process in polymer chemistry that leads to the multi-dimensional extension of polymeric chains, resulting in network structures. By cross-linking, hydrogels are formed into stable structures that differ from their raw materials. Generally, hydrogels can be prepared from either synthetic or natural polymers. Based on the types of cross-link junctions, hydrogels can be categorized into two groups: the chemically cross-linked and the physically cross-linked. Chemically cross-linked gels have permanent junctions, in which covalent bonds are present between different polymer chains, thus leading to excellent mechanical strength. Although chemical cross-linking is a highly resourceful method for the formation of hydrogels, the cross-linkers used in hydrogel preparation should be extracted from the hydrogels before use, due to their reported toxicity, while, in physically cross-linked gels, dissolution is prevented by physical interactions, such as ionic interactions, hydrogen bonds or hydrophobic interactions. Physically cross-linked methods for the preparation of hydrogels are the alternate solution for cross-linker toxicity. Both methods will be discussed in this essay. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Improvement on Physical Properties of Pullulan Films by Novel Cross-Linking Strategy.

    PubMed

    Chen, Chieh-Ting; Chen, Kuan-I; Chiang, Hsin-Han; Chen, Yu-Kuo; Cheng, Kuan-Chen

    2017-01-01

    Pullulan based films possess several advantages, including high transparency, low toxicity, good biodegradability, good mechanical properties, and low oxygen permeability, are preferable for food packaging. The application of pullulan films on food packaging, however, has inherent disadvantage of high water solubility. In this study, glutaraldehyde and glycerol were used as the cross-linking reagent and the plasticizer respectively to improve water resistance and physical properties of the pullulan films. Effects of cross-linking degree on physical properties, including water absorptions, swelling behaviors, water vapor permeability and tensile strengths of films were evaluated. FTIR results demonstrated that the pullulan films were successfully cross-linked by glutaraldehyde. The tensile strength of pullulan films could be enhanced significantly (P < 0.05) when glutaraldehyde was between 1% and 5% (w/w); nevertheless, the amount of glutaraldehyde above 20% (w/w) led to films brittleness. With the addition of glycerol as a plasticizer enhanced the extensibility of films as well as the hydrophilicity, resulting in higher water vapor permeability. © 2016 Institute of Food Technologists®.

  3. Silk Hydrogels of Tunable Structure and Viscoelastic Properties Using Different Chronological Orders of Genipin and Physical Cross-Linking.

    PubMed

    Elliott, Winston H; Bonani, Walter; Maniglio, Devid; Motta, Antonella; Tan, Wei; Migliaresi, Claudio

    2015-06-10

    Catering the hydrogel manufacturing process toward defined viscoelastic properties for intended biomedical use is important to hydrogel scaffolding function and cell differentiation. Silk fibroin hydrogels may undergo "physical" cross-linking through β-sheet crystallization during high pressure carbon dioxide treatment, or covalent "chemical" cross-linking by genipin. We demonstrate here that time-dependent mechanical properties are tunable in silk fibroin hydrogels by altering the chronological order of genipin cross-linking with β-sheet formation. Genipin cross-linking before β-sheet formation affects gelation mechanics through increased molecular weight, affecting gel morphology, and decreasing stiffness response. Alternately, genipin cross-linking after gelation anchored amorphous regions of the protein chain, and increasing stiffness. These differences are highlighted and validated through large amplitude oscillatory strain near physiologic levels, after incorporation of material characterization at molecular and micron length scales.

  4. Development of a glucose oxidase-based biocatalyst adopting both physical entrapment and crosslinking, and its use in biofuel cells

    NASA Astrophysics Data System (ADS)

    Chung, Yongjin; Ahn, Yeonjoo; Christwardana, Marcelinus; Kim, Hansung; Kwon, Yongchai

    2016-04-01

    New enzymatic catalysts prepared using physical entrapment and chemical bonding were used as anodic catalysts to enhance the performance of enzymatic biofuel cells (EBCs). For estimating the physical entrapment effect, the best glucose oxidase (GOx) concentration immobilized on polyethyleneimine (PEI) and carbon nanotube (CNT) (GOx/PEI/CNT) was determined, while for inspecting the chemical bonding effect, terephthalaldehyde (TPA) and glutaraldehyde (GA) crosslinkers were employed. According to the enzyme activity and XPS measurements, when the GOx concentration is 4 mg mL-1, they are most effectively immobilized (via the physical entrapment effect) and TPA-crosslinked GOx/PEI/CNT(TPA/[GOx/PEI/CNT]) forms π conjugated bonds via chemical bonding, inducing the promotion of electron transfer by delocalization of electrons. Due to the optimized GOx concentration and π conjugated bonds, TPA/[GOx/PEI/CNT], including 4 mg mL-1 GOx displays a high electron transfer rate, followed by excellent catalytic activity and EBC performance.New enzymatic catalysts prepared using physical entrapment and chemical bonding were used as anodic catalysts to enhance the performance of enzymatic biofuel cells (EBCs). For estimating the physical entrapment effect, the best glucose oxidase (GOx) concentration immobilized on polyethyleneimine (PEI) and carbon nanotube (CNT) (GOx/PEI/CNT) was determined, while for inspecting the chemical bonding effect, terephthalaldehyde (TPA) and glutaraldehyde (GA) crosslinkers were employed. According to the enzyme activity and XPS measurements, when the GOx concentration is 4 mg mL-1, they are most effectively immobilized (via the physical entrapment effect) and TPA-crosslinked GOx/PEI/CNT(TPA/[GOx/PEI/CNT]) forms π conjugated bonds via chemical bonding, inducing the promotion of electron transfer by delocalization of electrons. Due to the optimized GOx concentration and π conjugated bonds, TPA/[GOx/PEI/CNT], including 4 mg mL-1 GOx displays a high electron transfer rate, followed by excellent catalytic activity and EBC performance. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00902f

  5. The Impact of HA Oligomer Content on Physical, Mechanical, and Biologic Properties of Divinyl Sulfone-Crosslinked HA Hydrogels

    PubMed Central

    Ibrahim, Samir; Kang, Qian K; Ramamurthi, Anand

    2009-01-01

    In recent studies, we showed that exogenous hyaluronic acid oligomers (HA-o) stimulate functional endothelialization, though native long-chain HA is more bioinert and possibly more biocompatible. Thus, in this study, hydrogels containing high molecular weight (HMW) HA (1×106 Da) and HA oligomer mixtures (HA-o: 0.75–10 kDa) were created by crosslinking with divinyl sulfone (DVS). The incorporation of HA oligomers was found to compromise the physical and mechanical properties of the gels (rheology, apparent crosslinking density, swelling ratio, degradation) and to very mildly enhance inflammatory cell recruitment in vivo; increasing the DVS crosslinker content within the gels in general, had the opposite effect, though the relatively high concentration of DVS within these gels (necessary to create a solid gel) also stimulated a mild sub-cutaneous inflammatory response in vivo and VCAM-1 expression by ECs cultured atop; ICAM-expression levels remained very low irrespective extent of DVS crosslinking or HA-o content. The greatest EC attachment and proliferation (MTT assay) was observed on gels that contained the highest amount of HA-o. The study shows that the beneficial EC response to HA oligomers and biocompatibility of HA is mostly unaltered by their chemical derivatization and crosslinking into a hydrogel. However, the study also demonstrates that the relatively high concentrations of DVS, necessary to create solid gels, compromises their biocompatibility. Moreover, the poor mechanics of even these heavily crosslinked gels, in the context of vascular implantation, necessitates the investigation of other, more appropriate crosslinking agents. Alternately, the outcomes of this study may be used to guide an approach based on chemical immobilization and controlled surface-presentation of both bioactive HA oligomers and more biocompatible HMW HAon synthetic or tissue engineered grafts already in use, without the use of a crosslinker, so that improved, predictable, and functional endothelialization can be achieved, and the need to create a mechanically compliant biomaterial for standalone use, circumvented. PMID:20186732

  6. Influence of different crosslinking treatments on the physical properties of collagen membranes.

    PubMed

    Charulatha, V; Rajaram, A

    2003-02-01

    The physical properties of collagen-based biomaterials are profoundly influenced by the method and extent of crosslinking. In this study, the influence of various crosslinking treatments on the physical properties of reconstituted collagen membranes was assessed. Five crosslinking agents viz., GTA, DMS, DTBP, a combination of DMS and GTA and acyl azide method were used to stabilize collagen matrices. Crosslinking density, swelling ratio, thermo-mechanical properties, stress-strain characteristics and resistance to collagenase digestion were determined to evaluate the physical properties of crosslinked matrices. GTA treatment induced the maximum number of crosslinks (13) while DMS treatment induced the minimum (7). Of the two diimidoesters (DMS and DTBP), DTBP was a more effective crosslinking agent due to the presence of disulphide bonds in the DTBP crosslinks. T(s) for DTBP and DMS crosslinked collagen were 80 degrees C and 70 degrees C, and their HIT values were 5.4 and 2.85MN/m(2), respectively. Low concentration of GTA (0.01%) increased the crosslinking density of an already crosslinked matrix (DMS treated matrix) from 7 to 12. Lowest fracture energy was observed for the acyl azide treated matrix (0.61MJ/m(3)) while the highest was observed for the GTA treated matrix (1.97MJ/m(3)). The tensile strength of GTA treated matrix was maximum (12.4MPa) and that of acyl azide treated matrix was minimum (7.2MPa). GTA, DTBP and acyl azide treated matrices were equally resistant to collagenase degradation with approximately 6% solubilization after 5h while the DMS treated was least stable with 52.4% solubilization after the same time period. The spatial orientation of amino acid side chain residues on collagen plays an important role in determining the crosslinking density and consequent physical properties of the collagen matrix.

  7. Crosslink Density and Molecular Weight Effects on the Viscoelastic Response of a Glassy High-Performance Polyimide

    NASA Technical Reports Server (NTRS)

    Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.

    2001-01-01

    Durability and long-term performance are among the primary concerns for the use of advanced polymer matrix composites (PMCs) in modern aerospace structural applications. For a PMC subJected to long-term exposure at elevated temperatures. the viscoelastic nature of the polymer matrix will contribute to macroscopic changes in composite stiffness, strength and fatigue life. Over time. changes in the polymer due to physical aging will have profound effects on tile viscoelastic compliance of the material, hence affecting its long-term durability. Thus, the ability to predict material performance using intrinsic properties, such as crosslink density and molecular weight, would greatly enhance the efficiency of design and development of PMCs. The objective of this paper is to discuss and present the results of an experimental study that considers the effects of crosslink density, molecular weight and temperature on the viscoelastic behavior including physical aging of an advanced polymer. Five distinct variations in crosslink density were used to evaluate the differences in mechanical performance of an advanced polyimide. The physical aging behavior was isolated by conducting sequenced, short-term isothermal creep compliance tests in tension. These tests were performed over a range of sub-glass transition temperatures. The material constants, material master curves and physical aging-related parameters were evaluated as a function of temperature crosslink density and molecular weight using time-temperature and time-aging time superposition techniques.

  8. Radiation crosslinking of highly plasticized PVC

    NASA Astrophysics Data System (ADS)

    Mendizabal, E.; Cruz, L.; Jasso, C. F.; Burillo, G.; Dakin, V. I.

    1996-02-01

    To improve the physical properties of highly plasticized PVC, the polymer was crosslinked by gamma irradiation using a dose rate of 91 kGy/h. The effect of plasticizer type was studied by using three different plasticizers, 2,2,4-trimethyl-1,3-pentanediol diisobutyrate (TXIB), di(2-ethyl hexyl) phthalate (DOP), and di(2-ethylhexyl terephthalate) (DOTP), and varying irradiation doses. Gel content was determined by soxhlet extraction, tensile measurements were made on a universal testing machine and the mechano-dynamic measurements were made in a dynamic rheometer. It was found that a considerable bonding of plasticizer molecules to macromolelcules takes place along with crosslinking, so that the use of the solvent extraction method for measuring the degree of crosslinking can give erroneous information. Radiation-chemical crosslinking yield ( Gc) and molecular weight of interjunctions chains ( Mc), were calculated for different systems studied. Addition of ethylene glycol dimethacrylate (EGDM) as a crosslinking coagent and dioctyl tin oxide (DOTO) as a stabilizer was also studied. Plasticizers extraction resistance was increased by irradiation treatment.

  9. Laponite crosslinked starch/polyvinyl alcohol hydrogels by freezing/thawing process and studying their cadmium ion absorption.

    PubMed

    Yu, Chen; Tang, Xiaozhi; Liu, Shaowei; Yang, Yuling; Shen, Xinchun; Gao, Chengcheng

    2018-05-22

    In this study, Laponite RD (LRD) cross-linked hydrogels consisting of starch, polyvinyl alcohol (PVA) were prepared by freezing/thawing process and the influence of LRD content on structure and properties of hydrogels was investigated. FTIR showed a new structure of hydrogen bonding might result from cross-linking reactions between LRD and polymers. X-ray diffraction (XRD) analysis showed that high degree of exfoliation of LRD clay layers had occurred during the preparation of hydrogels. The synergistic effect of physical cross-linking by freeze/thaw cycles and by LRD led to more porous, uniform and stable network, which was shown in SEM images. The melting temperature decreased and thermal stability got improved with the increase of LRD content. Reswelling ratios of hydrogels had the highest value when LRD content was 10%. Additionally, cadmium ion absorption capacity of the hydrogel was studied and the results showed that increasing the concentration of LRD increased absorption ratio and amount of Cd 2+ ion in the solution. In a word, LRD could be used as a physical crosslinker and reinforced agent for starch-PVA based hydrogels and the formed hydrogels could be used as novel type and high capacity absorbent materials in heavy metal removing processes. Copyright © 2018. Published by Elsevier B.V.

  10. To Cross-Link or Not to Cross-Link? Cross-Linking Associated Foreign Body Response of Collagen-Based Devices

    PubMed Central

    Delgado, Luis M.; Bayon, Yves; Pandit, Abhay

    2015-01-01

    Collagen-based devices, in various physical conformations, are extensively used for tissue engineering and regenerative medicine applications. Given that the natural cross-linking pathway of collagen does not occur in vitro, chemical, physical, and biological cross-linking methods have been assessed over the years to control mechanical stability, degradation rate, and immunogenicity of the device upon implantation. Although in vitro data demonstrate that mechanical properties and degradation rate can be accurately controlled as a function of the cross-linking method utilized, preclinical and clinical data indicate that cross-linking methods employed may have adverse effects on host response, especially when potent cross-linking methods are employed. Experimental data suggest that more suitable cross-linking methods should be developed to achieve a balance between stability and functional remodeling. PMID:25517923

  11. Interrelation of electret properties of polyethylene foam from the method of cross-linking

    NASA Astrophysics Data System (ADS)

    Gilmanov, I. R.; Galikhanov, M. F.; Gilmanova, A. R.

    2017-09-01

    The electret properties of chemically cross-linked polyethylene foam and physically cross-linked polyethylene foam have been studied. It has been shown that chemically cross-linked polyethylene foam has higher surface potential, effective surface charge density and electric field strength compared to physically bonded polyethylene foam. This is due to the presence of molecules and fragments of dicumyl peroxide, which can play the role of traps for injection charge carriers, a greater degree of cross-linking and with the oxidation of polyethylene, which occurs during irradiation during physical cross-linking. When the foam is deformed, its electret properties are reduced, and when the volume is relaxed, they are restored. This is due to the partial mutual compensation of homo- and heterocharge during compression and the return of the structure of the gas-filled polymer to its former position when the load is removed.

  12. Viscoplastic fracture transition of a biopolymer gel.

    PubMed

    Frieberg, Bradley R; Garatsa, Ray-Shimry; Jones, Ronald L; Bachert, John O; Crawshaw, Benjamin; Liu, X Michael; Chan, Edwin P

    2018-06-13

    Physical gels are swollen polymer networks consisting of transient crosslink junctions associated with hydrogen or ionic bonds. Unlike covalently crosslinked gels, these physical crosslinks are reversible thus enabling these materials to display highly tunable and dynamic mechanical properties. In this work, we study the polymer composition effects on the fracture behavior of a gelatin gel, which is a thermoreversible biopolymer gel consisting of denatured collagen chains bridging physical network junctions formed from triple helices. Below the critical volume fraction for chain entanglement, which we confirm via neutron scattering measurements, we find that the fracture behavior is consistent with a viscoplastic type process characterized by hydrodynamic friction of individual polymer chains through the polymer mesh to show that the enhancement in fracture scales inversely with the squared of the mesh size of the gelatin gel network. Above this critical volume fraction, the fracture process can be described by the Lake-Thomas theory that considers fracture as a chain scission process due to chain entanglements.

  13. The Synergy of Double Cross-linking Agents on the Properties of Styrene Butadiene Rubber Foams

    PubMed Central

    Shao, Liang; Ji, Zhan-You; Ma, Jian-Zhong; Xue, Chao-Hua; Ma, Zhong-Lei; Zhang, Jing

    2016-01-01

    Sulfur (S) cross-linking styrene butadiene rubber (SBR) foams show high shrinkage due to the cure reversion, leading to reduced yield and increased processing cost. In this paper, double cross-linking system by S and dicumyl peroxide (DCP) was used to decrease the shrinkage of SBR foams. Most importantly, the synergy of double cross-linking agents was reported for the first time to our knowledge. The cell size and its distribution of SBR foams were investigated by FESEM images, which show the effect of DCP content on the cell structure of the SBR foams. The relationships between shrinkage and crystalline of SBR foams were analyzed by the synergy of double cross-linking agents, which were demonstrated by FTIR, Raman spectra, XRD, DSC and TGA. When the DCP content was 0.6 phr, the SBR foams exhibit excellent physical and mechanical properties such as low density (0.223 g/cm3), reduced shrinkage (2.25%) and compression set (10.96%), as well as elevated elongation at break (1.78 × 103%) and tear strength (54.63 N/mm). The results show that these properties are related to the double cross-linking system of SBR foams. Moreover, the double cross-linking SBR foams present high electromagnetic interference (EMI) shielding properties compared with the S cross-linking SBR foams. PMID:27841307

  14. The Synergy of Double Cross-linking Agents on the Properties of Styrene Butadiene Rubber Foams

    NASA Astrophysics Data System (ADS)

    Shao, Liang; Ji, Zhan-You; Ma, Jian-Zhong; Xue, Chao-Hua; Ma, Zhong-Lei; Zhang, Jing

    2016-11-01

    Sulfur (S) cross-linking styrene butadiene rubber (SBR) foams show high shrinkage due to the cure reversion, leading to reduced yield and increased processing cost. In this paper, double cross-linking system by S and dicumyl peroxide (DCP) was used to decrease the shrinkage of SBR foams. Most importantly, the synergy of double cross-linking agents was reported for the first time to our knowledge. The cell size and its distribution of SBR foams were investigated by FESEM images, which show the effect of DCP content on the cell structure of the SBR foams. The relationships between shrinkage and crystalline of SBR foams were analyzed by the synergy of double cross-linking agents, which were demonstrated by FTIR, Raman spectra, XRD, DSC and TGA. When the DCP content was 0.6 phr, the SBR foams exhibit excellent physical and mechanical properties such as low density (0.223 g/cm3), reduced shrinkage (2.25%) and compression set (10.96%), as well as elevated elongation at break (1.78 × 103%) and tear strength (54.63 N/mm). The results show that these properties are related to the double cross-linking system of SBR foams. Moreover, the double cross-linking SBR foams present high electromagnetic interference (EMI) shielding properties compared with the S cross-linking SBR foams.

  15. Evaluation of different crosslinking agents on hybrid biomimetic collagen-hydroxyapatite composites for regenerative medicine.

    PubMed

    Krishnakumar, Gopal Shankar; Gostynska, Natalia; Dapporto, Massimiliano; Campodoni, Elisabetta; Montesi, Monica; Panseri, Silvia; Tampieri, Anna; Kon, Elizaveta; Marcacci, Maurilio; Sprio, Simone; Sandri, Monica

    2018-01-01

    This study focuses on the development of novel bone-like scaffolds by bio-inspired, pH-driven, mineralization of type I collagen matrix with magnesium-doped hydroxyapatite nanophase (MgHA/Coll). To this aim, this study evaluates the altered modifications in the obtained composite due to different crosslinkers such as dehydrothermal treatment (DHT), 1,4-butanediol diglycidyl ether (BDDGE) and ribose in terms of morphological, physical-chemical and biological properties. The physical-chemical properties of the composites evaluated by XRD, FTIR, ICP and TGA demonstrated that the chemical mimesis of bone was effectively achieved using the in-lab biomineralization process. Furthermore, the presence of various crosslinkers greatly promoted beneficial enzymatic resistivity and swelling ability. The morphological results revealed highly porous and fibrous micro-architecture with total porosity above 85% with anisotropic pore size within the range of 50-200μm in all the analysed composites. The mechanical behaviour in response to compressive forces demonstrated enhanced compressive modulus in all crosslinked composites, suggesting that mechanical behaviour is largely dependent on the type of crosslinker used. The biomimetic compositional and morphological features of the composites elicited strong cell-material interaction. Therefore, the results showed that by activating specific crosslinking mechanisms, hybrid composites can be designed and tailored to develop tissue-specific biomimetic biomaterials for hard tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Novel soy protein wound dressings with controlled antibiotic release: mechanical and physical properties.

    PubMed

    Peles, Zachi; Zilberman, Meital

    2012-01-01

    Naturally derived materials are becoming widely used in the biomedical field. Soy protein has advantages over various types of natural proteins employed for biomedical applications due to its low price, non-animal origin and relatively long storage time and stability. In the current study soy protein isolate (SPI) was investigated as a matrix for wound dressing applications. The antibiotic drug gentamicin was incorporated into the matrix for local controlled release and, thus, protection against bacterial infection. Homogeneous yellowish films were cast from aqueous solutions. After cross-linking they combined high tensile strength and Young's modulus with the desired ductility. The plasticizer type, cross-linking agent and method of cross-linking were found to strongly affect the tensile properties of the SPI films. Selected SPI films were tested for relevant physical properties and the gentamicin release profile. The cross-linking method affected the degree of water uptake and the weight loss profile. The water vapor transmission rate of the films was in the desired range for wound dressings (∼2300 g m(-2) day(-1)) and was not affected by the cross-linking method. The gentamicin release profile exhibited a moderate burst effect followed by a decreasing release rate which was maintained for at least 4 weeks. Diffusion was the dominant release mechanism of gentamicin from cross-linked SPI films. Appropriate selection of the process parameters yielded SPI wound dressings with the desired mechanical and physical properties and drug release behavior to protect against bacterial infection. These unique structures are thus potentially useful as burn and ulcer dressings. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Self-Healing and Thermo-Responsive Dual-Crosslinked Alginate Hydrogels based on Supramolecular Inclusion Complexes

    PubMed Central

    Miao, Tianxin; Fenn, Spencer L.; Charron, Patrick N.; Oldinski, Rachael A.

    2015-01-01

    β-cyclodextrin (β-CD), with a lipophilic inner cavity and hydrophilic outer surface, interacts with a large variety of non-polar guest molecules to form non-covalent inclusion complexes. Conjugation of β-CD onto biomacromolecules can form physically-crosslinked hydrogel networks upon mixing with a guest molecule. Herein describes the development and characterization of self-healing, thermo-responsive hydrogels, based on host-guest inclusion complexes between alginate-graft-β-CD and Pluronic® F108 (poly(ethylene glycol)-b-poly(propylene glycol)-b-poly(ethylene glycol)). The mechanics, flow characteristics, and thermal response were contingent on the polymer concentrations, and the host-guest molar ratio. Transient and reversible physical crosslinking between host and guest polymers governed self-assembly, allowing flow under shear stress, and facilitating complete recovery of the material properties within a few seconds of unloading. The mechanical properties of the dual-crosslinked, multi-stimuli responsive hydrogels were tuned as high as 30 kPa at body temperature, and are advantageous for biomedical applications such as drug delivery and cell transplantation. PMID:26509214

  18. Chitosan in Molecularly-Imprinted Polymers: Current and Future Prospects.

    PubMed

    Xu, Long; Huang, Yun-An; Zhu, Qiu-Jin; Ye, Chun

    2015-08-07

    Chitosan is widely used in molecular imprinting technology (MIT) as a functional monomer or supporting matrix because of its low cost and high contents of amino and hydroxyl functional groups. The various excellent properties of chitosan, which include nontoxicity, biodegradability, biocompatibility, and attractive physical and mechanical performances, make chitosan a promising alternative to conventional functional monomers. Recently, chitosan molecularly-imprinted polymers have gained considerable attention and showed significant potential in many fields, such as curbing environmental pollution, medicine, protein separation and identification, and chiral-compound separation. These extensive applications are due to the polymers' desired selectivity, physical robustness, and thermal stability, as well as their low cost and easy preparation. Cross-linkers, which fix the functional groups of chitosan around imprinted molecules, play an important role in chitosan molecularly-imprinted polymers. This review summarizes the important cross-linkers of chitosan molecularly-imprinted polymers and illustrates the cross-linking mechanism of chitosan and cross-linkers based on the two glucosamine units. Finally, some significant attempts to further develop the application of chitosan in MIT are proposed.

  19. Effect of polyfunctional monomers on properties of radiation crosslinked EPDM/waste tire dust blend

    NASA Astrophysics Data System (ADS)

    Yasin, Tariq; Khan, Sajid; Nho, Young-Chang; Ahmad, Rashid

    2012-04-01

    In this study, waste tire dust is recycled as filler and blended with ethylene-propylene diene monomer (EPDM) rubber. Three different polyfuntional monomers (PFMs) are incorporated into the standard formulation and irradiated under electron beam at different doses up to maximum of 100 kGy. The combined effects of PFMs and absorbed dose on the physical properties of EPDM/WTD blend are measured and compared with sulfur crosslinked formulation. Thermogravimetric analysis showed that radiation developed better crosslinked network with higher thermal stability than sulfur crosslinked structure. The physical properties of radiation crosslinked blend are similar to the sulfur crosslinked blend. The absence of toxic chemicals/additives in radiation crosslinked blends made them an ideal candidate for many applications such as roof sealing sheets, water retention pond, playground mat, sealing profile for windows etc.

  20. Tough stimuli-responsive supramolecular hydrogels with hydrogen-bonding network junctions.

    PubMed

    Guo, Mingyu; Pitet, Louis M; Wyss, Hans M; Vos, Matthijn; Dankers, Patricia Y W; Meijer, E W

    2014-05-14

    Hydrogels were prepared with physical cross-links comprising 2-ureido-4[1H]-pyrimidinone (UPy) hydrogen-bonding units within the backbone of segmented amphiphilic macromolecules having hydrophilic poly(ethylene glycol) (PEG). The bulk materials adopt nanoscopic physical cross-links composed of UPy-UPy dimers embedded in segregated hydrophobic domains dispersed within the PEG matrix as comfirmed by cryo-electron microscopy. The amphiphilic network was swollen with high weight fractions of water (w(H2O) ≈ 0.8) owing to the high PEG weight fraction within the pristine polymers (w(PEG) ≈ 0.9). Two different PEG chain lengths were investigated and illustrate the corresponding consequences of cross-link density on mechanical properties. The resulting hydrogels exhibited high strength and resilience upon deformation, consistent with a microphase separated network, in which the UPy-UPy interactions were adequately shielded within hydrophobic nanoscale pockets that maintain the network despite extensive water content. The cumulative result is a series of tough hydrogels with tunable mechanical properties and tractable synthetic preparation and processing. Furthermore, the melting transition of PEG in the dry polymer was shown to be an effective stimulus for shape memory behavior.

  1. Enzyme-catalyzed crosslinkable hydrogels: emerging strategies for tissue engineering.

    PubMed

    Teixeira, Liliana S Moreira; Feijen, Jan; van Blitterswijk, Clemens A; Dijkstra, Pieter J; Karperien, Marcel

    2012-02-01

    State-of-the-art bioactive hydrogels can easily and efficiently be formed by enzyme-catalyzed mild-crosslinking reactions in situ. Yet this cell-friendly and substrate-specific method remains under explored. Hydrogels prepared by using enzyme systems like tyrosinases, transferases and lysyl oxidases show interesting characteristics as dynamic scaffolds and as systems for controlled release. Increased attention is currently paid to hydrogels obtained via crosslinking of precursors by transferases or peroxidases as catalysts. Enzyme-mediated crosslinking has proven its efficiency and attention has now shifted to the development of enzymatically crosslinked hydrogels with higher degrees of complexity, mimicking extracellular matrices. Moreover, bottom-up approaches combining biocatalysts and self-assembly are being explored for the development of complex nano-scale architectures. In this review, the use of enzymatic crosslinking for the preparation of hydrogels as an innovative alternative to other crosslinking methods, such as the commonly used UV-mediated photo-crosslinking or physical crosslinking, will be discussed. Photo-initiator-based crosslinking may induce cytotoxicity in the formed gels, whereas physical crosslinking may lead to gels which do not have sufficient mechanical strength and stability. These limitations can be overcome using enzymes to form covalently crosslinked hydrogels. Herewith, we report the mechanisms involved and current applications, focusing on emerging strategies for tissue engineering and regenerative medicine. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Chitosan membranes for tissue engineering: comparison of different crosslinkers.

    PubMed

    Ruini, F; Tonda-Turo, C; Chiono, V; Ciardelli, G

    2015-11-03

    Chitosan (CS), a derivative of the naturally occurring biopolymer chitin, is an attractive material for biomedical applications thanks to its biocompatibility, biodegradability, antibacterial properties and ability to enhance cell adhesion and growth compared to other biopolymers. However, the physical and mechanical stability of CS based materials in aqueous solutions is limited and crosslinking agents are required to increase CS performances in a biological environment. In this work, the effect of three highly-biocompatible crosslinkers as genipin (GP), γ-glycidoxypropyltrimethoxysilane (GPTMS), dibasic sodium phosphate (DSP) and a combination of GPTMS and DSP (GPTMS_DSP) on CS physicochemical, thermal, morphological, mechanical properties, swelling and degradation behavior was investigated. Infrared spectroscopy and thermogravimetric analyses confirmed the chemical reaction between CS and the different crosslinkers. CS wettability was enhanced when CS was DSP ionically crosslinked showing contact angle values of about 65° and exhibiting a higher swelling behavior compared to covalently crosslinked films. Moreover, all the crosslinking methods analyzed improved the stability of CS in aqueous media, showed model molecule permeation in time and increased the mechanical properties when compared with non-crosslinked films. The possibility to tailor the final properties of CS scaffolds through crosslinking is a key strategy in applying CS in different biomedical and tissue engineering applications. The obtained results reveal that the optimization of the crosslinking mechanism provides CS membrane properties required in different biomedical applications.

  3. Synthesis, Characterization, and Antibacterial Activity of Cross-Linked Chitosan-Glutaraldehyde

    PubMed Central

    Li, Bin; Shan, Chang-Lin; Zhou, Qing; Fang, Yuan; Wang, Yang-Li; Xu, Fei; Han, Li-Rong; Ibrahim, Muhammad; Guo, Long-Biao; Xie, Guan-Lin; Sun, Guo-Chang

    2013-01-01

    This present study deals with synthesis, characterization and antibacterial activity of cross-linked chitosan-glutaraldehyde. Results from this study indicated that cross-linked chitosan-glutaraldehyde markedly inhibited the growth of antibiotic-resistant Burkholderia cepacia complex regardless of bacterial species and incubation time while bacterial growth was unaffected by solid chitosan. Furthermore, high temperature treated cross-linked chitosan-glutaraldehyde showed strong antibacterial activity against the selected strain 0901 although the inhibitory effects varied with different temperatures. In addition, physical-chemical and structural characterization revealed that the cross-linking of chitosan with glutaraldehyde resulted in a rougher surface morphology, a characteristic Fourier transform infrared (FTIR) band at 1559 cm−1, a specific X-ray diffraction peak centered at 2θ = 15°, a lower contents of carbon, hydrogen and nitrogen, and a higher stability of glucose units compared to chitosan based on scanning electron microscopic observation, FTIR spectra, X-ray diffraction pattern, as well as elemental and thermo gravimetric analysis. Overall, this study indicated that cross-linked chitosan-glutaraldehyde is promising to be developed as a new antibacterial drug. PMID:23670533

  4. In vitro studies on the effect of physical cross-linking on the biological performance of aliphatic poly(urethane urea) for blood contact applications.

    PubMed

    Thomas, V; Kumari, T V; Jayabalan, M

    2001-01-01

    The effect of physical cross-linking in candidate cycloaliphatic and hydrophobic poly(urethane urea) (4,4'-methylenebis(cyclohexylisocyanate), H(12)MDI/hydroxy-terminated polybutadiene, HTPBD/hexamethylenediamine, HDA) and poly(ether urethane urea)s (H(12)MDI/HTPBD-PTMG/HDA) on the in vitro calcification and blood-material interaction was studied. All the candidate poly(urethane urea)s and poly(ether urethane urea)s elicit acceptable hemolytic activity, cytocompatibility, calcification, and blood compatibility in vitro. The studies on blood-material interaction reveal that the present poly(urethane urea)s are superior to polystyrene microtiter plates which were used for the studies on blood-material interaction. The present investigation reveals the influence of physical cross-link density on biological interaction differently with poly(urethane urea) and poly(ether urethane urea)s. The higher the physical cross-link density in the poly(urethane urea)s, the higher the calcification and consumption of WBC in whole blood. On the other hand, the higher the physical cross-link density in the poly(ether urethane urea)s, the lesser the calcification and consumption of WBC in whole blood. However a reverse of the above trend has been observed with the platelet consumption in the poly(urethane urea)s and poly(ether urethane urea)s.

  5. The effects of crosslinkers on physical, mechanical, and cytotoxic properties of gelatin sponge prepared via in-situ gas foaming method as a tissue engineering scaffold.

    PubMed

    Poursamar, S Ali; Lehner, Alexander N; Azami, Mahmoud; Ebrahimi-Barough, Somayeh; Samadikuchaksaraei, Ali; Antunes, A P M

    2016-06-01

    In this study porous gelatin scaffolds were prepared using in-situ gas foaming, and four crosslinking agents were used to determine a biocompatible and effective crosslinker that is suitable for such a method. Crosslinkers used in this study included: hexamethylene diisocyanate (HMDI), poly(ethylene glycol) diglycidyl ether (epoxy), glutaraldehyde (GTA), and genipin. The prepared porous structures were analyzed using Fourier Transform Infrared Spectroscopy (FT-IR), thermal and mechanical analysis as well as water absorption analysis. The microstructures of the prepared samples were analyzed using Scanning Electron Microscopy (SEM). The effects of the crosslinking agents were studied on the cytotoxicity of the porous structure indirectly using MTT analysis. The affinity of L929 mouse fibroblast cells for attachment on the scaffold surfaces was investigated by direct cell seeding and DAPI-staining technique. It was shown that while all of the studied crosslinking agents were capable of stabilizing prepared gelatin scaffolds, there are noticeable differences among physical and mechanical properties of samples based on the crosslinker type. Epoxy-crosslinked scaffolds showed a higher capacity for water absorption and more uniform microstructures than the rest of crosslinked samples, whereas genipin and GTA-crosslinked scaffolds demonstrated higher mechanical strength. Cytotoxicity analysis showed the superior biocompatibility of the naturally occurring genipin in comparison with other synthetic crosslinking agents, in particular relative to GTA-crosslinked samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Assembly kinetics determine the architecture of α-actinin crosslinked F-actin networks.

    PubMed

    Falzone, Tobias T; Lenz, Martin; Kovar, David R; Gardel, Margaret L

    2012-05-29

    The actin cytoskeleton is organized into diverse meshworks and bundles that support many aspects of cell physiology. Understanding the self-assembly of these actin-based structures is essential for developing predictive models of cytoskeletal organization. Here we show that the competing kinetics of bundle formation with the onset of dynamic arrest arising from filament entanglements and crosslinking determine the architecture of reconstituted actin networks formed with α-actinin crosslinks. Crosslink-mediated bundle formation only occurs in dilute solutions of highly mobile actin filaments. As actin polymerization proceeds, filament mobility and bundle formation are arrested concomitantly. By controlling the onset of dynamic arrest, perturbations to actin assembly kinetics dramatically alter the architecture of biochemically identical samples. Thus, the morphology of reconstituted F-actin networks is a kinetically determined structure similar to those formed by physical gels and glasses. These results establish mechanisms controlling the structure and mechanics in diverse semiflexible biopolymer networks.

  7. Ionic Modification Turns Commercial Rubber into a Self-Healing Material.

    PubMed

    Das, Amit; Sallat, Aladdin; Böhme, Frank; Suckow, Marcus; Basu, Debdipta; Wiessner, Sven; Stöckelhuber, Klaus Werner; Voit, Brigitte; Heinrich, Gert

    2015-09-23

    Invented by Charles Goodyear, chemical cross-linking of rubbers by sulfur vulcanization is the only method by which modern automobile tires are manufactured. The formation of these cross-linked network structures leads to highly elastic properties, which substantially reduces the viscous properties of these materials. Here, we describe a simple approach to converting commercially available and widely used bromobutyl rubber (BIIR) into a highly elastic material with extraordinary self-healing properties without using conventional cross-linking or vulcanising agents. Transformation of the bromine functionalities of BIIR into ionic imidazolium bromide groups results in the formation of reversible ionic associates that exhibit physical cross-linking ability. The reversibility of the ionic association facilitates the healing processes by temperature- or stress-induced rearrangements, thereby enabling a fully cut sample to retain its original properties after application of the self-healing process. Other mechanical properties, such as the elastic modulus, tensile strength, ductility, and hysteresis loss, were found to be superior to those of conventionally sulfur-cured BIIR. This simple and easy approach to preparing a commercial rubber with self-healing properties offers unique development opportunities in the field of highly engineered materials, such as tires, for which safety, performance, and longer fatigue life are crucial factors.

  8. Properties of crosslinked ultra-high-molecular-weight polyethylene.

    PubMed

    Lewis, G

    2001-02-01

    Substantially reducing the rate of generation of wear particles at the surfaces of ultra-high-molecular-weight polyethylene (UHMWPE) orthopedic implant bearing components, in vivo, is widely regarded as one of the most formidable challenges in modern arthroplasty. In the light of this, much research attention has been paid to the myriad of endogenous and exogenous factors that have been postulated to affect this wear rate, one such factor being the polymer itself. In recent years, there has been a resurgence of interest in crosslinking the polymer as a way of improving its properties that are considered relevant to its use for fabricating bearing components. Such properties include wear resistance, fatigue life, and fatigue crack propagation rate. Although a large volume of literature exists on the topic on the impact of crosslinking on the properties of UHMWPE, no critical appraisal of this literature has been published. This is one of the goals of the present article, which emphasizes three aspects. The first is the trade-off between improvement in wear resistance and depreciation in other mechanical and physical properties. The second aspect is the presentation of a method of estimating the optimal value of a crosslinking process variable (such as dose in radiation-induced crosslinking) that takes into account this trade-off. The third aspect is the description of a collection of under- and unexplored research areas in the field of crosslinked UHMWPE, such as the role of starting resin on the properties of the crosslinked polymer, and the in vitro evaluation of the wear rate of crosslinked tibial inserts and other bearing components that, in vivo, are subjected to nearly unidirectional motion.

  9. Field Testing of Thermoplastic Encapsulants in High-Temperature Installations

    DOE PAGES

    Kempe, Michael D.; Miller, David C.; Wohlgemuth, John H.; ...

    2015-11-01

    Recently there has been increased interest in using thermoplastic encapsulant materials in photovoltaic modules, but concerns have been raised about whether these would be mechanically stable at high temperatures in the field. This has become a significant topic of discussion in the development of IEC 61730 and IEC 61215. We constructed eight pairs of crystalline-silicon modules and eight pairs of glass/encapsulation/glass thin-film mock modules using different encapsulant materials, of which only two were formulated to chemically crosslink. One module set was exposed outdoors with thermal insulation on the back side in Mesa, Arizona, in the summer (hot-dry), and an identicalmore » module set was exposed in environmental chambers. High-precision creep measurements (±20 μm) and electrical performance measurements indicate that despite many of these polymeric materials operating in the melt or rubbery state during outdoor deployment, no significant creep was seen because of their high viscosity, lower operating temperature at the edges, and/or the formation of chemical crosslinks in many of the encapsulants with age despite the absence of a crosslinking agent. Only an ethylene-vinyl acetate (EVA) encapsulant formulated without a peroxide crosslinking agent crept significantly. When the crystalline-silicon modules, the physical restraint of the backsheet reduced creep further and was not detectable even for the EVA without peroxide. Because of the propensity of some polymeric materials to crosslink as they age, typical thermoplastic encapsulants would be unlikely to result in creep in the vast majority of installations.« less

  10. Physical Properties and Cellular Responses to Crosslinkable Poly(Propylene Fumarate)/Hydroxyapatite Nanocomposites

    PubMed Central

    Lee, Kee-Won; Wang, Shanfeng; Yaszemski, Michael J.; Lu, Lichun

    2008-01-01

    A series of crosslinkable nanocomposites has been developed using hydroxyapatite (HA) nanoparticles and poly(propylene fumarate) (PPF). PPF/HA nanocomposites with four different weight fractions of HA nanoparticles have been characterized in terms of thermal and mechanical properties. To assess surface chemistry of crosslinked PPF/HA nanocomposites, their hydrophilicity and capability of adsorbing proteins have been determined using static contact angle measurement and MicroBCA protein assay kit after incubation with 10% fetal bovine serum (FBS), respectively. In vitro cell studies have been performed using MC3T3-E1 mouse pre-osteoblast cells to investigate the ability of PPF/HA nanocomposites to support cell attachment, spreading, and proliferation after 1, 4, and 7 days. By adding HA nanoparticles to PPF, the mechanical properties of crosslinked PPF/HA nanocomposites have not been increased due to the initially high modulus of crosslinked PPF. However, hydrophilicity and serum protein adsorption on the surface of nanocomposites have been significantly increased, resulting in enhanced cell attachment, spreading, and proliferation after 4 days of cell seeding. These results indicate that crosslinkable PPF/HA nanocomposites are useful for hard tissue replacement because of excellent mechanical strength and osteoconductivity. PMID:18403013

  11. Chemo-physical properties of renal capsules under ultraviolet-c exposure

    NASA Astrophysics Data System (ADS)

    Baghapour, Sh.; Parvin, P.; Reyhani, A.; Mortazavi, S. Z.; Mokhtari, S.; Amjadi, A.

    2014-08-01

    The renal capsule tissue of lamb was irradiated with ultraviolet-C light and the treated samples were analyzed by uniaxial tensile test, dynamic mechanical analysis, attenuated total reflectance Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and contact angle measurements. It was shown that the skin cross-linking is dominant in low doses in accordance with the contact angle assessment. Conversely, the strong bulk degradation takes place at high doses. Similarly, the bulk cross-linking affects the mechanical tests as to enhance the stiffness at low doses, whereas strong degradation occurs at high doses that mainly arises from the strong bulk chain scission.

  12. Modification of polylactide bioplastic using hyperbranched polymer based nanostructures

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Rahul

    Polylactide (PLA) is the most well known renewable resource based biodegradable polymer. The inherent brittleness and poor processability of PLA pose considerable technical challenges and limit its range of commercial applications. The broad objective of this research was to investigate novel pathways for polylactide modification to enhance its mechanical and rheological properties. The focus of this work was to tailor the architecture of a dendritic hyperbranched polymer (HBP) and study its influence on the mechanical and rheological properties of PLA bioplastic. The hyperbranched polymers under consideration are biodegradable aliphatic hydroxyl-functional hyperbranched polyesters having nanoscale dimensions, unique physical properties and high peripheral functionalities. This work relates to identifying a new and industrially relevant research methodology to develop PLA based nanoblends having outstanding stiffness-toughness balance. In this approach, a hydroxyl functional hyperbranched polymer was crosslinked in-situ with a polyanhydride (PA) in the PLA matrix during melt processing, leading to the generation of new nanoscale hyperbranched polymer based domains in the PLA matrix. Transmission electron microscopy and atomic force microscopy revealed the "sea-island" morphology of PLA-crosslinked HBP blends. The domain size of a large portion of the crosslinked HBP particles in PLA matrix was less than 100 nm. The presence of crosslinked hyperbranched polymers exhibited more than 500% and 800% improvement in the tensile toughness and elongation at break values of PLA, respectively, with a minimal sacrifice of tensile strength and modulus as compared to unmodified PLA. The toughening mechanism of PLA in the presence of crosslinked HBP particles was comprised of shear yielding and crazing. The volume fraction of crosslinked HBP particles and matrix ligament thickness (inter-particle distance) were found to be the critical parameters for the toughening of PLA. The maximum average matrix ligament thickness was 114 nm for a toughened polylactide nanoblend and correlated well with the theoretical prediction of the matrix ligament thickness. Fourier transform infrared spectroscopy and dynamic mechanical thermal analysis proved the crosslinking of the HBP phase in the PLA matrix. The crosslinked HBP was effective at hydroxyl (-OH) to anhydride molar ratios of: 2:1, 1:1 or 1:2. The glass transition temperature values of the crosslinked HBP phase at these molar ratios were observed to deviate from the predictions made by the Fox equation. The hydrophilic nature of the hyperbranched polymer was altered to hydrophobic by incorporation of polyanhydride crosslinker, as demonstrated by the increase in the contact angle with water. Rheological studies showed that there was a network formation in the PLA matrix after in-situ crosslinking of HBP. The HBP was found to reduce the melt viscosity of PLA dramatically and this effect was maintained even after its in-situ crosslinking in the PLA matrix. Finally, the current research unwraps the new opportunities provided by the unique physical and chemical properties of highly functional hyperbranched polymers in generating new nanostructured multiphase polymer systems with enhanced properties.

  13. Effect of cross-linking of interfacial sodium caseinate by natural processing on the oxidative stability of oil-in-water (o/w) emulsions.

    PubMed

    Phoon, Pui Yeu; Paul, Lake N; Burgner, John W; San Martin-Gonzalez, M Fernanda; Narsimhan, Ganesan

    2014-04-02

    This study investigated how enzymatic cross-linking of interfacial sodium caseinate and emulsification, via high-pressure homogenization, influenced the intrinsic oxidative stability of 4% (w/v) menhaden oil-in-water emulsions stabilized by 1% (w/v) caseinate at pH 7. Oil oxidation was monitored by the ferric thiocyanate perioxide value assay. Higher homogenization pressure resulted in improved intrinsic emulsion oxidative stability, which is attributed to increased interfacial cross-linking as indicated by higher weighted average sedimentation coefficients of interfacial protein species (from 11.2 S for 0 kpsi/0.1 MPa to 18 S for 20 kpsi/137.9 MPa). Moderate dosage of transglutaminase at 0.5-1.0 U/mL emulsion enhanced intrinsic emulsion oxidative stability further, despite a contradictory reduction in the antioxidant property of cross-linked caseinate as tested by the 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay. This implied the prominent role of cross-linked interfacial caseinate as a physical barrier for oxygen transfer, hence its efficacy in retarding oil oxidation.

  14. 3D cell entrapment in crosslinked thiolated gelatin-poly(ethylene glycol) diacrylate hydrogels

    PubMed Central

    Fu, Yao; Xu, Kedi; Zheng, Xiaoxiang; Giacomin, A. Jeffrey; Mix, Adam W.; Kao, Weiyuan John

    2012-01-01

    The combined use of natural ECM components and synthetic materials offers an attractive alternative to fabricate hydrogel-based tissue engineering scaffolds to study cell-matrix interactions in three-dimensions (3D). A facile method was developed to modify gelatin with cysteine via a bifunctional PEG linker, thus introducing free thiol groups to gelatin chains. A covalently crosslinked gelatin hydrogel was fabricated using thiolated gelatin and poly(ethylene glycol) diacrylate (PEGdA) via thiol-ene reaction. Unmodified gelatin was physically incorporated in a PEGdA-only matrix for comparison. We sought to understand the effect of crosslinking modality on hydrogel physicochemical properties and the impact on 3D cell entrapment. Compared to physically incorporated gelatin hydrogels, covalently crosslinked gelatin hydrogels displayed higher maximum weight swelling ratio (Qmax), higher water content, significantly lower cumulative gelatin dissolution up to 7 days, and lower gel stiffness. Furthermore, fibroblasts encapsulated within covalently crosslinked gelatin hydrogels showed extensive cytoplasmic spreading and the formation of cellular networks over 28 days. In contrast, fibroblasts encapsulated in the physically incorporated gelatin hydrogels remained spheroidal. Hence, crosslinking ECM protein with synthetic matrix creates a stable scaffold with tunable mechanical properties and with long-term cell anchorage points, thus supporting cell attachment and growth in the 3D environment. PMID:21955690

  15. Effects of crosslinking on the mechanical properties, drug release and cytocompatibility of protein polymers.

    PubMed

    Martinez, Adam W; Caves, Jeffrey M; Ravi, Swathi; Li, Wehnsheng; Chaikof, Elliot L

    2014-01-01

    Recombinant elastin-like protein polymers are increasingly being investigated as component materials of a variety of implantable medical devices. This is chiefly a result of their favorable biological properties and the ability to tailor their physical and mechanical properties. In this report, we explore the potential of modulating the water content, mechanical properties, and drug release profiles of protein films through the selection of different crosslinking schemes and processing strategies. We find that the selection of crosslinking scheme and processing strategy has a significant influence on all aspects of protein polymer films. Significantly, utilization of a confined, fixed volume, as well as vapor-phase crosslinking strategies, decreased protein polymer equilibrium water content. Specifically, as compared to uncrosslinked protein gels, water content was reduced for genipin (15.5%), glutaraldehyde (GTA, 24.5%), GTA vapor crosslinking (31.6%), disulfide (SS, 18.2%) and SS vapor crosslinking (25.5%) (P<0.05). Distinct crosslinking strategies modulated protein polymer stiffness, strain at failure and ultimate tensile strength (UTS). In all cases, vapor-phase crosslinking produced the stiffest films with the highest UTS. Moreover, both confined, fixed volume and vapor-phase approaches influenced drug delivery rates, resulting in decreased initial drug burst and release rates as compared to solution phase crosslinking. Tailored crosslinking strategies provide an important option for modulating the physical, mechanical and drug delivery properties of protein polymers. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. The influence of hyaluronic acid hydrogel crosslinking density and macromolecular diffusivity on human MSC chondrogenesis and hypertrophy.

    PubMed

    Bian, Liming; Hou, Chieh; Tous, Elena; Rai, Reena; Mauck, Robert L; Burdick, Jason A

    2013-01-01

    Hyaluronic acid (HA) hydrogels formed via photocrosslinking provide stable 3D hydrogel environments that support the chondrogenesis of mesenchymal stem cells (MSCs). Crosslinking density has a significant impact on the physical properties of hydrogels, including their mechanical stiffness and macromolecular diffusivity. Variations in the HA hydrogel crosslinking density can be obtained by either changes in the HA macromer concentration (1, 3, or 5% w/v at 15 min exposure) or the extent of reaction through light exposure time (5% w/v at 5, 10, or 15 min). In this work, increased crosslinking by either method resulted in an overall decrease in cartilage matrix content and more restricted matrix distribution. Increased crosslinking also promoted hypertrophic differentiation of the chondrogenically induced MSCs, resulting in more matrix calcification in vitro. For example, type X collagen expression in the high crosslinking density 5% 15 min group was ~156 and 285% higher when compared to the low crosslinking density 1% 15 min and 5% 5 min groups on day 42, respectively. Supplementation with inhibitors of the small GTPase pathway involved in cytoskeletal tension or myosin II had no effect on hypertrophic differentiation and matrix calcification, indicating that the differential response is unlikely to be related to force-sensing mechanotransduction mechanisms. When implanted subcutaneously in nude mice, higher crosslinking density again resulted in reduced cartilage matrix content, restricted matrix distribution, and increased matrix calcification. This study demonstrates that hydrogel properties mediated through alterations in crosslinking density must be considered in the context of the hypertrophic differentiation of chondrogenically induced MSCs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Evaluation of synthesized cross linked polyvinyl alcohol as potential disintegrant.

    PubMed

    Patel, Ashok R; Vavia, Pradeep R

    2010-01-01

    The present study deals with evaluation of crosslinked poly vinyl alcohol (PVA) as a potential disintegrant. Crosslinking of PVA was carried out using glutaraldehyde as a crosslinker, in presence of acidic conditions. The crosslinking reaction was optimized for a) polymer: crosslinker ratio; b) temperature requirement and c) reaction duration. Certain physical parameters of the disintegrant (including sedimentation volume, hydration capacity, specific surface area and bulk and tap density) were determined and compared to the known disintegrants. Characterization was carried out using FT-IR, DSC, XRD, SEM and Photo microscopy studies. The developed excipient was also studied for acute toxicity in rats and found to be safe for oral use. Disintegration property of formed product was compared to known disintegrant (Ac-Di-Sol) and it was found to give better results. The disintegration mechanism of developed disintegrant was postulated based on results obtained from various physical evaluations including: Study of effect of disintegrant concentration, fillers, and hardness, mode of incorporation and method of granulation on disintegration activity. By changing the condition parameters of well known crosslinking reaction of PVA, we obtained a crosslinked product which had excellent disintegration activity, good flow and optimal tableting properties.

  18. Fabrication and characterization of anisotropic nanofiber scaffolds for advanced drug delivery systems

    PubMed Central

    Jalani, Ghulam; Jung, Chan Woo; Lee, Jae Sang; Lim, Dong Woo

    2014-01-01

    Stimuli-responsive, polymer-based nanostructures with anisotropic compartments are of great interest as advanced materials because they are capable of switching their shape via environmentally-triggered conformational changes, while maintaining discrete compartments. In this study, a new class of stimuli-responsive, anisotropic nanofiber scaffolds with physically and chemically distinct compartments was prepared via electrohydrodynamic cojetting with side-by-side needle geometry. These nanofibers have a thermally responsive, physically-crosslinked compartment, and a chemically-crosslinked compartment at the nanoscale. The thermally responsive compartment is composed of physically crosslinkable poly(N-isopropylacrylamide) poly(NIPAM) copolymers, and poly(NIPAM-co-stearyl acrylate) poly(NIPAM-co-SA), while the thermally-unresponsive compartment is composed of polyethylene glycol dimethacrylates. The two distinct compartments were physically crosslinked by the hydrophobic interaction of the stearyl chains of poly(NIPAM-co-SA) or chemically stabilized via ultraviolet irradiation, and were swollen in physiologically relevant buffers due to their hydrophilic polymer networks. Bicompartmental nanofibers with the physically-crosslinked network of the poly(NIPAM-co-SA) compartment showed a thermally-triggered shape change due to thermally-induced aggregation of poly(NIPAM-co-SA). Furthermore, when bovine serum albumin and dexamethasone phosphate were separately loaded into each compartment, the bicompartmental nanofibers with anisotropic actuation exhibited decoupled, controlled release profiles of both drugs in response to a temperature. A new class of multicompartmental nanofibers could be useful for advanced nanofiber scaffolds with two or more drugs released with different kinetics in response to environmental stimuli. PMID:24872702

  19. Prestressed F-actin networks cross-linked by hinged filamins replicate mechanical properties of cells

    NASA Astrophysics Data System (ADS)

    Gardel, M. L.; Nakamura, F.; Hartwig, J. H.; Crocker, J. C.; Stossel, T. P.; Weitz, D. A.

    2006-02-01

    We show that actin filaments, shortened to physiological lengths by gelsolin and cross-linked with recombinant human filamins (FLNs), exhibit dynamic elastic properties similar to those reported for live cells. To achieve elasticity values of comparable magnitude to those of cells, the in vitro network must be subjected to external prestress, which directly controls network elasticity. A molecular requirement for the strain-related behavior at physiological conditionsis a flexible hinge found in FLNa and some FLNb molecules. Basic physical properties of the in vitro filamin-F-actin network replicate the essential mechanical properties of living cells. This physical behavior could accommodate passive deformation and internal organelle trafficking at low strains yet resist externally or internally generated high shear forces. cytoskeleton | cell mechanics | nonlinear rheology

  20. Physical determinants of bipolar mitotic spindle assembly and stability in fission yeast

    PubMed Central

    Blackwell, Robert; Edelmaier, Christopher; Sweezy-Schindler, Oliver; Lamson, Adam; Gergely, Zachary R.; O’Toole, Eileen; Crapo, Ammon; Hough, Loren E.; McIntosh, J. Richard; Glaser, Matthew A.; Betterton, Meredith D.

    2017-01-01

    Mitotic spindles use an elegant bipolar architecture to segregate duplicated chromosomes with high fidelity. Bipolar spindles form from a monopolar initial condition; this is the most fundamental construction problem that the spindle must solve. Microtubules, motors, and cross-linkers are important for bipolarity, but the mechanisms necessary and sufficient for spindle assembly remain unknown. We describe a physical model that exhibits de novo bipolar spindle formation. We began with physical properties of fission-yeast spindle pole body size and microtubule number, kinesin-5 motors, kinesin-14 motors, and passive cross-linkers. Our model results agree quantitatively with our experiments in fission yeast, thereby establishing a minimal system with which to interrogate collective self-assembly. By varying the features of our model, we identify a set of functions essential for the generation and stability of spindle bipolarity. When kinesin-5 motors are present, their bidirectionality is essential, but spindles can form in the presence of passive cross-linkers alone. We also identify characteristic failed states of spindle assembly—the persistent monopole, X spindle, separated asters, and short spindle, which are avoided by the creation and maintenance of antiparallel microtubule overlaps. Our model can guide the identification of new, multifaceted strategies to induce mitotic catastrophes; these would constitute novel strategies for cancer chemotherapy. PMID:28116355

  1. Antimicrobial cerium ion-chitosan crosslinked alginate biopolymer films: A novel and potential wound dressing.

    PubMed

    Kaygusuz, Hakan; Torlak, Emrah; Akın-Evingür, Gülşen; Özen, İlhan; von Klitzing, Regine; Erim, F Bedia

    2017-12-01

    Wound dressings require good antiseptic properties, mechanical strength and, more trustably, natural material ingredients. Antimicrobial properties of cerium ions and chitosan are known and alginate based wound dressings are commercially available. In this study, the advantages of these materials were combined and alginate films were crosslinked with cerium(III) solution and chitosan added cerium(III) solution. Films were characterized by Fourier transform infrared spectroscopy (FTIR), light transmittance, scanning electron microscopy (SEM), swelling experiments, water vapor transmittance tests, and mechanical stretching tests. The antibacterial and physical properties of the films were compared with those of conventional calcium alginate films. Both cerium ion crosslinked and cerium ion-chitosan crosslinked alginate films gained antibacterial activity against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. Cerium alginate-chitosan films showed high resistance to being deformed elastically. Results show that cerium alginate-chitosan films can be flexible, ultraviolet-protecting, and antibacterial wound dressings. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Shear rheological characterization of gel healing response and construction of rheo-PIV system

    NASA Astrophysics Data System (ADS)

    Bawiskar, Abhishek D.

    Thermo-reversible gels are solvent-filled 3D networks of polymer chains interconnected by physical (transient) crosslinks. On applying a high shear stress, the crosslinks are broken and these gels show a typical stress-strain behavior due to cohesive fracture of the gel. When heated above a critical temperature and cooled back to room temperature, all the crosslinks are re-formed. Interestingly, partial to full recovery of broken crosslinks is also observed by simply letting the gel stand at room temperature. In this study, the fracture and healing behavior of a model acrylic triblock copolymer gel has been characterized by shear rheometry. A mathematical model has also been proposed to better understand the mechanics at the molecular level and predict the healing time of a system. A rheo-PIV system was built as part of the project, to observe and confirm the bulk healing process in situ. Spontaneous self-healing behavior has immense potential in controlled drug delivery systems, coatings, food and various other applications.

  3. Assembly Kinetics Determine the Architecture of α-actinin Crosslinked F-actin Networks

    PubMed Central

    Falzone, Tobias T.; Lenz, Martin; Kovar, David R.; Gardel, Margaret L.

    2013-01-01

    The actin cytoskeleton is organized into diverse meshworks and bundles that support many aspects of cell physiology. Understanding the self-assembly of these actin-based structures is essential for developing predictive models of cytoskeletal organization. Here we show that the competing kinetics of bundle formation with the onset of dynamic arrest arising from filament entanglements and cross-linking determine the architecture of reconstituted actin networks formed with α-actinin cross-links. Cross-link mediated bundle formation only occurs in dilute solutions of highly mobile actin filaments. As actin polymerization proceeds, filament mobility and bundle formation are arrested concomitantly. By controlling the onset of dynamic arrest, perturbations to actin assembly kinetics dramatically alter the architecture of biochemically identical samples. Thus, the morphology of reconstituted F-actin networks is a kinetically determined structure similar to those formed by physical gels and glasses. These results establish mechanisms controlling the structure and mechanics in diverse semi-flexible biopolymer networks. PMID:22643888

  4. Strandboard made from soy-based adhesive with high soy content

    Treesearch

    Zhiyong Cai; James M. Wescott; Jerrold E. Winandy

    2005-01-01

    A novel green adhesive with high soy content has recently been developed (13) with a process that denatures soy flour, modifies resulting protein with formaldehyde, and uses suitable phenolic crosslinking agents for copolymerization. Compared with mechanical and physical performances of oriented strandboard, the new adhesive showed promise for improving panel...

  5. Weak Bond-Based Injectable and Stimuli Responsive Hydrogels for Biomedical Applications

    PubMed Central

    Ding, Xiaochu; Wang, Yadong

    2017-01-01

    Here we define hydrogels crosslinked by weak bonds as physical hydrogels. They possess unique features including reversible bonding, shear thinning and stimuli-responsiveness. Unlike covalently crosslinked hydrogels, physical hydrogels do not require triggers to initiate chemical reactions for in situ gelation. The drug can be fully loaded in a pre-formed hydrogel for delivery with minimal cargo leakage during injection. These benefits make physical hydrogels useful as delivery vehicles for applications in biomedical engineering. This review focuses on recent advances of physical hydrogels crosslinked by weak bonds: hydrogen bonds, ionic interactions, host-guest chemistry, hydrophobic interactions, coordination bonds and π-π stacking interactions. Understanding the principles and the state of the art of gels with these dynamic bonds may give rise to breakthroughs in many biomedical research areas including drug delivery and tissue engineering. PMID:29062484

  6. One-Pot Automated Synthesis of Quasi Triblock Copolymers for Self-Healing Physically Crosslinked Hydrogels.

    PubMed

    Voorhaar, Lenny; De Meyer, Bernhard; Du Prez, Filip; Hoogenboom, Richard

    2016-10-01

    The preparation of physically crosslinked hydrogels from quasi ABA-triblock copolymers with a water-soluble middle block and hydrophobic end groups is reported. The hydrophilic monomer N-acryloylmorpholine is copolymerized with hydrophobic isobornyl acrylate via a one-pot sequential monomer addition through reversible addition fragmentation chain-transfer (RAFT) polymerization in an automated parallel synthesizer, allowing systematic variation of polymer chain length and hydrophobic-hydrophilic ratio. Hydrophobic interactions between the outer blocks cause them to phase-separate into larger hydrophobic domains in water, forming physical crosslinks between the polymers. The resulting hydrogels are studied using rheology and their self-healing ability after large strain damage is shown. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Enzymatically crosslinked silk-hyaluronic acid hydrogels.

    PubMed

    Raia, Nicole R; Partlow, Benjamin P; McGill, Meghan; Kimmerling, Erica Palma; Ghezzi, Chiara E; Kaplan, David L

    2017-07-01

    In this study, silk fibroin and hyaluronic acid (HA) were enzymatically crosslinked to form biocompatible composite hydrogels with tunable mechanical properties similar to that of native tissues. The formation of di-tyrosine crosslinks between silk fibroin proteins via horseradish peroxidase has resulted in a highly elastic hydrogel but exhibits time-dependent stiffening related to silk self-assembly and crystallization. Utilizing the same method of crosslinking, tyramine-substituted HA forms hydrophilic and bioactive hydrogels that tend to have limited mechanics and degrade rapidly. To address the limitations of these singular component scaffolds, HA was covalently crosslinked with silk, forming a composite hydrogel that exhibited both mechanical integrity and hydrophilicity. The composite hydrogels were assessed using unconfined compression and infrared spectroscopy to reveal of the physical properties over time in relation to polymer concentration. In addition, the hydrogels were characterized by enzymatic degradation and for cytotoxicity. Results showed that increasing HA concentration, decreased gelation time, increased degradation rate, and reduced changes that were observed over time in mechanics, water retention, and crystallization. These hydrogel composites provide a biologically relevant system with controllable temporal stiffening and elasticity, thus offering enhanced tunable scaffolds for short or long term applications in tissue engineering. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. How Molecular Structure Affects Mechanical Properties of an Advanced Polymer

    NASA Technical Reports Server (NTRS)

    Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.; Hinkley, Jeffrey A.

    2000-01-01

    density was performed over a range of temperatures below the glass transition temperature. The physical characterization, elastic properties and notched tensile strength all as a function of molecular weight and test temperature were determined. For the uncrosslinked SI material, it was shown that notched tensile strength is a strong function of both temperature and molecular weight, whereas stiffness is only a strong function of temperature. For the crosslinked PETI-SI material, it was shown that the effect of crosslinking significantly enhances the mechanical performance of the low molecular weight material; comparable to that exhibited by the high molecular weight material.

  9. Cytocompatible and water stable ultrafine protein fibers for tissue engineering

    NASA Astrophysics Data System (ADS)

    Jiang, Qiuran

    This dissertation proposal focuses on the development of cytocompatible and water stable protein ultrafine fibers for tissue engineering. The protein-based ultrafine fibers have the potential to be used for biomedicine, due to their biocompatibility, biodegradability, similarity to natural extracellular matrix (ECM) in physical structure and chemical composition, and superior adsorption properties due to their high surface to volume ratio. However, the current technologies to produce the protein-based ultrafine fibers for biomedical applications still have several problems. For instance, the current electrospinning and phase separation technologies generate scaffolds composed of densely compacted ultrafine fibers, and cells can spread just on the surface of the fiber bulk, and hardly penetrate into the inner sections of scaffolds. Thus, these scaffolds can merely emulate the ECM as a two dimensional basement membrane, but are difficult to mimic the three dimensional ECM stroma. Moreover, the protein-based ultrafine fibers do not possess sufficient water stability and strength for biomedical applications, and need modifications such as crosslinking. However, current crosslinking methods are either high in toxicity or low in crosslinking efficiency. To solve the problems mentioned above, zein, collagen, and gelatin were selected as the raw materials to represent plant proteins, animal proteins, and denatured proteins in this dissertation. A benign solvent system was developed specifically for the fabrication of collagen ultrafine fibers. In addition, the gelatin scaffolds with a loose fibrous structure, high cell-accessibility and cell viability were produced by a novel ultralow concentration phase separation method aiming to simulate the structure of three dimensional (3D) ECM stroma. Non-toxic crosslinking methods using citric acid as the crosslinker were also developed for electrospun or phase separated scaffolds from these three proteins, and proved to be efficient to enhance the strength and water stability of scaffolds. The crosslinked protein scaffolds showed higher cytocompatibility than the polylactic acid scaffolds and the fibers crosslinked by glutaraldehyde. The potential of using these protein-based ultrafine fibers crosslinked by citric acid for tissue engineering has been proved in this dissertation.

  10. Fabrication of chemically cross-linked porous gelatin matrices.

    PubMed

    Bozzini, Sabrina; Petrini, Paola; Altomare, Lina; Tanzi, Maria Cristina

    2009-01-01

    The aim of this study was to chemically cross-link gelatin, by reacting its free amino groups with an aliphatic diisocyanate. To produce hydrogels with controllable properties, the number of reacting amino groups was carefully determined. Porosity was introduced into the gelatin-based hydrogels through the lyophilization process. Porous and non-porous matrices were characterized with respect to their chemical structure, morphology, water uptake and mechanical properties. The physical, chemical and mechanical properties of the porous matrices are related to the extent of their cross-linking, showing that they can be controlled by varying the reaction parameters. Water uptake values (24 hours) vary between 160% and 200% as the degree of cross-linking increases. The flexibility of the samples also decreases by changing the extent of cross-linking. Young's modulus shows values between 0.188 KPa, for the highest degree, and 0.142 KPa for the lowest degree. The matrices are potential candidates for use as tissue-engineering scaffolds by modulating their physical chemical properties according to the specific application.

  11. Influence of cross-linkers on the cohesive and adhesive self-healing ability of polysulfide-based thermosets.

    PubMed

    Lafont, U; van Zeijl, H; van der Zwaag, S

    2012-11-01

    Synthetic systems with intrinsic self-repairing or self-healing abilities have emerged during the past decade. In this work, the influence of the cross-linker and chain rigidity on the healing ability of thermoset rubbers containing disulfide bonds have been investigated. The produced materials exhibit adhesive and cohesive self-healing properties. The recovery of these two functionalities upon the thermally triggered healing events has shown to be highly dependent on the network cross-link density and chain rigidity. As a result, depending on the rubber thermoset intrinsic physical properties, the thermal mending leading to full cohesive recovery can be achieved in 20-300 min at a modest healing temperature of 65 °C. The adhesive strength ranges from 0.2 to 0.5 MPa and is fully recovered even after multiple failure events.

  12. Effect of concentration of polyfunctional monomers on physical properties of acrylonitrile butadiene rubber under electron-beam irradiation

    NASA Astrophysics Data System (ADS)

    Yasin, Tariq; Ahmed, Shamshad; Ahmed, Munir; Yoshii, Fumio

    2005-06-01

    An investigation has been undertaken to find out the effect of concentration of different polyfunctional monomers (PFMs) on the physical properties of the acrylonitrile-butadiene rubber (NBR) crosslinked by electron beam (EB). The PFMs used were diethylene glycol dimethacrylate, trimethylol propane trimethacrylate and trimethylol propane triacrylate. The physical properties of EB-irradiated NBR sheets were evaluated by measuring the tensile strength, elongation percent at break, hardness and gel fraction. The results showed a remarkable increase in tensile strength, hardness and gel fraction as the concentration of PFMs was increased from 1 part per hundred (phr) to 5 phr in the NBR samples whereas elongation percent decreased in a steady manner. The improvement in physical properties of radiation crosslinked NBR in the presence of PFMs may be attributed to its increased crosslinking density as observed by the corresponding increase in gel content.

  13. Cross-linked lysozyme crystal templated synthesis of Au nanoparticles as high-performance recyclable catalysts.

    PubMed

    Liang, Miao; Wang, Libing; Liu, Xia; Qi, Wei; Su, Rongxin; Huang, Renliang; Yu, Yanjun; He, Zhimin

    2013-06-21

    Bio-nanomaterials fabricated using a bioinspired templating technique represent a novel class of composite materials with diverse applications in biomedical, electronic devices, drug delivery, and catalysis. In this study, Au nanoparticles (NPs) are synthesized within the solvent channels of cross-linked lysozyme crystals (CLLCs) in situ without the introduction of extra chemical reagents or physical treatments. The as-prepared AuNPs-in-protein crystal hybrid materials are characterized by light microscopy, transmission electron microscopy, x-ray diffraction, and Fourier-transform infrared spectroscopy analyses. Small AuNPs with narrow size distribution reveal the restriction effects of the porous structure in the lysozyme crystals. These composite materials are proven to be active heterogeneous catalysts for the reduction of 4-nitrophenol to 4-aminophenol. These catalysts can be easily recovered and reused at least 20 times because of the physical stability and macro-dimension of CLLCs. This work is the first to use CLLCs as a solid biotemplate for the preparation of recyclable high-performance catalysts.

  14. A water-responsive shape memory ionomer with permanent shape reconfiguration ability

    NASA Astrophysics Data System (ADS)

    Bai, Yongkang; Zhang, Jiwen; Tian, Ran; Chen, Xin

    2018-04-01

    In this work, a water-responsive shape memory ionomer with high toughness was fabricated by cross-linking hyaluronic acid sodium (HAS) and polyvinyl alcohol (PVA) through coordination interactions. The strong Fe3+-carboxyl (from HAS) coordination interactions served as main physical cross-linking points for the performance of water-responsive shape memory, which associated with the flexibility of PVA chain producing excellent mechanical properties of this ionomer. The optimized ionomer was not only able to recover to its original shape within just 22 s by exposing to water, but exhibited high tensile strength up to 35.4 MPa and 4 times higher tractility than the ionomer without PVA. Moreover, the ionomers can be repeatedly programed to various new permanent shapes on demand due to the reversible physical interactions, which still performed complete and fast geometric recovery under stimuli even after 4 cycles of reprograming with 3 different shapes. The excellent shape memory and strong mechanical behaviors make our ionomers significant and promising smart materials for variety of applications.

  15. Cross-linked lysozyme crystal templated synthesis of Au nanoparticles as high-performance recyclable catalysts

    NASA Astrophysics Data System (ADS)

    Liang, Miao; Wang, Libing; Liu, Xia; Qi, Wei; Su, Rongxin; Huang, Renliang; Yu, Yanjun; He, Zhimin

    2013-06-01

    Bio-nanomaterials fabricated using a bioinspired templating technique represent a novel class of composite materials with diverse applications in biomedical, electronic devices, drug delivery, and catalysis. In this study, Au nanoparticles (NPs) are synthesized within the solvent channels of cross-linked lysozyme crystals (CLLCs) in situ without the introduction of extra chemical reagents or physical treatments. The as-prepared AuNPs-in-protein crystal hybrid materials are characterized by light microscopy, transmission electron microscopy, x-ray diffraction, and Fourier-transform infrared spectroscopy analyses. Small AuNPs with narrow size distribution reveal the restriction effects of the porous structure in the lysozyme crystals. These composite materials are proven to be active heterogeneous catalysts for the reduction of 4-nitrophenol to 4-aminophenol. These catalysts can be easily recovered and reused at least 20 times because of the physical stability and macro-dimension of CLLCs. This work is the first to use CLLCs as a solid biotemplate for the preparation of recyclable high-performance catalysts.

  16. Application of ion exchange resin in floating drug delivery system.

    PubMed

    Upadhye, Abhijeet A; Ambike, Anshuman A; Mahadik, Kakasaheb R; Paradkar, Anant

    2008-10-01

    The purpose of this study was to explore the application of low-density ion exchange resin (IER) Tulsion(R) 344, for floating drug delivery system (FDDS), and study the effect of its particle size on rate of complexation, water uptake, drug release, and in situ complex formation. Batch method was used for the preparation of complexes, which were characterized by physical methods. Tablet containing resin with high degree of crosslinking showed buoyancy lag time (BLT) of 5-8 min. Decreasing the particle size of resin showed decrease in water uptake and drug release, with no significant effect on the rate of complexation and in situ complex formation for both preformed complexes (PCs) and physical mixtures (PMs). Thus, low-density and high degree of crosslinking of resin and water uptake may be the governing factor for controlling the initial release of tablet containing PMs but not in situ complex formation. However, further sustained release may be due to in situ complex formation.

  17. Fabrication of elastomeric silk fibers.

    PubMed

    Bradner, Sarah A; Partlow, Benjamin P; Cebe, Peggy; Omenetto, Fiorenzo G; Kaplan, David L

    2017-09-01

    Methods to generate fibers from hydrogels, with control over mechanical properties, fiber diameter, and crystallinity, while retaining cytocompatibility and degradability, would expand options for biomaterials. Here, we exploited features of silk fibroin protein for the formation of tunable silk hydrogel fibers. The biological, chemical, and morphological features inherent to silk were combined with elastomeric properties gained through enzymatic crosslinking of the protein. Postprocessing via methanol and autoclaving provided tunable control of fiber features. Mechanical, optical, and chemical analyses demonstrated control of fiber properties by exploiting the physical cross-links, and generating double network hydrogels consisting of chemical and physical cross-links. Structure and chemical analyses revealed crystallinity from 30 to 50%, modulus from 0.5 to 4 MPa, and ultimate strength 1-5 MPa depending on the processing method. Fabrication and postprocessing combined provided fibers with extensibility from 100 to 400% ultimate strain. Fibers strained to 100% exhibited fourth order birefringence, revealing macroscopic orientation driven by chain mobility. The physical cross-links were influenced in part by the drying rate of fabricated materials, where bound water, packing density, and microstructural homogeneity influenced cross-linking efficiency. The ability to generate robust and versatile hydrogel microfibers is desirable for bottom-up assembly of biological tissues and for broader biomaterial applications. © 2017 Wiley Periodicals, Inc.

  18. Tuning chemical and physical cross-links in silk electrogels for morphological analysis and mechanical reinforcement.

    PubMed

    Lin, Yinan; Xia, Xiaoxia; Shang, Ke; Elia, Roberto; Huang, Wenwen; Cebe, Peggy; Leisk, Gary; Omenetto, Fiorenzo; Kaplan, David L

    2013-08-12

    Electrochemically controlled, reversible assembly of biopolymers into hydrogel structures is a promising technique for on-demand cell or drug encapsulation and release systems. An electrochemically sol-gel transition has been demonstrated in regenerated Bombyx mori silk fibroin, offering a controllable way to generate biocompatible and reversible adhesives and other biomedical materials. Despite the involvement of an electrochemically triggered electrophoretic migration of the silk molecules, the mechanism of the reversible electrogelation remains unclear. It is, however, known that the freshly prepared silk electrogels (e-gels) adopt a predominantly random coil conformation, indicating a lack of cross-linking as well as thermal, mechanical, and morphological stabilities. In the present work, the tuning of covalent and physical β-sheet cross-links in silk hydrogels was studied for programming the structural properties. Scanning electron microscopy (SEM) revealed delicate morphology, including locally aligned fibrillar structures, in silk e-gels, preserved by combining glutaraldehyde-cross-linking and ethanol dehydration. Fourier transform infrared (FTIR) spectroscopic analysis of either electrogelled, vortex-induced or spontaneously formed silk hydrogels showed that the secondary structure of silk e-gels was tunable between non-β-sheet-dominated and β-sheet-dominated states. Dynamic oscillatory rheology confirmed the mechanical reinforcement of silk e-gels provided by controlled chemical and physical cross-links. The selective incorporation of either chemical or physical or both cross-links into the electrochemically responsive, originally unstructured silk e-gel should help in the design for electrochemically responsive protein polymers.

  19. Mechanisms of plastic deformation in highly cross-linked UHMWPE for total hip components--the molecular physics viewpoint.

    PubMed

    Takahashi, Yasuhito; Shishido, Takaaki; Yamamoto, Kengo; Masaoka, Toshinori; Kubo, Kosuke; Tateiwa, Toshiyuki; Pezzotti, Giuseppe

    2015-02-01

    Plastic deformation is an unavoidable event in biomedical polymeric implants for load-bearing application during long-term in-vivo service life, which involves a mass transfer process, irreversible chain motion, and molecular reorganization. Deformation-induced microstructural alterations greatly affect mechanical properties and durability of implant devices. The present research focused on evaluating, from a molecular physics viewpoint, the impact of externally applied strain (or stress) in ultra-high molecular weight polyethylene (UHMWPE) prostheses, subjected to radiation cross-linking and subsequent remelting for application in total hip arthroplasty (THA). Two different types of commercial acetabular liners, which belong to the first-generation highly cross-linked UHMWPE (HXLPE), were investigated by means of confocal/polarized Raman microprobe spectroscopy. The amount of crystalline region and the spatial distribution of molecular chain orientation were quantitatively analyzed according to a combined theory including Raman selection rules for the polyethylene orthorhombic structure and the orientation distribution function (ODF) statistical approach. The structurally important finding was that pronounced recrystallization and molecular reorientation increasingly appeared in the near-surface regions of HXLPE liners with increasing the amount of plastic (compressive) deformation stored in the microstructure. Such molecular rearrangements, occurred in response to external strains, locally increase surface cross-shear (CS) stresses, which in turn trigger microscopic wear processes in HXLPE acetabular liners. Thus, on the basis of the results obtained at the molecular scale, we emphasize here the importance of minimizing the development of irrecoverable deformation strain in order to retain the pristine and intrinsically high wear performance of HXLPE components. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Physical determinants of bipolar mitotic spindle assembly and stability in fission yeast

    NASA Astrophysics Data System (ADS)

    Betterton, Meredith; Blackwell, Robert; Edelmaier, Christopher; Sweezy-Schindler, Oliver; Lamson, Adam; Gergely, Zachary; O'Toole, Eileen; Crapo, Ammon; Hough, Loren; McIntosh, J. Richard; Glaser, Matthew

    Mitotic spindles use an elegant bipolar architecture to segregate duplicated chromosomes with high fidelity. Bipolar spindles form from a monopolar initial condition; this is the most fundamental construction problem that the spindle must solve. Microtubules, motors, and crosslinkers are important for bipolarity, but the mechanisms necessary and sufficient for spindle assembly remain unknown. Here we describe a physical model that exhibits de novo bipolar spindle formation. We began with previously published data on fission-yeast spindle-pole-body size and microtubule number, kinesin-5 motors, kinesin-14 motors, and passive crosslinkers. Our model results agree quantitatively with our experiments in fission yeast, thereby establishing a minimal system with which to interrogate collective self assembly. By varying features of our model, we identify a set of functions essential for the generation and stability of spindle bipolarity. When kinesin-5 motors are present, their bidirectionality is essential, but spindles can form in the presence of passive crosslinkers alone. We also identify characteristic failed states of spindle assembly, which are avoided by creation and maintenance of antiparallel microtubule overlaps. DMR-0847685, DMR-1551095, DMR-1420736, K25GM110486, R01GM104976, R01GM033787.

  1. Ribose mediated crosslinking of collagen-hydroxyapatite hybrid scaffolds for bone tissue regeneration using biomimetic strategies.

    PubMed

    Krishnakumar, Gopal Shankar; Gostynska, Natalia; Campodoni, Elisabetta; Dapporto, Massimiliano; Montesi, Monica; Panseri, Silvia; Tampieri, Anna; Kon, Elizaveta; Marcacci, Maurilio; Sprio, Simone; Sandri, Monica

    2017-08-01

    This study explores for the first time the application of ribose as a highly biocompatible agent for the crosslinking of hybrid mineralized constructs, obtained by bio-inspired mineralization of self-assembling Type I collagen matrix with magnesium-doped-hydroxyapatite nanophase, towards a biomimetic mineralized 3D scaffolds (MgHA/Coll) with excellent compositional and structural mimicry of bone tissue. To this aim, two different crosslinking mechanisms in terms of pre-ribose glycation (before freeze drying) and post-ribose glycation (after freeze drying) were investigated. The obtained results explicate that with controlled freeze-drying, highly anisotropic porous structures with opportune macro-micro porosity are obtained. The physical-chemical features of the scaffolds characterized by XRD, FTIR, ICP and TGA demonstrated structural mimicry analogous to the native bone. The influence of ribose greatly assisted in decreasing solubility and increased enzymatic resistivity of the scaffolds. In addition, enhanced mechanical behaviour in response to compressive forces was achieved. Preliminary cell culture experiments reported good cytocompatibility with extensive cell adhesion, proliferation and colonization. Overall, scaffolds developed by pre-ribose glycation process are preferred, as the related crosslinking technique is more facile and robust to obtain functional scaffolds. As a proof of concept, we have demonstrated that ribose crosslinking is cost-effective, safe and functionally effective. This study also offers new insights and opportunities in developing promising scaffolds for bone tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Macromolecular crowding-assisted fabrication of liquid-crystalline imprinted polymers.

    PubMed

    Zhang, Chen; Zhang, Jing; Huang, Yan-Ping; Liu, Zhao-Sheng

    2015-04-01

    A macromolecular crowding-assisted liquid-crystalline molecularly imprinted monolith (LC-MIM) was prepared successfully for the first time. The imprinted stationary phase was synthesized with polymethyl methacrylate (PMMA) or polystyrene (PS) as the crowding agent, 4-cyanophenyl dicyclohexyl propylene (CPCE) as the liquid-crystal monomer, and hydroquinidine as the pseudo-template for the chiral separation of cinchona alkaloids in HPLC. A low level of cross-linker (26%) has been found to be sufficient to achieve molecular recognition on the crowding-assisted LC-MIM due to the physical cross-linking of mesogenic groups in place of chemical cross-linking, and baseline separation of quinidine and quinine could be achieved with good resolution (R(s) = 2.96), selectivity factor (α = 2.16), and column efficiency (N = 2650 plates/m). In contrast, the LC-MIM prepared without crowding agents displayed the smallest diastereoselectivity (α = 1.90), while the crowding-assisted MIM with high level of cross-linker (80%) obtained the greatest selectivity factor (α = 7.65), but the lowest column efficiency (N = 177 plates/m).

  3. Investigation of different cross-linking approaches on 3D gelatin scaffolds for tissue engineering application: A comparative analysis.

    PubMed

    Shankar, K Gopal; Gostynska, Natalia; Montesi, Monica; Panseri, Silvia; Sprio, Simone; Kon, Elizaveta; Marcacci, Maurilio; Tampieri, Anna; Sandri, Monica

    2017-02-01

    The present study aims to investigate the physical-chemical and biological features exhibited by porous scaffolds for regeneration of cartilaginous tissues obtained through stabilization of 3D gelatin hydrogels by physical (DHT), chemical (BDDGE) and natural (Genipin) cross-linking approaches. The study aimed at comparatively assessing the porous microstructure and the long-term resistance of the scaffolds upon degradation in wet physiological conditions (37°C, pH=7.4). The degree of cross-linking increases as function of incorporation of cross-linkers which was maximum up to 73% for BDDGE. The infrared spectroscopy and thermal analysis confirmed the gelatin structure was preserved during the cross-linking treatments. Mechanical properties of the scaffolds were analysed by static and dynamic compression test, which showed different viscoelastic behaviour upon various cross-linking strategies. The biological performance of the scaffolds investigated using human chondrocytes showed good cell adhesion, viability and proliferation, as well as extensive 3D scaffold colonization. Besides, the analysis of gene expression related to the formation of new chondral tissue reported increasing ability with time in the formation of new extra-cellular matrix. In conclusion, out of three different cross-linking methods, the gelatin scaffolds subjected to dehydrothermal treatment (DHT) represented to be the most favourable 3D scaffold for cartilage regeneration. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Friedel-Crafts Crosslinked Highly Sulfonated Polyether Ether Ketone (SPEEK) Membranes for a Vanadium/Air Redox Flow Battery.

    PubMed

    Merle, Géraldine; Ioana, Filipoi Carmen; Demco, Dan Eugen; Saakes, Michel; Hosseiny, Seyed Schwan

    2013-12-30

    Highly conductive and low vanadium permeable crosslinked sulfonated poly(ether ether ketone) (cSPEEK) membranes were prepared by electrophilic aromatic substitution for a Vanadium/Air Redox Flow Battery (Vanadium/Air-RFB) application. Membranes were synthesized from ethanol solution and crosslinked under different temperatures with 1,4-benzenedimethanol and ZnCl2 via the Friedel-Crafts crosslinking route. The crosslinking mechanism under different temperatures indicated two crosslinking pathways: (a) crosslinking on the sulfonic acid groups; and (b) crosslinking on the backbone. It was observed that membranes crosslinked at a temperature of 150 °C lead to low proton conductive membranes, whereas an increase in crosslinking temperature and time would lead to high proton conductive membranes. High temperature crosslinking also resulted in an increase in anisotropy and water diffusion. Furthermore, the membranes were investigated for a Vanadium/Air Redox Flow Battery application. Membranes crosslinked at 200 °C for 30 min with a molar ratio between 2:1 (mol repeat unit:mol benzenedimethanol) showed a proton conductivity of 27.9 mS/cm and a 100 times lower VO2+ crossover compared to Nafion.

  5. Highly stable lipid-encapsulation of fluorescent nanodiamonds for bioimaging applications.

    PubMed

    Sotoma, Shingo; Hsieh, Feng-Jen; Chen, Yen-Wei; Tsai, Pei-Chang; Chang, Huan-Cheng

    2018-01-23

    Highly stable lipid-encapsulated fluorescent nanodiamonds (FNDs) are produced by photo-crosslinking of diacetylene-containing lipids physically attached to the FND surface. Not only is this coating method simple and fast, but also it gives the FND-lipid hybrids favorable properties for bioapplications. The hybrids are useful as fluorescent biolabels as well as fiducial markers for correlative light and electron microscopy.

  6. Bio-inspired layered chitosan/graphene oxide nanocomposite hydrogels with high strength and pH-driven shape memory effect.

    PubMed

    Zhang, Yaqian; Zhang, Min; Jiang, Haoyang; Shi, Jinli; Li, Feibo; Xia, Yanhong; Zhang, Gongzheng; Li, Huanjun

    2017-12-01

    The layered nanocomposite hydrogel films containing chitosan (CS) and graphene oxide (GO) have been prepared by water evaporation induced self-assembly and subsequent physical cross-linking in alkaline solution. The layered CS/GO hydrogel films obtained have a nacre-like brick-and-mortar microstructure, which contributes to their excellent mechanical properties. The tensile strength and elongation at break of the hydrogel films with 5wt% GO are 5.35MPa and 193.5%, respectively, which are comparable to natural costal cartilage. Furthermore, the CS/GO hydrogel films exhibited pH-driven shape memory effect, and this unique phenomenon is mainly attributed to the reversible transition of partial physically cross-linking corresponding to hydrogen bondings and hydrophobic interactions between CS polymer chains due to pH changing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Friedel–Crafts Crosslinked Highly Sulfonated Polyether Ether Ketone (SPEEK) Membranes for a Vanadium/Air Redox Flow Battery

    PubMed Central

    Merle, Géraldine; Ioana, Filipoi Carmen; Demco, Dan Eugen; Saakes, Michel; Hosseiny, Seyed Schwan

    2014-01-01

    Highly conductive and low vanadium permeable crosslinked sulfonated poly(ether ether ketone) (cSPEEK) membranes were prepared by electrophilic aromatic substitution for a Vanadium/Air Redox Flow Battery (Vanadium/Air-RFB) application. Membranes were synthesized from ethanol solution and crosslinked under different temperatures with 1,4-benzenedimethanol and ZnCl2 via the Friedel–Crafts crosslinking route. The crosslinking mechanism under different temperatures indicated two crosslinking pathways: (a) crosslinking on the sulfonic acid groups; and (b) crosslinking on the backbone. It was observed that membranes crosslinked at a temperature of 150 °C lead to low proton conductive membranes, whereas an increase in crosslinking temperature and time would lead to high proton conductive membranes. High temperature crosslinking also resulted in an increase in anisotropy and water diffusion. Furthermore, the membranes were investigated for a Vanadium/Air Redox Flow Battery application. Membranes crosslinked at 200 °C for 30 min with a molar ratio between 2:1 (mol repeat unit:mol benzenedimethanol) showed a proton conductivity of 27.9 mS/cm and a 100 times lower VO2+ crossover compared to Nafion. PMID:24957118

  8. Link establishment criterion and topology optimization for hybrid GPS satellite communications with laser crosslinks

    NASA Astrophysics Data System (ADS)

    Li, Lun; Wei, Sixiao; Tian, Xin; Hsieh, Li-Tse; Chen, Zhijiang; Pham, Khanh; Lyke, James; Chen, Genshe

    2018-05-01

    In the current global positioning system (GPS), the reliability of information transmissions can be enhanced with the aid of inter-satellite links (ISLs) or crosslinks between satellites. Instead of only using conventional radio frequency (RF) crosslinks, the laser crosslinks provide an option to significantly increase the data throughput. The connectivity and robustness of ISL are needed for analysis, especially for GPS constellations with laser crosslinks. In this paper, we first propose a hybrid GPS communication architecture in which uplinks and downlinks are established via RF signals and crosslinks are established via laser links. Then, we design an optical crosslink assignment criteria considering the practical optical communication factors such as optical line- of-sight (LOS) range, link distance, and angular velocity, etc. After that, to further improve the rationality of establishing crosslinks, a topology control algorithm is formulated to optimize GPS crosslink networks at both physical and network layers. The RF transmission features for uplink and downlink and optical transmission features for crosslinks are taken into account as constraints for the optimization problem. Finally, the proposed link establishment criteria are implemented for GPS communication with optical crosslinks. The designs of this paper provide a potential crosslink establishment and topology control algorithm for the next generation GPS.

  9. In-situ cross linking of polyvinyl alcohol. [application to battery separator films

    NASA Technical Reports Server (NTRS)

    Philipp, W. H.; Hsu, L. C.; Sheibley, D. W. (Inventor)

    1981-01-01

    A method of producing a crosslinked polyvinyl alcohol structure, such as a battery separator membrane or electrode envelope is described. An aqueous solution of a film-forming polyvinyl alcohol is admixed with an aldehyde crosslinking agent a basic pH to inhibit crosslinking. The crosslinking agent, perferably a dialdehyde such as glutaraldehyde, is used in an amount of from about 1/2 to about 20% of the theoretical amount required to crosslink all of the hydroxyl groups of the polymer. The aqueous admixture is formed into a desired physical shape, such as by casting a sheet of the solution. The sheet is then dried to form a self-supporting film. Crosslinking is then effected by immersing the film in aqueous acid solution. The resultant product has excellent properties for use as a battery separator.

  10. Fracture Simulation of Highly Crosslinked Polymer Networks: Triglyceride-Based Adhesives

    NASA Astrophysics Data System (ADS)

    Lorenz, Christian; Stevens, Mark; Wool, Richard

    2003-03-01

    The ACRES program at the U. of Delaware has shown that triglyceride oils derived from plants are a favorable alternative to the traditional adhesives. The triglyceride networks are formed from an initial mixture of styrene monomers, free-radical initiators and triglycerides. We have performed simulations to study the effect of physical composition and physical characteristics of the triglyceride network on the strength of triglyceride network. A coarse-grained, bead-spring model of the triglyceride system is used. The average triglyceride consists of 6 beads per chain, the styrenes are represented as a single bead and the initiators are two bead chains. The polymer network is formed using an off-lattice 3D Monte Carlo simulation, in which the initiators activate the styrene and triglyceride reactive sites and then bonds are randomly formed between the styrene and active triglyceride monomers producing a highly crosslinked polymer network. Molecular dynamics simulations of the network under tensile and shear strains were performed to determine the strength as a function of the network composition. The relationship between the network structure and its strength will also be discussed.

  11. Alkali-catalyzed low temperature wet crosslinking of plant proteins using carboxylic acids.

    PubMed

    Reddy, Narendra; Li, Ying; Yang, Yiqi

    2009-01-01

    We report the development of a new method of alkali-catalyzed low temperature wet crosslinking of plant proteins to improve their breaking tenacity without using high temperatures or phosphorus-containing catalysts used in conventional poly(carboxylic acid) crosslinking of cellulose and proteins. Carboxylic acids are preferred over aldehyde-containing crosslinkers for crosslinking proteins and cellulose because of their low toxicity and cost and ability to improve the desired properties of the materials. However, current knowledge in carboxylic acid crosslinking of proteins and cellulose requires the use of carboxylic acids with at least three carboxylic groups, toxic phosphorous-containing catalysts and curing at high temperatures (150-185 degrees C). The use of high temperatures and low pH in conventional carboxylic acid crosslinking has been reported to cause substantial strength loss and/or undesired changes in the properties of the crosslinked materials. In this research, gliadin, soy protein, and zein fibers have been crosslinked with malic acid, citric acid, and butanetetracarboxylic acid to improve the tenacity of the fibers without using high temperatures and phosphorus-containing catalysts. The new method of wet crosslinking using carboxylic acids containing two or more carboxylic groups will be useful to crosslink proteins for various industrial applications.

  12. Dendrite Suppression by Synergistic Combination of Solid Polymer Electrolyte Crosslinked with Natural Terpenes and Lithium-Powder Anode for Lithium-Metal Batteries.

    PubMed

    Shim, Jimin; Lee, Jae Won; Bae, Ki Yoon; Kim, Hee Joong; Yoon, Woo Young; Lee, Jong-Chan

    2017-05-22

    Lithium-metal anode has fundamental problems concerning formation and growth of lithium dendrites, which prevents practical applications of next generation of high-capacity lithium-metal batteries. The synergistic combination of solid polymer electrolyte (SPE) crosslinked with naturally occurring terpenes and lithium-powder anode is promising solution to resolve the dendrite issues by substituting conventional liquid electrolyte/separator and lithium-foil anode system. A series of SPEs based on polysiloxane crosslinked with natural terpenes are prepared by facile thiol-ene click reaction under mild condition and the structural effect of terpene crosslinkers on electrochemical properties is studied. Lithium powder with large surface area is prepared by droplet emulsion technique (DET) and used as anode material. The effect of the physical state of electrolyte (solid/liquid) and morphology of lithium-metal anode (powder/foil) on dendrite growth behavior is systematically studied. The synergistic combination of SPE and lithium-powder anode suggests an effective solution to suppress the dendrite growth owing to the formation of a stable solid-electrolyte interface (SEI) layer and delocalized current density. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Crosslinked anion exchange membranes with primary diamine-based crosslinkers for vanadium redox flow battery application

    NASA Astrophysics Data System (ADS)

    Cha, Min Suc; Jeong, Hwan Yeop; Shin, Hee Young; Hong, Soo Hyun; Kim, Tae-Ho; Oh, Seong-Geun; Lee, Jang Yong; Hong, Young Taik

    2017-09-01

    A series of polysulfone-based crosslinked anion exchange membranes (AEMs) with primary diamine-based crosslinkers has been prepared via simple a crosslinking process as low-cost and durable membranes for vanadium redox flow batteries (VRFBs). Chloromethylated polysulfone is used as a precursor polymer for crosslinked AEMs (CAPSU-x) with different degrees of crosslinking. Among the developed AEMs, CAPSU-2.5 shows outstanding dimensional stability and anion (Cl-, SO42-, and OH-) conductivity. Moreover, CAPSU-2.5 exhibits much lower vanadium ion permeability (2.72 × 10-8 cm2 min-1) than Nafion 115 (2.88 × 10-6 cm2 min-1), which results in an excellent coulombic efficiency of 100%. The chemical and operational stabilities of the membranes have been investigated via ex situ soaking tests in 0.1 M VO2+ solution and in situ operation tests for 100 cycles, respectively. The excellent chemical, physical, and electrochemical properties of the CAPSU-2.5 membrane make it suitable for use in VRFBs.

  14. Mechanical and spectroscopic characterization of crosslinked zein films cast from solutions of acetic acid leading to a new mechanism for the crosslinking of oleic acid plasticized zein films.

    PubMed

    Turasan, Hazal; Barber, Emma A; Malm, Morgan; Kokini, Jozef L

    2018-06-01

    This study discovered through FTIR, FT-Raman and rheological measurements that glutaraldehyde binds to zein through the amine groups of glutamine turns by replacing the already-bonded oleic acid molecules and forming imine structures. As a secondary crosslinking mechanism, glutaraldehyde unfolds some of the α-helices and turns them into β-sheets. While crosslinking resulted in stiffer and less ductile zein films, it made the surface of the films rougher, measured using AFM, and more hydrophilic, measured using WCA. In the crosslinking conditions in this study, the number of crosslinks estimated from rubber elasticity theory were not enough to change the water vapor permeability of the films significantly. Improving the understanding of crosslinking mechanism and its effects on physical and chemical properties of zein films can be useful to develop stiffer, stronger and more durable platforms for biodegradable biosensors, microfluidic devices or scaffolds. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Transglutaminase catalyzed cross-linking of sodium caseinate improves oxidative stability of flaxseed oil emulsion.

    PubMed

    Ma, Hairan; Forssell, Pirkko; Kylli, Petri; Lampi, Anna-Maija; Buchert, Johanna; Boer, Harry; Partanen, Riitta

    2012-06-20

    Sodium caseinate was modified by transglutaminase catalyzed cross-linking reaction prior to the emulsification process in order to study the effect of cross-linking on the oxidative stability of protein stabilized emulsions. The extent of the cross-linking catalyzed by different dosages of transglutaminase was investigated by following the ammonia production during the reaction and using SDS-PAGE gel. O/W emulsions prepared with the cross-linked and non-cross-linked sodium caseinates were stored for 30 days under the same conditions. Peroxide value measurement, oxygen consumption measurement, and headspace gas chromatography analysis were used to study the oxidative stability of the emulsions. The emulsion made of the cross-linked sodium caseinate showed an improved oxidative stability with reduced formation of fatty acid hydroperoxides and volatiles and a longer period of low rate oxygen consumption. The improving effect of transglutaminase catalyzed cross-linking could be most likely attributed to the enhanced physical stability of the interfacial protein layer against competitive adsorption by oil oxidation products.

  16. Design and fabrication of a chitosan hydrogel with gradient structures via a step-by-step cross-linking process.

    PubMed

    Xu, Yongxiang; Yuan, Shenpo; Han, Jianmin; Lin, Hong; Zhang, Xuehui

    2017-11-15

    The development of scaffolds to mimic the gradient structure of natural tissue is an important consideration for effective tissue engineering. In the present study, a physical cross-linking chitosan hydrogel with gradient structures was fabricated via a step-by-step cross-linking process using sodium tripolyphosphate and sodium hydroxide as sequential cross-linkers. Chitosan hydrogels with different structures (single, double, and triple layers) were prepared by modifying the gelling process. The properties of the hydrogels were further adjusted by varying the gelling conditions, such as gelling time, pH, and composition of the crosslinking solution. Slight cytotoxicity was showed in MTT assay for hydrogels with uncross-linking chitosan solution and non-cytotoxicity was showed for other hydrogels. The results suggest that step-by-step cross-linking represents a practicable method to fabricate scaffolds with gradient structures. Copyright © 2017. Published by Elsevier Ltd.

  17. Interpenetrating polymer networks from acetylene terminated materials

    NASA Technical Reports Server (NTRS)

    Connell, J. W.; Hergenrother, P. M.

    1989-01-01

    As part of a program to develop high temperature/high performance structural resins for aerospace applications, the chemistry and properties of a novel class of interpenetrating polymer networks (IPNs) were investigated. These IPNs consist of a simple diacetylenic compound (aspartimide) blended with an acetylene terminated arylene ether oligomer. Various compositional blends were prepared and thermally cured to evaluate the effect of crosslink density on resin properties. The cured IPNs exhibited glass transition temperatures ranging from 197 to 254 C depending upon the composition and cure temperature. The solvent resistance, fracture toughness and coefficient of thermal expansion of the cured blends were related to the crosslink density. Isothermal aging of neat resin moldings, adhesive and composite specimens showed a postcure effect which resulted in improved elevated temperature properties. The chemistry, physical and mechanical properties of these materials will be discussed.

  18. Development of anion-selective membranes. [for energy storage

    NASA Technical Reports Server (NTRS)

    Lacey, R. E.; Cowsar, D. R.

    1975-01-01

    Methods were studied of preparing anion-exchange membranes that would have low resistance, high selectivity, and physical and chemical stability when used in acidic media in a redox energy storage system. Of the twelve systems selected for study, only the system that was based on crosslinked poly-4-vinylpyridinium chloride produced physically strong membranes when equilibrated in l M HCl. The resistivity of the best membrane was 12 ohm-cm, and the transference number for chloride ions was 0.81.

  19. Investigations into the mechanical and physical behavior of thermoplastic elastomers

    NASA Astrophysics Data System (ADS)

    Wright, Kathryn Janelle

    This thesis describes investigations into the physical and mechanical characteristics of two commercial thermoplastic elastomer (TPE) systems. Both systems studied exhibit elastomeric behavior similar to more traditional crosslinked elastomers; however, in these TPEs non-conventional polymer architectures and morphologies are used to produce their elastomeric behavior. The two TPEs of interest are ethylene-propylene random copolymers and dynamically vulcanized blends of ethylene-propylene-diene monomer (EPDM) and isotactic polypropylene (iPP). Very few studies have examined the mechanical behavior of these materials in terms of their composition and morphology. As such, the primary goal of this research is to both qualitatively and quantitatively understand the influence of composition and morphology on mechanical behavior. In additional very little information is available that compares their performance with that of crosslinked elastomers. As a result, the secondary goal is to qualitatively compare the mechanical responses of these TPEs with that of their more traditional counterparts. The ethylene-propylene copolymers studied have very high comonomer contents and exhibit slow crystallization kinetics. Their morphology consists of nanoscale crystallites embedded in an amorphous rubbery matrix. These crystallites act as physical crosslinks that allow for elasticity. Slow crystallization causes subsequent changes in mechanical behavior that take place over days and even weeks. Physical responses (e.g., density, crystallization kinetics, and crystal structure) of five copolymer compositions are investigated. Mechanical responses (e.g., stiffness, ductility, yielding, and reversibility) are also examined. Finally, the influence of morphology on deformation is studied using in situ analytical techniques. The EPDM/iPP blends are dynamically vulcanized which produces a complex morphology consisting of chemically crosslinked EPDM domains embedded within a semicrystalline iPP matrix. Six compositions are investigated as a function of three parameters: major volume fraction, iPP molecular weight, and EPDM cure state. The influence of these parameters on morphology and resulting mechanical behavior is examined. This work culminates in the development of a morphological model to describe the steady-state reversibility of these EPDM/iPP blends. The model is then evaluated in terms of composition and cure state.

  20. Antioxidant films based on cross-linked methyl cellulose and native Chilean berry for food packaging applications.

    PubMed

    López de Dicastillo, Carol; Rodríguez, Francisco; Guarda, Abel; Galotto, Maria José

    2016-01-20

    Development of antioxidant and antimicrobial active food packaging materials based on biodegradable polymer and natural plant extracts has numerous advantages as reduction of synthetic additives into the food, reduction of plastic waste, and food protection against microorganisms and oxidation reactions. In this way, active films based on methylcellulose (MC) and maqui (Aristotelia chilensis) berry fruit extract, as a source of antioxidants agents, were studied. On the other hand, due to the high water affinity of MC, this polymer was firstly cross-linked with glutaraldehyde (GA) at different concentrations. The results showed that the addition of GA decreased water solubility, swelling, water vapor permeability of MC films, and the release of antioxidant substances from the active materials increased with the concentration of GA. Natural extract and active cross-linked films were characterized in order to obtain the optimal formulation with the highest antioxidant activity and the best physical properties for latter active food packaging application. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Soft poly(2-chloroaniline)/pectin hydrogel and its electromechanical properties.

    PubMed

    Kongkaew, Wanar; Sangwan, Watchara; Lerdwijitjarud, Wanchai; Sirivat, Anuvat

    2018-01-01

    Pectin hydrogels were successfully fabricated with various physical crosslinkers and concentrations for soft actuator applications. A small amount of synthesized P2ClAn was added as a dispersed phase into the pectin matrix. The electromechanical properties of the pectin hydrogels and blends were investigated under the effects of electric field strength, ionic crosslinker type and concentration, and P2ClAn concentration. The electromechanical properties of the pectin hydrogel as crosslinked by Fe 2+ were superior to other pectin hydrogels. The pristine pectin hydrogel and the P2ClAn/Pectin hydrogel blended with 0.10%v/v P2ClAn provided the high storage modulus sensitivity values of 8.61 and 14.01, respectively, under the electric field strength of 800 V/mm. The P2ClAn/Pectin hydrogel blend responded to the electric field with higher dielectrophoretic forces, but lower deflections relative to the pristine pectin hydrogel due to the additional P2ClAn polarization and the latter lower rigidity.

  2. Early biocompatibility of crosslinked and non-crosslinked biologic meshes in a porcine model of ventral hernia repair.

    PubMed

    Melman, L; Jenkins, E D; Hamilton, N A; Bender, L C; Brodt, M D; Deeken, C R; Greco, S C; Frisella, M M; Matthews, B D

    2011-04-01

    Biologic meshes have unique physical properties as a result of manufacturing techniques such as decellularization, crosslinking, and sterilization. The purpose of this study is to directly compare the biocompatibility profiles of five different biologic meshes, AlloDerm(®) (non-crosslinked human dermal matrix), PeriGuard(®) (crosslinked bovine pericardium), Permacol(®) (crosslinked porcine dermal matrix), Strattice(®) (non-crosslinked porcine dermal matrix), and Veritas(®) (non-crosslinked bovine pericardium), using a porcine model of ventral hernia repair. Full-thickness fascial defects were created in 20 Yucatan minipigs and repaired with the retromuscular placement of biologic mesh 3 weeks later. Animals were euthanized at 1 month and the repair sites were subjected to tensile testing and histologic analysis. Samples of unimplanted (de novo) meshes and native porcine abdominal wall were also analyzed for their mechanical properties. There were no significant differences in the biomechanical characteristics between any of the mesh-repaired sites at 1 month postimplantation or between the native porcine abdominal wall without implanted mesh and the mesh-repaired sites (P > 0.05 for all comparisons). Histologically, non-crosslinked materials exhibited greater cellular infiltration, extracellular matrix (ECM) deposition, and neovascularization compared to crosslinked meshes. While crosslinking differentiates biologic meshes with regard to cellular infiltration, ECM deposition, scaffold degradation, and neovascularization, the integrity and strength of the repair site at 1 month is not significantly impacted by crosslinking or by the de novo strength/stiffness of the mesh.

  3. Multifunctional Nanostructured Conductive Polymer Gels: Synthesis, Properties, and Applications

    DOE PAGES

    Zhao, Fei; Shi, Ye; Pan, Lijia; ...

    2017-06-26

    Conductive polymers have attracted significant interest over the past few decades because they synergize the advantageous features of conventional polymeric materials and organic conductors. With rationally designed nanostructures, conductive polymers can further exhibit exceptional mechanical, electrical, and optical properties because of their confined dimensions at the nanoscale level. Among various nanostructured conductive polymers, conductive polymer gels (CPGs) with synthetically tunable hierarchical 3D network structures show great potential for a wide range of applications, such as bioelectronics, and energy storage/conversion devices owing to their structural features. CPGs retain the properties of nanosized conductive polymers during the assembly of the nanobuilding blocksmore » into a monolithic macroscopic structure while generating structure-derived features from the highly cross-linked network. In this Account, we review our recent progress on the synthesis, properties, and novel applications of dopant cross-linked CPGs. We first describe the synthetic strategies, in which molecules with multiple functional groups are adopted as cross-linkers to cross-link conductive polymer chains into a 3D molecular network. These cross-linking molecules also act as dopants to improve the electrical conductivity of the gel network. The microstructure and physical/chemical properties of CPGs can be tuned by controlling the synthetic conditions such as species of monomers and cross-linkers, reaction temperature, and solvents. By incorporating other functional polymers or particles into the CPG matrix, hybrid gels have been synthesized with tailored structures. These hybrid gel materials retain the functionalities from each component, as well as enable synergic effects to improve mechanical and electrical properties of CPGs. We then introduce the unique structure-derived properties of the CPGs. The network facilitates both electronic and ionic transport owing to the continuous pathways for electrons and hierarchical pores for ion diffusion. CPGs also provide high surface area and solvent compatibility, similar to natural gels. With these improved properties, CPGs have been explored to enable novel conceptual devices in diverse applications from smart electronics and ultrasensitive biosensors, to energy storage and conversion devices. CPGs have also been adopted for developing hybrid materials with multifunctionalities, such as stimuli responsiveness, self-healing properties, and super-repellency to liquid. With synthetically tunable physical/chemical properties, CPGs emerge as a unique material platform to develop novel multifunctional materials that have the potential to impact electronics, energy, and environmental technologies. Our hope is that this Account promotes further efforts toward synthetic control, fundamental investigation, and application exploration of CPGs.« less

  4. Multifunctional Nanostructured Conductive Polymer Gels: Synthesis, Properties, and Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Fei; Shi, Ye; Pan, Lijia

    Conductive polymers have attracted significant interest over the past few decades because they synergize the advantageous features of conventional polymeric materials and organic conductors. With rationally designed nanostructures, conductive polymers can further exhibit exceptional mechanical, electrical, and optical properties because of their confined dimensions at the nanoscale level. Among various nanostructured conductive polymers, conductive polymer gels (CPGs) with synthetically tunable hierarchical 3D network structures show great potential for a wide range of applications, such as bioelectronics, and energy storage/conversion devices owing to their structural features. CPGs retain the properties of nanosized conductive polymers during the assembly of the nanobuilding blocksmore » into a monolithic macroscopic structure while generating structure-derived features from the highly cross-linked network. In this Account, we review our recent progress on the synthesis, properties, and novel applications of dopant cross-linked CPGs. We first describe the synthetic strategies, in which molecules with multiple functional groups are adopted as cross-linkers to cross-link conductive polymer chains into a 3D molecular network. These cross-linking molecules also act as dopants to improve the electrical conductivity of the gel network. The microstructure and physical/chemical properties of CPGs can be tuned by controlling the synthetic conditions such as species of monomers and cross-linkers, reaction temperature, and solvents. By incorporating other functional polymers or particles into the CPG matrix, hybrid gels have been synthesized with tailored structures. These hybrid gel materials retain the functionalities from each component, as well as enable synergic effects to improve mechanical and electrical properties of CPGs. We then introduce the unique structure-derived properties of the CPGs. The network facilitates both electronic and ionic transport owing to the continuous pathways for electrons and hierarchical pores for ion diffusion. CPGs also provide high surface area and solvent compatibility, similar to natural gels. With these improved properties, CPGs have been explored to enable novel conceptual devices in diverse applications from smart electronics and ultrasensitive biosensors, to energy storage and conversion devices. CPGs have also been adopted for developing hybrid materials with multifunctionalities, such as stimuli responsiveness, self-healing properties, and super-repellency to liquid. With synthetically tunable physical/chemical properties, CPGs emerge as a unique material platform to develop novel multifunctional materials that have the potential to impact electronics, energy, and environmental technologies. Our hope is that this Account promotes further efforts toward synthetic control, fundamental investigation, and application exploration of CPGs.« less

  5. Multifunctional Nanostructured Conductive Polymer Gels: Synthesis, Properties, and Applications.

    PubMed

    Zhao, Fei; Shi, Ye; Pan, Lijia; Yu, Guihua

    2017-07-18

    Conductive polymers have attracted significant interest over the past few decades because they synergize the advantageous features of conventional polymeric materials and organic conductors. With rationally designed nanostructures, conductive polymers can further exhibit exceptional mechanical, electrical, and optical properties because of their confined dimensions at the nanoscale level. Among various nanostructured conductive polymers, conductive polymer gels (CPGs) with synthetically tunable hierarchical 3D network structures show great potential for a wide range of applications, such as bioelectronics, and energy storage/conversion devices owing to their structural features. CPGs retain the properties of nanosized conductive polymers during the assembly of the nanobuilding blocks into a monolithic macroscopic structure while generating structure-derived features from the highly cross-linked network. In this Account, we review our recent progress on the synthesis, properties, and novel applications of dopant cross-linked CPGs. We first describe the synthetic strategies, in which molecules with multiple functional groups are adopted as cross-linkers to cross-link conductive polymer chains into a 3D molecular network. These cross-linking molecules also act as dopants to improve the electrical conductivity of the gel network. The microstructure and physical/chemical properties of CPGs can be tuned by controlling the synthetic conditions such as species of monomers and cross-linkers, reaction temperature, and solvents. By incorporating other functional polymers or particles into the CPG matrix, hybrid gels have been synthesized with tailored structures. These hybrid gel materials retain the functionalities from each component, as well as enable synergic effects to improve mechanical and electrical properties of CPGs. We then introduce the unique structure-derived properties of the CPGs. The network facilitates both electronic and ionic transport owing to the continuous pathways for electrons and hierarchical pores for ion diffusion. CPGs also provide high surface area and solvent compatibility, similar to natural gels. With these improved properties, CPGs have been explored to enable novel conceptual devices in diverse applications from smart electronics and ultrasensitive biosensors, to energy storage and conversion devices. CPGs have also been adopted for developing hybrid materials with multifunctionalities, such as stimuli responsiveness, self-healing properties, and super-repellency to liquid. With synthetically tunable physical/chemical properties, CPGs emerge as a unique material platform to develop novel multifunctional materials that have the potential to impact electronics, energy, and environmental technologies. We hope that this Account promotes further efforts toward synthetic control, fundamental investigation, and application exploration of CPGs.

  6. High-Temperature Shape Memory Polymers

    NASA Technical Reports Server (NTRS)

    Yoonessi, Mitra; Weiss, Robert A.

    2012-01-01

    physical conformation changes when exposed to an external stimulus, such as a change in temperature. Such materials have a permanent shape, but can be reshaped above a critical temperature and fixed into a temporary shape when cooled under stress to below the critical temperature. When reheated above the critical temperature (Tc, also sometimes called the triggering or switching temperature), the materials revert to the permanent shape. The current innovation involves a chemically treated (sulfonated, carboxylated, phosphonated, or other polar function group), high-temperature, semicrystalline thermoplastic poly(ether ether ketone) (Tg .140 C, Tm = 340 C) mix containing organometallic complexes (Zn++, Li+, or other metal, ammonium, or phosphonium salts), or high-temperature ionic liquids (e.g. hexafluorosilicate salt with 1-propyl-3- methyl imidazolium, Tm = 210 C) to form a network where dipolar or ionic interactions between the polymer and the low-molecular-weight or inorganic compound forms a complex that provides a physical crosslink. Hereafter, these compounds will be referred to as "additives". The polymer is semicrystalline, and the high-melt-point crystals provide a temporary crosslink that acts as a permanent crosslink just so long as the melting temperature is not exceeded. In this example case, the melting point is .340 C, and the shape memory critical temperature is between 150 and 250 C. PEEK is an engineering thermoplastic with a high Young fs modulus, nominally 3.6 GPa. An important aspect of the invention is the control of the PEEK functionalization (in this example, the sulfonation degree), and the thermal properties (i.e. melting point) of the additive, which determines the switching temperature. Because the compound is thermoplastic, it can be formed into the "permanent" shape by conventional plastics processing operations. In addition, the compound may be covalently cross - linked after forming the permanent shape by S-PEEK by applying ionizing radiation ( radiation, neutrons), or by chemical crosslinking to form a covalent permanent network. With respect to other shape memory polymers, this invention is novel in that it describes the use of a thermoplastic composition that can be thermally molded or solution-cast into complex "permanent" shapes, and then reheated or redissolved and recast from solution to prepare another shape. It is also unique in that the shape memory behavior is provided by a non-polymer additive.

  7. Swelling and tensile properties of starch glycerol system with various crosslinking agents

    NASA Astrophysics Data System (ADS)

    Mohamed, R.; Mohd, N.; Nurazzi, N.; Siti Aisyah, M. I.; Fauzi, F. Mohd

    2017-07-01

    Brittle properties of starch had been overcome by the modification process. In this work, sago starch is being modified with variable amount of plasticiser, namely glycerol at 20 and 40% and crosslinking agent had been added to the system. The film of the modification and characterizations of the starch glycerol system with various crosslinking systems were produced by casting method. The film properties of the starch glycerol system were then characterized by tensile strength (mechanical properties) and swelling (physical properties). The modification of the starch glycerol had improved that system by increasing the tensile strength, modulus however lowering its elongation. The increasing in percentage of the water absorption and also swelling are due to the intrinsic hydroxyl groups presence from the starch and glycerol itself that can attract more water to the system. Upon crosslinking, films casted with chemicals namely, glyoxal, malonic acid, borax, PEG were characterised. It was found that, all the film of sago starch crosslinked and undergoing easy film formation. From this modification, borax and malonic acid crosslinking agent had been determined as the best crosslinking agent to the starch glycerol system.

  8. Crosslinkable coatings from phosphorylcholine-based polymers.

    PubMed

    Lewis, A L; Cumming, Z L; Goreish, H H; Kirkwood, L C; Tolhurst, L A; Stratford, P W

    2001-01-01

    2-Methacryloyloxyethyl phosphorylcholine (MPC) was synthesised and then used in the preparation of crosslinked polymer membranes with lauryl methacrylate, hydroxypropyl methacrylate and trimethoxysilylpropyl methacrylate (crosslinker) comonomers. Some physical aspects of the membrane properties were evaluated in order to establish the basis for the synthesis of a series of post-crosslinkable polymers. These materials were made by copolymerisation of the constituent monomers via a free radical method, and characterised using NMR, FT-IR, viscometry and elemental analysis. The optimum crosslink density and conditions required for curing coatings of these polymers were investigated using atomic force microscopy (AFM) and showed the inclusion of 5 mol% silyl crosslinking agent to be ideal. A nanoindentation technique was employed to determine if the coating developed elasticity upon crosslinking. The biological properties of the coatings were evaluated using a variety of protein adsorption assays and blood contacting experiments, and an enzyme immunoassay was developed to detect E. coli in order to assess the level of bacterial adhesion to these biomaterials. Polymers of this type were shown to be very useful as coating materials for improving the biocompatibility of, or reducing the levels of adherent bacteria to medical devices.

  9. Characterization of the crosslinking reaction in high performance phenolic resins

    NASA Astrophysics Data System (ADS)

    Patel, Jigneshkumar; Zou, Guo Xiang; Hsu, Shaw Ling; university of massachusetts/Polymer science; Engineering Team

    In this study, a combination of thermal analysis, infrared spectroscopy (near and mid) in conjunction with low field NMR, was used to characterize the crosslinking reaction involving phenol formaldehyde resin and a crosslinking agent, Hexamethylenetetramine (HMTA). The strong hydrogen bonds in the resin and the completely crystalline HMTA (Tm = 280 °C) severely hamper the crosslinking process. Yet the addition of a small amount of plasticizer can induce a highly efficient crosslinking reaction to achieve the desired mechanical properties needed in a number of high performance organic-inorganic composites. The infrared spectroscopy clarifies the dissolution process of the crystalline crosslinker and the specific interactions needed to achieve miscibility of the reactants. The thermal analysis enabled us to follow the changing mobility of the system as a function of temperature. The low field NMR with the T1 inverse recovery technique allowed us to monitor the crosslinking process directly. For the first time, it is now possible to identify the functionality of the plasticizer and correlate the crosslinked structure achieved to the macroscopic performance needed for high performance organic-inorganic composites.

  10. Chemical and radiation crosslinked polymer electrolyte membranes prepared from radiation-grafted ETFE films for DMFC applications

    NASA Astrophysics Data System (ADS)

    Chen, Jinhua; Asano, Masaharu; Yamaki, Tetsuya; Yoshida, Masaru

    To develop a highly chemically stable polymer electrolyte membrane for application in a direct methanol fuel cell (DMFC), doubly crosslinked membranes were prepared by chemical crosslinking using bifunctional monomers, such as divinylbenzene (DVB) and bis(p, p-vinyl phenyl) ethane (BVPE), and by radiation crosslinking. The membranes were prepared by grafting of m, p-methylstyrene (MeSt) and p-tert-butylstyrene (tBuSt) into poly(ethylene- co-tetrafluoroethylene) (ETFE) films and subsequent sulfonation. The effects of the DVB and BVPE crosslinkers on the grafting kinetics and the properties of the prepared membranes, such as water uptake, proton conductivity and chemical stability were investigated. Radiation crosslinking was introduced by irradiation of the ETFE base film, the grafted film or the sulfonated membrane. The membrane crosslinked by DVB and BVPE crosslinkers and post-crosslinked by γ-ray irradiation of the corresponding grafted film possessed the highest chemical stability among the prepared membranes, a significantly lower methanol permeability compared to Nafion ® membranes, and a better DMFC performance for high methanol feed concentration. Therefore, this doubly crosslinked membrane was promising for application in a DMFC where relatively high methanol concentration could be fed.

  11. Dynamic assembly of ultrasoft colloidal networks enables cell invasion within restrictive fibrillar polymers

    PubMed Central

    Douglas, Alison M.; Fragkopoulos, Alexandros A.; Gaines, Michelle K.; Lyon, L. Andrew; Fernandez-Nieves, Alberto

    2017-01-01

    In regenerative medicine, natural protein-based polymers offer enhanced endogenous bioactivity and potential for seamless integration with tissue, yet form weak hydrogels that lack the physical robustness required for surgical manipulation, making them difficult to apply in practice. The use of higher concentrations of protein, exogenous cross-linkers, and blending synthetic polymers has all been applied to form more mechanically robust networks. Each relies on generating a smaller network mesh size, which increases the elastic modulus and robustness, but critically inhibits cell spreading and migration, hampering tissue regeneration. Here we report two unique observations; first, that colloidal suspensions, at sufficiently high volume fraction (ϕ), dynamically assemble into a fully percolated 3D network within high-concentration protein polymers. Second, cells appear capable of leveraging these unique domains for highly efficient cell migration throughout the composite construct. In contrast to porogens, the particles in our system remain embedded within the bulk polymer, creating a network of particle-filled tunnels. Whereas this would normally physically restrict cell motility, when the particulate network is created using ultralow cross-linked microgels, the colloidal suspension displays viscous behavior on the same timescale as cell spreading and migration and thus enables efficient cell infiltration of the construct through the colloidal-filled tunnels. PMID:28100492

  12. Dynamic assembly of ultrasoft colloidal networks enables cell invasion within restrictive fibrillar polymers

    NASA Astrophysics Data System (ADS)

    Douglas, Alison M.; Fragkopoulos, Alexandros A.; Gaines, Michelle K.; Lyon, L. Andrew; Fernandez-Nieves, Alberto; Barker, Thomas H.

    2017-01-01

    In regenerative medicine, natural protein-based polymers offer enhanced endogenous bioactivity and potential for seamless integration with tissue, yet form weak hydrogels that lack the physical robustness required for surgical manipulation, making them difficult to apply in practice. The use of higher concentrations of protein, exogenous cross-linkers, and blending synthetic polymers has all been applied to form more mechanically robust networks. Each relies on generating a smaller network mesh size, which increases the elastic modulus and robustness, but critically inhibits cell spreading and migration, hampering tissue regeneration. Here we report two unique observations; first, that colloidal suspensions, at sufficiently high volume fraction (ϕ), dynamically assemble into a fully percolated 3D network within high-concentration protein polymers. Second, cells appear capable of leveraging these unique domains for highly efficient cell migration throughout the composite construct. In contrast to porogens, the particles in our system remain embedded within the bulk polymer, creating a network of particle-filled tunnels. Whereas this would normally physically restrict cell motility, when the particulate network is created using ultralow cross-linked microgels, the colloidal suspension displays viscous behavior on the same timescale as cell spreading and migration and thus enables efficient cell infiltration of the construct through the colloidal-filled tunnels.

  13. Exploring the kinetics of gelation and final architecture of enzymatically cross-linked chitosan/gelatin gels.

    PubMed

    da Silva, Marcelo A; Bode, Franziska; Grillo, Isabelle; Dreiss, Cécile A

    2015-04-13

    Small-angle neutron scattering (SANS) was used to characterize the nanoscale structure of enzymatically cross-linked chitosan/gelatin hydrogels obtained from two protocols: a pure chemical cross-linking process (C), which uses the natural enzyme microbial transglutaminase, and a physical-co-chemical (PC) hybrid process, where covalent cross-linking is combined with the temperature-triggered gelation of gelatin, occurring through the formation of triple-helices. SANS measurements on the final and evolving networks provide a correlation length (ξ), which reflects the average size of expanding clusters. Their growth in PC gels is restricted by the triple-helices (ξ ∼ 10s of Å), while ξ in pure chemical gels increases with cross-linker concentration (∼100s of Å). In addition, the shear elastic modulus in PC gels is higher than in pure C gels. Our results thus demonstrate that gelatin triple helices provide a template to guide the cross-linking process; overall, this work provides important structural insight to improve the design of biopolymer-based gels.

  14. Peripherally cross-linking the shell of core-shell polymer micelles decreases premature release of physically loaded combretastatin A4 in whole blood and increases its mean residence time and subsequent potency against primary murine breast tumors after IV administration.

    PubMed

    Wakaskar, Rajesh R; Bathena, Sai Praneeth R; Tallapaka, Shailendra B; Ambardekar, Vishakha V; Gautam, Nagsen; Thakare, Rhishikesh; Simet, Samantha M; Curran, Stephen M; Singh, Rakesh K; Dong, Yuxiang; Vetro, Joseph A

    2015-03-01

    Determine the feasibility and potential benefit of peripherally cross-linking the shell of core-shell polymer micelles on the premature release of physically loaded hydrophobic drug in whole blood and subsequent potency against solid tumors. Individual Pluronic F127 polymer micelles (F127 PM) peripherally cross-linked with ethylenediamine at 76% of total PEO blocks (X-F127 PM) were physically loaded with combretastatin A4 (CA4) by the solid dispersion method and compared to CA4 physically loaded in uncross-linked F127 PM, CA4 in DMSO in vitro, or water-soluble CA4 phosphate (CA4P) in vivo. X-F127 PM had similar CA4 loading and aqueous solubility as F127 PM up to 10 mg CA4 / mL at 22.9 wt% and did not aggregate in PBS or 90% (v/v) human serum at 37°C for at least 24 h. In contrast, X-F127 PM decreased the unbound fraction of CA4 in whole blood (fu) and increased the mean plasma residence time and subsequent potency of CA4 against the vascular function and growth of primary murine 4T1 breast tumors over CA4 in F127 PM and water-soluble CA4P after IV administration. Given that decreasing the fu is an indication of decreased drug release, peripherally cross-linking the shell of core-shell polymer micelles may be a simple approach to decrease premature release of physically loaded hydrophobic drug in the blood and increase subsequent potency in solid tumors.

  15. Structural and Functional Characterization of an Ancient Bacterial Transglutaminase Sheds Light on the Minimal Requirements for Protein Cross-Linking.

    PubMed

    Fernandes, Catarina G; Plácido, Diana; Lousa, Diana; Brito, José A; Isidro, Anabela; Soares, Cláudio M; Pohl, Jan; Carrondo, Maria A; Archer, Margarida; Henriques, Adriano O

    2015-09-22

    Transglutaminases are best known for their ability to catalyze protein cross-linking reactions that impart chemical and physical resilience to cellular structures. Here, we report the crystal structure and characterization of Tgl, a transglutaminase from the bacterium Bacillus subtilis. Tgl is produced during sporulation and cross-links the surface of the highly resilient spore. Tgl-like proteins are found only in spore-forming bacteria of the Bacillus and Clostridia classes, indicating an ancient origin. Tgl is a single-domain protein, produced in active form, and the smallest transglutaminase characterized to date. We show that Tgl is structurally similar to bacterial cell wall endopeptidases and has an NlpC/P60 catalytic core, thought to represent the ancestral unit of the cysteine protease fold. We show that Tgl functions through a unique partially redundant catalytic dyad formed by Cys116 and Glu187 or Glu115. Strikingly, the catalytic Cys is insulated within a hydrophobic tunnel that traverses the molecule from side to side. The lack of similarity of Tgl to other transglutaminases together with its small size suggests that an NlpC/P60 catalytic core and insulation of the active site during catalysis may be essential requirements for protein cross-linking.

  16. Photosensitized UVA-Induced Cross-Linking between Human DNA Repair and Replication Proteins and DNA Revealed by Proteomic Analysis

    PubMed Central

    2016-01-01

    Long wavelength ultraviolet radiation (UVA, 320–400 nm) interacts with chromophores present in human cells to induce reactive oxygen species (ROS) that damage both DNA and proteins. ROS levels are amplified, and the damaging effects of UVA are exacerbated if the cells are irradiated in the presence of UVA photosensitizers such as 6-thioguanine (6-TG), a strong UVA chromophore that is extensively incorporated into the DNA of dividing cells, or the fluoroquinolone antibiotic ciprofloxacin. Both DNA-embedded 6-TG and ciprofloxacin combine synergistically with UVA to generate high levels of ROS. Importantly, the extensive protein damage induced by these photosensitizer+UVA combinations inhibits DNA repair. DNA is maintained in intimate contact with the proteins that effect its replication, transcription, and repair, and DNA–protein cross-links (DPCs) are a recognized reaction product of ROS. Cross-linking of DNA metabolizing proteins would compromise these processes by introducing physical blocks and by depleting active proteins. We describe a sensitive and statistically rigorous method to analyze DPCs in cultured human cells. Application of this proteomics-based analysis to cells treated with 6-TG+UVA and ciprofloxacin+UVA identified proteins involved in DNA repair, replication, and gene expression among those most vulnerable to cross-linking under oxidative conditions. PMID:27654267

  17. Enzymatically cross-linked tilapia gelatin hydrogels: physical, chemical, and hybrid networks.

    PubMed

    Bode, Franziska; da Silva, Marcelo Alves; Drake, Alex F; Ross-Murphy, Simon B; Dreiss, Cécile A

    2011-10-10

    This Article investigates different types of networks formed from tilapia fish gelatin (10% w/w) in the presence and absence of the enzymatic cross-linker microbial transglutaminase. The influence of the temperature protocol and cross-linker concentration (0-55 U mTGase/g gelatin) was examined in physical, chemical, and hybrid gels, where physical gels arise from the formation of triple helices that act as junction points when the gels are cooled below the gelation point. A combination of rheology and optical rotation was used to study the evolution of the storage modulus (G') over time and the number of triple helices formed for each type of gel. We attempted to separate the final storage modulus of the gels into its chemical and physical contributions to examine the existence or otherwise of synergism between the two types of networks. Our experiments show that the gel characteristics vary widely with the thermal protocol. The final storage modulus in chemical gels increased with enzyme concentration, possibly due to the preferential formation of closed loops at low cross-linker amount. In chemical-physical gels, where the physical network (helices) was formed consecutively to the covalent one, we found that below a critical enzyme concentration the more extensive the chemical network is (as measured by G'), the weaker the final gel is. The storage modulus attributed to the physical network decreased exponentially as a function of G' from the chemical network, but both networks were found to be purely additive. Helices were not thermally stabilized. The simultaneous formation of physical and chemical networks (physical-co-chemical) resulted in G' values higher than the individual networks formed under the same conditions. Two regimes were distinguished: at low enzyme concentration (10-20 U mTGase/g gelatin), the networks were formed in series, but the storage modulus from the chemical network was higher in the presence of helices (compared to pure chemical gels); at higher enzyme concentration (30-40 U mTGase/g gelatin), strong synergistic effects were found as a large part of the covalent network became ineffective upon melting of the helices.

  18. J-integral fracture toughness and tearing modulus measurement of radiation cross-linked UHMWPE.

    PubMed

    Gomoll, A; Wanich, T; Bellare, A

    2002-11-01

    Radiation and chemical cross-linking of medical grade ultrahigh molecular weight polyethylene (UHMWPE) has recently been utilized in an effort to improve wear performance of total joint replacement components. However, reductions in mechanical properties with cross-linking are cause for concern regarding the use of cross-linked UHMWPE for high-stress applications such as in total knee replacement prostheses. In this study, the fracture behavior of radiation cross-linked UHMWPE was compared to that of uncross-linked UHMWPE. The Rice and Sorensen model that utilizes mechanical parameters obtained from uniaxial tensile and compact tension tests was used to calculate the steady state J-integral fracture toughness, Jss, for radiation cross-linked UHMWPE. Jss decreased monotonically with increase in radiation dose. UHMWPE exhibited tough, ductile tearing behavior with stable crack growth when it was cross-linked using a gamma radiation dose of 0-50 kGy. However, in cross-linked UHMWPE irradiated to a dose of 100 and 200 kGy, unstable fracture occurred spontaneously upon attaining the initial crack driving force, J1c. This indicates that a high degree of cross-linking is less desirable for high-stress applications in orthopaedic implants. However, a substantial increase in J1c, even at a low degree of cross-linking, suggests that a low degree of cross-linking may be beneficial for resistance to delamination and catastrophic failure, both of which require an initiation step for the fracture to propagate in the material. This mechanical test should, however, be considered along with fatigue tests and joint simulator testing before determination of an appropriate amount of cross-linking for total joint replacement prostheses that experience high stresses.

  19. Cross-linked polyelectrolyte for direct methanol fuel cells applications based on a novel sulfonated cross-linker

    NASA Astrophysics Data System (ADS)

    Li, Mingyu; Zhang, Gang; Xu, Shuai; Zhao, Chengji; Han, Miaomiao; Zhang, Liyuan; Jiang, Hao; Liu, Zhongguo; Na, Hui

    2014-06-01

    A novel type of cross-linked proton exchange membrane of lower methanol permeation and high proton conductivity is prepared, based on a newly synthesized sulfonated cross-linker: carboxyl terminated benzimidazole trimer bearing sulfonic acid groups (s-BI). Compared to membranes cross-linked with non-sulfonated cross-linker (BI), SPEEK/s-BI-n membranes show higher IEC values and proton conductivities. Meanwhile, oxidative stability and mechanical property of SPEEK/s-BI-n membranes are obviously improved. Among SPEEK/s-BI-n membranes, SPEEK/s-BI-2 exhibits high proton conductivity, low swelling ratio (0.122 S cm-1 and 15.2% at 60 °C, respectively) and low methanol permeability coefficient. These results imply that the cross-linked membranes prepared with the newly sulfonated cross-linker are promising for the direct methanol fuel cells (DMFCs) application.

  20. Gelation studies on cross-linking of zein with various reagents using oscillatory rheometry and sample property comparison

    USDA-ARS?s Scientific Manuscript database

    Zein, the dominant protein present in the co-products of the bio-ethanol industry, is a resource that is currently under-utilized. This is mainly due to poor physical properties and solvent sensitivity. It has been found by various researchers that treatment of zein with suitable cross-linking rea...

  1. 3D freeform printing of silk fibroin.

    PubMed

    Rodriguez, Maria J; Dixon, Thomas A; Cohen, Eliad; Huang, Wenwen; Omenetto, Fiorenzo G; Kaplan, David L

    2018-04-15

    Freeform fabrication has emerged as a key direction in printing biologically-relevant materials and structures. With this emerging technology, complex structures with microscale resolution can be created in arbitrary geometries and without the limitations found in traditional bottom-up or top-down additive manufacturing methods. Recent advances in freeform printing have used the physical properties of microparticle-based granular gels as a medium for the submerged extrusion of bioinks. However, most of these techniques require post-processing or crosslinking for the removal of the printed structures (Miller et al., 2015; Jin et al., 2016) [1,2]. In this communication, we introduce a novel method for the one-step gelation of silk fibroin within a suspension of synthetic nanoclay (Laponite) and polyethylene glycol (PEG). Silk fibroin has been used as a biopolymer for bioprinting in several contexts, but chemical or enzymatic additives or bulking agents are needed to stabilize 3D structures. Our method requires no post-processing of printed structures and allows for in situ physical crosslinking of pure aqueous silk fibroin into arbitrary geometries produced through freeform 3D printing. 3D bioprinting has emerged as a technology that can produce biologically relevant structures in defined geometries with microscale resolution. Techniques for fabrication of free-standing structures by printing into granular gel media has been demonstrated previously, however, these methods require crosslinking agents and post-processing steps on printed structures. Our method utilizes one-step gelation of silk fibroin within a suspension of synthetic nanoclay (Laponite), with no need for additional crosslinking compounds or post processing of the material. This new method allows for in situ physical crosslinking of pure aqueous silk fibroin into defined geometries produced through freeform 3D printing. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Enhanced wear performance of ultra high molecular weight polyethylene crosslinked by organosilane.

    PubMed

    Tang, C Y; Xie, X L; Wu, X C; Li, R K Y; Mai, Y W

    2002-11-01

    Ultra high molecular weight polyethylene (UHMWPE) crosslinked by organosilane was thermal compression molded. The organosilane used was the tri-ethyloxyl vinyl silane. Its gelation, melting behavior, crystallinity, mechanical and wear-resisting properties were systematically investigated. The results showed that the gel ratio of UHMWPE increases with the incorporation of organosilane. At a low content of organosilane, the melting point and crystallinity of the crosslinked UHMWPE increase, and hence the mechanical and wear-resisting properties are improved. However, at a high content of organosilane, these performances of the crosslinked UHMWPE become worse. At 0.4 phr silane, the wear resistance of crosslinked UHMWPE reaches its optimum value.

  3. Accelerated healing of full-thickness wounds by genipin-crosslinked silk sericin/PVA scaffolds.

    PubMed

    Aramwit, Pornanong; Siritienthong, Tippawan; Srichana, Teerapol; Ratanavaraporn, Juthamas

    2013-01-01

    Silk sericin has recently been studied for its advantageous biological properties, including its ability to promote wound healing. This study developed a delivery system to accelerate the healing of full-thickness wounds. Three-dimensional scaffolds were fabricated from poly(vinyl alcohol) (PVA), glycerin (as a plasticizer) and genipin (as a crosslinking agent), with or without sericin. The physical and biological properties of the genipin-crosslinked sericin/PVA scaffolds were investigated and compared with those of scaffolds without sericin. The genipin-crosslinked sericin/PVA scaffolds exhibited a higher compressive modulus and greater swelling in water than the scaffolds without sericin. Sericin also exhibited controlled release from the scaffolds. The genipin-crosslinked sericin/PVA scaffolds promoted the attachment and proliferation of L929 mouse fibroblasts. After application to full-thickness rat wounds, the wounds treated with genipin-crosslinked sericin/PVA scaffolds showed a significantly greater reduction in wound size, collagen formation and epithelialization compared with the control scaffolds without sericin but lower numbers of macrophages and multinucleated giant cells. These results indicate that the delivery of sericin from the novel genipin-crosslinked scaffolds efficiently healed the wound. Therefore, these genipin-crosslinked sericin/PVA scaffolds represent a promising candidate for the accelerated healing of full-thickness wounds. Copyright © 2013 S. Karger AG, Basel.

  4. New trend of radiation application to polymer modification — irradiation in oxygen free atmosphere and at elevated temperature

    NASA Astrophysics Data System (ADS)

    Seguchi, Tadao

    2000-03-01

    Polycarbosilane (PCS) fiber as a precursor for ceramic fiber of silicon carbide was cured by electron beam (EB) irradiation under oxygen free atmosphere. Oxygen content in the cured PCS fiber was scarce and the obtained silicon carbide (SiC) fiber with low oxygen content showed high heat resistance up to 1973 K and tensile strength of 3 GPa. Also, the EB cured PCS fiber with very low oxygen content could be converted to silicon nitride (Si 3N 4) fiber by the pyrolysis in NH 3 gas atmosphere, which was the new processing to produce Si 3N 4 fiber. The process of SiC fiber synthesis was developed to the commercial plant. The other application was the crosslinking of polytetrafluoroethylene (PTFE). PTFE, which had been recognized to be a typical chain scission polymer, could be induced to crosslinking by irradiation at the molten state in oxygen free atmosphere. The physical properties such as crystallinity, mechanical properties, etc. changed much by crosslinking, and the radiation resistance was much improved.

  5. Seed-mediated synthesis of cross-linked Pt-NiO nanochains for methanol oxidation

    NASA Astrophysics Data System (ADS)

    Gu, Zhulan; Bin, Duan; Feng, Yue; Zhang, Ke; Wang, Jin; Yan, Bo; Li, Shumin; Xiong, Zhiping; Wang, Caiqin; Shiraishi, Yukihide; Du, Yukou

    2017-07-01

    A simple method was reported for employing NiO nanoparticles act as seeds and then different amounts of Pt2+ were reduced on the NiO nanoparticles, forming a cross-linked Pt-NiO nanocatalysts. These as-prepared catalysts were characterized using different physical-chemical techniques, including X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The results indicate that the morphology of the cross-linked Pt-NiO nanochain was successfully produced regardless of the molar ratio of Pt2+ to NiO precursors. The electrochemical characteristics of Pt-NiO nanochain catalysts were evaluated for the oxidation of methanol as a model reaction, which verify that the Pt-NiO catalysts show enhanced activity and high stability in comparison with the commercial Pt/C catalyst. The optimized ratio of Pt to NiO is 1:1, then tuned by simple adjusting the feed ratio of the precursors as well. The synthesized nanocatalysts will be found the great potential applications as electrocatalysts for fuel cells owe to their enhanced catalytic performance and long-term stability.

  6. Radiation cross-linking in ultra-high molecular weight polyethylene for orthopaedic applications

    NASA Astrophysics Data System (ADS)

    Oral, Ebru; Muratoglu, Orhun K.

    2007-12-01

    The motivation for radiation cross-linking of ultra-high molecular weight polyethylene (UHMWPE) is to increase its wear resistance to be used as bearing surfaces for total joint arthroplasty. However, radiation also leaves behind long-lived residual free radicals in this polymer, the reactions of which can detrimentally affect mechanical properties. In this review, we focus on the radiation cross-linking and oxidative stability of first and second generation highly cross-linked UHMWPEs developed in our laboratory.

  7. Cross-Linked Enzyme Aggregates for Applications in Aqueous and Nonaqueous Media.

    PubMed

    Roy, Ipsita; Mukherjee, Joyeeta; Gupta, Munishwar N

    2017-01-01

    Extensive cross-linking of a precipitate of a protein by a cross-linking reagent (glutaraldehyde has been most commonly used) creates an insoluble enzyme preparation called cross-linked enzyme aggregates (CLEAs). CLEAs show high stability and performance in conventional aqueous as well as nonaqueous media. These are also stable at fairly high temperatures. CLEAs with more than one kind of enzyme activity can be prepared, and such CLEAs are called combi-CLEAs or multipurpose CLEAs. Extent of cross-linking often influences their morphology, stability, activity, and enantioselectivity.

  8. Assessment of the characteristics and biocompatibility of gelatin sponge scaffolds prepared by various crosslinking methods.

    PubMed

    Yang, Gang; Xiao, Zhenghua; Long, Haiyan; Ma, Kunlong; Zhang, Junpeng; Ren, Xiaomei; Zhang, Jiang

    2018-01-25

    This comparative study aims to identify a biocompatible and effective crosslinker for preparing gelatin sponges. Glutaraldehyde (GTA), genipin (GP), 1-ethyl-3-(3-dimethyl aminopropyl)carbodiimide (EDC), and microbial transglutaminase (mTG) were used as crosslinking agents. The physical properties of the prepared samples were characterized, and material degradation was studied in vitro with various proteases and in vivo through subcutaneous implantation of the sponges in rats. Adipose-derived stromal stem cells (ADSCs) were cultured and inoculated onto the scaffolds to compare the cellular biocompatibility of the sponges. Cellular seeding efficiency and digestion time of the sponges were also evaluated. Cellular viability and proliferation in scaffolds were analyzed by fluorescence staining and MTT assay. All the samples exhibited high porosity, good swelling ratio, and hydrolysis properties; however, material strength, hydrolysis, and enzymolytic properties varied among the samples. GTA-sponge and GP-sponge possessed high compressive moduli, and EDC-sponge exhibited fast degradation performance. GTA and GP sponge implants exerted strong in vivo rejections, and the former showed poor cell growth. mTG-sponge exhibited the optimal comprehensive performance, with good porosity, compressive modulus, anti-degradation ability, and good biocompatibility. Hence, mTG-sponge can be used as a scaffold material for tissue engineering applications.

  9. Synthesis and properties of reprocessable sulfonated polyimides cross-linked via acid stimulation for use as proton exchange membranes

    NASA Astrophysics Data System (ADS)

    Zhang, Boping; Ni, Jiangpeng; Xiang, Xiongzhi; Wang, Lei; Chen, Yongming

    2017-01-01

    Cross-linked sulfonated polyimides are one of the most promising materials for proton exchange membrane (PEM) applications. However, these cross-linked membranes are difficult to reprocess because they are insoluble. In this study, a series of cross-linkable sulfonated polyimides with flexible pendant alkyl side chains containing trimethoxysilyl groups is successfully synthesized. The cross-linkable polymers are highly soluble in common solvents and can be used to prepare tough and smooth films. Before the cross-linking reaction is complete, the membranes can be reprocessed, and the recovery rate of the prepared films falls within an acceptable range. The cross-linked membranes are obtained rapidly when the cross-linkable membranes are immersed in an acid solution, yielding a cross-linking density of the gel fraction of greater than 90%. The cross-linked membranes exhibit high proton conductivities and tensile strengths under hydrous conditions. Compared with those of pristine membranes, the oxidative and hydrolytic stabilities of the cross-linked membranes are significantly higher. The CSPI-70 membrane shows considerable power density in a direct methanol fuel cell (DMFC) test. All of these results suggest that the prepared cross-linked membranes have great potential for applications in proton exchange membrane fuel cells.

  10. Self-healing and thermoreversible rubber from supramolecular assembly.

    PubMed

    Cordier, Philippe; Tournilhac, François; Soulié-Ziakovic, Corinne; Leibler, Ludwik

    2008-02-21

    Rubbers exhibit enormous extensibility up to several hundred per cent, compared with a few per cent for ordinary solids, and have the ability to recover their original shape and dimensions on release of stress. Rubber elasticity is a property of macromolecules that are either covalently cross-linked or connected in a network by physical associations such as small glassy or crystalline domains, ionic aggregates or multiple hydrogen bonds. Covalent cross-links or strong physical associations prevent flow and creep. Here we design and synthesize molecules that associate together to form both chains and cross-links via hydrogen bonds. The system shows recoverable extensibility up to several hundred per cent and little creep under load. In striking contrast to conventional cross-linked or thermoreversible rubbers made of macromolecules, these systems, when broken or cut, can be simply repaired by bringing together fractured surfaces to self-heal at room temperature. Repaired samples recuperate their enormous extensibility. The process of breaking and healing can be repeated many times. These materials can be easily processed, re-used and recycled. Their unique self-repairing properties, the simplicity of their synthesis, their availability from renewable resources and the low cost of raw ingredients (fatty acids and urea) bode well for future applications.

  11. The measurement of creep in ultrahigh molecular weight polyethylene: a comparison of conventional versus highly cross-linked polyethylene.

    PubMed

    Estok, Daniel M; Bragdon, Charles R; Plank, Gordon R; Huang, Anna; Muratoglu, Orhun K; Harris, William H

    2005-02-01

    Quantification of creep of highly cross-linked polyethylene would enable separation of creep from wear when evaluating femoral head penetration into polyethylene. We compared creep magnitude of a highly cross-linked versus conventional polyethylene in the laboratory. Twelve acetabular liners of each material were tested, 6 of which had a 32-mm inner diameter (ID) and 6 had 28-mm ID. Creep was measured using coordinate measuring machines during loading at 2 Hz without motion to 4 million cycles. Penetration into 32-mm ID conventional liners reached 97 microm versus 107 microm for highly cross-linked material, not significant. Penetration into 28-mm conventional liners was 132 microm versus 155 microm for highly cross-linked material (P = .017). Ninety percent of the creep had occurred by 2.5 million cycles.

  12. Development of carboxymethyl cellulose-chitosan hybrid micro- and macroparticles for encapsulation of probiotic bacteria.

    PubMed

    Singh, P; Medronho, B; Alves, L; da Silva, G J; Miguel, M G; Lindman, B

    2017-11-01

    Novel carboxymethyl cellulose-chitosan (CMC-Cht) hybrid micro- and macroparticles were successfully prepared in aqueous media either by drop-wise addition or via nozzle-spray methods. The systems were either physically or chemically crosslinked using genipin as the reticulation agent. The macroparticles (ca. 2mm) formed are found to be essentially of the core-shell type, while the microparticles (ca. 5μm) are apparently homogeneous. The crosslinked particles are robust, thermally resistant and less sensitive to pH changes. On the other hand, the physical systems are pH sensitive presenting a remarkable swelling at pH 7.4, while little swelling is observed at pH 2.4. Furthermore, model probiotic bacteria (Lactobacillus rhamnosus GG) was for the first time successfully encapsulated in the CMC-Cht based particles with acceptable viability count. Overall, the systems developed are highly promising for probiotic encapsulation and potential delivery in the intestinal tract with the purpose of modulating gut microbiota and improving human health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Novel porous soy protein-based blend structures for biomedical applications: Microstructure, mechanical, and physical properties.

    PubMed

    Barkay-Olami, Hilla; Zilberman, Meital

    2016-08-01

    Use of naturally derived materials for biomedical applications is steadily increasing. Soy protein has advantages over various types of natural proteins employed for biomedical applications due to its low price, nonanimal origin, and relatively long storage time and stability. In the current study, blends of soy protein with other polymers (gelatin, alginate, pectin, polyvinyl alcohol, and polyethylene glycol) were developed and studied. The mechanical tensile properties of dense films were studied in order to select the best secondary polymer for porous three-dimensional structures. The porous soy-gelatin and soy-alginate structures were then studied for physical properties, degradation behavior, and microstructure. The results show that these blends can be assembled into porous three-dimensional structures by combining chemical crosslinking with freeze-drying. The soy-alginate blends are advantageous over soy-gelatin blends, demonstrated better stability, and degradation time along with controlled swelling behavior due to more effective crosslinking and higher water uptake than soy-gelatin blends. Water vapor transmission rate experiments showed that all porous blend structures were in the desired range for burn treatment [2000-2500 g/(m(2) d)] and can be controlled by the crosslinking process. We conclude that these novel porous three-dimensional structures have a high potential for use as scaffolds for tissue engineering, especially for skin regeneration applications. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1109-1120, 2016. © 2015 Wiley Periodicals, Inc.

  14. Spontaneous stacking of purple membranes during immobilization with physical cross-linked poly(vinyl alcohol) hydrogel with retaining native-like functionality of bacteriorhodopsin

    NASA Astrophysics Data System (ADS)

    Yokoyama, Yasunori; Tanaka, Hikaru; Yano, Shunsuke; Takahashi, Hiroshi; Kikukawa, Takashi; Sonoyama, Masashi; Takenaka, Koshi

    2017-05-01

    We previously discovered the correlation between light-induced chromophore color change of a photo-receptor membrane protein bacteriorhodopsin (bR) and its two-dimensional crystalline state in the membrane. To apply this phenomenon to a novel optical memory device, it is necessary that bR molecules are immobilized as maintaining their structure and functional properties. In this work, a poly(vinyl alcohol) (PVA) hydrogel with physical cross-linkages (hydrogen bonds between PVA chains) that resulted from repeated freezing-and-thawing (FT) cycles was used as an immobilization medium. To investigate the effects of physically cross-linked PVA gelation on the structure and function of bR in purple membranes (PMs), spectroscopic techniques were employed against PM/PVA immobilized samples prepared with different FT cycle numbers. Visible circular dichroism spectroscopy strongly suggested PM stacking during gelation. X-ray diffraction data also indicated the PM stacking as well as its native-like crystalline lattice even after gelation. Time-resolved absorption spectroscopy showed that bR photocycle behaviors in PM/PVA immobilized samples were almost identical to that in suspension. These results suggested that a physically cross-linked PVA hydrogel is appropriate for immobilizing membrane proteins in terms of maintaining their structure and functionality.

  15. CLMSVault: A Software Suite for Protein Cross-Linking Mass-Spectrometry Data Analysis and Visualization.

    PubMed

    Courcelles, Mathieu; Coulombe-Huntington, Jasmin; Cossette, Émilie; Gingras, Anne-Claude; Thibault, Pierre; Tyers, Mike

    2017-07-07

    Protein cross-linking mass spectrometry (CL-MS) enables the sensitive detection of protein interactions and the inference of protein complex topology. The detection of chemical cross-links between protein residues can identify intra- and interprotein contact sites or provide physical constraints for molecular modeling of protein structure. Recent innovations in cross-linker design, sample preparation, mass spectrometry, and software tools have significantly improved CL-MS approaches. Although a number of algorithms now exist for the identification of cross-linked peptides from mass spectral data, a dearth of user-friendly analysis tools represent a practical bottleneck to the broad adoption of the approach. To facilitate the analysis of CL-MS data, we developed CLMSVault, a software suite designed to leverage existing CL-MS algorithms and provide intuitive and flexible tools for cross-platform data interpretation. CLMSVault stores and combines complementary information obtained from different cross-linkers and search algorithms. CLMSVault provides filtering, comparison, and visualization tools to support CL-MS analyses and includes a workflow for label-free quantification of cross-linked peptides. An embedded 3D viewer enables the visualization of quantitative data and the mapping of cross-linked sites onto PDB structural models. We demonstrate the application of CLMSVault for the analysis of a noncovalent Cdc34-ubiquitin protein complex cross-linked under different conditions. CLMSVault is open-source software (available at https://gitlab.com/courcelm/clmsvault.git ), and a live demo is available at http://democlmsvault.tyerslab.com/ .

  16. Highly crosslinked silicon polymers for gas chromatography columns

    NASA Technical Reports Server (NTRS)

    Shen, Thomas C. (Inventor)

    1994-01-01

    A new highly crosslinked silicone polymer particle for gas chromatography application and a process for synthesizing such copolymer are described. The new copolymer comprises vinyltriethoxysilane and octadecyltrichlorosilane. The copolymer has a high degree of crosslinking and a cool balance of polar to nonpolar sites in the porous silicon polymer assuring fast separation of compounds of variable polarity.

  17. Bottlebrush-Guided Polymer Crystallization Resulting in Supersoft and Reversibly Moldable Physical Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel, William F. M.; Xie, Guojun; Vatankhah Varnoosfaderani, Mohammad

    The goal of this study is to use ABA triblock copolymers with central bottlebrush B segments and crystalline linear chain A segments to demonstrate the effect of side chains on the formation and mechanical properties of physical networks cross-linked by crystallites. For this purpose, a series of bottlebrush copolymers was synthesized consisting of central amorphous bottlebrush polymer segments with a varying degree of polymerization (DP) of poly(n-butyl acrylate) (PnBA) side chains and linear tail blocks of crystallizable poly(octadecyl acrylate-stat-docosyl acrylate) (poly(ODA-stat-DA)). The materials were generated by sequential atom transfer radical polymerization (ATRP) steps starting with a series of bifunctional macroinitiatorsmore » followed by the growth of two ODA-stat-DA linear-chain tails and eventually growing poly(nBA) side chains with increasing DPs. Crystallization of the poly(ODA-stat-DA) tails resulted in a series of reversible physical networks with bottlebrush strands bridging crystalline cross-links. They displayed very low moduli of elasticity of the order of 10 3–10 4 Pa. These distinct properties are due to the bottlebrush architecture, wherein densely grafted side chains play a dual role by facilitating disentanglement of the network strands and confining crystallization of the linear-chain tails. This combination leads to physical cross-linking of supersoft networks without percolation of the crystalline phase. The cross-link density was effectively controlled by the DP of the side chains with respect to the DP of the linear tails (n A). Furthermore, shorter side chains allowed for crystallization of the linear tails of neighboring bottlebrushes, while steric repulsion between longer side chains hindered the phase separation and crystallization process and prevented network formation.« less

  18. Bottlebrush-Guided Polymer Crystallization Resulting in Supersoft and Reversibly Moldable Physical Networks

    DOE PAGES

    Daniel, William F. M.; Xie, Guojun; Vatankhah Varnoosfaderani, Mohammad; ...

    2017-02-24

    The goal of this study is to use ABA triblock copolymers with central bottlebrush B segments and crystalline linear chain A segments to demonstrate the effect of side chains on the formation and mechanical properties of physical networks cross-linked by crystallites. For this purpose, a series of bottlebrush copolymers was synthesized consisting of central amorphous bottlebrush polymer segments with a varying degree of polymerization (DP) of poly(n-butyl acrylate) (PnBA) side chains and linear tail blocks of crystallizable poly(octadecyl acrylate-stat-docosyl acrylate) (poly(ODA-stat-DA)). The materials were generated by sequential atom transfer radical polymerization (ATRP) steps starting with a series of bifunctional macroinitiatorsmore » followed by the growth of two ODA-stat-DA linear-chain tails and eventually growing poly(nBA) side chains with increasing DPs. Crystallization of the poly(ODA-stat-DA) tails resulted in a series of reversible physical networks with bottlebrush strands bridging crystalline cross-links. They displayed very low moduli of elasticity of the order of 10 3–10 4 Pa. These distinct properties are due to the bottlebrush architecture, wherein densely grafted side chains play a dual role by facilitating disentanglement of the network strands and confining crystallization of the linear-chain tails. This combination leads to physical cross-linking of supersoft networks without percolation of the crystalline phase. The cross-link density was effectively controlled by the DP of the side chains with respect to the DP of the linear tails (n A). Furthermore, shorter side chains allowed for crystallization of the linear tails of neighboring bottlebrushes, while steric repulsion between longer side chains hindered the phase separation and crystallization process and prevented network formation.« less

  19. Probe Into the Influence of Crosslinking on CO2 Permeation of Membranes

    PubMed Central

    Li, Jinghui; Chen, Zhuo; Umar, Ahmad; Liu, Yang; Shang, Ying; Zhang, Xiaokai; Wang, Yao

    2017-01-01

    Crosslinking is an effective way to fabricate high-selective CO2 separation membranes because of its unique crosslinking framework. Thus, it is essentially significant to study the influence of crosslinking degree on the permeation selectivities of CO2. Herein, we report a successful and facile synthesis of a series of polyethylene oxide (PEO)-based diblock copolymers (BCP) incorporated with an unique UV-crosslinkable chalcone unit using Reversible Addition-Fragmentation Chain Transfer Polymerization (RAFT) process. The membranes of as-prepared BCPs show superior carbon dioxide (CO2) separation properties as compared to nitrogen (N2) after UV-crosslinking. Importantly, the influence of different proportions of crosslinked chalcone on CO2 selectivities was systematically investigated, which revealed that CO2 selectivities increased obviously with the enhancement of chalcone fractions within a certain limit. Further, the CO2 selectivities of block copolymer with the best block proportion was studied by varying the crosslinking time which confirmed that the high crosslinking degree exhibited a better CO2/N2 (αCO2/N2) selectivities. A possible mechanism model revealing that the crosslinking degree played a key role in the gas separation process was also proposed. PMID:28051190

  20. Probe Into the Influence of Crosslinking on CO2 Permeation of Membranes

    NASA Astrophysics Data System (ADS)

    Li, Jinghui; Chen, Zhuo; Umar, Ahmad; Liu, Yang; Shang, Ying; Zhang, Xiaokai; Wang, Yao

    2017-01-01

    Crosslinking is an effective way to fabricate high-selective CO2 separation membranes because of its unique crosslinking framework. Thus, it is essentially significant to study the influence of crosslinking degree on the permeation selectivities of CO2. Herein, we report a successful and facile synthesis of a series of polyethylene oxide (PEO)-based diblock copolymers (BCP) incorporated with an unique UV-crosslinkable chalcone unit using Reversible Addition-Fragmentation Chain Transfer Polymerization (RAFT) process. The membranes of as-prepared BCPs show superior carbon dioxide (CO2) separation properties as compared to nitrogen (N2) after UV-crosslinking. Importantly, the influence of different proportions of crosslinked chalcone on CO2 selectivities was systematically investigated, which revealed that CO2 selectivities increased obviously with the enhancement of chalcone fractions within a certain limit. Further, the CO2 selectivities of block copolymer with the best block proportion was studied by varying the crosslinking time which confirmed that the high crosslinking degree exhibited a better CO2/N2 (αCO2/N2) selectivities. A possible mechanism model revealing that the crosslinking degree played a key role in the gas separation process was also proposed.

  1. Microplasma-assisted hydrogel fabrication: A novel method for gelatin-graphene oxide nano composite hydrogel synthesis for biomedical application

    PubMed Central

    2017-01-01

    Toxicity issues and biocompatibility concerns with traditional classical chemical cross-linking processes prevent them from being universal approaches for hydrogel fabrication for tissue engineering. Physical cross-linking methods are non-toxic and widely used to obtain cross-linked polymers in a tunable manner. Therefore, in the current study, argon micro-plasma was introduced as a neutral energy source for cross-linking in fabrication of the desired gelatin-graphene oxide (gel-GO) nanocomposite hydrogel scaffolds. Argon microplasma was used to treat purified gelatin (8% w/v) containing 0.1∼1 wt% of high-functionality nano-graphene oxide (GO). Optimized plasma conditions (2,500 V and 8.7 mA) for 15 min with a gas flow rate of 100 standard cm3/min was found to be most suitable for producing the gel-GO nanocomposite hydrogels. The developed hydrogel was characterized by the degree of cross-linking, FTIR spectroscopy, SEM, confocal microscopy, swelling behavior, contact angle measurement, and rheology. The cell viability was examined by an MTT assay and a live/dead assay. The pore size of the hydrogel was found to be 287 ± 27 µm with a contact angle of 78° ± 3.7°. Rheological data revealed improved storage as well as a loss modulus of up to 50% with tunable viscoelasticity, gel strength, and mechanical properties at 37 °C temperature in the microplasma-treated groups. The swelling behavior demonstrated a better water-holding capacity of the gel-GO hydrogels for cell growth and proliferation. Results of the MTT assay, microscopy, and live/dead assay exhibited better cell viability at 1% (w/w) of high-functionality GO in gelatin. The highlight of the present study is the first successful attempt of microplasma-assisted gelatin-GO nano composite hydrogel fabrication that offers great promise and optimism for further biomedical tissue engineering applications. PMID:28663938

  2. In vivo oxidation in remelted highly cross-linked retrievals.

    PubMed

    Currier, B H; Van Citters, D W; Currier, J H; Collier, J P

    2010-10-20

    Elimination of free radicals to prevent oxidation has played a major role in the development and product differentiation of the latest generation of highly cross-linked ultra-high molecular weight polyethylene bearing materials. In the current study, we (1) examined oxidation in a series of retrieved remelted highly cross-linked ultra-high molecular weight polyethylene bearings from a number of device manufacturers and (2) compared the retrieval results with findings for shelf-stored control specimens. The hypothesis was that radiation-cross-linked remelted ultra-high molecular weight polyethylene would maintain oxidative stability in vivo comparable with the stability during shelf storage and in published laboratory aging tests. Fifty remelted highly cross-linked ultra-high molecular weight polyethylene acetabular liners and nineteen remelted highly cross-linked ultra-high molecular weight polyethylene tibial inserts were received after retrieval from twenty-one surgeons from across the U.S. Thirty-two of the retrievals had been in vivo for two years or more. Each was measured for oxidation with use of Fourier transform infrared spectroscopy. A control series of remelted highly cross-linked ultra-high molecular weight polyethylene acetabular liners from three manufacturers was analyzed with electron paramagnetic resonance spectroscopy to measure free radical content and with Fourier transform infrared spectroscopy to measure oxidation initially and after eight to nine years of shelf storage in air. The never-implanted, shelf-aged controls had no measurable free-radical content initially or after eight to nine years of shelf storage. The never-implanted controls showed no increase in oxidation during shelf storage. Oxidation measurements showed measurable oxidation in 22% of the retrieved remelted highly cross-linked liners and inserts after an average of two years in vivo. Because never-implanted remelted highly cross-linked ultra-high molecular weight polyethylene materials had no measurable free-radical concentration and no increase in oxidation during shelf storage, these materials were expected to be oxidation-resistant in vivo. However, some remelted highly cross-linked ultra-high molecular weight polyethylene retrievals showed measurable oxidation after an average of more than two years in vivo. This apparent departure from widely expected behavior requires continued study of the process of in vivo oxidation of ultra-high molecular weight polyethylene materials.

  3. Hydrodynamics of isotropic and liquid crystalline active polymer solutions.

    PubMed

    Ahmadi, Aphrodite; Marchetti, M C; Liverpool, T B

    2006-12-01

    We describe the large-scale collective behavior of solutions of polar biofilaments and stationary and mobile crosslinkers. Both mobile and stationary crosslinkers induce filament alignment promoting either polar or nematic order. In addition, mobile crosslinkers, such as clusters of motor proteins, exchange forces and torques among the filaments and render the homogeneous states unstable via filament bundling. We start from a Smoluchowski equation for rigid filaments in solutions, where pairwise crosslink-mediated interactions among the filaments yield translational and rotational currents. The large-scale properties of the system are described in terms of continuum equations for filament and motor densities, polarization, and alignment tensor obtained by coarse-graining the Smoluchovski equation. The possible homogeneous and inhomogeneous states of the systems are obtained as stable solutions of the dynamical equations and are characterized in terms of experimentally accessible parameters. We make contact with work by other authors and show that our model allows for an estimate of the various parameters in the hydrodynamic equations in terms of physical properties of the crosslinkers.

  4. Dual Sulfide-Disulfide Crosslinked Networks with Rapid and Room Temperature Self-Healability.

    PubMed

    An, So Young; Noh, Seung Man; Nam, Joon Hyun; Oh, Jung Kwon

    2015-07-01

    Polymer-based crosslinked networks with intrinsic self-repairing ability have emerged due to their built-in ability to repair physical damages. Here, novel dual sulfide-disulfide crosslinked networks (s-ssPxNs) are reported exhibiting rapid and room temperature self-healability within seconds to minutes, with no extra healing agents and no change under any environmental conditions. The method to synthesize these self-healable networks utilizes a combination of well-known crosslinking chemistry: photoinduced thiol-ene click-type radical addition, generating lightly sulfide-crosslinked polysulfide-based networks with excess thiols, and their oxidation, creating dynamic disulfide crosslinkages to yield the dual s-ssPxNs. The resulting s-ssPxN networks show rapid self-healing within 30 s to 30 min at room temperature, as well as self-healing elasticity with reversible viscoelastic properties. These results, combined with tunable self-healing kinetics, demonstrate the versatility of the method as a new means to synthesize smart multifunctional polymeric materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Control of crosslinking for tailoring collagen-based scaffolds stability and mechanics

    PubMed Central

    Davidenko, N.; Schuster, C.F.; Bax, D.V.; Raynal, N.; Farndale, R.W.; Best, S.M.; Cameron, R.E.

    2015-01-01

    We provide evidence to show that the standard reactant concentrations used in tissue engineering to cross-link collagen-based scaffolds are up to 100 times higher than required for mechanical integrity in service, and stability against degradation in an aqueous environment. We demonstrate this with a detailed and systematic study by comparing scaffolds made from (a) collagen from two different suppliers, (b) gelatin (a partially denatured collagen) and (c) 50% collagen–50% gelatin mixtures. The materials were processed, using lyophilisation, to produce homogeneous, highly porous scaffolds with isotropic architectures and pore diameters ranging from 130 to 260 μm. Scaffolds were cross-linked using a carbodiimide treatment, to establish the effect of the variations in crosslinking conditions (down to very low concentrations) on the morphology, swelling, degradation and mechanical properties of the scaffolds. Carbodiimide concentration of 11.5 mg/ml was defined as the standard (100%) and was progressively diluted down to 0.1%. It was found that 10-fold reduction in the carbodiimide content led to the significant increase (almost 4-fold) in the amount of free amine groups (primarily on collagen lysine residues) without compromising mechanics and stability in water of all resultant scaffolds. The importance of this finding is that, by reducing cross-linking, the corresponding cell-reactive carboxylate anions (collagen glutamate or aspartate residues) that are essential for integrin-mediated binding remain intact. Indeed, a 10-fold reduction in carbodiimide crosslinking resulted in near native-like cell attachment to collagen scaffolds. We have demonstrated that controlling the degree of cross-linking, and hence retaining native scaffold chemistry, offers a major step forward in the biological performance of collagen- and gelatin-based tissue engineering scaffolds. Statement of Significance This work developed collagen and gelatine-based scaffolds with structural, material and biological properties suitable for use in myocardial tissue regeneration. The novelty and significance of this research consist in elucidating the effect of the composition, origin of collagen and crosslinking concentration on the scaffold physical and cell-binding characteristics. We demonstrate that the standard carbodiimide concentrations used to crosslink collagenous scaffolds are up to 100 times higher than required for mechanical integrity in service, and stability against dissolution. The importance of this finding is that, by reducing crosslinking, the corresponding cell-reactive carboxylate anions (essential for integrin-mediated binding) remain intact and the native scaffold chemistry is retained. This offers a major step forward in the biological performance of tissue engineered scaffolds. PMID:26213371

  6. Interaction and the structures of coal

    NASA Astrophysics Data System (ADS)

    Opaprakasit, Pakorn

    The origin of a decrease in the amount of soluble material from coal upon a reflux treatment has been investigated in an attempt to obtain insight into the nature of the interaction in the macromolecular network structure of coal. This decrease in the extractable material is a result of an increase in the amount of physical cross-links associated with secondary interactions. The alternate possibility of covalent cross-link formation by ether linkage was found to be unlikely because the coal hydroxyl content remains unchanged upon heat treatment. The functional groups responsible for forming these physical cross-links and their contents vary from coal to coal with coal rank. Carboxylate/cation complexes, similar to those found in ionomers, dominate in low rank coal. In high rank coal, the clusters involving pi-cation interactions were observed. Both mechanisms seem to play a role in mid rank coals. These physical cross-links are responsible for a lowering of the extraction yield of coal, but are disrupted by a treatment with acid solution, resulting in an increase in the extraction yield. As a consequence, the cross-links in coal structure should be classified into two types; a "permanent" covalent cross-link, which break under extreme conditions such as chemical reaction and pyrolysis, and "reversible" cross-links, largely associated with ionomer-like structure and pi-cation interactions. The interaction between a "magic" solvent of N-methylpyrollidone and carbon disulfide (NMP/CS2) and its role in the unusual extractability enhancement of Upper Freeport coal has also been investigated. The results strongly suggest that NMP/CS2 mixed solvents form complexes with cations. These mixed solvents are capable of forming a solid complex with cations from NaOH and some simple salts, such as NaCl and LiCl. Given that Upper Freeport coal contains a large amount of mineral matter, it is not surprising that these types of complexes could be formed in the present of the mixed solvents, which in turn enhances the coal extraction yield. Finally, the evidence for the presence of a glass transition temperature in coal was examined. The results from Differential Scanning Calorimetry showed that no transition similar to the Tg can be observed in bulk coal or its low-molecular weight fraction, pyridine soluble extracted material, at a temperature near 110°C. In contrast, an irreversible transition that is due to water evaporation has been found. Thermomechanical measurements, which are very sensitive to the presence of a Tg in synthetic polymers, also provided no evidence for a Tg below temperatures where chemical reactions occur. Additionally, the results from Thermomechanical Analysis showed an expansion in size when the coal was heated to 300°C, which is associated with a "caking" process. The degree of expansion during this "caking" process is about five times greater in the direction perpendicular to the bedding plane than the parallel, indicating an accommodation of anisotropic strain relaxation, which was generated in the direction perpendicular to the bedding plane during the coalification process.

  7. N(4)C-ethyl-N(4)C cross-linked DNA: synthesis and characterization of duplexes with interstrand cross-links of different orientations.

    PubMed

    Noronha, Anne M; Noll, David M; Wilds, Christopher J; Miller, Paul S

    2002-01-22

    The preparation and physical properties of short DNA duplexes that contain a N(4)C-ethyl-N(4)C interstrand cross-link are described. Duplexes that contain an interstrand cross-link between mismatched C-C residues and duplexes in which the C residues of a -CG- or -GC- step are linked to give "staggered" interstrand cross-links were prepared using a novel N(4)C-ethyl-N(4)C phosphoramidite reagent. Duplexes with the C-C mismatch cross-link have UV thermal transition temperatures that are 25 degrees C higher than the melting temperatures of control duplexes in which the cross-link is replaced with a G-C base pair. It appears that this cross-link stabilizes adjacent base pairs and does not perturb the structure of the helix, a conclusion that is supported by the CD spectrum of this duplex and by molecular models. An even higher level of stabilization, 49 degrees C, is seen with the duplex that contains a -CG- staggered cross-link. Molecular models suggest that this cross-link may induce propeller twisting in the cross-linked base pairs, and the CD spectrum of this duplex exhibits an unusual negative band at 298 nm, although the remainder of the spectrum is similar to that of B-form DNA. Mismatched C-C or -CG- staggered cross-linked duplexes that have complementary overhanging ends can undergo self-ligation catalyzed by T4 DNA ligase. Analysis of the ligated oligomers by nondenaturing polyacrylamide gel electrophoresis shows that the resulting oligomers migrate in a manner similar to that of a mixture of non-cross-linked control oligomers and suggests that these cross-links do not result in significant bending of the helix. However, the orientation of the staggered cross-link can have a significant effect on the structure and stability of the cross-linked duplex. Thus, the thermal stability of the duplex that contains a -GC- staggered cross-link is 10 degrees C lower than the melting temperature of the control, non-cross-linked duplex. Unlike the -CG- staggered cross-link, in which the cross-linked base pairs can still maintain hydrogen bond contacts, molecular models suggest that formation of the -GC- staggered cross-link disrupts hydrogen bonding and may also perturb adjacent base pairs leading to an overall reduction in helix stability. Duplexes with specifically positioned and oriented cross-links can be used as substrates to study DNA repair mechanisms.

  8. Anion exchange membrane crosslinked in the easiest way stands out for fuel cells

    NASA Astrophysics Data System (ADS)

    Hossain, Md. Masem; Wu, Liang; Liang, Xian; Yang, Zhengjin; Hou, Jianqiu; Xu, Tongwen

    2018-06-01

    Covalent crosslinking is an effective method to stabilize anion exchange membranes (AEMs) against water swelling and high alkaline environment, yet complicated process is required. We report herein a straightforward approach to prepare highly crosslinked, transparent and flexible AEM by simply immersing a halo-alkylated polymer (e.g., brominated poly-(2,6-dimethyl-phenylene oxide)) based membrane in aqueous dimethylamine solution at room temperature and the following methylation. During this crosslinking process, a robust self-crosslinking network is formed which shows a gel fraction in N-methyl-2-pyrrolidone of (up to) 94%. Self-crosslinked membranes show low water uptakes (20-42%) and dimensional swelling (9-16%) compared to non-crosslinked membrane but good hydroxide conductivities (up to 26 mS cm-1) at room temperature. Besides, the resulting membranes show some interesting features: the membranes do not immensely change its room temperature water swelling properties at high temperature but exhibits good hydroxide conductivities (up to 60 mS cm-1 at 80 °C). Noting that, the self-crosslinked AEM reported here has no β-hydrogens, exhibiting extremely high alkaline stability (no decline in hydroxide conductivity in 1 M KOH at 60 °C for 360h). Membrane electrode assembly consists of fabricated membrane shows moderate fuel cell performance reaching peak power density 31 mW cm-2 at 60 °C in a H2/O2 alkaline fuel cell.

  9. Fatigue crack propagation resistance of virgin and highly crosslinked, thermally treated ultra-high molecular weight polyethylene.

    PubMed

    Gencur, Sara J; Rimnac, Clare M; Kurtz, Steven M

    2006-03-01

    To prolong the life of total joint replacements, highly crosslinked ultra-high molecular weight polyethylenes (UHMWPEs) have been introduced to improve the wear resistance of the articulating surfaces. However, there are concerns regarding the loss of ductility and potential loss in fatigue crack propagation (FCP) resistance. The objective of this study was to evaluate the effects of gamma radiation-induced crosslinking with two different post-irradiation thermal treatments on the FCP resistance of UHMWPE. Two highly crosslinked and one virgin UHMWPE treatment groups (ram-extruded, orthopedic grade, GUR 1050) were examined. For the two highly crosslinked treatment groups, UHMWPE rods were exposed to 100 kGy and then underwent post-irradiation thermal processing either above the melt temperature or below the melt temperature (2 h-150 degrees C, 110 degrees C). Compact tension specimens were cyclically loaded to failure and the fatigue crack growth rate, da/dN, vs. cyclic stress intensity factor, DeltaK, behavior was determined and compared between groups. Scanning electron microscopy was used to examine fracture surface characteristics. Crosslinking was found to decrease the ability of UHMWPE to resist crack inception and propagation under cyclic loading. The findings also suggested that annealing as a post-irradiation treatment may be somewhat less detrimental to FCP resistance of UHMWPE than remelting. Scanning electron microscopy examination of the fracture surfaces demonstrated that the virgin treatment group failed in a more ductile manner than the two highly crosslinked treatment groups.

  10. Crosslinking of agarose bioplastic using citric acid.

    PubMed

    Awadhiya, Ankur; Kumar, David; Verma, Vivek

    2016-10-20

    We report chemical crosslinking of agarose bioplastic using citric acid. Crosslinking was confirmed using Fourier transform infrared (FTIR) spectroscopy. The effects of crosslinking on the tensile strength, swelling, thermal stability, and degradability of the bioplastic were studied in detail. The tensile strength of the bioplastic films increased from 25.1MPa for control films up to a maximum of 52.7MPa for citric acid crosslinked films. At 37°C, the amount of water absorbed by crosslinked agarose bioplastic was only 11.5% of the amount absorbed by non-crosslinked controls. Thermogravimetric results showed that the crosslinked samples retain greater mass at high temperature (>450°C) than control samples. Moreover, while the crosslinked films were completely degradable, the rate of degradation was lower compared to non-crosslinked controls. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Recycling and processing of several typical crosslinked polymer scraps with enhanced mechanical properties based on solid-state mechanochemical milling

    NASA Astrophysics Data System (ADS)

    Lu, Canhui; Zhang, Xinxing; Zhang, Wei

    2015-05-01

    The partially devulcanization or de-crosslinking of ground tire rubber (GTR), post-vulcanized fluororubber scraps and crosslinked polyethylene from cable scraps through high-shear mechanochemical milling (HSMM) was conducted by a modified solid-state mechanochemical reactor. The results indicated that the HSMM treated crosslinked polymer scraps can be reprocessed as virgin rubbers or thermoplastics to produce materials with high performance. The foamed composites of low density polyethylene/GTR and the blend of post-vulcanized flurorubber (FKM) with polyacrylate rubber (ACM) with better processability and mechanical properties were obtained. The morphology observation showed that the dispersion and compatibility between de-crosslinked polymer scraps and matrix were enhanced. The results demonstrated that HSMM is a feasible alternative technology for recycling post-vulcanized or crosslinked polymer scraps.

  12. Recyclable Cu(II)-Coordination Crosslinked Poly(benzimidazolyl pyridine)s as High-Performance Polymers.

    PubMed

    Wang, Cheng; Yang, Li; Chang, Guanjun

    2018-03-01

    Crosslinked high-performance polymers have many industrial applications, but are difficult to recycle or rework. A novel class of recyclable crosslinking Cu(II)-metallo-supramolecular coordination polymers are successfully prepared, which possess outstanding thermal stability and mechanical property. More importantly, the Cu 2+ coordination interactions can be further removed via external pyrophosphate to recover the linear polymers, which endow the crosslinking polymers with recyclability. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Physical Aspects of Photodynamic Corneal Collagen Crosslinking

    NASA Astrophysics Data System (ADS)

    Kornfield, Julia

    2012-02-01

    Healthy vision depends on the stability of the shape of the cornea, which provides most of the lens power of the optical system of the eye. Diseases in which the cornea progressively undergoes irregular deformation over time (e.g., keratoconus) can be treated clinically by inducing additional protein-protein crosslinks using a photosensitizing drug and a tailored dose of light. Unfortunately, the treatment moving through clinical trials is toxic to cells in and on the cornea. A path to a safer treatment is offered by the nanostructure of the corneal stroma---reminiscent of a HEX phase in block copolymers with 30nm diameter collagen cylinders spaced 60nm center-to-center in a hydrogel matrix of proteoglycans and water. We show that using a photosensitizing drug that sequesters itself in the collagen fibrils can minimize the toxicity of therapeutic protein-protein cross-linking. Photorheology and transport measurements are used to quantify the parameters of a simple physical model that is useful for optimizing clinical protocols.

  14. Crosslinked polybenzimidazoles containing branching structure as membrane materials with excellent cell performance and durability for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Hu, Meishao; Ni, Jiangpeng; Zhang, Boping; Neelakandan, Sivasubramaniyan; Wang, Lei

    2018-06-01

    Crosslinking is an effective method to improve the properties of high temperature proton exchange membranes based on polybenzimidazole. However, the compact structure of crosslinked polybenzimidazole hinders the phosphoric acid absorption of the membranes, resulting in a relatively poor fuel cell performance. Recently, we find that branched polymers can absorb more phosphoric acid with a larger free volume, but suffer from deteriorated mechanical strength. In this work, a new method is proposed to obtain excellent over-all properties of high temperature proton exchange membranes. A series of crosslinked polybenzimidazoles containing branching structure as membrane materials are successfully prepared for the first time. Compared with conventional crosslinked membranes, these crosslinked polybenzimidazole membranes containing branching structure exhibit a higher phosphoric acid doping level and proton conductivity, improved durability, lower swelling rate and comparable mechanical strength. In particular, the fuel cell base on the crosslinked and branched membrane with a 10% ratio of crosslinker in non-humidified hydrogen/air at 160 °C achieves a power density of 404 mW cm-2. The results indicate that the combination of crosslinking and branching is an effective approach to improve the properties of polybenzimidazole membrane materials.

  15. Microrheology of highly crosslinked microtubule networks is dominated by force-induced crosslinker unbinding

    PubMed Central

    Yang, Yali; Bai, Mo; Klug, William S.; Levine, Alex J.

    2012-01-01

    We determine the time- and force-dependent viscoelastic responses of reconstituted networks of microtubules that have been strongly crosslinked by biotin-streptavidin bonds. To measure the microscale viscoelasticity of such networks, we use a magnetic tweezers device to apply localized forces. At short time scales, the networks respond nonlinearly to applied force, with stiffening at small forces, followed by a reduction in the stiffening response at high forces, which we attribute to the force-induced unbinding of crosslinks. At long time scales, force-induced bond unbinding leads to local network rearrangement and significant bead creep. Interestingly, the network retains its elastic modulus even under conditions of significant plastic flow, suggesting that crosslinker breakage is balanced by the formation of new bonds. To better understand this effect, we developed a finite element model of such a stiff filament network with labile crosslinkers obeying force-dependent Bell model unbinding dynamics. The coexistence of dissipation, due to bond breakage, and the elastic recovery of the network is possible because each filament has many crosslinkers. Recovery can occur as long as a sufficient number of the original crosslinkers are preserved under the loading period. When these remaining original crosslinkers are broken, plastic flow results. PMID:23577042

  16. Novel magnetic cross-linked lipase aggregates for improving the resolution of (R, S)-2-octanol.

    PubMed

    Liu, Ying; Guo, Chen; Liu, Chun-Zhao

    2015-03-01

    Novel magnetic cross-linked lipase aggregates were fabricated by immobilizing the cross-linked lipase aggregates onto magnetic particles with a high number of -NH2 terminal groups using p-benzoquinone as the cross-linking agent. At the optimal fabrication conditions, 100% of immobilization efficiency and 139% of activity recovery of the magnetic cross-linked lipase aggregates were achieved. The magnetic cross-linked lipase aggregates were able to efficiently resolve (R, S)-2-octanol, and retained 100% activity and 100% enantioselectivity after 10 cycles of reuse, whereas the cross-linked lipase aggregates only retained about 50% activity and 70% enantioselectivity due to insufficient cross-linking. These results provide a great potential for industrial applications of the magnetic cross-linked lipase aggregates. © 2014 Wiley Periodicals, Inc.

  17. Enzymic cross-linkage of monomeric extensin precursors in vitro. [Lycopersicon esculentum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Everdeen, D.S.; Kiefer, S.; Willard, J.J.

    Rapidly growing tomato (Lycopersicon esculentum) cell suspension cultures contain transiently high levels of cell surface, salt-elutable, monomeric precursors to the covalently cross-linked extensin network of the primary cell wall. Thus, the authors purified a highly soluble monomeric extensin substrate from rapidly growing cells, and devised a soluble in vitro cross-linking assay based on Superose-6 fast protein liquid chromatography separation, which resolved extensin monomers from the newly formed oligomers within 25 minutes. Salt elution of slowly growing (early stationary phase) cells yielded little or no extensin monomers but did give a highly active enzymic preparation that specifically cross-linked extensin monomers inmore » the presence of hydrogen peroxide, judging from: (a) a decrease in the extensin monomer peak on fast protein liquid chromatography gel filtration, (b) appearance of oligomeric peaks, and (c) direct electron microscopical observation of the cross-linked oligomers. The cross-linking reaction had a broad pH optimum between 5.5 and 6.5. An approach to substrate saturation of the enzyme required extensin monomer concentrations of 20 to 40 milligrams per milliliter. Preincubation with catalase completely inhibited the cross-linking reaction, which was highly dependent on hydrogen peroxide and optimal at 15 to 50 micromolar. They therefore identified the cross-linking activity as extensin peroxidase.« less

  18. A novel crosslinking strategy for preparing poly(vinyl alcohol)-based proton-conducting membranes with high sulfonation

    NASA Astrophysics Data System (ADS)

    Tsai, Chun-En; Lin, Chi-Wen; Hwang, Bing-Joe

    This study synthesizes poly(vinyl alcohol) (PVA)-based polymer electrolyte membranes by a two-step crosslinking process involving esterization and acetal ring formation reactions. This work also uses sulfosuccinic acid (SSA) as the first crosslinking agent to form an inter-crosslinked structure and a promoting sulfonating agent. Glutaraldehyde (GA) as the second crosslinking agent, reacts with the spare OH group of PVA and forms, not only a dense structure at the outer membrane surface, but also a hydrophobic protective layer. Compared with membranes prepared by a traditional one-step crosslinking process, membranes prepared by the two-step crosslinking process exhibit excellent dissolution resistance in water. The membranes become water-insoluble even at a molar ratio of SO 3H/PVA-OH as high as 0.45. Moreover, the synthesized membranes also exhibit high proton conductivities and high methanol permeability resistance. The current study measures highest proton conductivity of 5.3 × 10 -2 S cm -1 at room temperature from one of the synthesized membranes, higher than that of the Nafion ® membrane. Methanol permeability of the synthesized membranes measures about 1 × 10 -7 cm 2 S -1, about one order of magnitude lower than that of the Nafion ® membrane.

  19. Effect of crosslinking UHMWPE on its tensile and compressive creep performance.

    PubMed

    Lewis, G; Carroll, M

    2001-01-01

    The in vitro quasi-static tensile and compressive creep properties of three sets of GUR 1050 ultra-high-molecular-weight polyethylene (UHMWPE) specimens were obtained. These sets were: control (as-received stock); "low-gamma" (specimens were crosslinked using gamma radiation, with a minimum dose of 5 Mrad); and "high-gamma" (specimens were crosslinked using gamma radiation, with a minimum dose of 15 Mrad). The % crystallinity (%C) and crosslink density (rho(x)) of the specimens in the three sets were also obtained. It was found that, in both tension and compression, crosslinking resulted in a significant depreciation in the creep properties, relative to control. The trend in the creep results is explained in terms of the impact of crosslinking on the polymer's %C and rho(x). The present results are in contrast to literature reports that show that crosslinking enhances the wear resistance of the polymer. The implications of the present results, taken together with the aforementioned literature results, are fully discussed vis-a-vis the use of crosslinked UHMWPE for fabricating articular components for arthroplasties.

  20. The Abl-related gene (Arg) requires its F-actin-microtubule cross-linking activity to regulate lamellipodial dynamics during fibroblast adhesion.

    PubMed

    Miller, Ann L; Wang, Yinxiang; Mooseker, Mark S; Koleske, Anthony J

    2004-05-10

    Microtubules (MTs) help establish and maintain cell polarity by promoting actin-dependent membrane protrusion at the leading edge of the cell, but the molecular mechanisms that mediate cross-talk between actin and MTs during this process are unclear. We demonstrate that the Abl-related gene (Arg) nonreceptor tyrosine kinase is required for dynamic lamellipodial protrusions after adhesion to fibronectin. arg-/- fibroblasts exhibit reduced lamellipodial dynamics as compared with wild-type fibroblasts, and this defect can be rescued by reexpression of an Arg-yellow fluorescent protein fusion. We show that Arg can bind MTs with high affinity and cross-link filamentous actin (F-actin) bundles and MTs in vitro. MTs concentrate and insert into Arg-induced F-actin-rich cell protrusions. Arg requires both its F-actin-binding domains and its MT-binding domain to rescue the defects in lamellipodial dynamics of arg-/- fibroblasts. These findings demonstrate that Arg can mediate physical contact between F-actin and MTs at the cell periphery and that this cross-linking activity is required for Arg to regulate lamellipodial dynamics in fibroblasts. Copyright the Rockefeller University Press

  1. Study for HDR cross-link for formation flight satellite systems

    NASA Astrophysics Data System (ADS)

    Nishinaga, Nozomu; Takayama, Yoshihisa; Takahashi, Takashi; Ogawa, Yasuo; Kubooka, Toshihiro; Umehara, Hiroaki

    2003-07-01

    In this paper we studied about optical and millimeter radio wave cross-link for formation flight communication satellite system in a geostationary orbit. In formation flight system, since the distance among the satellites becomes short compared with the conventional inter satellite comunication link, the size and the weight of the communication system can be reduced. If the high data rate cross-link among the satellites which is equal to the whole transponder bandwidth can be established, the functionally distributed communications satellite system can be constructed. Then, by exchanging a part of the satellite system without the physical contact, in other words, by exchange some old satellites and new ones, the fully reconfigurable and long lifetime (from the point of the function) satellite communication system which can follow the paradigm shift in the terrestrial communications technology can be realize. On the other hand, however, since the maximum of relative angle error among two satellites is enlarged, the tracking becomes difficult. In this study, it turns the electric power which is gotten from the shortening the distance to making beam width large. Here, we examine communication among two satellites (10Km distance) where the data rate is 1Gbps.

  2. Physical Biology of Axonal Damage.

    PubMed

    de Rooij, Rijk; Kuhl, Ellen

    2018-01-01

    Excessive physical impacts to the head have direct implications on the structural integrity at the axonal level. Increasing evidence suggests that tau, an intrinsically disordered protein that stabilizes axonal microtubules, plays a critical role in the physical biology of axonal injury. However, the precise mechanisms of axonal damage remain incompletely understood. Here we propose a biophysical model of the axon to correlate the dynamic behavior of individual tau proteins under external physical forces to the evolution of axonal damage. To propagate damage across the scales, we adopt a consistent three-step strategy: First, we characterize the axonal response to external stretches and stretch rates for varying tau crosslink bond strengths using a discrete axonal damage model. Then, for each combination of stretch rates and bond strengths, we average the axonal force-stretch response of n = 10 discrete simulations, from which we derive and calibrate a homogenized constitutive model. Finally, we embed this homogenized model into a continuum axonal damage model of [1-d]-type in which d is a scalar damage parameter that is driven by the axonal stretch and stretch rate. We demonstrate that axonal damage emerges naturally from the interplay of physical forces and biological crosslinking. Our study reveals an emergent feature of the crosslink dynamics: With increasing loading rate, the axonal failure stretch increases, but axonal damage evolves earlier in time. For a wide range of physical stretch rates, from 0.1 to 10 /s, and biological bond strengths, from 1 to 100 pN, our model predicts a relatively narrow window of critical damage stretch thresholds, from 1.01 to 1.30, which agrees well with experimental observations. Our biophysical damage model can help explain the development and progression of axonal damage across the scales and will provide useful guidelines to identify critical damage level thresholds in response to excessive physical forces.

  3. On the Formation and Properties of Interstrand DNA-DNA Cross-links Forged by Reaction of an Abasic Site With the Opposing Guanine Residue of 5′-CAp Sequences in Duplex DNA

    PubMed Central

    Johnson, Kevin M.; Price, Nathan E.; Wang, Jin; Fekry, Mostafa I.; Dutta, Sanjay; Seiner, Derrick R.; Wang, Yinsheng; Gates, Kent S.

    2014-01-01

    We recently reported that the aldehyde residue of an abasic (Ap) site in duplex DNA can generate an interstrand cross-link via reaction with a guanine residue on the opposing strand. This finding is intriguing because the highly deleterious nature of interstrand cross-links suggests that even small amounts of Ap-derived cross-links could make a significant contribution to the biological consequences stemming from the generation of Ap sites in cellular DNA. Incubation of 21-bp duplexes containing a central 5′-CAp sequence under conditions of reductive amination (NaCNBH3, pH 5.2) generated much higher yields of cross-linked DNA than reported previously. At pH 7, in the absence of reducing agents, these Ap-containing duplexes also produced cross-linked duplexes that were readily detected on denaturing polyacrylamide gels. Cross-link formation was not highly sensitive to reaction conditions and, once formed, the cross-link was stable to a variety of work-up conditions. Results of multiple experiments including MALDI-TOF mass spectrometry, gel mobility, methoxyamine capping of the Ap aldehyde, inosine-for-guanine replacement, hydroxyl radical footprinting, and LCMS/MS were consistent with a cross-linking mechanism involving reversible reaction of the Ap aldehyde residue with the N2-amino group of the opposing guanine residue in 5′-CAp sequences to generate hemiaminal, imine, or cyclic hemiaminal cross-links (7-10) that were irreversibly converted under conditions of reductive amination (NaCNBH3/pH 5.2) to a stable amine linkage. Further support for the importance of the exocyclic N2-amino group in this reaction was provided by an experiment showing that installation of a 2-aminopurine-thymine base pair at the cross-linking site produced high yields (15-30%) of a cross-linked duplex at neutral pH, in the absence of NaCNBH3. PMID:23215239

  4. UV laser-induced cross-linking in peptides

    PubMed Central

    Leo, Gabriella; Altucci, Carlo; Bourgoin-Voillard, Sandrine; Gravagnuolo, Alfredo M.; Esposito, Rosario; Marino, Gennaro; Costello, Catherine E.; Velotta, Raffaele; Birolo, Leila

    2013-01-01

    RATIONALE The aim of this study was to demonstrate, and to characterize by high resolution mass spectrometry, that it is possible to preferentially induce covalent cross-links in peptides by using high energy femtosecond UV laser pulses. The cross-link is readily formed only when aromatic amino acids are present in the peptide sequence. METHODS Three peptides, xenopsin, angiotensin I, interleukin, individually or in combination, were exposed to high energy femtosecond UV laser pulses, either alone or in the presence of spin trapping molecules, the reaction products being characterized by high resolution mass spectrometry. RESULTS High resolution mass spectrometry and spin trapping strategies showed that cross-linking occurs readily, proceeds via a radical mechanism, and is the highly dominant reaction, proceeding without causing significant photo-damage in the investigated range of experimental parameters. CONCLUSIONS High energy femtosecond UV laser pulses can be used to induce covalent cross-links between aromatic amino acids in peptides, overcoming photo-oxidation processes, that predominate as the mean laser pulse intensity approaches illumination conditions achievable with conventional UV light sources. PMID:23754800

  5. Recycling and processing of several typical crosslinked polymer scraps with enhanced mechanical properties based on solid-state mechanochemical milling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Canhui; Zhang, Xinxing; Zhang, Wei

    The partially devulcanization or de-crosslinking of ground tire rubber (GTR), post-vulcanized fluororubber scraps and crosslinked polyethylene from cable scraps through high-shear mechanochemical milling (HSMM) was conducted by a modified solid-state mechanochemical reactor. The results indicated that the HSMM treated crosslinked polymer scraps can be reprocessed as virgin rubbers or thermoplastics to produce materials with high performance. The foamed composites of low density polyethylene/GTR and the blend of post-vulcanized flurorubber (FKM) with polyacrylate rubber (ACM) with better processability and mechanical properties were obtained. The morphology observation showed that the dispersion and compatibility between de-crosslinked polymer scraps and matrix were enhanced. Themore » results demonstrated that HSMM is a feasible alternative technology for recycling post-vulcanized or crosslinked polymer scraps.« less

  6. A novel bio-orthogonal cross-linker for improved protein/protein interaction analysis.

    PubMed

    Nury, Catherine; Redeker, Virginie; Dautrey, Sébastien; Romieu, Anthony; van der Rest, Guillaume; Renard, Pierre-Yves; Melki, Ronald; Chamot-Rooke, Julia

    2015-02-03

    The variety of protein cross-linkers developed in recent years illustrates the current requirement for efficient reagents optimized for mass spectrometry (MS) analysis. To date, the most widely used strategy relies on commercial cross-linkers that bear an isotopically labeled tag and N-hydroxysuccinimid-ester (NHS-ester) moieties. Moreover, an enrichment step using liquid chromatography is usually performed after enzymatic digestion of the cross-linked proteins. Unfortunately, this approach suffers from several limitations. First, it requires large amounts of proteins. Second, NHS-ester cross-linkers are poorly efficient because of their fast hydrolysis in water. Finally, data analysis is complicated because of uneven fragmentation of complex isotopic cross-linked peptide mixtures. We therefore synthesized a new type of trifunctional cross-linker to overrule these limitations. This reagent, named NNP9, comprises a rigid core and bears two activated carbamate moieties and an azido group. NNP9 was used to establish intra- and intermolecular cross-links within creatine kinase, then to map the interaction surfaces between α-Synuclein (α-Syn), the aggregation of which leads to Parkinson's disease, and the molecular chaperone Hsc70. We show that NNP9 cross-linking efficiency is significantly higher than that of NHS-ester commercial cross-linkers. The number of cross-linked peptides identified was increased, and a high quality of MS/MS spectra leading to high sequence coverage was observed. Our data demonstrate the potential of NNP9 for an efficient and straightforward characterization of protein-protein interfaces and illustrate the power of using different cross-linkers to map thoroughly the surface interfaces within protein complexes.

  7. Genipin-crosslinked gelatin-silk fibroin hydrogels for modulating the behaviour of pluripotent cells.

    PubMed

    Sun, Wei; Incitti, Tania; Migliaresi, Claudio; Quattrone, Alessandro; Casarosa, Simona; Motta, Antonella

    2016-10-01

    Different hydrogel materials have been prepared to investigate the effects of culture substrate on the behaviour of pluripotent cells. In particular, genipin-crosslinked gelatin-silk fibroin hydrogels of different compositions have been prepared, physically characterized and used as substrates for the culture of pluripotent cells. Pluripotent cells cultured on hydrogels remained viable and proliferated. Gelatin and silk fibroin promoted the proliferation of cells in the short and long term, respectively. Moreover, cells cultured on genipin-crosslinked gelatin-silk fibroin blended hydrogels were induced to an epithelial ectodermal differentiation fate, instead of the neural ectodermal fate obtained by culturing on tissue culture plates. This work confirms that specific culture substrates can be used to modulate the behaviour of pluripotent cells and that our genipin-crosslinked gelatin-silk fibroin blended hydrogels can induce pluripotent cells differentiation to an epithelial ectodermal fate. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  8. Polyvinyl alcohol cross-linked with two aldehydes

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Rieker, L. L.; Hsu, L. C.; Manzo, M. A. (Inventor)

    1982-01-01

    A film forming polyvinyl alcohol resin is admixed, in aqueous solution, with a dialdehyde crosslinking agent which is capable of crosslinking the polyvinyl alcohol resin and a water soluble acid aldehyde containing a reactive aldehyde group capable of reacting with hydroxyl groups in the polyvinyl alcohol resin and an ionizable acid hydrogen atom. The dialdehyde is present in an amount sufficient to react with from 1 to 20% by weight of the theoretical amount required to react with all of the hydroxyl groups of the polyvinyl alcohol. The amount of acid aldehyde is from 1 to 50% by weight, same basis, and is sufficient to reduce the pH of the aqueous admixture to 5 or less. The admixture is then formed into a desired physical shape, such as by casting a sheet or film, and the shaped material is then heated to simultaneously dry and crosslink the article.

  9. Collision-induced dissociative chemical cross-linking reagents and methodology: Applications to protein structural characterization using tandem mass spectrometry analysis.

    PubMed

    Soderblom, Erik J; Goshe, Michael B

    2006-12-01

    Chemical cross-linking combined with mass spectrometry is a viable approach to study the low-resolution structure of protein and protein complexes. However, unambiguous identification of the residues involved in a cross-link remains analytically challenging. To enable a more effective analysis across various MS platforms, we have developed a novel set of collision-induced dissociative cross-linking reagents and methodology for chemical cross-linking experiments using tandem mass spectrometry (CID-CXL-MS/MS). These reagents incorporate a single gas-phase cleavable bond within their linker region that can be selectively fragmented within the in-source region of the mass spectrometer, enabling independent MS/MS analysis for each peptide. Initial design concepts were characterized using a synthesized cross-linked peptide complex. Following verification and subsequent optimization of cross-linked peptide complex dissociation, our reagents were applied to homodimeric glutathione S-transferase and monomeric bovine serum albumin. Cross-linked residues identified by our CID-CXL-MS/MS method were in agreement with published crystal structures and previous cross-linking studies using conventional approaches. Common LC/MS/MS acquisition approaches such as data-dependent acquisition experiments using ion trap mass spectrometers and product ion spectral analysis using SEQUEST were shown to be compatible with our CID-CXL-MS/MS reagents, obviating the requirement for high resolution and high mass accuracy measurements to identify both intra- and interpeptide cross-links.

  10. Towards a fully synthetic substitute of alginate: optimization of a thermal gelation/chemical cross-linking scheme ("tandem" gelation) for the production of beads and liquid-core capsules.

    PubMed

    Cellesi, F; Weber, W; Fussenegger, M; Hubbell, J A; Tirelli, N

    2004-12-20

    Fully synthetic polymers were used for the preparation of hydrogel beads and capsules, in a processing scheme that, originally designed for calcium alginate, was adapted to a "tandem" process, that is the combination a physical gelation with a chemical cross-linking. The polymers feature a Tetronic backbone (tetra armed Pluronics), which exhibits a reverse thermal gelation in water solutions within a physiological range of temperatures and pHs. The polymers bear terminal reactive groups that allow for a mild, but effective chemical cross-linking. Given an appropriate temperature jump, the thermal gelation provides a hardening kinetics similar to that of alginate. With slower kinetics, the chemical cross-linking then develops an irreversible and elastic gel structure, and determines its transport properties. In the present article this process has been optimized for the production of monodisperse, high elastic, hydrogel microbeads, and liquid-core microcapsules. We also show the feasibility of the use of liquid-core microcapsules in cell encapsulation. In preliminary experiments, CHO cells have been successfully encapsulated preserving their viability during the process and after incubation. The advantages of this process are mainly in the use of synthetic polymers, which provide great flexibility in the molecular design. This, in principle, allows for a precise tailoring of mechanical and transport properties and of bioactivity of the hydrogels, and also for a precise control in material purification.

  11. Diagnosis of Fanconi Anemia by Diepoxybutane Analysis

    PubMed Central

    Auerbach, Arleen D.

    2015-01-01

    Fanconi anemia (FA) is a genetically and phenotypically heterogeneous disorder characterized by congenital malformations, progressive bone marrow failure, and predisposition to cancer, particularly hematological malignancies and solid tumors of the head and neck. The main role of FA proteins is in the repair of DNA interstrand crosslinks (ICLs). FA results from pathogenic variants in at least 16 distinct genes, causing genomic instability. Although the highly variable phenotype makes accurate diagnosis on the basis of clinical manifestations difficult in some patients, diagnosis based on a profound sensitivity to DNA crosslinking agents can be used to identify the pre-anemia patient as well as patients with aplastic anemia or leukemia who may or may not have the physical stigmata associated with the syndrome. Diepoxybutane (DEB) analysis is the preferred test for FA because other agents have higher rates of false-positive and false-negative results. PMID:25827349

  12. Development of toughened epoxy polymers for high performance composite and ablative applications

    NASA Technical Reports Server (NTRS)

    Allen, V. R.

    1982-01-01

    A survey of current procedures for the assessment of state of cure in epoxy polymers and for the evaluation of polymer toughness as related to nature of the crosslinking agent was made to facilitate a cause-effect study of the chemical modification of epoxy polymers. Various conformations of sample morphology were examined to identify testing variables and to establish optimum conditions for the selected physical test methods. Dynamic viscoelasticity testing was examined in conjunction with chemical analyses to allow observation of the extent of the curing reaction with size of the crosslinking agent the primary variable. Specifically the aims of the project were twofold: (1) to consider the experimental variables associated with development of "extent of cure" analysis, and (2) to assess methodology of fracture energy determination and to prescribe a meaningful and reproducible procedure. The following is separated into two categories for ease of presentation.

  13. Influence of natural and synthetic crosslinking reagents on the structural and mechanical properties of chitosan-based hybrid hydrogels.

    PubMed

    Garnica-Palafox, I M; Sánchez-Arévalo, F M

    2016-10-20

    The objective of this work was to correlate the physical and chemical properties of chitosan/poly(vinyl alcohol)/genipin (CS/PVA/GEN) and chitosan/poly(vinyl alcohol)/glutaraldehyde (CS/PVA/GA) hydrogels with their structural and mechanical responses. In addition, their molecular structures were determined and confirmed using FTIR spectroscopy. The results indicated that the hybrid hydrogels crosslinked with genipin showed similar crystallinity, thermal properties, elongation ratio and structural parameters as those crosslinked with glutaraldehyde. However, it was found that the elastic moduli of the two hybrid hydrogels were slightly different: 2.82±0.33MPa and 2.08±0.11MPa for GA and GEN, respectively. Although the hybrid hydrogels crosslinked with GEN presented a lower elastic modulus, the main advantage is that GEN is five to ten thousand times less cytotoxic than GA. This means that the structural and mechanical properties of hybrid hydrogels crosslinked with GEN can easily be tuned and could have potential applications in the tissue engineering, regenerative medicine, food, agriculture and environmental industries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Facile thiol-ene thermal crosslinking reaction facilitated hole-transporting layer for highly efficient and stable perovskite solar cells

    DOE PAGES

    Li, Zhong'an; Zhu, Zonglong; Chueh, Chu -Chen; ...

    2016-08-08

    A crosslinked organic hole-transporting layer (HTL) is developed to realize highly efficient and stable perovskite solar cells via a facile thiol-ene thermal reaction. This crosslinked HTL not only facilitates hole extraction from perovskites, but also functions as an effective protective barrier. Lastly, a high-performance (power conversion efficiency: 18.3%) device is demonstrated to show respectable photo and thermal stability without encapsulation.

  15. Synthesis and Characterization of Gelatin-Based Crosslinkers for the Fabrication of Superabsorbent Hydrogels

    PubMed Central

    Amonpattaratkit, Penphitcha; Khunmanee, Sureerat; Kim, Dong Hyun; Park, Hansoo

    2017-01-01

    In this work, crosslinkers were prepared by conjugating high- and low-molecular-weight gelatin with different mole ratios of itaconic acid (IA) with double bonds. Then, the gelatin-itaconic acid (gelatin-IA) crosslinkers were compared with the gelatin-methacrylate (gelatin-MA) crosslinkers. The molecular weights and structures of gelatin-MA and gelatin-IA were confirmed using gel permeation chromatography (GPC) and nuclear magnetic resonance (NMR). Additionally, the swelling ratio and biodegradation properties of the hydrogels using IA as starting monomers and gelatin-IA and gelatin-MA as crosslinkers were investigated. Both hydrogels prepared with high and low molecular weights of gelatin-IA showed higher swelling ratios than those prepared with the gelatin-MA. The results also showed that absorbent hydrogels with different biodegradabilities and swelling ratios could be prepared by changing the ratio of the gelatin-based crosslinkers. PMID:28773186

  16. Fabrication and characterization of hydrothermal cross-linked chitosan porous scaffolds for cartilage tissue engineering applications.

    PubMed

    Shamekhi, Mohammad Amin; Rabiee, Ahmad; Mirzadeh, Hamid; Mahdavi, Hamid; Mohebbi-Kalhori, Davod; Baghaban Eslaminejad, Mohamadreza

    2017-11-01

    The use of various chemical cross-linking agents for the improvement of scaffolds physical and mechanical properties is a common practical method, which is limited by cytotoxicity effects. Due to exerting contract type forces, chondrocytes are known to implement shrinkage on the tissue engineered constructs, which can be avoided by the scaffold cross-linking. In the this research, chitosan scaffolds are cross-linked with hydrothermal treatment with autoclave sterilization time of 0, 10, 20 and 30min, to avoid the application of the traditional chemical toxic materials. The optimization studies with gel content and crosslink density measurements indicate that for 20min sterilization time, the gel content approaches to ~80%. The scaffolds are fully characterized by the conventional techniques such as SEM, porosity and permeability, XRD, compression, thermal analysis and dynamic mechanical thermal analysis (DMTA). FT-IR studies shows that autoclave inter-chain cross-linking reduces the amine group absorption at 1560cm -1 and increase the absorption of N-acetylated groups at 1629cm -1 . It is anticipated, that this observation evidenced by chitosan scaffold browning upon autoclave cross-linking is an indication of the familiar maillard reaction between amine moieties and carbonyl groups. The biodegradation rate analysis shows that chitosan scaffolds with lower concentrations, possess suitable degradation rate for cartilage tissue engineering applications. In addition, cytotoxicity analysis shows that fabricated scaffolds are biocompatible. The human articular chondrocytes seeding into 3D cross-linked scaffolds shows a higher viability and proliferation in comparison with the uncross-linked samples and 2D controls. Investigation of cell morphology on the scaffolds by SEM, shows a more spherical morphology of chondrocytes on the cross-linked scaffolds for 21days of in vitro culture. Copyright © 2017. Published by Elsevier B.V.

  17. Assessment of UVA-Riboflavin Corneal Cross-Linking Using Small Amplitude Oscillatory Shear Measurements.

    PubMed

    Aslanides, Ioannis M; Dessi, Claudia; Georgoudis, Panagiotis; Charalambidis, Georgios; Vlassopoulos, Dimitris; Coutsolelos, Athanassios G; Kymionis, George; Mukherjee, Achyut; Kitsopoulos, Theofanis N

    2016-04-01

    The effect of ultraviolet (UV)-riboflavin cross-linking (CXL) has been measured primarily using the strip extensometry technique. We propose a simple and reliable methodology for the assessment of CXL treatment by using an established rheologic protocol based on small amplitude oscillatory shear (SAOS) measurements. It provides information on the average cross-link density and the elastic modulus of treated cornea samples. Three fresh postmortem porcine corneas were used to study the feasibility of the technique, one serving as control and two receiving corneal collagen cross-linking treatment. Subsequently, five pairs of fresh postmortem porcine corneas received corneal collagen cross-linking treatment with riboflavin and UVA-irradiation (370 nm; irradiance of 3 mW/cm2) for 30 minutes (Dresden protocol); the contralateral porcine corneas were used as control samples. After the treatment, the linear viscoelastic moduli of the corneal samples were measured using SAOS measurements and the average cross-linking densities extracted. For all cases investigated, the dynamic moduli of the cross-linked corneas were higher compared to those of the corresponding control samples. The increase of the elastic modulus of the treated samples was between 122% and 1750%. The difference was statistically significant for all tested samples (P = 0.018, 2-tailed t-test). We report a simple and accurate methodology for quantifying the effects of cross-linking on porcine corneas treated with the Dresden protocol by means of SAOS measurements in the linear regime. The measured dynamic moduli, elastic and viscous modulus, represent the energy storage and energy dissipation, respectively. Hence, they provide a means to assess the changing physical properties of the cross-linked collagen networks after CXL treatment.

  18. Highly viscous liquid crystalline mixtures: the alternative to liquid crystalline elastomers

    NASA Astrophysics Data System (ADS)

    Shibaev, Petr; Schlesier, Cristina; Newman, Leah; McDonald, Scott

    2012-02-01

    Novel highly viscous liquid crystalline materials based on mixtures of glass forming oligomers and low molar mass liquid crystals were recently designed [1, 2] and studied. In this communication the novel data are presented, the analysis and discussion are extended. It is shown that viscoelastic properties of the materials are due to the physical entanglements between cyclic oligomers and low molar mass mesogens, not due to the chemical crosslinks between molecular moities. However, the mechanical properties of these viscoelastic materials resemble those of chemically crosslinked elastomers (elasticity and reversibility of deformations). The properties of chiral and non-chiral materials loaded with ferromagnetic nanoparticles are discussed in detail. Cholesteric materials undergo gigantic color changes in the wide spectral range under the deformation that allows distant detection of deformation and determination the anisotropy of deformation and its type. The materials doped with laser dyes become mechanically tunable lasers themselves and emit coherent light while pumped by external laser. A simple model is suggested to account for the observed effects; physical properties of the novel materials and liquid crystalline elastomers are compared and discussed. [4pt] [1] P.V. Shibaev, C. Schlesier, R. Uhrlass, S. Woodward, E. Hanelt, Liquid Crystals, 37:12, 1601-1604 [0pt] [2] P.V. Shibaev, P. Riverra, D. Teter, S. Marsico, M. Sanzari, V. Ramakrishnan, E. Hanelt, Optics Express, 16, 2965 (2008)

  19. Nanomechanics of layer-by-layer polyelectrolyte complexes: a manifestation of ionic cross-links and fixed charges.

    PubMed

    Han, Biao; Chery, Daphney R; Yin, Jie; Lu, X Lucas; Lee, Daeyeon; Han, Lin

    2016-01-28

    This study investigates the roles of two distinct features of ionically cross-linked polyelectrolyte networks - ionic cross-links and fixed charges - in determining their nanomechanical properties. The layer-by-layer assembled poly(allylamine hydrochloride)/poly(acrylic acid) (PAH/PAA) network is used as the model material. The densities of ionic cross-links and fixed charges are modulated through solution pH and ionic strength (IS), and the swelling ratio, elastic and viscoelastic properties are quantified via an array of atomic force microscopy (AFM)-based nanomechanical tools. The roles of ionic cross-links are underscored by the distinctive elastic and viscoelastic nanomechanical characters observed here. First, as ionic cross-links are highly sensitive to solution conditions, the instantaneous modulus, E0, exhibits orders-of-magnitude changes upon pH- and IS-governed swelling, distinctive from the rubber elasticity prediction based on permanent covalent cross-links. Second, ionic cross-links can break and self-re-form, and this mechanism dominates force relaxation of PAH/PAA under a constant indentation depth. In most states, the degree of relaxation is >90%, independent of ionic cross-link density. The importance of fixed charges is highlighted by the unexpectedly more elastic nature of the network despite low ionic cross-link density at pH 2.0, IS 0.01 M. Here, the complex is a net charged, loosely cross-linked, where the degree of relaxation is attenuated to ≈50% due to increased elastic contribution arising from fixed charge-induced Donnan osmotic pressure. In addition, this study develops a new method for quantifying the thickness of highly swollen polymer hydrogel films. It also underscores important technical considerations when performing nanomechanical tests on highly rate-dependent polymer hydrogel networks. These results provide new insights into the nanomechanical characters of ionic polyelectrolyte complexes, and lay the ground for further investigation of their unique time-dependent properties.

  20. Preparation and characterization of free films of high amylose/pectin mixtures cross-linked with sodium trimetaphosphate.

    PubMed

    Prezotti, Fabíola Garavello; Meneguin, Andréia Bagliotti; Evangelista, Raul Cesar; Cury, Beatriz Stringhetti Ferreira

    2012-11-01

    High amylose and pectin were mixed at 1:1 mass ratio and cross-linked with sodium trimetaphosphate (STMP) in alkaline medium. Films were prepared from aqueous dispersions of these cross-linked polymer blend at three different concentrations (3, 4 and 5%), by solvent casting method. Characterization of the films included thickness, surface morphology, water uptake, water vapor permeability (WVP), tensile strength measurements and enzymatic digestion. The cross-linking allowed to obtain films with improved mechanical properties and reduced WVP. The high resistance to enzymatic digestion exhibited by these films represents a promising approach to their application in the development of colon drug delivery systems.

  1. Gelatin Methacrylate Microspheres for Growth Factor Controlled Release

    PubMed Central

    Nguyen, Anh H.; McKinney, Jay; Miller, Tobias; Bongiorno, Tom; McDevitt, Todd C.

    2014-01-01

    Gelatin has been commonly used as a delivery vehicle for various biomolecules for tissue engineering and regenerative medicine applications due to its simple fabrication methods, inherent electrostatic binding properties, and proteolytic degradability. Compared to traditional chemical cross-linking methods, such as the use of glutaraldehyde (GA), methacrylate modification of gelatin offers an alternative method to better control the extent of hydrogel cross-linking. Here we examined the physical properties and growth factor delivery of gelatin methacrylate (GMA) microparticles formulated with a wide range of different cross-linking densities (15–90%). Less methacrylated MPs had decreased elastic moduli and larger mesh sizes compared to GA MPs, with increasing methacrylation correlating to greater moduli and smaller mesh sizes. As expected, an inverse correlation between microparticle cross-linking density and degradation was observed, with the lowest cross-linked GMA MPs degrading at the fastest rate, comparable to GA MPs. Interestingly, GMA MPs at lower cross-linking densities could be loaded with up to a 10-fold higher relative amount of growth factor over conventional GA cross-linked MPs, despite an order of magnitude greater gelatin content of GA MPs. Moreover, a reduced GMA cross-linking density resulted in more complete release of bone morphogenic protein 4 (BMP4) and basic fibroblast growth factor (bFGF) and accelerated release rate with collagenase treatment. These studies demonstrate that GMA MPs provide a more flexible platform for growth factor delivery by enhancing the relative binding capacity and permitting proteolytic degradation tunability, thereby offering a more potent controlled release system for growth factor delivery. PMID:25463489

  2. Fabricating and Characterizing Physical Properties of Electrospun Polypeptide-based Nanofibers

    NASA Astrophysics Data System (ADS)

    Khadka, Dhan Bahadur

    This dissertation has aimed to fabricate polypeptide based biomaterial and characterize physical properties. Electrospinning is used as a tool for the sample fabrication. Project focused on determining the feasibility of electrospinning of certain synthetic polypeptides and certain elastin-like peptides from aqueous feedstocks and to characterize physical properties of polymer aqueous solution, cast film and spun fibers and fiber mats. The research involves peptide design, polymer electrospinning, fibers crosslinking, determining the extent of crosslinking, fibers protease degradation study, fibers stability and self-organization analysis, structure and composition determination by various spectroscopy and microscopy techniques and characterization of mechanical properties of individual suspended fibers. Fiber mats of a synthetic cationic polypeptide poly(L-ornithine) (PLO) and an anionic co-polypeptide of L-glutamic acid and L-tyrosine (PLEY) of defined composition have been produced by electrospinning. Fibers were obtained from polymer aqueous solution at concentrations of 20-45% (w/v) in PLO and at concentrations of 20-60% (w/v) in PLEY. Applied voltage and spinneret-collector distance were also found to influence polymer spinnability and fibers morphology. Oriented fibers were obtained by parallel electrodes geometry. Fiber diameter and morphology was analyzed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). PLO fibers exposed on glutaraldehyde (GTA) vapor rendered fiber mats water-insoluble. A common chemical reagent, carbodiimide was used to crosslink PLEY fibers. Fiber solubility in aqueous solution varied as a function of crosslinking time and crosslinker concentration. Crosslink density has been quantified by a visible-wavelength dye-based method. Degradation of crosslinked fibers by different proteases has been demonstrated. Investigation of crosslinked PLEY fibers has provided insight into the mechanisms of stability at different pH values. Variations in fiber morphology, elemental composition and stability have been studied by microscopy and energy-dispersive X-ray spectroscopy (EDX), following the treatment of samples at different pH values in the 2-12 range. Fiber stability has been interpreted with reference to the pH dependence of the UV absorbance and fluorescence of PLEY chains in solution. The data show that fiber stability is crucially dependent on the extent of side chain ionization, even after crosslinking. Self-organization kinetics of electrospun PLO and PLEY fibers during solvent annealing has been studied. After being crosslinked in situ , fibers were annealed in water at 22 °C. Analysis by Fourier transform infrared spectroscopy (FTIR) has revealed that annealing involved fiber restructuring with an overall time constant of 29 min for PLO and 63 min for PLEY, and that changes in the distribution of polymer conformations occurred during the first 13 min of annealing. There was a substantial decrease in the amount of Na+ bound to PLEY fibers during annealing. Kinetic modeling has indicated that two parallel pathways better account for the annealing trajectory than a single pathway with multiple transition states. Taken together, the results will advance the rational design of polypeptides for peptide-based materials, especially materials prepared by electrospinning. It is believed that this research will increase basic knowledge of polymer electrospinning and advance the development of electrospun materials, especially in medicine and biotechnology. The study has yielded two advances on previous work in the area: avoidance of an animal source of peptides and avoidance of inorganic solvent. The present results thus advance the growing field of peptide-based materials. Non-woven electrospun fiber mats made of polypeptides are increasingly considered attractive for basic research and technology development in biotechnology, medicine and other areas. (Abstract shortened by UMI.)

  3. ICC-CLASS: isotopically-coded cleavable crosslinking analysis software suite

    PubMed Central

    2010-01-01

    Background Successful application of crosslinking combined with mass spectrometry for studying proteins and protein complexes requires specifically-designed crosslinking reagents, experimental techniques, and data analysis software. Using isotopically-coded ("heavy and light") versions of the crosslinker and cleavable crosslinking reagents is analytically advantageous for mass spectrometric applications and provides a "handle" that can be used to distinguish crosslinked peptides of different types, and to increase the confidence of the identification of the crosslinks. Results Here, we describe a program suite designed for the analysis of mass spectrometric data obtained with isotopically-coded cleavable crosslinkers. The suite contains three programs called: DX, DXDX, and DXMSMS. DX searches the mass spectra for the presence of ion signal doublets resulting from the light and heavy isotopic forms of the isotopically-coded crosslinking reagent used. DXDX searches for possible mass matches between cleaved and uncleaved isotopically-coded crosslinks based on the established chemistry of the cleavage reaction for a given crosslinking reagent. DXMSMS assigns the crosslinks to the known protein sequences, based on the isotopically-coded and un-coded MS/MS fragmentation data of uncleaved and cleaved peptide crosslinks. Conclusion The combination of these three programs, which are tailored to the analytical features of the specific isotopically-coded cleavable crosslinking reagents used, represents a powerful software tool for automated high-accuracy peptide crosslink identification. See: http://www.creativemolecules.com/CM_Software.htm PMID:20109223

  4. Effect of Rubber Polarity on Cluster Formation in Rubbers Cross-Linked with Diels–Alder Chemistry

    PubMed Central

    2017-01-01

    Diels–Alder chemistry has been used for the thermoreversible cross-linking of furan-functionalized ethylene/propylene (EPM) and ethylene/vinyl acetate (EVM) rubbers. Both furan-functionalized elastomers were successfully cross-linked with bismaleimide to yield products with a similar cross-link density. NMR relaxometry and SAXS measurements both show that the apolar EPM-g-furan precursor contains phase-separated polar clusters and that cross-linking with polar bismaleimide occurs in these clusters. The heterogeneously cross-linked network of EPM-g-furan contrasts with the homogeneous network in the polar EVM-g-furan. The heterogeneous character of the cross-links in EPM-g-furan results in a relatively high Young’s modulus, whereas the more uniform cross-linking in EVM-g-furan results in a higher tensile strength and elongation at break. PMID:29213149

  5. Highly cross-linked nanoporous polymers

    DOEpatents

    Steckle, Jr., Warren P.; Apen, Paul G.; Mitchell, Michael A.

    1998-01-01

    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes.

  6. Highly cross-linked nanoporous polymers

    DOEpatents

    Steckle, Jr., Warren P.; Apen, Paul G.; Mitchell, Michael A.

    1997-01-01

    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes.

  7. Skin-Inspired Multifunctional Autonomic-Intrinsic Conductive Self-Healing Hydrogels with Pressure Sensitivity, Stretchability, and 3D Printability.

    PubMed

    Darabi, Mohammad Ali; Khosrozadeh, Ali; Mbeleck, Rene; Liu, Yuqing; Chang, Qiang; Jiang, Junzi; Cai, Jun; Wang, Quan; Luo, Gaoxing; Xing, Malcolm

    2017-08-01

    The advent of conductive self-healing (CSH) hydrogels, a class of novel materials mimicking human skin, may change the trajectory of the industrial process because of their potential applications in soft robots, biomimetic prostheses, and health-monitoring systems. Here, the development of a mechanically and electrically self-healing hydrogel based on physically and chemically cross-linked networks is reported. The autonomous intrinsic self-healing of the hydrogel is attained through dynamic ionic interactions between carboxylic groups of poly(acrylic acid) and ferric ions. A covalent cross-linking is used to support the mechanical structure of the hydrogel. Establishing a fair balance between the chemical and physical cross-linking networks together with the conductive nanostructure of polypyrrole networks leads to a double network hydrogel with bulk conductivity, mechanical and electrical self-healing properties (100% mechanical recovery in 2 min), ultrastretchability (1500%), and pressure sensitivity. The practical potential of CSH hydrogels is further revealed by their application in human motion detection and their 3D-printing performance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Synthesis and characterizations of alginate-α-tricalcium phosphate microparticle hybrid film with flexibility and high mechanical property as a biomaterial.

    PubMed

    Das, Dipankar; Zhang, Shengmin; Noh, Insup

    2018-01-24

    A biocompatible hybrid film has been fabricated using alginate (Alg), α-tricalcium phosphate (α-TCP) microparticle and calcium chloride through ionic crosslinking as a biomaterial. The 'screeding method' (like a concrete finishing process) has been employed to develop the Alg-α-TCP film. For this method, the Alg/α-TCP blend has been prepared using an ultra-sonicator and then put on a glass slide. After that, the excess volume of blend has been cut off by skidding another slide along with the surface of the blend to achieve proper grade and flatness. The mechanical strength and flexibility of the film (Alg-α-TCP) has been controlled by changing its compositions. The crosslinking phenomenon has been confirmed by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), 13 C nuclear magnetic resonance (NMR), x-ray diffraction and thermogravimetric analyses. The ATR-FTIR and 13 C NMR analysis results suggest that carboxylate groups of the alginate are ionically cross-linked with Ca 2+ ions, while the α-TCP particles reside in the network by physical interaction. The micro-fatigue test results imply high tensile strength (up to 257 MPa) and flexibility (up to 13% elongation) of the Alg-α-TCP hybrid films. The SEM analysis suggests the α-TCP particles are homogeneously distributed on the surface of Alg-α-TCP films, whereas cross-sectional images confirmed the presence of α-TCP in the cross-linked network. TGA results demonstrated that thermal stability of the hybrid film was enhanced due to ionic crosslinking and interfacial interaction between alginate and α-TCP. The incorporation of α-TCP particles diminished the swelling ratio of the hybrid film. The in vitro bone cell (MC3T3) culture and cytotoxicity tests showed that the hybrid film is biocompatible. The hybrid film releases bovine serum albumin and dimethyloxaloylglycine in a controlled way at pH 7 and 7.4, and 37 °C. Overall, the biocompatible Alg-α-TCP hybrid film with excellent mechanical strength and flexibility could be applied as an interfacial film in tissue engineering.

  9. Characterization of konjac glucomannan-gelatin IPN physical hydrogel scaffold

    NASA Astrophysics Data System (ADS)

    Chen, Xiliang; Chen, Qinghua; Yan, Tingting; Liu, Jinkun

    2017-06-01

    A novel IPN hydrogel scaffold is prepared by freeze-drying method, in which konjac galactomannan (KGM) and gelatin are physically crosslinked respectively. This scaffold is thermostable, and the structure of this scaffold is analysed by scanning electron microscope, Fourier transform infrared spectrum, and X-ray diffraction method. The FT-IR results show that hydrogen bonds are formed between KGM and gelatin molecules, which hinder the formation of their respective crosslinking. This is consistent with the XRD results that the crystallinity gets lower in the IPN gels compared with pure gelatin and KGM gels. The morphologies of freeze-dried hydrogels are observed by SEM and the mechanical properties of the scaffolds are tested to analyse the relationship between the structures and properties. Although this novel IPN hydrogel is physical gel, it shows rubber-like performance as chemical gels. And it is nontoxic, so it can be used as the scaffold for cartilage tissue engineering that embedded in human bodies.

  10. Physico-chemical properties of hydrophilic and amphiphilic crosslinked systems that influence biological responses

    NASA Astrophysics Data System (ADS)

    Ejiasi, Angel

    The effect of physical, chemical, and biological cues on the behavior of smooth muscle cells (SMCs) and attachment of marine organisms was investigated. Both hydrophilic and amphiphilic crosslinked polymer networks with varying chemical and mechanical properties were used to direct biological responses. Poly(2-hydroxyethyl methacrylate) (PHEMA) hydrogels were fabricated with tunable mechanical properties by varying the di-functional monomer concentration in the feed composition. Amphiphilic hydrogels composed of 2-hydroxyethyl methacrylate (HEMA), 1,3-bis(3-methacryloxypropyl)tetrakis(trimethylsiloxy)disiloxane (MPTSDS), and tris(trimethylsiloxy)-3-methacryloxypropylsilane (TRIS) were copolymerized using ultraviolet (UV) light and a photo-initiator. Hydrogels prepared with varying concentration of di-functional monomer, MPTSDS, exhibited an order of magnitude difference in elastic moduli. Not only were the bulk material properties influenced by the crosslinking agent concentration in the feed composition, but the surface properties (i.e., contact angle and hysteresis) were influenced as well. Modulus (E) has been reported to be positively correlated with the settlement of marine organisms. However, this was not the case for the amphiphilic gels tested against biomolecules and marine organisms. Stiffer gels inhibited fouling of proteins and marine organism, Ulva linza, to a greater extent than the softer gels. Furthermore, the network structure, in regards to the molecular weight between crosslinks Mc, was found to have a greater influence on fouling. A strong correlation was observed between protein adsorption and Mc of the amphiphilic crosslinked networks compared to just the modulus and surface energy (Upsilon) alone. A higher correlation was also obtained between Mc and Ulva sporeling biomass than between sporeling biomass and elastic modulus E, exhibiting R² value of 0.98 and 0.38, respectively. The percent removal of sporeling biomass growth was shown to be positively correlated with the (E Upsilon) 1/2, which is a contrast to what has previously been reported. Again, there was a higher correlation between Mc and percent removal of sporeling biomass than between (E Upsilon)1/2 and percent removal of sporelings (R² value of 0.83 and 0.57, respectively). The differences in biofouling ability is most likely due to differences in mesh size between hydrogel compositions. Biomolecule accumulation and absorption was made easier by the larger mesh size in hydrogels with lower crosslinking concentration in the feed composition. The influence of chemical and physical properties on mammalian cells was also investigated. Amphiphilic crosslinked networks were fabricated with tunable mechanical properties and their ability to modulate smooth muscle cell (SMC) phenotype was studied by assessing cell proliferation. Bioactive molecules, Arg-Gly-Asp-Ser (RGDS), were incorporated into the crosslinked matrix to promote adhesion and facilitate cell growth. The elastic modulus of the substrate and the concentration of RGDS were shown to positively correlate with the attachment and proliferation of SMCs; indicating that the physic-chemical network properties play a large role in behavior of unicellular organisms.

  11. Highly cross-linked nanoporous polymers

    DOEpatents

    Steckle, W.P. Jr.; Apen, P.G.; Mitchell, M.A.

    1998-01-20

    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes. 1 fig.

  12. Crosslinking of aromatic polyamides via pendant propargyl groups

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; St.clair, T. L.; Barrick, J. D.; Campbell, F. J.

    1980-01-01

    Methods for crosslinking N-methyl substituted aromatic polyamides were investigated in an effort to improve the applicability of these polymers as matrix resins for Kavlar trademark fiber composites. High molecular weight polymers were prepared from isophthaloyl dichloride and 4,4'- bis(methylamino)diphenylmethane with varying proportions of the N,N'bispropargyl diamine incorporated as a crosslinking agent. The propargylcontaining diamines were crosslinked thermally and characterized by infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. Attempts were also made to crosslink polyamide films by exposure to ultraviolet light, electron beam, and gamma radiation.

  13. Methotrexate loaded alginate microparticles and effect of Ca2+ post-crosslinking: An in vitro physicochemical and biological evaluation.

    PubMed

    Dhanka, Mukesh; Shetty, Chaitra; Srivastava, Rohit

    2018-04-15

    Methotrexate (MTX) loaded alginate microparticles were produced by simple water-in-oil (W/O) emulsion solvent diffusion method with homogenization and then subsequently cross-linked by Ca 2+ . The mean sizes of developed microparticles (bare non-crosslinked, crosslinked, drug-loaded non-crosslinked, and drug-loaded cross-linked) were found to be <11μm. The morphology of bare non-crosslinked and crosslinked microparticles were observed to be spherical with smooth surface morphology. However, MTX loaded non-crosslinked and crosslinked microparticles were found to have an irregular shape with rough surface morphology. The encapsulation efficiency (% EE) and loading capacity (% LC) of MTX loaded non-crosslinked microparticles were estimated to be 92.19±1.85 and 9.35±0.22, respectively. However, in case of cross-linked microparticles, the % EE and % LC values slightly decreased, i.e., 83.26±1.69% and 8.44±0.21%, respectively. Crosslinked microparticles were found to release MTX at a slower rate as compared to non-crosslinked microparticles. The physicochemical characterizations of microparticles by Fourier Transform Infrared Spectroscopy and High-Resolution X-Ray Diffraction have shown that drug encapsulated in the microparticles without chemical interactions has lost its crystalline nature. The biocompatibility and hemocompatibility studies of the microparticles have demonstrated that microparticles are biocompatible and were non-hemolytic at low concentrations. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Impact of Pb content on the physical parameters of Se-Te-Pb system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anjali,; Sharma, Raman; Thakur, Nagesh

    2015-05-15

    In the present study, we have investigated the impact of Pb content on the physical parameters in Se-Te-Pb system via average coordination number, constraints, the fraction of floppy modes, cross-linking density, lone pairs electrons, heat of atomization, mean bond energy, cohesive energy and electronegativity. The bulk samples have been prepared by using melt quenching technique. X-ray diffraction pattern of various samples indicates the amorphous nature of investigated glassy alloys. It is observed that average coordination number, average number of constraints and cross-linking density increase with Pb content. However, lone-pair electrons, floppy modes, average heat of atomization, cohesive energy and meanmore » bond energy are found to decrease with Pb atomic percentage.« less

  15. Multicomponent patterned ultrathin carbon nanomembranes by laser ablation

    NASA Astrophysics Data System (ADS)

    Frese, Natalie; Scherr, Julian; Beyer, André; Terfort, Andreas; Gölzhäuser, Armin; Hampp, Norbert; Rhinow, Daniel

    2018-01-01

    Carbon nanomembranes (CNMs) are a class of two-dimensional materials, which are obtained by electron beam-induced crosslinking of aromatic self-assembled monolayers (SAMs) on solid substrates. CNMs made from a single type of precursor molecule are uniform with homogeneous chemical and physical properties. We have developed a method for the fabrication of internally patterned CNMs resembling a key feature of biological membranes. Direct laser patterning is used to obtain multicomponent patterned SAMs on gold, which are subsequently crosslinked by electron irradiation. We demonstrate that the structure of internally patterned CNMs is preserved upon transfer to different substrates. The method enables rapid fabrication of patterned 2D materials with local variations in chemical and physical properties on the micrometer to centimeter scale.

  16. Yield and Failure Behavior Investigated for Cross-Linked Phenolic Resins Using Molecular Dynamics

    NASA Technical Reports Server (NTRS)

    Monk, Joshua D.; Lawson, John W.

    2016-01-01

    Molecular dynamics simulations were conducted to fundamentally evaluate the yield and failure behavior of cross-linked phenolic resins at temperatures below the glass transition. Yield stress was investigated at various temperatures, strain rates, and degrees of cross-linking. The onset of non-linear behavior in the cross-linked phenolic structures was caused by localized irreversible molecular rearrangements through the rotation of methylene linkers followed by the formation or annihilation of neighboring hydrogen bonds. The yield stress results, with respect to temperature and strain rate, could be fit by existing models used to describe yield behavior of amorphous glasses. The degree of cross-linking only indirectly influences the maximum yield stress through its influence on glass transition temperature (Tg), however there is a strong relationship between the degree of cross-linking and the failure mechanism. Low cross-linked samples were able to separate through void formation, whereas the highly cross-linked structures exhibited bond scission.

  17. Durability of crosslinked polydimethylsyloxanes: the case of composite insulators

    NASA Astrophysics Data System (ADS)

    Delor-Jestin, Florence; Tomer, Namrata S.; Pal Singh, Raj; Lacoste, Jacques

    2008-04-01

    Most applications of silicones are linked to their hydrophobic properties and (or) their high resistance to ageing (e.g. thermal ageing and photoageing). However, when placed in extreme environments, these materials can fail as in the case of epoxy/fiber glass composite powerlines insulators, where crosslinked polymethylsyloxanes (PDMSs) are used as the protective envelope (housing) of the insulator. We report on the behavior of both pure/noncrosslinked PDMSs and typical formulations used in industrial insulators, i.e. containing peroxide crosslinked PDMS, alumina trioxide hydrated (ATH) and silica. Special attention is paid on both (i) the sources of potential degradation and (ii) the best analytical methods that can be applied to the study of very complex formulations. (i) Aside from conventional types of ageing such as photo-ageing and thermal, hydrolytic, and service life ageings, treatments with acidic vapors, plasma and ozone possibly generating species from the reaction of a high electric field with air were also performed, which allowed to accelerate electrical and out-door ageings and to obtain differently aged materials. (ii) Aside from conventional analytical methods of polymer degradation such as FTIR/ATR spectroscopy and SEC, TG, hardness measurements, more specific methods like photo/DSC, TG/IR, thermoporosimetry, resistivity and density measurements were also performed to characterize the chemical and physical evolutions of polymer materials. In particular, it was found that treatment with nitric acid vapor has detrimental effects on the properties of both fire retardants (e.g. ATH) and PDMSs, affecting the hardness and resistivity of the formulated material.

  18. Supercritical CO2 foaming of radiation crosslinked polypropylene/high-density polyethylene blend: Cell structure and tensile property

    NASA Astrophysics Data System (ADS)

    Yang, Chenguang; Xing, Zhe; Zhang, Mingxing; Zhao, Quan; Wang, Mouhua; Wu, Guozhong

    2017-12-01

    A blend of isotactic polypropylene (PP) with high-density polyethylene (HDPE) in different PP/HDPE ratios was irradiated by γ-ray to induce cross-linking and then foamed using supercritical carbon dioxide (scCO2) as a blowing agent. Radiation effect on the melting point and crystallinity were analyzed in detail. The average cell diameter and cell density were compared for PP/HDPE foams prepared under different conditions. The optimum absorbed dose for the scCO2 foaming of PP/HDPE in terms of foaming ability and cell structure was 20 kGy. Tensile measurements showed that the elongation at break and tensile strength at break of the crosslinked PP/HDPE foams were higher than the non-crosslinked ones. Of particular interest was the increase in the foaming temperature window from 4 ℃ for pristine PP to 8-12 ℃ for the radiation crosslinked PP/HDPE blends. This implies much easier handling of scCO2 foaming of crosslinked PP with the addition of HDPE.

  19. A new generation of high flex life polyurethane urea for polymer heart valve--studies on in vivo biocompatibility and biodurability.

    PubMed

    Thomas, Vinoy; Jayabalan, Muthu

    2009-04-01

    Development of new generation high flex life polyurethane urea (HFL18-PU) with appropriate elastic modulus, biocompatibility, blood compatibility, resistant to calcification, and biodurability for the long-term use as cardiac device is still a challenge. This study reports the development of a fully aliphatic, ether-free physically cross-linked and low elastic modulus (6.841 +/- 0.27 MPa) polyurethane urea having in vivo biostability, in vivo biocompatibility and high flex-life (721 +/- 30 million cycles) that can satisfy the requirements for the fabrication of tri-leaflet heart valve. Copyright 2008 Wiley Periodicals, Inc.

  20. Tunable poly(methacrylic acid-co-acrylamide) nanoparticles through inverse emulsion polymerization.

    PubMed

    Zhong, Justin X; Clegg, John R; Ander, Eric W; Peppas, Nicholas A

    2018-06-01

    Environmentally responsive biomaterials have played key roles in the design of biosensors and drug delivery vehicles. Their physical response to external stimuli, such as temperature or pH, can transduce a signal or trigger the release of a drug. In this work, we designed a robust, highly tunable, pH-responsive nanoscale hydrogel system. We present the design and characterization of poly(methacrylic acid-co-acrylamide) hydrogel nanoparticles, crosslinked with methylenebisacrylamide, through inverse emulsion polymerization. The effects of polymerization parameters (i.e., identities and concentrations of monomer and surfactant) and polymer composition (i.e., weight fraction of ionic and crosslinking monomers) on the nanoparticles' bulk and environmentally responsive properties were determined. We generated uniform, spherical nanoparticles which, through modulation of crosslinking, exhibit a volume swelling of 1.77-4.07, relative to the collapsed state in an acidic environment. We believe our system has potential as a base platform for the targeted, injectable delivery of hydrophilic therapeutics. With equal importance, however, we hope that our systematic analysis of the individual impacts of polymerization and purification conditions on nanoparticle composition, morphology, and performance can be used to expedite the development of alternate hydrophilic nanomaterials for a range of biomedical applications. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1677-1686, 2018. © 2018 Wiley Periodicals, Inc.

  1. Crosslinked hydrogels-a promising class of insoluble solid molecular dispersion carriers for enhancing the delivery of poorly soluble drugs.

    PubMed

    Sun, Dajun D; Lee, Ping I

    2014-02-01

    Water-insoluble materials containing amorphous solid dispersions (ASD) are an emerging category of drug carriers which can effectively improve dissolution kinetics and kinetic solubility of poorly soluble drugs. ASDs based on water-insoluble crosslinked hydrogels have unique features in contrast to those based on conventional water-soluble and water-insoluble carriers. For example, solid molecular dispersions of poorly soluble drugs in poly(2-hydroxyethyl methacrylate) (PHEMA) can maintain a high level of supersaturation over a prolonged period of time via a feedback-controlled diffusion mechanism thus avoiding the initial surge of supersaturation followed by a sharp decline in drug concentration typically encountered with ASDs based on water-soluble polymers. The creation of both immediate- and controlled-release ASD dosage forms is also achievable with the PHEMA based hydrogels. So far, ASD systems based on glassy PHEMA have been shown to be very effective in retarding precipitation of amorphous drugs in the solid state to achieve a robust physical stability. This review summarizes recent research efforts in investigating the potential of developing crosslinked PHEMA hydrogels as a promising alternative to conventional water-soluble ASD carriers, and a related finding that the rate of supersaturation generation does affect the kinetic solubility profiles implications to hydrogel based ASDs.

  2. Crosslinked hydrogels—a promising class of insoluble solid molecular dispersion carriers for enhancing the delivery of poorly soluble drugs

    PubMed Central

    Sun, Dajun D.; Lee, Ping I.

    2014-01-01

    Water-insoluble materials containing amorphous solid dispersions (ASD) are an emerging category of drug carriers which can effectively improve dissolution kinetics and kinetic solubility of poorly soluble drugs. ASDs based on water-insoluble crosslinked hydrogels have unique features in contrast to those based on conventional water-soluble and water-insoluble carriers. For example, solid molecular dispersions of poorly soluble drugs in poly(2-hydroxyethyl methacrylate) (PHEMA) can maintain a high level of supersaturation over a prolonged period of time via a feedback-controlled diffusion mechanism thus avoiding the initial surge of supersaturation followed by a sharp decline in drug concentration typically encountered with ASDs based on water-soluble polymers. The creation of both immediate- and controlled-release ASD dosage forms is also achievable with the PHEMA based hydrogels. So far, ASD systems based on glassy PHEMA have been shown to be very effective in retarding precipitation of amorphous drugs in the solid state to achieve a robust physical stability. This review summarizes recent research efforts in investigating the potential of developing crosslinked PHEMA hydrogels as a promising alternative to conventional water-soluble ASD carriers, and a related finding that the rate of supersaturation generation does affect the kinetic solubility profiles implications to hydrogel based ASDs. PMID:26579361

  3. Enzymatically Cross-linked Alginic-Hyaluronic acid Composite Hydrogels As Cell Delivery Vehicles

    PubMed Central

    Ganesh, Nitya; Hanna, Craig; Nair, Shantikumar V.; Nair, Lakshmi S.

    2013-01-01

    An injectable composite gel was developed from alginic and hyaluronic acid. The ezymatically cross-linked injectable gels were prepared via the oxidative coupling of tyramine modified sodium algiante and sodium hyaluronate in the presence of horse radish peroxidase (HRP) and hydrogen peroxide (H2O2). The composite gels were prepared by mixing equal parts of the two tryaminated polymer solutions in 10U HRP and treating with 1.0% H2O2. The properties of the alginate gels were significanly affected by the addition of hyaluronic acid. The percentage water absorption and storage modulus of the composite gels were found to be lower than the alginate gels. The alginate and composite gels showed lower protein release compared to hyaluronate gels in the absence of hyaluronidase. Even hyaluronate gels showed only approximately 10% protein release after 14 days incubation in phosphate buffer solution. ATDC-5 cells encapsulated in the injectable gels showed high cell viability. The composite gels showed the presence of enlarged spherical cells with significantly higher metabolic activity compared to cells in hyaluronic and alginic acid gels. The results suggest the potential of the composite approach to develop covalently cross-linked hydrogels with tuneable physical, mechanical, and biological properties. PMID:23357799

  4. Fabrication of manganese dioxide nanoplates anchoring on biomass-derived cross-linked carbon nanosheets for high-performance asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Li, Yiju; Yu, Neng; Yan, Peng; Li, Yuguang; Zhou, Xuemei; Chen, Shuangling; Wang, Guiling; Wei, Tong; Fan, Zhuangjun

    2015-12-01

    In this paper, MnO2 nanoplates loading on biomass-derived cross-linked carbon nanosheets have been prepared by a two-step synthesis. At first, the cross-linked carbon nanosheets derived from willow catkin are synthesized by one-step pyrolysis and activation method, then the MnO2 anchored cross-linked carbon nanosheets is prepared via in-situ hydrothermal deposition. The asymmetric supercapacitor with terrific energy and power density is assembled by employing the MnO2 anchored cross-linked carbon nanosheets as the positive electrode and the cross-linked carbon nanosheets as the negative electrode in a 1 M Na2SO4 electrolyte. The asymmetric supercapacitor displays a high energy density of 23.6 Wh kg-1 at a power density of 188.8 W kg-1 within a wide voltage rage of 0-1.9 V. In addition, the asymmetric supercapacitor exhibits excellent cycling stability with only 1.4% capacitance loss after 10000 cycles at 1 A g-1. These discoveries open up the prospect of biomass/biowaste derived carbon-based composites for high-voltage asymmetric supercapacitors with superb energy and power density performance.

  5. Cross-linking Chemistry of Squid Beak*

    PubMed Central

    Miserez, Ali; Rubin, Daniel; Waite, J. Herbert

    2010-01-01

    In stark contrast to most aggressive predators, Dosidicus gigas (jumbo squids) do not use minerals in their powerful mouthparts known as beaks. Their beaks instead consist of a highly sclerotized chitinous composite with incremental hydration from the tip to the base. We previously reported l-3,4-dihydroxyphenylalanine (dopa)-histidine (dopa-His) as an important covalent cross-link providing mechanical strengthening to the beak material. Here, we present a more complete characterization of the sclerotization chemistry and describe additional cross-links from D. gigas beak. All cross-links presented in this report share common building blocks, a family of di-, tri-, and tetra-histidine-catecholic adducts, that were separated by affinity chromatography and high performance liquid chromatography (HPLC) and identified by tandem mass spectroscopy and proton nuclear magnetic resonance (1H NMR). The data provide additional insights into the unusually high cross-link density found in mature beaks. Furthermore, we propose both a low molecular weight catechol, and peptidyl-dopa, to be sclerotization agents of squid beak. This appears to represent a new strategy for forming hard tissue in animals. The interplay between covalent cross-linking and dehydration on the graded properties of the beaks is discussed. PMID:20870720

  6. Cross-linking chemistry of squid beak.

    PubMed

    Miserez, Ali; Rubin, Daniel; Waite, J Herbert

    2010-12-03

    In stark contrast to most aggressive predators, Dosidicus gigas (jumbo squids) do not use minerals in their powerful mouthparts known as beaks. Their beaks instead consist of a highly sclerotized chitinous composite with incremental hydration from the tip to the base. We previously reported l-3,4-dihydroxyphenylalanine (dopa)-histidine (dopa-His) as an important covalent cross-link providing mechanical strengthening to the beak material. Here, we present a more complete characterization of the sclerotization chemistry and describe additional cross-links from D. gigas beak. All cross-links presented in this report share common building blocks, a family of di-, tri-, and tetra-histidine-catecholic adducts, that were separated by affinity chromatography and high performance liquid chromatography (HPLC) and identified by tandem mass spectroscopy and proton nuclear magnetic resonance ((1)H NMR). The data provide additional insights into the unusually high cross-link density found in mature beaks. Furthermore, we propose both a low molecular weight catechol, and peptidyl-dopa, to be sclerotization agents of squid beak. This appears to represent a new strategy for forming hard tissue in animals. The interplay between covalent cross-linking and dehydration on the graded properties of the beaks is discussed.

  7. Covalently Cross-linked Elastomers with Self-Healing and Malleable Abilities Enabled by Boronic Ester Bonds.

    PubMed

    Chen, Yi; Tang, Zhenghai; Zhang, Xuhui; Liu, Yingjun; Wu, Siwu; Guo, Baochun

    2018-06-26

    Covalently cross-linked rubbers are renowned for their high elasticity that play an indispensable role in various applications including tires, seals, medical implants. Development of self-healing and malleable rubbers is highly desirable as it allows for damage repair and reprocessibility to extend the lifetime and alleviate environmental pollution. Herein, we propose a facile approach to prepare permanently cross-linked yet self-healing and recyclable diene-rubber by programming dynamic boronic ester linkages into the network. The network is synthesized through one-pot thermally initiated thiol-ene "click" reaction between a novel dithiol-containing boronic ester cross-linker and commonly used styrene-butadiene rubber (SBR) without modifying the macromolecular structure. The resulted samples are covalently cross-linked and possess relatively high mechanical strength which can be readily tailored by varying boronic ester content. Owning to the transesterification of boronic ester bonds, the samples can alter network topologies, endowing the materials with self-healing ability and malleability.

  8. Ion Exchange Equilibrium and Kinetic Properties of Polyacrylate Films and Applications to Chemical Analysis and Environmental Decontamination

    NASA Technical Reports Server (NTRS)

    Tanner, Stephen P.

    1997-01-01

    One of the goals of the original proposal was to study how cross-linking affects the properties of an ion exchange material(IEM) developed at Lewis Research Center. However, prior to the start of this work, other workers at LERC investigated the effect of cross-linking on the properties of this material. Other than variation in the ion exchange capacity, the chemical characteristics were shown to be independent of the cross-linking agent, and the degree of cross-linking. New physical forms of the film were developed (film, supported film, various sizes of beads, and powder). All showed similar properties with respect to ion exchange equilibria but the kinetics of ion exchange depended on the surface area per unit mass; the powder form of the IEM exchanging much more rapidly than the other forms. The research performed under this grant was directed towards the application of the IEM to the analysis of metal ions at environmental concentrations.

  9. The actin-microtubule cross-linking activity of Drosophila Short stop is regulated by intramolecular inhibition

    PubMed Central

    Applewhite, Derek A.; Grode, Kyle D.; Duncan, Mara C.; Rogers, Stephen L.

    2013-01-01

    Actin and microtubule dynamics must be precisely coordinated during cell migration, mitosis, and morphogenesis—much of this coordination is mediated by proteins that physically bridge the two cytoskeletal networks. We have investigated the regulation of the Drosophila actin-microtubule cross-linker Short stop (Shot), a member of the spectraplakin family. Our data suggest that Shot's cytoskeletal cross-linking activity is regulated by an intramolecular inhibitory mechanism. In its inactive conformation, Shot adopts a “closed” conformation through interactions between its NH2-terminal actin-binding domain and COOH-terminal EF-hand-GAS2 domain. This inactive conformation is targeted to the growing microtubule plus end by EB1. On activation, Shot binds along the microtubule through its COOH-terminal GAS2 domain and binds to actin with its NH2-terminal tandem CH domains. We propose that this mechanism allows Shot to rapidly cross-link dynamic microtubules in response to localized activating signals at the cell cortex. PMID:23885120

  10. The counterbend dynamics of cross-linked filament bundles and flagella

    PubMed Central

    Coy, Rachel

    2017-01-01

    Cross-linked filament bundles, such as in cilia and flagella, are ubiquitous in biology. They are considered in textbooks as simple filaments with larger stiffness. Recent observations of flagellar counterbend, however, show that induction of curvature in one section of a passive flagellum instigates a compensatory counter-curvature elsewhere, exposing the intricate role of the diminutive cross-linking proteins at large scales. We show that this effect, a material property of the cross-linking mechanics, modifies the bundle dynamics and induces a bimodal L2 − L3 length-dependent material response that departs from the Euler–Bernoulli theory. Hence, the use of simpler theories to analyse experiments can result in paradoxical interpretations. Remarkably, the counterbend dynamics instigates counter-waves in opposition to driven oscillations in distant parts of the bundle, with potential impact on the regulation of flagellar bending waves. These results have a range of physical and biological applications, including the empirical disentanglement of material quantities via counterbend dynamics. PMID:28566516

  11. Self-Healing Gelatin Hydrogels Cross-Linked by Combining Multiple Hydrogen Bonding and Ionic Coordination.

    PubMed

    Zhang, Guangzhao; Lv, Lei; Deng, Yonghong; Wang, Chaoyang

    2017-06-01

    Self-healing hydrogels have been studied by many researchers via multiple cross-linking approaches including physical and chemical interactions. It is an interesting project in multifunctional hydrogel exploration that a water soluble polymer matrix is cross-linked by combining the ionic coordination and the multiple hydrogen bonds to fabricate self-healing hydrogels with injectable property. This study introduces a general procedure of preparing the hydrogels (termed gelatin-UPy-Fe) cross-linked by both ionic coordination of Fe 3+ and carboxyl group from the gelatin and the quadruple hydrogen bonding interaction from the ureido-pyrimidinone (UPy) dimers. The gelatin-UPy-Fe hydrogels possess an excellent self-healing property. The effects of the ionic coordination of Fe 3+ and quadruple hydrogen bonding of UPy on the formation and mechanical behavior of the prepared hydrogels are investigated. In vitro drug release of the gelatin-UPy-Fe hydrogels is also observed, giving an intriguing glimpse into possible biological applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Transient Binding and Viscous Dissipation in Semi-flexible Polymer Networks

    NASA Astrophysics Data System (ADS)

    Lieleg, Oliver; Claessens, Mireille; Bausch, Andreas

    2008-03-01

    Nature specifically chooses from a myriad of actin binding proteins (ABPs) to tailor the cytoskeletal microstructure. Herein, cells rely on the dynamics of the cytoskeleton as its structural and mechanical adaptability is crucial to allow for dynamic processes. A molecular understanding of such biological complexity calls for an in vitro system with well-defined structural rearrangements and cross-linker dynamics to elucidate the physical origin of the unique viscoelastic properties of cells. As we present here, the frequency-dependent viscoelastic response of cross-linked in vitro actin networks is determined by the binding kinetics of cross-linking molecules. Independent from the particular network structure, the viscous dissipation (loss modulus) exhibits a pronounced minimum in an intermediate frequency which is dominated by elasticity. We show that in this frequency regime the molecular origin of the viscoelastic response is given by the non-static nature of actin/ABP bonds as they are subjugated to chemical on/off kinetics. The time scale of the resulting stress release is set by the lifetime distribution of the cross-linking molecule and therefore can be tuned independently from other relaxation mechanisms. We speculate that unbinding of distinct cross-links might be the molecular mechanism employed by cells for mechanosensing.

  13. A Study into the Collision-induced Dissociation (CID) Behavior of Cross-Linked Peptides*

    PubMed Central

    Giese, Sven H.; Fischer, Lutz; Rappsilber, Juri

    2016-01-01

    Cross-linking/mass spectrometry resolves protein–protein interactions or protein folds by help of distance constraints. Cross-linkers with specific properties such as isotope-labeled or collision-induced dissociation (CID)-cleavable cross-linkers are in frequent use to simplify the identification of cross-linked peptides. Here, we analyzed the mass spectrometric behavior of 910 unique cross-linked peptides in high-resolution MS1 and MS2 from published data and validate the observation by a ninefold larger set from currently unpublished data to explore if detailed understanding of their fragmentation behavior would allow computational delivery of information that otherwise would be obtained via isotope labels or CID cleavage of cross-linkers. Isotope-labeled cross-linkers reveal cross-linked and linear fragments in fragmentation spectra. We show that fragment mass and charge alone provide this information, alleviating the need for isotope-labeling for this purpose. Isotope-labeled cross-linkers also indicate cross-linker-containing, albeit not specifically cross-linked, peptides in MS1. We observed that acquisition can be guided to better than twofold enrich cross-linked peptides with minimal losses based on peptide mass and charge alone. By help of CID-cleavable cross-linkers, individual spectra with only linear fragments can be recorded for each peptide in a cross-link. We show that cross-linked fragments of ordinary cross-linked peptides can be linearized computationally and that a simplified subspectrum can be extracted that is enriched in information on one of the two linked peptides. This allows identifying candidates for this peptide in a simplified database search as we propose in a search strategy here. We conclude that the specific behavior of cross-linked peptides in mass spectrometers can be exploited to relax the requirements on cross-linkers. PMID:26719564

  14. Modeling Protein Excited-state Structures from "Over-length" Chemical Cross-links.

    PubMed

    Ding, Yue-He; Gong, Zhou; Dong, Xu; Liu, Kan; Liu, Zhu; Liu, Chao; He, Si-Min; Dong, Meng-Qiu; Tang, Chun

    2017-01-27

    Chemical cross-linking coupled with mass spectroscopy (CXMS) provides proximity information for the cross-linked residues and is used increasingly for modeling protein structures. However, experimentally identified cross-links are sometimes incompatible with the known structure of a protein, as the distance calculated between the cross-linked residues far exceeds the maximum length of the cross-linker. The discrepancies may persist even after eliminating potentially false cross-links and excluding intermolecular ones. Thus the "over-length" cross-links may arise from alternative excited-state conformation of the protein. Here we present a method and associated software DynaXL for visualizing the ensemble structures of multidomain proteins based on intramolecular cross-links identified by mass spectrometry with high confidence. Representing the cross-linkers and cross-linking reactions explicitly, we show that the protein excited-state structure can be modeled with as few as two over-length cross-links. We demonstrate the generality of our method with three systems: calmodulin, enzyme I, and glutamine-binding protein, and we show that these proteins alternate between different conformations for interacting with other proteins and ligands. Taken together, the over-length chemical cross-links contain valuable information about protein dynamics, and our findings here illustrate the relationship between dynamic domain movement and protein function. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Reprocessing and Recycling of Highly Cross-Linked Ion-Conducting Networks through Transalkylation Exchanges of C-N Bonds.

    PubMed

    Obadia, Mona M; Mudraboyina, Bhanu P; Serghei, Anatoli; Montarnal, Damien; Drockenmuller, Eric

    2015-05-13

    Exploiting exchangeable covalent bonds as dynamic cross-links recently afforded a new class of polymer materials coined as vitrimers. These permanent networks are insoluble and infusible, but the network topology can be reshuffled at high temperatures, thus enabling glasslike plastic deformation and reprocessing without depolymerization. We disclose herein the development of functional and high-value ion-conducting vitrimers that take inspiration from poly(ionic liquid)s. Tunable networks with high ionic content are obtained by the solvent- and catalyst-free polyaddition of an α-azide-ω-alkyne monomer and simultaneous alkylation of the resulting poly(1,2,3-triazole)s with a series of difunctional cross-linking agents. Temperature-induced transalkylation exchanges of C-N bonds between 1,2,3-triazolium cross-links and halide-functionalized dangling chains enable recycling and reprocessing of these highly cross-linked permanent networks. They can also be recycled by depolymerization with specific solvents able to displace the transalkylation equilibrium, and they display a great potential for applications that require solid electrolytes with excellent mechanical performances and facile processing such as supercapacitors, batteries, fuel cells, and separation membranes.

  16. A novel combined polyphenol-aldehyde crosslinking of collagen film-Applications in biomedical materials.

    PubMed

    Liu, Ting; Shi, Lu; Gu, Zhipeng; Dan, Weihua; Dan, Nianhua

    2017-08-01

    Despite its crucial role in directing cell fate in healthy and diseased tissues, improvements in physical-chemical properties and biocompatibility of type-I collagen are still needed. In this report, we described combined and facile method to modify collagen. The collagen film was first modified by procyanidins solution, in which, then subjected to further crosslinked by dialdehyde alginate, resulting in collagen-procyanidins-dialdehyde alginate film. The properties of the crosslinked collagen films were investigated and the results were discussed. Results from differential scanning calorimetry and thermo gravimetric analysis suggested that the thermal stabilities of the collagen-procyanidins-dialdehyde alginate film were significantly improved. The mechanical properties of collagen-procyanidins-dialdehyde alginate film in terms of elongation at break and tensile strength increased approximately 2-fold and 3-fold, respectively compare to pure collagen film. In addition, the resistance to collagenase degradation of collagen-procyanidins-dialdehyde alginate film was remarkably promoted. The results from methyltetrazolium assay and confocal laser scanning microscopy showed that no cytotoxicity of collagen film was introduced by the combined crosslinking method. Thus, the novel combined by procyanidins-dialdehyde alginate crosslinking method shown in this study provided a non-toxic and efficient crosslinking method that improved various properties of collagen film, which has great potential applications in biomedical materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Pyrolyzed feather fibers for adsorbent and high temperature applications

    NASA Astrophysics Data System (ADS)

    Senoz, Erman

    Chicken feather fibers (CFF) are problematic and costly for the poultry industry in terms of managing maintenance and disposal. Considering their great availability, low cost, and unique protein structure, CFF can be an environmentally friendly and bio-renewable candidate to replace petroleum products. CFF's low degradation and melting temperature render them useless at high temperatures. Pyrolysis methods were developed for CFF by using two temperature steps to convert them into high temperature resistant and adsorbent fibers while retaining their original physical appearance and affine dimensions. An intermolecular crosslinking mechanism in the first step of pyrolysis at 215 ºC for 24 h provided an intact fibrous structure with no subsequent melting. The evidence obtained from the thermal, bulk, and surface analysis techniques was indication of the simultaneous side chain degradation, polypeptide backbone scission, disulfide bond cleavage, and isopeptide crosslinking. The variation in the reaction kinetics of disulfide bond cleavage and isopeptide crosslinking played an important role in the melting transition. Consequently, long-lasting heat treatments below the melting point provided sufficient crosslinks in the protein matrix to keep the fibrous structure intact. Water-insoluble and crosslinked CFF reinforced the triglyceride-fatty acid based composites by providing a 15 fold increase in storage and tensile modulus at room temperature. These thermally stable fibers can be used instead of CFF in composites which may require high temperature compounding and molding processes. The second step of pyrolysis at 400--450 ºC for 1 h resulted in microporous fibers with a micropore volume of ˜0.18 cm3/g STP and with a narrower pore size distribution than commercial activated carbons through thermal degradation. Nearly all accessible pores in the microporous pyrolyzed chicken feather fibers (PCFF) had diameters less than 1 nm and therefore, showed a potential to be used in applications such as adsorption, storage, and separation of small gas molecules. The maximum excess H2 storage capacity was 1.5 wt% at 77 K and at pressures below 2 MPa. The notable H2 adsorption of PCFF below 1 MPa can be justified by the abundance of microporosity and the nanopores available for H2 penetration. In the second step of the pyrolysis the protein matrix went through a series of transformations including cyclization and aromatization reactions above the melting point. A partially cyclic carbon-nitrogen framework (carbon/nitrogen ratio=2.38) supported by double and triple bonds and oxygen functionalities is the suggested structural model for the PCFF. The useful fibers and adsorbents produced from CFF in this dissertation can encourage researchers to use high temperature heat treatments on keratin-based fibers. Also, the identified pyrolysis mechanisms can serve as a guide for producing materials with desired properties from protein-based materials, particularly in textile, high performance composite and catalyst industries.

  18. Tribology of alternative bearings.

    PubMed

    Fisher, John; Jin, Zhongmin; Tipper, Joanne; Stone, Martin; Ingham, Eileen

    2006-12-01

    The tribological performance and biological activity of the wear debris produced has been compared for highly cross-linked polyethylene, ceramic-on-ceramic, metal-on-metal, and modified metal bearings in a series of in vitro studies from a single laboratory. The functional lifetime demand of young and active patients is 10-fold greater than the estimated functional lifetime of traditional polyethylene. There is considerable interest in using larger diameter heads in these high demand patients. Highly cross-linked polyethylene show a four-fold reduction in functional biological activity. Ceramic-on-ceramic bearings have the lowest wear rates and least reactive wear debris. The functional biological activity is 20-fold lower than with highly cross-linked polyethylene. Hence, ceramic-on-ceramic bearings address the tribological lifetime demand of highly active patients. Metal-on-metal bearings have substantially lower wear rates than highly cross-linked polyethylene and wear decreases with head diameter. Bedding in wear is also lower with reduced radial clearance. Differential hardness ceramic-on-metal bearings and the application of ceramic-like coatings reduce metal wear and ion levels.

  19. Tough Hydrogel Robots: High-Speed, High-Force and Opto-sonically Invisible in Water

    NASA Astrophysics Data System (ADS)

    Zhao, Xuanhe

    Sea animals such as leptocephali develop tissues and organs composed of active transparent hydrogels to achieve agile motions and natural camouflage in water. Hydrogel-based actuators that can imitate the capabilities of leptocephali will enable new applications in diverse fields. However, existing hydrogel actuators, mostly osmotic-driven, are intrinsically low-speed and/or low-force; and their camouflage capabilities have not been explored. Here we show that hydraulic actuations of tough hydrogels with designed structures and properties can give soft actuators and robots that are high-speed, high-force, and optically and sonically camouflaged in water. We invent a simple method capable of assembling physically-crosslinked hydrogel parts followed by covalent crosslinking to fabricate large-scale hydraulic hydrogel actuators and robots with robust bodies and interfaces. The hydrogel actuators and robots can maintain their robustness and functionality over multiple cycles of actuations, owning to the anti-fatigue property of the hydrogel under moderate stresses. A multiscale theoretical framework has been developed to guide the design and optimization of the hydrogel robots. We further demonstrate that the agile and transparent hydrogel actuators and robots perform extraordinary functions including swimming, kicking rubber-balls and catching a live fish in water. The work was supported by NSF(No. CMMI- 1253495) and ONR (No. N00014-14-1-0528).

  20. Effects of cross-links, pressure and temperature on the thermal properties and glass transition behaviour of polybutadiene.

    PubMed

    Tonpheng, Bounphanh; Yu, Junchun; Andersson, Ove

    2011-09-07

    The thermal conductivity κ, heat capacity per unit volume ρc(p) and glass transition behaviour under pressure have been established for medium and high vinyl content polybutadiene PB with molecular weights 2600 and 100,000 and their highly cross-linked (ebonite) states obtained purely by high-pressure high-temperature treatments. Cross-linking eliminates the glass transitions and increases κ by as much as 50% at 295 K and 1 atm, and decreases ρc(p) to a limiting level close to that of the glassy state of PB, which is reached before the ultimate cross-link density is achieved. The pressure and temperature behaviours of κ are strongly changed by cross-links, which increases the effect of temperature but decreases the effect of pressure. We attribute these changes to a cross-linked induced permanent densification and consequential increase of phonon velocity simultaneously as conduction along polymer chains is disrupted. The glass transition temperatures for a time scale of 1 s are described to within 0.5 K by: T(g)(p) = 202.5 (1 + 2.94 p)(0.286) and T(g)(p) = 272.3 (1 + 2.57 p)(0.233) (p in GPa and T in K) up to 1 GPa, for PB2600 and PB100000, respectively, and can be estimated for medium and high vinyl content PBs with molecular weights in between by a constant, pressure independent, shift in temperature. This journal is © the Owner Societies 2011

  1. Crosslinked polymer nanoparticles containing single conjugated polymer chains

    NASA Astrophysics Data System (ADS)

    Ponzio, Rodrigo A.; Marcato, Yésica L.; Gómez, María L.; Waiman, Carolina V.; Chesta, Carlos A.; Palacios, Rodrigo E.

    2017-06-01

    Conjugated polymer nanoparticles are widely used in fluorescent labeling and sensing, as they have mean radii between 5 and 100 nm, narrow size dispersion, high brightness, and are photochemically stable, allowing single particle detection with high spatial and temporal resolution. Highly crosslinked polymers formed by linking individual chains through covalent bonds yield high-strength rigid materials capable of withstanding dissolution by organic solvents. Hence, the combination of crosslinked polymers and conjugated polymers in a nanoparticulated material presents the possibility of interesting applications that require the combined properties of constituent polymers and nanosized dimension. In the present work, F8BT@pEGDMA nanoparticles composed of poly(ethylene glycol dimethacrylate) (pEGDMA; a crosslinked polymer) and containing the commercial conjugated polymer poly(9,9-dioctylfluorene-alt-benzothiadiazole) (F8BT) were synthesized and characterized. Microemulsion polymerization was applied to produce F8BT@pEDGMA particles with nanosized dimensions in a ∼25% yield. Photophysical and size distribution properties of F8BT@pEDGMA nanoparticles were evaluated by various methods, in particular single particle fluorescence microscopy techniques. The results demonstrate that the crosslinking/polymerization process imparts structural rigidity to the F8BT@pEDGMA particles by providing resistance against dissolution/disintegration in organic solvents. The synthesized fluorescent crosslinked nanoparticles contain (for the most part) single F8BT chains and can be detected at the single particle level, using fluorescence microscopy, which bodes well for their potential application as molecularly imprinted polymer fluorescent nanosensors with high spatial and temporal resolution.

  2. Sequentially-crosslinked biomimetic bioactive glass/gelatin methacryloyl composites hydrogels for bone regeneration.

    PubMed

    Zheng, Jiafu; Zhao, Fujian; Zhang, Wen; Mo, Yunfei; Zeng, Lei; Li, Xian; Chen, Xiaofeng

    2018-08-01

    In recent years, gelatin-based composites hydrogels have been intensively investigated because of their inherent bioactivity, biocompatibility and biodegradability. Herein, we fabricated photocrosslinkable biomimetic composites hydrogels from bioactive glass (BG) and gelatin methacryloyl (GelMA) by a sequential physical and chemical crosslinking (gelation + UV) approach. The results showed that the compressive modulus of composites hydrogels increased significantly through the sequential crosslinking approach. The addition of BG resulted in a significant increase in physiological stability and apatite-forming ability. In vitro data indicated that BG/GelMA composites hydrogels promoted cell attachment, proliferation and differentiation. Overall, the BG/GelMA composites hydrogels combined the advantages of good biocompatibility and bioactivity, and had potential applications in bone regeneration. Copyright © 2018. Published by Elsevier B.V.

  3. Procyanidins-crosslinked aortic elastin scaffolds with distinctive anti-calcification and biological properties.

    PubMed

    Wang, Xiaoya; Zhai, Wanyin; Wu, Chengtie; Ma, Bing; Zhang, Jiamin; Zhang, Hongfeng; Zhu, Ziyan; Chang, Jiang

    2015-04-01

    Elastin, a main component of decellularized extracellular matrices and elastin-containing materials, has been used for tissue engineering applications due to their excellent biocompatibility. However, elastin is easily calcified, leading to the decrease of life span for elastin-based substitutes. How to inhibit the calcification of elastin-based scaffolds, but maintain their good biocompatibility, still remains significantly challenging. Procyanidins (PC) are a type of natural polyphenols with crosslinking ability. To investigate whether pure elastin could be crosslinked by PC with anti-calcification effect, PC was first used to crosslink aortic elastin. Results show that PC can crosslink elastin and effectively inhibit elastin-initiated calcification. Further experiments reveal the possible mechanisms for the anti-calcification of PC crosslinking including (1) inhibiting inflammation cell attachment, and secretion of inflammatory factors such as MMPs and TNF-α, (2) preventing elastin degradation by elastase, and (3) direct inhibition of mineral nucleation in elastin. Moreover, the PC-crosslinked aortic elastin maintains natural structure with high pore volume (1111 μL/g), large pore size (10-300 μm) and high porosity (75.1%) which facilitates recellularization of scaffolds in vivo, and displays excellent hemocompatibility, anti-thrombus and anti-inflammatory potential. The advantages of PC-crosslinked porous aortic elastin suggested that it can serve as a promising scaffold for tissue engineering. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Mechanically tunable actin networks using programmable DNA based cross-linkers

    NASA Astrophysics Data System (ADS)

    Schnauss, Joerg; Lorenz, Jessica; Schuldt, Carsten; Kaes, Josef; Smith, David

    Cells employ multiple cross-linkers with very different properties. Studies of the entire phase space, however, were infeasible since they were restricted to naturally occurring cross-linkers. These components cannot be controllably varied and differ in many parameters. We resolve this limitation by forming artificial actin cross-linkers, which can be controllably varied. The basic building block is DNA enabling a well-defined length variation. DNA can be attached to actin binding peptides with known binding affinities. We used bulk rheology to investigate mechanical properties of these networks. We were able to reproduce mechanical features of actin networks cross-linked by fascin by using a short version of our artificial complex with a high binding affinity. Additionally, we were able to resemble findings for the cross-linker alpha-actinin by employing a long cross-linker with a low binding affinity. Between these natural limits we investigated three different cross-linker lengths each with two different binding affinities. With these controlled variations we are able to precisely screen the phase space of cross-linked actin networks by changing only one specific parameter and not the entire set of properties as in the case of naturally occurring cross-linking complexes.

  5. Anion exchange membranes based on terminally crosslinked methyl morpholinium-functionalized poly(arylene ether sulfone)s

    NASA Astrophysics Data System (ADS)

    Kwon, Sohyun; Rao, Anil H. N.; Kim, Tae-Hyun

    2018-01-01

    Azide-assisted terminal crosslinking of methyl morpholinium-functionalized poly(arylene ether sulfone) block copolymers yields products (xMM-PESs) suitable for use as anion exchange membranes. By combining the advantages of bulky morpholinium conductors and our unique polymer network crosslinked only at the termini of the polymer chains, we can produce AEMs that after the crosslinking show minimal loss in conductivity, yet with dramatically reduced water uptake. Terminal crosslinking also significantly increases the thermal, mechanical and chemical stability levels of the membranes. A high ion conductivity of 73.4 mS cm-1 and low water uptake of 26.1% at 80 °C are obtained for the crosslinked membrane with higher amount of hydrophilic composition, denoted as xMM-PES-1.5-1. In addition, the conductivity of the crosslinked xMM-PES-1.5-1 membrane exceeds that of its non-crosslinked counterpart (denoted as MM-PES-1.5-1) above 60 °C at 95% relative humidity because of its enhanced water retention capacity caused by the terminally-crosslinked structure.

  6. Oxidation resistant peroxide cross-linked UHMWPE produced by blending and surface diffusion

    NASA Astrophysics Data System (ADS)

    Gul, Rizwan M.; Oral, Ebru; Muratoglu, Orhun K.

    2014-06-01

    Ultra-high molecular weight polyethylene (UHMWPE) has been widely used as acetabular cup in total hip replacement (THR) and tibial component in total knee replacement (TKR). Crosslinking of UHMWPE has been successful used to improve its wear performance leading to longer life of orthopedic implants. Crosslinking can be performed by radiation or organic peroxides. Peroxide crosslinking is a convenient process as it does not require specialized equipment and the level of crosslinking can be manipulated by changing the amount of peroxide added. However, there is concern about the long-term stability of these materials due to possible presence of by-products. Vitamin E has been successfully used to promote long-term oxidative stability of UHMWPE. In this study, UHMWPE has been crosslinked using organic peroxide in the presence of Vitamin E to produce an oxidation resistant peroxide crosslinked material. Crosslinking was performed both in bulk by mixing peroxide and resin, and only on the surface using diffusion of peroxides.The results show that UHMWPE can be crosslinked using organic peroxides in the presence of vitamin E by both methods. However, the level of crosslinking decreases with the increase in vitamin E content. The wear resistance increases with the increase in crosslink density, and oxidation resistance significantly increases due to the presence of vitamin E.

  7. Development of Microbubble Contrast Agents with Biochemical Recognition and Tunable Acoustic Response

    NASA Astrophysics Data System (ADS)

    Nakatsuka, Matthew Allan Masao

    Microbubbles, consisting of gas-filled cores encapsulated within phospholipid or polymer shells, are the most widely used ultrasound contrast agents in the world. Because of their acoustic impedance mismatch with surrounding tissues and compressible gaseous interiors, they have high echogenicities that allow for efficient backscatter of ultrasound. They can also generate unique harmonic frequencies when insonated near their resonance frequency, depending on physical microbubble properties such as the stiffness and thickness of the encapsulating shell. Microbubbles are used to detect a number of cardiovascular diseases, but current methodologies lack the ability to detect and distinguish small, rapidly growing abnormalities that do not produce visible blockage or slowing of blood flow. This work describes the development, formulation, and validation of microbubbles with various polymer shell architectures designed to modulate their acoustic ability. We demonstrate that the addition of a thick disulfide crosslinked, poly(acrylic acid) encapsulating shell increases a bubble's resistance to cavitation and changes its resonance frequency. Modification of this shell architecture to use hybridized DNA strands to form crosslinks between the polymer chains allows for tuning of the bubble acoustic response. When the DNA crosslinks are in place, shell stiffness is increased so the bubbles do not oscillate and acoustic signal is muted. Subsequently, when these DNA strands are displaced, partial acoustic activity is restored. By using aptamer sequences with a specific affinity towards the biomolecule thrombin as the DNA crosslinking strand, this acoustic "ON/OFF" behavior can be specifically tailored towards the presence of a specific biomarker, and produces a change in acoustic signal at concentrations of thrombin consistent with acute deep venous thrombosis. Incorporation of the emulsifying agent poly(ethylene glycol) into the encapsulating shell improves microbubble yield and circulation half-life substantially, allowing for the in vivo detection of a blood clot in a rabbit model. The results presented here show a unique marriage of highly specific molecular imaging and sonography that could be tailored towards a wide variety of cardiovascular abnormalities.

  8. Identification of cross-linked amino acids in the protein pair HmaL23-HmaL29 from the 50S ribosomal subunit of the archaebacterium Haloarcula marismortui.

    PubMed

    Bergmann, U; Wittmann-Liebold, B

    1993-03-23

    50S ribosomal subunits from the extreme halophilic archaebacterium Haloarcula marismortui were treated with the homobifunctional protein-protein cross-linking reagents diepoxybutane (4 A) and dithiobis(succinimidyl propionate) (12 A). The dominant product with both cross-linking reagents was identified on the protein level as HmaL23-HmaL29, which is homologous to the protein pair L23-L29 from Escherichia coli [Walleczek, J., Martin, T., Redl, B., Stöffler-Meilicke, M., & Stöffler, G. (1989) Biochemistry 28, 4099-4105] and from Bacillus stearothermophilus [Brockmöller, J., & Kamp, R. M. (1986) Biol. Chem. Hoppe-Seyler 367, 925-935]. To reveal the exact cross-linking site in HmaL23-HmaL29, the cross-linked complex was purified on a preparative scale by conventional and high-performance liquid chromatography. After endoproteolytic fragmentation of the protein pair, the amino acids engaged in cross-link formation were unambiguously identified by N-terminal sequence analysis and mass spectrometry of the cross-linked peptides. The cross-link is formed between lysine-57 in the C-terminal region of HmaL29 and the alpha-amino group of the N-terminal serine in protein HmaL23, irrespective of the cross-linking reagent. This result demonstrates that the N-terminal region of protein HmaL23 and the C-terminal domain of HmaL29 are highly flexible so that the distance between the two polypeptide chains can vary by at least 8 A. Comparison of our cross-linking results with those obtained with B. stearothermophilus revealed that the fine structure within this ribosomal domain is at least partially conserved.

  9. Simple and sensitive method for quantification of fluorescent enzymatic mature and senescent crosslinks of collagen in bone hydrolysate using single-column high performance liquid chromatography.

    PubMed

    Viguet-Carrin, S; Gineyts, E; Bertholon, C; Delmas, P D

    2009-01-01

    A rapid high performance liquid chromatographic method was developed including an internal standard for the measurement of mature and senescent crosslinks concentration in non-demineralized bone hydrolysates. To avoid the demineralization which is a tedious step, we developed a method based on the use of a solid-phase extraction procedure to clean-up the samples. It resulted in sensitive and accurate measurements: the detection limits as low as 0.2 pmol for the pyridimium crosslinks and 0.02 pmol for the pentosidine. The inter- and intra-assay coefficients of variation were as low as 5% and 2%, respectively, for all crosslinks.

  10. Effect of cross-link density on carbon dioxide separation in polydimethylsiloxane-norbornene membranes

    DOE PAGES

    Hong, Tao; Niu, Zhenbin; Hu, Xunxiang; ...

    2015-10-20

    The development of high performance materials for CO 2 separation and capture will significantly contribute to a solution for climate change. In this work, (bicycloheptenyl) ethyl terminated polydimethylsiloxane (PDMSPNB) membranes with varied cross-link densities were synthesized via ring-opening metathesis polymerization. The developed polymer membranes show higher permeability and better selectivity than those of conventional cross-linked PDMS membrane. The achieved performance (CO 2 permeability ~ 6800 Barrer and CO 2/N 2 selectivity ~ 14) is very promising for practical applications. The key to achieving this high performance is the use of an in-situ cross-linking method of the difunctional PDMS macromonomers, whichmore » provides lightly cross-linked membranes. By combining positron annihilation lifetime spectroscopy, broadband dielectric spectroscopy and gas solubility measurements, we have elucidated the key parameters necessary for achieving their excellent performance.« less

  11. Thermally Cross-Linked Anion Exchange Membranes from Solvent Processable Isoprene Containing Ionomers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Tsung-Han; Ertem, S. Piril; Maes, Ashley M.

    2015-01-28

    Random copolymers of isoprene and 4-vinylbenzyl chloride (VBCl) with varying compositions were synthesized via nitroxide-mediated polymerization. Subsequent quaternization afforded solvent processable and cross-linkable ionomers with a wide range of ion exchange capacities (IECs). Solution cast membranes were thermally cross-linked to form anion exchange membranes. Cross-linking was achieved by taking advantage of the unsaturations on the polyisoprene backbone, without added cross-linkers. A strong correlation was found between water uptake and ion conductivity of the membranes: conductivities of the membranes with IECs beyond a critical value were found to be constant related to their high water absorption. Environmentally controlled small-angle X-ray scatteringmore » experiments revealed a correlation between the average distance between ionic clusters and the ion conductivity, indicating that a well-connected network of ion clusters is necessary for efficient ion conduction and high ion conductivity.« less

  12. Identification of Crosslinked Peptides after Click-based Enrichment Using Sequential CID and ETD Tandem Mass Spectrometry

    PubMed Central

    Chowdhury, Saiful M.; Du, Xiuxia; Tolić, Nikola; Wu, Si; Moore, Ronald J.; Mayer, M. Uljana; Smith, Richard D.; Adkins, Joshua N.

    2010-01-01

    Chemical crosslinking combined with mass spectrometry can be a powerful approach for the identification of protein-protein interactions and for providing constraints on protein structures. However, enrichment of crosslinked peptides is crucial to reduce sample complexity before mass spectrometric analysis. In addition compact crosslinkers are often preferred to provide short spacer lengths, surface accessibility to the protein complexes, and must have reasonable solubility under condition where the native complex structure is stable. In this study, we present a novel compact crosslinker that contains two distinct features: 1) an alkyne tag and 2) a small molecule detection tag (NO2-) to maintain reasonable solubility in water. The alkyne tag enables enrichment of the crosslinked peptide after proteolytic cleavage after coupling of an affinity tag using alkyne-azido click chemistry. Neutral loss of the small NO2- moiety provides a secondary means of detecting crosslinked peptides in MS/MS analyses, providing additional confidence in peptide identifications. We show the labeling efficiency of this crosslinker, which we termed CLIP (Click-enabled Linker for Interacting Proteins) using ubiquitin. The enrichment capability of CLIP is demonstrated for crosslinked ubiquitin in highly complex E. coli cell lysates. Sequential CID-MS/MS and ETD-MS/MS of inter-crosslinked peptides (two peptides connected with a crosslinker) are also demonstrated for improved automated identification of crosslinked peptides. PMID:19496583

  13. Cross-linking of type I collagen with microbial transglutaminase: identification of cross-linking sites.

    PubMed

    Stachel, Ines; Schwarzenbolz, Uwe; Henle, Thomas; Meyer, Michael

    2010-03-08

    Collagen is a popular biomaterial. To deal with its lack of thermal stability and its weak resistance to proteolytic degradation, collagen-based materials are stabilized via different cross-linking procedures. Regarding the potential toxicity of residual cross-linking agents, enzyme-mediated cross-linking would provide an alternative and nontoxic method for collagen stabilization. The results of this study show that type I collagen is a substrate for mTG. However, epsilon-(gamma-glutamyl)lysine cross-links are only incorporated at elevated temperatures when the protein is partially or completely denatured. A maximum number of 5.4 cross-links per collagen monomer were found for heat-denatured collagen. Labeling with the primary amine monodansylcadaverine revealed that at least half of the cross-links are located within the triple helical region of the collagen molecule. Because the triple helix is highly ordered in its native state, this finding might explain why the glutamine residues are inaccessible for mTG under nondenaturing conditions.

  14. Rheological Properties of Graphene Oxide/Konjac Glucomannan Sol.

    PubMed

    Zhu, Wenkun; Duan, Tao; Hu, Zuowen

    2018-05-01

    We have demonstrated there is a significant intermolecular interaction between GO and KGM that results from hydrogen bonding and physical cross-linking by studying the rheological properties of a graphene oxide/konjac glucomannan (GO/KGM) solution. When the addition of GO was 5%, the storage modulus (G') and loss modulus (G″) were only improved by 0.25%. However, G' and G″ were improved by approximately 90% and 73.4%, respectively, when the GO content was increased to 7.5%. The moduli also displayed a relationship between the power function and concentration. Furthermore, the formation mechanism of GO/KGM was investigated by Raman, FT-IR, XPS and SEM. The results suggested that hydrogen bonding and physical crosslinking are generated from the abundant carboxy and hydroxyl groups of graphene oxide and the hydroxyl groups of konjac glucomannan.

  15. Polymeric micelles with ionic cores containing biodegradable cross-links for delivery of chemotherapeutic agents.

    PubMed

    Kim, Jong Oh; Sahay, Gaurav; Kabanov, Alexander V; Bronich, Tatiana K

    2010-04-12

    Novel functional polymeric nanocarriers with ionic cores containing biodegradable cross-links were developed for delivery of chemotherapeutic agents. Block ionomer complexes (BIC) of poly(ethylene oxide)-b-poly(methacylic acid) (PEO-b-PMA) and divalent metal cations (Ca(2+)) were utilized as templates. Disulfide bonds were introduced into the ionic cores by using cystamine as a biodegradable cross-linker. The resulting cross-linked micelles with disulfide bonds represented soft, hydrogel-like nanospheres and demonstrated a time-dependent degradation in the conditions mimicking the intracellular reducing environment. The ionic character of the cores allowed to achieve a very high level of doxorubicin (DOX) loading (50% w/w) into the cross-linked micelles. DOX-loaded degradable cross-linked micelles exhibited more potent cytotoxicity against human A2780 ovarian carcinoma cells as compared to micellar formulations without disulfide linkages. These novel biodegradable cross-linked micelles are expected to be attractive candidates for delivery of anticancer drugs.

  16. Photocontrolled Cargo Release from Dual Cross-Linked Polymer Particles.

    PubMed

    Tan, Shereen; Cui, Jiwei; Fu, Qiang; Nam, Eunhyung; Ladewig, Katharina; Ren, Jing M; Wong, Edgar H H; Caruso, Frank; Blencowe, Anton; Qiao, Greg G

    2016-03-09

    Burst release of a payload from polymeric particles upon photoirradiation was engineered by altering the cross-linking density. This was achieved via a dual cross-linking concept whereby noncovalent cross-linking was provided by cyclodextrin host-guest interactions, and irreversible covalent cross-linking was mediated by continuous assembly of polymers (CAP). The dual cross-linked particles (DCPs) were efficiently infiltrated (∼80-93%) by the biomacromolecule dextran (molecular weight up to 500 kDa) to provide high loadings (70-75%). Upon short exposure (5 s) to UV light, the noncovalent cross-links were disrupted resulting in increased permeability and burst release of the cargo (50 mol % within 1 s) as visualized by time-lapse fluorescence microscopy. As sunlight contains UV light at low intensities, the particles can potentially be incorporated into systems used in agriculture, environmental control, and food packaging, whereby sunlight could control the release of nutrients and antimicrobial agents.

  17. High Molecular Weight Complex Analysis of Epstein-Barr Virus Latent Membrane Protein 1 (LMP-1): Structural Insights into LMP-1’s Homo-Oligomerization and Lipid Raft Association

    PubMed Central

    Wrobel, Christopher M.; Geiger, Timothy R.; Nix, Rebecca N.; Robitaille, Aaron M.; Balser, Sandra; Cervantes, Alfredo; Gonzalez, Miguel; Martin, Jennifer M.

    2013-01-01

    LMP-1 is a constitutively active Tumor Necrosis Factor Receptor analog encoded by Epstein-Barr virus. LMP-1 activation correlates with oligomerization and raft localization, but direct evidence of LMP-1 oligomers is limited. We report that LMP-1 forms multiple high molecular weight native LMP-1 complexes when analyzed by BN-PAGE, the largest of which are enriched in detergent resistant membranes. The largest of these high molecular weight complexes are not formed by purified LMP-1 or by loss of function LMP-1 mutants. Consistent with these results we find a dimeric form of LMP-1 that can be stabilized by disulfide crosslinking. We identify cysteine 238 in the C-terminus of LMP-1 as the crosslinked cysteine. Disulfide crosslinking occurs post-lysis but the dimer can be crosslinked in intact cells with membrane permeable crosslinkers. LMP-1/C238A retains wild type LMP-1 NF-κB activity. LMP-1’s TRAF binding, raft association and oligomerization are associated with the dimeric form of LMP-1. Our results suggest the possibility that the observed dimeric species results from inter-oligomeric crosslinking of LMP-1 molecules in adjacent core LMP-1 oligomers. PMID:24075898

  18. A Structural Approach to Establishing a Platform Chemistry for the Tunable, Bulk Electron Beam Cross-Linking of Shape Memory Polymer Systems

    PubMed Central

    Hearon, Keith; Besset, Celine J.; Lonnecker, Alexander T.; Ware, Taylor; Voit, Walter E.; Wilson, Thomas S.; Wooley, Karen L.; Maitland, Duncan J.

    2014-01-01

    The synthetic design and thermomechanical characterization of shape memory polymers (SMPs) built from a new polyurethane chemistry that enables facile, bulk and tunable cross-linking of low-molecular weight thermoplastics by electron beam irradiation is reported in this study. SMPs exhibit stimuli-induced geometry changes and are being proposed for applications in numerous fields. We have previously reported a polyurethane SMP system that exhibits the complex processing capabilities of thermoplastic polymers and the mechanical robustness and tunability of thermomechanical properties that are often characteristic of thermoset materials. These previously reported polyurethanes suffer practically because the thermoplastic molecular weights needed to achieve target cross-link densities severely limit high-throughput thermoplastic processing and because thermally unstable radiation-sensitizing additives must be used to achieve high enough cross-link densities to enable desired tunable shape memory behavior. In this study, we demonstrate the ability to manipulate cross-link density in low-molecular weight aliphatic thermoplastic polyurethane SMPs (Mw as low as ~1.5 kDa) without radiation-sensitizing additives by incorporating specific structural motifs into the thermoplastic polymer side chains that we hypothesized would significantly enhance susceptibility to e-beam cross-linking. A custom diol monomer was first synthesized and then implemented in the synthesis of neat thermoplastic polyurethane SMPs that were irradiated at doses ranging from 1 to 500 kGy. Dynamic mechanical analysis (DMA) demonstrated rubbery moduli to be tailorable between 0.1 and 55 MPa, and both DMA and sol/gel analysis results provided fundamental insight into our hypothesized mechanism of electron beam cross-linking, which enables controllable bulk cross-linking to be achieved in highly processable, low-molecular weight thermoplastic shape memory polymers without sensitizing additives. PMID:25411511

  19. Stabilization of collagen nanofibers with l-lysine improves the ability of carbodiimide cross-linked amniotic membranes to preserve limbal epithelial progenitor cells

    PubMed Central

    Lai, Jui-Yang; Wang, Pei-Ran; Luo, Li-Jyuan; Chen, Si-Tan

    2014-01-01

    To overcome the drawbacks associated with limited cross-linking efficiency of carbodiimide modified amniotic membrane, this study investigated the use of l-lysine as an additional amino acid bridge to enhance the stability of a nanofibrous tissue matrix for a limbal epithelial cell culture platform. Results of ninhydrin assays and zeta potential measurements showed that the amount of positively charged amino acid residues incorporated into the tissue collagen chains is highly correlated with the l-lysine-pretreated concentration. The cross-linked structure and hydrophilicity of amniotic membrane scaffolding materials affected by the lysine molecular bridging effects were determined. With an increase in the l-lysine-pretreated concentration from 1 to 30 mM, the cross-linking density was significantly increased and water content was markedly decreased. The variations in resistance to thermal denaturation and enzymatic degradation were in accordance with the number of cross-links per unit mass of amniotic membrane, indicating l-lysine-modulated stabilization of collagen molecules. It was also noteworthy that the carbodiimide cross-linked tissue samples prepared using a relatively high l-lysine-pretreated concentration (ie, 30 mM) appeared to have decreased light transmittance and biocompatibility, probably due to the influence of a large nanofiber size and a high charge density. The rise in stemness gene and protein expression levels was dependent on improved cross-link formation, suggesting the crucial role of amino acid bridges in constructing suitable scaffolds to preserve limbal progenitor cells. It is concluded that mild to moderate pretreatment conditions (ie, 3–10 mM l-lysine) can provide a useful strategy to assist in the development of carbodiimide cross-linked amniotic membrane as a stable stem cell niche for corneal epithelial tissue engineering. PMID:25395849

  20. Levels of mature cross-links and advanced glycation end product cross-links in human vitreous.

    PubMed

    Matsumoto, Yukihiro; Takahashi, Masaaki; Chikuda, Makoto; Arai, Kiyomi

    2002-01-01

    To determine the levels of pyridinoline and deoxypyridinoline, two mature enzymatic cross-links, and pentosidine, an advanced glycation end product (AGE) cross-link, in the human vitreous, and to investigate the correlations among the cross-links and the effects of aging and diabetes mellitus (DM) on the levels of cross-links. Forty-five vitreous samples were collected from 32 patients (32 eyes) undergoing vitrectomy for diabetic retinopathy (DM group) and from 13 patients (13 eyes) (control group) who were age- and sex-matched patients with idiopathic macular hole or epiretinal membrane with no systemic conditions. The levels of the cross-links were determined using high-performance liquid chromatography after acid hydrolysis and pretreatment with SP-Sephadex. The levels of pentosidine, pyridinoline, and deoxypyridinoline were 27.3 +/- 23.1 (mean +/- SD) pmol/mL (detectable in 45 of 45 specimens), 79.0 +/- 40.2 ng/mL (43 of 45 specimens), and 54.0 +/- 9.5 (32 of 45 specimens) ng/mL, respectively. When the vitreous samples from the DM and the control groups were compared, a significant difference (P <.05) was found in the pentosidine level but not in the levels of pyridinoline or deoxypyridinoline. No significant correlations were found between age and the cross-links. Significant correlations (P <.01) were found among the cross-links. The results indicate that mature cross-link substances exist in the human vitreous. The results also suggest that glycation may occur in the vitreous after mature cross-links form and result in the formation of AGE cross-links. In human vitreous from patients with DM, increased levels of AGE cross-links may stabilize the formation of mature cross-links, but they did not increase the mature cross-links.

  1. Enhanced Stability and Bioconjugation of Photo-cross-linked Polystyrene-Shell, Au-Core Nanoparticles

    PubMed Central

    Chen, Ying; Cho, Juhee; Young, Alexi; Taton, T. Andrew

    2008-01-01

    Encapsulating Au nanoparticles within a shell of photo-cross-linked block copolymer surfactant dramatically improves the physical and chemical stability of the nanoparticles, particularly when they are applied as bioconjugates. Photo-cross-linkable block copolymer amphiphiles [polystyrene-co-poly(4-vinyl benzophenone)]-block-poly(acrylic acid) [(PS-co-PVBP)-b-PAA] and [poly(styrene)-co-poly(4-vinyl benzophenone)]-block-poly(ethylene oxide) [(PS-co-PVBP)-b-PEO] were assembled around Au nanoparticles ranging from 12 nm to 108 nm in diameter. UV irradiation cross-linked the PVBP groups on the polymer to yield particles that withstood extremes of temperature, ionic strength, and chemical etching. Streptavidin was attached to [PS-co-PVBP]-b-PAA coated particles using the same noncovalent and covalent conjugation protocols used to bind biomolecules to divinylbenzene-crosslinked polystyrene microspheres. We expect that these particles will be useful as plasmonic, highly light-scattering and light-absorbing analogs to fluorescently labeled polystyrene nanospheres. PMID:17530871

  2. Nitrile crosslinked polyphenyl-quinoxaline/graphite fiber composites

    NASA Technical Reports Server (NTRS)

    Alston, W. B.

    1976-01-01

    Studies were performed to reduce the 600 F thermoplasticity of polyphenylquinoxaline (PPQ) matrix resins by introducing crosslinking by the reaction of terminal nitrile groups. Seven solvents and solvent mixtures were studied as the crosslinking catalysts and used to fabricate crosslinked PPQ/HMS graphite fiber composites. The room temperature and 600 F composite mechanical properties after short time and prolonged 600 F air exposure and the 600 F composite weight loss were determined and compared to those properties of high molecular weight, linear PPQ/HMS graphite fiber composites.

  3. Confocal Raman mapping of collagen cross-link and crystallinity of human dentin-enamel junction

    NASA Astrophysics Data System (ADS)

    Slimani, Amel; Nouioua, Fares; Desoutter, Alban; Levallois, Bernard; Cuisinier, Frédéric J. G.; Tassery, Hervé; Terrer, Elodie; Salehi, Hamideh

    2017-08-01

    The separation zone between enamel and dentin [dentin-enamel junction (DEJ)] with different properties in biomechanical composition has an important role in preventing crack propagation from enamel to dentin. The understanding of the chemical structure (inorganic and organic components), physical properties, and chemical composition of the human DEJ could benefit biomimetic materials in dentistry. Spatial distribution of calcium phosphate crystallinity and the collagen crosslinks near DEJ were studied using confocal Raman microscopy and calculated by different methods. To obtain collagen crosslinking, the ratio of two peaks 1660 cm-1 over 1690 cm-1 (amide I bands) is calculated. For crystallinity, the inverse full-width at half maximum of phosphate peak at 960 cm-1, and the ratio of two Raman peaks of phosphate at 960/950 cm-1 is provided. In conclusion, the study of chemical and physical properties of DEJ provides many benefits in the biomaterial field to improve the synthesis of dental materials in respect to the natural properties of human teeth. Confocal Raman microscopy as a powerful tool provides the molecular structure to identify the changes along DEJ and can be expanded for other mineralized tissues.

  4. New High Temperature Cross Linking Monomers

    NASA Technical Reports Server (NTRS)

    Scola, Daniel A.

    1978-01-01

    This report describes the results of a one-year program designed to synthesize new, nonvolatile crosslinking monomers and to prove their feasibility in the development of lower temperature curing PMR-polyimide resins with high temperature capability. The objective of this program is to develop PMR-polyimide resins capable of being processed at a maximum temperature of 232C to 288C (450F to 500F) without sacrifice of the high temperature 316C (600F) capability of the state-of-the-art PMR-15 polyimide resin. Four monomethyl esters were synthesized and characterized for use in the crosslinking studies. It was found that all four crosslinkers were capable of entering into a crosslinking reaction to produce polymer specimens which were strong, dense and free of voids. The infrared and DSC studies of each crosslinker with monomers 4,4'-methylenedianiline (MDA) and the dimethyl ester of 3,3',4,4'-benzophenonetetracarboxylic acid (BTDE) comprising the resin systems, crosslinker/MDA/BTDE suggested that curing could be accomplished at 288C (550F). However, fabrication of dense, void free polymer specimens required a temperature of 316C (600F) and a pressure of 0.69 MPa (100 psi). The crosslinkers, monomethyl ester of 2,5-bicyclo[2.2.1]heptadiene-2,3-dicarboxylic acid (NDE) and monomethyl ester of maleic acid (MAE) were selected for evaluation in Celion 6000/PMR polyimide composites. These composites were characterized at RT, 288C (550F) and 316C (600F) initially and after isothermal aging at 288C (550F) and 316C (600F) for several hundred hours. The results of the isothermal aging studies suggested that both PMR systems NDE-MDA-BTDE and MAE-MDA-BTDE are promising candidates as matrices for addition type polyimide composites. These studies demonstrated that alternate crosslinkers to NE/MDA/BTDE are feasible, but mechanisms to lower the crosslinking temperature must be developed to provide lower temperature processing PMR-type polyimides.

  5. Assessment of collagen quality associated with non-enzymatic cross-links in human bone using Fourier-transform infrared imaging.

    PubMed

    Schmidt, F N; Zimmermann, E A; Campbell, G M; Sroga, G E; Püschel, K; Amling, M; Tang, S Y; Vashishth, D; Busse, B

    2017-04-01

    Aging and many disease conditions, most notably diabetes, are associated with the accumulation of non-enzymatic cross-links in the bone matrix. The non-enzymatic cross-links, also known as advanced glycation end products (AGEs), occur at the collagen tissue level, where they are associated with reduced plasticity and increased fracture risk. In this study, Fourier-transform infrared (FTIR) imaging was used to detect spectroscopic changes associated with the formation of non-enzymatic cross-links in human bone collagen. Here, the non-enzymatic cross-link profile was investigated in one cohort with an in vitro ribose treatment as well as another cohort with an in vivo bisphosphonate treatment. With FTIR imaging, the two-dimensional (2D) spatial distribution of collagen quality associated with non-enzymatic cross-links was measured through the area ratio of the 1678/1692cm -1 subbands within the amide I peak, termed the non-enzymatic crosslink-ratio (NE-xLR). The NE-xLR increased by 35% in the ribation treatment group in comparison to controls (p<0.005), with interstitial bone tissue being more susceptible to the formation of non-enzymatic cross-links. Ultra high-performance liquid chromatography, fluorescence microscopy, and fluorometric assay confirm a correlation between the non-enzymatic cross-link content and the NE-xLR ratio in the control and ribated groups. High resolution FTIR imaging of the 2D bone microstructure revealed enhanced accumulation of non-enzymatic cross-links in bone regions with higher tissue age (i.e., interstitial bone). This non-enzymatic cross-link ratio (NE-xLR) enables researchers to study not only the overall content of AGEs in the bone but also its spatial distribution, which varies with skeletal aging and diabetes mellitus and provides an additional measure of bone's propensity to fracture. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Assessment of collagen quality associated with non-enzymatic cross-links in human bone using Fourier-transform infrared imaging

    PubMed Central

    Schmidt, F.N.; Zimmermann, E.A.; Campbell, G.M.; Sroga, G.E.; Püschel, K.; Amling, M.; Tang, S. Y.; Vashishth, D.; Busse, B.

    2017-01-01

    Aging and many disease conditions, most notably diabetes, are associated with the accumulation of non-enzymatic cross-links in the bone matrix. The non-enzymatic crosslinks, also known as advanced glycation end products (AGEs), occur at the collagen tissue level, where they are associated with reduced plasticity and increased fracture risk. In this study, Fourier-transform infrared (FTIR) imaging was used to detect spectroscopic changes associated with the formation of non-enzymatic cross-links in human bone collagen. Here, the non-enzymatic cross-link profile was investigated in one cohort with an in vitro ribose treatment as well as another cohort with an in vivo bisphosphonate treatment. With FTIR imaging, the two-dimensional (2D) spatial distribution of collagen quality associated with non-enzymatic cross-links was measured through the area ratio of the 1678/1692 cm−1 subbands within the amide I peak, termed the non-enzymatic crosslink-ratio (NE-xLR). The NE-xLR increased by 35% in the ribation treatment group in comparison to controls (p< 0.005), with interstitial bone tissue being more susceptible to the formation of non-enzymatic cross-links. Ultra high performance liquid chromatography, fluorescence microscopy, and fluorometric assay confirm a correlation between the non-enzymatic cross-link content and the NE-xLR ratio in the control and ribated groups. High resolution FTIR imaging of the 2D bone microstructure revealed enhanced accumulation of non-enzymatic cross-links in bone regions with higher tissue age (i.e., interstitial bone). This non-enzymatic cross-link ratio (NE-xLR) enables researchers to study not only the overall content of AGEs in the bone but also its spatial distribution, which varies with skeletal aging and diabetes mellitus and provides an additional measure of bone's propensity to fracture. PMID:28109917

  7. High correlation between pentosidine protein crosslinks and pigmentation implicates ascorbate oxidation in human lens senescence and cataractogenesis.

    PubMed

    Nagaraj, R H; Sell, D R; Prabhakaram, M; Ortwerth, B J; Monnier, V M

    1991-11-15

    Pentosidine is a recently discovered protein crosslink, involving lysine and arginine residues linked together in an imidazo [4,5,6] pyridinium ring formed by a 5-carbon sugar during nonenzymatic browning (Maillard reaction). The presence of high ascorbate levels in the human lens and its ability to undergo nonenzymatic browning led us to investigate pentosidine formation in the aging human lens. Incubation of lens crystallins with ascorbate and its oxidation products dehydroascorbate and 2,3-diketogulonate leads progressively to the formation of pentosidine crosslinks in the presence of oxygen. Under nitrogen, however, pentosidine forms only from 2,3-diketogulonate or xylosone, a degradation product of 2,3-diketogulonate. A high correlation between pentosidine crosslinks and the degree of lens pigmentation is noted in cataractous lenses. Pentosidine is found to be primarily associated with alpha-crystallin fractions of 300-5000 kDa. These results suggest that redox imbalance in cellular senescent systems such as the ocular lens may lead to irreversible ascorbate oxidation and protein crosslinking by xylosone. This mechanism may play an important role in the pathogenesis of "brunescent" cataracts.

  8. Stereocomplexation of low molecular weight poly(L-lactic acid) and high molecular weight poly(D-lactic acid), radiation crosslinking PLLA/PDLA stereocomplexes and their characterization

    NASA Astrophysics Data System (ADS)

    Quynh, Tran Minh; Mai, Hoang Hoa; Lan, Pham Ngoc

    2013-02-01

    Poly(L-lactic acid)s (PLLAx) were synthesized from L-lactic acid by polycondensation. Different stereocomplexes were also obtained with equimolar mixtures of synthesized PLLAx and a commercial PDLA. The stereocomplexes were crosslinked with triallyl isocyanurate (TAIC) by gamma irradiation. Crosslinking density increased with radiation doses, the heavier the crosslinking network, the lower its swelling degree. The crosslinking structures were introduced in the stereocomplexes inhibiting the mobility for crystallization of PLLA molecules. Thermal and mechanical properties of PLA stereocomplexes were remarkably enhanced by radiation induced crosslinking. PLA stereocomplex does not seem to be degraded by PLLA degrading microorganisms existing in compost at room temperature, but the synthesized PLLA was significantly degraded.

  9. Chemistry and Processing of Nanostructured Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, G A; Baumann, T F; Hope-Weeks, L J

    2002-01-18

    Nanostructured materials can be formed through the sol-gel polymerization of inorganic or organic monomer systems. For example, a two step polymerization of tetramethoxysilane (TMOS) was developed such that silica aerogels with densities as low as 3 kg/m{sup 3} ({approx} two times the density of air) could be achieved. Organic aerogels based upon resorcinol-formaldehyde and melamine-formaldehyde can also be prepared using the sol-gel process. Materials of this type have received significant attention at LLNL due to their ultrafine cell sizes, continuous porosity, high surface area and low mass density. For both types of aerogels, sol-gel polymerization depends upon the transformation ofmore » these monomers into nanometer-sized clusters followed by cross-linking into a 3-dimensional gel network. While sol-gel chemistry provides the opportunity to synthesize new material compositions, it suffers from the inability to separate the process of cluster formation from gelation. This limitation results in structural deficiencies in the gel that impact the physical properties of the aerogel, xerogel or nanocomposite. In order to control the properties of the resultant gel, one should be able to regulate the formation of the clusters and their subsequent cross-linking. Towards this goal, we are utilizing dendrimer chemistry to separate the cluster formation from the gelation so that new nanostructured materials can be produced. Dendrimers are three-dimensional, highly branched macromolecules that are prepared in such a way that their size, shape and surface functionality are readily controlled. The dendrimers will be used as pre-formed clusters of known size that can be cross-linked to form an ordered gel network.« less

  10. Tyrosinase-catalyzed site-specific immobilization of engineered C-phycocyanin to surface

    PubMed Central

    Faccio, Greta; Kämpf, Michael M.; Piatti, Chiara; Thöny-Meyer, Linda; Richter, Michael

    2014-01-01

    Enzymatic crosslinking of proteins is often limited by the steric availability of the target residues, as of tyrosyl side chains in the case of tyrosinase. Carrying an N-terminal peptide-tag containing two tyrosine residues, the fluorescent protein C-phycocyanin HisCPC from Synechocystis sp. PCC6803 was crosslinked to fluorescent high-molecular weight forms with tyrosinase. Crosslinking with tyrosinase in the presence of L-tyrosine produced non fluorescent high-molecular weight products. Incubated in the presence of tyrosinase, HisCPC could also be immobilized to amino-modified polystyrene beads thus conferring a blue fluorescence. Crosslinking and immobilization were site-specific as both processes required the presence of the N-terminal peptide in HisCPC. PMID:24947668

  11. Preparation of Nanocellulose Reinforced Chitosan Films, Cross-Linked by Adipic Acid

    PubMed Central

    Falamarzpour, Pouria; Behzad, Tayebeh; Zamani, Akram

    2017-01-01

    Adipic acid, an abundant and nontoxic compound, was used to dissolve and cross-link chitosan. After the preparation of chitosan films through casting technique, the in situ amidation reaction was performed at 80–100 °C as verified by Fourier transform infrared (FT-IR). The reaction was accompanied by the release of water which was employed to investigate the reaction kinetics. Accordingly, the reaction rate followed the first-order model and Arrhenius equation, and the activation energy was calculated to be 18 kJ/mol. Furthermore, the mechanical properties of the chitosan films were comprehensively studied. First, optimal curing conditions (84 °C, 93 min) were introduced through a central composite design. In order to evaluate the effects of adipic acid, the mechanical properties of physically cross-linked (uncured), chemically cross-linked (cured), and uncross-linked (prepared by acetic acid) films were compared. The use of adipic acid improved the tensile strength of uncured and chemically cross-linked films more than 60% and 113%, respectively. Finally, the effect of cellulose nanofibrils (CNFs) on the mechanical performance of cured films, in the presence of glycerol as a plasticizer, was investigated. The plasticized chitosan films reinforced by 5 wt % CNFs showed superior properties as a promising material for the development of chitosan-based biomaterials. PMID:28208822

  12. Preparation of Nanocellulose Reinforced Chitosan Films, Cross-Linked by Adipic Acid.

    PubMed

    Falamarzpour, Pouria; Behzad, Tayebeh; Zamani, Akram

    2017-02-13

    Adipic acid, an abundant and nontoxic compound, was used to dissolve and cross-link chitosan. After the preparation of chitosan films through casting technique, the in situ amidation reaction was performed at 80-100 °C as verified by Fourier transform infrared (FT-IR). The reaction was accompanied by the release of water which was employed to investigate the reaction kinetics. Accordingly, the reaction rate followed the first-order model and Arrhenius equation, and the activation energy was calculated to be 18 kJ/mol. Furthermore, the mechanical properties of the chitosan films were comprehensively studied. First, optimal curing conditions (84 °C, 93 min) were introduced through a central composite design. In order to evaluate the effects of adipic acid, the mechanical properties of physically cross-linked (uncured), chemically cross-linked (cured), and uncross-linked (prepared by acetic acid) films were compared. The use of adipic acid improved the tensile strength of uncured and chemically cross-linked films more than 60% and 113%, respectively. Finally, the effect of cellulose nanofibrils (CNFs) on the mechanical performance of cured films, in the presence of glycerol as a plasticizer, was investigated. The plasticized chitosan films reinforced by 5 wt % CNFs showed superior properties as a promising material for the development of chitosan-based biomaterials.

  13. Light-induced crosslinkable semiconducting polymer dots† †Electronic supplementary information (ESI) available: Synthesis and characterization of monomers and polymers, preparation and characterization of thin film and Pdots, optical property measurements and flow cytometry is available. See DOI: 10.1039/c4sc03959a Click here for additional data file.

    PubMed Central

    Zhang, Yue; Ye, Fangmao; Sun, Wei; Yu, Jiangbo; Wu, I-Che; Rong, Yu; Zhang, Yong

    2015-01-01

    This paper describes a synthetic approach for photocrosslinkable polyfluorene (pc-PFO) semiconducting polymer dots, and demonstrates their superior ability to crosslink and form 3-D intermolecular polymer networks. The crosslinked pc-PFO Pdots are equipped with excellent encapsulating ability of functional small molecules. Optimum conditions of light irradiation on pc-PFO Pdots were investigated and clarified by using polymer thin films as a model. By employing the optimal light irradiation conditions, we successfully crosslinked pc-PFO Pdots and studied their particle sizes, photophysical, and colloidal properties. Single-particle imaging and dynamic-light-scattering measurements were conducted to understand the behaviors of photocrosslinked Pdots. Our results indicate pc-PFO Pdots can be easily photocrosslinked and the crosslinked species have excellent colloidal stability, physical and chemical stability, fluorescence brightness, and specific binding properties for cellular labeling. Considering that optical stimulus can work remotely, cleanly, and non-invasively, this study should pave the way for a promising approach to further develop stimuli-responsive ultrabright and versatile Pdot probes for biomedical imaging. PMID:25709806

  14. Gas-phase transfer of polymer cross-linking agents and by-products to solid oral pharmaceuticals.

    PubMed

    Maus, Russell G; Li, Min; Clement, Christopher M; Kinzer, Jeffery A

    2007-11-05

    In the pharmaceutical industry, solid oral compressed tablets (OCT) are frequently transported in bulk containers prior to packaging. While in this state, the product is generally protected from interaction with liquid and solid contaminants by physical barriers (e.g., polyethylene bags, drums, etc.). Vapor phase contamination, although generally less frequently observed, is possible. A specific example of the detection and identification of volatile by-products (acetophenone and 2-phenyl-2-propanol) of a common polymer cross-linking agent (dicumyl peroxide) is presented. The product tablets were compressed, placed into double polyethylene bags, and subsequently placed into a polyethylene drum for shipment overseas. To cushion the product during transit, a cross-linked polyethylene foam disk (designed to fit into the bottom of the drum) was placed below the bag of tablets. Initially, these contaminants were detected by HPLC with UV detection at the receiving laboratory, and assumed to be degradates of the active components of the product. Further analysis showed that neither the collected UV absorbance data nor the observed levels of the contaminants were consistent with known degradates of the product. Liquid extraction followed by GC-MS analysis of the product as well as the cross-linked foam disk exhibited measurable quantities of the contaminants in question. Vapor phase transfer of these cross-linking agent by-products, originating in the cross-linked foam pads, was determined to be the root cause for the presence of these compounds in the product.

  15. Salinity Gradient Energy from Expansion and Contraction of Poly(allylamine hydrochloride) Hydrogels.

    PubMed

    Bui, Tri Quang; Cao, Vinh Duy; Do, Nu Bich Duyen; Christoffersen, Trine Eker; Wang, Wei; Kjøniksen, Anna-Lena

    2018-06-22

    Salinity gradients exhibit a great potential for production of renewable energy. Several techniques such as pressure-retarded osmosis and reverse electrodialysis have been employed to extract this energy. Unfortunately, these techniques are restricted by the high costs of membranes and problems with membrane fouling. However, the expansion and contraction of hydrogels can be a new and cheaper way to harvest energy from salinity gradients since the hydrogels swell in freshwater and shrink in saltwater. We have examined the effect of cross-linker concentration and different external loads on the energy recovered for this type of energy-producing systems. Poly(allylamine hydrochloride) hydrogels were cross-linked with glutaraldehyde to produce hydrogels with excellent expansion and contraction properties. Increasing the cross-linker concentration markedly improved the energy that could be recovered from the hydrogels, especially at high external loads. A swollen hydrogel of 60 g could recover more than 1800 mJ when utilizing a high cross-linker concentration, and the maximum amount of energy produced per gram of polymer was 3.4 J/g. Although more energy is recovered at high cross-linking densities, the maximum amount of energy produced per gram of polymer is highest at an intermediate cross-linking concentration. Energy recovery was reduced when the salt concentration was increased for the low-concentration saline solution. The results illustrate that hydrogels are promising for salinity gradient energy recovery, and that optimizing the systems significantly increases the amount of energy that can be recovered.

  16. Silk Electrogel Rheology

    NASA Astrophysics Data System (ADS)

    Tabatabai, A. P.; Urbach, J. S.; Blair, D. L.; Kaplan, D. L.

    2014-03-01

    We present experimental results on the rheology on electrogels derived from aqueous solutions of reconstituted Bombyx Mori silk fibroin protein. Through electrochemistry, the silk protein solution develops local pH changes resulting in the assembly of protein into a weak gel. We determine the physical properties of the electrogels by performing rheology and observe that they exhibit the characteristics of a crosslinked biopolymer network. Interestingly, we find that these silk gels exhibit linear elasticity over a range of up to two orders of magnitude larger than most crosslinked biopolymer networks. Moreover, the nonlinear rheology exhibits a strain-stiffening behavior that is fundamentally different than the strain-stiffening observed in crosslinked biopolymers. Through rheological techniques we aim to understand this distinctive material that cannot be explained by current polymeric models. This work is supported by a grant from the AFOSR FA9550-07-1-0130.

  17. Caffeine-catalyzed gels.

    PubMed

    DiCiccio, Angela M; Lee, Young-Ah Lucy; Glettig, Dean L; Walton, Elizabeth S E; de la Serna, Eva L; Montgomery, Veronica A; Grant, Tyler M; Langer, Robert; Traverso, Giovanni

    2018-07-01

    Covalently cross-linked gels are utilized in a broad range of biomedical applications though their synthesis often compromises easy implementation. Cross-linking reactions commonly utilize catalysts or conditions that can damage biologics and sensitive compounds, producing materials that require extensive post processing to achieve acceptable biocompatibility. As an alternative, we report a batch synthesis platform to produce covalently cross-linked materials appropriate for direct biomedical application enabled by green chemistry and commonly available food grade ingredients. Using caffeine, a mild base, to catalyze anhydrous carboxylate ring-opening of diglycidyl-ether functionalized monomers with citric acid as a tri-functional crosslinking agent we introduce a novel poly(ester-ether) gel synthesis platform. We demonstrate that biocompatible Caffeine Catalyzed Gels (CCGs) exhibit dynamic physical, chemical, and mechanical properties, which can be tailored in shape, surface texture, solvent response, cargo release, shear and tensile strength, among other potential attributes. The demonstrated versatility, low cost and facile synthesis of these CCGs renders them appropriate for a broad range of customized engineering applications including drug delivery constructs, tissue engineering scaffolds, and medical devices. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Improving Properties of Arrowroot Starch (Maranta arundinacea)/PVA Blend Films by Using Citric Acid as Cross-linking Agent

    NASA Astrophysics Data System (ADS)

    Sholichah, Enny; Purwono, Bambang; Nugroho, Pramono

    2017-12-01

    This research studied the effect of PVA as organic polymer and citric acid as crosslinker agent in the arrowroot starch/PVA blend films. The properties of films were investigated by water uptake, water vapor permeability, mechanical properties, thermal stability, spectra of FTIR and XRD patterns. PVA used in this research influenced the film properties at the highest concentration. The cross-linkingsinter or intra molecules of arrowroot and PVA were developed as ester bonds which are formed from the reaction of hydroxyl groups consisting of starch and PVA with citric acid. The ester bond was confirmed by FTIR spectra. The increase of the amount of citric acid affected significantly on physical, chemical and mechanical properties, water uptake, WVP and crystallinity. Water barrier level was reduced by decreasing of water uptake and WVP succeeded significantly with increased crosslinking. Cross-linking impact the thermal stability of the films. The elasticity of the films also increases the production of citric acid as a plasticizer in the making of the films as a food packaging material.

  19. Combining Amine-Reactive Cross-Linkers and Photo-Reactive Amino Acids for 3D-Structure Analysis of Proteins and Protein Complexes.

    PubMed

    Lössl, Philip; Sinz, Andrea

    2016-01-01

    During the last 15 years, the combination of chemical cross-linking and high-resolution mass spectrometry (MS) has matured into an alternative approach for analyzing 3D-structures of proteins and protein complexes. Using the distance constraints imposed by the cross-links, models of the protein or protein complex under investigation can be created. The majority of cross-linking studies are currently conducted with homobifunctional amine-reactive cross-linkers. We extend this "traditional" cross-linking/MS strategy by adding complementary photo-cross-linking data. For this, the diazirine-containing unnatural amino acids photo-leucine and photo-methionine are incorporated into the proteins and cross-link formation is induced by UV-A irradiation. The advantage of the photo-cross-linking strategy is that it is not restricted to lysine residues and that hydrophobic regions in proteins can be targeted, which is advantageous for investigating membrane proteins. We consider the strategy of combining cross-linkers with orthogonal reactivities and distances to be ideally suited for maximizing the amount of structural information that can be gained from a cross-linking experiment.

  20. Optimization of Formaldehyde Cross-Linking for Protein Interaction Analysis of Non-Tagged Integrin β1

    PubMed Central

    Klockenbusch, Cordula; Kast, Juergen

    2010-01-01

    Formaldehyde cross-linking of protein complexes combined with immunoprecipitation and mass spectrometry analysis is a promising technique for analysing protein-protein interactions, including those of transient nature. Here we used integrin β1 as a model to describe the application of formaldehyde cross-linking in detail, particularly focusing on the optimal parameters for cross-linking, the detection of formaldehyde cross-linked complexes, the utility of antibodies, and the identification of binding partners. Integrin β1 was found in a high molecular weight complex after formaldehyde cross-linking. Eight different anti-integrin β1 antibodies were used for pull-down experiments and no loss in precipitation efficiency after cross-linking was observed. However, two of the antibodies could not precipitate the complex, probably due to hidden epitopes. Formaldehyde cross-linked complexes, precipitated from Jurkat cells or human platelets and analyzed by mass spectrometry, were found to be composed of integrin β1, α4 and α6 or β1, α6, α2, and α5, respectively. PMID:20634879

  1. Design of asymmetric particles containing a charged interior and a neutral surface charge: comparative study on in vivo circulation of polyelectrolyte microgels.

    PubMed

    Chen, Kai; Xu, Jing; Luft, J Christopher; Tian, Shaomin; Raval, Jay S; DeSimone, Joseph M

    2014-07-16

    Lowering the modulus of hydrogel particles could enable them to bypass in vivo physical barriers that would otherwise filter particles with similar size but higher modulus. Incorporation of electrolyte moieties into the polymer network of hydrogel particles to increase the swelling ratio is a straightforward and quite efficient way to decrease the modulus. In addition, charged groups in hydrogel particles can also help secure cargoes. However, the distribution of charged groups on the surface of a particle can accelerate the clearance of particles. Herein, we developed a method to synthesize highly swollen microgels of precise size with near-neutral surface charge while retaining interior charged groups. A strategy was employed to enable a particle to be highly cross-linked with very small mesh size, and subsequently PEGylated to quench the exterior amines only without affecting the internal amines. Acidic degradation of the cross-linker allows for swelling of the particles to microgels with a desired size and deformability. The microgels fabricated demonstrated extended circulation in vivo compared to their counterparts with a charged surface, and could potentially be utilized in in vivo applications including as oxygen carriers or nucleic acid scavengers.

  2. Super stretchable electroactive elastomer formation driven by aniline trimer self-assembly

    PubMed Central

    Chen, Jing; Guo, Baolin; Eyster, Thomas W.; Ma, Peter X.

    2015-01-01

    Biomedical electroactive elastomers with a modulus similar to that of soft tissues are highly desirable for muscle, nerve, and other soft tissue replacement or regeneration, but have rarely been reported. In this work, superiorly stretchable electroactive polyurethane-urea elastomers were designed based on poly(lactide), poly(ethylene glycol), and aniline trimer (AT). A strain at break higher than 1600% and a modulus close to soft tissues was achieved from these copolymers. The mechanisms of super stretchability of the copolymer were systematically investigated. Crystallinity, chemical cross-linking, ionic cross-linking and hard domain formation were examined using differential scanning calorimetry (DSC), X-ray photoelectron spectroscopy (XPS), dynamic light scattering (DLS), nuclear magnetic resonance (NMR) measurements and transmission electron microscopy (TEM). The sphere-like hard domains self-assembled from AT segments were found to provide the crucial physical interactions needed for the novel super elastic material formation. These super stretchable copolymers were blended with conductive fillers such as polyaniline nanofibers and nanosized carbon black to achieve a high electric conductivity of 0.1 S/cm while maintaining an excellent stretchability and a modulus similar to that of soft tissues (lower than 10 MPa). PMID:26692638

  3. DNA-protein crosslinks in peripheral lymphocytes of individuals exposed to hexavalent chromium compounds.

    PubMed

    Zhitkovich, A; Lukanova, A; Popov, T; Taioli, E; Cohen, H; Costa, M; Toniolo, P

    1996-01-01

    Abstract DNA-protein crosslinks were measured in peripheral blood lymphocytes of chrome-platers and controls from Bulgaria in order to evaluate a genotoxic effect of human exposure to carcinogenic Cr(VI) compounds. Chrome-platers and most of the unexposed controls were from the industrial city of Jambol; some additional controls were recruited from the seaside town of Burgas. The chrome-platers had significantly elevated levels of chromium in pre- and post-shift urine, erythrocytes and lymphocytes compared with the control subjects. The largest differences between the two groups were found in erythrocyte chromium concentrations which are considered to be indicative of Cr(VI) exposure. Despite the significant differences in internal chromium doses, levels of DNA-protein crosslinks were not significantly different between the combined controls and exposed workers. Individual DNA-protein crosslinks, however, correlated strongly with chromium in erythrocytes at low and moderate doses but at high exposures, such as among the majority of chrome-platers, these DNA adducts were saturated at maximum levels. The saturation of DNA-protein crosslinks seems to occur at 7-8 μg I-(1) chromium in erythrocytes whereas a mean erythrocyte chromium among the chrome platers was as high as 22.8 μg l(-1). Occupationally unexposed subjects exhibited a significant variability with respect to the erythrocyte chromium concentration, however erythrocyte chromium levels correlated closely with DNA-protein crosslinks in lymphocytes. The controls from Jambol had higher chromium concentrations in erythrocytes and elevated levels of DNA-protein crosslinks compared with Burgas controls. Occupational exposure to formaldehyde among furniture factory workers did not change levels of DNA-protein crosslinks in peripheral lymphocytes. DNA-protein crosslink measurements showed a low intraindividual variability and their levels among both controls and exposed indivduals were not affected by smoking, age or weight.

  4. Self-Healing Phase Change Salogels with Tunable Gelation Temperature.

    PubMed

    Karimineghlani, Parvin; Palanisamy, Anbazhagan; Sukhishvili, Svetlana A

    2018-05-02

    Chemically cross-linked polymer matrices have demonstrated strong potential for shape stabilization of molten phase change materials (PCM). However, they are not designed to be fillable and removable from a heat exchange module for an easy replacement with new PCM matrices and lack self-healing capability. Here, a new category of shapeable, self-healing gels, "salogels", is introduced. The salogels reversibly disassemble in a high-salinity environment of a fluid inorganic PCM [lithium nitrate trihydrate (LNH)], at a preprogrammed temperature. LNH was employed as a high latent heat PCM and simultaneously as a solvent, which supported the formation of a network of polyvinyl alcohol (PVA) chains via physical cross-linking through poly(amidoamine) dendrimers of various generations. The existence of hydrogen bonding and the importance of low-hydration state of PVA for the efficient gelation were experimentally confirmed. The thermal behavior of PCM salogels was highly reversible and repeatable during multiple heating/cooling cycles. Importantly, the gel-sol transition temperature could be precisely controlled within a range of temperature above LNH's melting point by the choice of dendrimer generation and their concentration. Shape stabilization and self-healing properties of the salogels, taken together with tunability of their temperature-induced fluidization make these materials attractive for thermal energy storage applications that require on-demand removal and replacement of used inorganic PCM salt hydrates.

  5. Surface modification of paper on a continuous atmospheric-pressure-plasma system

    NASA Astrophysics Data System (ADS)

    Cruz-Barba, Luis Emilio

    Plasma technologies for the continuous modification of materials in atmospheric-pressure-plasma conditions were used to evaluate the surface modification of paper under different plasma conditions. The generation of hydrophobic layers was used to characterize the efficiency of the originally designed system for future application in the paper industry. Generation of hydrophobic layers was carried out by deposition of thin layers from fluorine containing gases, as well as cross-linking of pre-deposited thin layers of hydrophobic materials, such as fluoropolymers and silicones, in a continuous system plasma reactor (CSPR). Physical and chemical characterization of these layers was carried out by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), scanning electron microscopy (SEM), contact angle goniometry, and water absorption evaluations. Pure gaseous CF4 and a CF4/CH4 mixture were used to deposit fluorinated layers, rendering paper surfaces with low to moderate relative surface atomic contents of fluorine (2.5 to 16.3%). Morphological characterization revealed that the deposition consists of small clusters of fluorinated species scattered on the surface. Contact angle evaluations (50°--70°) indicated a reduction in the water affinity of the paper. Thin layers of fluoropolymer pre-deposited on paper surfaces were cross-linked in the presence of CF4, CF4/CH4, and NH 3 plasmas. All of the gases proved to be effective for the cross-linking under different conditions. These cross-linked layers were determined to maintain the original polymer structure, consisting mainly of CF2-CF 2 and small quantities of CFx. Surface characterization by AFM indicated lower roughness values compared to the untreated additive-free paper (45.1 vs 67.1 nm). Paper samples treated by this approach showed a highly hydrophobic character with up to 160° contact angles, and water absorption was reduced by as much as 61.6%. Silicone layers were cross-linked in the presence of argon and oxygen plasmas. Characterization of the silicone-coated paper indicated, as in the case of fluoropolymers, the retention of the original chemical structure. Surface roughness values (AFM) were in the range of 11.8 to 18.2 nm, evidence of a very smooth surface. High hydrophobicity levels were reached, as shown by contact angles of up to 126°, and water absorption showed a maximum reduction of 76.8%.

  6. Dismantlable Thermosetting Adhesives Composed of a Cross-Linkable Poly(olefin sulfone) with a Photobase Generator.

    PubMed

    Sasaki, Takeo; Hashimoto, Shouta; Nogami, Nana; Sugiyama, Yuichi; Mori, Madoka; Naka, Yumiko; Le, Khoa V

    2016-03-02

    A novel photodetachable adhesive was prepared using a photodepolymerizable cross-linked poly(olefin sulfone). A mixture of a cross-linkable poly(olefin sulfone), a cross-linking reagent, and a photobase generator functioned as a thermosetting adhesive and exhibited high adhesive strength on quartz plates comparable to that obtained for commercially available epoxy adhesives. The cured resin was stable in the absence of UV light irradiation but completely lost its adhesive strength upon exposure of glued quartz plates to UV light in conjunction with heating to 100 °C.

  7. Crosslinked Remote-Doped Hole-Extracting Contacts Enhance Stability under Accelerated Lifetime Testing in Perovskite Solar Cells.

    PubMed

    Xu, Jixian; Voznyy, Oleksandr; Comin, Riccardo; Gong, Xiwen; Walters, Grant; Liu, Min; Kanjanaboos, Pongsakorn; Lan, Xinzheng; Sargent, Edward H

    2016-04-13

    A crosslinked hole-extracting electrical contact is reported, which simultaneously improves the stability and lowers the hysteresis of perovskite solar cells. Polymerizable monomers and crosslinking processes are developed to obviate in situ degradation of the under lying perovskite. The crosslinked material is band-aligned with perovskite. The required free carrier density is induced by a high-work-function metal oxide layer atop the device, following a remote-doping strategy. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Highly stable ionic-covalent cross-linked sulfonated poly(ether ether ketone) for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Lei, Linfeng; Zhu, Xingye; Xu, Jianfeng; Qian, Huidong; Zou, Zhiqing; Yang, Hui

    2017-05-01

    A novel ionic cross-linked sulfonated poly(ether ether ketone) containing equal content of sulfonic acid and pendant tertiary amine groups (TA-SPEEK) has been initially synthesized for the application in direct methanol fuel cells (DMFCs). By adjusting the ratio of p-xylene dibromide to tertiary amine groups of TA-SPEEK, a series of ionic-covalent cross-linked membranes (C-SPEEK-x) with tunable degree of cross-linking are prepared. Compared with the pristine membrane, the ionic and ionic-covalent cross-linked proton exchange membranes (PEMs) exhibit reduced methanol permeability and improved mechanical properties, dimensional and oxidative stability. The proton conductivity and methanol selectivity of protonated TA-SPEEK and C-SPEEK-x at 25 °C is up to 0.109 S cm-1 and 3.88 × 105 S s cm-3, respectively, which are higher than that of Nafion 115. The DMFC incorporating C-SPEEK-25 exhibits a maximum power density as high as 35.3 mW cm-2 with 4 M MeOH at 25 °C (31.8 mW cm-2 for Nafion 115). Due to the highly oxidative stability of the membrane, no obvious performance degradation of the DMFC is observed after more than 400 h operation, indicating such cost-effective ionic-covalent cross-linked membranes have substantial potential as alternative PEMs for DMFC applications.

  9. Crosslinked wholly aromatic polyether membranes based on quinoline derivatives and their application in high temperature polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Kallitsis, K. J.; Nannou, R.; Andreopoulou, A. K.; Daletou, M. K.; Papaioannou, D.; Neophytides, S. G.; Kallitsis, J. K.

    2018-03-01

    An AB type difunctional quinoline based monomer bearing a pentafluorophenyl unit combined with a phenol functionality is being synthesized and homopolymerized to create linear aromatic polyethers as polymer electrolytes for HT-PEM FCs applications. Several conditions are tested for the optimized synthesis of the monomer and homopolymer. Additionally, covalent crosslinking through aromatic polyether bond formation enables the creation of wholly aromatic crosslinked polymeric electrolyte membranes. More specifically, the perfluorophenyl units are crosslinked with other hydroxyl end functionalized moieties, providing membranes with enhanced chemical and mechanical properties that are moreover easily doped with phosphoric acid even at ambient temperatures. All membranes are evaluated for their structural and thermal characteristics and their doping ability with phosphoric acid. Selected crosslinked membranes are further tested in terms of their single cell performance at the temperature range 160 °C-200 °C showing promising performance and high conductivity values even up to 0.2 S cm-1 in some cases.

  10. Modeling molecular mechanisms in the axon

    NASA Astrophysics Data System (ADS)

    de Rooij, R.; Miller, K. E.; Kuhl, E.

    2017-03-01

    Axons are living systems that display highly dynamic changes in stiffness, viscosity, and internal stress. However, the mechanistic origin of these phenomenological properties remains elusive. Here we establish a computational mechanics model that interprets cellular-level characteristics as emergent properties from molecular-level events. We create an axon model of discrete microtubules, which are connected to neighboring microtubules via discrete crosslinking mechanisms that obey a set of simple rules. We explore two types of mechanisms: passive and active crosslinking. Our passive and active simulations suggest that the stiffness and viscosity of the axon increase linearly with the crosslink density, and that both are highly sensitive to the crosslink detachment and reattachment times. Our model explains how active crosslinking with dynein motors generates internal stresses and actively drives axon elongation. We anticipate that our model will allow us to probe a wide variety of molecular phenomena—both in isolation and in interaction—to explore emergent cellular-level features under physiological and pathological conditions.

  11. A Filtration-based Method of Preparing High-quality Nuclei from Cross-linked Skeletal Muscle for Chromatin Immunoprecipitation.

    PubMed

    Nohara, Kazunari; Chen, Zheng; Yoo, Seung-Hee

    2017-07-06

    Chromatin immunoprecipitation (ChIP) is a powerful method to determine protein binding to chromatin DNA. Fiber-rich skeletal muscle, however, has been a challenge for ChIP due to technical difficulty in isolation of high-quality nuclei with minimal contamination of myofibrils. Previous protocols have attempted to purify nuclei before cross-linking, which incurs the risk of altered DNA-protein interaction during the prolonged nuclei preparation process. In the current protocol, we first cross-linked the skeletal muscle tissue collected from mice, and the tissues were minced and sonicated. Since we found that ultracentrifugation was not able to separate nuclei from myofibrils using cross-linked muscle tissue, we devised a sequential filtration procedure to obtain high-quality nuclei devoid of significant myofibril contamination. We subsequently prepared chromatin by using an ultrasonicator, and ChIP assays with anti-BMAL1 antibody revealed robust circadian binding pattern of BMAL1 to target gene promoters. This filtration protocol constitutes an easily applicable method to isolate high-quality nuclei from cross-linked skeletal muscle tissue, allowing consistent sample processing for circadian and other time-sensitive studies. In combination with next-generation sequencing (NGS), our method can be deployed for various mechanistic and genomic studies focusing on skeletal muscle function.

  12. Crosslinked Carbon Nanotubes/Polyaniline Composites as a Pseudocapacitive Material with High Cycling Stability

    PubMed Central

    Liu, Dong; Wang, Xue; Deng, Jinxing; Zhou, Chenglong; Guo, Jinshan; Liu, Peng

    2015-01-01

    The poor cycling stability of polyaniline (PANI) limits its practical application as a pseudocapacitive material due to the volume change during the charge-discharge procedure. Herein, crosslinked carbon nanotubes/polyaniline (C-CNTs/PANI) composites had been designed by the in situ chemical oxidative polymerization of aniline in the presence of crosslinked carbon nanotubes (C-CNTs), which were obtained by coupling of the functionalized carbon nanotubes with 1,4-benzoquinone. The composite showed a specific capacitance of 294 F/g at the scan rate of 10 mV/s, and could retain 95% of its initial specific capacitance after 1000 CV cycles. Such high electrochemical cycling stability resulting from the crosslinked skeleton of the C-CNTs makes them potential electrode materials for a supercapacitor. PMID:28347050

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Tao; Niu, Zhenbin; Hu, Xunxiang

    The development of high performance materials for CO 2 separation and capture will significantly contribute to a solution for climate change. In this work, (bicycloheptenyl) ethyl terminated polydimethylsiloxane (PDMSPNB) membranes with varied cross-link densities were synthesized via ring-opening metathesis polymerization. The developed polymer membranes show higher permeability and better selectivity than those of conventional cross-linked PDMS membrane. The achieved performance (CO 2 permeability ~ 6800 Barrer and CO 2/N 2 selectivity ~ 14) is very promising for practical applications. The key to achieving this high performance is the use of an in-situ cross-linking method of the difunctional PDMS macromonomers, whichmore » provides lightly cross-linked membranes. By combining positron annihilation lifetime spectroscopy, broadband dielectric spectroscopy and gas solubility measurements, we have elucidated the key parameters necessary for achieving their excellent performance.« less

  14. Porous hydrogels from shark skin collagen crosslinked under dense carbon dioxide atmosphere.

    PubMed

    Fernandes-Silva, Susana; Moreira-Silva, Joana; Silva, Tiago H; Perez-Martin, Ricardo I; Sotelo, Carmen G; Mano, João F; Duarte, Ana Rita C; Reis, Rui L

    2013-11-01

    The possibility to fabricate marine collagen porous structures crosslinked with genipin under high pressure carbon dioxide is investigated. Collagen from shark skin is used to prepare pre-scaffolds by freeze-drying. The poor stability of the structures and low mechanical properties require crosslinking of the structures. Under dense CO2 atmosphere, crosslinking of collagen pre-scaffolds is allowed for 16 h. Additionally, the hydrogels are foamed and the scaffolds obtained present a highly porous structure. In vitro cell culture tests performed with a chondrocyte-like cell line show good cell adherence and proliferation, which is a strong indication of the potential of these scaffolds to be used in tissue cartilage tissue engineering. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Dehydration of an ethanol/water azeotrope through alginate-DNA membranes cross-linked with metal ions by pervaporation.

    PubMed

    Uragami, Tadashi; Banno, Masashi; Miyata, Takashi

    2015-12-10

    To obtain high dehydration membranes for an ethanol/water azeotrope, dried blend membranes prepared from mixtures of sodium alginate (Alg-Na) and sodium deoxyribonucleate (DNA-Na) were cross-linked by immersing in a methanol solution of CaCl2 or MaCl2. In the dehydration of an ethanol/water azeotropic mixture by pervaporation, the effects of immersion time in methanol solution of CaCl2 or MaCl2 on the permeation rate and water/ethanol selectivity through Alg-DNA/Ca(2+) and Alg-DNA/Mg(2+) cross-linked membranes were investigated. Alg-DNA/Mg(2+) cross-linked membrane immersed for 12h in methanol solution of MaCl2 exhibited the highest water/ethanol selectivity. This results from depressed swelling of the membranes by formation of a cross-linked structure. However, excess immersion in solution containing cross-linker led to an increase in the hydrophobicity of cross-linked membrane. Therefore, the water/ethanol selectivity of Alg-DNA/Mg(2+) cross-linked membranes with an excess immersion in cross-linking solution was lowered. The relationship between the structure of Alg-DNA/Ca(2+) and Alg-DNA/Mg(2+) cross-linked membranes and their permeation and separation characteristics during pervaporation of an ethanol/water azeotropic mixture is discussed in detail. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Robust cross-links in molluscan adhesive gels: Testing for contributions from hydrophobic and electrostatic interactions

    PubMed Central

    Smith, A.M.; Robinson, T. M.; Salt, M. D.; Hamilton, K. S.; Silvia, B. E.; Blasiak, R.

    2009-01-01

    The cross-linking interactions that provide cohesive strength to molluscan adhesive gels were investigated. Metal-based interactions have been shown to play an important role in the glue of the slug Arion subfuscus (Draparnaud), but other types of interactions may also contribute to the glue's strength and their role has not been investigated. This study shows that treatments that normally disrupt hydrophobic or electrostatic interactions have little to no effect on the slug glue. High salt concentrations and non-ionic detergent do not affect the solubility of the proteins in the glue or the ability of the glue proteins to stiffen gels. In contrast, metal chelation markedly disrupts the gel. Experiments with gel filtration chromatography identify a 40 kDa protein that is a central component of the cross-links in the glue. This 40 kDa protein forms robust macromolecular aggregations that are stable even in the presence of high concentrations of salt, non-ionic detergent, urea or metal chelators. Metal chelation during glue secretion, however, may block some of these cross-links. Such robust, non-specific interactions in an aqueous environment are highly unusual for hydrogels and reflect an intriguing cross-linking mechanism. PMID:18952190

  17. High correlation between pentosidine protein crosslinks and pigmentation implicates ascorbate oxidation in human lens senescence and cataractogenesis.

    PubMed Central

    Nagaraj, R H; Sell, D R; Prabhakaram, M; Ortwerth, B J; Monnier, V M

    1991-01-01

    Pentosidine is a recently discovered protein crosslink, involving lysine and arginine residues linked together in an imidazo [4,5,6] pyridinium ring formed by a 5-carbon sugar during nonenzymatic browning (Maillard reaction). The presence of high ascorbate levels in the human lens and its ability to undergo nonenzymatic browning led us to investigate pentosidine formation in the aging human lens. Incubation of lens crystallins with ascorbate and its oxidation products dehydroascorbate and 2,3-diketogulonate leads progressively to the formation of pentosidine crosslinks in the presence of oxygen. Under nitrogen, however, pentosidine forms only from 2,3-diketogulonate or xylosone, a degradation product of 2,3-diketogulonate. A high correlation between pentosidine crosslinks and the degree of lens pigmentation is noted in cataractous lenses. Pentosidine is found to be primarily associated with alpha-crystallin fractions of 300-5000 kDa. These results suggest that redox imbalance in cellular senescent systems such as the ocular lens may lead to irreversible ascorbate oxidation and protein crosslinking by xylosone. This mechanism may play an important role in the pathogenesis of "brunescent" cataracts. Images PMID:1946446

  18. Robust cross-links in molluscan adhesive gels: testing for contributions from hydrophobic and electrostatic interactions.

    PubMed

    Smith, A M; Robinson, T M; Salt, M D; Hamilton, K S; Silvia, B E; Blasiak, R

    2009-02-01

    The cross-linking interactions that provide cohesive strength to molluscan adhesive gels were investigated. Metal-based interactions have been shown to play an important role in the glue of the slug Arion subfuscus (Draparnaud), but other types of interactions may also contribute to the glue's strength and their role has not been investigated. This study shows that treatments that normally disrupt hydrophobic or electrostatic interactions have little to no effect on the slug glue. High salt concentrations and non-ionic detergent do not affect the solubility of the proteins in the glue or the ability of the glue proteins to stiffen gels. In contrast, metal chelation markedly disrupts the gel. Experiments with gel filtration chromatography identify a 40 kDa protein that is a central component of the cross-links in the glue. This 40 kDa protein forms robust macromolecular aggregations that are stable even in the presence of high concentrations of salt, non-ionic detergent, urea or metal chelators. Metal chelation during glue secretion, however, may block some of these cross-links. Such robust, non-specific interactions in an aqueous environment are highly unusual for hydrogels and reflect an intriguing cross-linking mechanism.

  19. Cross-linked Composite Gel Polymer Electrolyte using Mesoporous Methacrylate-Functionalized SiO2 Nanoparticles for Lithium-Ion Polymer Batteries

    PubMed Central

    Shin, Won-Kyung; Cho, Jinhyun; Kannan, Aravindaraj G.; Lee, Yoon-Sung; Kim, Dong-Won

    2016-01-01

    Liquid electrolytes composed of lithium salt in a mixture of organic solvents have been widely used for lithium-ion batteries. However, the high flammability of the organic solvents can lead to thermal runaway and explosions if the system is accidentally subjected to a short circuit or experiences local overheating. In this work, a cross-linked composite gel polymer electrolyte was prepared and applied to lithium-ion polymer cells as a safer and more reliable electrolyte. Mesoporous SiO2 nanoparticles containing reactive methacrylate groups as cross-linking sites were synthesized and dispersed into the fibrous polyacrylonitrile membrane. They directly reacted with gel electrolyte precursors containing tri(ethylene glycol) diacrylate, resulting in the formation of a cross-linked composite gel polymer electrolyte with high ionic conductivity and favorable interfacial characteristics. The mesoporous SiO2 particles also served as HF scavengers to reduce the HF content in the electrolyte at high temperature. As a result, the cycling performance of the lithium-ion polymer cells with cross-linked composite gel polymer electrolytes employing methacrylate-functionalized mesoporous SiO2 nanoparticles was remarkably improved at elevated temperatures. PMID:27189842

  20. Stochastic Ratcheting on a Funneled Energy Landscape Is Necessary for Highly Efficient Contractility of Actomyosin Force Dipoles

    NASA Astrophysics Data System (ADS)

    Komianos, James E.; Papoian, Garegin A.

    2018-04-01

    Current understanding of how contractility emerges in disordered actomyosin networks of nonmuscle cells is still largely based on the intuition derived from earlier works on muscle contractility. In addition, in disordered networks, passive cross-linkers have been hypothesized to percolate force chains in the network, hence, establishing large-scale connectivity between local contractile clusters. This view, however, largely overlooks the free energy of cross-linker binding at the microscale, which, even in the absence of active fluctuations, provides a thermodynamic drive towards highly overlapping filamentous states. In this work, we use stochastic simulations and mean-field theory to shed light on the dynamics of a single actomyosin force dipole—a pair of antiparallel actin filaments interacting with active myosin II motors and passive cross-linkers. We first show that while passive cross-linking without motor activity can produce significant contraction between a pair of actin filaments, driven by thermodynamic favorability of cross-linker binding, a sharp onset of kinetic arrest exists at large cross-link binding energies, greatly diminishing the effectiveness of this contractility mechanism. Then, when considering an active force dipole containing nonmuscle myosin II, we find that cross-linkers can also serve as a structural ratchet when the motor dissociates stochastically from the actin filaments, resulting in significant force amplification when both molecules are present. Our results provide predictions of how actomyosin force dipoles behave at the molecular level with respect to filament boundary conditions, passive cross-linking, and motor activity, which can explicitly be tested using an optical trapping experiment.

  1. Crosslinking of micropatterned collagen-based nerve guides to modulate the expected half-life.

    PubMed

    Salvatore, L; Madaghiele, M; Parisi, C; Gatti, F; Sannino, A

    2014-12-01

    The microstructural, mechanical, compositional, and degradative properties of a nerve conduit are known to strongly affect the regenerative process of the injured peripheral nerve. Starting from the fabrication of micropatterned collagen-based nerve guides, according to a spin-casting process reported in the literature, this study further investigates the possibility to modulate the degradation rate of the scaffolds over a wide time frame, in an attempt to match different rates of nerve regeneration that might be encountered in vivo. To this aim, three different crosslinking methods, that is, dehydrothermal (DHT), carbodiimide-based (EDAC), and glutaraldehyde-based (GTA) crosslinking, were selected. The elastically effective degree of crosslinking, attained by each method and evaluated according to the classical rubber elasticity theory, was found to significantly tune the in vitro half-life (t1/2 ) of the matrices, with an exponential dependence of the latter on the crosslink density. The high crosslinking efficacy of EDAC and GTA treatments, respectively threefold and fourfold when compared to the one attained by DHT, led to a sharp increase of the corresponding in vitro half-lives (ca., 10, 172, and 690 h, for DHT, EDAC, and GTA treated matrices, respectively). As shown by cell viability assays, the cytocompatibility of both DHT and EDAC treatments, as opposed to the toxicity of GTA, suggests that such methods are suitable to crosslink collagen-based scaffolds conceived for clinical use. In particular, nerve guides with expected high residence times in vivo might be produced by finely controlling the biocompatible reaction(s) adopted for crosslinking. © 2014 Wiley Periodicals, Inc.

  2. Infrared microspectroscopic determination of collagen cross-links in articular cartilage

    NASA Astrophysics Data System (ADS)

    Rieppo, Lassi; Kokkonen, Harri T.; Kulmala, Katariina A. M.; Kovanen, Vuokko; Lammi, Mikko J.; Töyräs, Juha; Saarakkala, Simo

    2017-03-01

    Collagen forms an organized network in articular cartilage to give tensile stiffness to the tissue. Due to its long half-life, collagen is susceptible to cross-links caused by advanced glycation end-products. The current standard method for determination of cross-link concentrations in tissues is the destructive high-performance liquid chromatography (HPLC). The aim of this study was to analyze the cross-link concentrations nondestructively from standard unstained histological articular cartilage sections by using Fourier transform infrared (FTIR) microspectroscopy. Half of the bovine articular cartilage samples (n=27) were treated with threose to increase the collagen cross-linking while the other half (n=27) served as a control group. Partial least squares (PLS) regression with variable selection algorithms was used to predict the cross-link concentrations from the measured average FTIR spectra of the samples, and HPLC was used as the reference method for cross-link concentrations. The correlation coefficients between the PLS regression models and the biochemical reference values were r=0.84 (p<0.001), r=0.87 (p<0.001) and r=0.92 (p<0.001) for hydroxylysyl pyridinoline (HP), lysyl pyridinoline (LP), and pentosidine (Pent) cross-links, respectively. The study demonstrated that FTIR microspectroscopy is a feasible method for investigating cross-link concentrations in articular cartilage.

  3. Sequence-Dependent Diastereospecific and Diastereodivergent Crosslinking of DNA by Decarbamoylmitomycin C.

    PubMed

    Aguilar, William; Paz, Manuel M; Vargas, Anayatzinc; Clement, Cristina C; Cheng, Shu-Yuan; Champeil, Elise

    2018-04-20

    Mitomycin C (MC), a potent antitumor drug, and decarbamoylmitomycin C (DMC), a derivative lacking the carbamoyl group, form highly cytotoxic DNA interstrand crosslinks. The major interstrand crosslink formed by DMC is the C1'' epimer of the major crosslink formed by MC. The molecular basis for the stereochemical configuration exhibited by DMC was investigated using biomimetic synthesis. The formation of DNA-DNA crosslinks by DMC is diastereospecific and diastereodivergent: Only the 1''S-diastereomer of the initially formed monoadduct can form crosslinks at GpC sequences, and only the 1''R-diastereomer of the monoadduct can form crosslinks at CpG sequences. We also show that CpG and GpC sequences react with divergent diastereoselectivity in the first alkylation step: 1"S stereochemistry is favored at GpC sequences and 1''R stereochemistry is favored at CpG sequences. Therefore, the first alkylation step results, at each sequence, in the selective formation of the diastereomer able to generate an interstrand DNA-DNA crosslink after the "second arm" alkylation. Examination of the known DNA adduct pattern obtained after treatment of cancer cell cultures with DMC indicates that the GpC sequence is the major target for the formation of DNA-DNA crosslinks in vivo by this drug. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Recent advances in corneal collagen cross-linking

    PubMed Central

    Sachdev, Gitansha Shreyas; Sachdev, Mahipal

    2017-01-01

    Corneal collagen cross-linking has become the preferred modality of treatment for corneal ectasia since its inception in late 1990s. Numerous studies have demonstrated the safety and efficacy of the conventional protocol. Our understanding of the cross-linking process is ever evolving, with its wide implications in the form of accelerated and pulsed protocols. Newer advancements in technology include various riboflavin formulations and the ability to deliver higher fluence protocols with customised irradiation patterns. A greater degree of customisation is likely the path forward, which will aim at achieving refractive improvements along with disease stability. The use of cross-linking for myopic correction is another avenue under exploration. Combination of half fluence cross-linking with refractive correction for high errors to prevent post LASIK regression is gaining interest. This review aims to highlight the various advancements in the cross-linking technology and its clinical applications. PMID:28905820

  5. Inter-Satellite Communications Considerations and Requirements for Distributed Spacecraft and Formation Flying Systems

    NASA Technical Reports Server (NTRS)

    Kwadrat, Carl F.; Horne, William D.; Edwards, Bernard L.

    2002-01-01

    In order to avoid selecting inadequate inter-spacecraft cross-link communications standards for Distributed Spacecraft System (DSS) missions, it is first necessary to identify cross-link communications strategies and requirements common to a cross-section of proposed missions. This paper addresses the cross-link communication strategies and requirements derived from a survey of 39 DSS mission descriptions that are projected for potential launch within the next 20 years. The inter-spacecraft communications strategies presented are derived from the topological and communications constraints from the DSS missions surveyed. Basic functional requirements are derived from an analysis of the fundamental activities that must be undertaken to establish and maintain a cross-link between two DSS spacecraft. Cross-link bandwidth requirements are derived from high-level assessments of mission science objectives and operations concepts. Finally, a preliminary assessment of possible cross-link standards is presented within the context of the basic operational and interoperability requirements.

  6. Development of side-chain NLO polymer materials with high electro-optic activity and long-term stability

    NASA Astrophysics Data System (ADS)

    Huang, Diyun; Parker, Timothy; Guan, Hann Wen; Cong, Shuxin; Jin, Danliang; Dinu, Raluca; Chen, Baoquan; Tolstedt, Don; Wolf, Nick; Condon, Stephen

    2005-01-01

    The electro-optic coefficient and long-term dipole alignment stability are two major factors in the development of high performance NLO materials for the application of high-speed EO devices. We have developed a high performance non-linear organic chromophore and incorporated it into a crosslinkable side-chain polyimide system. The polymer was synthesized through stepwise grafting of the crosslinker followed by the chromophore onto the polyimide backbone via esterification. Different chromophore loading levels were achieved by adjusting the crosslinker/chromophore feeding ratio. The polyimides films were contact-poled with second-harmonic generation monitoring. A large EO coefficient value was obtained and good long-term thermal stability at 85°C was observed.

  7. Hydrogels in a historical perspective: from simple networks to smart materials.

    PubMed

    Buwalda, Sytze J; Boere, Kristel W M; Dijkstra, Pieter J; Feijen, Jan; Vermonden, Tina; Hennink, Wim E

    2014-09-28

    Over the past decades, significant progress has been made in the field of hydrogels as functional biomaterials. Biomedical application of hydrogels was initially hindered by the toxicity of crosslinking agents and limitations of hydrogel formation under physiological conditions. Emerging knowledge in polymer chemistry and increased understanding of biological processes resulted in the design of versatile materials and minimally invasive therapies. Hydrogel matrices comprise a wide range of natural and synthetic polymers held together by a variety of physical or chemical crosslinks. With their capacity to embed pharmaceutical agents in their hydrophilic crosslinked network, hydrogels form promising materials for controlled drug release and tissue engineering. Despite all their beneficial properties, there are still several challenges to overcome for clinical translation. In this review, we provide a historical overview of the developments in hydrogel research from simple networks to smart materials. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Physical properties and biocompatibility of chitosan/soy blended membranes.

    PubMed

    Silva, S S; Santos, M I; Coutinho, O P; Mano, J F; Reis, R L

    2005-06-01

    Blends of polysaccharides and proteins are a source for the development of novel materials with interesting and tailorable properties, with potential to be used in a range of biomedical applications. in this work a series of blended membranes composed by chitosan and soy protein isolate was prepared by solvent casting methodology. in addition, cross-linking was performed in situ with glutaraldehyde solutions in the range 5x10(-3)-0.1 M. Furthermore, the influence of the composition and cross-linking on the degradation behaviour, water uptake and cell adhesion was investigated. The obtained results showed that the incorporation of chitosan, associated to network formation by cross linking, promoted a slight decrease of water absorption and a slower degradability of the membranes. Moreover, direct contact biocompatibility studies, with L929 cells, indicate that the cross-linking enhances the capability of the material to support cell growth.

  9. Effect of pH on chitosan hydrogel polymer network structure.

    PubMed

    Xu, Hongcheng; Matysiak, Silvina

    2017-06-29

    Chitosan is a molecule that can form water-filled 3D polymer networks with a wide range of applications. A new coarse-grained model for chitosan hydrogel was developed to explore its pH-dependent self-assembly behavior and mechanical properties. Our results indicate that the underlying polymer physical crosslinking pattern induced by solution pH has a significant effect on hydrogel elastic moduli. With this model, we obtain pH-dependent structural and mechanical property changes in agreement with experimental observations, and provide a molecular mechanism behind the changes in polymer crosslinking patterns.

  10. D-Glucose as a modifying agent in gelatin/collagen matrix and reservoir nanoparticles for Calendula officinalis delivery.

    PubMed

    Lam, P-L; Kok, S H-L; Bian, Z-X; Lam, K-H; Tang, J C-O; Lee, K K-H; Gambari, R; Chui, C-H

    2014-05-01

    Gelatin/Collagen-based matrix and reservoir nanoparticles require crosslinkers to stabilize the formed nanosuspensions, considering that physical instability is the main challenge of nanoparticulate systems. The use of crosslinkers improves the physical integrity of nanoformulations under the-host environment. Aldehyde-based fixatives, such as formaldehyde and glutaraldehyde, have been widely applied to the crosslinking process of polymeric nanoparticles. However, their potential toxicity towards human beings has been demonstrated in many previous studies. In order to tackle this problem, D-glucose was used during nanoparticle formation to stabilize the gelatin/collagen-based matrix wall and reservoir wall for the deliveries of Calendula officinalis powder and oil, respectively. In addition, therapeutic selectivity between malignant and normal cells could be observed. The C. officinalis powder loaded nanoparticles significantly strengthened the anti-cancer effect towards human breast adenocarcinoma MCF7 cells and human hepatoma SKHep1 cells when compared with the free powder. On the contrary, the nanoparticles did not show significant cytotoxicity towards normal esophageal epithelial NE3 cells and human skin keratinocyte HaCaT cells. On the basis of these evidences, D-glucose modified gelatin/collagen matrix nanoparticles containing C. officinalis powder might be proposed as a safer alternative vehicle for anti-cancer treatments. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Confocal Raman mapping of collagen cross-link and crystallinity of human dentin-enamel junction.

    PubMed

    Slimani, Amel; Nouioua, Fares; Desoutter, Alban; Levallois, Bernard; Cuisinier, Frédéric J G; Tassery, Hervé; Terrer, Elodie; Salehi, Hamideh

    2017-08-01

    The separation zone between enamel and dentin [dentin-enamel junction (DEJ)] with different properties in biomechanical composition has an important role in preventing crack propagation from enamel to dentin. The understanding of the chemical structure (inorganic and organic components), physical properties, and chemical composition of the human DEJ could benefit biomimetic materials in dentistry. Spatial distribution of calcium phosphate crystallinity and the collagen crosslinks near DEJ were studied using confocal Raman microscopy and calculated by different methods. To obtain collagen crosslinking, the ratio of two peaks 1660  cm-1 over 1690  cm-1 (amide I bands) is calculated. For crystallinity, the inverse full-width at half maximum of phosphate peak at 960  cm-1, and the ratio of two Raman peaks of phosphate at 960/950  cm-1 is provided. In conclusion, the study of chemical and physical properties of DEJ provides many benefits in the biomaterial field to improve the synthesis of dental materials in respect to the natural properties of human teeth. Confocal Raman microscopy as a powerful tool provides the molecular structure to identify the changes along DEJ and can be expanded for other mineralized tissues. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  12. Chemical crosslinking of the subunits of HIV-1 reverse transcriptase.

    PubMed Central

    Debyser, Z.; De Clercq, E.

    1996-01-01

    The reverse transcriptase (RT) of the human immunodeficiency virus type 1 (HIV-1) is composed of two subunits of 66 and 51 kDa in a 1 to 1 ratio. Because dimerization is a prerequisite for enzymatic activity, interference with the dimerization process could constitute an alternative antiviral strategy for RT inhibition. Here we describe an in vitro assay for the study of the dimerization state of HIV-1 reverse transcriptase based on chemical crosslinking of the subunits with dimethylsuberimidate. Crosslinking results in the formation of covalent bonds between the subunits, so that the crosslinked species can be resolved by denaturing gel electrophoresis. Crosslinked RT species with molecular weight greater than that of the dimeric form accumulate during a 1-15-min time course. Initial evidence suggests that those high molecular weight species represent trimers and tetramers and may be the result of intramolecular crosslinking of the subunits of a higher-order RT oligomer. A peptide that corresponds to part of the tryptophan repeat motif in the connection domain of HIV-1 RT inhibits crosslink formation as well as enzymatic activity. The crosslinking assay thus allows the investigation of the effect of inhibitors on the dimerization of HIV-1 RT. PMID:8745406

  13. Photo- and electropatterning of hydrogel-encapsulated living cell arrays.

    PubMed

    Albrecht, Dirk R; Tsang, Valerie Liu; Sah, Robert L; Bhatia, Sangeeta N

    2005-01-01

    Living cells have the potential to serve as sensors, naturally integrating the response to stimuli to generate predictions about cell fate (e.g., differentiation, migration, proliferation, apoptosis). Miniaturized arrays of living cells further offer the capability to interrogate many cells in parallel and thereby enable high-throughput and/or combinatorial assays. However, the interface between living cells and synthetic chip platforms is a critical one wherein the cellular phenotype must be preserved to generate useful signals. While some cell types retain tissue-specific features on a flat (2-D) surface, it has become increasingly apparent that a 3-D physical environment will be required for others. In this paper, we present two independent methods for creating living cell arrays that are encapsulated within a poly(ethylene glycol)-based hydrogel to create a local 3-D microenvironment. First, 'photopatterning' selectively crosslinks hydrogel microstructures containing living cells with approximately 100 microm feature size. Second, 'electropatterning' utilizes dielectrophoretic forces to position cells within a prepolymer solution prior to crosslinking, forming cell patterns with micron resolution. We further combine these methods to obtain hierarchical control of cell positioning over length scales ranging from microns to centimeters. This level of microenvironmental control should enable the fabrication of next-generation cellular microarrays in which robust 3-D cultures of cells are presented with appropriate physical and chemical cues and, consequently, report on cellular responses that resemble in vivo behavior.

  14. Transparent, Superflexible Doubly Cross-Linked Polyvinylpolymethylsiloxane Aerogel Superinsulators via Ambient Pressure Drying.

    PubMed

    Zu, Guoqing; Shimizu, Taiyo; Kanamori, Kazuyoshi; Zhu, Yang; Maeno, Ayaka; Kaji, Hironori; Shen, Jun; Nakanishi, Kazuki

    2018-01-23

    Aerogels have many attractive properties but are usually costly and mechanically brittle, which always limit their practical applications. While many efforts have been made to reinforce the aerogels, most of the reinforcement efforts sacrifice the transparency or superinsulating properties. Here we report superflexible polyvinylpolymethylsiloxane, (CH 2 CH(Si(CH 3 )O 2/2 )) n , aerogels that are facilely prepared from a single precursor vinylmethyldimethoxysilane or vinylmethyldiethoxysilane without organic cross-linkers. The method is based on consecutive processes involving radical polymerization and hydrolytic polycondensation, followed by ultralow-cost, highly scalable, ambient-pressure drying directly from alcohol as a drying medium without any modification or additional solvent exchange. The resulting aerogels and xerogels show a homogeneous, tunable, highly porous, doubly cross-linked nanostructure with the elastic polymethylsiloxane network cross-linked with flexible hydrocarbon chains. An outstanding combination of ultralow cost, high scalability, uniform pore size, high surface area, high transparency, high hydrophobicity, excellent machinability, superflexibility in compression, superflexibility in bending, and superinsulating properties has been achieved in a single aerogel or xerogel. This study represents a significant progress of porous materials and makes the practical applications of transparent flexible aerogel-based superinsulators realistic.

  15. In vivo study on alkylation site in DNA by the bifunctional dianhydrogalactitol.

    PubMed

    Institoris, E

    1981-05-01

    In vivo alkylation of Yoshida sarcoma cell DNA by 3H-labelled 1,2:5,6-dianhydrogalactitol (DAG) yielded N-7 monogalactitylguanines and 1,6-di-(guanin-7-yl)-galactitol, similar to the alkylated products obtained by in vitro reaction of DNA with dianhydrogalactitol in neutral solution. The ratio between monoalkylguanines and diguaninyl product was 2-2.5, slightly increasing with doses. Persistence of alkylated products in DNA was followed in function of time. There was no significant loss of either monoalkylated bases or diguaninyl derivative during the observation period i.e. 7-24 h after treatment. In contrast, the physical measurements of the amount of renaturable DNA showed a rapid opening of cross-links in the same period. Taking the presence of diguaninyl moiety as an indicator of cross-links in DNA, these two latter findings show an apparent contradiction which could be reconciled however by the mechanism proposed by Reid and Walker (Biochim. Biophys. Acta, 179 (1969) 179) for the removal of cross-linkage induced by HN2. Accordingly, one arm of the cross-links is removed, probably enzymically, leaving the DNA non-renaturable, while the other arm of cross-link is still covalently attached to the DNA molecule rendering possible the detection of diguaninyl moiety in DNA at some later time. This concept for the removal of cross-links from DNA seems to be supported by our results too.

  16. Pharmaceutical differences between block copolymer self-assembled and cross-linked nanoassemblies as carriers for tunable drug release.

    PubMed

    Lee, Hyun Jin; Bae, Younsoo

    2013-02-01

    To identify the effects of cross-linkers and drug-binding linkers on physicochemical and biological properties of polymer nanoassembly drug carriers. Four types of polymer nanoassemblies were synthesized from poly(ethylene glycol)-poly(aspartate) [PEG-p(Asp)] block copolymers: self-assembled nanoassemblies (SNAs) and cross-linked nanoassemblies (CNAs) to each of which an anticancer drug doxorubicin (DOX) was loaded by either physical entrapment or chemical conjugation (through acid-sensitive hydrazone linkers). Drug loading in nanoassemblies was 27 ~ 56% by weight. The particle size of SNA changed after drug and drug-binding linker entrapment (20 ~ 100 nm), whereas CNAs remained 30 ~ 40 nm. Drug release rates were fine-tunable by using amide cross-linkers and hydrazone drug-binding linkers in combination. In vitro cytotoxicity assays using a human lung cancer A549 cell line revealed that DOX-loaded nanoassemblies were equally potent as free DOX with a wide range of drug release half-life (t(1/2) = 3.24 ~ 18.48 h, at pH 5.0), but 5 times less effective when t(1/2) = 44.52 h. Nanoassemblies that incorporate cross-linkers and drug-binding linkers in combination have pharmaceutical advantages such as uniform particle size, physicochemical stability, fine-tunable drug release rates, and maximum cytotoxicity of entrapped drug payloads.

  17. A physical organogel electrolyte: characterized by in situ thermo-irreversible gelation and single-ion-predominent conduction

    PubMed Central

    Kim, Young-Soo; Cho, Yoon-Gyo; Odkhuu, Dorj; Park, Noejung; Song, Hyun-Kon

    2013-01-01

    Electrolytes are characterized by their ionic conductivity (σi). It is desirable that overall σi results from the dominant contribution of the ions of interest (e.g. Li+ in lithium ion batteries or LIB). However, high values of cationic transference number (t+) achieved by solid or gel electrolytes have resulted in low σi leading to inferior cell performances. Here we present an organogel polymer electrolyte characterized by a high liquid-electrolyte-level σi (~101 mS cm−1) with high t+ of Li+ (>0.8) for LIB. A conventional liquid electrolyte in presence of a cyano resin was physically and irreversibly gelated at 60°C without any initiators and crosslinkers, showing the behavior of lower critical solution temperature. During gelation, σi of the electrolyte followed a typical Arrhenius-type temperature dependency, even if its viscosity increased dramatically with temperature. Based on the Li+-driven ion conduction, LIB using the organogel electrolyte delivered significantly enhanced cyclability and thermal stability. PMID:23715177

  18. The Compressive Behavior of Isocyanate-crosslinked Silica Aerogel at High Strain Rates

    NASA Technical Reports Server (NTRS)

    Luo, H.; Lu, H.; Leventis, N.

    2006-01-01

    Aerogels are low-density, highly nano-porous materials. Their engineering applications are limited due to their brittleness and hydrophilicity. Recently, a strong lightweight crosslinked silica aerogel has been developed by encapsulating the skeletal framework of amine-modified silica aerogels with polyureas derived by isocyanate. The mesoporous structure of the underlying silica framework is preserved through conformal polymer coating, and the thermal conductivity remains low. Characterization has been conducted on the thermal, physical properties and the mechanical properties under quasi-static loading conditions. In this paper, we present results on the dynamic compressive behavior of the crosslinked silica aerogel (CSA) using a split Hopkinson pressure bar (SHPB). A new tubing pulse shaper was employed to help reach the dynamic stress equilibrium and constant strain rate. The stress-strain relationship was determined at high strain rates within 114-4386/s. The effects of strain rate, density, specimen thickness and water absorption on the dynamic behavior of the CSA were investigated through a series of dynamic experiments. The Young's moduli (or 0.2% offset compressive yield strengths) at a strain rate approx.350/s were determined as 10.96/2.08, 159.5/6.75, 192.2/7.68, 304.6/11.46, 407.0/20.91 and 640.5/30.47 MPa for CSA with densities 0.205, 0.454, 0.492, 0.551,0.628 and 0.731 g/cu cm, respectively. The deformation and failure behaviors of a native silica aerogel with density (0.472 g/cu cm ), approximately the same as a typical CSA sample were observed with a high speed digital camera. Digital image correlation technique was used to determine the surface strains through a series of images acquired using high speed photography. The relative uniform axial deformation indicated that localized compaction did not occur at a compressive strain level of approx.17%, suggesting most likely failure mechanism at high strain rate to be different from that under quasi-static loading condition. The Poisson s ratio was determined to be 0.162 in nonlinear regime under high strain rates. CSA samples failed generally by splitting, but were much more ductile than native silica aerogels.

  19. Carbon Nanofiber Incorporated Silica Based Aerogels with Di-Isocyanate Cross-Linking

    NASA Technical Reports Server (NTRS)

    Vivod, Stephanie L.; Meador, Mary Ann B.; Capadona, Lynn A.; Sullivan, Roy M.; Ghosn, Louis J.; Clark, Nicholas; McCorkle, Linda

    2008-01-01

    Lightweight materials with excellent thermal insulating properties are highly sought after for a variety of aerospace and aeronautic applications. (1) Silica based aerogels with their high surface area and low relative densities are ideal for applications in extreme environments such as insulators for the Mars Rover battery. (2) However, the fragile nature of aerogel monoliths prevents their widespread use in more down to earth applications. We have shown that the fragile aerogel network can be cross-linked with a di-isocyanate via amine decorated surfaces to form a conformal coating. (3) This coating reinforces the neck regions between secondary silica particles and significantly strengthens the aerogels with only a small effect on density or porosity. Scheme 1 depicts the cross-linking reaction with the di-isocyanate and exhibits the stages that result in polymer cross-linked aerogel monoliths.

  20. 3D patterned substrates for bioartificial blood vessels - The effect of hydrogels on aligned cells on a biomaterial surface.

    PubMed

    Zhao, Xinxin; Irvine, Scott Alexander; Agrawal, Animesh; Cao, Ye; Lim, Pei Qi; Tan, Si Ying; Venkatraman, Subbu S

    2015-10-01

    The optimal bio-artificial blood vessel construct is one that has a compliant tubular core with circumferentially aligned smooth muscle cells (SMCs). Obtaining this well-aligned pattern of SMCs on a scaffold is highly beneficial as this cellular orientation preserves the SMC contractile phenotype. We used 3D patterning to create channels on a polycaprolactone (PCL) scaffold; SMCs were then found to be aligned within the microchannels. To preserve this alignment, and to provide a protective coating that could further incorporate cells, we evaluated the use of two hydrogels, one based on poly(ethylene glycol) diacrylate (PEGDA) and the other based on gelatin. Hydrogels were either physically coated on the PCL surfaces or covalently linked via suitable surface modification of PCL. For covalent immobilization of PEGDA hydrogel, alkene groups were introduced on PCL, while for gelatin covalent linkage, serum proteins were introduced. It is, however, crucial that the hydrogel coating does not disrupt the cellular patterning and distribution. We show in this work that both the process of coating as well as the nature of the coating are critical to preservation of the aligned SMCs. The covalent coating methods involving the crosslinking of hydrogels with the surface of PCL films promoted hydrogel retention time on the film as compared with physical deposition. Furthermore, subsequent hydrogel degradation is affected by the components of the cell culture medium, hinting at a possible route to in vivo biodegradation. Surface features control cellular orientation and subsequently influence their functionality, a useful effect for cellularized biomedical devices. Such devices also can benefit from protective and cell friendly hydrogel coatings. However, literature is lacking on the fate of cells that have endured hydrogel coating whilst orientated on a biomaterial surface. In particular, elucidation of the cells ability to remain adherent and orientated post hydrogel addition. Coating requires two procedures that may be deleterious to the orientated cells: the surface pretreatment for gel binding and the hydrogel crosslinking reaction. We compare transglutaminase gelatin crosslinking and UV initiated PEGDA crosslinking, coated onto smooth muscle cells orientated on patterned PCL surfaces. This original study will be of considerable use to the wider biomaterials community. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Composite vascular scaffold combining electrospun fibers and physically-crosslinked hydrogel with copper wire-induced grooves structure.

    PubMed

    Liu, Yuanyuan; Jiang, Chen; Li, Shuai; Hu, Qingxi

    2016-08-01

    While the field of tissue engineered vascular grafts has greatly advanced, many inadequacies still exist. Successfully developed scaffolds require mechanical and structural properties that match native vessels and optimal microenvironments that foster cell integration, adhesion and growth. We have developed a small diameter, three-layered composite vascular scaffold which consists of electrospun fibers and physically-crosslinked hydrogel with copper wire-induced grooves by combining the electrospinning and dip-coating methods. Scaffold morphology and mechanics were assessed, quantified and compared to native vessels. Scaffolds were seeded with Human Umbilical Vein Endothelial Cells (HUVECs), cultured in vitro for 3 days and were evaluated for cell viability and morphology. The results showed that composite scaffolds had adjustable mechanical strength and favorable biocompatibility, which is important in the future clinical application of Tissue-engineered vascular grafts (TEVGs). Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Elasticity in Physically Cross-Linked Amyloid Fibril Networks.

    PubMed

    Cao, Yiping; Bolisetty, Sreenath; Adamcik, Jozef; Mezzenga, Raffaele

    2018-04-13

    We provide a constitutive model of semiflexible and rigid amyloid fibril networks by combining the affine thermal model of network elasticity with the Derjaguin-Landau-Vervey-Overbeek (DLVO) theory of electrostatically charged colloids. When compared to rheological experiments on β-lactoglobulin and lysozyme amyloid networks, this approach provides the correct scaling of elasticity versus both concentration (G∼c^{2.2} and G∼c^{2.5} for semiflexible and rigid fibrils, respectively) and ionic strength (G∼I^{4.4} and G∼I^{3.8} for β-lactoglobulin and lysozyme, independent from fibril flexibility). The pivotal role played by the screening salt is to reduce the electrostatic barrier among amyloid fibrils, converting labile physical entanglements into long-lived cross-links. This gives a power-law behavior of G with I having exponents significantly larger than in other semiflexible polymer networks (e.g., actin) and carrying DLVO traits specific to the individual amyloid fibrils.

  3. Elasticity in Physically Cross-Linked Amyloid Fibril Networks

    NASA Astrophysics Data System (ADS)

    Cao, Yiping; Bolisetty, Sreenath; Adamcik, Jozef; Mezzenga, Raffaele

    2018-04-01

    We provide a constitutive model of semiflexible and rigid amyloid fibril networks by combining the affine thermal model of network elasticity with the Derjaguin-Landau-Vervey-Overbeek (DLVO) theory of electrostatically charged colloids. When compared to rheological experiments on β -lactoglobulin and lysozyme amyloid networks, this approach provides the correct scaling of elasticity versus both concentration (G ˜c2.2 and G ˜c2.5 for semiflexible and rigid fibrils, respectively) and ionic strength (G ˜I4.4 and G ˜I3.8 for β -lactoglobulin and lysozyme, independent from fibril flexibility). The pivotal role played by the screening salt is to reduce the electrostatic barrier among amyloid fibrils, converting labile physical entanglements into long-lived cross-links. This gives a power-law behavior of G with I having exponents significantly larger than in other semiflexible polymer networks (e.g., actin) and carrying DLVO traits specific to the individual amyloid fibrils.

  4. Photo-Patterned Ion Gel Electrolyte-Gated Thin Film Transistors

    NASA Astrophysics Data System (ADS)

    Choi, Jae-Hong; Gu, Yuanyan; Hong, Kihyun; Frisbie, C. Daniel; Lodge, Timothy P.

    2014-03-01

    We have developed a novel fabrication route to pattern electrolyte thin films in electrolyte-gated transistors (EGTs) using a chemically crosslinkable ABA-triblock copolymer ion gel. In the self-assembly of poly[(styrene-r-vinylbenzylazide)-b-ethylene oxide-b-(styrene-r-vinylbenzylazide)] (SOS-N3) triblock copolymer and the ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMI][TFSI]), the azide groups of poly(styrene-r-vinylbenzylazide) (PS-N3) end-blocks in the cores can be chemically cross-linked via UV irradiation (λ = 254 nm). Impedance spectroscopy and small-angle X-ray scattering confirmed that ion transport and microstructure of the ion gel are not affected by UV cross-linking. Using this chemical cross-linking strategy, we demonstrate a photo-patterning of ion gels through a patterned mask and the fabricated electrolyte-gated thin film transistors with photo-patterned ion gels as high-capacitance gate insulators exhibited high device performance (low operation voltages and high on/off current ratios).

  5. Crosslinked polyarylene ether nitrile film as flexible dielectric materials with ultrahigh thermal stability.

    PubMed

    Yang, Ruiqi; Wei, Renbo; Li, Kui; Tong, Lifen; Jia, Kun; Liu, Xiaobo

    2016-11-09

    Dielectric film with ultrahigh thermal stability based on crosslinked polyarylene ether nitrile is prepared and characterized. The film is obtained by solution-casting of polyarylene ether nitrile terminated phthalonitrile (PEN-Ph) combined with post self-crosslinking at high temperature. The film shows a 5% decomposition temperature over 520 °C and a glass transition temperature (T g ) around 386 °C. Stable dielectric constant and low dielectric loss are observed for this film in the frequency range of 100-200 kHz and in the temperature range of 25-300 °C. The temperature coefficient of dielectric constant is less than 0.001 °C -1 even at 400 °C. By cycling heating and cooling up to ten times or heating at 300 °C for 12 h, the film shows good reversibility and robustness of the dielectric properties. This crosslinked PEN film will be a potential candidate as high performance film capacitor electronic devices materials used at high temperature.

  6. Enhancing stability and efficiency of perovskite solar cells with crosslinkable silane-functionalized and doped fullerene

    DOE PAGES

    Bai, Yang; Dong, Qingfeng; Shao, Yuchuan; ...

    2016-10-05

    The instability of hybrid perovskite materials due to water and moisture arises as one major challenge to be addressed before any practical application of the demonstrated high efficiency perovskite solar cells. Here we report a facile strategy that can simultaneously enhance the stability and efficiency of p-i-n planar heterojunction-structure perovskite devices. Crosslinkable silane molecules with hydrophobic functional groups are bonded onto fullerene to make the fullerene layer highly water-resistant. Methylammonium iodide is introduced in the fullerene layer for n-doping via anion-induced electron transfer, resulting in dramatically increased conductivity over 100-fold. With crosslinkable silane-functionalized and doped fullerene electron transport layer, themore » perovskite devices deliver an efficiency of 19.5% with a high fill factor of 80.6%. Furthermore, a crosslinked silane-modified fullerene layer also enhances the water and moisture stability of the non-sealed perovskite devices by retaining nearly 90% of their original efficiencies after 30 days’ exposure in an ambient environment.« less

  7. Enhancing stability and efficiency of perovskite solar cells with crosslinkable silane-functionalized and doped fullerene

    PubMed Central

    Bai, Yang; Dong, Qingfeng; Shao, Yuchuan; Deng, Yehao; Wang, Qi; Shen, Liang; Wang, Dong; Wei, Wei; Huang, Jinsong

    2016-01-01

    The instability of hybrid perovskite materials due to water and moisture arises as one major challenge to be addressed before any practical application of the demonstrated high efficiency perovskite solar cells. Here we report a facile strategy that can simultaneously enhance the stability and efficiency of p–i–n planar heterojunction-structure perovskite devices. Crosslinkable silane molecules with hydrophobic functional groups are bonded onto fullerene to make the fullerene layer highly water-resistant. Methylammonium iodide is introduced in the fullerene layer for n-doping via anion-induced electron transfer, resulting in dramatically increased conductivity over 100-fold. With crosslinkable silane-functionalized and doped fullerene electron transport layer, the perovskite devices deliver an efficiency of 19.5% with a high fill factor of 80.6%. A crosslinked silane-modified fullerene layer also enhances the water and moisture stability of the non-sealed perovskite devices by retaining nearly 90% of their original efficiencies after 30 days' exposure in an ambient environment. PMID:27703136

  8. Crosslinked polyarylene ether nitrile film as flexible dielectric materials with ultrahigh thermal stability

    NASA Astrophysics Data System (ADS)

    Yang, Ruiqi; Wei, Renbo; Li, Kui; Tong, Lifen; Jia, Kun; Liu, Xiaobo

    2016-11-01

    Dielectric film with ultrahigh thermal stability based on crosslinked polyarylene ether nitrile is prepared and characterized. The film is obtained by solution-casting of polyarylene ether nitrile terminated phthalonitrile (PEN-Ph) combined with post self-crosslinking at high temperature. The film shows a 5% decomposition temperature over 520 °C and a glass transition temperature (Tg) around 386 °C. Stable dielectric constant and low dielectric loss are observed for this film in the frequency range of 100-200 kHz and in the temperature range of 25-300 °C. The temperature coefficient of dielectric constant is less than 0.001 °C-1 even at 400 °C. By cycling heating and cooling up to ten times or heating at 300 °C for 12 h, the film shows good reversibility and robustness of the dielectric properties. This crosslinked PEN film will be a potential candidate as high performance film capacitor electronic devices materials used at high temperature.

  9. Processing Conjugated-Diene-Containing Polymers

    NASA Technical Reports Server (NTRS)

    Bell, Vernon L.; Havens, Stephen J.

    1987-01-01

    Diels-Alder reaction used to cross-linked thermoplastics. Process uses Diels-Alder reaction to cross-link and/or extend conjugated-diene-containing polymers by reacting them with bis-unsaturated dienophiles results in improved polymer properties. Quantities of diene groups required for cross-linking varies from very low to very high concentrations. Process also used to extend, or build up molecular weights of, low-molecular-weight linear polymers with terminal conjugated dienic groups.

  10. Probabilistic cross-link analysis and experiment planning for high-throughput elucidation of protein structure.

    PubMed

    Ye, Xiaoduan; O'Neil, Patrick K; Foster, Adrienne N; Gajda, Michal J; Kosinski, Jan; Kurowski, Michal A; Bujnicki, Janusz M; Friedman, Alan M; Bailey-Kellogg, Chris

    2004-12-01

    Emerging high-throughput techniques for the characterization of protein and protein-complex structures yield noisy data with sparse information content, placing a significant burden on computation to properly interpret the experimental data. One such technique uses cross-linking (chemical or by cysteine oxidation) to confirm or select among proposed structural models (e.g., from fold recognition, ab initio prediction, or docking) by testing the consistency between cross-linking data and model geometry. This paper develops a probabilistic framework for analyzing the information content in cross-linking experiments, accounting for anticipated experimental error. This framework supports a mechanism for planning experiments to optimize the information gained. We evaluate potential experiment plans using explicit trade-offs among key properties of practical importance: discriminability, coverage, balance, ambiguity, and cost. We devise a greedy algorithm that considers those properties and, from a large number of combinatorial possibilities, rapidly selects sets of experiments expected to discriminate pairs of models efficiently. In an application to residue-specific chemical cross-linking, we demonstrate the ability of our approach to plan experiments effectively involving combinations of cross-linkers and introduced mutations. We also describe an experiment plan for the bacteriophage lambda Tfa chaperone protein in which we plan dicysteine mutants for discriminating threading models by disulfide formation. Preliminary results from a subset of the planned experiments are consistent and demonstrate the practicality of planning. Our methods provide the experimenter with a valuable tool (available from the authors) for understanding and optimizing cross-linking experiments.

  11. Recombinant human erythropoietin (rHuEPO): cross-linking with disuccinimidyl esters and identification of the interfacing domains in EPO.

    PubMed Central

    Haniu, M.; Narhi, L. O.; Arakawa, T.; Elliott, S.; Rohde, M. F.

    1993-01-01

    Several amino groups of recombinant human erythropoietin are selectively cross-linked by specific cross-linkers including disuccinimidyl suberate or dithiobis(succinimidyl propionate). Intramolecular cross-linkings are obtained without significant change of the protein conformation using appropriate concentrations (0.2 mM) of the cross-linkers, which possess an 11-12-A length of a spacer between two reacting groups. Intramolecularly cross-linked peptides obtained suggest that several amino groups in erythropoietin (EPO) are positioned at a distance of near 12 A in the solution state. These interfacing amino groups include Lys 20-Lys 154, Lys 45-Lys 140, Lys 52-Lys 154, Lys 52-Lys 140, and Ala 1-Lys 116. A comparison of the cross-linking results between nonglycosylated EPO and glycosylated EPO suggests that both proteins retain high similarity regarding protein conformation. These results fit a structural model similar to that of human growth hormone, in which four alpha-helical bundles and a long stretch of beta-sheet structure are involved in the active protein. PMID:8401229

  12. Synthesis and Characterization of Degradable Bioconjugated Hydrogels with Hyperbranched Multifunctional Crosslinkers

    PubMed Central

    Pedrón, Sara; Peinado, Carmen; Bosch, Paula; S.Anseth, Kristi

    2010-01-01

    Hyperbranched poly(ester amide) polymer (Hybrane™ S1200; Mn 1200 g/mol) was functionalized with maleic anhydride (MA) and propylene sulfide, to obtain multifunctional crosslinkers with fumaric and thiol-end groups, S1200MA and S1200SH, respectively. The degree of substitution of maleic acid groups (DS) was controlled by varying the molar ratio of MA to S1200 in the reaction mixture. Hydrogels were obtained by UV crosslinking of functionalized S1200 and poly(ethyleneglycol) diacrylate (PEGDA) in aqueous solutions. Compressive modulus increased with decreasing the S1200/PEG ratio and also depended on the DS of the multifunctional crosslinker (S1200). Also, heparin-based macromonomers together with functionalized hyperbranched polymers were used to construct novel functional hydrogels. The multivalent hyperbranched polymers allowed high crosslinking densities in heparin modified gels while introducing biodegradation sites. Both heparin presence and acrylate/thiol ratio have an impact on degradation profiles and morphologies. Hyperbranched crosslinked hydrogels showed no evidence of cell toxicity. Overall, the multifunctional crosslinkers afford hydrogels with promising properties that suggest that these may be suitable for tissue engineering applications. PMID:20561601

  13. Effects of cross-linking on mechanical, biological properties and biodegradation behavior of Nile tilapia skin collagen sponge as a biomedical material.

    PubMed

    Sun, Leilei; Li, Bafang; Yao, Di; Song, Wenkui; Hou, Hu

    2018-04-01

    The objective of this study was to explore the effects of dehydrothermal treatment (DHT) and glutaraldehyde (GTA) cross-linking on mechanical, biological properties and biodegradation behavior of Nile tilapia skin collagen sponge fabricated by freeze-drying technology. It was found that the GTA cross-linked collagen sponge exhibited a higher degree of cross-linking in comparison with DHT. The extent of increased tensile strength as well as hygroscopicity indicated that GTA cross-linking was superior to DHT in mechanical properties and liquid absorption, which was attributed to different cross-linking mechanisms. Hygroscopicity assay indicated that cross-linking could improve stability of collagen in solutions. No obvious changes in porosity and blood coagulation time were observed whether cross-linking or not. Results from collagenase biodegradation assay in vitro illustrated that GTA-treated collagen sponge was more resistant to collagenase biodegradation, while DHT exhibited negligible resistance. In addition, photochemical stability of collagen sponge was studied by Fourier transforms infrared spectroscopy (FTIR), which indicated that both cross-linking treatments could not change the backbone structure of collagen. Furthermore, the microstructure of collagen sponge was stable after cross-linking. The highly porous and interconnected structure of collagen sponge was helpful to the absorption of wound exudates, supplement of oxygen and cell proliferation, accompanied with good blood compatibility, which indicated that our fabricated collagen sponge could be applied in biomedical materials field as wound dressings. Copyright © 2018. Published by Elsevier Ltd.

  14. Electrophoretic characterization of protein interactions suggesting limited feasibility of accelerated shelf-life testing of ultra-high temperature milk.

    PubMed

    Grewal, Manpreet Kaur; Chandrapala, Jayani; Donkor, Osaana; Apostolopoulos, Vasso; Vasiljevic, Todor

    2017-01-01

    Accelerated shelf-life testing is applied to a variety of products to estimate keeping quality over a short period of time. The industry has not been successful in applying this approach to ultra-high temperature (UHT) milk because of chemical and physical changes in the milk proteins that take place during processing and storage. We investigated these protein changes, applying accelerated shelf-life principles to UHT milk samples with different fat levels and using native- and sodium dodecyl sulfate-PAGE. Samples of UHT skim and whole milk were stored at 20, 30, 40, and 50°C for 28d. Irrespective of fat content, UHT treatment had a similar effect on the electrophoretic patterns of milk proteins. At the start of testing, proteins were bonded mainly through disulfide and noncovalent interactions. However, storage at and above 30°C enhanced protein aggregation via covalent interactions. The extent of aggregation appeared to be influenced by fat content; whole milk contained more fat than skim milk, implying aggregation via melted or oxidized fat, or both. Based on reduction in loss in absolute quantity of individual proteins, covalent crosslinking in whole milk was facilitated mainly by products of lipid oxidation and increased access to caseins for crosslinking reactions. Maillard and dehydroalanine products were the main contributors involved in protein changes in skim milk. Protein crosslinking appeared to follow a different pathway at higher temperatures (≥40°C) than at lower temperatures, making it very difficult to extrapolate these changes to protein interactions at lower temperatures. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. A generalized method for alignment of block copolymer films: solvent vapor annealing with soft shear.

    PubMed

    Qiang, Zhe; Zhang, Yuanzhong; Groff, Jesse A; Cavicchi, Kevin A; Vogt, Bryan D

    2014-08-28

    One of the key issues associated with the utilization of block copolymer (BCP) thin films in nanoscience and nanotechnology is control of their alignment and orientation over macroscopic dimensions. We have recently reported a method, solvent vapor annealing with soft shear (SVA-SS), for fabricating unidirectional alignment of cylindrical nanostructures. This method is a simple extension of the common SVA process by adhering a flat, crosslinked poly(dimethylsiloxane) (PDMS) pad to the BCP thin film. The impact of processing parameters, including annealing time, solvent removal rate and the physical properties of the PDMS pad, on the quality of alignment quantified by the Herman's orientational factor (S) is systematically examined for a model system of polystyrene-block-polyisoprene-block-polystyrene (SIS). As annealing time increases, the SIS morphology transitions from isotropic rods to highly aligned cylinders. Decreasing the rate of solvent removal, which impacts the shear rate imposed by the contraction of the PDMS, improves the orientation factor of the cylindrical domains; this suggests the nanostructure alignment is primarily induced by contraction of PDMS during solvent removal. Moreover, the physical properties of the PDMS controlled by the crosslink density impact the orientation factor by tuning its swelling extent during SVA-SS and elastic modulus. Decreasing the PDMS crosslink density increases S; this effect appears to be primarily driven by the changes in the solubility of the SVA-SS solvent in the PDMS. With this understanding of the critical processing parameters, SVA-SS has been successfully applied to align a wide variety of BCPs including polystyrene-block-polybutadiene-block-polystyrene (SBS), polystyrene-block-poly(N,N-dimethyl-n-octadecylammonium p-styrenesulfonate) (PS-b-PSS-DMODA), polystyrene-block-polydimethylsiloxane (PS-b-PDMS) and polystyrene-block-poly(2-vinlypyridine) (PS-b-P2VP). These results suggest that SVA-SS is a generalizable method for the alignment of BCP thin films.

  16. Polyimides with attached chromophores for improved performance in electro-optical devices

    NASA Astrophysics Data System (ADS)

    Guenthner, Andrew J.; Wright, Michael E.; Fallis, Stephen; Lindsay, Geoffrey A.; Petteys, Brian J.; Yandek, Gregory R.; Zang, De-Yu; Sanghadasa, Mohan; Ashley, Paul R.

    2006-08-01

    A method of chemical synthesis that allows for the facile attachment of a wide variety of chemical compounds, including highly active nonlinear optical chromophores, to polyimides has been developed recently at the Naval Air Warfare Center, Weapons Division. The synthesis of these compounds is presented, along with a discussion of their relevant physical and chemical properties, alone and in comparison to equivalent guest/host materials. Examples of attached chromophores include the well-known Disperse Red 1, along with high-activity chromophores of more recent interest such as FTC and CLD. The synthesis of structures that contain both attached chromophores and chemical functionalities that enable thermal cross-linking of the polyimides is also discussed.

  17. Enhanced Stress Relaxation and Reduced Cure Stress in Thermosets with Ferrocene-Based Crosslinkers

    NASA Astrophysics Data System (ADS)

    Jones, Brad; Wheeler, David; Stavig, Mark; Black, Hayden; Sawyer, Patricia; Giron, Nicholas; Celina, Mathias; Alam, Todd

    Organometallic sandwich compounds are characterized by facile isomerization among a variety of unique states. For example, ferrocene exhibits an extraordinarily low barrier to rotation of its cyclopentadienyl (Cp) ligands about the metal-Cp axis. We propose that this phenomenon can be exploited to enhance stress relaxation of polymers containing organometallic sandwich backbone moieties. Here, we describe the synthesis and characterization of several thermosets that employ ferrocene derivatives as crosslinkers. In particular, we compare a ferrocene diamine to several conventional diamines in the crosslinking of epoxy resin. Stress relaxation and dynamic mechanical analyses reveal that the ferrocene-based thermosets are distinguished from conventional thermosets by their capacity for physical relaxation. More importantly, these materials exhibit markedly different residual stress evolution during cure. For example, the cure stress in ferrocene-based thermosets drops precipitously with decreasing crosslink density. Our results highlight the unique role organometallic chemistry can play for stress management of thermosets and, more broadly, in manipulating their structure-property relationships. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the US Department of Energy National Nuclear Security Administration under contract DE-AC04-94AL85000.

  18. Cartilage-like electrostatic stiffening of responsive cryogel scaffolds

    NASA Astrophysics Data System (ADS)

    Offeddu, G. S.; Mela, I.; Jeggle, P.; Henderson, R. M.; Smoukov, S. K.; Oyen, M. L.

    2017-02-01

    Cartilage is a structural tissue with unique mechanical properties deriving from its electrically-charged porous structure. Traditional three-dimensional environments for the culture of cells fail to display the complex physical response displayed by the natural tissue. In this work, the reproduction of the charged environment found in cartilage is achieved using polyelectrolyte hydrogels based on polyvinyl alcohol and polyacrylic acid. The mechanical response and morphology of microporous physically-crosslinked cryogels are compared to those of heat-treated chemical gels made from the same polymers, as a result of pH-dependent swelling. In contrast to the heat-treated chemically-crosslinked gels, the elastic modulus of the physical cryogels was found to increase with charge activation and swelling, explained by the occurrence of electrostatic stiffening of the polymer chains at large charge densities. At the same time, the permeability of both materials to fluid flow was impaired by the presence of electric charges. This cartilage-like mechanical behavior displayed by responsive cryogels can be reproduced in other polyelectrolyte hydrogel systems to fabricate biomimetic cellular scaffolds for the repair of the tissue.

  19. Cellular Response to Reagent-Free Electron-Irradiated Gelatin Hydrogels.

    PubMed

    Wisotzki, Emilia I; Friedrich, Ralf P; Weidt, Astrid; Alexiou, Christoph; Mayr, Stefan G; Zink, Mareike

    2016-06-01

    As a biomaterial, it is well established that gelatin exhibits low cytotoxicity and can promote cellular growth. However, to circumvent the potential toxicity of chemical crosslinkers, reagent-free crosslinking methods such as electron irradiation are highly desirable. While high energy irradiation has been shown to exhibit precise control over the degree of crosslinking, these hydrogels have not been thoroughly investigated for biocompatibility and degradability. Here, NIH 3T3 murine fibroblasts are seeded onto irradiated gelatin hydrogels to examine the hydrogel's influence on cellular viability and morphology. The average projected area of cells seeded onto the hydrogels increases with irradiation dose, which correlates with an increase in the hydrogel's shear modulus up to 10 kPa. Cells on these hydrogels are highly viable and exhibits normal cell cycles, particularly when compared to those grown on glutaraldehyde crosslinked gelatin hydrogels. However, proliferation is reduced on both types of crosslinked samples. To mimic the response of the hydrogels in physiological conditions, degradability is monitored in simulated body fluid to reveal strongly dose-dependent degradation times. Overall, given the low cytotoxicity, influence on cellular morphology and variability in degradation times of the electron irradiated gelatin hydrogels, there is significant potential for application in areas ranging from regenerative medicine to mechanobiology. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Development of photopolymerizable clay nanocomposites utilizing reactive dispersants

    NASA Astrophysics Data System (ADS)

    Owusu-Adom, Kwame

    Nanocomposites hold tremendous promise for expanding the utility of polymeric materials. However, accessing particulate sizes in the nanoscale domain continues to be a scientific challenge, especially in highly cross-linked photopolymerizable systems. In this study, photopolymerizable nanocomposites utilizing clay nanoparticles and reactive dispersants have been developed. The influence of particle size, dispersant-clay interactions, and surfactant concentration on photopolymerization behavior and nanoparticle dispersion has been elucidated. Clay particles serve as templates upon which surfactants aggregate during photopolymerization. This results in higher photopolymerization rates with addition of increasing concentrations of polymerizable surfactants. Furthermore, polymerizable surfactants induce faster photopolymerization rates compared to non-polymerizable analogues in systems that have ionically-bound dispersants on the particle surface. Utilizing reactive organoclays induces significant changes to the photopolymerization behavior depending on the choice of reactive functionality employed. Faster acrylate photopolymerization rates occur in photopolymer systems containing thiol-modified clays, while much slower rates occur for nonpolymerizable organoclay systems. In addition, chemical compatibility between monomer and clay dispersant (based on chemical similarity or polarity) allows enhancement of exfoliation in photopolymerizable formulations. With polymerizable dispersants, exfoliation is readily achieved in various multifunctional acrylate systems. The degree of exfoliation depends on the position of the reactive group relative to the surfactant's cationic site and the type of functionality. Thiolated organoclays exfoliate during polymerization, while methacrylated clays show substantially less dependence on polymerization behavior. Interestingly, changes in the physical properties of the resulting nanocomposite are independent of the degree of exfoliation in polymerizable organoclay systems. The polymer cross-link density dictates the magnitude of change in both modulus and glass transition temperature of the nanocomposite. Substantial increases in modulus and Tg occur in elastomeric and low cross-link density polymers, while decreases occur in the modulus and Tg of highly cross-linked polymer networks. Finally, these parameters have formed a basis for developing nanocomposites with higher moduli and lower volumetric shrinkage. The photopolymerization rates of these systems are controllable and increase substantially with addition of polymerizable organoclays. Such properties occur in traditional multifunctional acrylate photopolymer systems as well as new binary thiol-(meth)acrylate and ternary thiol-ene-(meth)acrylate photopolymers.

  1. Navy LOVA propellant development

    NASA Technical Reports Server (NTRS)

    Vreatt, W. H.; Mitchell, S. E.

    1980-01-01

    The progress realized on evaluation of inert binder, nitramine formulations is considered with respect to their development for use as low vulnerability ammunition (LOVA) propellants. Burning rate, plasticizers, crosslink agents, physical property and vulnerability studies are discussed and some preliminary conclusions presented.

  2. Multistep synthesis on SU-8: combining microfabrication and solid-phase chemistry on a single material.

    PubMed

    Cavalli, Gabriel; Banu, Shahanara; Ranasinghe, Rohan T; Broder, Graham R; Martins, Hugo F P; Neylon, Cameron; Morgan, Hywel; Bradley, Mark; Roach, Peter L

    2007-01-01

    SU-8 is an epoxy-novolac resin and a well-established negative photoresist for microfabrication and microengineering. The photopolymerized resist is an extremely highly crosslinked polymer showing outstanding chemical and physical robustness with residual surface epoxy groups amenable for chemical functionalization. In this paper we describe, for the first time, the preparation and surface modification of SU-8 particles shaped as microbars, the attachment of appropriate linkers, and the successful application of these particles to multistep solid-phase synthesis leading to oligonucleotides and peptides attached in an unambiguous manner to the support surface.

  3. [Advances in the research of application of hydrogels in three-dimensional bioprinting].

    PubMed

    Yang, J; Zhao, Y; Li, H H; Zhu, S H

    2016-08-20

    Hydrogels are three-dimensional networks made of hydrophilic polymer crosslinked through covalent bonds or physical intermolecular attractions, which can contain growth media and growth factors to support cell growth. In bioprinting, hydrogels are used to provide accurate control over cellular microenvironment and to dramatically reduce experimental repetition times, meanwhile we can obtain three-dimensional cell images of high quality. Hydrogels in three-dimensional bioprinting have received a considerable interest due to their structural similarities to the natural extracellular matrix and polyporous frameworks which can support the cellular proliferation and survival. Meanwhile, they are accompanied by many challenges.

  4. The radiation crosslinking process and new products

    NASA Astrophysics Data System (ADS)

    Ueno, Keiji

    In 1988 there were over 90 EB accelerators for industrial use in Japan. The number one industrial application was Wire and Cable, the 2nd was PE foam and Curing, and the 3rd was Precure of tyre. R & D has a very high ration of EB accelerator use. Low energy industrial applications were coated steel (white board), plaster slab, coated paper, magnetic tape and floppy disks. As a new application of the radiation crosslinking process, we have studied radiation crosslinking of engineering plastics and succeeded in improving the hea tresistivity without using glass fibers. Many kinds of polyfunctional monomers used as crosslinking reagents of irradiated Nylon and PBT were studied.

  5. Preliminary Characterization of Genipin-Cross-Linked Silk Sericin/Poly(vinyl alcohol) Films as Two-Dimensional Wound Dressings for the Healing of Superficial Wounds

    PubMed Central

    Siritientong, Tippawan; Ratanavaraporn, Juthamas; Srichana, Teerapol; Aramwit, Pornanong

    2013-01-01

    The genipin-cross-linked silk sericin/poly(vinyl alcohol) (PVA) films were developed aiming to be applied as two-dimensional wound dressings for the treatment of superficial wounds. The effects of genipin cross-linking concentration on the physical and biological properties of the films were investigated. The genipin-cross-linked silk sericin/PVA films showed the increased surface density, tensile strength, and percentage of elongation, but decreased percentage of light transmission, water vapor transmission rate, and water swelling, compared to the non-cross-linked films. This explained that the cross-linking bonds between genipin and silk sericin would reduce the mobility of molecular chains within the films, resulting in the more rigid molecular structure. Silk sericin was released from the genipin-cross-linked films in a sustained manner. In addition, either L929 mouse fibroblast or HaCat keratinocyte cells showed high percentage of viability when cultured on the silk sericin/PVA films cross-linked with 0.075 and 0.1% w/v genipin. The in vivo safety test performed according to ISO 10993-6 confirmed that the genipin-cross-linked silk sericin/PVA films were safe for the medical usages. The efficacy of the films for the treatment of superficial skin wounds will be further investigated in vivo and clinically. The genipin-cross-linked silk sericin/PVA films would be promising choices of two-dimensional wound dressings for the treatment of superficial wounds. PMID:24106722

  6. Preliminary characterization of genipin-cross-linked silk sericin/poly(vinyl alcohol) films as two-dimensional wound dressings for the healing of superficial wounds.

    PubMed

    Siritientong, Tippawan; Ratanavaraporn, Juthamas; Srichana, Teerapol; Aramwit, Pornanong

    2013-01-01

    The genipin-cross-linked silk sericin/poly(vinyl alcohol) (PVA) films were developed aiming to be applied as two-dimensional wound dressings for the treatment of superficial wounds. The effects of genipin cross-linking concentration on the physical and biological properties of the films were investigated. The genipin-cross-linked silk sericin/PVA films showed the increased surface density, tensile strength, and percentage of elongation, but decreased percentage of light transmission, water vapor transmission rate, and water swelling, compared to the non-cross-linked films. This explained that the cross-linking bonds between genipin and silk sericin would reduce the mobility of molecular chains within the films, resulting in the more rigid molecular structure. Silk sericin was released from the genipin-cross-linked films in a sustained manner. In addition, either L929 mouse fibroblast or HaCat keratinocyte cells showed high percentage of viability when cultured on the silk sericin/PVA films cross-linked with 0.075 and 0.1% w/v genipin. The in vivo safety test performed according to ISO 10993-6 confirmed that the genipin-cross-linked silk sericin/PVA films were safe for the medical usages. The efficacy of the films for the treatment of superficial skin wounds will be further investigated in vivo and clinically. The genipin-cross-linked silk sericin/PVA films would be promising choices of two-dimensional wound dressings for the treatment of superficial wounds.

  7. Spray-dried casein-based micelles as a vehicle for solubilization and controlled delivery of flutamide: formulation, characterization, and in vivo pharmacokinetics.

    PubMed

    Elzoghby, Ahmed O; Helmy, Maged W; Samy, Wael M; Elgindy, Nazik A

    2013-08-01

    Novel casein (CAS)-based micelles loaded with the poorly soluble anti-cancer drug, flutamide (FLT), were successfully developed in a powdered form via spray-drying technique. Genipin (GNP) was used to crosslink CAS micelles as demonstrated by color variation of the micelles. Drug solubilization was enhanced by incorporation within the hydrophobic micellar core which was confirmed by solubility study and UV spectra. Spherical core-shell micelles were obtained with a particle size below 100 nm and zeta potential around -30 mV. At low drug loading, FLT was totally incorporated within micellar core as revealed by thermal analysis. However, at higher loading, excess non-incorporated drug at micelle surface caused a significant reduction in the surface charge density. Turbidity measurements demonstrated the high physical stability of micelles for 2 weeks dependent on GNP-crosslinking degree. In a dry powdered form, the micelles were stable for 6 months with no significant changes in drug content or particle size. A sustained drug release from CAS micelles up to 5 days was observed. After i.v. administration into rats, CAS micelles exhibited a prolonged plasma circulation of FLT compared to drug solution. Furthermore, a more prolonged drug systemic circulation was observed for GNP-crosslinked micelles. Overall, this study reports the application of spray-dried natural protein-based micelles for i.v. delivery of hydrophobic anti-cancer drugs such as FLT. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Lysyl hydroxylase 2 induces a collagen cross-link switch in tumor stroma

    PubMed Central

    Chen, Yulong; Terajima, Masahiko; Yang, Yanan; Sun, Li; Ahn, Young-Ho; Pankova, Daniela; Puperi, Daniel S.; Watanabe, Takeshi; Kim, Min P.; Blackmon, Shanda H.; Rodriguez, Jaime; Liu, Hui; Behrens, Carmen; Wistuba, Ignacio I.; Minelli, Rosalba; Scott, Kenneth L.; Sanchez-Adams, Johannah; Guilak, Farshid; Pati, Debananda; Thilaganathan, Nishan; Burns, Alan R.; Creighton, Chad J.; Martinez, Elisabeth D.; Zal, Tomasz; Grande-Allen, K. Jane; Yamauchi, Mitsuo; Kurie, Jonathan M.

    2015-01-01

    Epithelial tumor metastasis is preceded by an accumulation of collagen cross-links that heighten stromal stiffness and stimulate the invasive properties of tumor cells. However, the biochemical nature of collagen cross-links in cancer is still unclear. Here, we postulated that epithelial tumorigenesis is accompanied by changes in the biochemical type of collagen cross-links. Utilizing resected human lung cancer tissues and a p21CIP1/WAF1-deficient, K-rasG12D-expressing murine metastatic lung cancer model, we showed that, relative to normal lung tissues, tumor stroma contains higher levels of hydroxylysine aldehyde–derived collagen cross-links (HLCCs) and lower levels of lysine aldehyde–derived cross-links (LCCs), which are the predominant types of collagen cross-links in skeletal tissues and soft tissues, respectively. Gain- and loss-of-function studies in tumor cells showed that lysyl hydroxylase 2 (LH2), which hydroxylates telopeptidyl lysine residues on collagen, shifted the tumor stroma toward a high-HLCC, low-LCC state, increased tumor stiffness, and enhanced tumor cell invasion and metastasis. Together, our data indicate that LH2 enhances the metastatic properties of tumor cells and functions as a regulatory switch that controls the relative abundance of biochemically distinct types of collagen cross-links in the tumor stroma. PMID:25664850

  9. Comparison of femtosecond laser and continuous wave UV sources for protein-nucleic acid crosslinking.

    PubMed

    Fecko, Christopher J; Munson, Katherine M; Saunders, Abbie; Sun, Guangxing; Begley, Tadhg P; Lis, John T; Webb, Watt W

    2007-01-01

    Crosslinking proteins to the nucleic acids they bind affords stable access to otherwise transient regulatory interactions. Photochemical crosslinking provides an attractive alternative to formaldehyde-based protocols, but irradiation with conventional UV sources typically yields inadequate product amounts. Crosslinking with pulsed UV lasers has been heralded as a revolutionary technique to increase photochemical yield, but this method had only been tested on a few protein-nucleic acid complexes. To test the generality of the yield enhancement, we have investigated the benefits of using approximately 150 fs UV pulses to crosslink TATA-binding protein, glucocorticoid receptor and heat shock factor to oligonucleotides in vitro. For these proteins, we find that the quantum yields (and saturating yields) for forming crosslinks using the high-peak intensity femtosecond laser do not improve on those obtained with low-intensity continuous wave (CW) UV sources. The photodamage to the oligonucleotides and proteins also has comparable quantum yields. Measurements of the photochemical reaction yields of several small molecules selected to model the crosslinking reactions also exhibit nearly linear dependences on UV intensity instead of the previously predicted quadratic dependence. Unfortunately, these results disprove earlier assertions that femtosecond pulsed laser sources provide significant advantages over CW radiation for protein-nucleic acid crosslinking.

  10. Intramolecularly Protein-Crosslinked DNA Gels: New Biohybrid Nanomaterials with Controllable Size and Catalytic Activity.

    PubMed

    Zhou, Li; Morel, Mathieu; Rudiuk, Sergii; Baigl, Damien

    2017-07-01

    DNA micro- and nanogels-small-sized hydrogels made of a crosslinked DNA backbone-constitute new promising materials, but their functions have mainly been limited to those brought by DNA. Here a new way is described to prepare sub-micrometer-sized DNA gels of controllable crosslinking density that are able to embed novel functions, such as an enzymatic activity. It consists of using proteins, instead of traditional base-pairing assembly or covalent approaches, to form crosslinks inside individual DNA molecules, resulting in structures referred to as intramolecularly protein-crosslinked DNA gels (IPDGs). It is first shown that the addition of streptavidin to biotinylated T4DNA results in the successful formation of thermally stable IPDGs with a controllable crosslinking density, forming structures ranging from elongated to raspberry-shaped and pearl-necklace-like morphologies. Using reversible DNA condensation strategies, this paper shows that the gels can be reversibly actuated at a low crosslinking density, or further stabilized when they are highly crosslinked. Finally, by using streptavidin-protein conjugates, IPDGs with various enzymes are successfully functionalized. It is demonstrated that the enzymes keep their catalytic activity upon their incorporation into the gels, opening perspectives ranging from biotechnologies (e.g., enzyme manipulation) to nanomedicine (e.g., vectorization). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Chemical crosslinking and mass spectrometry studies of the structure and dynamics of membrane proteins and receptors.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haskins, William E.; Leavell, Michael D.; Lane, Pamela

    2005-03-01

    Membrane proteins make up a diverse and important subset of proteins for which structural information is limited. In this study, chemical cross-linking and mass spectrometry were used to explore the structure of the G-protein-coupled photoreceptor bovine rhodopsin in the dark-state conformation. All experiments were performed in rod outer segment membranes using amino acid 'handles' in the native protein sequence and thus minimizing perturbations to the native protein structure. Cysteine and lysine residues were covalently cross-linked using commercially available reagents with a range of linker arm lengths. Following chemical digestion of cross-linked protein, cross-linked peptides were identified by accurate mass measurementmore » using liquid chromatography-fourier transform mass spectrometry and an automated data analysis pipeline. Assignments were confirmed and, if necessary, resolved, by tandem MS. The relative reactivity of lysine residues participating in cross-links was evaluated by labeling with NHS-esters. A distinct pattern of cross-link formation within the C-terminal domain, and between loop I and the C-terminal domain, emerged. Theoretical distances based on cross-linking were compared to inter-atomic distances determined from the energy-minimized X-ray crystal structure and Monte Carlo conformational search procedures. In general, the observed cross-links can be explained by re-positioning participating side-chains without significantly altering backbone structure. One exception, between C3 16 and K325, requires backbone motion to bring the reactive atoms into sufficient proximity for cross-linking. Evidence from other studies suggests that residues around K325 for a region of high backbone mobility. These findings show that cross-linking studies can provide insight into the structural dynamics of membrane proteins in their native environment.« less

  12. An Evaluation of Lysyl Oxidase–Derived Cross-Linking in Keratoconus by Liquid Chromatography/Mass Spectrometry

    PubMed Central

    Takaoka, Anna; Babar, Natasha; Hogan, Julia; Kim, MiJung; Price, Marianne O.; Price, Francis W.; Trokel, Stephen L.; Paik, David C.

    2016-01-01

    Purpose Current literature contains scant information regarding the extent of enzymatic collagen cross-linking in the keratoconus (KC) cornea. The aim of the present study was to examine levels of enzymatic lysyl oxidase–derived cross-links in stromal collagen in KC tissue, and to correlate the cross-link levels with collagen fibril stability as determined by thermal denaturation temperature (Tm). Methods Surgical KC samples (n = 17) and Eye-Bank control (n = 11) corneas of age 18 to 68 years were analyzed. The samples were defatted, reduced (NaBH4), hydrolyzed (6N HCl at 110°C for 18 hours), and cellulose enriched before analysis by C8 high-performance liquid chromatography equipped with parallel fluorescent and mass detectors in selective ion monitoring mode (20 mM heptafluorobutyric acid/methanol 70:30 isocratic at 1 mL/min). Nine different cross-links were measured, and the cross-link density was determined relative to collagen content (determined colorimetrically). The Tm was determined by differential scanning calorimetry. Results Cross-links detected were dihydroxylysinonorleucine (DHLNL), hydroxylysinonorleucine, lysinonorleucine (LNL), and histidinohydroxylysinonorleucine in both control and KC samples. Higher DHLNL levels were detected in KC, whereas the dominant cross-link, LNL, was decreased in KC samples. Decreased LNL levels were observed among KC ≤ 40 corneas. There was no difference in total cross-link density between KC samples and the controls. Pyridinolines, desmosines, and pentosidine were not detected. There was no notable correlation between cross-link levels with fibril instability as determined by Tm. Conclusions Lower levels of LNL in the KC cornea suggest that there might be a cross-linking defect either in fibrillar collagen or the microfibrillar elastic network composed of fibrillin. PMID:26780316

  13. Mechanical Strength Improvements of Carbon Nanotube Threads through Epoxy Cross-Linking

    PubMed Central

    Yu, Qingyue; Alvarez, Noe T.; Miller, Peter; Malik, Rachit; Haase, Mark R.; Schulz, Mark; Shanov, Vesselin; Zhu, Xinbao

    2016-01-01

    Individual Carbon Nanotubes (CNTs) have a great mechanical strength that needs to be transferred into macroscopic fiber assemblies. One approach to improve the mechanical strength of the CNT assemblies is by creating covalent bonding among their individual CNT building blocks. Chemical cross-linking of multiwall CNTs (MWCNTs) within the fiber has significantly improved the strength of MWCNT thread. Results reported in this work show that the cross-linked thread had a tensile strength six times greater than the strength of its control counterpart, a pristine MWCNT thread (1192 MPa and 194 MPa, respectively). Additionally, electrical conductivity changes were observed, revealing 2123.40 S·cm−1 for cross-linked thread, and 3984.26 S·cm−1 for pristine CNT thread. Characterization suggests that the obtained high tensile strength is due to the cross-linking reaction of amine groups from ethylenediamine plasma-functionalized CNT with the epoxy groups of the cross-linking agent, 4,4-methylenebis(N,N-diglycidylaniline). PMID:28787868

  14. Preparation and properties of adjacency crosslinked polyurethane-urea elastomers

    NASA Astrophysics Data System (ADS)

    Wu, Yuan; Cao, Yu-Yang; Wu, Shou-Peng; Li, Zai-Feng

    2012-12-01

    Adjacency crosslinked polyurethane-urea (PUU) elastomers with different crosslinking density were prepared by using hydroxyl-terminated liquid butadiene-nitrile (HTBN), toluene diisocyanate (TDI) and chain extender 3,5-dimethyl thio-toluene diamine (DMTDA) as raw materials, dicumyl peroxide (DCP) as initiator, and N,N'-m-phenylene dimaleimide (HVA-2) as the crosslinking agent. The influences of the crosslinking density and temperature on the structure and properties of such elastomers were investigated. The crosslinking density of PUU elastomer was tested by the NMR method. It is found that when the content of HVA-2 is 1.5%, the mechanical properties of polyurethane elastomer achieve optimal performance. By testing thermal performance of PUU, compared with linear PUU, the thermal stability of the elastomers has a marked improvement. With the addition of HVA-2, the loss factor tan δ decreases. FT-IR spectral studies of PUU elastomer at various temperatures were performed. From this study, heat-resistance polyurethane could be prepared, and the properties of PUU at high temperature could be improved obviously.

  15. A highly efficient dual-diazonium reagent for protein crosslinking and construction of a virus-based gel.

    PubMed

    Ma, Dejun; Zhang, Jie; Zhang, Changyu; Men, Yuwen; Sun, Hongyan; Li, Lu-Yuan; Yi, Long; Xi, Zhen

    2018-05-09

    A new bench-stable reagent with double diazonium sites was designed and synthesized for protein crosslinking. Based on the highly efficient diazonium-Tyr coupling reaction, a direct mixture of the reagent and tobacco mosaic virus led to the formation of a new hydrogel, which could be degraded by chemicals and could be used to encapsulate small molecules for sustained release. Because plant viruses exhibit many chemical characteristics like protein labelling and nucleic acid packaging, the virus-based hydrogel will have large chemical space for further functionalization. Besides, this dual-diazonium reagent should be a generally useful crosslinker for chemical biology and biomaterials.

  16. Influence of cross-link structure, density and mechanical properties in the mesoscale deformation mechanisms of collagen fibrils

    PubMed Central

    Depalle, Baptiste; Qin, Zhao; Shefelbine, Sandra J.; Buehler, Markus J.

    2015-01-01

    Collagen is a ubiquitous protein with remarkable mechanical properties. It is highly elastic, shows large fracture strength and enables substantial energy dissipation during deformation. Most of the connective tissue in humans consists of collagen fibrils composed of a staggered array of tropocollagen molecules, which are connected by intermolecular cross-links. In this study, we report a three-dimensional coarse-grained model of collagen and analyze the influence of enzymatic cross-links on the mechanics of collagen fibrils. Two representatives immature and mature cross-links are implemented in the mesoscale model using a bottom-up approach. By varying the number, type and mechanical properties of cross-links in the fibrils and performing tensile test on the models, we systematically investigate the deformation mechanisms of cross-linked collagen fibrils. We find that cross-linked fibrils exhibit a three phase behavior, which agrees closer with experimental results than what was obtained using previous models. The fibril mechanical response is characterized by: (i) an initial elastic deformation corresponding to the collagen molecule uncoiling, (ii) a linear regime dominated by molecule sliding and (iii) the second stiffer elastic regime related to the stretching of the backbone of the tropocollagen molecules until the fibril ruptures. Our results suggest that both cross-link density and type dictate the stiffness of large deformation regime by increasing the number of interconnected molecules while cross-links mechanical properties determine the failure strain and strength of the fibril. These findings reveal that cross-links play an essential role in creating an interconnected fibrillar material of tunable toughness and strength. PMID:25153614

  17. Evaluating Dimethyldiethoxysilane for use in Polyurethane Crosslinked Silica Aerogels

    NASA Technical Reports Server (NTRS)

    Randall, Jason P.; Meador, Mary Ann B.; Jana, Sadhan C.

    2008-01-01

    Silica aerogels are highly porous materials which exhibit exceptionally low density and thermal conductivity. Their "pearl necklace" nanostructure, however, is inherently weak; most silica aerogels are brittle and fragile. The strength of aerogels can be improved by employing an additional crosslinking step using isocyanates. In this work, dimethyldiethoxysilane (DMDES) is evaluated for use in the silane backbone of polyurethane crosslinked aerogels. Approximately half of the resulting aerogels exhibited a core/shell morphology of hard crosslinked aerogel surrounding a softer, uncrosslinked center. Solid state NMR and scanning electron microscopy results indicate the DMDES incorporated itself as a conformal coating around the outside of the secondary silica particles, in much the same manner as isocyanate crosslinking. Response surface curves were generated from compression data, indicating levels of reinforcement comparable to that in previous literature, despite the core/shell morphology.

  18. Study on the DNA-protein crosslinks induced by chromium (VI) in SPC-A1

    NASA Astrophysics Data System (ADS)

    Liu, Yanqun; Ding, Jianjun; Lu, Xiongbing; You, Hao

    2018-01-01

    Objective: This study was designed to investigate the effect of chromium (VI) on DNA-protein crosslinks (DPC) of SPC-A1 cells. Methods: We exposed SPC-A1 cells were cultured in 1640 medium and treated with the SPC-A1 cells in vitro to different concentrations of Hexavalent chromium Cr(VI) for 2h, the KC1-SDS precipitation assay were used to measure the DNA-protein cross-linking effect. Results: All the different concentrations of Cr(VI) could cause the increase of DPC coefficient in SPC-A1 cells. But this effect was not significant (P>0.05) at low concentrations; while in high concentration Cr(VI) induced SPC-A1 cells could produce DNA-protein cross-linking effect significantly (P<0.05). Conclusions: chromium (VI) could induce DNA-protein crosslink.

  19. An Intriguing Method for Fabricating Arbitrarily Shaped “Matreshka” Hydrogels Using a Self-Healing Template

    PubMed Central

    Sato, Takeshi; Uto, Koichiro; Aoyagi, Takao; Ebara, Mitsuhiro

    2016-01-01

    This work describes an intriguing strategy for the creation of arbitrarily shaped hydrogels utilizing a self-healing template (SHT). A SHT was loaded with a photo-crosslinkable monomer, PEG diacrylate (PEGDA), and then ultraviolet light (UV) crosslinked after first shaping. The SHT template was removed by simple washing with water, leaving behind the hydrogel in the desired physical shape. A hierarchical 3D structure such as “Matreshka” boxes were successfully prepared by simply repeating the “self-healing” and “photo-irradiation” processes. We have also explored the potential of the SHT system for the manipulation of cells. PMID:28773983

  20. Direct measurement of crosslinks, pyridinoline, deoxypyridinoline, and pentosidine, in the hydrolysate of tissues using high-performance liquid chromatography.

    PubMed

    Takahashi, M; Hoshino, H; Kushida, K; Inoue, T

    1995-12-10

    Pyridinoline (Pyr) and deoxypyridinoline (Dpyr) are mature crosslinks which maintain the structure of the collagen fibril. Pentosidine (Pen) is a senescent crosslink and one of the advanced glycation end products. We developed a direct and one-injection method to measure Pyr, Dpyr, and Pen in the hydrolysate of tissues using reversed-phase high-performance liquid chromatography. Using a linear gradient of acetonitrile and a cleaning step, the objective crosslinks were well separated and continuously and automatically assayed. Recovery rates of Pyr, Dpyr, and Pen were 95-116, 94-110, and 92-120%, respectively (n = 5). The intraassay coefficients of variation for Pyr, Dpyr, and Pen were 5.3, 5.8, and 4.3%, respectively (n = 5), and the interassay coefficients of variation for Pyr, Dpyr, and Pen were 3.5, 4.6, and 5.7%, respectively (n = 5). Linear regression analysis showed the linearity (r = 0.999) of calibration line for each Pyr, Dpyr, and Pen. We measured the content of these crosslinks in the tissues from the young and old subjects. There was no difference in the content of Pyr and Dpyr between the young and the old group. On the other hand, the content of Pen in the old group was extremely higher than that in the young group. We demonstrated the direct method for measuring two kinds of major crosslinks which have different characters and believe that this method will be useful in determining the content of these crosslinks in tissues under various conditions.

  1. The Influence of Chitosan Cross-linking on the Properties of Alginate Microparticles with Metformin Hydrochloride-In Vitro and In Vivo Evaluation.

    PubMed

    Szekalska, Marta; Sosnowska, Katarzyna; Zakrzeska, Agnieszka; Kasacka, Irena; Lewandowska, Alicja; Winnicka, Katarzyna

    2017-01-22

    Sodium alginate is a polymer with unique ability to gel with different cross-linking agents in result of ionic and electrostatic interactions. Chitosan cross-linked alginate provides improvement of swelling and mucoadhesive properties and might be used to design sustained release dosage forms. Therefore, the aim of this research was to develop and evaluate possibility of preparing chitosan cross-linked alginate microparticles containing metformin hydrochloride by the spray-drying method. In addition, influence of cross-linking agent on the properties of microparticles was evaluated. Formulation of microparticles prepared by the spray drying of 2% alginate solution cross-linked by 0.1% chitosan was characterized by good mucoadhesive properties, high drug loading and prolonged metformin hydrochloride release. It was shown that designed microparticles reduced rat glucose blood level, delayed absorption of metformin hydrochloride and provided stable plasma drug concentration. Additionally, histopathological studies of pancreas, liver and kidneys indicated that all prepared microparticles improved degenerative changes in organs of diabetic rats. Moreover, no toxicity effect and no changes in rats behavior after oral administration of chitosan cross-linked alginate microparticles were noted.

  2. An evaluation of the thermal and mechanical properties of a salt-modified polyvinyl alcohol hydrogel for a knee meniscus application.

    PubMed

    Curley, Colin; Hayes, Jennifer C; Rowan, Neil J; Kennedy, James E

    2014-12-01

    The treatment of irreparable knee meniscus tears remains a major challenge for the orthopaedic community. The main purpose of this research was to analyse the mechanical properties and thermal behaviour of a salt-modified polyvinyl alcohol hydrogel, in order to assess its potential for use as an artificial meniscal implant. Aqueous poly vinyl alcohol was treated with a sodium sulphate solution to precipitate out the polyvinyl alcohol resulting in a pliable hydrogel. The freeze-thaw process, a strictly physical method of crosslinking, was employed to crosslink the hydrogel. Physical crosslinks in the form of crystalline regions were induced within the hydrogel structure which resulted in a large increase in mechanical resistance. Results showed that the optimal sodium sulphate addition of 6.6% (w/v) Na2SO4 in 8.33% (w/v) PVA causes the PVA to precipitate out of its solution. The effect of multiple freeze thaw cycles was also investigated. Investigation comprised of a variety of well-established characterisation techniques such as differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), mechanical analysis, rheometry and swelling studies. DSC analysis showed that samples cross-linked using the freeze thaw process display a thermal shift due to increased crosslink density. FTIR analysis confirmed crystallisation is present at 1142cm(-1) and also showed that no chemical alteration occurs when PVA is treated with sodium sulphate. Swelling studies indicated that that PVA/sodium sulphate hydrogels absorb less water than untreated hydrogels due to increased amounts of PVA present. Compressive strength analysis of PVA/sodium sulphate hydrogels prepared at -80°C displayed average maximum loads of 2472N, 2482.4N and 2476N of over 1, 3 and 5 freeze thaw cycles respectively. Mechanical analysis of the hydrogel indicated that the material is thermally stable and resistant to breakdown by compressive force. These properties are crucial for potential use as a meniscus or cartilage replacement. As such, the results of this study indicate that polyvinyl alcohol modified with sodium sulphate may be a suitable material for the construction of an artificial knee meniscus. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. The effect of collagen crosslinking on the biphasic poroviscoelastic cartilage properties determined from a semi-automated microindentation protocol for stress relaxation.

    PubMed

    McGann, Megan E; Bonitsky, Craig M; Ovaert, Timothy C; Wagner, Diane R

    2014-06-01

    Given the important role of the collagenous structure in cartilage mechanics, there is considerable interest in the relationship between collagen crosslinking and the mechanical behavior of the cartilage matrix. While crosslink-induced alterations to the elastic modulus of cartilage have been described, changes to time-dependent behavior have not yet been determined. The objective of the study was to quantify changes to cartilage material properties, including viscoelastic coefficients, with crosslinking via indentation. To accomplish this, a semi-autonomous microindentation stress relaxation protocol was first developed, validated and then applied to cartilage specimens before and after crosslinking. The change in mechanical properties with crosslinking was analyzed both in the unloading portions of the test via the Oliver-Pharr method and in the holding portion with an inverse iterative finite element model that represented cartilage as a biphasic poroviscoelastic material. Although both techniques suggested a similar increase in equilibrium modulus in the crosslinked specimens as compared to the controls, distinct differences in the control specimens were apparent, suggesting that the two different techniques may be capturing different aspects of the material behavior. No differences in time-dependent properties were observed between the crosslinked and the control specimens. These results give further insight into the effects of crosslinking in cartilage mechanical behavior. Additionally, the microindentation stress relaxation protocol may enable increased automation for high-throughput testing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Ultralow stress, thermally stable cross-linked polymer films of polydivinylbenzene (PDVB)

    DOE PAGES

    Lepro, Xavier; Ehrmann, Paul; Menapace, Joseph; ...

    2017-05-10

    Although closely related to polystyrene, poly(divinylbenzene) (PDVB) has found limited utility due to the difficulties associated with its synthesis. As a highly cross-linked polymer, PDVB is infusible and insoluble and thus nearly impossible to shape into films by either melt or solvent-based processes. Here, we report the initiated chemical vapor deposition (iCVD) of nearly stress-free, highly transparent, free-standing films of PDVB up to 25 μm thick. Films initially grow under tensile intrinsic stress but become more compressive with thickness and eventually converge to zero-stress values once they reach ≥10 μm in thickness. Upon initial heating, the evaporative loss of unreactedmore » monomer left in the polymer matrix induces between 35 and 45 MPa of tensile stress in the films. Afterward, subsequent heating cycles induce reversible stress and film expansion behaviors. We estimate the degree of cross-linking to be 44%, resulting in high thermal stability (up to 300 °C) and mechanical stiffness (Young’s modulus of 5.2 GPa). As a result, the low stress combined with high cross-linking makes iCVD PDVB an excellent candidate for protective coatings in harsh environments.« less

  5. Ultralow stress, thermally stable cross-linked polymer films of polydivinylbenzene (PDVB)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lepro, Xavier; Ehrmann, Paul; Menapace, Joseph

    Although closely related to polystyrene, poly(divinylbenzene) (PDVB) has found limited utility due to the difficulties associated with its synthesis. As a highly cross-linked polymer, PDVB is infusible and insoluble and thus nearly impossible to shape into films by either melt or solvent-based processes. Here, we report the initiated chemical vapor deposition (iCVD) of nearly stress-free, highly transparent, free-standing films of PDVB up to 25 μm thick. Films initially grow under tensile intrinsic stress but become more compressive with thickness and eventually converge to zero-stress values once they reach ≥10 μm in thickness. Upon initial heating, the evaporative loss of unreactedmore » monomer left in the polymer matrix induces between 35 and 45 MPa of tensile stress in the films. Afterward, subsequent heating cycles induce reversible stress and film expansion behaviors. We estimate the degree of cross-linking to be 44%, resulting in high thermal stability (up to 300 °C) and mechanical stiffness (Young’s modulus of 5.2 GPa). As a result, the low stress combined with high cross-linking makes iCVD PDVB an excellent candidate for protective coatings in harsh environments.« less

  6. Crosslinked polyarylene ether nitrile film as flexible dielectric materials with ultrahigh thermal stability

    PubMed Central

    Yang, Ruiqi; Wei, Renbo; Li, Kui; Tong, Lifen; Jia, Kun; Liu, Xiaobo

    2016-01-01

    Dielectric film with ultrahigh thermal stability based on crosslinked polyarylene ether nitrile is prepared and characterized. The film is obtained by solution-casting of polyarylene ether nitrile terminated phthalonitrile (PEN-Ph) combined with post self-crosslinking at high temperature. The film shows a 5% decomposition temperature over 520 °C and a glass transition temperature (Tg) around 386 °C. Stable dielectric constant and low dielectric loss are observed for this film in the frequency range of 100–200 kHz and in the temperature range of 25–300 °C. The temperature coefficient of dielectric constant is less than 0.001 °C−1 even at 400 °C. By cycling heating and cooling up to ten times or heating at 300 °C for 12 h, the film shows good reversibility and robustness of the dielectric properties. This crosslinked PEN film will be a potential candidate as high performance film capacitor electronic devices materials used at high temperature. PMID:27827436

  7. Preparation of a new electro-optic polymer cross-linkable via copper-free thermal Huisgen cyclo-addition and fabrication of optical waveguides by Reactive Ion Etching.

    PubMed

    Cabanetos, Clément; Mahé, Hind; Blart, Errol; Pellegrin, Yann; Montembault, Véronique; Fontaine, Laurent; Adamietz, Frédéric; Rodriguez, Vincent; Bosc, Dominique; Odobel, Fabrice

    2011-06-01

    High-quality trails of ridge waveguides were successfully fabricated using a new cross-linkable polymer (PCC01) by UV photolithography followed by Reactive-Ion Etching (RIE) process. The cross-linking reaction of PCC01 is based on the copper-free Huisgen cyclo-addition between an azide and an acetylene group. The new cross-linkable polymer (PCC01) consists of a structural modification of the previously described materials (Scarpaci et al. Polym. Chem.2011, 2, 157), because the ethynyl group is functionalized by a methyl group instead of the TMS protecting group. This feature prevents the formation of silica (SiO(2)) generated by trimethylsilyl groups and which was stopping the engraving process before completion. Herein, we describe the synthesis, the NLO characterizations, and the fabrication of a high-quality ridge waveguide with PCC01. The new cross-linkable polymer PCC01 not only solves the problems encountered with our previously described polymers, but also presents an enhancement of the electro-optic stability, because d(33) coefficients up to 30 pm/V stable at 150 °C were recorded. © 2011 American Chemical Society

  8. Protein cross-linking by chlorinated polyamines and transglutamylation stabilizes neutrophil extracellular traps.

    PubMed

    Csomós, Krisztián; Kristóf, Endre; Jakob, Bernadett; Csomós, István; Kovács, György; Rotem, Omri; Hodrea, Judit; Bagoly, Zsuzsa; Muszbek, Laszlo; Balajthy, Zoltán; Csősz, Éva; Fésüs, László

    2016-08-11

    Neutrophil extracellular trap (NET) ejected from activated dying neutrophils is a highly ordered structure of DNA and selected proteins capable to eliminate pathogenic microorganisms. Biochemical determinants of the non-randomly formed stable NETs have not been revealed so far. Studying the formation of human NETs we have observed that polyamines were incorporated into the NET. Inhibition of myeloperoxidase, which is essential for NET formation and can generate reactive chlorinated polyamines through hypochlorous acid, decreased polyamine incorporation. Addition of exogenous primary amines that similarly to polyamines inhibit reactions catalyzed by the protein cross-linker transglutaminases (TGases) has similar effect. Proteomic analysis of the highly reproducible pattern of NET components revealed cross-linking of NET proteins through chlorinated polyamines and ɛ(γ-glutamyl)lysine as well as bis-γ-glutamyl polyamine bonds catalyzed by the TGases detected in neutrophils. Competitive inhibition of protein cross-linking by monoamines disturbed the cross-linking pattern of NET proteins, which resulted in the loss of the ordered structure of the NET and significantly reduced capacity to trap bacteria. Our findings provide explanation of how NETs are formed in a reproducible and ordered manner to efficiently neutralize microorganisms at the first defense line of the innate immune system.

  9. Protein cross-linking by chlorinated polyamines and transglutamylation stabilizes neutrophil extracellular traps

    PubMed Central

    Csomós, Krisztián; Kristóf, Endre; Jakob, Bernadett; Csomós, István; Kovács, György; Rotem, Omri; Hodrea, Judit; Bagoly, Zsuzsa; Muszbek, Laszlo; Balajthy, Zoltán; Csősz, Éva; Fésüs, László

    2016-01-01

    Neutrophil extracellular trap (NET) ejected from activated dying neutrophils is a highly ordered structure of DNA and selected proteins capable to eliminate pathogenic microorganisms. Biochemical determinants of the non-randomly formed stable NETs have not been revealed so far. Studying the formation of human NETs we have observed that polyamines were incorporated into the NET. Inhibition of myeloperoxidase, which is essential for NET formation and can generate reactive chlorinated polyamines through hypochlorous acid, decreased polyamine incorporation. Addition of exogenous primary amines that similarly to polyamines inhibit reactions catalyzed by the protein cross-linker transglutaminases (TGases) has similar effect. Proteomic analysis of the highly reproducible pattern of NET components revealed cross-linking of NET proteins through chlorinated polyamines and ɛ(γ-glutamyl)lysine as well as bis-γ-glutamyl polyamine bonds catalyzed by the TGases detected in neutrophils. Competitive inhibition of protein cross-linking by monoamines disturbed the cross-linking pattern of NET proteins, which resulted in the loss of the ordered structure of the NET and significantly reduced capacity to trap bacteria. Our findings provide explanation of how NETs are formed in a reproducible and ordered manner to efficiently neutralize microorganisms at the first defense line of the innate immune system. PMID:27512953

  10. Advances in tribological testing of artificial joint biomaterials using multidirectional pin-on-disk testers

    PubMed Central

    Baykal, D.; Siskey, R.S.; Haider, H.; Saikko, V.; Ahlroos, T.; Kurtz, S.M.

    2013-01-01

    The introduction of numerous formulations of Ultra-high molecular weight polyethylene (UHMWPE), which is widely used as a bearing material in orthopedic implants, necessitated screening of bearing couples to identify promising iterations for expensive joint simulations. Pin-on-disk (POD) testers capable of multidirectional sliding can correctly rank formulations of UHMWPE with respect to their predictive in vivo wear behavior. However, there are still uncertainties regarding POD test parameters for facilitating clinically relevant wear mechanisms of UHMWPE. Studies on the development of POD testing were briefly summarized. We systematically reviewed wear rate data of UHMWPE generated by POD testers. To determine if POD testing was capable of correctly ranking bearings and if test parameters outlined in ASTM F732 enabled differentiation between wear behavior of various formulations, mean wear rates of non-irradiated, conventional (25–50 kGy) and highly crosslinked (≥90 kGy) UHMWPE were grouped and compared. The mean wear rates of non-irradiated, conventional and highly crosslinked UHMWPEs were 7.03, 5.39 and 0.67 mm3/MC. Based on studies that complied with the guidelines of ASTM F732, the mean wear rates of non-irradiated, conventional and highly crosslinked UHMWPEs were 0.32, 0.21 and 0.04 mm3/km, respectively. In both sets of results, the mean wear rate of highly crosslinked UHMPWE was smaller than both conventional and non-irradiated UHMWPEs (p<0.05). Thus, POD testers can compare highly crosslinked and conventional UHMWPEs despite different test parameters. Narrowing the allowable range for standardized test parameters could improve sensitivity of multi-axial testers in correctly ranking materials. PMID:23831149

  11. Ultra-High Molecular Weight Polyethylene: Influence of the Chemical, Physical and Mechanical Properties on the Wear Behavior. A Review

    PubMed Central

    Bellare, Anuj; Bistolfi, Alessandro

    2017-01-01

    Ultra-high molecular weight polyethylene (UHMWPE) is the most common bearing material in total joint arthroplasty due to its unique combination of superior mechanical properties and wear resistance over other polymers. A great deal of research in recent decades has focused on further improving its performances, in order to provide durable implants in young and active patients. From “historical”, gamma-air sterilized polyethylenes, to the so-called first and second generation of highly crosslinked materials, a variety of different formulations have progressively appeared in the market. This paper reviews the structure–properties relationship of these materials, with a particular emphasis on the in vitro and in vivo wear performances, through an analysis of the existing literature. PMID:28773153

  12. Inter-crosslinking network gels having both shape memory and high ductility

    NASA Astrophysics Data System (ADS)

    Amano, Yoshitaka; Hidema, Ruri; Furukawa, Hidemitsu

    2012-04-01

    Medical treatment for injuries should be easy and quick in many accidents. Plasters or bandages are frequently used to wrap and fix injured parts. If plasters or bandages have additional smart functions, such as cooling, removability and repeatability, they will be much more useful and effective. Here we propose innovative biocompatible materials, that is, nontoxic high-strength shape-memory gels as novel smart medical materials. These smart gels were prepared from two monomers (DMAAm and SA), a polymer (HPC), and an inter-crosslinking agent (Karenz-MOI). In the synthesis of the gels, 1) a shape-memory copolymer network is made from the DMAAm and the SA, and 2) the copolymer and the HPC are crosslinked by the Karenz-MOI. Thus the crosslinking points are connected only between the different polymers. This is our original technique of developing a new network structure of gels, named Inter-Crosslinking Network (ICN). The ICN gels achieve high ductility, going up to 700% strain in tensile tests, while the ICN gels contain about 44% water. Moreover the SA has temperature dependence due to its crystallization properties; thus the ICN gels obtain shape memory properties and are named ICN-SMG. While the Young's modulus of the ICN-SMG is large below their crystallization temperature and the gels behave like plastic materials, the modulus becomes smaller above the temperature and the gels turn back to their original shape.

  13. Reduction-Triggered Transformation of Crosslinking Modules of Disulfide-Containing Micelles with Chemically Tunable Rates.

    PubMed

    Deng, Zhengyu; Yuan, Shuai; Xu, Ronald X; Liang, Haojun; Liu, Shiyong

    2018-05-16

    A dilemma exists between the circulation stability and cargo release/mass diffusion at desired sites for designing delivery nanocarriers and in vivo nanoreactors. We herein report disulfide-crosslinked (DCL) micelles exhibiting reduction-triggered switching of crosslinking modules and synchronized hydrophobic-to-hydrophilic transition. Tumor cell-targeted DCL micelles undergo cytoplasmic milieu-triggered disulfide cleavage and cascade self-immolative decaging reactions at chemically adjustable rates, generating primary amine moieties. Extensive amidation reactions with neighboring ester moieties then occur due to high local concentrations and suppression of apparent amine pKa within hydrophobic cores, leading to the transformation of crosslinking modules and formation of tracelessly crosslinked (TCL) micelles with hydrophilic cores inside live cells. We further integrate this design principle with theranostic nanocarriers for selective intracellular drug transport guided by enhanced magnetic resonance (MR) imaging performance. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Elastomer Reinforced with Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Hudson, Jared L.; Krishnamoorti, Ramanan

    2009-01-01

    Elastomers are reinforced with functionalized, single-walled carbon nanotubes (SWNTs) giving them high-breaking strain levels and low densities. Cross-linked elastomers are prepared using amine-terminated, poly(dimethylsiloxane) (PDMS), with an average molecular weight of 5,000 daltons, and a functionalized SWNT. Cross-link densities, estimated on the basis of swelling data in toluene (a dispersing solvent) indicated that the polymer underwent cross-linking at the ends of the chains. This thermally initiated cross-linking was found to occur only in the presence of the aryl alcohol functionalized SWNTs. The cross-link could have been via a hydrogen-bonding mechanism between the amine and the free hydroxyl group, or via attack of the amine on the ester linage to form an amide. Tensile properties examined at room temperature indicate a three-fold increase in the tensile modulus of the elastomer, with rupture and failure of the elastomer occurring at a strain of 6.5.

  15. Directed Self-Assembly on Photo-Crosslinked Polystyrene Sub-Layers: Nanopattern Uniformity and Orientation

    PubMed Central

    Koh, Haeng-Deog; Kim, Mi-Jeong

    2016-01-01

    A photo-crosslinked polystyrene (PS) thin film is investigated as a potential guiding sub-layer for polystyrene-block-poly (methyl methacrylate) block copolymer (BCP) cylindrical nanopattern formation via topographic directed self-assembly (DSA). When compared to a non-crosslinked PS brush sub-layer, the photo-crosslinked PS sub-layer provided longer correlation lengths of the BCP nanostructure, resulting in a highly uniform DSA nanopattern with a low number of BCP dislocation defects. Depending on the thickness of the sub-layer used, parallel or orthogonal orientations of DSA nanopattern arrays were obtained that covered the entire surface of patterned Si substrates, including both trench and mesa regions. The design of DSA sub-layers and guide patterns, such as hardening the sub-layer by photo-crosslinking, nano-structuring on mesas, the relation between trench/mesa width, and BCP equilibrium period, were explored with a view to developing defect-reduced DSA lithography technology. PMID:28773768

  16. Global Membrane Protein Interactome Analysis using In vivo Crosslinking and Mass Spectrometry-based Protein Correlation Profiling*

    PubMed Central

    Larance, Mark; Kirkwood, Kathryn J.; Tinti, Michele; Brenes Murillo, Alejandro; Ferguson, Michael A. J.; Lamond, Angus I.

    2016-01-01

    We present a methodology using in vivo crosslinking combined with HPLC-MS for the global analysis of endogenous protein complexes by protein correlation profiling. Formaldehyde crosslinked protein complexes were extracted with high yield using denaturing buffers that maintained complex solubility during chromatographic separation. We show this efficiently detects both integral membrane and membrane-associated protein complexes,in addition to soluble complexes, allowing identification and analysis of complexes not accessible in native extracts. We compare the protein complexes detected by HPLC-MS protein correlation profiling in both native and formaldehyde crosslinked U2OS cell extracts. These proteome-wide data sets of both in vivo crosslinked and native protein complexes from U2OS cells are freely available via a searchable online database (www.peptracker.com/epd). Raw data are also available via ProteomeXchange (identifier PXD003754). PMID:27114452

  17. Mechanical stiffness of TMJ condylar cartilage increases after artificial aging by ribose.

    PubMed

    Mirahmadi, Fereshteh; Koolstra, Jan Harm; Lobbezoo, Frank; van Lenthe, G Harry; Ghazanfari, Samaneh; Snabel, Jessica; Stoop, Reinout; Everts, Vincent

    2018-03-01

    Aging is accompanied by a series of changes in mature tissues that influence their properties and functions. Collagen, as one of the main extracellular components of cartilage, becomes highly crosslinked during aging. In this study, the aim was to examine whether a correlation exists between collagen crosslinking induced by artificial aging and mechanical properties of the temporomandibular joint (TMJ) condyle. To evaluate this hypothesis, collagen crosslinks were induced using ribose incubation. Porcine TMJ condyles were incubated for 7 days with different concentrations of ribose. The compressive modulus and stiffness ratio (incubated versus control) was determined after loading. Glycosaminoglycan and collagen content, and the number of crosslinks were analyzed. Tissue structure was visualized by microscopy using different staining methods. Concomitant with an increasing concentration of ribose, an increase of collagen crosslinks was found. The number of crosslinks increased almost 50 fold after incubation with the highest concentration of ribose. Simultaneously, the stiffness ratio of the samples showed a significant increase after incubation with the ribose. Pearson correlation analyses showed a significant positive correlation between the overall stiffness ratio and the crosslink level; the higher the number of crosslinks the higher the stiffness. The present model, in which ribose was used to mimic certain aspects of age-related changes, can be employed as an in vitro model to study age-related mechanical changes in the TMJ condyle. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Crosslinked, porous, polyacrylate beads

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping Siao (Inventor); Dreyer, William J. (Inventor)

    1976-01-01

    Uniformly-shaped, porous, round beads are prepared by the co-polymerization of an acrylic monomer and a cross-linking agent in the presence of 0.05 to 5% by weight of an aqueous soluble polymer such as polyethylene oxide. Cross-linking proceeds at high temperature above about 50.degree.C or at a lower temperature with irradiation. Beads of even shape and even size distribution of less than 2 micron diameter are formed. The beads will find use as adsorbents in chromatography and as markers for studies of cell surface receptors.

  19. Crosslinked, porous, polyacrylate beads

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Dreyer, William J. (Inventor)

    1977-01-01

    Uniformly-shaped, porous, round beads are prepared by the co-polymerization of an acrylic monomer and a cross-linking agent in the presence of 0.05 to 5% by weight of an aqueous soluble polymer such as polyethylene oxide. Cross-linking proceeds at high temperature above about 50.degree. C or at a lower temperature with irradiation. Beads of even shape and even size distribution of less than 2 micron diameter are formed. The beads will find use as adsorbents in chromatography and as markers for studies of cell surface receptors.

  20. Glyoxalated polyacrylamide as a covalently attachable and rapidly cross-linkable binder for Si electrode in lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Yoo, Jung-Keun; Jeon, Jaebeom; Kang, Kisuk; Jung, Yeon Sik

    2017-03-01

    Recently, investigation of Si-based anode materials for rechargeable battery applications garnered much interest due to its exceptionally high capacity. High-capacity Si anode ( 4,200 mAhg-1) is highly desirable for the replacement of conventional graphite anode (< 400 mAhg-1) for large-scale energy-storage applications such as in electric vehicles (EVs) and energy storage systems (ESSs) for renewable energy sources. However, Si-based anodes suffer from poor cycling stability due to their large volumetric changes during repeated Li insertion. Therefore, development of highly efficient binder materials that can suppress the volume change of Si is one of the most essential parts of improving the performance of batteries. We herein demonstrate highly cross-linked polymeric binder (glyoxalated polyacrylamide) with an enhanced mechanical property by applying wet-strengthening chemistry used in paper industry. We found that the degree of cross-linking can be systematically adjusted by controlling the acidity of the slurry and has a profound effect on the cell performance using Si anode. The enhanced cycle performance of Si nanoparticles obtained by treating the binder at pH 4 can be explained by its strong interaction between the binder and Si surface and current collector, and also rigidity of binder by cross-linking.

  1. Synthesis and Characterization of Poly(maleic Anhydride)s Cross-linked Polyimide Aerogels

    NASA Technical Reports Server (NTRS)

    Guo, Haiquan; Meador, Mary Ann B.

    2015-01-01

    With the development of technology for aerospace applications, new thermal insulation materials are required to be flexible and capable of surviving high heat flux. For instance, flexible insulation is needed for inflatable aerodynamic decelerators which are used to slow spacecraft for entry, descent and landing (EDL) operations. Polyimide aerogels have low density, high porosity, high surface area, and better mechanical properties than silica aerogels and can be made into flexible thin films, thus they are potential candidates for aerospace needs. The previously reported cross-linkers such as octa(aminophenyl)silsesquioxane (OAPS) and 1,3,5-triaminophenoxybenzene (TAB) are either expensive or not commercially available. Here, we report the synthesis of a series of polyimide aerogels cross-linked using various commercially available poly(maleic anhydride)s, as seen in Figure 1. The amine end capped polyimide oligomers were made with 3,3,4,4-biphenyltetracarboxylic dianhydride (BPDA) and diamine combinations of dimethylbenzidine (DMBZ) and 4, 4-oxydianiline (ODA). The resulting aerogels have low density (0.12 gcm3 to 0.16 gcm3), high porosity (90) and high surface area (380-554 m2g). The effect of the different poly(maleic anhydride) cross-linkers and polyimide backbone structures on density, shrinkage, porosity, surface area, mechanical properties, moisture resistance and thermal properties will be discussed.

  2. Influence of cross-link structure, density and mechanical properties in the mesoscale deformation mechanisms of collagen fibrils.

    PubMed

    Depalle, Baptiste; Qin, Zhao; Shefelbine, Sandra J; Buehler, Markus J

    2015-12-01

    Collagen is a ubiquitous protein with remarkable mechanical properties. It is highly elastic, shows large fracture strength and enables substantial energy dissipation during deformation. Most of the connective tissue in humans consists of collagen fibrils composed of a staggered array of tropocollagen molecules, which are connected by intermolecular cross-links. In this study, we report a three-dimensional coarse-grained model of collagen and analyze the influence of enzymatic cross-links on the mechanics of collagen fibrils. Two representatives immature and mature cross-links are implemented in the mesoscale model using a bottom-up approach. By varying the number, type and mechanical properties of cross-links in the fibrils and performing tensile test on the models, we systematically investigate the deformation mechanisms of cross-linked collagen fibrils. We find that cross-linked fibrils exhibit a three phase behavior, which agrees closer with experimental results than what was obtained using previous models. The fibril mechanical response is characterized by: (i) an initial elastic deformation corresponding to the collagen molecule uncoiling, (ii) a linear regime dominated by molecule sliding and (iii) the second stiffer elastic regime related to the stretching of the backbone of the tropocollagen molecules until the fibril ruptures. Our results suggest that both cross-link density and type dictate the stiffness of large deformation regime by increasing the number of interconnected molecules while cross-links mechanical properties determine the failure strain and strength of the fibril. These findings reveal that cross-links play an essential role in creating an interconnected fibrillar material of tunable toughness and strength. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Induction and repair of DNA cross-links induced by sulfur mustard in the A-549 cell line followed by a comet assay.

    PubMed

    Jost, Petr; Svobodova, Hana; Stetina, Rudolf

    2015-07-25

    Sulfur mustard is a highly toxic chemical warfare agent with devastating impact on intoxicated tissues. DNA cross-links are probably the most toxic DNA lesions induced in the cell by sulfur mustard. The comet assay is a very sensitive method for measuring DNA damage. In the present study using the A-549 lung cell line, the comet assay protocol was optimized for indirect detection of DNA cross-links induced by sulfur mustard. The method is based on the additional treatment of the assayed cells containing cross-links with the chemical mutagen, styrene oxide. Alkali-labile adducts of styrene oxide cause DNA breaks leading to the formation of comets. A significant dose-dependent reduction of DNA migration of the comet's tail was found after exposing cells to sulfur mustard, indicative of the amount of sulfur mustard induced cross-links. The remarkable decrease of % tail DNA could be observed as early as 5min following exposure to sulfur mustard and the maximal effect was found after 30min, when DNA migration was reduced to the minimum. Sulfur mustard preincubated in culture medium without cells lost its ability to induce cross-links and had a half-life of about 15min. Pre-incubation longer than 30min does not lead to a significant increase in cross-links when applied to cells. However, the amount of cross-links is decreased during further incubation due to repair. The current modification of the comet assay provides a useful tool for detecting DNA cross-links induced by sulfur mustard and could be used for detection of other DNA cross-linking agents such as chemotherapeutic drugs. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Wear Measurement of Highly Cross-linked UHMWPE using a 7Be Tracer Implantation Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wimmer, Markus A.; Laurent, Michael P.; Dwivedi, Yasha

    2013-01-01

    The very low wear rates achieved with the current highly cross-linked ultrahigh molecular weight polyethylenes (UHMWPE) used in joint prostheses have proven to be difficult to measure accurately by gravimetry. Tracer methods are there- fore being explored. The purpose of this study was to perform a proof-of-concept experiment on the use of the radioactive tracer beryllium-7 (7Be) for the determination of in vitro wear in a highly cross-linked orthopedic UHMWPE. Three cross-linked and four conventional UHMWPE pins made from compression- molded GUR 1050, were activated with 109 to 1010 7Be nuclei using a new implantation setup that produced a homogenousmore » distribution of implanted nuclei up to 8.5 lm below the surface. The pins were tested for wear in a six-station pin-on-flat appara- tus for up to 7.1 million cycles (178 km). A Germanium gamma detector was employed to determine activity loss of the UHMWPE pins at preset intervals during the wear test. The wear of the cross-linked UHMWPE pins was readily detected and esti- mated to be 17 6 3 lg per million cycles. The conventional-to- cross-linked ratio of the wear rates was 13.1 6 0.8, in the expected range for these materials. Oxidative degradation dam- age from implantation was negligible; however, a weak depend- ence of wear on implantation dose was observed limiting the number of radioactive tracer atoms that can be introduced. Future applications of this tracer technology may include the analysis of location-specific wear, such as loss of material in the post or backside of a tibial insert.« less

  5. Quantification of the effect of cross-shear and applied nominal contact pressure on the wear of moderately cross-linked polyethylene.

    PubMed

    Abdelgaied, Abdellatif; Brockett, Claire L; Liu, Feng; Jennings, Louise M; Fisher, John; Jin, Zhongmin

    2013-01-01

    Polyethylene wear is a great concern in total joint replacement. It is now considered a major limiting factor to the long life of such prostheses. Cross-linking has been introduced to reduce the wear of ultra-high-molecular-weight polyethylene (UHMWPE). Computational models have been used extensively for wear prediction and optimization of artificial knee designs. However, in order to be independent and have general applicability and predictability, computational wear models should be based on inputs from independent experimentally determined wear parameters (wear factors or wear coefficients). The objective of this study was to investigate moderately cross-linked UHMWPE, using a multidirectional pin-on-plate wear test machine, under a wide range of applied nominal contact pressure (from 1 to 11 MPa) and under five different kinematic inputs, varying from a purely linear track to a maximum rotation of +/- 55 degrees. A computational model, based on a direct simulation of the multidirectional pin-on-plate wear tester, was developed to quantify the degree of cross-shear (CS) of the polyethylene pins articulating against the metallic plates. The moderately cross-linked UHMWPE showed wear factors less than half of that reported in the literature for, the conventional UHMWPE, under the same loading and kinematic inputs. In addition, under high applied nominal contact stress, the moderately crosslinked UHMWPE wear showed lower dependence on the degree of CS compared to that under low applied nominal contact stress. The calculated wear coefficients were found to be independent of the applied nominal contact stress, in contrast to the wear factors that were shown to be highly pressure dependent. This study provided independent wear data for inputs into computational models for moderately cross-linked polyethylene and supported the application of wear coefficient-based computational wear models.

  6. Serum Albumin Domain Structures in Human Blood Serum by Mass Spectrometry and Computational Biology.

    PubMed

    Belsom, Adam; Schneider, Michael; Fischer, Lutz; Brock, Oliver; Rappsilber, Juri

    2016-03-01

    Chemical cross-linking combined with mass spectrometry has proven useful for studying protein-protein interactions and protein structure, however the low density of cross-link data has so far precluded its use in determining structures de novo. Cross-linking density has been typically limited by the chemical selectivity of the standard cross-linking reagents that are commonly used for protein cross-linking. We have implemented the use of a heterobifunctional cross-linking reagent, sulfosuccinimidyl 4,4'-azipentanoate (sulfo-SDA), combining a traditional sulfo-N-hydroxysuccinimide (sulfo-NHS) ester and a UV photoactivatable diazirine group. This diazirine yields a highly reactive and promiscuous carbene species, the net result being a greatly increased number of cross-links compared with homobifunctional, NHS-based cross-linkers. We present a novel methodology that combines the use of this high density photo-cross-linking data with conformational space search to investigate the structure of human serum albumin domains, from purified samples, and in its native environment, human blood serum. Our approach is able to determine human serum albumin domain structures with good accuracy: root-mean-square deviation to crystal structure are 2.8/5.6/2.9 Å (purified samples) and 4.5/5.9/4.8Å (serum samples) for domains A/B/C for the first selected structure; 2.5/4.9/2.9 Å (purified samples) and 3.5/5.2/3.8 Å (serum samples) for the best out of top five selected structures. Our proof-of-concept study on human serum albumin demonstrates initial potential of our approach for determining the structures of more proteins in the complex biological contexts in which they function and which they may require for correct folding. Data are available via ProteomeXchange with identifier PXD001692. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Selective two-photon collagen crosslinking in situ measured by Brillouin microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kwok, Sheldon J. J.; Kuznetsov, Ivan A.; Kim, Moonseok; Choi, Myunghwan; Scarcelli, Giuliano; Yun, Seok-Hyun

    2017-02-01

    Two-photon polymerization and crosslinking are commonly used methods for microfabrication of three-dimensional structures with applications spanning from photonic microdevices, drug delivery systems, to cellular scaffolds. However, the use of two-photon processes for precise, internal modification of biological tissues has not yet been reported. One of the major challenges has been a lack of appropriate tools to monitor and characterize crosslinked regions nondestructively. Here, we demonstrate spatially selective two-photon collagen crosslinking (2P-CXL) in intact tissue for the first time. Using riboflavin photosensitizer and femtosecond laser irradiation, we crosslinked a small volume of tissue within animal corneas. Collagen fiber orientations and photobleaching were characterized by second harmonic generation and two-photon fluorescence imaging, respectively. Using confocal Brillouin microscopy, we measured local changes in longitudinal mechanical moduli and visualized the cross-linked pattern without perturbing surrounding non-irradiated regions. 2P-CXL-induced tissue stiffening was comparable to that achieved with conventional one-photon CXL. Our results demonstrate the ability to selectively stiffen biological tissue in situ at high spatial resolution, with broad implications in ophthalmology, laser surgery, and tissue engineering.

  8. Structural and interaction parameters of thermosensitive native α-elastin biohybrid microgel

    NASA Astrophysics Data System (ADS)

    Balaceanu, Andreea; Singh, Smriti; Demco, Dan E.; Möller, Martin

    2014-09-01

    The structural and water interaction parameters for native, α-elastin biohybrid microgel crosslinked with hydrophilic and hydrophobic crosslinkers are obtained from the volume phase transition temperature behaviour, 1H high-resolution magic-angle sample spinning transverse magnetization relaxation NMR, and modified Flory-Rehner swelling theory. Firstly, considering a homogeneous morphology the number of subchains in the biohybrid microgel, the residual water in deswollen state as a function of crosslink density and the temperature dependence of the Flory biopolymer-water interaction parameters are reported for the biohybrid microgels prepared with hydrophilic (PEG-DGE) and hydrophobic (BS3) crosslinkers. The Flory-Rehner classical approach is subsequently modified taking into account the heterogeneities observed by NMR transverse relaxation measurements. Two differently mobile regions are determined, a hydrophobic domain and a crosslinking domain with relative reduced mobility. For the first time, the influence of chain mobility on the Flory interaction parameter is investigated through a modified Flory state equation. The contributions of amino-acids located in the hydrophobic and crosslinking domains in the polypeptide sequence are separated while analyzing the biopolymer-water interaction.

  9. The effect of ionotropic gelation residence time on alginate cross-linking and properties.

    PubMed

    Patel, Mitulkumar A; AbouGhaly, Mohamed H H; Schryer-Praga, Jacqueline V; Chadwick, Keith

    2017-01-02

    The ability to engineer biocompatible polymers with controllable properties is highly desirable. One such approach is to cross-link carbohydrate polymers using ionotropic gelation (IG). Previous studies have investigated the effect of curing time on alginate cross-linking. Herein, we discuss a novel study detailing the effect of IG residence time (IGRT) on the cross-linking of alginate with calcium ions (Ca 2+ ) along with water migration (syneresis) and their subsequent impact on the pharmaceutical properties of alginate particles. IGRT was shown to have a significant effect on particle size, porosity, density, mechanical strength and swelling of calcium alginate particles as well as drug release mechanism. Furthermore, we describe a novel application of electron dispersive spectroscopy (EDS), in conjunction with Fourier Transform- infra red (FT-IR) spectroscopy, to analyze and monitor the changes in Ca 2+ concentration during cross-linking. A simple procedure to determine the concentration and distribution of the surface and internal Ca 2+ involved in alginate cross-linking was successfully developed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Wood Sawdust/Natural Rubber Ecocomposites Cross-Linked by Electron Beam Irradiation

    PubMed Central

    Manaila, Elena; Stelescu, Maria Daniela; Craciun, Gabriela; Ighigeanu, Daniel

    2016-01-01

    The obtaining and characterization of some polymeric eco-composites based on wood sawdust and natural rubber is presented. The natural rubber was cross-linked using the electron beam irradiation. The irradiation doses were of 75, 150, 300 and 600 kGy and the concentrations of wood sawdust were of 10 and 20 phr, respectively. As a result of wood sawdust adding, the physical and mechanical properties such as hardness, modulus at 100% elongation and tensile strength, showed significant improvements. The presence of wood sawdust fibers has a reinforcing effect on natural rubber, similar or better than of mineral fillers. An increase in the irradiation dose leads to the increasing of cross-link density, which is reflected in the improvement of hardness, modulus at 100% elongation and tensile strength of blends. The cross-linking rates, appreciated using the Flory-Rehner equation, have increased with the amount of wood sawdust in blends and with the irradiation dose. Even if the gel fraction values have varied irregularly with the amount of wood sawdust and irradiation dose it was over 90% for all blends, except for the samples without wood sawdust irradiated with 75 kGy. The water uptake increased with increasing of fiber content and decreased with the irradiation dose. PMID:28773626

  11. Growing Neural PC-12 Cell on Crosslinked Silica Aerogels Increases Neurite Extension in the Presence of an Electric Field.

    PubMed

    Lynch, Kyle J; Skalli, Omar; Sabri, Firouzeh

    2018-04-20

    Externally applied electrical stimulation (ES) has been shown to enhance the nerve regeneration process and to influence the directionality of neurite outgrowth. In addition, the physical and chemical properties of the substrate used for nerve-cell regeneration is critical in fostering regeneration. Previously, we have shown that polyurea-crosslinked silica aerogels (PCSA) exert a positive influence on the extension of neurites by PC-12 cells, a cell-line model widely used to study neurite extension and electrical excitability. In this work, we have examined how an externally applied electric field (EF) influences the extension of neurites in PC-12 cells grown on two substrates: collagen-coated dishes versus collagen-coated crosslinked silica aerogels. The externally applied direct current (DC) bias was applied in vitro using a custom-designed chamber containing polydimethysiloxane (PDMS) embedded copper electrodes to create an electric field across the substrate for the cultured PC-12 cells. Results suggest orientation preference towards the anode, and, on average, longer neurites in the presence of the applied DC bias than with 0 V DC bias. In addition, neurite length was increased in cells grown on silica-crosslinked aerogel when compared to cells grown on regular petri-dishes. These results further support the notion that PCSA is a promising material for nerve regeneration.

  12. Wood Sawdust/Natural Rubber Ecocomposites Cross-Linked by Electron Beam Irradiation.

    PubMed

    Manaila, Elena; Stelescu, Maria Daniela; Craciun, Gabriela; Ighigeanu, Daniel

    2016-06-23

    The obtaining and characterization of some polymeric eco-composites based on wood sawdust and natural rubber is presented. The natural rubber was cross-linked using the electron beam irradiation. The irradiation doses were of 75, 150, 300 and 600 kGy and the concentrations of wood sawdust were of 10 and 20 phr, respectively. As a result of wood sawdust adding, the physical and mechanical properties such as hardness, modulus at 100% elongation and tensile strength, showed significant improvements. The presence of wood sawdust fibers has a reinforcing effect on natural rubber, similar or better than of mineral fillers. An increase in the irradiation dose leads to the increasing of cross-link density, which is reflected in the improvement of hardness, modulus at 100% elongation and tensile strength of blends. The cross-linking rates, appreciated using the Flory-Rehner equation, have increased with the amount of wood sawdust in blends and with the irradiation dose. Even if the gel fraction values have varied irregularly with the amount of wood sawdust and irradiation dose it was over 90% for all blends, except for the samples without wood sawdust irradiated with 75 kGy. The water uptake increased with increasing of fiber content and decreased with the irradiation dose.

  13. Dithiothreitol (DTT) Acts as a Specific, UV-inducible Cross-linker in Elucidation of Protein–RNA Interactions*

    PubMed Central

    Zaman, Uzma; Richter, Florian M.; Hofele, Romina; Kramer, Katharina; Sachsenberg, Timo; Kohlbacher, Oliver; Lenz, Christof; Urlaub, Henning

    2015-01-01

    Protein–RNA cross-linking by UV irradiation at 254 nm wavelength has been established as an unbiased method to identify proteins in direct contact with RNA, and has been successfully applied to investigate the spatial arrangement of protein and RNA in large macromolecular assemblies, e.g. ribonucleoprotein-complex particles (RNPs). The mass spectrometric analysis of such peptide-RNA cross-links provides high resolution structural data to the point of mapping protein–RNA interactions to specific peptides or even amino acids. However, the approach suffers from the low yield of cross-linking products, which can be addressed by improving enrichment and analysis methods. In the present article, we introduce dithiothreitol (DTT) as a potent protein–RNA cross-linker. In order to evaluate the efficiency and specificity of DTT, we used two systems, a small synthetic peptide from smB protein incubated with U1 snRNA oligonucleotide and native ribonucleoprotein complexes from S. cerevisiae. Our results unambiguously show that DTT covalently participates in cysteine-uracil crosslinks, which is observable as a mass increment of 151.9966 Da (C4H8S2O2) upon mass spectrometric analysis. DTT presents advantages for cross-linking of cysteine containing regions of proteins. This is evidenced by comparison to experiments where (tris(2-carboxyethyl)phosphine) is used as reducing agent, and significantly less cross-links encompassing cysteine residues are found. We further propose insertion of DTT between the cysteine and uracil reactive sites as the most probable structure of the cross-linking products. PMID:26450613

  14. Optimisation of UV irradiation as a binding site conserving method for crosslinking collagen-based scaffolds.

    PubMed

    Davidenko, Natalia; Bax, Daniel V; Schuster, Carlos F; Farndale, Richard W; Hamaia, Samir W; Best, Serena M; Cameron, Ruth E

    2016-01-01

    Short wavelength (λ = 254 nm) UV irradiation was evaluated over a range of intensities (0.06 to 0.96 J/cm(2)) as a means of cross-linking collagen- and gelatin-based scaffolds, to tailor their material characteristics whilst retaining biological functionality. Zero-link carbodiimide treatments are commonly applied to collagen-based materials, forming cross-links from carboxylate anions (for example the acidic E of GFOGER) that are an essential part of integrin binding sites on collagen. Cross-linking these amino acids therefore disrupts the bioactivity of collagen. In contrast, UV irradiation forms bonds from less important aromatic tyrosine and phenylalanine residues. We therefore hypothesised that UV cross-linking would not compromise collagen cell reactivity. Here, highly porous (~99 %) isotropic, collagen-based scaffolds were produced via ice-templating. A series of scaffolds (pore diameters ranging from 130-260 μm) with ascending stability in water was made from gelatin, two different sources of collagen I, or blends of these materials. Glucose, known to aid UV crosslinking of collagen, was added to some lower-stability formulations. These scaffolds were exposed to different doses of UV irradiation, and the scaffold morphology, dissolution stability in water, resistance to compression and cell reactivity was assessed. Stabilisation in aqueous media varied with both the nature of the collagen-based material employed and the UV intensity. Scaffolds made from the most stable materials showed the greatest stability after irradiation, although the levels of cross-linking in all cases were relatively low. Scaffolds made from pure collagen from the two different sources showed different optimum levels of irradiation, suggesting altered balance between stabilisation from cross-linking and destabilisation from denaturation. The introduction of glucose into the scaffold enhanced the efficacy of UV cross-linking. Finally, as hypothesized, cell attachment, spreading and proliferation on collagen materials were unaffected by UV cross-linking. UV irradiation may therefore be used to provide relatively low level cross-linking of collagen without loss of biological functionality.

  15. Collagen cross-linking: insights on the evolution of metazoan extracellular matrix.

    PubMed

    Rodriguez-Pascual, Fernando; Slatter, David Anthony

    2016-11-23

    Collagens constitute a large family of extracellular matrix (ECM) proteins that play a fundamental role in supporting the structure of various tissues in multicellular animals. The mechanical strength of fibrillar collagens is highly dependent on the formation of covalent cross-links between individual fibrils, a process initiated by the enzymatic action of members of the lysyl oxidase (LOX) family. Fibrillar collagens are present in a wide variety of animals, therefore often being associated with metazoan evolution, where the emergence of an ancestral collagen chain has been proposed to lead to the formation of different clades. While LOX-generated collagen cross-linking metabolites have been detected in different metazoan families, there is limited information about when and how collagen acquired this particular modification. By analyzing telopeptide and helical sequences, we identified highly conserved, potential cross-linking sites throughout the metazoan tree of life. Based on this analysis, we propose that they have importantly contributed to the formation and further expansion of fibrillar collagens.

  16. PEO-b-P4VP/Yttrium Hydroxide Hybrid Nanotubes as Supporter for Catalyst Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Yang, Qian; Chen, Dao-yong

    2012-06-01

    The adsorption of poly (ethylene oxide)-b-poly(4-vinylpyridine)(PEO-b-P4VP) micelles onto the surface of yttrium hydroxide nanotubes (YNTs) resulted in the hybrid nanotubes with a dense P4VP inner layer and a stretched PEO outer layer surrounding YNTs. The dense P4VP layer was further stabilized by the crosslinking using 1,4-dibromobutane as the crosslinker. Then, the crosslinked hybrid nanotubes (CHNTs) were used as a novel nano supporter for loading the catalyst gold nanoparticles (GNPs) within the crosslinked P4VP layer. The resultant GNPs/CHNTs (GNTs loaded on CHNTs) were applied to catalyze the reduction reaction of p-nitrophenol. The results indicate that this novel nano supporter has advantages such as good dispersity in the suspension, high capacity in loading GNPs (0.87 mmol/g), high catalytic activity of the loaded GNPs (12.9 μmol-1min-1), and good reusability of GNTs/CHNTs.

  17. Liquid immersion thermal crosslinking of 3D polymer nanopatterns for direct carbonisation with high structural integrity

    NASA Astrophysics Data System (ADS)

    Kang, Da-Young; Kim, Cheolho; Park, Gyurim; Moon, Jun Hyuk

    2015-12-01

    The direct pyrolytic carbonisation of polymer patterns has attracted interest for its use in obtaining carbon materials. In the case of carbonisation of nanopatterned polymers, the polymer flow and subsequent pattern change may occur in order to relieve their high surface energies. Here, we demonstrated that liquid immersion thermal crosslinking of polymer nanopatterns effectively enhanced the thermal resistance and maintained the structure integrity during the heat treatment. We employed the liquid immersion thermal crosslinking for 3D porous SU8 photoresist nanopatterns and successfully converted them to carbon nanopatterns while maintaining their porous features. The thermal crosslinking reaction and carbonisation of SU8 nanopatterns were characterised. The micro-crystallinity of the SU8-derived carbon nanopatterns was also characterised. The liquid immersion heat treatment can be extended to the carbonisation of various polymer or photoresist nanopatterns and also provide a facile way to control the surface energy of polymer nanopatterns for various purposes, for example, to block copolymer or surfactant self-assemblies.

  18. Liquid immersion thermal crosslinking of 3D polymer nanopatterns for direct carbonisation with high structural integrity

    PubMed Central

    Kang, Da-Young; Kim, Cheolho; Park, Gyurim; Moon, Jun Hyuk

    2015-01-01

    The direct pyrolytic carbonisation of polymer patterns has attracted interest for its use in obtaining carbon materials. In the case of carbonisation of nanopatterned polymers, the polymer flow and subsequent pattern change may occur in order to relieve their high surface energies. Here, we demonstrated that liquid immersion thermal crosslinking of polymer nanopatterns effectively enhanced the thermal resistance and maintained the structure integrity during the heat treatment. We employed the liquid immersion thermal crosslinking for 3D porous SU8 photoresist nanopatterns and successfully converted them to carbon nanopatterns while maintaining their porous features. The thermal crosslinking reaction and carbonisation of SU8 nanopatterns were characterised. The micro-crystallinity of the SU8-derived carbon nanopatterns was also characterised. The liquid immersion heat treatment can be extended to the carbonisation of various polymer or photoresist nanopatterns and also provide a facile way to control the surface energy of polymer nanopatterns for various purposes, for example, to block copolymer or surfactant self-assemblies. PMID:26677949

  19. Liquid immersion thermal crosslinking of 3D polymer nanopatterns for direct carbonisation with high structural integrity.

    PubMed

    Kang, Da-Young; Kim, Cheolho; Park, Gyurim; Moon, Jun Hyuk

    2015-12-18

    The direct pyrolytic carbonisation of polymer patterns has attracted interest for its use in obtaining carbon materials. In the case of carbonisation of nanopatterned polymers, the polymer flow and subsequent pattern change may occur in order to relieve their high surface energies. Here, we demonstrated that liquid immersion thermal crosslinking of polymer nanopatterns effectively enhanced the thermal resistance and maintained the structure integrity during the heat treatment. We employed the liquid immersion thermal crosslinking for 3D porous SU8 photoresist nanopatterns and successfully converted them to carbon nanopatterns while maintaining their porous features. The thermal crosslinking reaction and carbonisation of SU8 nanopatterns were characterised. The micro-crystallinity of the SU8-derived carbon nanopatterns was also characterised. The liquid immersion heat treatment can be extended to the carbonisation of various polymer or photoresist nanopatterns and also provide a facile way to control the surface energy of polymer nanopatterns for various purposes, for example, to block copolymer or surfactant self-assemblies.

  20. Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels

    NASA Astrophysics Data System (ADS)

    Khetan, Sudhir; Guvendiren, Murat; Legant, Wesley R.; Cohen, Daniel M.; Chen, Christopher S.; Burdick, Jason A.

    2013-05-01

    Although cell-matrix adhesive interactions are known to regulate stem cell differentiation, the underlying mechanisms, in particular for direct three-dimensional encapsulation within hydrogels, are poorly understood. Here, we demonstrate that in covalently crosslinked hyaluronic acid (HA) hydrogels, the differentiation of human mesenchymal stem cells (hMSCs) is directed by the generation of degradation-mediated cellular traction, independently of cell morphology or matrix mechanics. hMSCs within HA hydrogels of equivalent elastic moduli that permit (restrict) cell-mediated degradation exhibited high (low) degrees of cell spreading and high (low) tractions, and favoured osteogenesis (adipogenesis). Moreover, switching the permissive hydrogel to a restrictive state through delayed secondary crosslinking reduced further hydrogel degradation, suppressed traction, and caused a switch from osteogenesis to adipogenesis in the absence of changes to the extended cellular morphology. Furthermore, inhibiting tension-mediated signalling in the permissive environment mirrored the effects of delayed secondary crosslinking, whereas upregulating tension induced osteogenesis even in the restrictive environment.

  1. Transparent crosslinked ultrashort peptide hydrogel dressing with high shape-fidelity accelerates healing of full-thickness excision wounds

    NASA Astrophysics Data System (ADS)

    Seow, Wei Yang; Salgado, Giorgiana; Lane, E. Birgitte; Hauser, Charlotte A. E.

    2016-09-01

    Wound healing is a major burden of healthcare systems worldwide and hydrogel dressings offer a moist environment conducive to healing. We describe cysteine-containing ultrashort peptides that self-assemble spontaneously into hydrogels. After disulfide crosslinking, the optically-transparent hydrogels became significantly stiffer and exhibited high shape fidelity. The peptide sequence (LIVAGKC or LK6C) was then chosen for evaluation on mice with full-thickness excision wounds. Crosslinked LK6C hydrogels are handled easily with forceps during surgical procedures and offer an improvement over our earlier study of a non-crosslinked peptide hydrogel for burn wounds. LK6C showed low allergenic potential and failed to provoke any sensitivity when administered to guinea pigs in the Magnusson-Kligman maximization test. When applied topically as a dressing, the medium-infused LK6C hydrogel accelerated re-epithelialization compared to controls. The peptide hydrogel is thus safe for topical application and promotes a superior rate and quality of wound healing.

  2. Tailoring chain length and cross-link density in dielectric elastomer toward enhanced actuation strain

    NASA Astrophysics Data System (ADS)

    Zhang, Quan-Ping; Liu, Jun-Hua; Liu, Hai-Dong; Jia, Fei; Zhou, Yuan-Lin; Zheng, Jian

    2017-10-01

    Adding ceramic or conductive fillers into polymers for increasing permittivity is a direct and effective approach to enhance the actuation strain of dielectric elastomer actuators (DEAs). Unfortunately, the major dielectric loss caused by weak interfaces potentially harms the electro-mechanical stability and lifetime of DEAs. Here, we construct a desired macromolecular network with a long chain length and low cross-link density to reduce the elastic modulus of silicone elastomers. Selecting a high molecular weight of polymethylvinylsiloxane and a low dose of the cross-linker leads the soft but tough networks with rich entanglements, poor cross-links, and a low amount of defects. Then, a ductile material with low elastic modulus but high elongation at break is obtained. It accounts for much more excellent actuation strain of Hl in comparison to that of the other silicone elastomers. Importantly, without other fillers, the ultralow dielectric loss, conductivity, and firm networks possibly promote the electro-mechanical stability and lifetime for the DEA application.

  3. Impact of x-Linkable Polymer Blends on Phase Morphology and Adhesion

    NASA Astrophysics Data System (ADS)

    Liu, Chun; Wan, Grace; Keene, Ellen; Harris, Joseph; Zhang, Sipei; Anderson, Stephanie; Li Pi Shan, Colin

    Adhesion to dissimilar substrate is highly important to multiple industrial applications such as automotive adhesives, food packaging, transportation etc. Adhesive design has to include components that are affinity to both substrates, e.g. high surface energy polar and low surface non-polar substrates. Typically, these adhesive components are thermodynamically incompatible with each other, leading to macrophase separation and thus adhesive failure. By using functional adhesive components plus some additives, the adhesive can be in-situ cross-linked to prevent the macrophase separation with controlled phase morphology. Herein, we present the study on a cross-linkable adhesive formulation consisting of acrylic emulsion and polyolefin aqueous dispersion with additives for enhancing cross-linking and controlled phase morphologies. Contact angle measurement and ATR-IR spectroscopy are used to characterize the properties of adhesive surface. DMA is used to study the mechanical property of adhesive before and after cross-linking. The detailed phase morphologies are revealed by AFM, SEM and TEM. The resulting adhesive morphologies are correlated with the adhesive performance to establish structure-property relationship.

  4. Characterization of a Poly(styrene-block-methylacrylate-random-octadecylacrylate-block-styrene) Shape Memory ABA Triblock Copolymer

    NASA Astrophysics Data System (ADS)

    Fei, Pengzhan; Cavicchi, Kevin

    2011-03-01

    A new ABA triblock copolymer of poly(styrene-block- methylacrylate-random-octadecylacrylate-block-styrene) (PS-b- PMA-r-PODA-b-PS) was synthesized by reversible addition fragmentation chain transfer polymerization. The triblock copolymer can generate a three-dimensional, physically crosslinked network by self-assembly, where the glassy PS domains physically crosslink the midblock chains. The side chain crystallization of the polyoctadecylacrylare (PODA) side chain generates a second reversible network enabling shape memory properties. Shape memory tests by uniaxial deformation and recovery of molded dog-bone shape samples demonstrate that shape fixities above 96% and shape recoveries above 98% were obtained for extensional strains up to 300%. An outstanding advantage of this shape memory material is that it can be very easily shaped and remolded by elevating the temperature to 140circ; C, and after remolding the initial shape memory properties are totally recovered by eliminating the defects introduced by the previous deformation cycling.

  5. Interstrand cross-links arising from strand breaks at true abasic sites in duplex DNA

    PubMed Central

    Yang, Zhiyu; Price, Nathan E.; Johnson, Kevin M.

    2017-01-01

    Abstract Interstrand cross-links are exceptionally bioactive DNA lesions. Endogenous generation of interstrand cross-links in genomic DNA may contribute to aging, neurodegeneration, and cancer. Abasic (Ap) sites are common lesions in genomic DNA that readily undergo spontaneous and amine-catalyzed strand cleavage reactions that generate a 2,3-didehydro-2,3-dideoxyribose sugar remnant (3’ddR5p) at the 3’-terminus of the strand break. Interestingly, this strand scission process leaves an electrophilic α,β-unsaturated aldehyde residue embedded within the resulting nicked duplex. Here we present evidence that 3’ddR5p derivatives generated by spermine-catalyzed strand cleavage at Ap sites in duplex DNA can react with adenine residues on the opposing strand to generate a complex lesion consisting of an interstrand cross-link adjacent to a strand break. The cross-link blocks DNA replication by ϕ29 DNA polymerase, a highly processive polymerase enzyme that couples synthesis with strand displacement. This suggests that 3’ddR5p-derived cross-links have the potential to block critical cellular DNA transactions that require strand separation. LC-MS/MS methods developed herein provide powerful tools for studying the occurrence and properties of these cross-links in biochemical and biological systems. PMID:28531327

  6. Wear Measurement of Highly Cross-Linked UHMWPE Using a 7Be Tracer Implantation Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wimmer, Markus; Laurent, Michael P.; Dwivedi, Yash

    2013-01-29

    The very low wear rates achieved with the current highly cross-linked ultra-high molecular weight polyethylenes (UHMWPE) used in joint prostheses have proven to be difficult to measure accurately by gravimetry. Tracer methods are therefore being explored. The purpose of this study was to effect a proof-of-concept on the use of the radioactive tracer beryllium-7 (7Be) for the determination of wear in a highly cross-linked orthopedic UHMWPE. Three crosslinked and four conventional UHMWPE pins made from compression-molded GUR 1050, were activated with 109 to 1010 7Be nuclei using a new implantation setup that produced a homogenous distribution of implanted nuclei upmore » to 8.5 μm below the surface. The pins were tested for wear in a six-station pin-on-flat apparatus for up to 7.1 million cycles (178 km). A Germanium gamma detector was employed to determine activity loss of the UHMWPE pins at preset intervals during the wear test. The wear of the cross-linked UHMWPE pins was readily detected and estimated to be 17 ± 3 μg/Mc. The conventional-to-cross-linked ratio of the wear rates was 13.1 ± 0.8, in the expected range for these materials. It was estimated that implantation reduced the average wear rate by approximately 20%, and the oxidative degradation damage from implantation was negligible. Future applications of this tracer technology may include the analysis of location-specific wear, such as loss of material in the post or backside of a tibial insert.« less

  7. The effect of radiation processing and filler morphology on the biomechanical stability of a thermoset polyester composite.

    PubMed

    Jayabalan, M; Shalumon, K T; Mitha, M K; Ganesan, K; Epple, M

    2010-04-01

    The effect of radiation processing and filler morphology on the biodegradation and biomechanical stability of a poly(propylene fumarate)/hydroxyapatite composite was investigated. Radiation processing influenced both cross-linking and biodegradation of the composites. Irradiation with a dose of 3 Mrad resulted in enhanced cross-linking, mechanical properties and a higher storage modulus which are favourable for dimensional stability of the implant. The particle morphology of the added hydroxyapatite in the highly cross-linked state significantly influenced the biomechanical and interfacial stability of the composites. Reorganization of agglomerated hydroxyapatite occurred in the cross-linked polymeric matrix under dynamic mechanical loading under simulated physiological conditions. Such a reorganization may increase the damping characteristics of the composite.

  8. Pluronic F127/chitosan blend microspheres for mucoadhesive drug delivery

    NASA Astrophysics Data System (ADS)

    Gu, W. Z.; Hu, X. F.

    2017-01-01

    Pluronic F127/chitosan blend microspheres were prepared via emulsification and cross-linking process using glutaraldehyde as a cross-linker. Compared with chitosan microspheres fabricated under the same experimental conditions, blend microspheres exhibited better physical stability and higher swelling capacity. Puerarin, a traditional Chinese medicine, was incorporated into microparticlesas the model drug. The in vitro release of puerarin from blend microspheres was reduced because of the improved compatibility of the drug with the matrices. According to the results from in vitro adhesion experiments, mucoadhesive behavior of blend microspheres on a mucosa-like surface was similar to that of chitosan microspheres, despite their good ability of anti-protein absorption in solution.

  9. Thiolated chitosan/DNA nanocomplexes exhibit enhanced and sustained gene delivery.

    PubMed

    Lee, Dongwon; Zhang, Weidong; Shirley, Shawna A; Kong, Xiaoyuan; Hellermann, Gary R; Lockey, Richard F; Mohapatra, Shyam S

    2007-01-01

    Thiolated chitosan appears to possess enhanced mucoadhesiveness and cell penetration properties, however, its potential in gene-drug delivery remains unknown. Herein, we report on a highly effective gene delivery system utilizing a 33-kDa thiol-modified chitosan derivative. Thiolated chitosan was prepared by the reaction with thioglycolic acid. Nanocomplexes of unmodified chitosan or thiolated chitosan with plasmid DNA encoding green fluorescenct protein (GFP) were characterized for their size, zeta potential, their ability to bind and protect plasmid DNA from degradation. The transfection efficiency of thiolated chitosan and sustained gene expression were evaluated in various cell lines in vitro and in Balb/c mice in vivo. Thiolated chitosan-DNA nanocomplexes ranged in size from 75 to 120 nm in diameter and from +2.3 to 19.7 mV in zeta potential, depending on the weight ratio of chitosan to DNA. Thiolated chitosan, CSH360, exhibited effective physical stability and protection against DNase I digestion at a weight ratio>or=2.5:1. CSH360/DNA nanocomplexes induced significantly (P<0.01) higher GFP expression in HEK293, MDCK and Hep-2 cell lines than unmodified chitosan. Nanocomplexes of disulphide-crosslinked CSH360/DNA showed a sustained DNA release and continuous expression in cultured cells lasting up to 60 h post transfection. Also, intranasal administration of crosslinked CSH360/DNA nanocomplexes to mice yielded gene expression that lasted for at least 14 days. Thiolated chitosans condense pDNA to form nanocomplexes, which exhibit a significantly higher gene transfer potential and sustained gene expression upon crosslinking, indicating their great potential for gene therapy and tissue engineering.

  10. The role of actin networks in cellular mechanosensing

    NASA Astrophysics Data System (ADS)

    Azatov, Mikheil

    Physical processes play an important role in many biological phenomena, such as wound healing, organ development, and tumor metastasis. During these processes, cells constantly interact with and adapt to their environment by exerting forces to mechanically probe the features of their surroundings and generating appropriate biochemical responses. The mechanisms underlying how cells sense the physical properties of their environment are not well understood. In this thesis, I present my studies to investigate cellular responses to the stiffness and topography of the environment. In order to sense the physical properties of their environment, cells dynamically reorganize the structure of their actin cytoskeleton, a dynamic network of biopolymers, altering the shape and spatial distribution of protein assemblies. Several observations suggest that proteins that crosslink actin filaments may play an important role in cellular mechanosensitivity. Palladin is an actin-crosslinking protein that is found in the lamellar actin network, stress fibers and focal adhesions, cellular structures that are critical for mechanosensing of the physical environment. By virtue of its close interactions with these structures in the cell, palladin may play an important role in cell mechanics. However, the role of actin crosslinkers in general, and palladin in particular, in cellular force generation and mechanosensing is not well known. I have investigated the role of palladin in regulating the plasticity of the actin cytoskeleton and cellular force generation in response to alterations in substrate stiffness. I have shown that the expression levels of palladin modulate the forces exerted by cells and their ability to sense substrate stiffness. Perturbation experiments also suggest that palladin levels in cells altered myosin motor activity. These results suggest that the actin crosslinkers, such as palladin, and myosin motors coordinate for optimal cell function and to prevent aberrant behavior as in cancer metastasis. In addition to stiffness, the local geometry or topography of the surface has been shown to modulate the movement, morphology, and cytoskeletal organization of cells. However, the effect of topography on fluctuations of intracellular structures, which arise from motor driven activity on a viscoelastic actin network are not known. I have used nanofabricated substrates with parallel ridges to show that the cell shape, the actin cytoskeleton and focal adhesions all align along the direction of the ridges, exhibiting a biphasic dependence on the spacing between ridges. I further demonstrated that palladin bands along actin stress fibers undergo a complex diffusive motion with velocities aligned along the direction of ridges. These results provide insight into the mechanisms of cellular mechanosensing of the environment, suggesting a complex interplay between the actin cytoskeleton and cellular adhesions in coordinating cellular response to surface topography. Overall, this work has advanced our understanding of mechanisms that govern cellular responses to their physical environment.

  11. Multiple binding modes of substrate to the catalytic RNA subunit of RNase P from Escherichia coli.

    PubMed Central

    Pomeranz Krummel, D A; Altman, S

    1999-01-01

    M1 RNA that contained 4'-thiouridine was photochemically cross-linked to different substrates and to a product of the reaction it governs. The locations of the cross-links in these photochemically induced complexes were identified. The cross-links indicated that different substrates share some contacts but have distinct binding modes to M1 RNA. The binding of some substrates also results in a substrate-dependent conformational change in the enzymatic RNA, as evidenced by the appearance of an M1 RNA intramolecular cross-link. The identification of the cross-links between M1 RNA and product indicate that they are shared with only one of the three cross-linked E-S complexes that were identified, an indication of noncompetitive inhibition by the product. We also examined whether the cross-linked complexes between M1 RNA and substrate(s) or product are altered in the presence of the enzyme's protein cofactor (C5 protein) and in the presence of different concentrations of divalent metal ions. C5 protein enhanced the yield of certain M1 RNA-substrate cross-linked complexes for both wild-type M1 RNA and a deletion mutant of M1 RNA (delta[273-281]), but not for the M1 RNA-product complex. High concentrations of Mg2+ increased the yield of all M1 RNA-substrate complexes but not the M1 RNA-product complex. PMID:10445877

  12. Monodisperse microbeads of hypercrosslinked polystyrene for liquid and supercritical fluid chromatography

    NASA Astrophysics Data System (ADS)

    Tsyurupa, M. P.; Blinnikova, Z. K.; Il'in, M. M.; Davankov, V. A.; Parenago, O. O.; Pokrovskii, O. I.; Usovich, O. I.

    2015-11-01

    Monodisperse styrene-divinylbenzene (1 wt %) copolymer microbeads are obtained via the elaborate method of high-productivity precipitation polymerization. The crosslinking of this copolymer with chloromethyl methyl ether in the presence of Friedel-Crafts catalyst yields porous hypercrosslinked polymers with degrees of crosslinking that range from 200 to 500%. Microbead sorbents are shown to be suited for selective stationary phases for high-performance liquid chromatography and supercritical fluid chromatography.

  13. 3D Bi2S3/TiO2 cross-linked heterostructure: An efficient strategy to improve charge transport and separation for high photoelectrochemical performance

    NASA Astrophysics Data System (ADS)

    Han, Minmin; Jia, Junhong

    2016-10-01

    A novel 3D cross-linked heterostructure of TiO2 nanorods connecting with each other via ultrathin Bi2S3 nanosheets is constructed by a facile and effective strategy. The growth mechanism has been investigated and proposed based on the evolution of microstructure by changing the reaction parameters. Benefiting from the unique cross-linked heterostructure, the as-prepared Bi2S3 nanosheets modified TiO2 nanorods arrays could achieve a high energy conversion efficiency of 3.29% which is the highest value to date for Bi2S3-only sensitized solar cells as the reported highest value is 2.23% and other reported values are less than 1%. Furthermore, the photoelectrochemical studies clearly reveal that the novel cross-linked heterostructure exhibits much better activity than 0D nanoparticles decorated TiO2 nanorods under visible light irradiation, which may be primarily ascribed to the efficient electron transfer from 2D ultrathin Bi2S3 nanosheets to 1D TiO2 nanorod arrays. The promising results in this work confirm the advantages of cross-linked heterostructure and also undoubtedly offer an attractive synthesis strategy to fabricate other nanorod-based hierarchical architecture as well as nano-devices for solar energy conversion.

  14. The mechanism of collagen cross-linking in diabetes: a puzzle nearing resolution.

    PubMed

    Monnier, V M; Glomb, M; Elgawish, A; Sell, D R

    1996-07-01

    Considerable interest has been focused in recent years on the mechanism of collagen cross-linking by high glucose in vitro and in vivo. Experiments in both diabetic humans and in animals have shown that over time collagen becomes less soluble, less digestible by collagenase, more stable to heat-induced denaturation, and more glycated. In addition, collagen becomes more modified by advanced products of the Maillard reaction, i.e., immunoreactive advanced glycation end products and the glycoxidation markers carboxymethyllysine and pentosidine. Mechanistic studies have shown that collagen cross-linking in vitro can be uncoupled from glycation by the use of antioxidants and chelating agents. Experiments in the authors' laboratory revealed that approximately 50% of carboxymethyllysine formed in vitro originates from pathways other than oxidation of Amadori products, i.e., most likely the oxidation of Schiff base-linked glucose. In addition, the increase in thermal stability of rat tail tendons exposed to high glucose in vitro or in vivo was found to strongly depend on H2O2 formation. The final missing piece of the puzzle is that of the structure of the major cross-link. We speculate that it is a nonfluorescent nonultraviolet active cross-link between two lysine residues, which includes a fragmentation product of glucose linked in a nonreducible bond labile to both strong acids and bases.

  15. The effect of electron beam irradiation on the mechanical properties of pineapple leaf fibre (PALF) reinforced high impact polystyrene (HIPS) composites

    NASA Astrophysics Data System (ADS)

    Siregar, J. P.; Sapuan, S. M.; Rahman, M. Z. A.; Zaman, H. M. D. K.

    2010-05-01

    The effects of electron beam irradiation on the mechanical properties of pineapple leaf fibre reinforced high impact polystyrene (HIPS) composites were studied. Two types of crosslinking agent that has been used in this study were trimethylolpropane triacrylate (TMPTA) and tripropylene gylcol diacrylate (TPGDA). A 50 wt.% of PALF was blended with HIPS and crosslinking agent using Brabender melt mixer at 165 °C. The composites were then irradiated using a 3 MeV electron beam accelerator with dosage of 0-100 kGy. The tensile strength, tensile modulus, flexural strength, flexural modulus, notched and unnotched impat and hardness of composites were measured and the effects of crosslinking agent were also compared.

  16. Two Players Make a Formidable Combination: In Situ Generated Poly(acrylic anhydride-2-methyl-acrylic acid-2-oxirane-ethyl ester-methyl methacrylate) Cross-Linking Gel Polymer Electrolyte toward 5 V High-Voltage Batteries.

    PubMed

    Ma, Yue; Ma, Jun; Chai, Jingchao; Liu, Zhihong; Ding, Guoliang; Xu, Gaojie; Liu, Haisheng; Chen, Bingbing; Zhou, Xinhong; Cui, Guanglei; Chen, Liquan

    2017-11-29

    Electrochemical performance of high-voltage lithium batteries with high energy density is limited because of the electrolyte instability and the electrode/electrolyte interfacial reactivity. Hence, a cross-linking polymer network of poly(acrylic anhydride-2-methyl-acrylic acid-2-oxirane-ethyl ester-methyl methacrylate) (PAMM)-based electrolyte was introduced via in situ polymerization inspired by "shuangjian hebi", which is a statement in a traditional Chinese Kungfu story similar to the synergetic effect of 1 + 1 > 2. A poly(acrylic anhydride) and poly(methyl methacrylate)-based system is very promising as electrolyte materials for lithium-ion batteries, in which the anhydride and acrylate groups can provide high voltage resistance and fast ionic conductivity, respectively. As a result, the cross-linking PAMM-based electrolyte possesses a significant comprehensive enhancement, including electrochemical stability window exceeding 5 V vs Li + /Li, an ionic conductivity of 6.79 × 10 -4 S cm -1 at room temperature, high mechanical strength (27.5 MPa), good flame resistance, and excellent interface compatibility with Li metal. It is also demonstrated that this gel polymer electrolyte suppresses the negative effect resulting from dissolution of Mn 2+ ions at 25 and 55 °C. Thus, the LiNi 0.5 Mn 1.5 O 4 /Li and LiNi 0.5 Mn 1.5 O 4 /Li 4 Ti 5 O 12 cells using the optimized in situ polymerized cross-linking PAMM-based gel polymer electrolyte deliver stable charging/discharging profiles and excellent rate performance at room temperature and even at 55 °C. These findings suggest that the cross-linking PAMM is an intriguing candidate for 5 V class high-voltage gel polymer electrolyte toward high-energy lithium-on batteries.

  17. Molecular scale modeling of polymer imprint nanolithography.

    PubMed

    Chandross, Michael; Grest, Gary S

    2012-01-10

    We present the results of large-scale molecular dynamics simulations of two different nanolithographic processes, step-flash imprint lithography (SFIL), and hot embossing. We insert rigid stamps into an entangled bead-spring polymer melt above the glass transition temperature. After equilibration, the polymer is then hardened in one of two ways, depending on the specific process to be modeled. For SFIL, we cross-link the polymer chains by introducing bonds between neighboring beads. To model hot embossing, we instead cool the melt to below the glass transition temperature. We then study the ability of these methods to retain features by removing the stamps, both with a zero-stress removal process in which stamp atoms are instantaneously deleted from the system as well as a more physical process in which the stamp is pulled from the hardened polymer at fixed velocity. We find that it is necessary to coat the stamp with an antifriction coating to achieve clean removal of the stamp. We further find that a high density of cross-links is necessary for good feature retention in the SFIL process. The hot embossing process results in good feature retention at all length scales studied as long as coated, low surface energy stamps are used.

  18. Microporous Organic Polymers Based on Hyper-Crosslinked Coal Tar: Preparation and Application for Gas Adsorption.

    PubMed

    Gao, Hui; Ding, Lei; Bai, Hua; Li, Lei

    2017-02-08

    Hyper-crosslinked polymers (HCPs) are promising materials for gas capture and storage, but high cost and complicated preparation limit their practical application. In this paper, a new type of HCPs (CTHPs) was synthesized through a one-step mild Friedel-Crafts reaction with low-cost coal tar as the starting material. Chloroform was utilized as both solvent and crosslinker to generate a three-dimensional crosslinked network with abundant micropores. The maximum BET surface area of the prepared CTHPs could reach up to 929 m 2  g -1 . Owing to the high affinity between the heteroatoms on the coal-tar building blocks and the CO 2 molecules, the adsorption capacity of CTHPs towards CO 2 reached up to 14.2 wt % (1.0 bar, 273 K) with a high selectivity (CO 2 /N 2 =32.3). Furthermore, the obtained CTHPs could adsorb 1.27 wt % H 2 at 1.0 bar and 77.3 K, and also showed capacity for the capture of high organic vapors at room temperature. In comparison with other reported porous organic polymers, CTHPs have the advantages of low-cost, easy preparation, and high gas-adsorption performance, making them suitable for mass production and practical use in the future. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Highly crosslinked polymeric monoliths for reversed-phase capillary liquid chromatography of small molecules.

    PubMed

    Liu, Kun; Tolley, H Dennis; Lee, Milton L

    2012-03-02

    Seven crosslinking monomers, i.e., 1,3-butanediol dimethacrylate (1,3-BDDMA), 1,4-butanediol dimethacrylate (1,4-BDDMA), neopentyl glycol dimethacrylate (NPGDMA), 1,5-pentanediol dimethacrylate (1,5-PDDMA), 1,6-hexanediol dimethacrylate (1,6-HDDMA), 1,10-decanediol dimethacrylate (1,10-DDDMA), and 1,12-dodecanediol dimethacrylate (1,12-DoDDMA), were used to synthesize highly cross-linked monolithic capillary columns for reversed-phase liquid chromatography (RPLC) of small molecules. Dodecanol and methanol were chosen as "good" and "poor" porogenic solvents, respectively, for these monoliths, and were investigated in detail to provide insight into the selection of porogen concentration using 1,12-DoDDMA. Isocratic elution of alkylbenzenes at a flow rate of 300 nL/min was conducted for all of the monoliths. Gradient elution of alkylbenzenes and alkylparabens provided high resolution separations. Optimized monoliths synthesized from all seven crosslinking monomers showed high permeability. Several of the monoliths demonstrated column efficiencies in excess of 50,000 plates/m. Monoliths with longer alkyl-bridging chains showed very little shrinking or swelling in solvents of different polarities. Column preparation was highly reproducible; the relative standard deviation (RSD) values (n=3) for run-to-run and column-to-column were less than 0.25% and 1.20%, respectively, based on retention times of alkylbenzenes. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Spontaneous translocation of antitumor oxaliplatin, its enantiomeric analogue, and Cisplatin from one strand to another in double-helical DNA.

    PubMed

    Malina, Jaroslav; Natile, Giovanni; Brabec, Viktor

    2013-09-02

    Oxaliplatin and cisplatin belong to the class of platinum-based anticancer agents. Formation of DNA adducts by these complexes and the consequences for its structure and function, is the mechanistic paradigm by which these drugs exert their antitumor activity. We show that employing short oligonucleotide duplexes containing single, site-specific 1,3-intrastrand cross-links of oxaliplatin, its enantiomeric analogue, or cisplatin and by using gel electrophoresis that under physiological conditions the coordination bonds between platinum and the N7 position of guanine residues involved in the cross-links of the Pt(II) complexes can be cleaved. This cleavage may lead to linkage isomerization reactions between these metallodrugs and double-helical DNA. For instance, approximately 25 % 1,3-intrastrand cross-links of the platinum complexes isomerized after 192 h (at 310 K in 200 mM NaClO4). Differential scanning calorimetry of duplexes containing single, site-specific cross-links of oxaliplatin, its enantiomeric analogue, and cisplatin reveals that one of the driving forces that leads to the lability of DNA cross-links of these metallodrugs is a difference between the thermodynamic destabilization induced by the cross-link and by the adduct into which it could isomerize. The rearrangements may proceed in the way that cross-links originally formed in one strand of the DNA can spontaneously translocate from one DNA strand to its complementary counterpart, which may evoke walking of the platinum complex on DNA molecule. In addition, the differences in the kinetics of the rearrangement reactions and the thermodynamic destabilization of DNA observed for adducts of oxaliplatin and its enantiomeric analogue confirm that the chirality at the carrier 1,2-diaminocyclohexane ligand can considerably affect structural and other physical properties of DNA adducts and consequently their biological effects. In aggregate, interesting generalization of the results described in this work might be that the migration of oxaliplatin, its enantiomeric analogue, or cisplatin from one strand to another in double-helical DNA controlled by energetic signatures of these agents might contribute to a better understanding of their cytotoxic and mutagenic potential. Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Biomimetic microbeads containing a chondroitin sulfate/chitosan polyelectrolyte complex for cell-based cartilage therapy.

    PubMed

    Daley, Ethan Lh; Coleman, Rhima M; Stegemann, Jan P

    2015-10-28

    Articular cartilage has a limited healing capacity that complicates the treatment of joint injuries and osteoarthritis. Newer repair strategies have focused on the use of cells and biomaterials to promote cartilage regeneration. In the present study, we developed and characterized bioinspired materials designed to mimic the composition of the cartilage extracellular matrix. Chondroitin sulfate (CS) and chitosan (CH) were used to form physically cross-linked macromolecular polyelectrolyte complexes (PEC) without the use of additional crosslinkers. A single-step water-in-oil emulsification process was used to either directly embed mesenchymal stem cells (MSC) in PEC particles created with a various concentrations of CS and CH, or to co-embed MSC with PEC in agarose-based microbeads. Direct embedding of MSC in PEC resulted in high cell viability but irregular and large particles. Co-embedding of PEC particles with MSC in agarose (Ag) resulted in uniform microbeads 80-90 μm in diameter that maintained high cell viability over three weeks in culture. Increased serum content resulted in more uniform PEC distribution within the microbead matrix, and both high and low CS:CH ratios resulted in more homogeneous microbeads than 1:1 formulations. Under chondrogenic conditions, expression of sulfated GAG and collagen type II was increased in 10:1 CS:CH PEC-Ag microbeads compared to pure Ag beads, indicating a chondrogenic influence of the PEC component. Such PEC-Ag microbeads may have utility in the directed differentiation and delivery of progenitor cell populations for cartilage repair.

  2. A novel smart injectable hydrogel prepared by microbial transglutaminase and human-like collagen: Its characterization and biocompatibility.

    PubMed

    Zhao, Leilei; Li, Xian; Zhao, Jiaqi; Ma, Saijian; Ma, Xiaoxuan; Fan, Daidi; Zhu, Chenhui; Liu, Yannan

    2016-11-01

    Various tissue scaffold materials are increasingly used to repair skin defects by cross-linking because of the ability to fill and implant in any form via operation. However, crosslinker residues cannot be easily removed from scaffold materials prepared by chemical crosslinking methods, limiting their use for skin tissue engineering. Here, microbial transglutaminase (MTGase), a nontoxic crosslinker with high specific activity and reaction rate under mild conditions, was employed crosslinks in human-like collagen (HLC) to yield novel smart MTGase crosslinked with human-like collagen (MTGH) hydrogels, which are sensitive to temperature and/or enzymes. Various ratios of MTGase/HLC were performed, and their physicochemical properties were characterized, including the swelling ratio, the elastic modulus, the morphology and the porosity. The degradation behavior and mechanism of MTGase in concentration-dependent manner involved in formation hydrogels were identifying in vitro. The cell attachment in vitro and biocompatibility in vivo were also investigated. The results demonstrated that the use of different concentrations of MTGase to crosslink HLC produced products with different degradation times and biocompatibilities. The 50U/g MTGase-prepared MTGH hydrogels had a higher density of crosslinks, which made them more resistant to degradation by collagenase I and collagenase II. However, 40U/g MTGase-prepared MTGH hydrogels were more suitable for cell attachment. In addition, compared with the Collagen Implant I® (SUM) used in animal experiments, the 40U/g MTGase-prepared MTGH hydrogels had a lower toxicity and better biocompatibility. Therefore, 40U/g MTGase crosslinked with HLC should be used to prepare MTGH hydrogels for potential application as soft materials for skin tissue engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. A photochemical crosslinking technology for tissue engineering: enhancement of the physico-chemical properties of collagen-based scaffolds

    NASA Astrophysics Data System (ADS)

    Chan, Barbara P.

    2005-04-01

    Collagen gel is a natural biomaterial commonly used in tissue engineering because of its close resemblance to nature, negligible immunogenecity and excellent biocompatibility. However, unprocessed collagen gel is mechanically weak, highly water binding and vulnerable to chemical and enzymatic attacks that limits its use in tissue engineering in particular tissues for weight-bearing purposes. The current project aimed to strengthen and stabilize collagen scaffolds using a photochemical crosslinking technique. Photochemical crosslinking is rapid, efficient, non-thermal and does not involve toxic chemicals, comparing with other crosslinking methods such as glutaraldehyde and gamma irradiation. Collagen scaffolds were fabricated using rat-tail tendon collagen. An argon laser was used to process the collagen gel after equilibrating with a photosensitizing reagent. Scanning electronic microscope was used to characterize the surface and cross-sectional morphology of the membranes. Physico-chemical properties of the collagen scaffolds such as water-binding capacity, mechanical properties and thermostability were studied. Photochemical crosslinking significantly reduced the water-binding capacity, a parameter inversely proportional to the extent of crosslinking, of collagen scaffolds. Photochemical crosslinking also significantly increased the ultimate stress and tangent modulus at 90% of the rupture strain of the collagen scaffolds. Differential scanning calorimetry analysis showed a significantly higher shrinkage temperature and absence of the denaturation peak during the thermoscan comparing with the controls. This means greater thermostability in the photochemically crosslinked collagen scaffolds. This study demonstrates that the photochemical crosslinking technology is able to enhance the physicochemical propterties of collagen scaffolds by strengthening, stabilizing and controlling the swelling ratio of the collagen scaffolds so as to enable their use for tissue engineering.

  4. Autoclavable physically-crosslinked chitosan cryogel as a wound dressing.

    PubMed

    Takei, Takayuki; Danjo, So; Sakoguchi, Shogo; Tanaka, Sadao; Yoshinaga, Takuma; Nishimata, Hiroto; Yoshida, Masahiro

    2018-04-01

    Moist wounds were known to heal more rapidly than dry wounds. Hydrogel wound dressings were suitable for the moist wound healing because of their hyperhydrous structure. Chitosan was a strong candidate as a base material for hydrogel wound dressings because the polymer had excellent biological properties that promoted wound healing. We previously developed physically-crosslinked chitosan cryogels, which were prepared solely by freeze-thawing of a chitosan-gluconic acid conjugate (CG) aqueous solution, for wound treatment. The CG cryogels were disinfected by immersing in 70% ethanol before applying to wounds in our previous study. In the present study, we examined the influence of autoclave sterilization (121°C, 20 min) on the characteristics of CG cryogel because complete sterilization was one of the fundamental requirements for medical devices. We found that optimum value of gluconic acid content of CG, defined as the number of the incorporated gluconic acid units per 100 glucosamine units of chitosan, was 11 for autoclaving. An increased crosslinking level of CG cryogel on autoclaving enhanced resistance of the gels to enzymatic degradation. Furthermore, the autoclaved CG cryogels retained favorable biological properties of the pre-autoclaved CG cryogels in that they showed the same hemostatic activity and efficacy in repairing full-thickness skin wounds as the pre-autoclaved CG cryogels. These results showed the great potential of autoclavable CG cryogels as a practical wound dressing. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. Atmospheric Pressure Non-Equilibrium Plasma as a Green Tool to Crosslink Gelatin Nanofibers

    NASA Astrophysics Data System (ADS)

    Liguori, Anna; Bigi, Adriana; Colombo, Vittorio; Focarete, Maria Letizia; Gherardi, Matteo; Gualandi, Chiara; Oleari, Maria Chiara; Panzavolta, Silvia

    2016-12-01

    Electrospun gelatin nanofibers attract great interest as a natural biomaterial for cartilage and tendon repair despite their high solubility in aqueous solution, which makes them also difficult to crosslink by means of chemical agents. In this work, we explore the efficiency of non-equilibrium atmospheric pressure plasma in stabilizing gelatin nanofibers. We demonstrate that plasma represents an innovative, easy and environmentally friendly approach to successfully crosslink gelatin electrospun mats directly in the solid state. Plasma treated gelatin mats display increased structural stability and excellent retention of fibrous morphology after immersion in aqueous solution. This method can be successfully applied to induce crosslinking both in pure gelatin and genipin-containing gelatin electrospun nanofibers, the latter requiring an even shorter plasma exposure time. A complete characterization of the crosslinked nanofibres, including mechanical properties, morphological observations, stability in physiological solution and structural modifications, has been carried out in order to get insights on the occurring reactions triggered by plasma.

  6. Preparation and characterization of electrospun in-situ cross-linked gelatin-graphite oxide nanofibers.

    PubMed

    Zhan, Jianchao; Morsi, Yosry; Ei-Hamshary, Hany; Al-Deyab, Salem S; Mo, Xiumei

    2016-01-01

    Electrospun gelatin(Gel) nanofibers scaffold has such defects as poor mechanical property and quick degradation due to high solubility. In this study, the in situ cross-linked electrospinning technique was used for the production of gelatin nanofibers. Deionized water was chosen as the spinning solvent and graphite oxide (GO) was chosen as the enhancer. The morphological structure, porosity, thermal property, moisture absorption, and moisture retention performance, hydrolysis resistance, mechanical property, and biocompatibility of the produced nanofibers were investigated. Compared with in situ cross-linked gelatin nanofibers scaffold, in situ cross-linked Gel-GO nanofibers scaffold has the following features: (1) the hydrophilicity, moisture absorption, and moisture retention performance slightly reduce, while the hydrolysis resistance is improved; (2) the breaking strength, breaking elongation, and Young's modulus are significantly improved; (3) the porosity slightly reduces while the biocompatibility considerably increases. The in situ cross-linked Gel-GO nanofibers scaffold is likely to be applied in such fields as drug delivery and scaffold for skin tissue engineering.

  7. Fabrication of nanobeads from nanocups by controlling scission/crosslinking in organic polymer materials.

    PubMed

    Oyama, Tomoko Gowa; Oshima, Akihiro; Washio, Masakazu; Tagawa, Seiichi

    2012-12-14

    The development of several kinds of micro/nanofabrication techniques has resulted in many innovations in the micro/nanodevices that support today's science and technology. With feature miniaturization, the fabrication tools have shifted from light to ionizing radiation. Here, we propose a simple micro/nanofabrication technique for organic materials using a scanning beam (SB) of ionizing radiation. By controlling the scission/crosslinking of the material via three-dimensional energy-deposition distribution of the SB, appropriate solvents can easily peel off only the crosslinked region from the bulk material. The technique was demonstrated using a focused ion beam and a chlorinated organic polymer. The polymer underwent main-chain scission upon irradiation, but it crosslinked after high-dose irradiation. Appropriate solvents could easily peel off only the crosslinked region from the bulk material. The technique, 'nanobead from nanocup', enabled the production of desired structures such as nanowires and nanomembranes. It can be also applied to the micro/nanofabrication of functional materials.

  8. A multicomponent complex is required for the AAUAAA-dependent cross-linking of a 64-kilodalton protein to polyadenylation substrates.

    PubMed Central

    Wilusz, J; Shenk, T; Takagaki, Y; Manley, J L

    1990-01-01

    A 64-kilodalton (kDa) polypeptide that is cross-linked by UV light specifically to polyadenylation substrate RNAs containing a functional AAUAAA element has been identified previously. Fractionated HeLa nuclear components that can be combined to regenerate efficient and accurate polyadenylation in vitro have now been screened for the presence of the 64-kDa protein. None of the individual components contained an activity which could generate the 64-kDa species upon UV cross-linking in the presence of substrate RNA. It was necessary to mix two components, cleavage stimulation factor and specificity factor, to reconstitute 64-kDa protein-RNA cross-linking. The addition of cleavage factors to this mixture very efficiently reconstituted the AAUAAA-specific 64-kDa protein-RNA interaction. The 64-kDa protein, therefore, is present in highly purified, reconstituted polyadenylation reactions. However, it is necessary to form a multicomponent complex to efficiently cross-link the protein to a substrate RNA. Images PMID:2304466

  9. Two ply tubular scaffolds comprised of proteins/poliglecaprone/polycaprolactone fibers.

    PubMed

    Zhang, Xing; Thomas, Vinoy; Vohra, Yogesh K

    2010-02-01

    Electrospun bi-layer tubular hybrid scaffolds composed of poliglecaprone (PGC), polycaprolactone (PCL), elastin (E), and gelatin (G) were prepared and thereafter crosslinked by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC). Scanning electron microscopic (SEM) images revealed a highly porous micro-structure comprising randomly distributed non-woven fibers with the majority of fibers in submicron diameters. The EDC-crosslinking yielded an average crosslinking degree of 40%. Uni-axial tensile test of hydrated scaffolds in both longitudinal and circumferential directions revealed tensile properties, comparable to those of native arteries. The graft (PGC:PCL = 1:3) did not demonstrate significant difference before and after EDC-crosslinking in tensile strength or % strain in either longitudinal or circumferential directions. However, crosslinking increased the Young's modulus of the graft along the longitudinal direction (from 5.84 to 8.67 MPa). On the contrary, the graft (3:1) demonstrated a significant decrease in maximum strain in both directions. Cyto-assay using human umbilical vein endothelial cells (HUVECs) showed excellent cell viability.

  10. Interlayer shear behaviors of graphene-carbon nanotube network

    NASA Astrophysics Data System (ADS)

    Qin, Huasong; Liu, Yilun

    2017-09-01

    The interlayer shear resistance plays an important role in graphene related applications, and different mechanisms have been proposed to enhance its interlayer load capacity. In this work, we performed molecular dynamics (MD) simulations and theoretical analysis to study interlayer shear behaviors of three dimensional graphene-carbon (3D-GC) nanotube networks. The shear mechanical properties of carbon nanotubes (CNTs) crosslink with different diameters are obtained which is one order of magnitude larger than that of other types of crosslinks. Under shear loading, 3D-GC exhibits two failure modes, i.e., fracture of graphene sheet and failure of CNT crosslink, determined by the diameter of CNT crosslink, crosslink density, and length of 3D-GC. A modified tension-shear chain model is proposed to predict the shear mechanical properties and failure mode of 3D-GC, which agrees well with MD simulation results. The results presented in this work may provide useful insights for future development of high-performance 3D-GC materials.

  11. Motion in partially and fully cross-linked F-actin networks

    NASA Astrophysics Data System (ADS)

    Morris, Eliza; Ehrlicher, Allen; Weitz, David

    2012-02-01

    Single molecule experiments have measured stall forces and procession rates of molecular motors on isolated cytoskeletal fibers in Newtonian fluids. But in the cell, these motors are transporting cargo through a highly complex cytoskeletal network. To compare these single molecule results to the forces exerted by motors within the cell, an evaluation of the response of the cytoskeletal network is needed. Using magnetic tweezers and fluorescence confocal microscopy we observe and quantify the relationship between bead motion and filament response in F-actin networks both partially and fully cross-linked with filamin We find that when the transition from full to partial cross-linking is brought about by a decrease in cross-linker concentration there is a simultaneous decline in the elasticity of the network, but the response of the bead remains qualitatively similar. However, when the cross-linking is reduced through a shortening of the F-actin filaments the bead response is completely altered. The characteristics of the altered bead response will be discussed here.

  12. Cross-Linked Nanohybrid Polymer Electrolytes With POSS Cross-Linker for Solid-State Lithium Ion Batteries.

    PubMed

    Zhang, Jinfang; Li, Xiaofeng; Li, Ying; Wang, Huiqi; Ma, Cheng; Wang, Yanzhong; Hu, Shengliang; Wei, Weifeng

    2018-01-01

    A new class of freestanding cross-linked hybrid polymer electrolytes (HPEs) with POSS as the cross-linker was prepared by a one-step free radical polymerization reaction. Octavinyl octasilsesquioxane (OV-POSS) with eight functional corner groups was used to provide cross-linking sites for the connection of polymer segments and the required mechanical strength to separate the cathode and anode. The unique cross-linked structure offers additional free volume for the motion of EO chains and provides fast and continuously interconnected ion-conducting channels along the nanoparticles/polymer matrix interface. The HPE exhibits the highest ionic conductivity of 1.39 × 10 -3 S cm -1 , as well as excellent interfacial compatibility with the Li electrode at 80°C. In particular, LiFePO 4 /Li cells based on the HPE deliver good rate capability and long-term cycling performance with an initial discharge capacity of 152.1 mAh g -1 and a capacity retention ratio of 88% after 150 cycles with a current density of 0.5 C at 80°C, demonstrating great potential application in high-performance LIBs at elevated temperatures.

  13. Cross-linked Nanohybrid Polymer Electrolytes with POSS Cross-linker for Solid-state Lithium Ion Batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Jinfang; Li, Xiaofeng; Li, Ying; Wang, Huiqi; Ma, Cheng; Wang, Yanzhong; Hu, Shengliang; Wei, Weifeng

    2018-05-01

    A new class of freestanding cross-linked hybrid polymer electrolytes (HPEs) with POSS as the cross-linker was prepared by a one-step free radical polymerization reaction. Octavinyl octasilsesquioxane (OV-POSS) with eight functional corner groups was used to provide cross-linking sites for the connection of polymer segments and the required mechanical strength to separate the cathode and anode. The unique cross-linked structure offers additional free volume for the motion of EO chains and provides fast and continuously interconnected ion-conducting channels along the nanoparticles/polymer matrix interface. The HPE exhibits the highest ionic conductivity of 1.39×10-3 S cm-1, as well as excellent interfacial compatibility with the Li electrode at 80 oC. In particular, LiFePO4/Li cells based on the HPE deliver good rate capability and long-term cycling performance with an initial discharge capacity of 152.1 mAh g-1 and a capacity retention ratio of 88% after 150 cycles with a current density of 0.5 C at 80 oC, demonstrating great potential application in high-performance LIBs at elevated temperatures.

  14. Effect of Cross-Linking on Free Volume Properties of PEG Based Thiol-Ene Networks

    NASA Astrophysics Data System (ADS)

    Ramakrishnan, Ramesh; Vasagar, Vivek; Nazarenko, Sergei

    According to the Fox and Loshaek theory, in elastomeric networks, free volume decreases linearly with the cross-link density increase. The aim of this study is to show whether the poly(ethylene glycol) (PEG) based multicomponent thiol-ene elastomeric networks demonstrate this model behavior? Networks with a broad cross-link density range were prepared by changing the ratio of the trithiol crosslinker to PEG dithiol and then UV cured with PEG diene while maintaining 1:1 thiol:ene stoichiometry. Pressure-volume-temperature (PVT) data of the networks was generated from the high pressure dilatometry experiments which was fit using the Simha-Somcynsky Equation-of-State analysis to obtain the fractional free volume of the networks. Using Positron Annihilation Lifetime Spectroscopy (PALS) analysis, the average free volume hole size of the networks was also quantified. The fractional free volume and the average free volume hole size showed a linear change with the cross-link density confirming that the Fox and Loshaek theory can be applied to this multicomponent system. Gas diffusivities of the networks showed a good correlation with free volume. A free volume based model was developed to describe the gas diffusivity trends as a function of cross-link density.

  15. DNA Photo Lithography with Cinnamate-based Photo-Bio-Nano-Glue

    NASA Astrophysics Data System (ADS)

    Feng, Lang; Li, Minfeng; Romulus, Joy; Sha, Ruojie; Royer, John; Wu, Kun-Ta; Xu, Qin; Seeman, Nadrian; Weck, Marcus; Chaikin, Paul

    2013-03-01

    We present a technique to make patterned functional surfaces, using a cinnamate photo cross-linker and photolithography. We have designed and modified a complementary set of single DNA strands to incorporate a pair of opposing cinnamate molecules. On exposure to 360nm UV, the cinnamate makes a highly specific covalent bond permanently linking only the complementary strands containing the cinnamates. We have studied this specific and efficient crosslinking with cinnamate-containing DNA in solution and on particles. UV addressability allows us to pattern surfaces functionally. The entire surface is coated with a DNA sequence A incorporating cinnamate. DNA strands A'B with one end containing a complementary cinnamated sequence A' attached to another sequence B, are then hybridized to the surface. UV photolithography is used to bind the A'B strand in a specific pattern. The system is heated and the unbound DNA is washed away. The pattern is then observed by thermo-reversibly hybridizing either fluorescently dyed B' strands complementary to B, or colloids coated with B' strands. Our techniques can be used to reversibly and/or permanently bind, via DNA linkers, an assortment of molecules, proteins and nanostructures. Potential applications range from advanced self-assembly, such as templated self-replication schemes recently reported, to designed physical and chemical patterns, to high-resolution multi-functional DNA surfaces for genetic detection or DNA computing.

  16. Fabrication of uniform multi-compartment particles using microfludic electrospray technology for cell co-culture studies.

    PubMed

    Liu, Zhou; Shum, Ho Cheung

    2013-01-01

    In this work, we demonstrate a robust and reliable approach to fabricate multi-compartment particles for cell co-culture studies. By taking advantage of the laminar flow within our microfluidic nozzle, multiple parallel streams of liquids flow towards the nozzle without significant mixing. Afterwards, the multiple parallel streams merge into a single stream, which is sprayed into air, forming monodisperse droplets under an electric field with a high field strength. The resultant multi-compartment droplets are subsequently cross-linked in a calcium chloride solution to form calcium alginate micro-particles with multiple compartments. Each compartment of the particles can be used for encapsulating different types of cells or biological cell factors. These hydrogel particles with cross-linked alginate chains show similarity in the physical and mechanical environment as the extracellular matrix of biological cells. Thus, the multi-compartment particles provide a promising platform for cell studies and co-culture of different cells. In our study, cells are encapsulated in the multi-compartment particles and the viability of cells is quantified using a fluorescence microscope after the cells are stained for a live/dead assay. The high cell viability after encapsulation indicates the cytocompatibility and feasibility of our technique. Our multi-compartment particles have great potential as a platform for studying cell-cell interactions as well as interactions of cells with extracellular factors.

  17. Fabrication of uniform multi-compartment particles using microfludic electrospray technology for cell co-culture studies

    PubMed Central

    Liu, Zhou; Shum, Ho Cheung

    2013-01-01

    In this work, we demonstrate a robust and reliable approach to fabricate multi-compartment particles for cell co-culture studies. By taking advantage of the laminar flow within our microfluidic nozzle, multiple parallel streams of liquids flow towards the nozzle without significant mixing. Afterwards, the multiple parallel streams merge into a single stream, which is sprayed into air, forming monodisperse droplets under an electric field with a high field strength. The resultant multi-compartment droplets are subsequently cross-linked in a calcium chloride solution to form calcium alginate micro-particles with multiple compartments. Each compartment of the particles can be used for encapsulating different types of cells or biological cell factors. These hydrogel particles with cross-linked alginate chains show similarity in the physical and mechanical environment as the extracellular matrix of biological cells. Thus, the multi-compartment particles provide a promising platform for cell studies and co-culture of different cells. In our study, cells are encapsulated in the multi-compartment particles and the viability of cells is quantified using a fluorescence microscope after the cells are stained for a live/dead assay. The high cell viability after encapsulation indicates the cytocompatibility and feasibility of our technique. Our multi-compartment particles have great potential as a platform for studying cell-cell interactions as well as interactions of cells with extracellular factors. PMID:24404050

  18. Thai Silk Fibroin/Gelatin Sponges for the Dual Controlled Release of Curcumin and Docosahexaenoic Acid for Anticancer Treatment.

    PubMed

    Lerdchai, Kantarat; Kitsongsermthon, Jutarat; Ratanavaraporn, Juthamas; Kanokpanont, Sorada; Damrongsakkul, Siriporn

    2016-01-01

    In this study, curcumin and/or docosahexaenoic acid (DHA) were encapsulated in Thai silk fibroin/gelatin (SF/G) sponges, prepared at different blending ratios, aimed to be applied as a controlled release system for localized cancer therapy. The SF/G sponges were fabricated by freeze-drying and glutaraldehyde cross-linking techniques. Physicochemical properties of the SF/G sponges were characterized. Then, curcumin and/or DHA were loaded in the sponges by physical adsorption. The encapsulation efficiency and the in vitro release of curcumin and/or DHA from the sponges were evaluated. SF/G sponges could encapsulate curcumin and/or DHA at high encapsulation efficiency. The highly cross-linked and slowly degrading SF/G (50/50) sponge released curcumin and/or DHA at the slowest rate. The in vitro cytotoxicity of the sponges against noncancer cells (L929 mouse fibroblast) and anticancer of curcumin and/or DHA released from the sponges against cervical cancer cells (CaSki) were tested. All sponges were not toxic to L929 mouse fibroblast. The mixed curcumin–DHA at the ratio of 1:4 had the highest inhibiting effect on the growth of CaSki, comparing with the release of curcumin or DHA alone. SF/G sponges could be a potential carrier for dual release of curcumin and DHA for anticancer effect.

  19. Adsorption of anionic surfactants from aqueous solution by high content of primary amino crosslinked chitosan microspheres.

    PubMed

    Zhang, Caihong; Wen, Haifeng; Huang, Yingying; Shi, Wenjian

    2017-04-01

    High content of primary amino crosslinked chitosan microspheres (ACCMs) were synthesized and characterized with IR, XRD and SEM technologies. Subsequently, ACCMs were adopted to adsorb three common anionic surfactants from aqueous solution: sodium dodecyl benzene sulfonate (SDBS), sodium lauryl sulfate (SLS), and sodium dodecyl sulfonate (SDS). The adsorption performances were evaluated based on different variables such as the pH, contact time, temperature and initial concentration of the anionic surfactants. Moreover, the adsorption were investigated with kinetic models, equilibrium isotherms and thermodynamic models. The experimental results indicated that the adsorption processes were fitted very well with a pseudo-second-order model. The adsorption isotherms could be better described by Langmuir model rather than Freundlich model. The adsorption of SDBS was a spontaneous, exothermic process. While the adsorption of SLS and SDS were spontaneous, endothermic. The adsorption processes were complex physical-chemistry adsorption models, which are dominated by physisorption. Furthermore, this study found that the material had strong absorption abilities for anionic surfactants, the saturation adsorption capacity of ACCMs were 1220mg/g for SDBS, 888mg/g for SLS, and 825mg/g for SDS at pH 3.0 and 298K, respectively. The adsorption capacity was reduced only 5.7% after 8 cycles of the adsorption-desorption processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Preparation and Characterization of Chitosan-coated Fe3O4 Nanoparticles using Ex-Situ Co-Precipitation Method and Tripolyphosphate/Sulphate as Dual Crosslinkers

    NASA Astrophysics Data System (ADS)

    Wulandari, Ika O.; Mardila, Vita T.; Santjojo, D. J. Djoko H.; Sabarudin, Akhmad

    2018-01-01

    The unique properties of nanomaterial provide great opportunities to develop in several fields. Several types of nanoparticles have been proven beneficial for biomedical and therapeutic agent development. Particularly for clinical use, nanoparticles must be biocompatible and non-toxic. Iron oxide nanoparticles consist of either magnetite (Fe3O4) or maghemite (γ-Fe2O3) was eligible to use for in vivo application including targeting drug delivery. Due to their distinct properties, these nanoparticles could be directed to the specific target under external magnetic field. However, nanoparticles have a tendency to form agglomeration. Therefore, surface modification was required to reduce the agglomeration. In this study, nanoparticles of Fe3O4 were produced and coated by biomaterial (chitosan) using ex-situ co-precipitation method. Nanoparticles of Fe3O4 were synthesized by adding ammonia water into iron ferric and ferrous solution. Synthesis process of Fe3O4 was conducted prior to adding chitosan. Chitosan was then cross-linked by a combination of tripolyphosphate/sulphate. The different composition ratio and crosslinking time provide the different physical and magnetic characteristics of nanoparticles. Particle and crystallite size was determined by using Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD) respectively, whereas magnetic characteristic was determined by Electron Spin Resonance (ESR). The results showed that the ratio enhancement between chitosan: Fe3O4 increase the particle size, while decreased the crystallite size. Morphology and particle size were influenced by the ratio of crosslinkers. It was found that the higher tripolyphosphate content was contributed to the small size and more spherical morphology. In addition, the influence of crosslinking time toward crystallite size was determined by altering stirring time. The longer duration of crosslinking time, provide the larger crystallite size of chitosan-Fe3O4. There was an interesting correlation between particle size and amount of Fe3O4 phase with ESR curve.

  1. Reversibly crosslinked hyaluronic acid nanoparticles for active targeting and intelligent delivery of doxorubicin to drug resistant CD44+ human breast tumor xenografts.

    PubMed

    Zhong, Yinan; Zhang, Jian; Cheng, Ru; Deng, Chao; Meng, Fenghua; Xie, Fang; Zhong, Zhiyuan

    2015-05-10

    The existence of drug resistance poses a major obstacle for the treatment of various malignant human cancers. Here, we report on reduction-sensitive reversibly crosslinked hyaluronic acid (HA) nanoparticles based on HA-Lys-LA conjugates (Lys: l-lysine methyl ester, LA: lipoic acid) for active targeting delivery of doxorubicin (DOX) to CD44+ breast cancers in vitro and in vivo, effectively overcoming drug resistance (ADR). HA-Lys-LA with degrees of substitution of 5, 10 and 28% formed robust nano-sized nanoparticles (152-219nm) following auto-crosslinking. DOX-loaded crosslinked nanoparticles revealed inhibited DOX release under physiological conditions while fast drug release in the presence of 10mM glutathione (GSH). Notably, MTT assays showed that DOX-loaded crosslinked HA-Lys-LA10 nanoparticles possessed an apparent targetability and a superior antitumor activity toward CD44 receptor overexpressing DOX-resistant MCF-7 human breast cancer cells (MCF-7/ADR). The in vivo pharmacokinetics and biodistribution studies in MCF-7/ADR tumor xenografts in nude mice showed that DOX-loaded crosslinked HA-Lys-LA10 nanoparticles had a prolonged circulation time and a remarkably high accumulation in the tumor (12.71%ID/g). Notably, DOX-loaded crosslinked HA-Lys-LA10 nanoparticles exhibited effective inhibition of tumor growth while continuous tumor growth was observed for mice treated with free drug. The Kaplan-Meier survival curves showed that in contrast to control groups, all mice treated with DOX-loaded crosslinked HA-Lys-LA10 nanoparticles survived over an experimental period of 44days. Importantly, DOX-loaded crosslinked HA nanoparticles caused low side effects. The reversibly crosslinked hyaluronic acid nanoparticles with excellent biocompatibility, CD44-targetability, and effective reversal of drug resistance have a great potential in cancer therapy. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Dissociation Behavior of a TEMPO-Active Ester Cross-Linker for Peptide Structure Analysis by Free Radical Initiated Peptide Sequencing (FRIPS) in Negative ESI-MS.

    PubMed

    Hage, Christoph; Ihling, Christian H; Götze, Michael; Schäfer, Mathias; Sinz, Andrea

    2017-01-01

    We have synthesized a homobifunctional amine-reactive cross-linking reagent, containing a TEMPO (2,2,6,6-tetramethylpiperidine-1-oxy) and a benzyl group (Bz), termed TEMPO-Bz-linker, to derive three-dimensional structural information of proteins. The aim for designing this novel cross-linker was to facilitate the mass spectrometric analysis of cross-linked products by free radical initiated peptide sequencing (FRIPS). In an initial study, we had investigated the fragmentation behavior of TEMPO-Bz-derivatized peptides upon collision activation in (+)-electrospray ionization collision-induced dissociation tandem mass spectrometry (ESI-CID-MS/MS) experiments. In addition to the homolytic NO-C bond cleavage FRIPS pathway delivering the desired odd-electron product ions, an alternative heterolytic NO-C bond cleavage, resulting in even-electron product ions mechanism was found to be relevant. The latter fragmentation route clearly depends on the protonation of the TEMPO-Bz-moiety itself, which motivated us to conduct (-)-ESI-MS, CID-MS/MS, and MS 3 experiments of TEMPO-Bz-cross-linked peptides to further clarify the fragmentation behavior of TEMPO-Bz-peptide molecular ions. We show that the TEMPO-Bz-linker is highly beneficial for conducting FRIPS in negative ionization mode as the desired homolytic cleavage of the NO-C bond is the major fragmentation pathway. Based on characteristic fragments, the isomeric amino acids leucine and isoleucine could be discriminated. Interestingly, we observed pronounced amino acid side chain losses in cross-linked peptides if the cross-linked peptides contain a high number of acidic amino acids. Graphical Abstract ᅟ.

  3. Minimum five-year follow-up wear measurement of longevity highly cross-linked polyethylene cup against cobalt-chromium or zirconia heads.

    PubMed

    Nakahara, Ichiro; Nakamura, Nobuo; Nishii, Takashi; Miki, Hidenobu; Sakai, Takashi; Sugano, Nobuhiko

    2010-12-01

    We investigated the efficacy of combining highly cross-linked polyethylene with ceramic heads on further reduction in polyethylene wear compared with the combination with cobalt-chromium heads via PolyWare computer-assisted method. A prospective cohort study was performed on 102 cementless total hip arthroplasties using Longevity (Zimmer, Warsaw, Ind) highly cross-linked polyethylene liners. Either 26-mm zirconia heads or 26-mm cobalt-chromium heads were randomly used in 51 hips each. At a mean follow-up of 6.7 years, no significant differences were identified between the groups for total penetration rate and steady-state wear rate. Osteolysis was not observed in any hips in either group. In conclusion, no advantage was seen for the 26-mm zirconia head compared with the 26-mm cobalt-chromium head in this period. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Interstrand cross-links arising from strand breaks at true abasic sites in duplex DNA.

    PubMed

    Yang, Zhiyu; Price, Nathan E; Johnson, Kevin M; Wang, Yinsheng; Gates, Kent S

    2017-06-20

    Interstrand cross-links are exceptionally bioactive DNA lesions. Endogenous generation of interstrand cross-links in genomic DNA may contribute to aging, neurodegeneration, and cancer. Abasic (Ap) sites are common lesions in genomic DNA that readily undergo spontaneous and amine-catalyzed strand cleavage reactions that generate a 2,3-didehydro-2,3-dideoxyribose sugar remnant (3'ddR5p) at the 3'-terminus of the strand break. Interestingly, this strand scission process leaves an electrophilic α,β-unsaturated aldehyde residue embedded within the resulting nicked duplex. Here we present evidence that 3'ddR5p derivatives generated by spermine-catalyzed strand cleavage at Ap sites in duplex DNA can react with adenine residues on the opposing strand to generate a complex lesion consisting of an interstrand cross-link adjacent to a strand break. The cross-link blocks DNA replication by ϕ29 DNA polymerase, a highly processive polymerase enzyme that couples synthesis with strand displacement. This suggests that 3'ddR5p-derived cross-links have the potential to block critical cellular DNA transactions that require strand separation. LC-MS/MS methods developed herein provide powerful tools for studying the occurrence and properties of these cross-links in biochemical and biological systems. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Surface morphology control of cross-linked polymer particles via dispersion polymerization.

    PubMed

    Peng, Bo; Imhof, Arnout

    2015-05-14

    Cross-linked polymer colloids (poly(methyl methacrylate) and polystyrene) with diverse shapes were prepared in polar solvents (ethanol, methanol and water) via dispersion polymerization, in which a linear addition of the cross-linker was used during reaction. Apart from spherical particles we found dented spheres or particles covered with nodules, or a combination of both. A comprehensive investigation was carried out, mainly concentrating on the effect of the experimental conditions (e.g., the addition start time and total addition time, cross-linker density and the solvency of the solvents) on particle morphologies. Consequently, we suggest a number of effective ways for the synthesis of regular (spherical) colloidal particles through maintaining a relatively low concentration of the cross-linker during the entire reaction, or forcing the co-polymerization (of monomer and cross-linker) locus to the continuous medium, or using a high quality or quantity of the stabilizer. Moreover, the size of the particles was also precisely manipulated by varying the polarity of the solvents, the concentration of the cross-linker, and the amount and average molecular weight of the stabilizer. In addition, the formation of the heavily dented particles with a very rough surface prepared under a pure or oxygen-'contaminated' nitrogen environment was monitored over time. The results accumulated in this article are of use for a better understanding of the mechanism of the polymerization and control over the structure and property of polymer particles.

  6. Evaluation of a non-woven fabric coated with a chitosan bi-layer composite for wound dressing.

    PubMed

    Liu, Bai-Shuan; Yao, Chun-Hsu; Fang, Shr-Shin

    2008-05-13

    This study presents a novel design of an easily stripped bi-layer composite that consists of an upper layer of a soybean protein non-woven fabric coated with a lower layer, a genipin-crosslinked chitosan film, as a wound dressing material. This study examines the in vitro properties of the genipin-crosslinked chitosan film and the bi-layer composite. Furthermore, in vivo experiments are conducted to study wounds treated with the composite in a rat model. Experimental results show that the degree of crosslinking and the in vitro degradation rate of the genipin-crosslinked chitosan films can be controlled by varying the genipin contents. In addition, the genipin contents should exceed 0.025 wt.-% of the chitosan-based material if complete crosslinking reactions between genipin and chitosan molecules are required. Water contact angle analysis shows that the genipin-crosslinked chitosan film is not highly hydrophilic; therefore, the genipin-crosslinked chitosan layer is not entangled with the soybean protein non-woven fabric, which forms an easily stripped interface layer between them. Furthermore, this new wound dressing material provides adequate moisture, thereby minimizing the risk of wound dehydration, and exhibits good mechanical properties. The in vivo histological assessment results reveal that epithelialization and reconstruction of the wound are achieved by covering the wound with the composite, and the composite is easily stripped from the wound surface without damaging newly regenerated tissue.

  7. Atomistic Model of Physical Ageing in Se-rich As-Se Glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golovchak,R.; Shpotyuk, O.; Kozdras, A.

    2007-01-01

    Thermal, optical, X-ray excited and magnetic methods were used to develop a microstructural model of physical ageing in Se-rich glasses. The glass composition As10Se90, possessing a typical cross-linked chain structure, was chosen as a model object for the investigations. The effect of physical ageing in this glass was revealed by differential scanning calorimetry, whereas the corresponding changes in its atomic arrangement were studied by extended X-ray absorption fine structure, Raman and solid-state 77Se nuclear magnetic resonance spectroscopy. Straightening-shrinkage processes are shown to be responsible for the physical ageing in this Se-rich As-Se glass.

  8. AGE-RELATED EFFECT ON THE CONCENTRATION OF COLLAGEN CROSSLINKS IN HUMAN OSTEONAL AND INTERSTITIAL BONE TISSUE

    PubMed Central

    Nyman, Jeffry S.; Roy, Anuradha; Acuna, Rae L.; Gayle, Heather J.; Reyes, Michael J.; Tyler, Jerrod H.; Dean, David D.; Wang, Xiaodu

    2007-01-01

    Collagen crosslinks are important to the quality of bone and may be contributors to the age-related increase in bone fracture. This study was performed to investigate whether age and gender effects on collagen crosslinks are similar in osteonal and interstitial bone tissues. Forty human cadaveric femurs were collected and divided into two age groups: Middle aged (42–63 years of age) and Elderly (69–90 years of age) with ten males and ten females in each group (n = 10). Micro-cores of bone tissue from both secondary osteons (newly formed) and interstitial regions (biologically old) in the medial quadrant of the diaphysis were extracted using a custom-modified, computer numerical controlled machine. The bone specimens were then analyzed using high performance liquid chromatography to determine the effects of age and gender on the concentration of mature, enzymatic crosslinks (hydroxylysyl-pyridinoline – HP and lysylpyridinoline – LP) and a non-enzymatic crosslink (pentosidine – PE) at these two bony sites. The results indicate that age has a significant effect on the concentration of LP and PE, while gender has a significant effect on HP and LP. In addition, the concentration of the crosslinks in the secondary osteons is significantly different from that in the interstitial bone regions. These results suggest that the rate of non-enzymatic crosslinking may increase while the formation of maturate enzymatic crosslinks may decrease with age. Such changes could potentially reduce the inherent quality of the bone tissue in the elderly skeleton. PMID:16962838

  9. Synthesis and characterization of lactose-based homopolymers, hydrophilic/hydrophobic copolymers, and hydrogels

    NASA Astrophysics Data System (ADS)

    Zhou, Wenjing

    The focus of this dissertation is the synthesis and characterization of lactose-based functional polymers. Currently 60% of lactose, a by-product from the cheese industry, is being utilized and the remaining fraction represents a serious disposal problem because of the high biological oxygen demand. Therefore, further development of utilization of lactose is an important issue both for industry and environment. Herein, the syntheses of lactose-based polymers such glycopolymers, hydrophilic/hydrophobic copolymers, and hydrogels are reported. A brief review of lactose formation, physical properties, and production is presented in Chapter 1. Syntheses and applications of lactose derivatives such as lactitol, lactulose, lactaime, lactosylurea, lactosylamine, lactone, and barbituric derivative are documented. Previous work in lactose-based polymers include: (1) hydrogels from cross linking of LPEP, borate complexation of lactose-containing polymer, and copolymerization of lactose monomer with crosslinkers; (2) lactose-based polyurethane rigid foams and adhesives; and (3) lactose-containing glycopolymers are also included. Chapter 2 documents the synthesis of acrylamidolactamine and the free radical copolymerization of this monomer with N-isopropylacrylamide in the presence of BisA to make hydrogels. Swelling behavior of the hydrogels at different temperatures as well as DSC study of these hydrogels are also carried out to characterize the swelling transition and the organization of water in the copolymer hydrogels. In Chapter 3, novel monomer syntheses of N-lactosyl- N'-(4-vinylbenzyl)urea or N '-lactosyl-N,N-methyl(4-vinylbenzyl)urea are described. Polymerization of these new urea monomers using a redox initiator gave water-soluble homopolymers with molecular weights in the range of 1.9 x 103 to 5.3 x 106. Synthesis and polymerization of lactose-O-(p-vinylbenzyl)hydroxime are documented in Chapter 4. The resulting polymers had high molecular weight (106) and narrow polydispersity (Mw/Mn: 1.20--1.35). The Mark-Houwink equation was obtained as [eta] = 2.15 x 10-4Mv0.73. Hydrogels produced in the presence of N,N'-methylenebisacrylamide swelled as much as 21-fold in deionized water. Copolymerization of styrene with lactose-O-(vinylbenzyl)oxime in dimethylsulfoxide-toluene (1:1, v/v) using 2,2'-azobisisobutyronitrile as the initiator are discussed in Chapter 5. The resulting hydrophilic/hydrophobic copolymers were characterized by viscometry, TGA, DSC, GPC, and solubility tests in solvents of varied polarities. Chapter 6 documents the preparation of polystyrene beads with different length of oligo(ethylene glycol) crosslinkers. Swelling in different solvents, solvent accessibility, and reagent diffusion of these beads with different crosslinking density were studied and the results indicated that the PEG-crosslinked polymers showed slightly better solvent accessibility in polar solvents than the analogous DVB-crosslinked networks.

  10. Acid diffusion, standing waves, and information theory: a molecular-scale model of chemically amplified resist

    NASA Astrophysics Data System (ADS)

    Trefonas, Peter, III; Allen, Mary T.

    1992-06-01

    Shannon's information theory is adapted to analyze the photolithographic process, defining the mask pattern as the prior state. Definitions and constraints to the general theory are developed so that the information content at various stages of the lithographic process can be described. Its application is illustrated by exploring the information content within projected aerial images and resultant latent images. Next, a 3-dimensional molecular scale model of exposure, acid diffusion, and catalytic crosslinking in acid-hardened resists (AHR) is presented. In this model, initial positions of photogenerated acids are determined by probability functions generated from the aerial images and the local light intensity in the film. In order to simulate post-exposure baking processes, acids are diffused in a random walk manner, for which the catalytic chain length and the average distance between crosslinks can be set. Crosslink locations are defined in terms of the topologically minimized number required to link different chains. The size and location of polymer chains involved in a larger scale crosslinked network is established and related to polymer solubility. In this manner, the nature of the crosslinked latent image can be established. Good correlation with experimental data is found for the calculated percent insolubilization as a function of dose when the rms acid diffusion length is about 500 angstroms. Information analysis is applied in detail to the specific example of AHR chemistry. The information contained within the 3-D crosslinked latent image is explored as a function of exposure dose, catalytic chain length, average distance between crosslinks. Eopt (the exposure dose which optimizes the information contained within the latent image) was found to vary with catalytic chain length in a manner similar to that observed experimentally in a plot of E90 versus post-exposure bake time. Surprisingly, the information content of the crosslinked latent image remains high even when rms diffusion lengths are as long as 1500 angstroms. The information content of a standing wave is shown to decrease with increasing diffusion length, with essentially all standing wave information being lost at diffusion lengths greater than 450 angstroms. A unique mechanism for self-contrast enhancement and high resolution in AHR resist is proposed.

  11. Preparation of Low fouling Polyethersulfone Membranes by Simultaneously Phase Separation and Redox Polymerization

    NASA Astrophysics Data System (ADS)

    Roihatin, A.; Susanto, H.

    2017-05-01

    This paper presents preparation of low fouling PES membranes by non solvent induced phase separation (NIPS) coupled with redox polymerization. The membrane characterization included water permeability, morphology structure (by SEM) and surface chemistry (by FTIR). Water permeability measurements showed thatthe membranes have water permeability within the range 10-50 L/h.m2.bar. Addition of PEG dan PEGMA intopolymer solution increased water permeability, whereas blending redox initiator and crosslinker, MBAA in polymer solution decreased water permeability. Surface morfology of membranes by SEM showed that unmodified PES membrane had smaller pore size than PEG or PEGMA modified PES membranes. Furthermore, PES-PEG or PES-PEGMA membranes modified by blending with redox initiator and MBAA as crosslinker showed smaller pore size than unmodified membrane. FTIR analysis showed that all membranes have typical spectraof PES polymer; however no additional peak was observed forthe membranes prepared with addition of PEG/PEGMA, initiator redox and also crosslinker. The addition of PEG/PEGMA, redox initiator and crosslinker resulted in membranes with high rejection and an acceptable flux as well as more stable due to relatively high fouling resistance.

  12. Cold atmospheric-pressure plasma induces DNA-protein crosslinks through protein oxidation.

    PubMed

    Guo, Li; Zhao, Yiming; Liu, Dingxin; Liu, Zhichao; Chen, Chen; Xu, Ruobing; Tian, Miao; Wang, Xiaohua; Chen, Hailan; Kong, Michael G

    2018-05-03

    Reactive oxygen and nitrogen species (ROS and RNS) generated by cold atmospheric-pressure plasma could damage genomic DNA, although the precise type of these DNA damage induced by plasma are poorly characterized. Understanding plasma-induced DNA damage will help to elucidate the biological effect of plasma and guide the application of plasma in ROS-based therapy. In this study, it was shown that ROS and RNS generated by physical plasma could efficiently induce DNA-protein crosslinks (DPCs) in bacteria, yeast, and human cells. An in vitro assay showed that plasma treatment resulted in the formation of covalent DPCs by activating proteins to crosslink with DNA. Mass spectrometry and hydroperoxide analysis detected oxidation products induced by plasma. DPC formation were alleviated by singlet oxygen scavenger, demonstrating the importance of singlet oxygen in this process. These results suggested the roles of DPC formation in DNA damage induced by plasma, which could improve the understanding of the biological effect of plasma and help to develop a new strategy in plasma-based therapy including infection and cancer therapy.

  13. Factors affecting water resistance of alginate/gellan blend films on paper cups for hot drinks.

    PubMed

    Zhang, Ning; Xu, Jiachao; Gao, Xin; Fu, Xiaoting; Zheng, Di

    2017-01-20

    Enhanced film water resistance of paper cups was achieved by physically blending sodium alginate (NaAlg) and gellan gum with crosslinking treatment. Pure and blended films were prepared and characterized via Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and positron annihilation lifetime spectroscopy (PALS). Results demonstrated excellent compatibility between the two polysaccharides. Total mixed solution concentration, component ratio, glycerol content, Ca 2+ concentration, crosslinking time, and dry temperature affected water resistance. Water permeability (WP) and swelling degree (SD) were tested. Optimal conditions were as follows: total mixed solution concentration, 2.4% (m/v); component ratio, 2:1; glycerol content, 0.5% (m/v); Ca 2+ concentration, 5% (m/v); crosslinking time, 5min; and dry temperature, 50°C. WP and SD values were 78.1×10 -8 g/msPa and 66.3%, respectively. Properties of the films showed the synergistic effect between NaAlg and gellan, which can be used for water-resistant film coating on paper cups for hot drinks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. The Aggregation Paths and Products of Aβ42 Dimers Are Distinct from Those of the Aβ42 Monomer.

    PubMed

    O'Malley, Tiernan T; Witbold, William M; Linse, Sara; Walsh, Dominic M

    2016-11-08

    Extracts of Alzheimer's disease (AD) brain that contain what appear to be sodium dodecyl sulfate-stable amyloid β-protein (Aβ) dimers potently block LTP and impair memory consolidation. Brain-derived dimers can be physically separated the Aβ monomer, consist primarily of Aβ42, and resist denaturation by chaotropic agents. In nature, covalently cross-linked Aβ dimers could be generated in two ways: by the formation of a dityrosine (DiY) or an isopeptide ε-(γ-glutamyl)-lysine (Q-K) bond. We enzymatically cross-linked recombinant Aβ42 monomer to produce DiY and Q-K dimers and then used a range of biophysical methods to study their aggregation. Both Q-K and DiY dimers aggregate to form soluble assemblies distinct from the fibrillar aggregates formed by the Aβ monomer. The results suggest that the cross-links disfavor fibril formation from Aβ dimers, thereby enhancing the concentration of soluble aggregates akin to those in aqueous extracts of AD brain. Thus, it seems that Aβ dimers may play an important role in determining the formation of soluble rather than insoluble aggregates.

  15. The role of temperature in forming sol-gel biocomposites containing polydopamine.

    PubMed

    Dyke, Jason Christopher; Hu, Huamin; Lee, Dong Joon; Ko, Ching-Chang; You, Wei

    2014-11-28

    To further improve the physical strength and biomedical applicability of bioceramicsbuilt on hydroxyapatite-gelatin (HAp-Gel) and siloxane sol-gel reactions, we incorporated mussel adhesive inspired polydopamine (PD) into our original composite based on HAp-Gel cross-linked with siloxane. Surprisingly, with the addition of PD, we observed that the processing conditions and temperatures play an important role in the structure and performance of these materials. A systematic study to investigate this temperature dependence behavior discloses that the rate of crosslinking of silane during the sol-gel process is significantly influenced by the temperature, whereas the polymerization of the dopamine only shows minor temperature dependence. With this discovery, we report an innovative thermal process for the design and application of these biocomposites.

  16. The role of temperature in forming sol-gel biocomposites containing polydopamine

    PubMed Central

    Dyke, Jason Christopher; Hu, Huamin; Lee, Dong Joon; Ko, Ching-Chang; You, Wei

    2014-01-01

    To further improve the physical strength and biomedical applicability of bioceramicsbuilt on hydroxyapatite-gelatin (HAp-Gel) and siloxane sol-gel reactions, we incorporated mussel adhesive inspired polydopamine (PD) into our original composite based on HAp-Gel cross-linked with siloxane. Surprisingly, with the addition of PD, we observed that the processing conditions and temperatures play an important role in the structure and performance of these materials. A systematic study to investigate this temperature dependence behavior discloses that the rate of crosslinking of silane during the sol-gel process is significantly influenced by the temperature, whereas the polymerization of the dopamine only shows minor temperature dependence. With this discovery, we report an innovative thermal process for the design and application of these biocomposites. PMID:25485111

  17. Enhanced antibacterial activity through the controlled alignment of graphene oxide nanosheets.

    PubMed

    Lu, Xinglin; Feng, Xunda; Werber, Jay R; Chu, Chiheng; Zucker, Ines; Kim, Jae-Hong; Osuji, Chinedum O; Elimelech, Menachem

    2017-11-14

    The cytotoxicity of 2D graphene-based nanomaterials (GBNs) is highly important for engineered applications and environmental health. However, the isotropic orientation of GBNs, most notably graphene oxide (GO), in previous experimental studies obscured the interpretation of cytotoxic contributions of nanosheet edges. Here, we investigate the orientation-dependent interaction of GBNs with bacteria using GO composite films. To produce the films, GO nanosheets are aligned in a magnetic field, immobilized by cross-linking of the surrounding matrix, and exposed on the surface through oxidative etching. Characterization by small-angle X-ray scattering and atomic force microscopy confirms that GO nanosheets align progressively well with increasing magnetic field strength and that the alignment is effectively preserved by cross-linking. When contacted with the model bacterium Escherichia coli , GO nanosheets with vertical orientation exhibit enhanced antibacterial activity compared with random and horizontal orientations. Further characterization is performed to explain the enhanced antibacterial activity of the film with vertically aligned GO. Using phospholipid vesicles as a model system, we observe that GO nanosheets induce physical disruption of the lipid bilayer. Additionally, we find substantial GO-induced oxidation of glutathione, a model intracellular antioxidant, paired with limited generation of reactive oxygen species, suggesting that oxidation occurs through a direct electron-transfer mechanism. These physical and chemical mechanisms both require nanosheet penetration of the cell membrane, suggesting that the enhanced antibacterial activity of the film with vertically aligned GO stems from an increased density of edges with a preferential orientation for membrane disruption. The importance of nanosheet penetration for cytotoxicity has direct implications for the design of engineering surfaces using GBNs.

  18. Mechanical and biocompatible characterizations of a readily available multilayer vascular graft

    PubMed Central

    Madhavan, Krishna; Elliott, Winston H; Bonani, Walter; Monnet, Eric; Tan, Wei

    2013-01-01

    There is always a considerable clinical need for vascular grafts. Considering the availability, physical and mechanical properties, and regenerative potential, we have developed and characterized readily available, strong, and compliant multilayer grafts that support cell culture and ingrowth. The grafts were made from heterogeneous materials and structures, including a thin, dense, nanofibrous core composed of poly-ε-caprolactone (PCL), and a thick, porous, hydrogel sleeve composed of genipin-crosslinked collagen–chitosan (GCC). Because the difference in physicochemical properties between PCL and GCC caused layer separation, the layer adhesion was identified as a determinant to graft property and integrity under physiological conditions. Thus, strategies to modify the layer interface, including increasing porosity of the PCL surface, decreasing hydrophobicity, and increasing interlayer crosslinking, were developed. Results from microscopic images showed that increasing PCL porosity was characterized by improved layer adhesion. The resultant graft was characterized by high compliance (4.5%), and desired permeability (528 mL/cm2/min), burst strength (695 mmHg), and suture strength (2.38 N) for readily grafting. Results also showed that PCL mainly contributed to the graft mechanical properties, whereas GCC reduced the water permeability. In addition to their complementary contributions to physical and mechanical properties, the distinct graft layers also provided layer-specific structures for seeding and culture of vascular endothelial and smooth muscle cells in vitro. Acellular graft constructs were readily used to replace abdominal aorta of rabbits, resulting in rapid cell ingrowth and flow reperfusion. The multilayer constructs capable of sustaining physiological conditions and promoting cellular activities could serve as a platform for future development of regenerative vascular grafts. PMID:23165922

  19. Optimization of biodegradable sponges as controlled release drug matrices. I. Effect of moisture level on chitosan sponge mechanical properties.

    PubMed

    Foda, Nagwa H; El-laithy, Hanan M; Tadros, Mina I

    2004-04-01

    Cross-linked chitosan sponges as controlled release drug carrier systems were developed. Tramadol hydrochloride, a centrally acting analgesic, was used as a model drug. The sponges were prepared by freeze-drying 1.25% and 2.5% (w/w) high and low M.wt. chitosan solutions, respectively, using glutaraldehyde as a cross-linking agent. The hardness of the prepared sponges was a function of glutaraldehyde concentration and volume where the optimum concentration that offered accepted sponge consistency was 5%. Below or above 5%, very soft or very hard and brittle sponges were obtained, respectively. The determined drug content in the prepared sponges was uniform and did not deviate markedly from the calculated amount. Scanning electron microscopy (SEM) was used to characterize the internal structures of the sponges. The SEM photos revealed that cross-linked high M.wt. chitosan sponges have larger size surface pores that form connections (channels) with the interior of the sponge than cross-linked low M.wt. ones. Moreover, crystals of the incorporated Tramadol hydrochloride were detected on the lamellae and within pores in both chitosan sponges. Differences in pore size and dissolution medium uptake capacity were crucial factors for the more delayed drug release from cross-linked low M.wt. chitosan sponges over high M.wt. ones at pH 7.4. Kinetic analysis of the release data using linear regression followed the Higuchi diffusion model over 12 hours. Setting storage conditions at room temperature under 80-92% relative humidity resulted in soft, elastic, and compressible sponges.

  20. LaRC-RP41: A Tough, High-Performance Composite Matrix

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H.; Johnston, Norman J.; Smith, Ricky E.; Snoha, John J.; Gautreaux, Carol R.; Reddy, Rakasi M.

    1991-01-01

    New polymer exhibits increased toughness and resistance to microcracking. Cross-linking PMR-15 and linear LaRC-TPI combined to provide sequential semi-2-IPN designated as LaRC-RP41. Synthesized from PMR-15 imide prepolymer undergoing cross-linking in immediate presence of LaRC-TPI polyamic acid, also undergoing simultaneous imidization and linear chain extension. Potentially high-temperature matrix resin, adhesive, and molding resin. Applications include automobiles, electronics, aircraft, and aerospace structures.

  1. The Human DNA glycosylases NEIL1 and NEIL3 Excise Psoralen-Induced DNA-DNA Cross-Links in a Four-Stranded DNA Structure.

    PubMed

    Martin, Peter R; Couvé, Sophie; Zutterling, Caroline; Albelazi, Mustafa S; Groisman, Regina; Matkarimov, Bakhyt T; Parsons, Jason L; Elder, Rhoderick H; Saparbaev, Murat K

    2017-12-12

    Interstrand cross-links (ICLs) are highly cytotoxic DNA lesions that block DNA replication and transcription by preventing strand separation. Previously, we demonstrated that the bacterial and human DNA glycosylases Nei and NEIL1 excise unhooked psoralen-derived ICLs in three-stranded DNA via hydrolysis of the glycosidic bond between the crosslinked base and deoxyribose sugar. Furthermore, NEIL3 from Xenopus laevis has been shown to cleave psoralen- and abasic site-induced ICLs in Xenopus egg extracts. Here we report that human NEIL3 cleaves psoralen-induced DNA-DNA cross-links in three-stranded and four-stranded DNA substrates to generate unhooked DNA fragments containing either an abasic site or a psoralen-thymine monoadduct. Furthermore, while Nei and NEIL1 also cleave a psoralen-induced four-stranded DNA substrate to generate two unhooked DNA duplexes with a nick, NEIL3 targets both DNA strands in the ICL without generating single-strand breaks. The DNA substrate specificities of these Nei-like enzymes imply the occurrence of long uninterrupted three- and four-stranded crosslinked DNA-DNA structures that may originate in vivo from DNA replication fork bypass of an ICL. In conclusion, the Nei-like DNA glycosylases unhook psoralen-derived ICLs in various DNA structures via a genuine repair mechanism in which complex DNA lesions can be removed without generation of highly toxic double-strand breaks.

  2. High Sensitivity Crosslink Detection Coupled With Integrative Structure Modeling in the Mass Spec Studio *

    PubMed Central

    Sarpe, Vladimir; Rafiei, Atefeh; Hepburn, Morgan; Ostan, Nicholas; Schryvers, Anthony B.; Schriemer, David C.

    2016-01-01

    The Mass Spec Studio package was designed to support the extraction of hydrogen-deuterium exchange and covalent labeling data for a range of mass spectrometry (MS)-based workflows, to integrate with restraint-driven protein modeling activities. In this report, we present an extension of the underlying Studio framework and provide a plug-in for crosslink (XL) detection. To accommodate flexibility in XL methods and applications, while maintaining efficient data processing, the plug-in employs a peptide library reduction strategy via a presearch of the tandem-MS data. We demonstrate that prescoring linear unmodified peptide tags using a probabilistic approach substantially reduces search space by requiring both crosslinked peptides to generate sparse data attributable to their linear forms. The method demonstrates highly sensitive crosslink peptide identification with a low false positive rate. Integration with a Haddock plug-in provides a resource that can combine multiple sources of data for protein modeling activities. We generated a structural model of porcine transferrin bound to TbpB, a membrane-bound receptor essential for iron acquisition in Actinobacillus pleuropneumoniae. Using mutational data and crosslinking restraints, we confirm the mechanism by which TbpB recognizes the iron-loaded form of transferrin, and note the requirement for disparate sources of restraint data for accurate model construction. The software plugin is freely available at www.msstudio.ca. PMID:27412762

  3. High Sensitivity Crosslink Detection Coupled With Integrative Structure Modeling in the Mass Spec Studio.

    PubMed

    Sarpe, Vladimir; Rafiei, Atefeh; Hepburn, Morgan; Ostan, Nicholas; Schryvers, Anthony B; Schriemer, David C

    2016-09-01

    The Mass Spec Studio package was designed to support the extraction of hydrogen-deuterium exchange and covalent labeling data for a range of mass spectrometry (MS)-based workflows, to integrate with restraint-driven protein modeling activities. In this report, we present an extension of the underlying Studio framework and provide a plug-in for crosslink (XL) detection. To accommodate flexibility in XL methods and applications, while maintaining efficient data processing, the plug-in employs a peptide library reduction strategy via a presearch of the tandem-MS data. We demonstrate that prescoring linear unmodified peptide tags using a probabilistic approach substantially reduces search space by requiring both crosslinked peptides to generate sparse data attributable to their linear forms. The method demonstrates highly sensitive crosslink peptide identification with a low false positive rate. Integration with a Haddock plug-in provides a resource that can combine multiple sources of data for protein modeling activities. We generated a structural model of porcine transferrin bound to TbpB, a membrane-bound receptor essential for iron acquisition in Actinobacillus pleuropneumoniae Using mutational data and crosslinking restraints, we confirm the mechanism by which TbpB recognizes the iron-loaded form of transferrin, and note the requirement for disparate sources of restraint data for accurate model construction. The software plugin is freely available at www.msstudio.ca. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Crosslinked plastic scintillators: a new detection system for radioactivity measurement in organic and aggressive media.

    PubMed

    Bagán, Héctor; Tarancón, Alex; Ye, Lei; García, José F

    2014-12-10

    The measurement of radioactive solutions containing organic or aggressive media may cause stability problems in liquid and plastic scintillation (PS) techniques. In the case of PS, this can be overcome by adding a crosslinker to the polymer structure. The objectives of this study are to synthesise a suitable crosslinked plastic scintillator (C-PS) for radioactivity determination in organic and aggressive media. The results indicated that an increase in the crosslinker content reduces the detection efficiency and a more flexible crosslinker yields higher detection efficiency. For the polymer composition studied, 2,5-diphenyloxazole (PPO) is the most adequate fluorescent solute and an increase in its concentration causes little change in the detection efficiency. The inclusion of a secondary fluorescent solute 1,4-bis-2-(5-phenyloxazolyl) benzene (POPOP) improves the C-PS radiometrical characteristics. For the final composition chosen, the synthesis of the C-PS exhibits good reproducibility with elevated yield. The obtained C-PS also displays high stability in different organic (toluene, hydrotreated vegetable oil (HVO) and methanol) and aggressive media (hydrochloric acid, nitric acid and hydrogen peroxide). Finally, the C-PS exhibits high detection efficiency both in water and in aggressive media and can also be applied in organic media showing similar or even higher detection efficiency values. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Gellan gum microspheres crosslinked with trivalent ion: effect of polymer and crosslinker concentrations on drug release and mucoadhesive properties.

    PubMed

    Boni, Fernanda Isadora; Prezotti, Fabíola Garavello; Cury, Beatriz Stringhetti Ferreira

    2016-08-01

    Gellan gum microspheres were obtained by ionotropic gelation technique, using the trivalent ion Al(3+). The percentage of entrapment efficiency ranged from 48.76 to 87.52% and 2(2) randomized full factorial design demonstrated that both the increase of polymer concentration and the decrease of crosslinker concentration presented a positive effect in the amount of encapsulated drug. Microspheres size and circularity ranged from 700.17 to 938.32 μm and from 0.641 to 0.796 μm, respectively. The increase of polymer concentration (1-2%) and crosslinker concentration (3-5%) led to the enlargement of particle size and circularity. However, the association of increased crosslinker concentration and reduced polymer content made the particles more irregular. In vitro and ex vivo tests evidenced the high mucoadhesiveness of microspheres. The high liquid uptake ability of the microspheres was demonstrated and the pH variation did not affect this parameter. Drug release was pH dependent, with low release rates in acid pH (42.40% and 44.93%) and a burst effect in phosphate buffer pH (7.4). The Weibull model had the best correlation with the drug release data, demonstrating that the release process was driven by a complex mechanism involving the erosion and swelling of the matrix or by non-Fickian diffusion.

  6. CuAAC-Based Click Chemistry in Self-Healing Polymers.

    PubMed

    Döhler, Diana; Michael, Philipp; Binder, Wolfgang H

    2017-10-17

    Click chemistry has emerged as a significant tool for materials science, organic chemistry, and bioscience. Based on the initial concept of Barry Sharpless in 2001, the copper(I)-catalyzed azide/alkyne cycloaddition (CuAAC) reaction has triggered a plethora of chemical concepts for linking molecules and building blocks under ambient conditions, forming the basis for applications in autonomous cross-linking materials. Self-healing systems on the other hand are often based on mild cross-linking chemistries that are able to react either autonomously or upon an external trigger. In the ideal case, self-healing takes place efficiently at low temperatures, independent of the substrate(s) used, by forming strong and stable networks, binding to the newly generated (cracked) interfaces to restore the original material properties. The use of the CuAAC in self-healing systems, most of all the careful design of copper-based catalysts linked to additives as well as the chemical diversity of substrates, has led to an enormous potential of applications of this singular reaction. The implementation of click-based strategies in self-healing systems therefore is highly attractive, as here chemical (and physical) concepts of molecular reactivity, molecular design, and even metal catalysis are connected to aspects of materials science. In this Account, we will show how CuAAC reactions of multivalent components can be used as a tool for self-healing materials, achieving cross-linking at low temperatures (exploiting concepts of autocatalysis or internal chelation within the bulk CuAAC and systematic optimization of the efficiency of the used Cu(I) catalysts). Encapsulation strategies to separate the click components by micro- and nanoencapsulation are required in this context. Consequently, the examples reported here describe chemical concepts to realize more efficient and faster click reactions in self-healing polymeric materials. Thus, enhanced chain diffusion in (hyper)branched polymers, autocatalysis, or internal chelation concepts enable efficient click cross-linking already at 5 °C with a simultaneously reduced amount of Cu(I) catalyst and increased reaction rates, culminating in the first reported self-healing system based on click cycloaddition reactions. Via tailor-made nanocarbon/Cu(I) catalysts we can further improve the click cross-linking reaction in view of efficiency and kinetics, leading to the generation of self-healing graphene-based epoxy nanocomposites. Additionally, we have designed special CuAAC click methods for chemical reporting and visualization systems based on the detection of ruptured capsules via a fluorogenic click reaction, which can be combined with CuAAC cross-linking reactions to obtain simultaneous stress detection and self-healing within polymeric materials. In a similar concept, we have prepared polymeric Cu(I)-biscarbene complexes to detect (mechanical) stress within self-healing polymeric materials via a triggered fluorogenic reaction, thus using a destructive force for a constructive chemical response.

  7. Multimodal and self-healable interfaces enable strong and tough graphene-derived materials

    NASA Astrophysics Data System (ADS)

    Liu, Yilun; Xu, Zhiping

    2014-10-01

    Recent studies have shown that graphene-derived materials not only feature outstanding multifunctional properties, but also act as model materials to implant nanoscale structural engineering insights into their macroscopic performance optimization. In this work, we explore strengthening and toughening strategies of this class of materials by introducing multimodal crosslinks, including long, strong and short, self-healable ones. We identify two failure modes by fracturing functionalized graphene sheets or their crosslinks, and the role of brick-and-mortar hierarchy in mechanical enhancement. Theoretical analysis and atomistic simulation results show that multimodal crosslinks synergistically transfer tensile load to enhance the strength, whereas reversible rupture and formation of healable crosslinks improve the toughness. These findings lay the ground for future development of high-performance paper-, fiber- or film-like macroscopic materials from low-dimensional structures with engineerable interfaces.

  8. Polyimide Aerogel Thin Films

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann; Guo, Haiquan

    2012-01-01

    Polyimide aerogels have been crosslinked through multifunctional amines. This invention builds on "Polyimide Aerogels With Three-Dimensional Cross-Linked Structure," and may be considered as a continuation of that invention, which results in a polyimide aerogel with a flexible, formable form. Gels formed from polyamic acid solutions, end-capped with anhydrides, and cross-linked with the multifunctional amines, are chemically imidized and dried using supercritical CO2 extraction to give aerogels having density around 0.1 to 0.3 g/cubic cm. The aerogels are 80 to 95% porous, and have high surface areas (200 to 600 sq m/g) and low thermal conductivity (as low as 14 mW/m-K at room temperature). Notably, the cross-linked polyimide aerogels have higher modulus than polymer-reinforced silica aerogels of similar density, and can be fabricated as both monoliths and thin films.

  9. Exploring physics concepts among novice teachers through CMAP tools

    NASA Astrophysics Data System (ADS)

    Suprapto, N.; Suliyanah; Prahani, B. K.; Jauhariyah, M. N. R.; Admoko, S.

    2018-03-01

    Concept maps are graphical tools for organising, elaborating and representing knowledge. Through Cmap tools software, it can be explored the understanding and the hierarchical structuring of physics concepts among novice teachers. The software helps physics teachers indicated a physics context, focus questions, parking lots, cross-links, branching, hierarchy, and propositions. By using an exploratory quantitative study, a total 13-concept maps with different physics topics created by novice physics teachers were analysed. The main differences of scoring between lecturer and peer-teachers’ scoring were also illustrated. The study offered some implications, especially for physics educators to determine the hierarchical structure of the physics concepts, to construct a physics focus question, and to see how a concept in one domain of knowledge represented on the map is related to a concept in another domain shown on the map.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Brad H.; Wheeler, David R.; Black, Hayden T.

    Physical stress relaxation in rubbery, thermoset polymers is limited by cross-links, which impede segmental motion and restrict relaxation to network defects, such as chain ends. In parallel, the cure shrinkage associated with thermoset polymerizations leads to the development of internal residual stress that cannot be effectively relaxed. Recent strategies have reduced or eliminated such cure stress in thermoset polymers largely by exploiting chemical relaxation processes, wherein temporary cross-links or otherwise transient bonds are incorporated into the polymer network. In this paper, we explore an alternative approach, wherein physical relaxation is enhanced by the incorporation of organometallic sandwich moieties into themore » backbone of the polymer network. A standard epoxy resin is cured with a diamine derivative of ferrocene and compared to conventional diamine curing agents. The ferrocene-based thermoset is clearly distinguished from the conventional materials by reduced cure stress with increasing cure temperature as well as unique stress relaxation behavior above its glass transition in the fully cured state. The relaxation experiments exhibit features characteristic of a physical relaxation process. Furthermore, the cure stress is observed to vanish precipitously upon deliberate introduction of network defects through an increasing imbalance of epoxy and amine functional groups. Finally, we postulate that these beneficial properties arise from fluxional motion of the cyclopentadienyl ligands on the polymer backbone.« less

  11. Extracellular-matrix-mediated osmotic pressure drives Vibrio cholerae biofilm expansion and cheater exclusion.

    PubMed

    Yan, Jing; Nadell, Carey D; Stone, Howard A; Wingreen, Ned S; Bassler, Bonnie L

    2017-08-23

    Biofilms, surface-attached communities of bacteria encased in an extracellular matrix, are a major mode of bacterial life. How the material properties of the matrix contribute to biofilm growth and robustness is largely unexplored, in particular in response to environmental perturbations such as changes in osmotic pressure. Here, using Vibrio cholerae as our model organism, we show that during active cell growth, matrix production enables biofilm-dwelling bacterial cells to establish an osmotic pressure difference between the biofilm and the external environment. This pressure difference promotes biofilm expansion on nutritious surfaces by physically swelling the colony, which enhances nutrient uptake, and enables matrix-producing cells to outcompete non-matrix-producing cheaters via physical exclusion. Osmotic pressure together with crosslinking of the matrix also controls the growth of submerged biofilms and their susceptibility to invasion by planktonic cells. As the basic physicochemical principles of matrix crosslinking and osmotic swelling are universal, our findings may have implications for other biofilm-forming bacterial species.Most bacteria live in biofilms, surface-attached communities encased in an extracellular matrix. Here, Yan et al. show that matrix production in Vibrio cholerae increases the osmotic pressure within the biofilm, promoting biofilm expansion and physical exclusion of non-matrix producing cheaters.

  12. Structure-Property Relationships in Porous 3-D Nanostructures as a Function of Preparation Conditions: Isocyanate Cross-Linked Silica Aerogels

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Capadona, Lynn A.; McCorkle, Linda; Padadopoulos, Demetrios S.; Leventis, Nicholas

    2007-01-01

    Sol-gel derived silica aerogels are attractive candidates for many unique thermal, optical, catalytic, and chemical applications because of their low density and high mesoporosity. However, their inherent fragility has restricted use of aerogel monoliths to applications where they are not subject to any load. We have previously reported cross-linking the mesoporous silica structure of aerogels with di-isocyanates, styrenes or epoxies reacting with amine decorated silica surfaces. These approaches have been shown to significantly increase the strength of aerogels with only a small effect on density or porosity. Though density is a prime predictor of properties such as strength and thermal conductivity for aerogels, it is becoming clear from previous studies that varying the silica backbone and size of the polymer cross-link independently can give rise to combinations of properties which cannot be predicted from density alone. Herein, we examine the effects of four processing parameters for producing this type of polymer cross-linked aerogel on properties of the resulting monoliths. We focus on the results of C-13 CP-MAS NMR which gives insight to the size and structure of polymer cross-link present in the monoliths, and relates the size of the cross-links to microstructure, mechanical properties and other characteristics of the materials obtained.

  13. Structure-Property Relationships in Porous 3-D Nanostructures as a Function of Preparation Conditions: Isocyanate Cross-Linked Silica Aerogels

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Capadona, Lynn A.; McCorkle, Linda; Papadopoulos, Demetrios S.; Leventis, Nicholas

    2007-01-01

    Sol-gel derived silica aerogels are attractive candidates for many unique thermal, optical, catalytic, and chemical applications because of their low density and high mesoporosity. However, their inherent fragility has restricted use of aerogel monoliths to applications where they are not subject to any load. We have previously reported cross-linking the mesoporous silica structure of aerogels with di-isocyanates, styrenes or epoxies reacting with amine decorated silica surfaces. These approaches have been shown to significantly increase the strength of aerogels with only a small effect on density or porosity. Though density is a prime predictor of properties such as strength and thermal conductivity for aerogels, it is becoming clear from previous studies that varying the silica backbone and size of the polymer cross-link independently can give rise to combinations of properties which cannot be predicted from density alone. Herein, we examine the effects of four processing parameters for producing this type of polymer cross-linked aerogel on properties of the resulting monoliths. We focus on the results of 13C CP-MAS NMR which gives insight to the size and structure of polymer cross-link present in the monoliths, and relates the size of the cross-links to microstructure, mechanical properties and other characteristics of the materials obtained.

  14. Cross-linking measurements of the Potato leafroll virus reveal protein interaction topologies required for virion stability, aphid transmission, and virus-plant interactions.

    PubMed

    Chavez, Juan D; Cilia, Michelle; Weisbrod, Chad R; Ju, Ho-Jong; Eng, Jimmy K; Gray, Stewart M; Bruce, James E

    2012-05-04

    Protein interactions are critical determinants of insect transmission for viruses in the family Luteoviridae. Two luteovirid structural proteins, the capsid protein (CP) and the readthrough protein (RTP), contain multiple functional domains that regulate virus transmission. There is no structural information available for these economically important viruses. We used Protein Interaction Reporter (PIR) technology, a strategy that uses chemical cross-linking and high resolution mass spectrometry, to discover topological features of the Potato leafroll virus (PLRV) CP and RTP that are required for the diverse biological functions of PLRV virions. Four cross-linked sites were repeatedly detected, one linking CP monomers, two within the RTP, and one linking the RTP and CP. Virus mutants with triple amino acid deletions immediately adjacent to or encompassing the cross-linked sites were defective in virion stability, RTP incorporation into the capsid, and aphid transmission. Plants infected with a new, infectious PLRV mutant lacking 26 amino acids encompassing a cross-linked site in the RTP exhibited a delay in the appearance of systemic infection symptoms. PIR technology provided the first structural insights into luteoviruses which are crucially lacking and are involved in vector-virus and plant-virus interactions. These are the first cross-linking measurements on any infectious, insect-transmitted virus.

  15. Cross-linking measurements of the Potato leafroll virus reveal protein interaction topologies required for virion stability, aphid transmission, and virus-plant interactions

    PubMed Central

    Chavez, Juan D.; Cilia, Michelle; Weisbrod, Chad R.; Ju, Ho-Jong; Eng, Jimmy K.; Gray, Stewart M.; Bruce, James E.

    2012-01-01

    Protein interactions are critical determinants of insect-transmission for viruses in the family Luteoviridae. Two luteovirid structural proteins, the capsid protein (CP) and the readthrough protein (RTP), contain multiple functional domains that regulate virus transmission. There is no structural information available for these economically important viruses. We used Protein Interaction Reporter (PIR) technology, a strategy that uses chemical cross-linking and high resolution mass spectrometry, to discover topological features of the Potato leafroll virus (PLRV) CP and RTP that are required for the diverse biological functions of PLRV virions. Four cross-linked sites were repeatedly detected, one linking CP monomers, two within the RTP, and one linking the RTP and CP. Virus mutants with triple amino acid deletions immediately adjacent to or encompassing the cross-linked sites were defective in virion stability, RTP incorporation into the capsid, and aphid transmission. Plants infected with a new, infectious PLRV mutant lacking 26 amino acids encompassing a cross-linked site in the RTP exhibited a delay in the appearance of systemic infection symptoms. PIR technology provided the first structural insights into luteoviruses which are crucially lacking and that are involved in vector-virus and plant-virus interactions. These are the first cross-linking measurements on any infectious, insect-transmitted virus. PMID:22390342

  16. Anisotropic Dye Adsorption and Anhydrous Proton Conductivity in Smectic Liquid Crystal Networks: The Role of Cross-Link Density, Order, and Orientation.

    PubMed

    Liang, Ting; van Kuringen, Huub P C; Mulder, Dirk J; Tan, Shuai; Wu, Yong; Borneman, Zandrie; Nijmeijer, Kitty; Schenning, Albertus P H J

    2017-10-11

    In this work, the decisive role of rigidity, orientation, and order in the smectic liquid crystalline network on the anisotropic proton and adsorbent properties is reported. The rigidity in the hydrogen-bonded polymer network has been altered by changing the cross-link density, the order by using different mesophases (smectic, nematic, and isotropic phases), whereas the orientation of the mesogens was controlled by alignment layers. Adding more cross-linkers improved the integrity of the polymer films. For the proton conduction, an optimum was found in the amount of cross-linker and the smectic organization results in the highest anhydrous proton conduction. The polymer films show anisotropic proton conductivity with a 54 times higher conductivity in the direction perpendicular to the molecular director. After a base treatment of the smectic liquid crystalline network, a nanoporous polymer film is obtained that also shows anisotropic adsorption of dye molecules and again straight smectic pores are favored over disordered pores in nematic and isotropic networks. The highly cross-linked films show size-selective adsorption of dyes. Low cross-linked materials do not show this difference due to swelling, which decreases the order and creates openings in the two-dimensional polymer layers. The latter is, however, beneficial for fast adsorption kinetics.

  17. Physical and chemical basics of modification of poly(vinyl chloride) by means of polyisocyanate

    NASA Astrophysics Data System (ADS)

    Islamov, Anvar; Fakhrutdinova, Venera; Abdrakhmanova, Lyailya

    2016-01-01

    This research presents data relating to polyvinyl chloride (PVC) modification by means of reactive oligomer and measures technological, physical and mechanical properties of the modified composites. Polyisocyanate (PIC) has been chosen as the modifying reactive oligomer. It has been shown that insertion of the oligomer has a double effect on PVC. Primarily, PIC produces a plasticizing effect on PVC and in particular leads to an increase in thermal stability and melt flow index at the stage of processing. In addition, the molded PVC composites possess higher strength properties and lower deformability when exposed to temperature because of chemical transformations of PIC in polymer matrix and, as the result, the formation of cross-linked systems takes place. In this case, semi-interpenetrating structures are formed based on cross-linked products of PIC chemical transformations homogeneously distributed in the PVC matrix. It has been determined by means of IR-spectroscopy that the basic products of PIC curing are compounds with urea and biuret groups which leads to modifying effect on PVC especially: increase in strength, thermal and mechanical properties, and chemical resistance.

  18. Utilizing Mechanistic Cross-Linking Technology to Study Protein-Protein Interactions: An Experiment Designed for an Undergraduate Biochemistry Lab

    ERIC Educational Resources Information Center

    Finzel, Kara; Beld, Joris; Burkart, Michael D.; Charkoudian, Louise K.

    2017-01-01

    Over the past decade, mechanistic cross-linking probes have been used to study protein-protein interactions in natural product biosynthetic pathways. This approach is highly interdisciplinary, combining elements of protein biochemistry, organic chemistry, and computational docking. Herein, we described the development of an experiment to engage…

  19. Selective Permeability of PVA Membranes. I: Radiation-Crosslinked Membranes

    NASA Technical Reports Server (NTRS)

    Katz, Moshe G.; Wydeven, Theodore, Jr.

    1981-01-01

    The water and salt transport properties of ionizing radiation crosslinked poly(vinyl alcohol) (PVA) membranes were investigated. The studied membranes showed high permeabilities and low selectivities for both water and salt. The results were found to be in accord with a modified solution-diffusion model for transport across the membranes, in which pressure-dependent permeability coefficients are employed.

  20. Selective permeability of PVA membranes. I - Radiation-crosslinked membranes

    NASA Technical Reports Server (NTRS)

    Katz, M. G.; Wydeven, T., Jr.

    1981-01-01

    The water and salt transport properties of ionizing radiation crosslinked poly(vinyl alcohol) (PVA) membranes were investigated. The studied membranes showed high permeabilities and low selectivities for both water and salt. The results were found to be in accord with a modified solution-diffusion model for transport across the membranes, in which pressure-dependent permeability coefficients are employed.

  1. Histidinoalanine, a naturally occurring cross-link derived from phosphoserine and histidine residues in mineral-binding phosphoproteins.

    PubMed

    Marsh, M E

    1986-05-06

    Native mineral-containing phosphoprotein particles were isolated from the Heterodont bivalve Macrocallista nimbosa. The native particles are discrete structures about 40 nm in diameter which migrate as a single band during electrophoresis in agarose gels. Removal of the mineral component with ethylenediaminetetraacetic acid dissociates the native protein into nonidentical subunits. The lower molecular weight subunits, representing 8% of the total protein, were obtained by differential centrifugation. The native protein is characterized by a high content of aspartic acid, phosphoserine, phosphothreonine, histidine, and the bifunctional cross-linking residue histidinoalanine. The low molecular weight subunits have the same amino acid composition except for a reduction in histidinoalanine and a corresponding increase in phosphoserine and histidine residues, demonstrating that the alanine portion of the cross-link is derived from phosphoserine residues. Ion-exchange chromatography and molecular sieve chromatography show that the low molecular weight subunits have a similar charge density but differ in molecular weight, and the relative mobilities of the subunits on agarose gels indicate that they are polymers of a single phosphoprotein molecule. The minimum molecular weight of the monomer is about 140 000 on the basis of the amino acid composition. The high molecular weight subunits are rich in histidinoalanine and too large to be resolved by either molecular sieve chromatography or gel electrophoresis. On the basis of the ultrastructural, electrophoretic, chromatographic, and compositional evidence, native phosphoprotein particles are composed of subunits ionically cross-linked via divalent cations. These subunits are variable molecular weight aggregates of a single phosphoprotein molecule covalently cross-linked via histidinoalanine residues. Evidence for a nonenzymatic cross-linking mechanism is discussed.

  2. Quantitative evaluation of protein conformation in pharmaceuticals using cross-linking reactions coupled with LC-MS/MS analysis.

    PubMed

    Yamaguchi, Hideto; Hirakura, Yutaka; Shirai, Hiroki; Mimura, Hisashi; Toyo'oka, Toshimasa

    2011-06-01

    The need for a simple and high-throughput method for identifying the tertiary structure of protein pharmaceuticals has increased. In this study, a simple method for mapping the protein fold is proposed for use as a complementary quality test. This method is based on cross-linking a protein using a [bis(sulfosuccinimidyl)suberate (BS(3))], followed by peptide mapping by LC-MS. Consensus interferon (CIFN) was used as the model protein. The tryptic map obtained via liquid chromatography tandem mass spectroscopy (LC-MS/MS) and the mass mapping obtained via matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy were used to identify cross-linked peptides. While LC-MS/MS analyses found that BS(3) formed cross-links in the loop region of the protein, which was regarded as the biologically active site, sodium dodecyl-sulfate polyacrylamide gel electrophoresis demonstrated that cross-linking occurred within a protein molecule, but not between protein molecules. The occurrence of cross-links at the active site depends greatly on the conformation of the protein, which is determined by the denaturing conditions. Quantitative evaluation of the tertiary structure of CIFN was thus possible by monitoring the amounts of cross-linked peptides generated. Assuming that background information is available at the development stage, this method may be applicable to process development as a complementary test for quality control. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Chemically crosslinked protein dimers: stability and denaturation effects.

    PubMed Central

    Byrne, M. P.; Stites, W. E.

    1995-01-01

    Nine single substitution cysteine mutants of staphylococcal nuclease (nuclease) were preferentially crosslinked at the introduced cysteine residues using three different bifunctional crosslinking reagents; 1,6-bismaleimidohexane (BMH), 1,3-dibromo-2-propanol (DBP), and the chemical warfare agent, mustard gas (bis(2-chloroethyl)sulfide; mustard). BMH and mustard gas are highly specific reagents for cysteine residues, whereas DBP is not as specific. Guanidine hydrochloride (GuHCl) denaturations of the resulting dimeric proteins exhibited biphasic unfolding behavior that did not fit the two-state model of unfolding. The monofunctional reagent, epsilon-maleimidocaproic acid (MCA), was used as a control for the effects of alkylation. Proteins modified with MCA unfolded normally, showing that this unusual unfolding behavior is due to crosslinking. The data obtained from these crosslinked dimers was fitted to a three-state thermodynamic model of two successive transitions in which the individual subunits cooperatively unfold. These two unfolding transitions were very different from the unfolding of the monomeric protein. These differences in unfolding behavior can be attributed in large part to changes in the denatured state. In addition to GuHCl titrations, the crosslinked dimers were also thermally unfolded. In contrast to the GuHCl denaturations, analysis of this data fit a two-state model well, but with greatly elevated van't Hoff enthalpies in many cases. However, clear correlations between the thermal and GuHCl denaturations exist, and the differences in thermal unfolding can be rationalized by postulating interactions of the denatured crosslinked proteins. PMID:8580845

  4. Improving mechanical properties of carbon nanotube fibers through simultaneous solid-state cycloaddition and crosslinking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Xinyi; Hiremath, Nitilaksha; Hong, Kunlun

    Individual carbon nanotubes (CNTs) exhibit exceptional mechanical properties. However, difficulties remain in fully realizing these properties in CNT macro-assemblies, because the weak inter-tube forces result in the CNTs sliding past one another. Here in this study, a simple solid-state reaction is presented that enhances the mechanical properties of carbon nanotube fibers (CNTFs) through simultaneous covalent functionalization and crosslinking. This is the first chemical crosslinking proposed without the involvement of a catalyst or byproducts. The specific tensile strength of CNTFs obtained from the treatment employing a benzocyclobutene-based polymer is improved by 40%. Such improvement can be attributed to a reduced numbermore » of voids, impregnation of the polymer, and the formation of covalent crosslinks. This methodology is confirmed using both multiwalled nanotube (MWNT) powders and CNTFs. Thermogravimetric analysis, differential scanning calorimetry, x-ray photoelectron spectroscopy, and transmission electron microscopy of the treated MWNT powders confirm the covalent functionalization and formation of inter-tube crosslinks. This simple one-step reaction can be applied to industrial-scale production of high-strength CNTFs.« less

  5. Assessing the Strength Enhancement of Heterogeneous Networks of Miscible Polymer Blends

    NASA Astrophysics Data System (ADS)

    Giller, Carl; Roland, Mike

    2013-03-01

    At the typical crosslink densities of elastomers, the failure properties vary inversely with mechanical stiffness, so that compounding entails a compromise between stiffness and strength. Our approach to circumvent this conventional limitation is by forming networks of two polymers that: (i) are thermodynamically miscible, whereby the chemical composition is uniform on the segmental level; and (ii) have markedly different reactivities for network formation. The resulting elastomer consists of one highly crosslinked component and one that is lightly or uncrosslinked. This disparity in crosslinking causes their respective contributions to the network mechanical response to differ diametrically. Earlier results showed some success with this approach for thermally crosslinked blends of 1,2-polybutadiene (PVE) and polyisoprene (PI), as well as ethylene-propylene copolymer (EPM) and ethylene-propylene-diene random terpolymer (EPDM), taking advantage of their differing reactivities to sulfur. In this work we demonstrate the miscibility of polyisobutylene (PIB) with butyl rubber (BR) (a copolymer of PIB and polyisoprene) and show that networks in which only the BR is crosslinked possess greater tensile strengths than neat BR over the same range of moduli. Office of Naval Research

  6. Encapsulation of lead from hazardous CRT glass wastes using biopolymer cross-linked concrete systems.

    PubMed

    Kim, Daeik; Quinlan, Michael; Yen, Teh Fu

    2009-01-01

    Discarded computer monitors and television sets are identified as hazardous materials due to the high content of lead in their cathode ray tubes (CRTs). Over 98% of lead is found in CRT glass. More than 75% of obsolete electronics including TV and CRT monitors are in storage because appropriate e-waste management and remediation technologies are insufficient. Already an e-waste tsunami is starting to roll across the US and the whole world. Thus, a new technology was developed as an alternative to current disposal methods; this method uses a concrete composite crosslinked with minute amounts of biopolymers and a crosslinking agent. Commercially available microbial biopolymers of xanthan gum and guar gum were used to encapsulate CRT wastes, reducing Pb leachability as measured by standard USEPA methods. In this investigation, the synergistic effect of the crosslinking reaction was observed through blending two different biopolymers or adding a crosslinking agent in biopolymer solution. This CRT-biopolymer-concrete (CBC) composite showed higher compressive strength than the standard concrete and a considerable decrease in lead leachability.

  7. Improving mechanical properties of carbon nanotube fibers through simultaneous solid-state cycloaddition and crosslinking

    DOE PAGES

    Lu, Xinyi; Hiremath, Nitilaksha; Hong, Kunlun; ...

    2017-03-13

    Individual carbon nanotubes (CNTs) exhibit exceptional mechanical properties. However, difficulties remain in fully realizing these properties in CNT macro-assemblies, because the weak inter-tube forces result in the CNTs sliding past one another. Here in this study, a simple solid-state reaction is presented that enhances the mechanical properties of carbon nanotube fibers (CNTFs) through simultaneous covalent functionalization and crosslinking. This is the first chemical crosslinking proposed without the involvement of a catalyst or byproducts. The specific tensile strength of CNTFs obtained from the treatment employing a benzocyclobutene-based polymer is improved by 40%. Such improvement can be attributed to a reduced numbermore » of voids, impregnation of the polymer, and the formation of covalent crosslinks. This methodology is confirmed using both multiwalled nanotube (MWNT) powders and CNTFs. Thermogravimetric analysis, differential scanning calorimetry, x-ray photoelectron spectroscopy, and transmission electron microscopy of the treated MWNT powders confirm the covalent functionalization and formation of inter-tube crosslinks. This simple one-step reaction can be applied to industrial-scale production of high-strength CNTFs.« less

  8. The Walker B motif in avian FANCM is required to limit sister chromatid exchanges but is dispensable for DNA crosslink repair

    PubMed Central

    Rosado, Ivan V.; Niedzwiedz, Wojciech; Alpi, Arno F.; Patel, Ketan J.

    2009-01-01

    FANCM, the most highly conserved component of the Fanconi Anaemia (FA) pathway can resolve recombination intermediates and remodel synthetic replication forks. However, it is not known if these activities are relevant to how this conserved protein activates the FA pathway and promotes DNA crosslink repair. Here we use chicken DT40 cells to systematically dissect the function of the helicase and nuclease domains of FANCM. Our studies reveal that these domains contribute distinct roles in the tolerance of crosslinker, UV light and camptothecin-induced DNA damage. Although the complete helicase domain is critical for crosslink repair, a predicted inactivating mutation of the Walker B box domain has no impact on FA pathway associated functions. However, this mutation does result in elevated sister chromatid exchanges (SCE). Furthermore, our genetic dissection indicates that FANCM functions with the Blm helicase to suppress spontaneous SCE events. Overall our results lead us to reappraise the role of helicase domain associated activities of FANCM with respect to the activation of the FA pathway, crosslink repair and in the resolution of recombination intermediates. PMID:19465393

  9. Influences of metal ions crosslinked alginate based coatings on thermal stability and fire resistance of cotton fabrics.

    PubMed

    Pan, Ying; Wang, Wei; Liu, Longxiang; Ge, Hua; Song, Lei; Hu, Yuan

    2017-08-15

    Bio-based and phosphorus-free coating was fabricated by layer-by-layer assembly method to obtain the flame retardant cotton fabric. For the first time, the modified cotton fabrics were prepared by utilizing positively charged polyethylenimine and negatively charged alginate together with subsequent crosslinking of barium, nickel and cobalt ions. Scanning electron microscopy and energy-dispersive X-ray demonstrated that the metal ions crosslinked coating was successfully constructed on the substrate. The thermal stability and flame retardancy were investigated by thermogravimetric analysis (TGA) and horizontal flame tests. TGA results showed that the degradation of the coated cotton fabrics were retarded at high temperature and the char residue of the cotton fabrics were improved after covered with the barium, nickel and cobalt ions crosslinked coatings. Furthermore, the fire resistance of cotton-Ba sample was enhanced significantly compared with the untreated sample, as evidenced by the obvious reduction (28%) of flame spread rate and complete char residue. Finally, the washing durability of coating on the fabric was enhanced after metal ions crosslinked with alginate based coating. Copyright © 2017. Published by Elsevier Ltd.

  10. Encapsulation of lead from hazardous CRT glass wastes using biopolymer cross-linked concrete systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Daeik; Quinlan, Michael; Yen, Teh Fu

    2009-01-15

    Discarded computer monitors and television sets are identified as hazardous materials due to the high content of lead in their cathode ray tubes (CRTs). Over 98% of lead is found in CRT glass. More than 75% of obsolete electronics including TV and CRT monitors are in storage because appropriate e-waste management and remediation technologies are insufficient. Already an e-waste tsunami is starting to roll across the US and the whole world. Thus, a new technology was developed as an alternative to current disposal methods; this method uses a concrete composite crosslinked with minute amounts of biopolymers and a crosslinking agent.more » Commercially available microbial biopolymers of xanthan gum and guar gum were used to encapsulate CRT wastes, reducing Pb leachability as measured by standard USEPA methods. In this investigation, the synergistic effect of the crosslinking reaction was observed through blending two different biopolymers or adding a crosslinking agent in biopolymer solution. This CRT-biopolymer-concrete (CBC) composite showed higher compressive strength than the standard concrete and a considerable decrease in lead leachability.« less

  11. Photo-Cross-Linked Anion Exchange Membranes with Improved Water Management and Conductivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ertem, S. Piril; Tsai, Tsung-Han; Donahue, Melissa M.

    Robust, cross-linked anion exchange membranes (AEMs) were prepared from solvent-processable polyisoprene- ran -poly(vinylbenzyltrimethylammonium chloride) (PI- ran -P- [VBTMA][Cl]) ionomers via photoinitiated thiol - ene chem- istry. Two series of membranes were prepared choosing two dithiol cross-linkers, 1,10-decanedithiol and 2,2 ' - (ethylenedioxy)diethanethiol, selected for their di ff erent hydro- phobicities. A strong correlation was found between the choice of dithiol cross-linker, water uptake, morphology, and the ion conductivity of the membranes. Results were compared with previous fi ndings of thermally cross-linked AEMs from analogous random copolymers. Comparably high chloride ion conductivities were obtained at low to moderate ion exchange capacitiesmore » (IECs) with signi fi cantly low water uptake values. It was shown that by choosing a hydrophilic cross-linker ion cluster formation may be suppressed and ion conduction improved. This study highlights that it is possible to promote ion conductivities for low IEC membranes (<1 mmol/g) by forming well- connected, ion conducting network morphology. This observation paves the way for mechanically robust ion conducting membranes with enhanced conductivities and better water management.« less

  12. Polyimide Aerogels Using Triisocyanate as Cross-linker.

    PubMed

    Nguyen, Baochau N; Meador, Mary Ann B; Scheiman, Daniel; McCorkle, Linda

    2017-08-16

    A family of polyimide (PI)-based aerogels is produced using Desmodur N3300A, an inexpensive triisocyanate, as the cross-linker. The aerogels are prepared by cross-linking amine end-capped polyimide oligomers with the triisocyanate. The polyimide oligomers are formulated using 2,2'-dimethylbenzidine, 4,4'-oxydianiline, or mixtures of both diamines, combined with 3,3',4,4'-biphenyltetracarboxylic dianhydride, and are chemically imidized at room temperature. Depending on the backbone chemistry, chain length, and polymer concentration, density of the aerogels ranged from 0.06 to 0.14 g/cm 3 and Brunauer-Emmett-Teller surface areas ranged from 350 to 600 m 2 /g. Compressive moduli of these aerogels were as high as 225 MPa, which are comparable to, or higher than, those previously reported prepared with similar backbone structures but with other cross-linkers. Because of their lower cost and commercial availability as cross-linker, the aerogels may have further potential as insulation for building and construction, clothing, sporting goods, and automotive applications, although lower-temperature stability may limit their use in some aerospace applications.

  13. Degradation behavior of, and tissue response to photo-crosslinked poly(trimethylene carbonate) networks.

    PubMed

    Rongen, Jan J; van Bochove, Bas; Hannink, Gerjon; Grijpma, Dirk W; Buma, Pieter

    2016-11-01

    Photo-crosslinked networks prepared from three-armed methacrylate functionalized PTMC oligomers (PTMC-tMA macromers) are attractive materials for developing an anatomically correct meniscus scaffold. In this study, we evaluated cell specific biocompatibility, in vitro and in vivo degradation behavior of, and tissue response to, such PTMC networks. By evaluating PTMC networks prepared from PTMC-tMA macromers of different molecular weights, we were able to assess the effect of macromer molecular weight on the degradation rate of the PTMC network obtained after photo-crosslinking. Three photo-crosslinked networks with different crosslinking densities were prepared using PTMC-tMA macromers with molecular weights 13.3, 17.8, and 26.7 kg/mol. Good cell biocompatibility was demonstrated in a proliferation assay with synovium derived cells. PTMC networks degraded slowly, but statistically significant, both in vitro as well as subcutaneously in rats. Networks prepared from macromers with higher molecular weights demonstrated increased degradation rates compared to networks prepared from initial macromers of lowest molecular weight. The degradation process took place via surface erosion. The PTMC networks showed good tissue tolerance during subcutaneous implantation, to which the tissue response was characterized by the presence of fibrous tissue and encapsulation of the implants. Concluding, we developed cell and tissue biocompatible, photo-crosslinked PTMC networks using PTMC-tMA macromers with relatively high molecular weights. These photo-crosslinked PTMC networks slowly degrade by a surface erosion process. Increasing the crosslinking density of these networks decreases the rate of surface degradation. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2823-2832, 2016. © 2016 Wiley Periodicals, Inc.

  14. Polymerization by DNA polymerase eta is blocked by cis-diamminedichloroplatinum(II) 1,3-d(GpTpG) cross-link: implications for cytotoxic effects in nucleotide excision repair-negative tumor cells.

    PubMed

    Chijiwa, Shotaro; Masutani, Chikahide; Hanaoka, Fumio; Iwai, Shigenori; Kuraoka, Isao

    2010-03-01

    cis-Diamminedichloroplatinum(II) (cisplatin) forms DNA adducts that interfere with replication and transcription. The most common adducts formed in vivo are 1,2-intrastrand d(GpG) cross-links (Pt-GG) and d(ApG) cross-links (Pt-AG), with minor amounts of 1,3-d(GpNpG) cross-links (Pt-GNG), interstrand cross-links and monoadducts. Although the relative contribution of these different adducts to toxicity is not known, literature implicates that Pt-GG and Pt-AG adducts block replication. Thus, nucleotide excision repair (NER), by which platinum adducts are excised, and translesion DNA synthesis (TLS), which permits adduct bypass, are thought to be associated with cisplatin resistance. Recent studies have reported that the clinical benefit from platinum-based chemotherapy is high if tumor cells express low levels of NER factors. To investigate the role of platinum-DNA adducts in mediating tumor cell survival by TLS, we examined whether 1,3-intrastrand d(GpTpG) platinum cross-links (Pt-GTG), which probably exist in NER-negative tumor cells but not in NER-positive tumor cells, are bypassed by the translesion DNA polymerase eta (pol eta), which is known to bypass Pt-GG. We show that pol eta can incorporate the correct deoxycytidine triphosphate opposite the first 3'-cross-linked G of Pt-GTG but cannot insert any nucleotides opposite the second intact T or the third 5'-cross-linked G of the adducts, thereby suggesting that TLS does not facilitate replication past Pt-GTG adducts. Thus, our findings implicate Pt-GNG adducts as mediating the cytotoxicity of platinum-DNA adducts in NER-negative tumors in vivo.

  15. Analysis of glycation induced protein cross-linking inhibitory effects of some antidiabetic plants and spices.

    PubMed

    Perera, Handunge Kumudu Irani; Handuwalage, Charith Sandaruwan

    2015-06-09

    Protein cross-linking which occurs towards the latter part of protein glycation is implicated in the development of chronic diabetic complications. Glycation induced protein cross-linking inhibitory effects of nine antidiabetic plants and three spices were evaluated in this study using a novel, simple, electrophoresis based method. Methanol extracts of thirteen plants including nine antidiabetic plants and three spices were used. Lysozyme and fructose were incubated at 37 °C in the presence or absence of different concentrations of plant extracts up to 31 days. Standard glycation inhibitor aminoguanidine and other appropriate controls were included. A recently established sodium dodecyl polyacrylamide gel electrophoresis (SDS-PAGE) method was used to detect the products of protein cross-linking in the incubation mixtures. High molecular weight protein products representing the dimer, trimer and tetramer of lysozyme were detected in the presence of fructose. Among the nine antidiabetic plants, seven showed glycation induced protein cross-linking inhibitory effects namely Ficus racemosa (FR) stem bark, Gymnema sylvestre (GS) leaves, Musa paradisiaca (MP) yam, Phyllanthus debilis (PD) whole plant, Phyllanthus emblica (PE) fruit, Pterocarpus marsupium (PM) latex and Tinospora cordifolia (TC) leaves. Inhibition observed with Coccinia grandis (CG) leaves and Strychnos potatorum (SP) seeds were much low. Leaves of Gymnema lactiferum (GL), the plant without known antidiabetic effects showed the lowest inhibition. All three spices namely Coriandrum sativum (CS) seeds, Cinnamomum zeylanicum (CZ) bark and Syzygium aromaticum (SA) flower buds showed cross-link inhibitory effects with higher effects in CS and SA. PD, PE, PM, CS and SA showed almost complete inhibition on the formation of cross-linking with 25 μg/ml extracts. Methanol extracts of PD, PE, PM, CS and SA have shown promising inhibitory effects on glycation induced protein cross-linking.

  16. Gel structure has an impact on pericellular and extracellular matrix deposition, which subsequently alters metabolic activities in chondrocyte-laden PEG hydrogels.

    PubMed

    Nicodemus, G D; Skaalure, S C; Bryant, S J

    2011-02-01

    While designing poly(ethylene glycol) hydrogels with high moduli suitable for in situ placement is attractive for cartilage regeneration, the impact of a tighter crosslinked structure on the organization and deposition of the matrix is not fully understood. The objectives of this study were to characterize the composition and spatial organization of new matrix as a function of gel crosslinking and study its impact on chondrocytes in terms of anabolic and catabolic gene expression and catabolic activity. Bovine articular chondrocytes were encapsulated in hydrogels with three crosslinking densities (compressive moduli 60, 320 and 590 kPa) and cultured for 25 days. Glycosaminoglycan production increased with culture time and was greatest in the gels with lowest crosslinking. Collagens II and VI, aggrecan, link protein and decorin were localized to pericellular regions in all gels, but their presence decreased with increasing gel crosslinking. Collagen II and aggrecan expression were initially up-regulated in gels with higher crosslinking, but increased similarly up to day 15. Matrix metalloproteinase (MMP)-1 and MMP-13 expression were elevated (∼25-fold) in gels with higher crosslinking throughout the study, while MMP-3 was unaffected by gel crosslinking. The presence of aggrecan and collagen degradation products confirmed MMP activity. These findings indicate that chondrocytes synthesized the major cartilage components within PEG hydrogels, however, gel structure had a significant impact on the composition and spatial organization of the new tissue and on how chondrocytes responded to their environment, particularly with respect to their catabolic expression. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. The effect of free radical inhibitor on the sensitized radiation crosslinking and thermal processing stabilization of polyurethane shape memory polymers.

    PubMed

    Hearon, Keith; Smith, Sarah E; Maher, Cameron A; Wilson, Thomas S; Maitland, Duncan J

    2013-02-01

    The effects of free radical inhibitor on the electron beam crosslinking and thermal processing stabilization of novel radiation crosslinkable polyurethane shape memory polymers (SMPs) blended with acrylic radiation sensitizers have been determined. The SMPs in this study possess novel processing capabilities-that is, the ability to be melt processed into complex geometries as thermoplastics and crosslinked in a secondary step using electron beam irradiation. To increase susceptibility to radiation crosslinking, the radiation sensitizer pentaerythritol triacrylate (PETA) was solution blended with thermoplastic polyurethane SMPs made from 2-butene-1,4-diol and trimethylhexamethylene diisocyanate (TMHDI). Because thermoplastic melt processing methods such as injection molding are often carried out at elevated temperatures, sensitizer thermal instability is a major processing concern. Free radical inhibitor can be added to provide thermal stabilization; however, inhibitor can also undesirably inhibit radiation crosslinking. In this study, we quantified both the thermal stabilization and radiation crosslinking inhibition effects of the inhibitor 1,4-benzoquinone (BQ) on polyurethane SMPs blended with PETA. Sol/gel analysis of irradiated samples showed that the inhibitor had little to no inverse effects on gel fraction at concentrations of 0-10,000 ppm, and dynamic mechanical analysis showed only a slight negative correlation between BQ composition and rubbery modulus. The 1,4-benzoquinone was also highly effective in thermally stabilizing the acrylic sensitizers. The polymer blends could be heated to 150°C for up to five hours or to 125°C for up to 24 hours if stabilized with 10,000 ppm BQ and could also be heated to 125°C for up to 5 hours if stabilized with 1000 ppm BQ without sensitizer reaction occurring. We believe this study provides significant insight into methods for manipulation of the competing mechanisms of radiation crosslinking and thermal stabilization of radiation sensitizers, thereby facilitating further development of radiation crosslinkable thermoplastic SMPs.

  18. The effect of free radical inhibitor on the sensitized radiation crosslinking and thermal processing stabilization of polyurethane shape memory polymers

    NASA Astrophysics Data System (ADS)

    Hearon, Keith; Smith, Sarah E.; Maher, Cameron A.; Wilson, Thomas S.; Maitland, Duncan J.

    2013-02-01

    The effects of free radical inhibitor on the electron beam crosslinking and thermal processing stabilization of novel radiation crosslinkable polyurethane shape memory polymers (SMPs) blended with acrylic radiation sensitizers have been determined. The SMPs in this study possess novel processing capabilities—that is, the ability to be melt processed into complex geometries as thermoplastics and crosslinked in a secondary step using electron beam irradiation. To increase susceptibility to radiation crosslinking, the radiation sensitizer pentaerythritol triacrylate (PETA) was solution blended with thermoplastic polyurethane SMPs made from 2-butene-1,4-diol and trimethylhexamethylene diisocyanate (TMHDI). Because the thermoplastic melt processing methods such as injection molding are often carried out at elevated temperatures, sensitizer thermal instability is a major processing concern. Free radical inhibitor can be added to provide thermal stabilization; however, inhibitor can also undesirably inhibit radiation crosslinking. In this study, we quantified both the thermal stabilization and radiation crosslinking inhibition effects of the inhibitor 1,4-benzoquinone (BQ) on polyurethane SMPs blended with PETA. Sol/gel analysis of irradiated samples showed that the inhibitor had little to no inverse effects on gel fraction at concentrations of 0-10,000 ppm, and dynamic mechanical analysis showed only a slight negative correlation between BQ composition and rubbery modulus. The 1,4-benzoquinone was also highly effective in thermally stabilizing the acrylic sensitizers. The polymer blends could be heated to 150 °C for up to 5 h or to 125 °C for up to 24 h if stabilized with 10,000 ppm BQ and could also be heated to 125 °C for up to 5 h if stabilized with 1000 ppm BQ without sensitizer reaction occurring. We believe this study provides significant insight into methods for manipulation of the competing mechanisms of radiation crosslinking and thermal stabilization of radiation sensitizers, thereby facilitating further development of radiation crosslinkable thermoplastic SMPs.

  19. [PREPARATION AND BIOCOMPATIBILITY OF IN SITU CROSSLINKING HYALURONIC ACID HYDROGEL].

    PubMed

    Liang, Jiabi; Li, Jun; Wang, Ting; Liang, Yuhong; Zou, Xuenong; Zhou, Guangqian; Zhou, Zhiyu

    2016-06-08

    To fabricate in situ crosslinking hyaluronic acid hydrogel and evaluate its biocompatibility in vitro. The acrylic acid chloride and polyethylene glycol were added to prepare crosslinking agent polyethylene glycol acrylate (PEGDA), and the molecular structure of PEGDA was analyzed by Flourier transformation infrared spectroscopy and 1H nuclear magnetic resonance spectroscopy. Hyaluronic acid hydrogel was chemically modified to prepare hyaluronic acid thiolation (HA-SH). And the degree of HA-SH was analyzed qualitatively and quantitatively by Ellman method. HA-SH solution in concentrations ( W/V ) of 0.5%, 1.0%, and 1.5% and PEGDA solution in concentrations ( W/V ) of 2%, 4%, and 6% were prepared with PBS. The two solutions were mixed in different ratios, and in situ crosslinking hyaluronic acid hydrogel was obtained; the crosslinking time was recorded. The cellular toxicity of in situ crosslinking hyaluronic acid hydrogel (1.5% HA-SH and 4% PEGDA mixed) was tested by L929 cells. Meanwhile, the biocompatibility of hydrogel was tested by co-cultured with human bone mesenchymal stem cells (hBMSCs). Flourier transformation infrared spectroscopy showed that most hydroxyl groups were replaced by acrylate groups; 1H nuclear magnetic resonance spectroscopy showed 3 characteristic peaks of hydrogen representing acrylate and olefinic bond at 5-7 ppm. The thiolation yield of HA-SH was 65.4%. In situ crosslinking time of hyaluronic acid hydrogel was 2 to 70 minutes in the PEGDA concentrations of 2%-6% and HA-SH concentrations of 0.5%-1.5%. The hyaluronic acid hydrogel appeared to be transparent. The toxicity grade of leaching solution of hydrogel was grade 1. hBMSCs grew well and distributed evenly in hydrogel with a very high viability. In situ crosslinking hyaluronic acid hydrogel has low cytotoxicity, good biocompatibility, and controllable crosslinking time, so it could be used as a potential tissue engineered scaffold or repairing material for tissue regeneration.

  20. Chitosan fibers with improved biological and mechanical properties for tissue engineering applications.

    PubMed

    Albanna, Mohammad Z; Bou-Akl, Therese H; Blowytsky, Oksana; Walters, Henry L; Matthew, Howard W T

    2013-04-01

    The low mechanical properties of hydrogel materials such as chitosan hinder their broad utility for tissue engineering applications. Previous research efforts improved the mechanical properties of chitosan fiber through chemical and physical modifications; however, unfavorable toxicity effects on cells were reported. In this paper, we report the preparation of chitosan fibers with improved mechanical and biocompatibility properties. The structure-property relationships of extruded chitosan fibers were explored by varying acetic acid (AA) concentration, ammonia concentration, annealing temperature and degree of heparin crosslinking. Results showed that optimizing AA concentration to 2vol% improved fiber strength and stiffness by 2-fold. Extruding chitosan solution into 25wt% of ammonia solution reduced fiber diameters and improved fiber strength by 2-fold and stiffness by 3-fold, due to an increase in crystallinity as confirmed by XRD. Fiber annealing further reduced fiber diameter and improved fiber strength and stiffness as temperature increased. Chitosan fibers crosslinked with heparin had increased diameter but lower strength and stiffness properties and higher breaking strain values. When individual parameters were combined, further improvement in fiber mechanical properties was achieved. All mechanically improved fibers and heparin crosslinked fibers promoted valvular interstitial cells (VIC) attachment and growth over 10 day cultures. Our results demonstrate the ability to substantially improve the mechanical properties of chitosan fibers without adversely affecting their biological properties. The investigated treatments offer numerous advantages over previous physical/chemical modifications and thus are expected to expand the utility of chitosan fibers with tunable mechanical properties in various tissue engineering applications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Freeze-dried, cross-linked bovine type I collagen: analysis of properties.

    PubMed

    Hyder, P R; Dowell, P; Singh, G; Dolby, A E

    1992-03-01

    This study was undertaken to assess the physical and biological properties of freeze-dried cross-linked bovine type I collagen and to assess its potential for use in the guided tissue regeneration method of treatment of periodontal disease in human adult subjects. The modulus of elasticity, swelling ratio, and biodegradation rate were investigated. The collagen sponge was implanted subdermally into Sprague-Dawley rats and a histological study carried out at 2, 7, 21, 35, and 49 days post implantation. Growth of human gingival and periodontal ligament derived fibroblasts on collagen sponge was assessed, as well as the effect of bovine collagen supernatants upon gingival and periodontal fibroblast cultures. The physical properties of the collagen sponge were consistent with good handling qualities and, therefore, it was appropriate for use at a surgical site. The histological study demonstrated a reduction in thickness of the collagen at 21 days; at 35 days there was a hazy appearance of the collagen remnants; and at 49 days the graft material had been completely replaced with fibrous tissues. The in vitro response of human gingival and periodontal fibroblasts to bovine collagen showed that, after 21 days, confluent fibroblast growth was observed around and underneath the sponge. The effect of bovine collagen supernatants upon fibroblasts demonstrated an apparent proliferative effect of the supernatant with both gingival and periodontal ligament fibroblasts. However, the non-parametric Friedman test revealed no significant differences between dilutions or time points. The overall findings provide encouraging evidence of the safety of freeze-dried cross-linked bovine collagen sponge in the surgical treatment of periodontal disease.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Highly Crosslinked-remelted versus Less-crosslinked Polyethylene in Posterior Cruciate-retaining TKAs in the Same Patients.

    PubMed

    Kim, Young-Hoo; Park, Jang-Won; Kim, Jun-Shik; Lee, June-Hyung

    2015-11-01

    Concern regarding osteolysis attributable to polyethylene wear after TKA, particularly in younger patients, has prompted the introduction of highly crosslinked-remelted polyethylene (HXLPE) for TKAs. However, few in vivo comparative results of TKAs using HXLPE and less-crosslinked polyethylene inserts in the same patients are available, regarding fracture or failure of the locking mechanism of tibial polyethylene inserts or of osteolysis in patients younger than 60 years. We wanted to determine whether (1) survivorship free from aseptic loosening in knees with HXLPE inserts was different from survivorship in knees with less-crosslinked polyethylene inserts, (2) the prevalence of fracture or failure of the locking mechanism of the tibial polyethylene insert was greater in knees with HXLPE than in those with less-crosslinked polyethylene, and (3) the proportion of patients who had osteolysis develop was greater with HXLPE than with less-crosslinked polyethylene inserts. One hundred seventy-one patients with a mean age of 58 ± 8 years (range, 35-59 years) received posterior cruciate-retaining prostheses with a less-crosslinked polyethylene tibial insert in one knee and a HXLPE tibial insert in the contralateral knee. From January 2007 to January 2010, we performed 366 same-day bilateral simultaneous sequential posterior cruciate-retaining TKAs in 183 patients, of whom 171 (93%) participated in this study. All patients during this study period underwent posterior cruciate-retaining TKAs regardless of deformity of the knees and we did not perform posterior-stabilized TKAs during the same period. Patients who had bilateral end-stage osteoarthritis and were younger than 60 years were selected for inclusion. Six patients (4%) were lost to followup before 5 years. Twenty-six patients were males and 145 were females. The mean duration of followup was 6 years (range, 5-8 years). At each followup, patients were assessed for loosening of the components, fracture or failure of the locking mechanism of the polyethylene inserts, or osteolysis. The survival rate of the knee prosthesis at a mean of 5.8 years after surgery was 100% (95% CI, 0.95-1.00) in both groups for the endpoint aseptic loosening and 99.4% (95% CI, 0.95-1.00) in both groups for the endpoint revision. No knee in either group had fracture or failure of the locking mechanism of the tibial polyethylene insert, and none had osteolysis. With the numbers available, we found no clinically important differences between HXLPE and less-crosslinked polyethylene inserts in posterior cruciate-retaining TKAs. Given that HXLPE is newer, as-yet unproven, and more expensive than the proven technology (less-crosslinked polyethylene), we suggest not adopting HXLPE for clinical use until it shows superiority. Level I, therapeutic study.

  3. Biodegradable chitosan nanogels crosslinked with genipin.

    PubMed

    Arteche Pujana, Maite; Pérez-Álvarez, Leyre; Cesteros Iturbe, Luis Carlos; Katime, Issa

    2013-05-15

    Chitosan nanoparticles crosslinked with genipin were prepared by reverse microemulsion that allowed to obtain highly monodisperse (3-20 nm by TEM) nanogels. The incorporation of genipin into chitosan was confirmed and quantitatively evaluated by UV-vis and (1)H NMR. Loosely crosslinked chitosan networks showed higher water solubility at neutral pHs than pure chitosan. The hydrodynamic diameter of the genipin-chitosan nanogels ranged from 270 to 390 nm and no remarkable differences were found when the crosslinking degree was varied. The hydrodynamic diameters of the nanoparticles increased slightly at acidic pH and the protonation of ionizable amino groups with the pH was confirmed by the zeta potential measurements. The biocompatible and biodegradable nature, as well as the colloidal and monodisperse particle size of the prepared nanogels, make them attractive candidates for a large variety of biomedical applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Radiation-grafted proton exchange membranes based on co-grafting from binary monomer mixtures into poly(ethylene-co-tetrafluoroethylene) (ETFE) film

    NASA Astrophysics Data System (ADS)

    Sohn, Joon-Yong; Sung, Hae-Jun; Song, Joo-Myung; Shin, Junhwa; Nho, Young-Chang

    2012-08-01

    In this study, proton exchange membranes (PEMs) based on a poly(ethylene-co-tetrafluoroethylene) (ETFE) film were synthesized through the graft copolymerization of styrene and VTMS (vinyltrimethoxysilane), or styrene and TMSPM (3-(trimethoxysilyl) propyl methacrylate) binary monomer systems using a simultaneous irradiation method. The prepared membranes with the similar degrees of grafting were investigated by measuring ion exchange capacity, proton conductivity, water uptake, chemical stability, and dimensional stability. The results indicate that the silane-crosslinked proton exchange membrane (PEM) has not only lower water uptake and dimensional change but also high proton conductivity at low humidity condition compared to non-crosslinked poly(ethylene-co-tetrafluoroethylene)-g-poly(styrene sulfonic acid) (ETFE-g-PSSA). Also, the chemical stability of silane-crosslinked fuel cell membranes was more improved than that of non-crosslinked fuel cell membrane.

  5. Photo-crosslinkable polymers for fabrication of photonic multilayer sensors

    NASA Astrophysics Data System (ADS)

    Chiappelli, Maria; Hayward, Ryan C.

    2013-03-01

    We have used photo-crosslinkable polymers to fabricate photonic multilayer sensors. Benzophenone is utilized as a covalently incorporated pendent photo-crosslinker, providing a convenient means of fabricating multilayer films by sequential spin-coating and crosslinking processes. Colorimetric temperature sensors were designed from thermally-responsive, low-refractive index poly(N-isopropylacrylamide) (PNIPAM) and high-refractive index poly(para-methyl styrene) (P pMS). Copolymer chemistries and layer thicknesses were selected to provide robust multilayer sensors which show color changes across nearly the full visible spectrum due to changes in temperature of the hydrated film stack. We have characterized the uniformity and interfacial broadening within the multilayers, the kinetics of swelling and de-swelling, and the reversibility over multiple hydration/dehydration cycles. We also describe how the approach can be extended to alternative sensor designs through the ability to tailor each layer independently, as well as to additional stimuli by selecting alternative copolymer chemistries.

  6. In vitro progesterone release from γ-irradiated cross-linked polydimethylsiloxane

    NASA Astrophysics Data System (ADS)

    Mashak, Arezou; Taghizadeh, S. Mojtaba

    2006-02-01

    Instead of conventional method such as thermal cross-linking method, γ-irradiation is used to improve the properties of polydimethylsiloxane (PDMS) as a matrix containing progesterone. The thermal cross-linking of PDMS monolithic systems containing drug is deleterious to the drug. Usually, all drugs are unstable both at high vulcanizing temperature and in the presence of peroxide catalysts. This novel method is found to be effective for the stability of the controlled drug delivery systems. The PDMS (three medical grades) matrices were exposed to γ-irradiation in ambient conditions with total doses of 50, 75 and 100 kGy. The mechanical properties confirmed that the samples are cross-linked. It is found that the progesterone release rate is affected by irradiation treatment. It is deduced, however that there is no significant difference in the release profile of progesterone by increasing the irradiation dose from 50 to 100 kGy.

  7. Novel actin crosslinker superfamily member identified by a two step degenerate PCR procedure.

    PubMed

    Byers, T J; Beggs, A H; McNally, E M; Kunkel, L M

    1995-07-24

    Actin-crosslinking proteins link F-actin into the bundles and networks that constitute the cytoskeleton. Dystrophin, beta-spectrin, alpha-actinin, ABP-120, ABP-280, and fimbrin share homologous actin-binding domains and comprise an actin crosslinker superfamily. We have identified a novel member of this superfamily (ACF7) using a degenerate primer-mediated PCR strategy that was optimized to resolve less-abundant superfamily sequences. The ACF7 gene is on human chromosome 1 and hybridizes to high molecular weight bands on northern blots. Sequence comparisons argue that ACF7 does not fit into one of the existing families, but represents a new class within the superfamily.

  8. Borate cross-linked graphene oxide-chitosan as robust and high gas barrier films

    NASA Astrophysics Data System (ADS)

    Yan, Ning; Capezzuto, Filomena; Lavorgna, Marino; Buonocore, Giovanna G.; Tescione, Fabiana; Xia, Hesheng; Ambrosio, Luigi

    2016-05-01

    Chitosan (CS) is one of the most promising polymers due to its biocompatibility, biodegradability, and natural abundance. However, its poor mechanical and barrier properties make it difficult to satisfy a wide range of applications. Herein, borate ions, originating from the hydrolysis of sodium tetraborate decahydrate (borax), have been used to crosslink chitosan and graphene oxide (GO) nanocomposites. Chitosan films consisting of 1.0 wt% boron and 1.0 wt% GO exhibit a significant improvement in both the toughness and oxygen barrier properties compared to pristine chitosan. In particular the tensile strength of the samples after thermal treatment increases by ~160% compared to pristine chitosan, whereas their oxygen permeability reduces by ~90%. This is ascribed to the chemical crosslinking between chitosan and GO nanoplatelets through borate ions, as well as the formation of a layered morphology with graphene nanoplatelets oriented parallel to the sample surface. The exceptional robust and high gas barrier film has promising application in the packaging industry. The borate-crosslinking chemistry represents the potential strategy for improving properties of other polymer nanocomposites.Chitosan (CS) is one of the most promising polymers due to its biocompatibility, biodegradability, and natural abundance. However, its poor mechanical and barrier properties make it difficult to satisfy a wide range of applications. Herein, borate ions, originating from the hydrolysis of sodium tetraborate decahydrate (borax), have been used to crosslink chitosan and graphene oxide (GO) nanocomposites. Chitosan films consisting of 1.0 wt% boron and 1.0 wt% GO exhibit a significant improvement in both the toughness and oxygen barrier properties compared to pristine chitosan. In particular the tensile strength of the samples after thermal treatment increases by ~160% compared to pristine chitosan, whereas their oxygen permeability reduces by ~90%. This is ascribed to the chemical crosslinking between chitosan and GO nanoplatelets through borate ions, as well as the formation of a layered morphology with graphene nanoplatelets oriented parallel to the sample surface. The exceptional robust and high gas barrier film has promising application in the packaging industry. The borate-crosslinking chemistry represents the potential strategy for improving properties of other polymer nanocomposites. Electronic supplementary information (ESI) available: Detailed characterization methods and survey XPS spectra. See DOI: 10.1039/c6nr00377j

  9. Integrated Cryogenic Satellite Communications Cross-Link Receiver Experiment

    NASA Technical Reports Server (NTRS)

    Romanofsky, R. R.; Bhasin, K. B.; Downey, A. N.; Jackson, C. J.; Silver, A. H.; Javadi, H. H. S.

    1995-01-01

    An experiment has been devised which will validate, in space, a miniature, high-performance receiver. The receiver blends three complementary technologies; high temperature superconductivity (HTS), pseudomorphic high electron mobility transistor (PHEMT) monolithic microwave integrated circuits (MMIC), and a miniature pulse tube cryogenic cooler. Specifically, an HTS band pass filter, InP MMIC low noise amplifier, HTS-sapphire resonator stabilized local oscillator (LO), and a miniature pulse tube cooler will be integrated into a complete 20 GHz receiver downconverter. This cooled downconverter will be interfaced with customized signal processing electronics and integrated onto the space shuttle's 'HitchHiker' carrier. A pseudorandom data sequence will be transmitted to the receiver, which is in low Earth orbit (LEO), via the Advanced Communication Technology Satellite (ACTS) on a 20 GHz carrier. The modulation format is QPSK and the data rate is 2.048 Mbps. The bit error rate (BER) will be measured in situ. The receiver is also equipped with a radiometer mode so that experiment success is not totally contingent upon the BER measurement. In this mode, the receiver uses the Earth and deep space as a hot and cold calibration source, respectively. The experiment closely simulates an actual cross-link scenario. Since the receiver performance depends on channel conditions, its true characteristics would be masked in a terrestrial measurement by atmospheric absorption and background radiation. Furthermore, the receiver's performance depends on its physical temperature, which is a sensitive function of platform environment, thermal design, and cryocooler performance. This empirical data is important for building confidence in the technology.

  10. Wear performance of neat and vitamin E blended highly cross-linked PE under severe conditions: The combined effect of accelerated ageing and third body particles during wear test.

    PubMed

    Affatato, Saverio; De Mattia, Jonathan Salvatore; Bracco, Pierangiola; Pavoni, Eleonora; Taddei, Paola

    2016-12-01

    The objective of this study is to evaluate the effects of third-body particles on the in vitro wear behaviour of three different sets of polyethylene acetabular cups after prolonged testing in a hip simulator and accelerated ageing. Vitamin E-blended, cross-linked polyethylene (XLPE_VE), cross-linked polyethylene (XLPE) and conventional polyethylene (STD_PE) acetabular cups were simulator tested for two million cycles under severe conditions (i.e. by adding third-body particles to the bovine calf serum lubricant). Micro-Fourier Transform Infrared and micro-Raman spectroscopic analyses, differential scanning calorimetry, and crosslink density measurements were used to characterize the samples at a molecular level. The STD_PE cups had twice mass loss than the XLPE_VE components and four times than the XLPE samples; statistically significant differences were found between the mass losses of the three sets of cups. The observed wear trend was justified on the basis of the differences in cross-link density among the samples (XLPE>XLPE_VE>STD_PE). FTIR crystallinity profiles, bulk DSC crystallinity and surface micro-Raman crystallinity seemed to have a similar behaviour upon testing: all of them (as well as the all-trans and ortho-trans contents) revealed the most significant changes in XLPE and XLPE_VE samples. The more severe third-body wear testing conditions determined more noticeable changes in all spectroscopic markers with respect to previous tests. Unexpectedly, traces of bulk oxidation were found in both STD_PE (unirradiated) and XLPE (remelting-stabilized), which were expected to be stable to oxidation; on the contrary, XLPE_VE demonstrated a high oxidative stability in the present, highly demanding conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Peak Stress Intensity Factor Governs Crack Propagation Velocity In Crosslinked UHMWPE

    PubMed Central

    Sirimamilla, P. Abhiram; Furmanski, Jevan; Rimnac, Clare

    2013-01-01

    Ultra high molecular weight polyethylene (UHMWPE) has been successfully used as a bearing material in total joint replacement components. However, these bearing materials can fail as a result of in vivo static and cyclic loads. Crack propagation behavior in this material has been considered using the Paris relationship which relates fatigue crack growth rate, da/dN (mm/cycle) versus the stress intensity factor range, ΔK (Kmax-Kmin, MPa√m). However, recent work suggests that the crack propagation velocity of conventional UHMWPE is driven by the peak stress intensity (Kmax), not ΔK. The hypothesis of this study is that the crack propagation velocity of highly crosslinked and remelted UHMWPE is also driven by the peak stress intensity, Kmax, during cyclic loading, rather than by ΔK. To test this hypothesis, two highly crosslinked (65 kGy and 100 kGy) and remelted UHMWPE materials were examined. Frequency, waveform and R-ratio were varied between test conditions to determine the governing factor for fatigue crack propagation. It was found that the crack propagation velocity in crosslinked UHMWPE is also driven by Kmax and not ΔK, and is dependent on loading waveform and frequency in a predictable quasi-static manner. The current study supports that crack growth in crosslinked UHMWPE materials, even under cyclic loading conditions, can be described by a relationship between the velocity of crack growth, da/dt and the peak stress intensity, Kmax. The findings suggest that stable crack propagation can occur as a result of static loading only and this should be taken into consideration in design of UHMWPE total joint replacement components. PMID:23165898

  12. Novel (meth)acrylate monomers for ultrarapid polymerization and enhanced polymer properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckel, E. R.; Berchtold, K. A.; Nie, J.

    2002-01-01

    Ultraviolet light is known to be one of the most efficient methods to initiatc polymeric reactions in the presence of a photonitiator. Photopolymerizations are advantageous because the chemistry of the materials can be tailored to design liquid monomers for ultrarapid polymerization into a solid polymer material. One way to achieve rapid photopolymerizations is to utilize multifunctional (meth)acrylate monomers. which form highly crosslinked polymers; however, these monomers typically do not achieve complete functional group conversion. Recently, Decker et al. developed novel monovinyl acrylate monomers that display polyriicrization kinetics that rival those of multifunctional acrylate monomers. These novel acrylate monomers incorporate secondarymore » functionalities and end groups such as carbonates, carbamates, cyclic carbonates and oxazolidone which promote the increased polymerization kinetics of these monomers. In addition to thc polynierization kinetics, these novel monovinyl monomers form crosslinked polymers, which are characterized by having high strength and high flexibility. Unfortunately, the exact mechanism or mechanisms responsible for the polymerization kinetics and crosslinking are not well understood.« less

  13. Mapping the miRNA interactome by crosslinking ligation and sequencing of hybrids (CLASH)

    PubMed Central

    Helwak, Aleksandra; Tollervey, David

    2014-01-01

    RNA-RNA interactions play critical roles in many cellular processes but studying them is difficult and laborious. Here, we describe an experimental procedure, termed crosslinking ligation and sequencing of hybrids (CLASH), which allows high-throughput identification of sites of RNA-RNA interaction. During CLASH, a tagged bait protein is UV crosslinked in vivo to stabilise RNA interactions and purified under denaturing conditions. RNAs associated with the bait protein are partially truncated, and the ends of RNA-duplexes are ligated together. Following linker addition, cDNA library preparation and high-throughput sequencing, the ligated duplexes give rise to chimeric cDNAs, which unambiguously identify RNA-RNA interaction sites independent of bioinformatic predictions. This protocol is optimized for studying miRNA targets bound by Argonaute proteins, but should be easily adapted for other RNA-binding proteins and classes of RNA. The protocol requires around 5 days to complete, excluding the time required for high-throughput sequencing and bioinformatic analyses. PMID:24577361

  14. Chameleon-like elastomers with molecularly encoded strain-adaptive stiffening and coloration

    NASA Astrophysics Data System (ADS)

    Vatankhah-Varnosfaderani, Mohammad; Keith, Andrew N.; Cong, Yidan; Liang, Heyi; Rosenthal, Martin; Sztucki, Michael; Clair, Charles; Magonov, Sergei; Ivanov, Dimitri A.; Dobrynin, Andrey V.; Sheiko, Sergei S.

    2018-03-01

    Active camouflage is widely recognized as a soft-tissue feature, and yet the ability to integrate adaptive coloration and tissuelike mechanical properties into synthetic materials remains elusive. We provide a solution to this problem by uniting these functions in moldable elastomers through the self-assembly of linear-bottlebrush-linear triblock copolymers. Microphase separation of the architecturally distinct blocks results in physically cross-linked networks that display vibrant color, extreme softness, and intense strain stiffening on par with that of skin tissue. Each of these functional properties is regulated by the structure of one macromolecule, without the need for chemical cross-linking or additives. These materials remain stable under conditions characteristic of internal bodily environments and under ambient conditions, neither swelling in bodily fluids nor drying when exposed to air.

  15. Semi-Interpenetrating polymer network hydrogels based on aspen hemicellulose and chitosan: Effect of crosslinking sequence on hydrogel properties

    Treesearch

    Muzaffer Ahmet Karaaslan; Mandla A. Tshabalala; Gisela Buschle-Diller

    2012-01-01

    Semi-interpenetrating network hydrogel films were prepared using hemicellulose and chemically crosslinked chitosan. Hemicellulose was extracted from aspen by using a novel alkaline treatment and characterized by HPSEC, and consisted of a mixture of high and low molecular weight polymeric fractions. HPLC analysis of the acid hydrolysate of the hemicellulose showed that...

  16. Evaluation of Rigid-Rod Polymeric Fibers by Post-Treatment in scC02

    DTIC Science & Technology

    2008-12-30

    small molecular weight vinyl substituted polysiloxane prepolymer and hydride containing crosslinker to the fiber, swelling the fiber with the siloxane... prepolymer and subsequently initiating crosslinking by introduction of a Karstedt’s catalyst known to be highly soluble and robust in a scCO2...polydimethylsiloxane Prepolymer (PVMS) Polymethylvinylsiloxane-polydimethylsiloxane resin was prepared in a condensation reaction from

  17. Novel active stabilization technology in highly crosslinked UHMWPEs for superior stability

    NASA Astrophysics Data System (ADS)

    Oral, Ebru; Neils, Andrew L.; Wannomae, Keith K.; Muratoglu, Orhun K.

    2014-12-01

    Radiation cross-linked ultrahigh molecular weight polyethylene (UHMWPE) is the bearing of choice in joint arthroplasty. The demands on the longevity of this polymer are likely to increase with the recently advancing deterioration of the performance of alternative metal-on-metal implants. Vitamin E-stabilized, cross-linked UHMWPEs are considered the next generation of improved UHMWPE bearing surfaces for improving the oxidation resistance of the polymer. It was recently discovered that in the absence of radiation-induced free radicals, lipids absorbed into UHMWPE from the synovial fluid can initiate oxidation and result in new free radical-mediated oxidation mechanisms. In the presence of radiation-induced free radicals, it is possible for the polymer to oxidize through both existing free radicals at the time of implantation and through newly formed free radicals in vivo. Thus, we showed that reducing the radiation-induced free radicals in vitamin E-stabilized UHMWPE would increase its oxidative stability and presumably lead to improved longevity. We describe mechanical annealing and warm irradiation of irradiated vitamin E blends as novel methods to eliminate 99% of radiation-induced free radicals without sacrificing crystallinity. These are significant improvements in the processing of highly cross-linked UHMWPE for joint implants with improved longevity.

  18. Preparation of PVA membrane for immobilization of GOD for glucose biosensor.

    PubMed

    Kumar, Jitendra; D'Souza, S F

    2008-03-15

    A membrane was prepared using polyvinyl alcohol (PVA) with low and high degree of polymerization (DOP), acetone, benzoic acid (BA) and was cross-linked by UV treatment. Membrane composition was optimized on the basis of swelling index. Membrane prepared with 12% low DOP and 8% high DOP of PVA, 2% BA, dissolved in buffer containing 20% acetone and cross-linked with UV treatment exhibited lower swelling index. Fourier transform infrared (FTIR) study of the membranes showed appearance of a strong band at approximately 2337 cm(-1) when UV was used for cross-linking in the presence of benzoic acid. Scanning electron microscope (SEM) study revealed that membrane cross-linked with UV treatment was smoother. Glucose oxidase (GOD)-PVA membrane was associated with the dissolved oxygen (DO) probe for biosensor reading. Glucose was detected on the basis of depletion of oxygen, when immobilized GOD oxidizes glucose to gluconolactone. A wide detection range, 0.9-225 mg/dl was estimated from the linear range of calibration plot of biosensor reading. Membranes were reused for 32 reactions without significant loss of activity and stored for 30 days (approximately 90% activity) at 4 degrees C. Membranes were also used with real blood samples.

  19. Structural Characterization by Cross-linking Reveals the Detailed Architecture of a Coatomer-related Heptameric Module from the Nuclear Pore Complex*

    PubMed Central

    Shi, Yi; Fernandez-Martinez, Javier; Tjioe, Elina; Pellarin, Riccardo; Kim, Seung Joong; Williams, Rosemary; Schneidman-Duhovny, Dina; Sali, Andrej; Rout, Michael P.; Chait, Brian T.

    2014-01-01

    Most cellular processes are orchestrated by macromolecular complexes. However, structural elucidation of these endogenous complexes can be challenging because they frequently contain large numbers of proteins, are compositionally and morphologically heterogeneous, can be dynamic, and are often of low abundance in the cell. Here, we present a strategy for the structural characterization of such complexes that has at its center chemical cross-linking with mass spectrometric readout. In this strategy, we isolate the endogenous complexes using a highly optimized sample preparation protocol and generate a comprehensive, high-quality cross-linking dataset using two complementary cross-linking reagents. We then determine the structure of the complex using a refined integrative method that combines the cross-linking data with information generated from other sources, including electron microscopy, X-ray crystallography, and comparative protein structure modeling. We applied this integrative strategy to determine the structure of the native Nup84 complex, a stable hetero-heptameric assembly (∼600 kDa), 16 copies of which form the outer rings of the 50-MDa nuclear pore complex (NPC) in budding yeast. The unprecedented detail of the Nup84 complex structure reveals previously unseen features in its pentameric structural hub and provides information on the conformational flexibility of the assembly. These additional details further support and augment the protocoatomer hypothesis, which proposes an evolutionary relationship between vesicle coating complexes and the NPC, and indicates a conserved mechanism by which the NPC is anchored in the nuclear envelope. PMID:25161197

  20. The Application of an Emerging Technique for Protein–Protein Interaction Interface Mapping: The Combination of Photo-Initiated Cross-Linking Protein Nanoprobes with Mass Spectrometry

    PubMed Central

    Ptáčková, Renata; Ječmen, Tomáš; Novák, Petr; Hudeček, Jiří; Stiborová, Marie; Šulc, Miroslav

    2014-01-01

    Protein–protein interaction was investigated using a protein nanoprobe capable of photo-initiated cross-linking in combination with high-resolution and tandem mass spectrometry. This emerging experimental approach introduces photo-analogs of amino acids within a protein sequence during its recombinant expression, preserves native protein structure and is suitable for mapping the contact between two proteins. The contact surface regions involved in the well-characterized interaction between two molecules of human 14-3-3ζ regulatory protein were used as a model. The employed photo-initiated cross-linking techniques extend the number of residues shown to be within interaction distance in the contact surface of the 14-3-3ζ dimer (Gln8–Met78). The results of this study are in agreement with our previously published data from molecular dynamic calculations based on high-resolution chemical cross-linking data and Hydrogen/Deuterium exchange mass spectrometry. The observed contact is also in accord with the 14-3-3ζ X-ray crystal structure (PDB 3dhr). The results of the present work are relevant to the structural biology of transient interaction in the 14-3-3ζ protein, and demonstrate the ability of the chosen methodology (the combination of photo-initiated cross-linking protein nanoprobes and mass spectrometry analysis) to map the protein-protein interface or regions with a flexible structure. PMID:24865487

  1. Radiation synthesis of biocompatible hydrogels of dextran methacrylate

    NASA Astrophysics Data System (ADS)

    Szafulera, Kamila; Wach, Radosław A.; Olejnik, Alicja K.; Rosiak, Janusz M.; Ulański, Piotr

    2018-01-01

    The aim of this work was to synthesize biocompatible dextran-based hydrogels through crosslinking initiated by ionizing radiation. A series of derivatives of dextran has been synthesized by coupling of methacrylated glycidyl to the structure of this polysaccharide, yielding dextran methacrylate (Dex-MA) of the degree of methacrylate substitution (DS) up to 1.13 as characterised by FTIR and NMR spectroscopy. Chemically crosslinked hydrogels were formed by electron-beam irradiation of Dex-MA in aqueous solution in the absence of low-molecular-weight additives such as catalysts, monomers or crosslinking agents. Crosslinking of Dex-MA in aqueous solutions of 20 g/l and above was an efficient process, the gels were formed at doses as low as 0.5 kGy (experiments conducted up to 100 kGy) and were characterised by high content of insoluble fraction (70-100%). Due to high crosslinking density the equilibrium degree of swelling of fabricated gels was controlled principally by the initial concentration of Dex-MA solution subjected to irradiation, and it was in the range of 20 to over 100 g of water absorbed by gram of gel. Cytocompatibility of hydrogels was examined using XTT assay through evaluation of the cell viability being in indirect contact with hydrogels. The results indicated that hydrogels of Dex-MA of the average DS below 1 were not cytotoxic. Altogether, our data demonstrate that irradiation of methacrylated dextran in aqueous solution is an efficient method of fabrication of biocompatible hydrogels, which applications in regeneration medicine are anticipated.

  2. Smart surface coating of drug nanoparticles with cross-linkable polyethylene glycol for bio-responsive and highly efficient drug delivery.

    PubMed

    Wei, Weijia; Zhang, Xiujuan; Chen, Xianfeng; Zhou, Mengjiao; Xu, Ruirui; Zhang, Xiaohong

    2016-04-21

    Many drug molecules can be directly used as nanomedicine without the requirement of any inorganic or organic carriers such as silica and liposome nanostructures. This new type of carrier-free drug nanoparticles (NPs) has great potential in clinical treatment because of its ultra-high drug loading capacity and biodegradability. For practical applications, it is essential for such nanomedicine to possess robust stability and minimal premature release of therapeutic molecules during circulation in the blood stream. To meet this requirement, herein, we develop GSH-responsive and crosslinkable amphiphilic polyethylene glycol (PEG) molecules to modify carrier-free drug NPs. These PEG molecules can be cross-linked on the surface of the NPs to endow them with greater stability and the cross-link is sensitive to intracellular environment for bio-responsive drug release. With this elegant design, our experimental results show that the liberation of DOX from DOX-cross-linked PEG NPs is dramatically slower than that from DOX-non-cross-linked PEG NPs, and the DOX release profile can be controlled by tuning the concentration of the reducing agent to break the cross-link between PEG molecules. More importantly, in vivo studies reveal that the DOX-cross-linked PEG NPs exhibit favorable blood circulation half-life (>4 h) and intense accumulation in tumor areas, enabling effective anti-cancer therapy. We expect this work will provide a powerful strategy for stabilizing carrier-free nanomedicines and pave the way to their successful clinical applications in the future.

  3. Semi-interpenetrating solid polymer electrolyte based on thiol-ene cross-linker for all-solid-state lithium batteries

    NASA Astrophysics Data System (ADS)

    Suk, Jungdon; Lee, Yu Hwa; Kim, Do Youb; Kim, Dong Wook; Cho, Song Yun; Kim, Ji Man; Kang, Yongku

    2016-12-01

    We developed highly promising solid polymer electrolytes (SPEs) based on a novel cross-linker containing star-shaped phosphazene with poly(ethylene oxide) (PEO) branches with very high ionic conductivity (7.6 × 10-4 S cm-1), improved mechanical stability, and good electrochemical stability for all-solid-state lithium batteries. In particular, allyl groups were introduced at the ends of the cross-linker in order to overcome the easy self-polymerization of existing cross-linking acrylate end groups. A novel semi-interpenetrating network (semi-IPN) SPE was prepared by in-situ radical polymerization of a precursor solution containing lithium salt, poly(ethylene glycol) dimethyl ether as a plasticizer, and a mixture of pentaerythritol tetrakis(3-mercaptopropionate) and a synthesized hexakis(allyloxy)cyclotriphosphazene (thiol-ene PAL) as the cross-linker. Batteries employing LiFePO4 as the cathode, lithium foil as the anode, and the SPE thin film as the electrolyte were assembled and tested. At ambient temperature, the initial discharge capacity was 147 mAh/g at 0.1 °C and 132 mAh/g at 0.5 °C, and 97% of the capacity was retained at the 100th cycle. All-solid-state pouch-package lithium cells assembled with the SPEs exhibited stable electrochemical performance, even under a severely wrinkled state. These outstanding properties of SPEs based on thiol-ene PAL demonstrate feasibility for practical battery applications with improved reliability and safety.

  4. Process Extension from Embryonic Stem Cell-Derived Motor Neurons through Synthetic Extracellular Matrix Mimics

    NASA Astrophysics Data System (ADS)

    McKinnon, Daniel Devaud

    This thesis focuses on studying the extension of motor axons through synthetic poly(ethylene glycol) PEG hydrogels that have been modified with biochemical functionalities to render them more biologically relevant. Specifically, the research strategy is to encapsulate embryonic stem cell-derived motor neurons (ESMNs) in synthetic PEG hydrogels crosslinked through three different chemistries providing three mechanisms for dynamically tuning material properties. First, a covalently crosslinked, enzymatically degradable hydrogel is developed and exploited to study the biophysical dynamics of axon extension and matrix remodeling. It is demonstrated that dispersed motor neurons require a battery of adhesive peptides and growth factors to maintain viability and extend axons while those in contact with supportive neuroglial cells do not. Additionally, cell-degradable crosslinker peptides and a soft modulus mimicking that of the spinal cord are requirements for axon extension. However, because local degradation of the hydrogel results in a cellular environment significantly different than that of the bulk, enzymatically degradable peptide crosslinkers were replaced with reversible covalent hydrazone bonds to study the effect of hydrogel modulus on axon extension. This material is characterized in detail and used to measure forces involved in axon extension. Finally, a hydrogel with photocleavable linkers incorporated into the network structure is exploited to explore motor axon response to physical channels. This system is used to direct the growth of motor axons towards co-cultured myotubes, resulting in the formation of an in vitro neural circuit.

  5. Fractography and oxidative analysis of gamma inert sterilized posterior-stabilized tibial insert post fractures: report of two cases.

    PubMed

    Ansari, Farzana; Chang, Jennifer; Huddleston, James; Van Citters, Douglas; Ries, Michael; Pruitt, Lisa

    2013-12-01

    Highly crosslinked ultra-high molecular weight polyethylene (UHMWPE) has shown success in reducing wear in hip arthroplasty but there remains skepticism about its use in Total Knee Replacement (TKR) inserts that are known to experience fatigue loading and higher local cyclic contact stresses. Two Legacy Posterior-Stabilized (LPS) Zimmer NexGen tibial implants sterilized by gamma irradiation in an inert environment with posts that fractured in vivo were analyzed. Failure mechanisms were determined using optical and scanning electron microscopy along with oxidative analysis via Fourier Transform Infra-Red (FTIR) spectroscopy. Micrographs of one retrieval revealed fatigue crack initiation on opposite sides of the post and quasi-brittle micromechanisms of crack propagation. FTIR of this retrieval revealed no oxidation. The fracture surface image of the second retrieval indicated a brittle fracture process and FTIR revealed oxidation in the explant. These two cases suggest that crosslinking of UHMWPE as a manufacturing process or sterilization method in conjunction with designs that incorporate high stress concentrations, such as the tibial post, may reduce material strength. Moreover, free radicals generated from ionizing radiation can render the polymer susceptible to oxidative embrittlement. Our findings suggest that tibial post fractures may be the results of in vivo oxidation and low level crosslinking. These and previous reports of fractured crosslinked UHMWPE devices implores caution when used with high stress concentrations, particularly when considering the potential for in vivo oxidation in TKR. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Highly Conductive Ionic-Liquid Gels Prepared with Orthogonal Double Networks of a Low-Molecular-Weight Gelator and Cross-Linked Polymer.

    PubMed

    Kataoka, Toshikazu; Ishioka, Yumi; Mizuhata, Minoru; Minami, Hideto; Maruyama, Tatsuo

    2015-10-21

    We prepared a heterogeneous double-network (DN) ionogel containing a low-molecular-weight gelator network and a polymer network that can exhibit high ionic conductivity and high mechanical strength. An imidazolium-based ionic liquid was first gelated by the molecular self-assembly of a low-molecular-weight gelator (benzenetricarboxamide derivative), and methyl methacrylate was polymerized with a cross-linker to form a cross-linked poly(methyl methacrylate) (PMMA) network within the ionogel. Microscopic observation and calorimetric measurement revealed that the fibrous network of the low-molecular-weight gelator was maintained in the DN ionogel. The PMMA network strengthened the ionogel of the low-molecular-weight gelator and allowed us to handle the ionogel using tweezers. The orthogonal DNs produced ionogels with a broad range of storage elastic moduli. DN ionogels with low PMMA concentrations exhibited high ionic conductivity that was comparable to that of a neat ionic liquid. The present study demonstrates that the ionic conductivities of the DN and single-network, low-molecular-weight gelator or polymer ionogels strongly depended on their storage elastic moduli.

  7. Treatment with eldecalcitol positively affects mineralization, microdamage, and collagen crosslinks in primate bone.

    PubMed

    Saito, Mitsuru; Grynpas, Marc D; Burr, David B; Allen, Matthew R; Smith, Susan Y; Doyle, Nancy; Amizuka, Norio; Hasegawa, Tomoka; Kida, Yoshikuni; Marumo, Keishi; Saito, Hitoshi

    2015-04-01

    Eldecalcitol (ELD), an active form of vitamin D analog approved for the treatment of osteoporosis in Japan, increases lumbar spine bone mineral density (BMD), suppresses bone turnover markers, and reduces fracture risk in patients with osteoporosis. We have previously reported that treatment with ELD for 6 months improved the mechanical properties of the lumbar spine in ovariectomized (OVX) cynomolgus monkeys. ELD treatment increased lumbar BMD, suppressed bone turnover markers, and reduced histomorphometric parameters of both bone formation and resorption in vertebral trabecular bone. In this study, we elucidated the effects of ELD on bone quality (namely, mineralization, microarchitecture, microdamage, and bone collagen crosslinks) in OVX cynomolgus monkeys in comparison with OVX-vehicle control monkeys. Density fractionation of bone powder prepared from lumbar vertebrae revealed that ELD treatment shifted the distribution profile of bone mineralization to a higher density, and backscattered electron microscopic imaging showed improved trabecular bone connectivity in the ELD-treated groups. Higher doses of ELD more significantly reduced the amount of microdamage compared to OVX-vehicle controls. The fractionated bone powder samples were divided according to their density, and analyzed for collagen crosslinks. Enzymatic crosslinks were higher in both the high-density (≥2.0 mg/mL) and low-density (<2.0 mg/mL) fractions from the ELD-treated groups than in the corresponding fractions in the OVX-vehicle control groups. On the other hand, non-enzymatic crosslinks were lower in both the high- and low-density fractions. These observations indicated that ELD treatment stimulated the enzymatic reaction of collagen crosslinks and bone mineralization, but prevented non-enzymatic reaction of collagen crosslinks and accumulation of bone microdamage. Bone anti-resorptive agents such as bisphosphonates slow down bone remodeling so that bone mineralization, bone microdamage, and non-enzymatic collagen crosslinks all increase. Bone anabolic agents such as parathyroid hormone decrease bone mineralization and bone microdamage by stimulating bone remodeling. ELD did not fit into either category. Histological analysis indicated that the ELD treatment strongly suppressed bone resorption by reducing the number of osteoclasts, while also stimulating focal bone formation without prior bone resorption (bone minimodeling). These bidirectional activities of ELD may account for its unique effects on bone quality. Copyright © 2014. Published by Elsevier Inc.

  8. Novel Hydrogels from Renewable Resources

    NASA Astrophysics Data System (ADS)

    Karaaslan, Muzafer Ahmet

    2011-12-01

    The cell wall of most plant biomass from forest and agricultural resources consists of three major polymers, cellulose, hemicellulose and lignin. Of these, hemicelluloses have gained increasing attention as sustainable raw materials. In the first part of this study, novel pH-sensitive semi-IPN hydrogels based on hemicelluloses and chitosan were prepared using glutaraldehyde as the crosslinking agent. The hemicellulose isolated from aspen was analyzed for sugar content by HPLC, and its molecular weight distribution was determined by high performance size exclusion chromatography. Results revealed that hemicellulose had a broad molecular weight distribution with a fair amount of polymeric units, together with xylose, arabinose and glucose. The effect of hemicellulose content on mechanical properties and swelling behavior of hydrogels were investigated. The semi-IPNs hydrogel structure was confirmed by FT-IR, X-ray study and ninhydrin assay method. X-ray analysis showed that higher hemicellulose contents yielded higher crystallinity. Mechanical properties were mainly dependent on the crosslink density and average molecular weight between crosslinks. Swelling ratios increased with increasing hemicellulose content and were high at low pH values due to repulsion between similarly charged groups. In vitro release study of a model drug showed that these semi-IPN hydrogels could be used for controlled drug delivery into gastric fluid. The aim of the second part of this study was to control the crosslink density and the mechanical properties of hemicellulose/chitosan semi-IPN hydrogels by changing the crosslinking sequence. It has been hypothesized that by performing the crosslinking step before introducing hemicellulose, covalent crosslinking of chitosan would not be hindered and therefore more and/or shorter crosslinks could be formed. Furthermore, additional secondary interactions and crystalline domains introduced through hemicellulose could be favorable in terms of mechanical stability of semi-IPN hydrogels. In this last section of this study, the natural affinity of hemicellulose to cellulose was utilized to coat cellulose whiskers with chemically modified hemicellulose isolated from wood fiber. Surface modified cellulose nanowhiskers were used to prepare nanocomposite hydrogels using free radical polymerization of 2-hydroxyethyl methacrylate (HEMA), a biocompatible monomer. The effect of morphology and concentration of the incorporated nanocrystals on the hydrogel network was related to the mechanical properties, viscoelastic behavior and swelling of the hydrogels.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishige, Ryohei; Williams, Gregory A.; Higaki, Yuji

    A molded film of single-component polymer-grafted nanoparticles (SPNP), consisting of a spherical silica core and densely grafted polymer chains bearing hydrogen-bonding side groups capable of physical crosslinking, was investigated byin situultra-small-angle X-ray scattering (USAXS) measurement during a uniaxial stretching process. Static USAXS revealed that the molded SPNP formed a highly oriented twinned face-centered cubic (f.c.c.) lattice structure with the [11-1] plane aligned nearly parallel to the film surface in the initial state. Structural analysis ofin situUSAXS using a model of uniaxial deformation induced by rearrangement of the nanoparticles revealed that the f.c.c. lattice was distorted in the stretching direction inmore » proportion to the macroscopic strain until the strain reached 35%, and subsequently changed into other f.c.c. lattices with different orientations. The lattice distortion and structural transition behavior corresponded well to the elastic and plastic deformation regimes, respectively, observed in the stress–strain curve. The attractive interaction of the hydrogen bond is considered to form only at the top surface of the shell and then plays an effective role in cross-linking between nanoparticles. The rearrangement mechanism of the nanoparticles is well accounted for by a strong repulsive interaction between the densely grafted polymer shells of neighboring particles.« less

  10. Use of high L.E.T. radiation to improve adhesion of metals to polytetrafluoroethylene

    NASA Technical Reports Server (NTRS)

    Wheeler, D. R.; Pepper, S. V.

    1982-01-01

    MgK alpha X-rays (1254 eV) and 2 keV electrons irradiate the surface of polytetrafluoro ethylene (PTFE). The damage is confined to a few tenths of a micron below the surface, and the doses exceed 10 to the eight power rad. X-ray Photoelectron Spectroscopy (XPS) of the irradiated surfaces and mass spectroscopy of the gaseous products of irradiation indicate that the damaged layer is crosslinked or branched PTFE. After either type of irradiation, the surface has enhanced affinity for metals and a lower contact angle with hexadecane. Tape pull tests show that evaporated Ni and Au films adhere better to the irradiated surface. XPS shows the Ni interacts chemically with PTFE forming NiF2 and possibly NiC. However, the gold adhesion and contact angle results indicate that the interaction is, at least in part, chemically nonspecific. Decreased contact angles on FEP Teflon crystallized against gold were attributed to either the presence of a polar oxygen layer or increased physical forces due to greater density. In the case of irradiated PTFE, no oxygen on the surface was observed. The crosslinked structure might, however, have a greater density, thus accounting for the observed increase in adhesion and wettability.

  11. Effects of precursor composition and mode of crosslinking on mechanical properties of graphene oxide reinforced composite hydrogels.

    PubMed

    Jang, Jinhyeong; Hong, Jisu; Cha, Chaenyung

    2017-05-01

    Graphene oxide (GO) is increasingly investigated as a reinforcing nanofiller for various hydrogels for biomedical applications for its superior mechanical strength. However, the reinforcing mechanism of GO in different hydrogel conditions has not been extensively explored and elucidated to date. Herein, we systematically examine the effects of various types of precursor molecules (monomers vs. macromers) as well as mode of GO incorporation (physical vs. covalent) on the mechanical properties of resulting composite hydrogels. Two hydrogel types, (1) polyacrylamide hydrogels with varying concentrations of acrylamide monomers and (2) poly(ethylene glycol) (PEG) hydrogels with varying molecular weights of PEG macromers, are used as model systems. In addition, incorporation of GO is also controlled by using either unmodified GO or methacrylic GO (MGO) which allows for covalent incorporation. The results in this study demonstrate that the interaction between GO and the surrounding network and its effect on the mechanical properties (i.e. rigidity and toughness) of composite hydrogels are highly dependent on both the type and concentration of precursors and the mode of crosslinking. We expect this study will provide an important guideline for future research efforts on controlling the mechanical properties of GO-based composite hydrogels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Encoding Hydrogel Mechanics via Network Cross-Linking Structure.

    PubMed

    Schweller, Ryan M; West, Jennifer L

    2015-05-11

    The effects of mechanical cues on cell behaviors in 3D remain difficult to characterize as the ability to tune hydrogel mechanics often requires changes in the polymer density, potentially altering the material's biochemical and physical characteristics. Additionally, with most PEG diacrylate (PEGDA) hydrogels, forming materials with compressive moduli less than ∼10 kPa has been virtually impossible. Here, we present a new method of controlling the mechanical properties of PEGDA hydrogels independent of polymer chain density through the incorporation of additional vinyl group moieties that interfere with the cross-linking of the network. This modification can tune hydrogel mechanics in a concentration dependent manner from <1 to 17 kPa, a more physiologically relevant range than previously possible with PEG-based hydrogels, without altering the hydrogel's degradation and permeability. Across this range of mechanical properties, endothelial cells (ECs) encapsulated within MMP-2/MMP-9 degradable hydrogels with RGDS adhesive peptides revealed increased cell spreading as hydrogel stiffness decreased in contrast to behavior typically observed for cells on 2D surfaces. EC-pericyte cocultures exhibited vessel-like networks within 3 days in highly compliant hydrogels as compared to a week in stiffer hydrogels. These vessel networks persisted for at least 4 weeks and deposited laminin and collagen IV perivascularly. These results indicate that EC morphogenesis can be regulated using mechanical cues in 3D. Furthermore, controlling hydrogel compliance independent of density allows for the attainment of highly compliant mechanical regimes in materials that can act as customizable cell microenvironments.

  13. Surface engineering of nanoparticles with macromolecules for epoxy curing: Development of super-reactive nitrogen-rich nanosilica through surface chemistry manipulation

    NASA Astrophysics Data System (ADS)

    Jouyandeh, Maryam; Jazani, Omid Moini; Navarchian, Amir H.; Shabanian, Meisam; Vahabi, Henri; Saeb, Mohammad Reza

    2018-07-01

    Curing behavior of epoxy-based nanocomposites depends on dispersion state of nanofillers and their physical and chemical interactions with the curing moieties. In this work, a systematic approach was introduced for chemical functionalization of nanoparticles with macromolecules in order to enrich crosslinking potential of epoxy/amine systems, particularly at late stages of cure where the curing is diffusion-controlled. Super-reactive hyperbranched polyethylenimine (PEI)-attached nanosilica was materialized in this work to facilitate epoxy-amine curing. Starting from coupling [3-(2,3-epoxypropoxy) propyl] trimethoxysilane (EPPTMS) with hyperbranched PEI, a super-reactive macromolecule was obtained and subsequently grafted onto the nanosilica surface. Eventually, a thermally-stable highly-curable nanocomposite was attained by replacement of amine and imine groups of the PEI with imide and amide groups through the reaction with pyromellitic acid dianhydride. Fourier-transform infrared spectrophotometry, X-ray diffractometry, X-ray photoelectron spectroscopy and transmission electron microscopy approved successful grafting of polymer chains onto the nanosilica surface. Thermogravimetric analyses approved a relatively high grafting ratio of ca. 21%. Curing potential of the developed super-reactive nanoparticle was uncovered through nonisothermal differential scanning calorimetry signifying an enthalpy rise of ca. 120 J/g by addition of 2 wt.% to epoxy at 5 °C/min heating rate. Even at low concentration of 0.5 wt.%, the glass transition temperature of epoxy increased from 128 to 156 °C, demonstrating prolonged crosslinking.

  14. Evaluation of nanohydroxyapaptite (nano-HA) coated epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes.

    PubMed

    Chu, Chenyu; Deng, Jia; Man, Yi; Qu, Yili

    2017-09-01

    Collagen is the main component of extracellular matrix (ECM) with desirable biological activities and low antigenicity. Collagen materials have been widely utilized in guided bone regeneration (GBR) surgery due to its abilities to maintain space for hard tissue growth. However, pure collagen lacks optimal mechanical properties. In our previous study, epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes, with better biological activities and enhanced mechanical properties, may promote osteoblast proliferation, but their effect on osteoblast differentiation is not very significant. Nanohydroxyapatite (nano-HA) is the main component of mineral bone, which possesses exceptional bioactivity properties including good biocompatibility, high osteoconductivity and osteoinductivity, non-immunogenicity and non-inflammatory behavior. Herein, by analyzing the physical and chemical properties as well as the effects on promoting bone regeneration, we have attempted to present a novel EGCG-modified collagen membrane with nano-HA coating, and have found evidence that the novel collagen membrane may promote bone regeneration with a better surface morphology, without destroying collagen backbone. To evaluate the surface morphologies, chemical and mechanical properties of pure collagen membranes, epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes, nano-HA coated collagen membranes, nano-HA coated EGCG-collagen membranes, (ii) to evaluate the bone regeneration promoted by theses membranes. In the present study, collagen membranes were divided into 4 groups: (1) untreated collagen membranes (2) EGCG cross-linked collagen membranes (3) nano-HA modified collagen membranes (4) nano-HA modified EGCG-collagen membranes. Scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FTIR) were used to evaluate surface morphologies and chemical properties, respectively. Mechanical properties were determined by differential scanning calorimeter (DSC) and elastic modulus (EM) measurements. Then in 12 rats, 4 types of membranes were randomly applied to cover the rat calvarial defects. The animals were sacrificed at 8weeks. Histologic analyses were performed using Hematoxylin-eosin (H&E) staining and Masson's Trichrome stains. For statistical analysis, analysis of variance (ANOVA) followed by Tukey's multiple comparison tests was applied. HA nanoparticles were fairly well distributed nanoparticles among the collagen fibers on the nano-HA-modified EGCG-collagen membranes, with smoother surface. Moreover, collagen membranes with modifications all maintained their collagen backbone and the mechanical properties were enhanced by EGCG and nano-HA treatments. In addition, EGCG cross-linked collagen membranes with nano-HA coatings promoted bone regeneration. Nano-HA modified EGCG-collagen membranes can be utilized as a barrier membrane to enhance the bone regeneration in GBR surgeries. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Genipin crosslinking decreases the mechanical wear and biochemical degradation of impacted cartilage in vitro.

    PubMed

    Bonitsky, Craig M; McGann, Megan E; Selep, Michael J; Ovaert, Timothy C; Trippel, Stephen B; Wagner, Diane R

    2017-03-01

    High energy trauma to cartilage causes surface fissures and microstructural damage, but the degree to which this damage renders the tissue more susceptible to wear and contributes to the progression of post-traumatic osteoarthritis (PTOA) is unknown. Additionally, no treatments are currently available to strengthen cartilage after joint trauma and to protect the tissue from subsequent degradation and wear. The purposes of this study were to investigate the role of mechanical damage in the degradation and wear of cartilage, to evaluate the effects of impact and subsequent genipin crosslinking on the changes in the viscoelastic parameters of articular cartilage, and to test the hypothesis that genipin crosslinking is an effective treatment to enhance the resistance to biochemical degradation and mechanical wear. Results demonstrate that cartilage stiffness decreases after impact loading, likely due to the formation of fissures and microarchitectural damage, and is partially or fully restored by crosslinking. The wear resistance of impacted articular cartilage was diminished compared to undamaged cartilage, suggesting that mechanical damage that is directly induced by the impact may contribute to the progression of PTOA. However, the decrease in wear resistance was completely reversed by the crosslinking treatments. Additionally, the crosslinking treatments improved the resistance to collagenase digestion at the impact-damaged articular surface. These results highlight the potential therapeutic value of collagen crosslinking via genipin in the prevention of cartilage degeneration after traumatic injury. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:558-565, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  16. Genome-Wide Profiling of RNA–Protein Interactions Using CLIP-Seq

    PubMed Central

    Stork, Cheryl; Zheng, Sika

    2017-01-01

    UV crosslinking immunoprecipitation (CLIP) is an increasingly popular technique to study protein–RNA interactions in tissues and cells. Whole cells or tissues are ultraviolet irradiated to generate a covalent bond between RNA and proteins that are in close contact. After partial RNase digestion, antibodies specific to an RNA binding protein (RBP) or a protein–epitope tag is then used to immunoprecipitate the protein–RNA complexes. After stringent washing and gel separation the RBP–RNA complex is excised. The RBP is protease digested to allow purification of the bound RNA. Reverse transcription of the RNA followed by high-throughput sequencing of the cDNA library is now often used to identify protein bound RNA on a genome-wide scale. UV irradiation can result in cDNA truncations and/or mutations at the crosslink sites, which complicates the alignment of the sequencing library to the reference genome and the identification of the crosslinking sites. Meanwhile, one or more amino acids of a crosslinked RBP can remain attached to its bound RNA due to incomplete digestion of the protein. As a result, reverse transcriptase may not read through the crosslink sites, and produce cDNA ending at the crosslinked nucleotide. This is harnessed by one variant of CLIP methods to identify crosslinking sites at a nucleotide resolution. This method, individual nucleotide resolution CLIP (iCLIP) circularizes cDNA to capture the truncated cDNA and also increases the efficiency of ligating sequencing adapters to the library. Here, we describe the detailed procedure of iCLIP. PMID:26965263

  17. [Facial injections of hyaluronic acid-based fillers for malformations. Preliminary study regarding scar tissue improvement and cosmetic betterment].

    PubMed

    Franchi, G; Neiva-Vaz, C; Picard, A; Vazquez, M-P

    2018-06-01

    Cross-linked hyaluronic acid-based fillers have gained rapid acceptance for treating facial wrinkles, deep tissue folds and sunken areas due to aging. This study evaluates, in addition to space-filling properties, their effects on softness and elasticity as a secondary effect, following injection of 3 commercially available cross-linked hyaluronic acid-based fillers (15mg/mL, 17,5mg/mL and 20mg/mL) in patients presenting with congenital or acquired facial malformations. We started injecting gels of cross-linked hyaluronic acid-based fillers in those cases in 2013; we performed 46 sessions of injections in 32 patients, aged from 13-32. Clinical assessment was performed by the patient himself and by a plastic surgeon, 15 days after injections and 6-18 months later. Cross-linked hyaluronic acid-based fillers offered very subtle cosmetic results and supplemented surgery with a very high level of satisfaction of the patients. When injected in fibrosis, the first session enhanced softness and elasticity; the second session enhanced the volume. Cross-linked hyaluronic acid-based fillers fill sunken areas and better softness and elasticity of scar tissues. In addition to their well-understood space-filling function, as a secondary effect, the authors demonstrate that cross-linked hyaluronic acid-based fillers improve softness and elasticity of scarring tissues. Many experimental studies support our observations, showing that cross-linked hyaluronic acid stimulates the production of several extra-cellular matrix components, including dermal collagen and elastin. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  18. Influence of solvent composition on the performance of carbodiimide cross-linked gelatin carriers for retinal sheet delivery.

    PubMed

    Lai, Jui-Yang

    2013-09-01

    Gelatin is a protein molecule that displays bioaffinity and provides a template to guide retinal pigment epithelial (RPE) cell organization and growth. We have recently demonstrated that the carbodiimide cross-linked gelatin membranes can be used as retinal sheet carriers. The purpose of this work was to further determine the role of solvent composition in the tissue delivery performance of chemically modified biopolymer matrices. The gelatin molecules were treated with 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) in the presence of binary ethanol/water mixtures with varying ethanol concentrations (70-95 vol%) to obtain the carriers with different cross-linking efficiencies and mechanical properties. Results of melting point measurements and in vitro degradation tests showed that when the cross-linking index reached a high level of around 45 %, the EDC cross-linked gelatin materials have sufficient thermal stability and resistance to enzymatic degradation, indicating their suitability for the development of carriers for retinal sheet delivery. Irrespective of the solvent composition, the chemically modified gelatin samples are compatible toward human RPE cells without causing toxicity and inflammation. In particular, the membrane carriers prepared by the cross-linking in the presence of solvent mixtures containing 80-90 vol% of ethanol have no impact on the proliferative capacity of ARPE-19 cultures and possess good efficiency in transferring and encapsulating the retinal tissues. It is concluded that, except for cell viability and pro-inflammatory cytokine expression, the retinal sheet delivery performance strongly depends on the solvent composition for EDC cross-linking of gelatin molecules.

  19. Preparation, characterization, physical testing and performance of flurocarbon membranes and separators

    NASA Technical Reports Server (NTRS)

    Lagow, R. J.; Dumitru, E. T.

    1983-01-01

    The direct fluorination method of converting carefully selected hydrocarbon substrates to fluorinated membranes was successfully applied to produce promising, novel membranes for electrochemical devices. A family of polymer blends was identified which permits wide latitude in the concentration of both crosslinks and carboxyl groups in hydrocarbon membranes. The membranes of paragraph two were successfully fluorinated.

  20. Heat shrinkable behavior, physico-mechanical and structure properties of electron beam cross-linked blends of high-density polyethylene with acrylonitrile-butadiene rubber

    NASA Astrophysics Data System (ADS)

    Reinholds, Ingars; Kalkis, Valdis; Merijs-Meri, Remo; Zicans, Janis; Grigalovica, Agnese

    2016-03-01

    In this study, heat-shrinkable composites of electron beam irradiated high-density polyethylene (HDPE) composites with acrylonitrile-butadiene rubber (NBR) were investigated. HDPE/NBR blends at a ratio of components 100/0, 90/10, 80/20, 50/50 and 20/80 wt% were prepared using a two-roll mill. The compression molded films were irradiated high-energy (5 MeV) accelerated electrons up to irradiation absorbed doses of 100-300 kGy. The effect of electron beam induced cross-linking was evaluated by the changes of mechanical properties, gel content and by the differences of thermal properties, detected by differential scanning calorimetry. The thermo-shrinkage forces were determined as the kinetics of thermorelaxation and the residual shrinkage stresses of previously oriented (stretched up to 100% at above melting temperature of HDPE and followed by cooling to room temperature) specimens of irradiated HDPE/NBR blends under isometric heating-cooling mode. The compatibility between the both components was enhanced due to the formation of cross-linked sites at amorphous interphase. The results showed increase of mechanical stiffness of composites with increase of irradiation dose. The values of gel fraction compared to thermorelaxation stresses increased with the growth of irradiation dose level, as a result of formation cross-linked sites in amorphous PP/NBR interphase.

Top